1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents a sequence for extracting a 0/1 value from an IPM result:
35 // (((X ^ XORValue) + AddValue) >> Bit)
36 struct IPMConversion {
37   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
38     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
39 
40   int64_t XORValue;
41   int64_t AddValue;
42   unsigned Bit;
43 };
44 
45 // Represents information about a comparison.
46 struct Comparison {
47   Comparison(SDValue Op0In, SDValue Op1In)
48     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
49 
50   // The operands to the comparison.
51   SDValue Op0, Op1;
52 
53   // The opcode that should be used to compare Op0 and Op1.
54   unsigned Opcode;
55 
56   // A SystemZICMP value.  Only used for integer comparisons.
57   unsigned ICmpType;
58 
59   // The mask of CC values that Opcode can produce.
60   unsigned CCValid;
61 
62   // The mask of CC values for which the original condition is true.
63   unsigned CCMask;
64 };
65 } // end anonymous namespace
66 
67 // Classify VT as either 32 or 64 bit.
68 static bool is32Bit(EVT VT) {
69   switch (VT.getSimpleVT().SimpleTy) {
70   case MVT::i32:
71     return true;
72   case MVT::i64:
73     return false;
74   default:
75     llvm_unreachable("Unsupported type");
76   }
77 }
78 
79 // Return a version of MachineOperand that can be safely used before the
80 // final use.
81 static MachineOperand earlyUseOperand(MachineOperand Op) {
82   if (Op.isReg())
83     Op.setIsKill(false);
84   return Op;
85 }
86 
87 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
88                                              const SystemZSubtarget &STI)
89     : TargetLowering(TM), Subtarget(STI) {
90   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
91 
92   // Set up the register classes.
93   if (Subtarget.hasHighWord())
94     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
95   else
96     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
97   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
98   if (Subtarget.hasVector()) {
99     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
100     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
101   } else {
102     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
103     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
104   }
105   if (Subtarget.hasVectorEnhancements1())
106     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
107   else
108     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
109 
110   if (Subtarget.hasVector()) {
111     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
112     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
113     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
114     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
115     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
116     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
117   }
118 
119   // Compute derived properties from the register classes
120   computeRegisterProperties(Subtarget.getRegisterInfo());
121 
122   // Set up special registers.
123   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
124 
125   // TODO: It may be better to default to latency-oriented scheduling, however
126   // LLVM's current latency-oriented scheduler can't handle physreg definitions
127   // such as SystemZ has with CC, so set this to the register-pressure
128   // scheduler, because it can.
129   setSchedulingPreference(Sched::RegPressure);
130 
131   setBooleanContents(ZeroOrOneBooleanContent);
132   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
133 
134   // Instructions are strings of 2-byte aligned 2-byte values.
135   setMinFunctionAlignment(2);
136 
137   // Handle operations that are handled in a similar way for all types.
138   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
139        I <= MVT::LAST_FP_VALUETYPE;
140        ++I) {
141     MVT VT = MVT::SimpleValueType(I);
142     if (isTypeLegal(VT)) {
143       // Lower SET_CC into an IPM-based sequence.
144       setOperationAction(ISD::SETCC, VT, Custom);
145 
146       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
147       setOperationAction(ISD::SELECT, VT, Expand);
148 
149       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
150       setOperationAction(ISD::SELECT_CC, VT, Custom);
151       setOperationAction(ISD::BR_CC,     VT, Custom);
152     }
153   }
154 
155   // Expand jump table branches as address arithmetic followed by an
156   // indirect jump.
157   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
158 
159   // Expand BRCOND into a BR_CC (see above).
160   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
161 
162   // Handle integer types.
163   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
164        I <= MVT::LAST_INTEGER_VALUETYPE;
165        ++I) {
166     MVT VT = MVT::SimpleValueType(I);
167     if (isTypeLegal(VT)) {
168       // Expand individual DIV and REMs into DIVREMs.
169       setOperationAction(ISD::SDIV, VT, Expand);
170       setOperationAction(ISD::UDIV, VT, Expand);
171       setOperationAction(ISD::SREM, VT, Expand);
172       setOperationAction(ISD::UREM, VT, Expand);
173       setOperationAction(ISD::SDIVREM, VT, Custom);
174       setOperationAction(ISD::UDIVREM, VT, Custom);
175 
176       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
177       // stores, putting a serialization instruction after the stores.
178       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
179       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
180 
181       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
182       // available, or if the operand is constant.
183       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
184 
185       // Use POPCNT on z196 and above.
186       if (Subtarget.hasPopulationCount())
187         setOperationAction(ISD::CTPOP, VT, Custom);
188       else
189         setOperationAction(ISD::CTPOP, VT, Expand);
190 
191       // No special instructions for these.
192       setOperationAction(ISD::CTTZ,            VT, Expand);
193       setOperationAction(ISD::ROTR,            VT, Expand);
194 
195       // Use *MUL_LOHI where possible instead of MULH*.
196       setOperationAction(ISD::MULHS, VT, Expand);
197       setOperationAction(ISD::MULHU, VT, Expand);
198       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
199       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
200 
201       // Only z196 and above have native support for conversions to unsigned.
202       // On z10, promoting to i64 doesn't generate an inexact condition for
203       // values that are outside the i32 range but in the i64 range, so use
204       // the default expansion.
205       if (!Subtarget.hasFPExtension())
206         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
207     }
208   }
209 
210   // Type legalization will convert 8- and 16-bit atomic operations into
211   // forms that operate on i32s (but still keeping the original memory VT).
212   // Lower them into full i32 operations.
213   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
214   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
215   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
216   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
217   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
218   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
219   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
220   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
221   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
223   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
224 
225   // Even though i128 is not a legal type, we still need to custom lower
226   // the atomic operations in order to exploit SystemZ instructions.
227   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
228   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
229 
230   // We can use the CC result of compare-and-swap to implement
231   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
232   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
233   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
234   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
235 
236   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
237 
238   // Traps are legal, as we will convert them to "j .+2".
239   setOperationAction(ISD::TRAP, MVT::Other, Legal);
240 
241   // z10 has instructions for signed but not unsigned FP conversion.
242   // Handle unsigned 32-bit types as signed 64-bit types.
243   if (!Subtarget.hasFPExtension()) {
244     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
245     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
246   }
247 
248   // We have native support for a 64-bit CTLZ, via FLOGR.
249   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
250   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
251 
252   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
253   setOperationAction(ISD::OR, MVT::i64, Custom);
254 
255   // FIXME: Can we support these natively?
256   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
257   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
258   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
259 
260   // We have native instructions for i8, i16 and i32 extensions, but not i1.
261   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
262   for (MVT VT : MVT::integer_valuetypes()) {
263     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
264     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
265     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
266   }
267 
268   // Handle the various types of symbolic address.
269   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
270   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
271   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
272   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
273   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
274 
275   // We need to handle dynamic allocations specially because of the
276   // 160-byte area at the bottom of the stack.
277   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
278   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
279 
280   // Use custom expanders so that we can force the function to use
281   // a frame pointer.
282   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
283   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
284 
285   // Handle prefetches with PFD or PFDRL.
286   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
287 
288   for (MVT VT : MVT::vector_valuetypes()) {
289     // Assume by default that all vector operations need to be expanded.
290     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
291       if (getOperationAction(Opcode, VT) == Legal)
292         setOperationAction(Opcode, VT, Expand);
293 
294     // Likewise all truncating stores and extending loads.
295     for (MVT InnerVT : MVT::vector_valuetypes()) {
296       setTruncStoreAction(VT, InnerVT, Expand);
297       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
298       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
299       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
300     }
301 
302     if (isTypeLegal(VT)) {
303       // These operations are legal for anything that can be stored in a
304       // vector register, even if there is no native support for the format
305       // as such.  In particular, we can do these for v4f32 even though there
306       // are no specific instructions for that format.
307       setOperationAction(ISD::LOAD, VT, Legal);
308       setOperationAction(ISD::STORE, VT, Legal);
309       setOperationAction(ISD::VSELECT, VT, Legal);
310       setOperationAction(ISD::BITCAST, VT, Legal);
311       setOperationAction(ISD::UNDEF, VT, Legal);
312 
313       // Likewise, except that we need to replace the nodes with something
314       // more specific.
315       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
316       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
317     }
318   }
319 
320   // Handle integer vector types.
321   for (MVT VT : MVT::integer_vector_valuetypes()) {
322     if (isTypeLegal(VT)) {
323       // These operations have direct equivalents.
324       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
325       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
326       setOperationAction(ISD::ADD, VT, Legal);
327       setOperationAction(ISD::SUB, VT, Legal);
328       if (VT != MVT::v2i64)
329         setOperationAction(ISD::MUL, VT, Legal);
330       setOperationAction(ISD::AND, VT, Legal);
331       setOperationAction(ISD::OR, VT, Legal);
332       setOperationAction(ISD::XOR, VT, Legal);
333       if (Subtarget.hasVectorEnhancements1())
334         setOperationAction(ISD::CTPOP, VT, Legal);
335       else
336         setOperationAction(ISD::CTPOP, VT, Custom);
337       setOperationAction(ISD::CTTZ, VT, Legal);
338       setOperationAction(ISD::CTLZ, VT, Legal);
339 
340       // Convert a GPR scalar to a vector by inserting it into element 0.
341       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
342 
343       // Use a series of unpacks for extensions.
344       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
345       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
346 
347       // Detect shifts by a scalar amount and convert them into
348       // V*_BY_SCALAR.
349       setOperationAction(ISD::SHL, VT, Custom);
350       setOperationAction(ISD::SRA, VT, Custom);
351       setOperationAction(ISD::SRL, VT, Custom);
352 
353       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
354       // converted into ROTL.
355       setOperationAction(ISD::ROTL, VT, Expand);
356       setOperationAction(ISD::ROTR, VT, Expand);
357 
358       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
359       // and inverting the result as necessary.
360       setOperationAction(ISD::SETCC, VT, Custom);
361     }
362   }
363 
364   if (Subtarget.hasVector()) {
365     // There should be no need to check for float types other than v2f64
366     // since <2 x f32> isn't a legal type.
367     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
368     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
369     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
370     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
371     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
372     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
373     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
374     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
375   }
376 
377   // Handle floating-point types.
378   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
379        I <= MVT::LAST_FP_VALUETYPE;
380        ++I) {
381     MVT VT = MVT::SimpleValueType(I);
382     if (isTypeLegal(VT)) {
383       // We can use FI for FRINT.
384       setOperationAction(ISD::FRINT, VT, Legal);
385 
386       // We can use the extended form of FI for other rounding operations.
387       if (Subtarget.hasFPExtension()) {
388         setOperationAction(ISD::FNEARBYINT, VT, Legal);
389         setOperationAction(ISD::FFLOOR, VT, Legal);
390         setOperationAction(ISD::FCEIL, VT, Legal);
391         setOperationAction(ISD::FTRUNC, VT, Legal);
392         setOperationAction(ISD::FROUND, VT, Legal);
393       }
394 
395       // No special instructions for these.
396       setOperationAction(ISD::FSIN, VT, Expand);
397       setOperationAction(ISD::FCOS, VT, Expand);
398       setOperationAction(ISD::FSINCOS, VT, Expand);
399       setOperationAction(ISD::FREM, VT, Expand);
400       setOperationAction(ISD::FPOW, VT, Expand);
401     }
402   }
403 
404   // Handle floating-point vector types.
405   if (Subtarget.hasVector()) {
406     // Scalar-to-vector conversion is just a subreg.
407     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
408     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
409 
410     // Some insertions and extractions can be done directly but others
411     // need to go via integers.
412     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
413     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
414     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
415     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
416 
417     // These operations have direct equivalents.
418     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
419     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
420     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
421     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
422     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
423     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
424     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
425     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
426     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
427     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
428     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
429     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
430     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
431     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
432   }
433 
434   // The vector enhancements facility 1 has instructions for these.
435   if (Subtarget.hasVectorEnhancements1()) {
436     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
437     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
438     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
439     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
440     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
441     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
442     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
443     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
444     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
445     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
446     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
447     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
448     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
449     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
450 
451     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
452     setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
453     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
454     setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
455 
456     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
457     setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
458     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
459     setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
460 
461     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
462     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
463     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
464     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
465 
466     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
467     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
468     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
469     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
470 
471     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
472     setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
473     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
474     setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
475   }
476 
477   // We have fused multiply-addition for f32 and f64 but not f128.
478   setOperationAction(ISD::FMA, MVT::f32,  Legal);
479   setOperationAction(ISD::FMA, MVT::f64,  Legal);
480   if (Subtarget.hasVectorEnhancements1())
481     setOperationAction(ISD::FMA, MVT::f128, Legal);
482   else
483     setOperationAction(ISD::FMA, MVT::f128, Expand);
484 
485   // We don't have a copysign instruction on vector registers.
486   if (Subtarget.hasVectorEnhancements1())
487     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
488 
489   // Needed so that we don't try to implement f128 constant loads using
490   // a load-and-extend of a f80 constant (in cases where the constant
491   // would fit in an f80).
492   for (MVT VT : MVT::fp_valuetypes())
493     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
494 
495   // We don't have extending load instruction on vector registers.
496   if (Subtarget.hasVectorEnhancements1()) {
497     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
498     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
499   }
500 
501   // Floating-point truncation and stores need to be done separately.
502   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
503   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
504   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
505 
506   // We have 64-bit FPR<->GPR moves, but need special handling for
507   // 32-bit forms.
508   if (!Subtarget.hasVector()) {
509     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
510     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
511   }
512 
513   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
514   // structure, but VAEND is a no-op.
515   setOperationAction(ISD::VASTART, MVT::Other, Custom);
516   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
517   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
518 
519   // Codes for which we want to perform some z-specific combinations.
520   setTargetDAGCombine(ISD::SIGN_EXTEND);
521   setTargetDAGCombine(ISD::STORE);
522   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
523   setTargetDAGCombine(ISD::FP_ROUND);
524   setTargetDAGCombine(ISD::BSWAP);
525   setTargetDAGCombine(ISD::SHL);
526   setTargetDAGCombine(ISD::SRA);
527   setTargetDAGCombine(ISD::SRL);
528   setTargetDAGCombine(ISD::ROTL);
529 
530   // Handle intrinsics.
531   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
532   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
533 
534   // We want to use MVC in preference to even a single load/store pair.
535   MaxStoresPerMemcpy = 0;
536   MaxStoresPerMemcpyOptSize = 0;
537 
538   // The main memset sequence is a byte store followed by an MVC.
539   // Two STC or MV..I stores win over that, but the kind of fused stores
540   // generated by target-independent code don't when the byte value is
541   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
542   // than "STC;MVC".  Handle the choice in target-specific code instead.
543   MaxStoresPerMemset = 0;
544   MaxStoresPerMemsetOptSize = 0;
545 }
546 
547 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
548                                               LLVMContext &, EVT VT) const {
549   if (!VT.isVector())
550     return MVT::i32;
551   return VT.changeVectorElementTypeToInteger();
552 }
553 
554 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
555   VT = VT.getScalarType();
556 
557   if (!VT.isSimple())
558     return false;
559 
560   switch (VT.getSimpleVT().SimpleTy) {
561   case MVT::f32:
562   case MVT::f64:
563     return true;
564   case MVT::f128:
565     return Subtarget.hasVectorEnhancements1();
566   default:
567     break;
568   }
569 
570   return false;
571 }
572 
573 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
574   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
575   return Imm.isZero() || Imm.isNegZero();
576 }
577 
578 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
579   // We can use CGFI or CLGFI.
580   return isInt<32>(Imm) || isUInt<32>(Imm);
581 }
582 
583 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
584   // We can use ALGFI or SLGFI.
585   return isUInt<32>(Imm) || isUInt<32>(-Imm);
586 }
587 
588 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
589                                                            unsigned,
590                                                            unsigned,
591                                                            bool *Fast) const {
592   // Unaligned accesses should never be slower than the expanded version.
593   // We check specifically for aligned accesses in the few cases where
594   // they are required.
595   if (Fast)
596     *Fast = true;
597   return true;
598 }
599 
600 // Information about the addressing mode for a memory access.
601 struct AddressingMode {
602   // True if a long displacement is supported.
603   bool LongDisplacement;
604 
605   // True if use of index register is supported.
606   bool IndexReg;
607 
608   AddressingMode(bool LongDispl, bool IdxReg) :
609     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
610 };
611 
612 // Return the desired addressing mode for a Load which has only one use (in
613 // the same block) which is a Store.
614 static AddressingMode getLoadStoreAddrMode(bool HasVector,
615                                           Type *Ty) {
616   // With vector support a Load->Store combination may be combined to either
617   // an MVC or vector operations and it seems to work best to allow the
618   // vector addressing mode.
619   if (HasVector)
620     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
621 
622   // Otherwise only the MVC case is special.
623   bool MVC = Ty->isIntegerTy(8);
624   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
625 }
626 
627 // Return the addressing mode which seems most desirable given an LLVM
628 // Instruction pointer.
629 static AddressingMode
630 supportedAddressingMode(Instruction *I, bool HasVector) {
631   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
632     switch (II->getIntrinsicID()) {
633     default: break;
634     case Intrinsic::memset:
635     case Intrinsic::memmove:
636     case Intrinsic::memcpy:
637       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
638     }
639   }
640 
641   if (isa<LoadInst>(I) && I->hasOneUse()) {
642     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
643     if (SingleUser->getParent() == I->getParent()) {
644       if (isa<ICmpInst>(SingleUser)) {
645         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
646           if (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))
647             // Comparison of memory with 16 bit signed / unsigned immediate
648             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
649       } else if (isa<StoreInst>(SingleUser))
650         // Load->Store
651         return getLoadStoreAddrMode(HasVector, I->getType());
652     }
653   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
654     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
655       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
656         // Load->Store
657         return getLoadStoreAddrMode(HasVector, LoadI->getType());
658   }
659 
660   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
661 
662     // * Use LDE instead of LE/LEY for z13 to avoid partial register
663     //   dependencies (LDE only supports small offsets).
664     // * Utilize the vector registers to hold floating point
665     //   values (vector load / store instructions only support small
666     //   offsets).
667 
668     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
669                          I->getOperand(0)->getType());
670     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
671     bool IsVectorAccess = MemAccessTy->isVectorTy();
672 
673     // A store of an extracted vector element will be combined into a VSTE type
674     // instruction.
675     if (!IsVectorAccess && isa<StoreInst>(I)) {
676       Value *DataOp = I->getOperand(0);
677       if (isa<ExtractElementInst>(DataOp))
678         IsVectorAccess = true;
679     }
680 
681     // A load which gets inserted into a vector element will be combined into a
682     // VLE type instruction.
683     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
684       User *LoadUser = *I->user_begin();
685       if (isa<InsertElementInst>(LoadUser))
686         IsVectorAccess = true;
687     }
688 
689     if (IsFPAccess || IsVectorAccess)
690       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
691   }
692 
693   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
694 }
695 
696 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
697        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
698   // Punt on globals for now, although they can be used in limited
699   // RELATIVE LONG cases.
700   if (AM.BaseGV)
701     return false;
702 
703   // Require a 20-bit signed offset.
704   if (!isInt<20>(AM.BaseOffs))
705     return false;
706 
707   AddressingMode SupportedAM(true, true);
708   if (I != nullptr)
709     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
710 
711   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
712     return false;
713 
714   if (!SupportedAM.IndexReg)
715     // No indexing allowed.
716     return AM.Scale == 0;
717   else
718     // Indexing is OK but no scale factor can be applied.
719     return AM.Scale == 0 || AM.Scale == 1;
720 }
721 
722 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
723   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
724     return false;
725   unsigned FromBits = FromType->getPrimitiveSizeInBits();
726   unsigned ToBits = ToType->getPrimitiveSizeInBits();
727   return FromBits > ToBits;
728 }
729 
730 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
731   if (!FromVT.isInteger() || !ToVT.isInteger())
732     return false;
733   unsigned FromBits = FromVT.getSizeInBits();
734   unsigned ToBits = ToVT.getSizeInBits();
735   return FromBits > ToBits;
736 }
737 
738 //===----------------------------------------------------------------------===//
739 // Inline asm support
740 //===----------------------------------------------------------------------===//
741 
742 TargetLowering::ConstraintType
743 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
744   if (Constraint.size() == 1) {
745     switch (Constraint[0]) {
746     case 'a': // Address register
747     case 'd': // Data register (equivalent to 'r')
748     case 'f': // Floating-point register
749     case 'h': // High-part register
750     case 'r': // General-purpose register
751       return C_RegisterClass;
752 
753     case 'Q': // Memory with base and unsigned 12-bit displacement
754     case 'R': // Likewise, plus an index
755     case 'S': // Memory with base and signed 20-bit displacement
756     case 'T': // Likewise, plus an index
757     case 'm': // Equivalent to 'T'.
758       return C_Memory;
759 
760     case 'I': // Unsigned 8-bit constant
761     case 'J': // Unsigned 12-bit constant
762     case 'K': // Signed 16-bit constant
763     case 'L': // Signed 20-bit displacement (on all targets we support)
764     case 'M': // 0x7fffffff
765       return C_Other;
766 
767     default:
768       break;
769     }
770   }
771   return TargetLowering::getConstraintType(Constraint);
772 }
773 
774 TargetLowering::ConstraintWeight SystemZTargetLowering::
775 getSingleConstraintMatchWeight(AsmOperandInfo &info,
776                                const char *constraint) const {
777   ConstraintWeight weight = CW_Invalid;
778   Value *CallOperandVal = info.CallOperandVal;
779   // If we don't have a value, we can't do a match,
780   // but allow it at the lowest weight.
781   if (!CallOperandVal)
782     return CW_Default;
783   Type *type = CallOperandVal->getType();
784   // Look at the constraint type.
785   switch (*constraint) {
786   default:
787     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
788     break;
789 
790   case 'a': // Address register
791   case 'd': // Data register (equivalent to 'r')
792   case 'h': // High-part register
793   case 'r': // General-purpose register
794     if (CallOperandVal->getType()->isIntegerTy())
795       weight = CW_Register;
796     break;
797 
798   case 'f': // Floating-point register
799     if (type->isFloatingPointTy())
800       weight = CW_Register;
801     break;
802 
803   case 'I': // Unsigned 8-bit constant
804     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
805       if (isUInt<8>(C->getZExtValue()))
806         weight = CW_Constant;
807     break;
808 
809   case 'J': // Unsigned 12-bit constant
810     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
811       if (isUInt<12>(C->getZExtValue()))
812         weight = CW_Constant;
813     break;
814 
815   case 'K': // Signed 16-bit constant
816     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
817       if (isInt<16>(C->getSExtValue()))
818         weight = CW_Constant;
819     break;
820 
821   case 'L': // Signed 20-bit displacement (on all targets we support)
822     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
823       if (isInt<20>(C->getSExtValue()))
824         weight = CW_Constant;
825     break;
826 
827   case 'M': // 0x7fffffff
828     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
829       if (C->getZExtValue() == 0x7fffffff)
830         weight = CW_Constant;
831     break;
832   }
833   return weight;
834 }
835 
836 // Parse a "{tNNN}" register constraint for which the register type "t"
837 // has already been verified.  MC is the class associated with "t" and
838 // Map maps 0-based register numbers to LLVM register numbers.
839 static std::pair<unsigned, const TargetRegisterClass *>
840 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
841                     const unsigned *Map) {
842   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
843   if (isdigit(Constraint[2])) {
844     unsigned Index;
845     bool Failed =
846         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
847     if (!Failed && Index < 16 && Map[Index])
848       return std::make_pair(Map[Index], RC);
849   }
850   return std::make_pair(0U, nullptr);
851 }
852 
853 std::pair<unsigned, const TargetRegisterClass *>
854 SystemZTargetLowering::getRegForInlineAsmConstraint(
855     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
856   if (Constraint.size() == 1) {
857     // GCC Constraint Letters
858     switch (Constraint[0]) {
859     default: break;
860     case 'd': // Data register (equivalent to 'r')
861     case 'r': // General-purpose register
862       if (VT == MVT::i64)
863         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
864       else if (VT == MVT::i128)
865         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
866       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
867 
868     case 'a': // Address register
869       if (VT == MVT::i64)
870         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
871       else if (VT == MVT::i128)
872         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
873       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
874 
875     case 'h': // High-part register (an LLVM extension)
876       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
877 
878     case 'f': // Floating-point register
879       if (VT == MVT::f64)
880         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
881       else if (VT == MVT::f128)
882         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
883       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
884     }
885   }
886   if (Constraint.size() > 0 && Constraint[0] == '{') {
887     // We need to override the default register parsing for GPRs and FPRs
888     // because the interpretation depends on VT.  The internal names of
889     // the registers are also different from the external names
890     // (F0D and F0S instead of F0, etc.).
891     if (Constraint[1] == 'r') {
892       if (VT == MVT::i32)
893         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
894                                    SystemZMC::GR32Regs);
895       if (VT == MVT::i128)
896         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
897                                    SystemZMC::GR128Regs);
898       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
899                                  SystemZMC::GR64Regs);
900     }
901     if (Constraint[1] == 'f') {
902       if (VT == MVT::f32)
903         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
904                                    SystemZMC::FP32Regs);
905       if (VT == MVT::f128)
906         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
907                                    SystemZMC::FP128Regs);
908       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
909                                  SystemZMC::FP64Regs);
910     }
911   }
912   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
913 }
914 
915 void SystemZTargetLowering::
916 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
917                              std::vector<SDValue> &Ops,
918                              SelectionDAG &DAG) const {
919   // Only support length 1 constraints for now.
920   if (Constraint.length() == 1) {
921     switch (Constraint[0]) {
922     case 'I': // Unsigned 8-bit constant
923       if (auto *C = dyn_cast<ConstantSDNode>(Op))
924         if (isUInt<8>(C->getZExtValue()))
925           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
926                                               Op.getValueType()));
927       return;
928 
929     case 'J': // Unsigned 12-bit constant
930       if (auto *C = dyn_cast<ConstantSDNode>(Op))
931         if (isUInt<12>(C->getZExtValue()))
932           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
933                                               Op.getValueType()));
934       return;
935 
936     case 'K': // Signed 16-bit constant
937       if (auto *C = dyn_cast<ConstantSDNode>(Op))
938         if (isInt<16>(C->getSExtValue()))
939           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
940                                               Op.getValueType()));
941       return;
942 
943     case 'L': // Signed 20-bit displacement (on all targets we support)
944       if (auto *C = dyn_cast<ConstantSDNode>(Op))
945         if (isInt<20>(C->getSExtValue()))
946           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
947                                               Op.getValueType()));
948       return;
949 
950     case 'M': // 0x7fffffff
951       if (auto *C = dyn_cast<ConstantSDNode>(Op))
952         if (C->getZExtValue() == 0x7fffffff)
953           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
954                                               Op.getValueType()));
955       return;
956     }
957   }
958   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
959 }
960 
961 //===----------------------------------------------------------------------===//
962 // Calling conventions
963 //===----------------------------------------------------------------------===//
964 
965 #include "SystemZGenCallingConv.inc"
966 
967 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
968                                                      Type *ToType) const {
969   return isTruncateFree(FromType, ToType);
970 }
971 
972 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
973   return CI->isTailCall();
974 }
975 
976 // We do not yet support 128-bit single-element vector types.  If the user
977 // attempts to use such types as function argument or return type, prefer
978 // to error out instead of emitting code violating the ABI.
979 static void VerifyVectorType(MVT VT, EVT ArgVT) {
980   if (ArgVT.isVector() && !VT.isVector())
981     report_fatal_error("Unsupported vector argument or return type");
982 }
983 
984 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
985   for (unsigned i = 0; i < Ins.size(); ++i)
986     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
987 }
988 
989 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
990   for (unsigned i = 0; i < Outs.size(); ++i)
991     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
992 }
993 
994 // Value is a value that has been passed to us in the location described by VA
995 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
996 // any loads onto Chain.
997 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
998                                    CCValAssign &VA, SDValue Chain,
999                                    SDValue Value) {
1000   // If the argument has been promoted from a smaller type, insert an
1001   // assertion to capture this.
1002   if (VA.getLocInfo() == CCValAssign::SExt)
1003     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1004                         DAG.getValueType(VA.getValVT()));
1005   else if (VA.getLocInfo() == CCValAssign::ZExt)
1006     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1007                         DAG.getValueType(VA.getValVT()));
1008 
1009   if (VA.isExtInLoc())
1010     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1011   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1012     // If this is a short vector argument loaded from the stack,
1013     // extend from i64 to full vector size and then bitcast.
1014     assert(VA.getLocVT() == MVT::i64);
1015     assert(VA.getValVT().isVector());
1016     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1017     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1018   } else
1019     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1020   return Value;
1021 }
1022 
1023 // Value is a value of type VA.getValVT() that we need to copy into
1024 // the location described by VA.  Return a copy of Value converted to
1025 // VA.getValVT().  The caller is responsible for handling indirect values.
1026 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1027                                    CCValAssign &VA, SDValue Value) {
1028   switch (VA.getLocInfo()) {
1029   case CCValAssign::SExt:
1030     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1031   case CCValAssign::ZExt:
1032     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1033   case CCValAssign::AExt:
1034     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1035   case CCValAssign::BCvt:
1036     // If this is a short vector argument to be stored to the stack,
1037     // bitcast to v2i64 and then extract first element.
1038     assert(VA.getLocVT() == MVT::i64);
1039     assert(VA.getValVT().isVector());
1040     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1041     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1042                        DAG.getConstant(0, DL, MVT::i32));
1043   case CCValAssign::Full:
1044     return Value;
1045   default:
1046     llvm_unreachable("Unhandled getLocInfo()");
1047   }
1048 }
1049 
1050 SDValue SystemZTargetLowering::LowerFormalArguments(
1051     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1052     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1053     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1054   MachineFunction &MF = DAG.getMachineFunction();
1055   MachineFrameInfo &MFI = MF.getFrameInfo();
1056   MachineRegisterInfo &MRI = MF.getRegInfo();
1057   SystemZMachineFunctionInfo *FuncInfo =
1058       MF.getInfo<SystemZMachineFunctionInfo>();
1059   auto *TFL =
1060       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1061   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1062 
1063   // Detect unsupported vector argument types.
1064   if (Subtarget.hasVector())
1065     VerifyVectorTypes(Ins);
1066 
1067   // Assign locations to all of the incoming arguments.
1068   SmallVector<CCValAssign, 16> ArgLocs;
1069   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1070   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1071 
1072   unsigned NumFixedGPRs = 0;
1073   unsigned NumFixedFPRs = 0;
1074   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1075     SDValue ArgValue;
1076     CCValAssign &VA = ArgLocs[I];
1077     EVT LocVT = VA.getLocVT();
1078     if (VA.isRegLoc()) {
1079       // Arguments passed in registers
1080       const TargetRegisterClass *RC;
1081       switch (LocVT.getSimpleVT().SimpleTy) {
1082       default:
1083         // Integers smaller than i64 should be promoted to i64.
1084         llvm_unreachable("Unexpected argument type");
1085       case MVT::i32:
1086         NumFixedGPRs += 1;
1087         RC = &SystemZ::GR32BitRegClass;
1088         break;
1089       case MVT::i64:
1090         NumFixedGPRs += 1;
1091         RC = &SystemZ::GR64BitRegClass;
1092         break;
1093       case MVT::f32:
1094         NumFixedFPRs += 1;
1095         RC = &SystemZ::FP32BitRegClass;
1096         break;
1097       case MVT::f64:
1098         NumFixedFPRs += 1;
1099         RC = &SystemZ::FP64BitRegClass;
1100         break;
1101       case MVT::v16i8:
1102       case MVT::v8i16:
1103       case MVT::v4i32:
1104       case MVT::v2i64:
1105       case MVT::v4f32:
1106       case MVT::v2f64:
1107         RC = &SystemZ::VR128BitRegClass;
1108         break;
1109       }
1110 
1111       unsigned VReg = MRI.createVirtualRegister(RC);
1112       MRI.addLiveIn(VA.getLocReg(), VReg);
1113       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1114     } else {
1115       assert(VA.isMemLoc() && "Argument not register or memory");
1116 
1117       // Create the frame index object for this incoming parameter.
1118       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1119                                      VA.getLocMemOffset(), true);
1120 
1121       // Create the SelectionDAG nodes corresponding to a load
1122       // from this parameter.  Unpromoted ints and floats are
1123       // passed as right-justified 8-byte values.
1124       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1125       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1126         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1127                           DAG.getIntPtrConstant(4, DL));
1128       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1129                              MachinePointerInfo::getFixedStack(MF, FI));
1130     }
1131 
1132     // Convert the value of the argument register into the value that's
1133     // being passed.
1134     if (VA.getLocInfo() == CCValAssign::Indirect) {
1135       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1136                                    MachinePointerInfo()));
1137       // If the original argument was split (e.g. i128), we need
1138       // to load all parts of it here (using the same address).
1139       unsigned ArgIndex = Ins[I].OrigArgIndex;
1140       assert (Ins[I].PartOffset == 0);
1141       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1142         CCValAssign &PartVA = ArgLocs[I + 1];
1143         unsigned PartOffset = Ins[I + 1].PartOffset;
1144         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1145                                       DAG.getIntPtrConstant(PartOffset, DL));
1146         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1147                                      MachinePointerInfo()));
1148         ++I;
1149       }
1150     } else
1151       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1152   }
1153 
1154   if (IsVarArg) {
1155     // Save the number of non-varargs registers for later use by va_start, etc.
1156     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1157     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1158 
1159     // Likewise the address (in the form of a frame index) of where the
1160     // first stack vararg would be.  The 1-byte size here is arbitrary.
1161     int64_t StackSize = CCInfo.getNextStackOffset();
1162     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1163 
1164     // ...and a similar frame index for the caller-allocated save area
1165     // that will be used to store the incoming registers.
1166     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1167     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1168     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1169 
1170     // Store the FPR varargs in the reserved frame slots.  (We store the
1171     // GPRs as part of the prologue.)
1172     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1173       SDValue MemOps[SystemZ::NumArgFPRs];
1174       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1175         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1176         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1177         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1178         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1179                                      &SystemZ::FP64BitRegClass);
1180         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1181         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1182                                  MachinePointerInfo::getFixedStack(MF, FI));
1183       }
1184       // Join the stores, which are independent of one another.
1185       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1186                           makeArrayRef(&MemOps[NumFixedFPRs],
1187                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1188     }
1189   }
1190 
1191   return Chain;
1192 }
1193 
1194 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1195                               SmallVectorImpl<CCValAssign> &ArgLocs,
1196                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1197   // Punt if there are any indirect or stack arguments, or if the call
1198   // needs the callee-saved argument register R6, or if the call uses
1199   // the callee-saved register arguments SwiftSelf and SwiftError.
1200   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1201     CCValAssign &VA = ArgLocs[I];
1202     if (VA.getLocInfo() == CCValAssign::Indirect)
1203       return false;
1204     if (!VA.isRegLoc())
1205       return false;
1206     unsigned Reg = VA.getLocReg();
1207     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1208       return false;
1209     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1210       return false;
1211   }
1212   return true;
1213 }
1214 
1215 SDValue
1216 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1217                                  SmallVectorImpl<SDValue> &InVals) const {
1218   SelectionDAG &DAG = CLI.DAG;
1219   SDLoc &DL = CLI.DL;
1220   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1221   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1222   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1223   SDValue Chain = CLI.Chain;
1224   SDValue Callee = CLI.Callee;
1225   bool &IsTailCall = CLI.IsTailCall;
1226   CallingConv::ID CallConv = CLI.CallConv;
1227   bool IsVarArg = CLI.IsVarArg;
1228   MachineFunction &MF = DAG.getMachineFunction();
1229   EVT PtrVT = getPointerTy(MF.getDataLayout());
1230 
1231   // Detect unsupported vector argument and return types.
1232   if (Subtarget.hasVector()) {
1233     VerifyVectorTypes(Outs);
1234     VerifyVectorTypes(Ins);
1235   }
1236 
1237   // Analyze the operands of the call, assigning locations to each operand.
1238   SmallVector<CCValAssign, 16> ArgLocs;
1239   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1240   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1241 
1242   // We don't support GuaranteedTailCallOpt, only automatically-detected
1243   // sibling calls.
1244   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1245     IsTailCall = false;
1246 
1247   // Get a count of how many bytes are to be pushed on the stack.
1248   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1249 
1250   // Mark the start of the call.
1251   if (!IsTailCall)
1252     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1253 
1254   // Copy argument values to their designated locations.
1255   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1256   SmallVector<SDValue, 8> MemOpChains;
1257   SDValue StackPtr;
1258   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1259     CCValAssign &VA = ArgLocs[I];
1260     SDValue ArgValue = OutVals[I];
1261 
1262     if (VA.getLocInfo() == CCValAssign::Indirect) {
1263       // Store the argument in a stack slot and pass its address.
1264       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1265       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1266       MemOpChains.push_back(
1267           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1268                        MachinePointerInfo::getFixedStack(MF, FI)));
1269       // If the original argument was split (e.g. i128), we need
1270       // to store all parts of it here (and pass just one address).
1271       unsigned ArgIndex = Outs[I].OrigArgIndex;
1272       assert (Outs[I].PartOffset == 0);
1273       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1274         SDValue PartValue = OutVals[I + 1];
1275         unsigned PartOffset = Outs[I + 1].PartOffset;
1276         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1277                                       DAG.getIntPtrConstant(PartOffset, DL));
1278         MemOpChains.push_back(
1279             DAG.getStore(Chain, DL, PartValue, Address,
1280                          MachinePointerInfo::getFixedStack(MF, FI)));
1281         ++I;
1282       }
1283       ArgValue = SpillSlot;
1284     } else
1285       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1286 
1287     if (VA.isRegLoc())
1288       // Queue up the argument copies and emit them at the end.
1289       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1290     else {
1291       assert(VA.isMemLoc() && "Argument not register or memory");
1292 
1293       // Work out the address of the stack slot.  Unpromoted ints and
1294       // floats are passed as right-justified 8-byte values.
1295       if (!StackPtr.getNode())
1296         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1297       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1298       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1299         Offset += 4;
1300       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1301                                     DAG.getIntPtrConstant(Offset, DL));
1302 
1303       // Emit the store.
1304       MemOpChains.push_back(
1305           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1306     }
1307   }
1308 
1309   // Join the stores, which are independent of one another.
1310   if (!MemOpChains.empty())
1311     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1312 
1313   // Accept direct calls by converting symbolic call addresses to the
1314   // associated Target* opcodes.  Force %r1 to be used for indirect
1315   // tail calls.
1316   SDValue Glue;
1317   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1318     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1319     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1320   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1321     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1322     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1323   } else if (IsTailCall) {
1324     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1325     Glue = Chain.getValue(1);
1326     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1327   }
1328 
1329   // Build a sequence of copy-to-reg nodes, chained and glued together.
1330   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1331     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1332                              RegsToPass[I].second, Glue);
1333     Glue = Chain.getValue(1);
1334   }
1335 
1336   // The first call operand is the chain and the second is the target address.
1337   SmallVector<SDValue, 8> Ops;
1338   Ops.push_back(Chain);
1339   Ops.push_back(Callee);
1340 
1341   // Add argument registers to the end of the list so that they are
1342   // known live into the call.
1343   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1344     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1345                                   RegsToPass[I].second.getValueType()));
1346 
1347   // Add a register mask operand representing the call-preserved registers.
1348   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1349   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1350   assert(Mask && "Missing call preserved mask for calling convention");
1351   Ops.push_back(DAG.getRegisterMask(Mask));
1352 
1353   // Glue the call to the argument copies, if any.
1354   if (Glue.getNode())
1355     Ops.push_back(Glue);
1356 
1357   // Emit the call.
1358   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1359   if (IsTailCall)
1360     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1361   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1362   Glue = Chain.getValue(1);
1363 
1364   // Mark the end of the call, which is glued to the call itself.
1365   Chain = DAG.getCALLSEQ_END(Chain,
1366                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1367                              DAG.getConstant(0, DL, PtrVT, true),
1368                              Glue, DL);
1369   Glue = Chain.getValue(1);
1370 
1371   // Assign locations to each value returned by this call.
1372   SmallVector<CCValAssign, 16> RetLocs;
1373   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1374   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1375 
1376   // Copy all of the result registers out of their specified physreg.
1377   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1378     CCValAssign &VA = RetLocs[I];
1379 
1380     // Copy the value out, gluing the copy to the end of the call sequence.
1381     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1382                                           VA.getLocVT(), Glue);
1383     Chain = RetValue.getValue(1);
1384     Glue = RetValue.getValue(2);
1385 
1386     // Convert the value of the return register into the value that's
1387     // being returned.
1388     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1389   }
1390 
1391   return Chain;
1392 }
1393 
1394 bool SystemZTargetLowering::
1395 CanLowerReturn(CallingConv::ID CallConv,
1396                MachineFunction &MF, bool isVarArg,
1397                const SmallVectorImpl<ISD::OutputArg> &Outs,
1398                LLVMContext &Context) const {
1399   // Detect unsupported vector return types.
1400   if (Subtarget.hasVector())
1401     VerifyVectorTypes(Outs);
1402 
1403   // Special case that we cannot easily detect in RetCC_SystemZ since
1404   // i128 is not a legal type.
1405   for (auto &Out : Outs)
1406     if (Out.ArgVT == MVT::i128)
1407       return false;
1408 
1409   SmallVector<CCValAssign, 16> RetLocs;
1410   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1411   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1412 }
1413 
1414 SDValue
1415 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1416                                    bool IsVarArg,
1417                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1418                                    const SmallVectorImpl<SDValue> &OutVals,
1419                                    const SDLoc &DL, SelectionDAG &DAG) const {
1420   MachineFunction &MF = DAG.getMachineFunction();
1421 
1422   // Detect unsupported vector return types.
1423   if (Subtarget.hasVector())
1424     VerifyVectorTypes(Outs);
1425 
1426   // Assign locations to each returned value.
1427   SmallVector<CCValAssign, 16> RetLocs;
1428   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1429   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1430 
1431   // Quick exit for void returns
1432   if (RetLocs.empty())
1433     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1434 
1435   // Copy the result values into the output registers.
1436   SDValue Glue;
1437   SmallVector<SDValue, 4> RetOps;
1438   RetOps.push_back(Chain);
1439   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1440     CCValAssign &VA = RetLocs[I];
1441     SDValue RetValue = OutVals[I];
1442 
1443     // Make the return register live on exit.
1444     assert(VA.isRegLoc() && "Can only return in registers!");
1445 
1446     // Promote the value as required.
1447     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1448 
1449     // Chain and glue the copies together.
1450     unsigned Reg = VA.getLocReg();
1451     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1452     Glue = Chain.getValue(1);
1453     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1454   }
1455 
1456   // Update chain and glue.
1457   RetOps[0] = Chain;
1458   if (Glue.getNode())
1459     RetOps.push_back(Glue);
1460 
1461   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1462 }
1463 
1464 // Return true if Op is an intrinsic node with chain that returns the CC value
1465 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1466 // the mask of valid CC values if so.
1467 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1468                                       unsigned &CCValid) {
1469   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1470   switch (Id) {
1471   case Intrinsic::s390_tbegin:
1472     Opcode = SystemZISD::TBEGIN;
1473     CCValid = SystemZ::CCMASK_TBEGIN;
1474     return true;
1475 
1476   case Intrinsic::s390_tbegin_nofloat:
1477     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1478     CCValid = SystemZ::CCMASK_TBEGIN;
1479     return true;
1480 
1481   case Intrinsic::s390_tend:
1482     Opcode = SystemZISD::TEND;
1483     CCValid = SystemZ::CCMASK_TEND;
1484     return true;
1485 
1486   default:
1487     return false;
1488   }
1489 }
1490 
1491 // Return true if Op is an intrinsic node without chain that returns the
1492 // CC value as its final argument.  Provide the associated SystemZISD
1493 // opcode and the mask of valid CC values if so.
1494 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1495   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1496   switch (Id) {
1497   case Intrinsic::s390_vpkshs:
1498   case Intrinsic::s390_vpksfs:
1499   case Intrinsic::s390_vpksgs:
1500     Opcode = SystemZISD::PACKS_CC;
1501     CCValid = SystemZ::CCMASK_VCMP;
1502     return true;
1503 
1504   case Intrinsic::s390_vpklshs:
1505   case Intrinsic::s390_vpklsfs:
1506   case Intrinsic::s390_vpklsgs:
1507     Opcode = SystemZISD::PACKLS_CC;
1508     CCValid = SystemZ::CCMASK_VCMP;
1509     return true;
1510 
1511   case Intrinsic::s390_vceqbs:
1512   case Intrinsic::s390_vceqhs:
1513   case Intrinsic::s390_vceqfs:
1514   case Intrinsic::s390_vceqgs:
1515     Opcode = SystemZISD::VICMPES;
1516     CCValid = SystemZ::CCMASK_VCMP;
1517     return true;
1518 
1519   case Intrinsic::s390_vchbs:
1520   case Intrinsic::s390_vchhs:
1521   case Intrinsic::s390_vchfs:
1522   case Intrinsic::s390_vchgs:
1523     Opcode = SystemZISD::VICMPHS;
1524     CCValid = SystemZ::CCMASK_VCMP;
1525     return true;
1526 
1527   case Intrinsic::s390_vchlbs:
1528   case Intrinsic::s390_vchlhs:
1529   case Intrinsic::s390_vchlfs:
1530   case Intrinsic::s390_vchlgs:
1531     Opcode = SystemZISD::VICMPHLS;
1532     CCValid = SystemZ::CCMASK_VCMP;
1533     return true;
1534 
1535   case Intrinsic::s390_vtm:
1536     Opcode = SystemZISD::VTM;
1537     CCValid = SystemZ::CCMASK_VCMP;
1538     return true;
1539 
1540   case Intrinsic::s390_vfaebs:
1541   case Intrinsic::s390_vfaehs:
1542   case Intrinsic::s390_vfaefs:
1543     Opcode = SystemZISD::VFAE_CC;
1544     CCValid = SystemZ::CCMASK_ANY;
1545     return true;
1546 
1547   case Intrinsic::s390_vfaezbs:
1548   case Intrinsic::s390_vfaezhs:
1549   case Intrinsic::s390_vfaezfs:
1550     Opcode = SystemZISD::VFAEZ_CC;
1551     CCValid = SystemZ::CCMASK_ANY;
1552     return true;
1553 
1554   case Intrinsic::s390_vfeebs:
1555   case Intrinsic::s390_vfeehs:
1556   case Intrinsic::s390_vfeefs:
1557     Opcode = SystemZISD::VFEE_CC;
1558     CCValid = SystemZ::CCMASK_ANY;
1559     return true;
1560 
1561   case Intrinsic::s390_vfeezbs:
1562   case Intrinsic::s390_vfeezhs:
1563   case Intrinsic::s390_vfeezfs:
1564     Opcode = SystemZISD::VFEEZ_CC;
1565     CCValid = SystemZ::CCMASK_ANY;
1566     return true;
1567 
1568   case Intrinsic::s390_vfenebs:
1569   case Intrinsic::s390_vfenehs:
1570   case Intrinsic::s390_vfenefs:
1571     Opcode = SystemZISD::VFENE_CC;
1572     CCValid = SystemZ::CCMASK_ANY;
1573     return true;
1574 
1575   case Intrinsic::s390_vfenezbs:
1576   case Intrinsic::s390_vfenezhs:
1577   case Intrinsic::s390_vfenezfs:
1578     Opcode = SystemZISD::VFENEZ_CC;
1579     CCValid = SystemZ::CCMASK_ANY;
1580     return true;
1581 
1582   case Intrinsic::s390_vistrbs:
1583   case Intrinsic::s390_vistrhs:
1584   case Intrinsic::s390_vistrfs:
1585     Opcode = SystemZISD::VISTR_CC;
1586     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1587     return true;
1588 
1589   case Intrinsic::s390_vstrcbs:
1590   case Intrinsic::s390_vstrchs:
1591   case Intrinsic::s390_vstrcfs:
1592     Opcode = SystemZISD::VSTRC_CC;
1593     CCValid = SystemZ::CCMASK_ANY;
1594     return true;
1595 
1596   case Intrinsic::s390_vstrczbs:
1597   case Intrinsic::s390_vstrczhs:
1598   case Intrinsic::s390_vstrczfs:
1599     Opcode = SystemZISD::VSTRCZ_CC;
1600     CCValid = SystemZ::CCMASK_ANY;
1601     return true;
1602 
1603   case Intrinsic::s390_vfcedbs:
1604   case Intrinsic::s390_vfcesbs:
1605     Opcode = SystemZISD::VFCMPES;
1606     CCValid = SystemZ::CCMASK_VCMP;
1607     return true;
1608 
1609   case Intrinsic::s390_vfchdbs:
1610   case Intrinsic::s390_vfchsbs:
1611     Opcode = SystemZISD::VFCMPHS;
1612     CCValid = SystemZ::CCMASK_VCMP;
1613     return true;
1614 
1615   case Intrinsic::s390_vfchedbs:
1616   case Intrinsic::s390_vfchesbs:
1617     Opcode = SystemZISD::VFCMPHES;
1618     CCValid = SystemZ::CCMASK_VCMP;
1619     return true;
1620 
1621   case Intrinsic::s390_vftcidb:
1622   case Intrinsic::s390_vftcisb:
1623     Opcode = SystemZISD::VFTCI;
1624     CCValid = SystemZ::CCMASK_VCMP;
1625     return true;
1626 
1627   case Intrinsic::s390_tdc:
1628     Opcode = SystemZISD::TDC;
1629     CCValid = SystemZ::CCMASK_TDC;
1630     return true;
1631 
1632   default:
1633     return false;
1634   }
1635 }
1636 
1637 // Emit an intrinsic with chain with a glued value instead of its CC result.
1638 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1639                                              unsigned Opcode) {
1640   // Copy all operands except the intrinsic ID.
1641   unsigned NumOps = Op.getNumOperands();
1642   SmallVector<SDValue, 6> Ops;
1643   Ops.reserve(NumOps - 1);
1644   Ops.push_back(Op.getOperand(0));
1645   for (unsigned I = 2; I < NumOps; ++I)
1646     Ops.push_back(Op.getOperand(I));
1647 
1648   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1649   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1650   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1651   SDValue OldChain = SDValue(Op.getNode(), 1);
1652   SDValue NewChain = SDValue(Intr.getNode(), 0);
1653   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1654   return Intr;
1655 }
1656 
1657 // Emit an intrinsic with a glued value instead of its CC result.
1658 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1659                                      unsigned Opcode) {
1660   // Copy all operands except the intrinsic ID.
1661   unsigned NumOps = Op.getNumOperands();
1662   SmallVector<SDValue, 6> Ops;
1663   Ops.reserve(NumOps - 1);
1664   for (unsigned I = 1; I < NumOps; ++I)
1665     Ops.push_back(Op.getOperand(I));
1666 
1667   if (Op->getNumValues() == 1)
1668     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1669   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1670   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1671   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1672 }
1673 
1674 // CC is a comparison that will be implemented using an integer or
1675 // floating-point comparison.  Return the condition code mask for
1676 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1677 // unsigned comparisons and clear for signed ones.  In the floating-point
1678 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1679 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1680 #define CONV(X) \
1681   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1682   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1683   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1684 
1685   switch (CC) {
1686   default:
1687     llvm_unreachable("Invalid integer condition!");
1688 
1689   CONV(EQ);
1690   CONV(NE);
1691   CONV(GT);
1692   CONV(GE);
1693   CONV(LT);
1694   CONV(LE);
1695 
1696   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1697   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1698   }
1699 #undef CONV
1700 }
1701 
1702 // Return a sequence for getting a 1 from an IPM result when CC has a
1703 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1704 // The handling of CC values outside CCValid doesn't matter.
1705 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1706   // Deal with cases where the result can be taken directly from a bit
1707   // of the IPM result.
1708   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1709     return IPMConversion(0, 0, SystemZ::IPM_CC);
1710   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1711     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1712 
1713   // Deal with cases where we can add a value to force the sign bit
1714   // to contain the right value.  Putting the bit in 31 means we can
1715   // use SRL rather than RISBG(L), and also makes it easier to get a
1716   // 0/-1 value, so it has priority over the other tests below.
1717   //
1718   // These sequences rely on the fact that the upper two bits of the
1719   // IPM result are zero.
1720   uint64_t TopBit = uint64_t(1) << 31;
1721   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1722     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1723   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1724     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1725   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1726                             | SystemZ::CCMASK_1
1727                             | SystemZ::CCMASK_2)))
1728     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1729   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1730     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1731   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1732                             | SystemZ::CCMASK_2
1733                             | SystemZ::CCMASK_3)))
1734     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1735 
1736   // Next try inverting the value and testing a bit.  0/1 could be
1737   // handled this way too, but we dealt with that case above.
1738   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1739     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1740 
1741   // Handle cases where adding a value forces a non-sign bit to contain
1742   // the right value.
1743   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1744     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1745   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1746     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1747 
1748   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1749   // can be done by inverting the low CC bit and applying one of the
1750   // sign-based extractions above.
1751   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1752     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1753   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1754     return IPMConversion(1 << SystemZ::IPM_CC,
1755                          TopBit - (3 << SystemZ::IPM_CC), 31);
1756   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1757                             | SystemZ::CCMASK_1
1758                             | SystemZ::CCMASK_3)))
1759     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1760   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1761                             | SystemZ::CCMASK_2
1762                             | SystemZ::CCMASK_3)))
1763     return IPMConversion(1 << SystemZ::IPM_CC,
1764                          TopBit - (1 << SystemZ::IPM_CC), 31);
1765 
1766   llvm_unreachable("Unexpected CC combination");
1767 }
1768 
1769 // If C can be converted to a comparison against zero, adjust the operands
1770 // as necessary.
1771 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1772   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1773     return;
1774 
1775   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1776   if (!ConstOp1)
1777     return;
1778 
1779   int64_t Value = ConstOp1->getSExtValue();
1780   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1781       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1782       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1783       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1784     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1785     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1786   }
1787 }
1788 
1789 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1790 // adjust the operands as necessary.
1791 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1792                              Comparison &C) {
1793   // For us to make any changes, it must a comparison between a single-use
1794   // load and a constant.
1795   if (!C.Op0.hasOneUse() ||
1796       C.Op0.getOpcode() != ISD::LOAD ||
1797       C.Op1.getOpcode() != ISD::Constant)
1798     return;
1799 
1800   // We must have an 8- or 16-bit load.
1801   auto *Load = cast<LoadSDNode>(C.Op0);
1802   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1803   if (NumBits != 8 && NumBits != 16)
1804     return;
1805 
1806   // The load must be an extending one and the constant must be within the
1807   // range of the unextended value.
1808   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1809   uint64_t Value = ConstOp1->getZExtValue();
1810   uint64_t Mask = (1 << NumBits) - 1;
1811   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1812     // Make sure that ConstOp1 is in range of C.Op0.
1813     int64_t SignedValue = ConstOp1->getSExtValue();
1814     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1815       return;
1816     if (C.ICmpType != SystemZICMP::SignedOnly) {
1817       // Unsigned comparison between two sign-extended values is equivalent
1818       // to unsigned comparison between two zero-extended values.
1819       Value &= Mask;
1820     } else if (NumBits == 8) {
1821       // Try to treat the comparison as unsigned, so that we can use CLI.
1822       // Adjust CCMask and Value as necessary.
1823       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1824         // Test whether the high bit of the byte is set.
1825         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1826       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1827         // Test whether the high bit of the byte is clear.
1828         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1829       else
1830         // No instruction exists for this combination.
1831         return;
1832       C.ICmpType = SystemZICMP::UnsignedOnly;
1833     }
1834   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1835     if (Value > Mask)
1836       return;
1837     // If the constant is in range, we can use any comparison.
1838     C.ICmpType = SystemZICMP::Any;
1839   } else
1840     return;
1841 
1842   // Make sure that the first operand is an i32 of the right extension type.
1843   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1844                               ISD::SEXTLOAD :
1845                               ISD::ZEXTLOAD);
1846   if (C.Op0.getValueType() != MVT::i32 ||
1847       Load->getExtensionType() != ExtType) {
1848     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1849                            Load->getBasePtr(), Load->getPointerInfo(),
1850                            Load->getMemoryVT(), Load->getAlignment(),
1851                            Load->getMemOperand()->getFlags());
1852     // Update the chain uses.
1853     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1854   }
1855 
1856   // Make sure that the second operand is an i32 with the right value.
1857   if (C.Op1.getValueType() != MVT::i32 ||
1858       Value != ConstOp1->getZExtValue())
1859     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1860 }
1861 
1862 // Return true if Op is either an unextended load, or a load suitable
1863 // for integer register-memory comparisons of type ICmpType.
1864 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1865   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1866   if (Load) {
1867     // There are no instructions to compare a register with a memory byte.
1868     if (Load->getMemoryVT() == MVT::i8)
1869       return false;
1870     // Otherwise decide on extension type.
1871     switch (Load->getExtensionType()) {
1872     case ISD::NON_EXTLOAD:
1873       return true;
1874     case ISD::SEXTLOAD:
1875       return ICmpType != SystemZICMP::UnsignedOnly;
1876     case ISD::ZEXTLOAD:
1877       return ICmpType != SystemZICMP::SignedOnly;
1878     default:
1879       break;
1880     }
1881   }
1882   return false;
1883 }
1884 
1885 // Return true if it is better to swap the operands of C.
1886 static bool shouldSwapCmpOperands(const Comparison &C) {
1887   // Leave f128 comparisons alone, since they have no memory forms.
1888   if (C.Op0.getValueType() == MVT::f128)
1889     return false;
1890 
1891   // Always keep a floating-point constant second, since comparisons with
1892   // zero can use LOAD TEST and comparisons with other constants make a
1893   // natural memory operand.
1894   if (isa<ConstantFPSDNode>(C.Op1))
1895     return false;
1896 
1897   // Never swap comparisons with zero since there are many ways to optimize
1898   // those later.
1899   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1900   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1901     return false;
1902 
1903   // Also keep natural memory operands second if the loaded value is
1904   // only used here.  Several comparisons have memory forms.
1905   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1906     return false;
1907 
1908   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1909   // In that case we generally prefer the memory to be second.
1910   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1911     // The only exceptions are when the second operand is a constant and
1912     // we can use things like CHHSI.
1913     if (!ConstOp1)
1914       return true;
1915     // The unsigned memory-immediate instructions can handle 16-bit
1916     // unsigned integers.
1917     if (C.ICmpType != SystemZICMP::SignedOnly &&
1918         isUInt<16>(ConstOp1->getZExtValue()))
1919       return false;
1920     // The signed memory-immediate instructions can handle 16-bit
1921     // signed integers.
1922     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1923         isInt<16>(ConstOp1->getSExtValue()))
1924       return false;
1925     return true;
1926   }
1927 
1928   // Try to promote the use of CGFR and CLGFR.
1929   unsigned Opcode0 = C.Op0.getOpcode();
1930   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1931     return true;
1932   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1933     return true;
1934   if (C.ICmpType != SystemZICMP::SignedOnly &&
1935       Opcode0 == ISD::AND &&
1936       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1937       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1938     return true;
1939 
1940   return false;
1941 }
1942 
1943 // Return a version of comparison CC mask CCMask in which the LT and GT
1944 // actions are swapped.
1945 static unsigned reverseCCMask(unsigned CCMask) {
1946   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1947           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1948           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1949           (CCMask & SystemZ::CCMASK_CMP_UO));
1950 }
1951 
1952 // Check whether C tests for equality between X and Y and whether X - Y
1953 // or Y - X is also computed.  In that case it's better to compare the
1954 // result of the subtraction against zero.
1955 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1956                                  Comparison &C) {
1957   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1958       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1959     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1960       SDNode *N = *I;
1961       if (N->getOpcode() == ISD::SUB &&
1962           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1963            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1964         C.Op0 = SDValue(N, 0);
1965         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1966         return;
1967       }
1968     }
1969   }
1970 }
1971 
1972 // Check whether C compares a floating-point value with zero and if that
1973 // floating-point value is also negated.  In this case we can use the
1974 // negation to set CC, so avoiding separate LOAD AND TEST and
1975 // LOAD (NEGATIVE/COMPLEMENT) instructions.
1976 static void adjustForFNeg(Comparison &C) {
1977   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1978   if (C1 && C1->isZero()) {
1979     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1980       SDNode *N = *I;
1981       if (N->getOpcode() == ISD::FNEG) {
1982         C.Op0 = SDValue(N, 0);
1983         C.CCMask = reverseCCMask(C.CCMask);
1984         return;
1985       }
1986     }
1987   }
1988 }
1989 
1990 // Check whether C compares (shl X, 32) with 0 and whether X is
1991 // also sign-extended.  In that case it is better to test the result
1992 // of the sign extension using LTGFR.
1993 //
1994 // This case is important because InstCombine transforms a comparison
1995 // with (sext (trunc X)) into a comparison with (shl X, 32).
1996 static void adjustForLTGFR(Comparison &C) {
1997   // Check for a comparison between (shl X, 32) and 0.
1998   if (C.Op0.getOpcode() == ISD::SHL &&
1999       C.Op0.getValueType() == MVT::i64 &&
2000       C.Op1.getOpcode() == ISD::Constant &&
2001       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2002     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2003     if (C1 && C1->getZExtValue() == 32) {
2004       SDValue ShlOp0 = C.Op0.getOperand(0);
2005       // See whether X has any SIGN_EXTEND_INREG uses.
2006       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2007         SDNode *N = *I;
2008         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2009             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2010           C.Op0 = SDValue(N, 0);
2011           return;
2012         }
2013       }
2014     }
2015   }
2016 }
2017 
2018 // If C compares the truncation of an extending load, try to compare
2019 // the untruncated value instead.  This exposes more opportunities to
2020 // reuse CC.
2021 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2022                                Comparison &C) {
2023   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2024       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2025       C.Op1.getOpcode() == ISD::Constant &&
2026       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2027     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2028     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2029       unsigned Type = L->getExtensionType();
2030       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2031           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2032         C.Op0 = C.Op0.getOperand(0);
2033         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2034       }
2035     }
2036   }
2037 }
2038 
2039 // Return true if shift operation N has an in-range constant shift value.
2040 // Store it in ShiftVal if so.
2041 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2042   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2043   if (!Shift)
2044     return false;
2045 
2046   uint64_t Amount = Shift->getZExtValue();
2047   if (Amount >= N.getValueSizeInBits())
2048     return false;
2049 
2050   ShiftVal = Amount;
2051   return true;
2052 }
2053 
2054 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2055 // instruction and whether the CC value is descriptive enough to handle
2056 // a comparison of type Opcode between the AND result and CmpVal.
2057 // CCMask says which comparison result is being tested and BitSize is
2058 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2059 // return the corresponding CC mask, otherwise return 0.
2060 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2061                                      uint64_t Mask, uint64_t CmpVal,
2062                                      unsigned ICmpType) {
2063   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2064 
2065   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2066   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2067       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2068     return 0;
2069 
2070   // Work out the masks for the lowest and highest bits.
2071   unsigned HighShift = 63 - countLeadingZeros(Mask);
2072   uint64_t High = uint64_t(1) << HighShift;
2073   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2074 
2075   // Signed ordered comparisons are effectively unsigned if the sign
2076   // bit is dropped.
2077   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2078 
2079   // Check for equality comparisons with 0, or the equivalent.
2080   if (CmpVal == 0) {
2081     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2082       return SystemZ::CCMASK_TM_ALL_0;
2083     if (CCMask == SystemZ::CCMASK_CMP_NE)
2084       return SystemZ::CCMASK_TM_SOME_1;
2085   }
2086   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2087     if (CCMask == SystemZ::CCMASK_CMP_LT)
2088       return SystemZ::CCMASK_TM_ALL_0;
2089     if (CCMask == SystemZ::CCMASK_CMP_GE)
2090       return SystemZ::CCMASK_TM_SOME_1;
2091   }
2092   if (EffectivelyUnsigned && CmpVal < Low) {
2093     if (CCMask == SystemZ::CCMASK_CMP_LE)
2094       return SystemZ::CCMASK_TM_ALL_0;
2095     if (CCMask == SystemZ::CCMASK_CMP_GT)
2096       return SystemZ::CCMASK_TM_SOME_1;
2097   }
2098 
2099   // Check for equality comparisons with the mask, or the equivalent.
2100   if (CmpVal == Mask) {
2101     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2102       return SystemZ::CCMASK_TM_ALL_1;
2103     if (CCMask == SystemZ::CCMASK_CMP_NE)
2104       return SystemZ::CCMASK_TM_SOME_0;
2105   }
2106   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2107     if (CCMask == SystemZ::CCMASK_CMP_GT)
2108       return SystemZ::CCMASK_TM_ALL_1;
2109     if (CCMask == SystemZ::CCMASK_CMP_LE)
2110       return SystemZ::CCMASK_TM_SOME_0;
2111   }
2112   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2113     if (CCMask == SystemZ::CCMASK_CMP_GE)
2114       return SystemZ::CCMASK_TM_ALL_1;
2115     if (CCMask == SystemZ::CCMASK_CMP_LT)
2116       return SystemZ::CCMASK_TM_SOME_0;
2117   }
2118 
2119   // Check for ordered comparisons with the top bit.
2120   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2121     if (CCMask == SystemZ::CCMASK_CMP_LE)
2122       return SystemZ::CCMASK_TM_MSB_0;
2123     if (CCMask == SystemZ::CCMASK_CMP_GT)
2124       return SystemZ::CCMASK_TM_MSB_1;
2125   }
2126   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2127     if (CCMask == SystemZ::CCMASK_CMP_LT)
2128       return SystemZ::CCMASK_TM_MSB_0;
2129     if (CCMask == SystemZ::CCMASK_CMP_GE)
2130       return SystemZ::CCMASK_TM_MSB_1;
2131   }
2132 
2133   // If there are just two bits, we can do equality checks for Low and High
2134   // as well.
2135   if (Mask == Low + High) {
2136     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2137       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2138     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2139       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2140     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2141       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2142     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2143       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2144   }
2145 
2146   // Looks like we've exhausted our options.
2147   return 0;
2148 }
2149 
2150 // See whether C can be implemented as a TEST UNDER MASK instruction.
2151 // Update the arguments with the TM version if so.
2152 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2153                                    Comparison &C) {
2154   // Check that we have a comparison with a constant.
2155   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2156   if (!ConstOp1)
2157     return;
2158   uint64_t CmpVal = ConstOp1->getZExtValue();
2159 
2160   // Check whether the nonconstant input is an AND with a constant mask.
2161   Comparison NewC(C);
2162   uint64_t MaskVal;
2163   ConstantSDNode *Mask = nullptr;
2164   if (C.Op0.getOpcode() == ISD::AND) {
2165     NewC.Op0 = C.Op0.getOperand(0);
2166     NewC.Op1 = C.Op0.getOperand(1);
2167     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2168     if (!Mask)
2169       return;
2170     MaskVal = Mask->getZExtValue();
2171   } else {
2172     // There is no instruction to compare with a 64-bit immediate
2173     // so use TMHH instead if possible.  We need an unsigned ordered
2174     // comparison with an i64 immediate.
2175     if (NewC.Op0.getValueType() != MVT::i64 ||
2176         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2177         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2178         NewC.ICmpType == SystemZICMP::SignedOnly)
2179       return;
2180     // Convert LE and GT comparisons into LT and GE.
2181     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2182         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2183       if (CmpVal == uint64_t(-1))
2184         return;
2185       CmpVal += 1;
2186       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2187     }
2188     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2189     // be masked off without changing the result.
2190     MaskVal = -(CmpVal & -CmpVal);
2191     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2192   }
2193   if (!MaskVal)
2194     return;
2195 
2196   // Check whether the combination of mask, comparison value and comparison
2197   // type are suitable.
2198   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2199   unsigned NewCCMask, ShiftVal;
2200   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2201       NewC.Op0.getOpcode() == ISD::SHL &&
2202       isSimpleShift(NewC.Op0, ShiftVal) &&
2203       (MaskVal >> ShiftVal != 0) &&
2204       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2205       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2206                                         MaskVal >> ShiftVal,
2207                                         CmpVal >> ShiftVal,
2208                                         SystemZICMP::Any))) {
2209     NewC.Op0 = NewC.Op0.getOperand(0);
2210     MaskVal >>= ShiftVal;
2211   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2212              NewC.Op0.getOpcode() == ISD::SRL &&
2213              isSimpleShift(NewC.Op0, ShiftVal) &&
2214              (MaskVal << ShiftVal != 0) &&
2215              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2216              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2217                                                MaskVal << ShiftVal,
2218                                                CmpVal << ShiftVal,
2219                                                SystemZICMP::UnsignedOnly))) {
2220     NewC.Op0 = NewC.Op0.getOperand(0);
2221     MaskVal <<= ShiftVal;
2222   } else {
2223     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2224                                      NewC.ICmpType);
2225     if (!NewCCMask)
2226       return;
2227   }
2228 
2229   // Go ahead and make the change.
2230   C.Opcode = SystemZISD::TM;
2231   C.Op0 = NewC.Op0;
2232   if (Mask && Mask->getZExtValue() == MaskVal)
2233     C.Op1 = SDValue(Mask, 0);
2234   else
2235     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2236   C.CCValid = SystemZ::CCMASK_TM;
2237   C.CCMask = NewCCMask;
2238 }
2239 
2240 // Return a Comparison that tests the condition-code result of intrinsic
2241 // node Call against constant integer CC using comparison code Cond.
2242 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2243 // and CCValid is the set of possible condition-code results.
2244 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2245                                   SDValue Call, unsigned CCValid, uint64_t CC,
2246                                   ISD::CondCode Cond) {
2247   Comparison C(Call, SDValue());
2248   C.Opcode = Opcode;
2249   C.CCValid = CCValid;
2250   if (Cond == ISD::SETEQ)
2251     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2252     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2253   else if (Cond == ISD::SETNE)
2254     // ...and the inverse of that.
2255     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2256   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2257     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2258     // always true for CC>3.
2259     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2260   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2261     // ...and the inverse of that.
2262     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2263   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2264     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2265     // always true for CC>3.
2266     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2267   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2268     // ...and the inverse of that.
2269     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2270   else
2271     llvm_unreachable("Unexpected integer comparison type");
2272   C.CCMask &= CCValid;
2273   return C;
2274 }
2275 
2276 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2277 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2278                          ISD::CondCode Cond, const SDLoc &DL) {
2279   if (CmpOp1.getOpcode() == ISD::Constant) {
2280     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2281     unsigned Opcode, CCValid;
2282     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2283         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2284         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2285       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2286     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2287         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2288         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2289       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2290   }
2291   Comparison C(CmpOp0, CmpOp1);
2292   C.CCMask = CCMaskForCondCode(Cond);
2293   if (C.Op0.getValueType().isFloatingPoint()) {
2294     C.CCValid = SystemZ::CCMASK_FCMP;
2295     C.Opcode = SystemZISD::FCMP;
2296     adjustForFNeg(C);
2297   } else {
2298     C.CCValid = SystemZ::CCMASK_ICMP;
2299     C.Opcode = SystemZISD::ICMP;
2300     // Choose the type of comparison.  Equality and inequality tests can
2301     // use either signed or unsigned comparisons.  The choice also doesn't
2302     // matter if both sign bits are known to be clear.  In those cases we
2303     // want to give the main isel code the freedom to choose whichever
2304     // form fits best.
2305     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2306         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2307         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2308       C.ICmpType = SystemZICMP::Any;
2309     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2310       C.ICmpType = SystemZICMP::UnsignedOnly;
2311     else
2312       C.ICmpType = SystemZICMP::SignedOnly;
2313     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2314     adjustZeroCmp(DAG, DL, C);
2315     adjustSubwordCmp(DAG, DL, C);
2316     adjustForSubtraction(DAG, DL, C);
2317     adjustForLTGFR(C);
2318     adjustICmpTruncate(DAG, DL, C);
2319   }
2320 
2321   if (shouldSwapCmpOperands(C)) {
2322     std::swap(C.Op0, C.Op1);
2323     C.CCMask = reverseCCMask(C.CCMask);
2324   }
2325 
2326   adjustForTestUnderMask(DAG, DL, C);
2327   return C;
2328 }
2329 
2330 // Emit the comparison instruction described by C.
2331 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2332   if (!C.Op1.getNode()) {
2333     SDValue Op;
2334     switch (C.Op0.getOpcode()) {
2335     case ISD::INTRINSIC_W_CHAIN:
2336       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2337       break;
2338     case ISD::INTRINSIC_WO_CHAIN:
2339       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2340       break;
2341     default:
2342       llvm_unreachable("Invalid comparison operands");
2343     }
2344     return SDValue(Op.getNode(), Op->getNumValues() - 1);
2345   }
2346   if (C.Opcode == SystemZISD::ICMP)
2347     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2348                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2349   if (C.Opcode == SystemZISD::TM) {
2350     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2351                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2352     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2353                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2354   }
2355   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2356 }
2357 
2358 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2359 // 64 bits.  Extend is the extension type to use.  Store the high part
2360 // in Hi and the low part in Lo.
2361 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2362                             SDValue Op0, SDValue Op1, SDValue &Hi,
2363                             SDValue &Lo) {
2364   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2365   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2366   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2367   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2368                    DAG.getConstant(32, DL, MVT::i64));
2369   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2370   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2371 }
2372 
2373 // Lower a binary operation that produces two VT results, one in each
2374 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2375 // and Opcode performs the GR128 operation.  Store the even register result
2376 // in Even and the odd register result in Odd.
2377 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2378                              unsigned Opcode, SDValue Op0, SDValue Op1,
2379                              SDValue &Even, SDValue &Odd) {
2380   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2381   bool Is32Bit = is32Bit(VT);
2382   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2383   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2384 }
2385 
2386 // Return an i32 value that is 1 if the CC value produced by Glue is
2387 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2388 // in CCValid, so other values can be ignored.
2389 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2390                          unsigned CCValid, unsigned CCMask) {
2391   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2392   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2393 
2394   if (Conversion.XORValue)
2395     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
2396                          DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
2397 
2398   if (Conversion.AddValue)
2399     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
2400                          DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
2401 
2402   // The SHR/AND sequence should get optimized to an RISBG.
2403   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
2404                        DAG.getConstant(Conversion.Bit, DL, MVT::i32));
2405   if (Conversion.Bit != 31)
2406     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
2407                          DAG.getConstant(1, DL, MVT::i32));
2408   return Result;
2409 }
2410 
2411 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2412 // be done directly.  IsFP is true if CC is for a floating-point rather than
2413 // integer comparison.
2414 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2415   switch (CC) {
2416   case ISD::SETOEQ:
2417   case ISD::SETEQ:
2418     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2419 
2420   case ISD::SETOGE:
2421   case ISD::SETGE:
2422     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2423 
2424   case ISD::SETOGT:
2425   case ISD::SETGT:
2426     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2427 
2428   case ISD::SETUGT:
2429     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2430 
2431   default:
2432     return 0;
2433   }
2434 }
2435 
2436 // Return the SystemZISD vector comparison operation for CC or its inverse,
2437 // or 0 if neither can be done directly.  Indicate in Invert whether the
2438 // result is for the inverse of CC.  IsFP is true if CC is for a
2439 // floating-point rather than integer comparison.
2440 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2441                                             bool &Invert) {
2442   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2443     Invert = false;
2444     return Opcode;
2445   }
2446 
2447   CC = ISD::getSetCCInverse(CC, !IsFP);
2448   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2449     Invert = true;
2450     return Opcode;
2451   }
2452 
2453   return 0;
2454 }
2455 
2456 // Return a v2f64 that contains the extended form of elements Start and Start+1
2457 // of v4f32 value Op.
2458 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2459                                   SDValue Op) {
2460   int Mask[] = { Start, -1, Start + 1, -1 };
2461   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2462   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2463 }
2464 
2465 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2466 // producing a result of type VT.
2467 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2468                                             const SDLoc &DL, EVT VT,
2469                                             SDValue CmpOp0,
2470                                             SDValue CmpOp1) const {
2471   // There is no hardware support for v4f32 (unless we have the vector
2472   // enhancements facility 1), so extend the vector into two v2f64s
2473   // and compare those.
2474   if (CmpOp0.getValueType() == MVT::v4f32 &&
2475       !Subtarget.hasVectorEnhancements1()) {
2476     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2477     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2478     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2479     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2480     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2481     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2482     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2483   }
2484   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2485 }
2486 
2487 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2488 // an integer mask of type VT.
2489 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2490                                                 const SDLoc &DL, EVT VT,
2491                                                 ISD::CondCode CC,
2492                                                 SDValue CmpOp0,
2493                                                 SDValue CmpOp1) const {
2494   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2495   bool Invert = false;
2496   SDValue Cmp;
2497   switch (CC) {
2498     // Handle tests for order using (or (ogt y x) (oge x y)).
2499   case ISD::SETUO:
2500     Invert = true;
2501     LLVM_FALLTHROUGH;
2502   case ISD::SETO: {
2503     assert(IsFP && "Unexpected integer comparison");
2504     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2505     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2506     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2507     break;
2508   }
2509 
2510     // Handle <> tests using (or (ogt y x) (ogt x y)).
2511   case ISD::SETUEQ:
2512     Invert = true;
2513     LLVM_FALLTHROUGH;
2514   case ISD::SETONE: {
2515     assert(IsFP && "Unexpected integer comparison");
2516     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2517     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2518     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2519     break;
2520   }
2521 
2522     // Otherwise a single comparison is enough.  It doesn't really
2523     // matter whether we try the inversion or the swap first, since
2524     // there are no cases where both work.
2525   default:
2526     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2527       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2528     else {
2529       CC = ISD::getSetCCSwappedOperands(CC);
2530       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2531         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2532       else
2533         llvm_unreachable("Unhandled comparison");
2534     }
2535     break;
2536   }
2537   if (Invert) {
2538     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2539                                DAG.getConstant(65535, DL, MVT::i32));
2540     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2541     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2542   }
2543   return Cmp;
2544 }
2545 
2546 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2547                                           SelectionDAG &DAG) const {
2548   SDValue CmpOp0   = Op.getOperand(0);
2549   SDValue CmpOp1   = Op.getOperand(1);
2550   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2551   SDLoc DL(Op);
2552   EVT VT = Op.getValueType();
2553   if (VT.isVector())
2554     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2555 
2556   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2557   SDValue Glue = emitCmp(DAG, DL, C);
2558   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2559 }
2560 
2561 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2562   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2563   SDValue CmpOp0   = Op.getOperand(2);
2564   SDValue CmpOp1   = Op.getOperand(3);
2565   SDValue Dest     = Op.getOperand(4);
2566   SDLoc DL(Op);
2567 
2568   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2569   SDValue Glue = emitCmp(DAG, DL, C);
2570   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2571                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2572                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2573 }
2574 
2575 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2576 // allowing Pos and Neg to be wider than CmpOp.
2577 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2578   return (Neg.getOpcode() == ISD::SUB &&
2579           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2580           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2581           Neg.getOperand(1) == Pos &&
2582           (Pos == CmpOp ||
2583            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2584             Pos.getOperand(0) == CmpOp)));
2585 }
2586 
2587 // Return the absolute or negative absolute of Op; IsNegative decides which.
2588 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2589                            bool IsNegative) {
2590   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2591   if (IsNegative)
2592     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2593                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2594   return Op;
2595 }
2596 
2597 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2598                                               SelectionDAG &DAG) const {
2599   SDValue CmpOp0   = Op.getOperand(0);
2600   SDValue CmpOp1   = Op.getOperand(1);
2601   SDValue TrueOp   = Op.getOperand(2);
2602   SDValue FalseOp  = Op.getOperand(3);
2603   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2604   SDLoc DL(Op);
2605 
2606   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2607 
2608   // Check for absolute and negative-absolute selections, including those
2609   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2610   // This check supplements the one in DAGCombiner.
2611   if (C.Opcode == SystemZISD::ICMP &&
2612       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2613       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2614       C.Op1.getOpcode() == ISD::Constant &&
2615       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2616     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2617       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2618     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2619       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2620   }
2621 
2622   SDValue Glue = emitCmp(DAG, DL, C);
2623 
2624   // Special case for handling -1/0 results.  The shifts we use here
2625   // should get optimized with the IPM conversion sequence.
2626   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2627   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
2628   if (TrueC && FalseC) {
2629     int64_t TrueVal = TrueC->getSExtValue();
2630     int64_t FalseVal = FalseC->getSExtValue();
2631     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2632       // Invert the condition if we want -1 on false.
2633       if (TrueVal == 0)
2634         C.CCMask ^= C.CCValid;
2635       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2636       EVT VT = Op.getValueType();
2637       // Extend the result to VT.  Upper bits are ignored.
2638       if (!is32Bit(VT))
2639         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2640       // Sign-extend from the low bit.
2641       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
2642       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2643       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2644     }
2645   }
2646 
2647   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2648                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2649 
2650   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2651   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
2652 }
2653 
2654 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2655                                                   SelectionDAG &DAG) const {
2656   SDLoc DL(Node);
2657   const GlobalValue *GV = Node->getGlobal();
2658   int64_t Offset = Node->getOffset();
2659   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2660   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2661 
2662   SDValue Result;
2663   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2664     // Assign anchors at 1<<12 byte boundaries.
2665     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2666     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2667     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2668 
2669     // The offset can be folded into the address if it is aligned to a halfword.
2670     Offset -= Anchor;
2671     if (Offset != 0 && (Offset & 1) == 0) {
2672       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2673       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2674       Offset = 0;
2675     }
2676   } else {
2677     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2678     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2679     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2680                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2681   }
2682 
2683   // If there was a non-zero offset that we didn't fold, create an explicit
2684   // addition for it.
2685   if (Offset != 0)
2686     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2687                          DAG.getConstant(Offset, DL, PtrVT));
2688 
2689   return Result;
2690 }
2691 
2692 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2693                                                  SelectionDAG &DAG,
2694                                                  unsigned Opcode,
2695                                                  SDValue GOTOffset) const {
2696   SDLoc DL(Node);
2697   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2698   SDValue Chain = DAG.getEntryNode();
2699   SDValue Glue;
2700 
2701   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2702   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2703   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2704   Glue = Chain.getValue(1);
2705   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2706   Glue = Chain.getValue(1);
2707 
2708   // The first call operand is the chain and the second is the TLS symbol.
2709   SmallVector<SDValue, 8> Ops;
2710   Ops.push_back(Chain);
2711   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2712                                            Node->getValueType(0),
2713                                            0, 0));
2714 
2715   // Add argument registers to the end of the list so that they are
2716   // known live into the call.
2717   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2718   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2719 
2720   // Add a register mask operand representing the call-preserved registers.
2721   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2722   const uint32_t *Mask =
2723       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2724   assert(Mask && "Missing call preserved mask for calling convention");
2725   Ops.push_back(DAG.getRegisterMask(Mask));
2726 
2727   // Glue the call to the argument copies.
2728   Ops.push_back(Glue);
2729 
2730   // Emit the call.
2731   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2732   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2733   Glue = Chain.getValue(1);
2734 
2735   // Copy the return value from %r2.
2736   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2737 }
2738 
2739 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2740                                                   SelectionDAG &DAG) const {
2741   SDValue Chain = DAG.getEntryNode();
2742   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2743 
2744   // The high part of the thread pointer is in access register 0.
2745   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2746   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2747 
2748   // The low part of the thread pointer is in access register 1.
2749   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2750   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2751 
2752   // Merge them into a single 64-bit address.
2753   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2754                                     DAG.getConstant(32, DL, PtrVT));
2755   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2756 }
2757 
2758 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2759                                                      SelectionDAG &DAG) const {
2760   if (DAG.getTarget().Options.EmulatedTLS)
2761     return LowerToTLSEmulatedModel(Node, DAG);
2762   SDLoc DL(Node);
2763   const GlobalValue *GV = Node->getGlobal();
2764   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2765   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2766 
2767   SDValue TP = lowerThreadPointer(DL, DAG);
2768 
2769   // Get the offset of GA from the thread pointer, based on the TLS model.
2770   SDValue Offset;
2771   switch (model) {
2772     case TLSModel::GeneralDynamic: {
2773       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2774       SystemZConstantPoolValue *CPV =
2775         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2776 
2777       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2778       Offset = DAG.getLoad(
2779           PtrVT, DL, DAG.getEntryNode(), Offset,
2780           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2781 
2782       // Call __tls_get_offset to retrieve the offset.
2783       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2784       break;
2785     }
2786 
2787     case TLSModel::LocalDynamic: {
2788       // Load the GOT offset of the module ID.
2789       SystemZConstantPoolValue *CPV =
2790         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2791 
2792       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2793       Offset = DAG.getLoad(
2794           PtrVT, DL, DAG.getEntryNode(), Offset,
2795           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2796 
2797       // Call __tls_get_offset to retrieve the module base offset.
2798       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2799 
2800       // Note: The SystemZLDCleanupPass will remove redundant computations
2801       // of the module base offset.  Count total number of local-dynamic
2802       // accesses to trigger execution of that pass.
2803       SystemZMachineFunctionInfo* MFI =
2804         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2805       MFI->incNumLocalDynamicTLSAccesses();
2806 
2807       // Add the per-symbol offset.
2808       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2809 
2810       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2811       DTPOffset = DAG.getLoad(
2812           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2813           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2814 
2815       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2816       break;
2817     }
2818 
2819     case TLSModel::InitialExec: {
2820       // Load the offset from the GOT.
2821       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2822                                           SystemZII::MO_INDNTPOFF);
2823       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2824       Offset =
2825           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2826                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2827       break;
2828     }
2829 
2830     case TLSModel::LocalExec: {
2831       // Force the offset into the constant pool and load it from there.
2832       SystemZConstantPoolValue *CPV =
2833         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2834 
2835       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2836       Offset = DAG.getLoad(
2837           PtrVT, DL, DAG.getEntryNode(), Offset,
2838           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2839       break;
2840     }
2841   }
2842 
2843   // Add the base and offset together.
2844   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2845 }
2846 
2847 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2848                                                  SelectionDAG &DAG) const {
2849   SDLoc DL(Node);
2850   const BlockAddress *BA = Node->getBlockAddress();
2851   int64_t Offset = Node->getOffset();
2852   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2853 
2854   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2855   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2856   return Result;
2857 }
2858 
2859 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2860                                               SelectionDAG &DAG) const {
2861   SDLoc DL(JT);
2862   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2863   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2864 
2865   // Use LARL to load the address of the table.
2866   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2867 }
2868 
2869 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2870                                                  SelectionDAG &DAG) const {
2871   SDLoc DL(CP);
2872   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2873 
2874   SDValue Result;
2875   if (CP->isMachineConstantPoolEntry())
2876     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2877                                        CP->getAlignment());
2878   else
2879     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2880                                        CP->getAlignment(), CP->getOffset());
2881 
2882   // Use LARL to load the address of the constant pool entry.
2883   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2884 }
2885 
2886 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2887                                               SelectionDAG &DAG) const {
2888   MachineFunction &MF = DAG.getMachineFunction();
2889   MachineFrameInfo &MFI = MF.getFrameInfo();
2890   MFI.setFrameAddressIsTaken(true);
2891 
2892   SDLoc DL(Op);
2893   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2894   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2895 
2896   // If the back chain frame index has not been allocated yet, do so.
2897   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2898   int BackChainIdx = FI->getFramePointerSaveIndex();
2899   if (!BackChainIdx) {
2900     // By definition, the frame address is the address of the back chain.
2901     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2902     FI->setFramePointerSaveIndex(BackChainIdx);
2903   }
2904   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2905 
2906   // FIXME The frontend should detect this case.
2907   if (Depth > 0) {
2908     report_fatal_error("Unsupported stack frame traversal count");
2909   }
2910 
2911   return BackChain;
2912 }
2913 
2914 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2915                                                SelectionDAG &DAG) const {
2916   MachineFunction &MF = DAG.getMachineFunction();
2917   MachineFrameInfo &MFI = MF.getFrameInfo();
2918   MFI.setReturnAddressIsTaken(true);
2919 
2920   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2921     return SDValue();
2922 
2923   SDLoc DL(Op);
2924   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2925   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2926 
2927   // FIXME The frontend should detect this case.
2928   if (Depth > 0) {
2929     report_fatal_error("Unsupported stack frame traversal count");
2930   }
2931 
2932   // Return R14D, which has the return address. Mark it an implicit live-in.
2933   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2934   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2935 }
2936 
2937 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2938                                             SelectionDAG &DAG) const {
2939   SDLoc DL(Op);
2940   SDValue In = Op.getOperand(0);
2941   EVT InVT = In.getValueType();
2942   EVT ResVT = Op.getValueType();
2943 
2944   // Convert loads directly.  This is normally done by DAGCombiner,
2945   // but we need this case for bitcasts that are created during lowering
2946   // and which are then lowered themselves.
2947   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2948     if (ISD::isNormalLoad(LoadN)) {
2949       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2950                                     LoadN->getBasePtr(), LoadN->getMemOperand());
2951       // Update the chain uses.
2952       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2953       return NewLoad;
2954     }
2955 
2956   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2957     SDValue In64;
2958     if (Subtarget.hasHighWord()) {
2959       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2960                                        MVT::i64);
2961       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2962                                        MVT::i64, SDValue(U64, 0), In);
2963     } else {
2964       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2965       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2966                          DAG.getConstant(32, DL, MVT::i64));
2967     }
2968     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2969     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2970                                       DL, MVT::f32, Out64);
2971   }
2972   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2973     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2974     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2975                                              MVT::f64, SDValue(U64, 0), In);
2976     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2977     if (Subtarget.hasHighWord())
2978       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2979                                         MVT::i32, Out64);
2980     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2981                                 DAG.getConstant(32, DL, MVT::i64));
2982     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2983   }
2984   llvm_unreachable("Unexpected bitcast combination");
2985 }
2986 
2987 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2988                                             SelectionDAG &DAG) const {
2989   MachineFunction &MF = DAG.getMachineFunction();
2990   SystemZMachineFunctionInfo *FuncInfo =
2991     MF.getInfo<SystemZMachineFunctionInfo>();
2992   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2993 
2994   SDValue Chain   = Op.getOperand(0);
2995   SDValue Addr    = Op.getOperand(1);
2996   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2997   SDLoc DL(Op);
2998 
2999   // The initial values of each field.
3000   const unsigned NumFields = 4;
3001   SDValue Fields[NumFields] = {
3002     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3003     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3004     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3005     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3006   };
3007 
3008   // Store each field into its respective slot.
3009   SDValue MemOps[NumFields];
3010   unsigned Offset = 0;
3011   for (unsigned I = 0; I < NumFields; ++I) {
3012     SDValue FieldAddr = Addr;
3013     if (Offset != 0)
3014       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3015                               DAG.getIntPtrConstant(Offset, DL));
3016     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3017                              MachinePointerInfo(SV, Offset));
3018     Offset += 8;
3019   }
3020   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3021 }
3022 
3023 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3024                                            SelectionDAG &DAG) const {
3025   SDValue Chain      = Op.getOperand(0);
3026   SDValue DstPtr     = Op.getOperand(1);
3027   SDValue SrcPtr     = Op.getOperand(2);
3028   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3029   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3030   SDLoc DL(Op);
3031 
3032   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3033                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3034                        /*isTailCall*/false,
3035                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3036 }
3037 
3038 SDValue SystemZTargetLowering::
3039 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3040   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3041   MachineFunction &MF = DAG.getMachineFunction();
3042   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3043   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3044 
3045   SDValue Chain = Op.getOperand(0);
3046   SDValue Size  = Op.getOperand(1);
3047   SDValue Align = Op.getOperand(2);
3048   SDLoc DL(Op);
3049 
3050   // If user has set the no alignment function attribute, ignore
3051   // alloca alignments.
3052   uint64_t AlignVal = (RealignOpt ?
3053                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3054 
3055   uint64_t StackAlign = TFI->getStackAlignment();
3056   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3057   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3058 
3059   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3060   SDValue NeededSpace = Size;
3061 
3062   // Get a reference to the stack pointer.
3063   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3064 
3065   // If we need a backchain, save it now.
3066   SDValue Backchain;
3067   if (StoreBackchain)
3068     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3069 
3070   // Add extra space for alignment if needed.
3071   if (ExtraAlignSpace)
3072     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3073                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3074 
3075   // Get the new stack pointer value.
3076   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3077 
3078   // Copy the new stack pointer back.
3079   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3080 
3081   // The allocated data lives above the 160 bytes allocated for the standard
3082   // frame, plus any outgoing stack arguments.  We don't know how much that
3083   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3084   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3085   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3086 
3087   // Dynamically realign if needed.
3088   if (RequiredAlign > StackAlign) {
3089     Result =
3090       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3091                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3092     Result =
3093       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3094                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3095   }
3096 
3097   if (StoreBackchain)
3098     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3099 
3100   SDValue Ops[2] = { Result, Chain };
3101   return DAG.getMergeValues(Ops, DL);
3102 }
3103 
3104 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3105     SDValue Op, SelectionDAG &DAG) const {
3106   SDLoc DL(Op);
3107 
3108   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3109 }
3110 
3111 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3112                                               SelectionDAG &DAG) const {
3113   EVT VT = Op.getValueType();
3114   SDLoc DL(Op);
3115   SDValue Ops[2];
3116   if (is32Bit(VT))
3117     // Just do a normal 64-bit multiplication and extract the results.
3118     // We define this so that it can be used for constant division.
3119     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3120                     Op.getOperand(1), Ops[1], Ops[0]);
3121   else if (Subtarget.hasMiscellaneousExtensions2())
3122     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3123     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3124     // return the low half first, so the results are in reverse order.
3125     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3126                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3127   else {
3128     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3129     //
3130     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3131     //
3132     // but using the fact that the upper halves are either all zeros
3133     // or all ones:
3134     //
3135     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3136     //
3137     // and grouping the right terms together since they are quicker than the
3138     // multiplication:
3139     //
3140     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3141     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3142     SDValue LL = Op.getOperand(0);
3143     SDValue RL = Op.getOperand(1);
3144     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3145     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3146     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3147     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3148     // return the low half first, so the results are in reverse order.
3149     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3150                      LL, RL, Ops[1], Ops[0]);
3151     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3152     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3153     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3154     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3155   }
3156   return DAG.getMergeValues(Ops, DL);
3157 }
3158 
3159 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3160                                               SelectionDAG &DAG) const {
3161   EVT VT = Op.getValueType();
3162   SDLoc DL(Op);
3163   SDValue Ops[2];
3164   if (is32Bit(VT))
3165     // Just do a normal 64-bit multiplication and extract the results.
3166     // We define this so that it can be used for constant division.
3167     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3168                     Op.getOperand(1), Ops[1], Ops[0]);
3169   else
3170     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3171     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3172     // return the low half first, so the results are in reverse order.
3173     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3174                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3175   return DAG.getMergeValues(Ops, DL);
3176 }
3177 
3178 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3179                                             SelectionDAG &DAG) const {
3180   SDValue Op0 = Op.getOperand(0);
3181   SDValue Op1 = Op.getOperand(1);
3182   EVT VT = Op.getValueType();
3183   SDLoc DL(Op);
3184 
3185   // We use DSGF for 32-bit division.  This means the first operand must
3186   // always be 64-bit, and the second operand should be 32-bit whenever
3187   // that is possible, to improve performance.
3188   if (is32Bit(VT))
3189     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3190   else if (DAG.ComputeNumSignBits(Op1) > 32)
3191     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3192 
3193   // DSG(F) returns the remainder in the even register and the
3194   // quotient in the odd register.
3195   SDValue Ops[2];
3196   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3197   return DAG.getMergeValues(Ops, DL);
3198 }
3199 
3200 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3201                                             SelectionDAG &DAG) const {
3202   EVT VT = Op.getValueType();
3203   SDLoc DL(Op);
3204 
3205   // DL(G) returns the remainder in the even register and the
3206   // quotient in the odd register.
3207   SDValue Ops[2];
3208   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3209                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3210   return DAG.getMergeValues(Ops, DL);
3211 }
3212 
3213 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3214   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3215 
3216   // Get the known-zero masks for each operand.
3217   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3218   KnownBits Known[2];
3219   DAG.computeKnownBits(Ops[0], Known[0]);
3220   DAG.computeKnownBits(Ops[1], Known[1]);
3221 
3222   // See if the upper 32 bits of one operand and the lower 32 bits of the
3223   // other are known zero.  They are the low and high operands respectively.
3224   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3225                        Known[1].Zero.getZExtValue() };
3226   unsigned High, Low;
3227   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3228     High = 1, Low = 0;
3229   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3230     High = 0, Low = 1;
3231   else
3232     return Op;
3233 
3234   SDValue LowOp = Ops[Low];
3235   SDValue HighOp = Ops[High];
3236 
3237   // If the high part is a constant, we're better off using IILH.
3238   if (HighOp.getOpcode() == ISD::Constant)
3239     return Op;
3240 
3241   // If the low part is a constant that is outside the range of LHI,
3242   // then we're better off using IILF.
3243   if (LowOp.getOpcode() == ISD::Constant) {
3244     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3245     if (!isInt<16>(Value))
3246       return Op;
3247   }
3248 
3249   // Check whether the high part is an AND that doesn't change the
3250   // high 32 bits and just masks out low bits.  We can skip it if so.
3251   if (HighOp.getOpcode() == ISD::AND &&
3252       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3253     SDValue HighOp0 = HighOp.getOperand(0);
3254     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3255     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3256       HighOp = HighOp0;
3257   }
3258 
3259   // Take advantage of the fact that all GR32 operations only change the
3260   // low 32 bits by truncating Low to an i32 and inserting it directly
3261   // using a subreg.  The interesting cases are those where the truncation
3262   // can be folded.
3263   SDLoc DL(Op);
3264   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3265   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3266                                    MVT::i64, HighOp, Low32);
3267 }
3268 
3269 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3270                                           SelectionDAG &DAG) const {
3271   EVT VT = Op.getValueType();
3272   SDLoc DL(Op);
3273   Op = Op.getOperand(0);
3274 
3275   // Handle vector types via VPOPCT.
3276   if (VT.isVector()) {
3277     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3278     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3279     switch (VT.getScalarSizeInBits()) {
3280     case 8:
3281       break;
3282     case 16: {
3283       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3284       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3285       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3286       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3287       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3288       break;
3289     }
3290     case 32: {
3291       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3292                                 DAG.getConstant(0, DL, MVT::i32));
3293       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3294       break;
3295     }
3296     case 64: {
3297       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3298                                 DAG.getConstant(0, DL, MVT::i32));
3299       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3300       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3301       break;
3302     }
3303     default:
3304       llvm_unreachable("Unexpected type");
3305     }
3306     return Op;
3307   }
3308 
3309   // Get the known-zero mask for the operand.
3310   KnownBits Known;
3311   DAG.computeKnownBits(Op, Known);
3312   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3313   if (NumSignificantBits == 0)
3314     return DAG.getConstant(0, DL, VT);
3315 
3316   // Skip known-zero high parts of the operand.
3317   int64_t OrigBitSize = VT.getSizeInBits();
3318   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3319   BitSize = std::min(BitSize, OrigBitSize);
3320 
3321   // The POPCNT instruction counts the number of bits in each byte.
3322   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3323   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3324   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3325 
3326   // Add up per-byte counts in a binary tree.  All bits of Op at
3327   // position larger than BitSize remain zero throughout.
3328   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3329     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3330     if (BitSize != OrigBitSize)
3331       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3332                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3333     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3334   }
3335 
3336   // Extract overall result from high byte.
3337   if (BitSize > 8)
3338     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3339                      DAG.getConstant(BitSize - 8, DL, VT));
3340 
3341   return Op;
3342 }
3343 
3344 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3345                                                  SelectionDAG &DAG) const {
3346   SDLoc DL(Op);
3347   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3348     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3349   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3350     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3351 
3352   // The only fence that needs an instruction is a sequentially-consistent
3353   // cross-thread fence.
3354   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3355       FenceSSID == SyncScope::System) {
3356     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3357                                       Op.getOperand(0)),
3358                    0);
3359   }
3360 
3361   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3362   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3363 }
3364 
3365 // Op is an atomic load.  Lower it into a normal volatile load.
3366 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3367                                                 SelectionDAG &DAG) const {
3368   auto *Node = cast<AtomicSDNode>(Op.getNode());
3369   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3370                         Node->getChain(), Node->getBasePtr(),
3371                         Node->getMemoryVT(), Node->getMemOperand());
3372 }
3373 
3374 // Op is an atomic store.  Lower it into a normal volatile store.
3375 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3376                                                  SelectionDAG &DAG) const {
3377   auto *Node = cast<AtomicSDNode>(Op.getNode());
3378   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3379                                     Node->getBasePtr(), Node->getMemoryVT(),
3380                                     Node->getMemOperand());
3381   // We have to enforce sequential consistency by performing a
3382   // serialization operation after the store.
3383   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3384     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3385                                        MVT::Other, Chain), 0);
3386   return Chain;
3387 }
3388 
3389 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3390 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3391 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3392                                                    SelectionDAG &DAG,
3393                                                    unsigned Opcode) const {
3394   auto *Node = cast<AtomicSDNode>(Op.getNode());
3395 
3396   // 32-bit operations need no code outside the main loop.
3397   EVT NarrowVT = Node->getMemoryVT();
3398   EVT WideVT = MVT::i32;
3399   if (NarrowVT == WideVT)
3400     return Op;
3401 
3402   int64_t BitSize = NarrowVT.getSizeInBits();
3403   SDValue ChainIn = Node->getChain();
3404   SDValue Addr = Node->getBasePtr();
3405   SDValue Src2 = Node->getVal();
3406   MachineMemOperand *MMO = Node->getMemOperand();
3407   SDLoc DL(Node);
3408   EVT PtrVT = Addr.getValueType();
3409 
3410   // Convert atomic subtracts of constants into additions.
3411   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3412     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3413       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3414       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3415     }
3416 
3417   // Get the address of the containing word.
3418   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3419                                     DAG.getConstant(-4, DL, PtrVT));
3420 
3421   // Get the number of bits that the word must be rotated left in order
3422   // to bring the field to the top bits of a GR32.
3423   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3424                                  DAG.getConstant(3, DL, PtrVT));
3425   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3426 
3427   // Get the complementing shift amount, for rotating a field in the top
3428   // bits back to its proper position.
3429   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3430                                     DAG.getConstant(0, DL, WideVT), BitShift);
3431 
3432   // Extend the source operand to 32 bits and prepare it for the inner loop.
3433   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3434   // operations require the source to be shifted in advance.  (This shift
3435   // can be folded if the source is constant.)  For AND and NAND, the lower
3436   // bits must be set, while for other opcodes they should be left clear.
3437   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3438     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3439                        DAG.getConstant(32 - BitSize, DL, WideVT));
3440   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3441       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3442     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3443                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3444 
3445   // Construct the ATOMIC_LOADW_* node.
3446   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3447   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3448                     DAG.getConstant(BitSize, DL, WideVT) };
3449   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3450                                              NarrowVT, MMO);
3451 
3452   // Rotate the result of the final CS so that the field is in the lower
3453   // bits of a GR32, then truncate it.
3454   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3455                                     DAG.getConstant(BitSize, DL, WideVT));
3456   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3457 
3458   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3459   return DAG.getMergeValues(RetOps, DL);
3460 }
3461 
3462 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3463 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3464 // operations into additions.
3465 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3466                                                     SelectionDAG &DAG) const {
3467   auto *Node = cast<AtomicSDNode>(Op.getNode());
3468   EVT MemVT = Node->getMemoryVT();
3469   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3470     // A full-width operation.
3471     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3472     SDValue Src2 = Node->getVal();
3473     SDValue NegSrc2;
3474     SDLoc DL(Src2);
3475 
3476     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3477       // Use an addition if the operand is constant and either LAA(G) is
3478       // available or the negative value is in the range of A(G)FHI.
3479       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3480       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3481         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3482     } else if (Subtarget.hasInterlockedAccess1())
3483       // Use LAA(G) if available.
3484       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3485                             Src2);
3486 
3487     if (NegSrc2.getNode())
3488       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3489                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3490                            Node->getMemOperand());
3491 
3492     // Use the node as-is.
3493     return Op;
3494   }
3495 
3496   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3497 }
3498 
3499 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3500 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3501                                                     SelectionDAG &DAG) const {
3502   auto *Node = cast<AtomicSDNode>(Op.getNode());
3503   SDValue ChainIn = Node->getOperand(0);
3504   SDValue Addr = Node->getOperand(1);
3505   SDValue CmpVal = Node->getOperand(2);
3506   SDValue SwapVal = Node->getOperand(3);
3507   MachineMemOperand *MMO = Node->getMemOperand();
3508   SDLoc DL(Node);
3509 
3510   // We have native support for 32-bit and 64-bit compare and swap, but we
3511   // still need to expand extracting the "success" result from the CC.
3512   EVT NarrowVT = Node->getMemoryVT();
3513   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3514   if (NarrowVT == WideVT) {
3515     SDVTList Tys = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3516     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3517     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3518                                                DL, Tys, Ops, NarrowVT, MMO);
3519     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3520                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3521 
3522     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3523     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3524     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3525     return SDValue();
3526   }
3527 
3528   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3529   // via a fullword ATOMIC_CMP_SWAPW operation.
3530   int64_t BitSize = NarrowVT.getSizeInBits();
3531   EVT PtrVT = Addr.getValueType();
3532 
3533   // Get the address of the containing word.
3534   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3535                                     DAG.getConstant(-4, DL, PtrVT));
3536 
3537   // Get the number of bits that the word must be rotated left in order
3538   // to bring the field to the top bits of a GR32.
3539   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3540                                  DAG.getConstant(3, DL, PtrVT));
3541   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3542 
3543   // Get the complementing shift amount, for rotating a field in the top
3544   // bits back to its proper position.
3545   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3546                                     DAG.getConstant(0, DL, WideVT), BitShift);
3547 
3548   // Construct the ATOMIC_CMP_SWAPW node.
3549   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3550   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3551                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3552   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3553                                              VTList, Ops, NarrowVT, MMO);
3554   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3555                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3556 
3557   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3558   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3559   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3560   return SDValue();
3561 }
3562 
3563 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3564                                               SelectionDAG &DAG) const {
3565   MachineFunction &MF = DAG.getMachineFunction();
3566   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3567   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3568                             SystemZ::R15D, Op.getValueType());
3569 }
3570 
3571 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3572                                                  SelectionDAG &DAG) const {
3573   MachineFunction &MF = DAG.getMachineFunction();
3574   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3575   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3576 
3577   SDValue Chain = Op.getOperand(0);
3578   SDValue NewSP = Op.getOperand(1);
3579   SDValue Backchain;
3580   SDLoc DL(Op);
3581 
3582   if (StoreBackchain) {
3583     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3584     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3585   }
3586 
3587   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3588 
3589   if (StoreBackchain)
3590     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3591 
3592   return Chain;
3593 }
3594 
3595 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3596                                              SelectionDAG &DAG) const {
3597   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3598   if (!IsData)
3599     // Just preserve the chain.
3600     return Op.getOperand(0);
3601 
3602   SDLoc DL(Op);
3603   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3604   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3605   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3606   SDValue Ops[] = {
3607     Op.getOperand(0),
3608     DAG.getConstant(Code, DL, MVT::i32),
3609     Op.getOperand(1)
3610   };
3611   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3612                                  Node->getVTList(), Ops,
3613                                  Node->getMemoryVT(), Node->getMemOperand());
3614 }
3615 
3616 // Return an i32 that contains the value of CC immediately after After,
3617 // whose final operand must be MVT::Glue.
3618 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3619   SDLoc DL(After);
3620   SDValue Glue = SDValue(After, After->getNumValues() - 1);
3621   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3622   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3623                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3624 }
3625 
3626 SDValue
3627 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3628                                               SelectionDAG &DAG) const {
3629   unsigned Opcode, CCValid;
3630   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3631     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3632     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3633     SDValue CC = getCCResult(DAG, Glued.getNode());
3634     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3635     return SDValue();
3636   }
3637 
3638   return SDValue();
3639 }
3640 
3641 SDValue
3642 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3643                                                SelectionDAG &DAG) const {
3644   unsigned Opcode, CCValid;
3645   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3646     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3647     SDValue CC = getCCResult(DAG, Glued.getNode());
3648     if (Op->getNumValues() == 1)
3649       return CC;
3650     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3651     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3652                        CC);
3653   }
3654 
3655   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3656   switch (Id) {
3657   case Intrinsic::thread_pointer:
3658     return lowerThreadPointer(SDLoc(Op), DAG);
3659 
3660   case Intrinsic::s390_vpdi:
3661     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3662                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3663 
3664   case Intrinsic::s390_vperm:
3665     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3666                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3667 
3668   case Intrinsic::s390_vuphb:
3669   case Intrinsic::s390_vuphh:
3670   case Intrinsic::s390_vuphf:
3671     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3672                        Op.getOperand(1));
3673 
3674   case Intrinsic::s390_vuplhb:
3675   case Intrinsic::s390_vuplhh:
3676   case Intrinsic::s390_vuplhf:
3677     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3678                        Op.getOperand(1));
3679 
3680   case Intrinsic::s390_vuplb:
3681   case Intrinsic::s390_vuplhw:
3682   case Intrinsic::s390_vuplf:
3683     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3684                        Op.getOperand(1));
3685 
3686   case Intrinsic::s390_vupllb:
3687   case Intrinsic::s390_vupllh:
3688   case Intrinsic::s390_vupllf:
3689     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3690                        Op.getOperand(1));
3691 
3692   case Intrinsic::s390_vsumb:
3693   case Intrinsic::s390_vsumh:
3694   case Intrinsic::s390_vsumgh:
3695   case Intrinsic::s390_vsumgf:
3696   case Intrinsic::s390_vsumqf:
3697   case Intrinsic::s390_vsumqg:
3698     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3699                        Op.getOperand(1), Op.getOperand(2));
3700   }
3701 
3702   return SDValue();
3703 }
3704 
3705 namespace {
3706 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3707 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3708 // Operand is the constant third operand, otherwise it is the number of
3709 // bytes in each element of the result.
3710 struct Permute {
3711   unsigned Opcode;
3712   unsigned Operand;
3713   unsigned char Bytes[SystemZ::VectorBytes];
3714 };
3715 }
3716 
3717 static const Permute PermuteForms[] = {
3718   // VMRHG
3719   { SystemZISD::MERGE_HIGH, 8,
3720     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3721   // VMRHF
3722   { SystemZISD::MERGE_HIGH, 4,
3723     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3724   // VMRHH
3725   { SystemZISD::MERGE_HIGH, 2,
3726     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3727   // VMRHB
3728   { SystemZISD::MERGE_HIGH, 1,
3729     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3730   // VMRLG
3731   { SystemZISD::MERGE_LOW, 8,
3732     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3733   // VMRLF
3734   { SystemZISD::MERGE_LOW, 4,
3735     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3736   // VMRLH
3737   { SystemZISD::MERGE_LOW, 2,
3738     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3739   // VMRLB
3740   { SystemZISD::MERGE_LOW, 1,
3741     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3742   // VPKG
3743   { SystemZISD::PACK, 4,
3744     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3745   // VPKF
3746   { SystemZISD::PACK, 2,
3747     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3748   // VPKH
3749   { SystemZISD::PACK, 1,
3750     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3751   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3752   { SystemZISD::PERMUTE_DWORDS, 4,
3753     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3754   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3755   { SystemZISD::PERMUTE_DWORDS, 1,
3756     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3757 };
3758 
3759 // Called after matching a vector shuffle against a particular pattern.
3760 // Both the original shuffle and the pattern have two vector operands.
3761 // OpNos[0] is the operand of the original shuffle that should be used for
3762 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3763 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3764 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3765 // for operands 0 and 1 of the pattern.
3766 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3767   if (OpNos[0] < 0) {
3768     if (OpNos[1] < 0)
3769       return false;
3770     OpNo0 = OpNo1 = OpNos[1];
3771   } else if (OpNos[1] < 0) {
3772     OpNo0 = OpNo1 = OpNos[0];
3773   } else {
3774     OpNo0 = OpNos[0];
3775     OpNo1 = OpNos[1];
3776   }
3777   return true;
3778 }
3779 
3780 // Bytes is a VPERM-like permute vector, except that -1 is used for
3781 // undefined bytes.  Return true if the VPERM can be implemented using P.
3782 // When returning true set OpNo0 to the VPERM operand that should be
3783 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3784 //
3785 // For example, if swapping the VPERM operands allows P to match, OpNo0
3786 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3787 // operand, but rewriting it to use two duplicated operands allows it to
3788 // match P, then OpNo0 and OpNo1 will be the same.
3789 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3790                          unsigned &OpNo0, unsigned &OpNo1) {
3791   int OpNos[] = { -1, -1 };
3792   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3793     int Elt = Bytes[I];
3794     if (Elt >= 0) {
3795       // Make sure that the two permute vectors use the same suboperand
3796       // byte number.  Only the operand numbers (the high bits) are
3797       // allowed to differ.
3798       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3799         return false;
3800       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3801       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3802       // Make sure that the operand mappings are consistent with previous
3803       // elements.
3804       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3805         return false;
3806       OpNos[ModelOpNo] = RealOpNo;
3807     }
3808   }
3809   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3810 }
3811 
3812 // As above, but search for a matching permute.
3813 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3814                                    unsigned &OpNo0, unsigned &OpNo1) {
3815   for (auto &P : PermuteForms)
3816     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3817       return &P;
3818   return nullptr;
3819 }
3820 
3821 // Bytes is a VPERM-like permute vector, except that -1 is used for
3822 // undefined bytes.  This permute is an operand of an outer permute.
3823 // See whether redistributing the -1 bytes gives a shuffle that can be
3824 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3825 // that, when applied to the result of P, gives the original permute in Bytes.
3826 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3827                                const Permute &P,
3828                                SmallVectorImpl<int> &Transform) {
3829   unsigned To = 0;
3830   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3831     int Elt = Bytes[From];
3832     if (Elt < 0)
3833       // Byte number From of the result is undefined.
3834       Transform[From] = -1;
3835     else {
3836       while (P.Bytes[To] != Elt) {
3837         To += 1;
3838         if (To == SystemZ::VectorBytes)
3839           return false;
3840       }
3841       Transform[From] = To;
3842     }
3843   }
3844   return true;
3845 }
3846 
3847 // As above, but search for a matching permute.
3848 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3849                                          SmallVectorImpl<int> &Transform) {
3850   for (auto &P : PermuteForms)
3851     if (matchDoublePermute(Bytes, P, Transform))
3852       return &P;
3853   return nullptr;
3854 }
3855 
3856 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3857 // as if it had type vNi8.
3858 static void getVPermMask(ShuffleVectorSDNode *VSN,
3859                          SmallVectorImpl<int> &Bytes) {
3860   EVT VT = VSN->getValueType(0);
3861   unsigned NumElements = VT.getVectorNumElements();
3862   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3863   Bytes.resize(NumElements * BytesPerElement, -1);
3864   for (unsigned I = 0; I < NumElements; ++I) {
3865     int Index = VSN->getMaskElt(I);
3866     if (Index >= 0)
3867       for (unsigned J = 0; J < BytesPerElement; ++J)
3868         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3869   }
3870 }
3871 
3872 // Bytes is a VPERM-like permute vector, except that -1 is used for
3873 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3874 // the result come from a contiguous sequence of bytes from one input.
3875 // Set Base to the selector for the first byte if so.
3876 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3877                             unsigned BytesPerElement, int &Base) {
3878   Base = -1;
3879   for (unsigned I = 0; I < BytesPerElement; ++I) {
3880     if (Bytes[Start + I] >= 0) {
3881       unsigned Elem = Bytes[Start + I];
3882       if (Base < 0) {
3883         Base = Elem - I;
3884         // Make sure the bytes would come from one input operand.
3885         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3886           return false;
3887       } else if (unsigned(Base) != Elem - I)
3888         return false;
3889     }
3890   }
3891   return true;
3892 }
3893 
3894 // Bytes is a VPERM-like permute vector, except that -1 is used for
3895 // undefined bytes.  Return true if it can be performed using VSLDI.
3896 // When returning true, set StartIndex to the shift amount and OpNo0
3897 // and OpNo1 to the VPERM operands that should be used as the first
3898 // and second shift operand respectively.
3899 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3900                                unsigned &StartIndex, unsigned &OpNo0,
3901                                unsigned &OpNo1) {
3902   int OpNos[] = { -1, -1 };
3903   int Shift = -1;
3904   for (unsigned I = 0; I < 16; ++I) {
3905     int Index = Bytes[I];
3906     if (Index >= 0) {
3907       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3908       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3909       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3910       if (Shift < 0)
3911         Shift = ExpectedShift;
3912       else if (Shift != ExpectedShift)
3913         return false;
3914       // Make sure that the operand mappings are consistent with previous
3915       // elements.
3916       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3917         return false;
3918       OpNos[ModelOpNo] = RealOpNo;
3919     }
3920   }
3921   StartIndex = Shift;
3922   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3923 }
3924 
3925 // Create a node that performs P on operands Op0 and Op1, casting the
3926 // operands to the appropriate type.  The type of the result is determined by P.
3927 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3928                               const Permute &P, SDValue Op0, SDValue Op1) {
3929   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3930   // elements of a PACK are twice as wide as the outputs.
3931   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3932                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3933                       P.Operand);
3934   // Cast both operands to the appropriate type.
3935   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3936                               SystemZ::VectorBytes / InBytes);
3937   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3938   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3939   SDValue Op;
3940   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3941     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3942     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3943   } else if (P.Opcode == SystemZISD::PACK) {
3944     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3945                                  SystemZ::VectorBytes / P.Operand);
3946     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3947   } else {
3948     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3949   }
3950   return Op;
3951 }
3952 
3953 // Bytes is a VPERM-like permute vector, except that -1 is used for
3954 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3955 // VSLDI or VPERM.
3956 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3957                                      SDValue *Ops,
3958                                      const SmallVectorImpl<int> &Bytes) {
3959   for (unsigned I = 0; I < 2; ++I)
3960     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3961 
3962   // First see whether VSLDI can be used.
3963   unsigned StartIndex, OpNo0, OpNo1;
3964   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3965     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3966                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3967 
3968   // Fall back on VPERM.  Construct an SDNode for the permute vector.
3969   SDValue IndexNodes[SystemZ::VectorBytes];
3970   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3971     if (Bytes[I] >= 0)
3972       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3973     else
3974       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3975   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3976   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3977 }
3978 
3979 namespace {
3980 // Describes a general N-operand vector shuffle.
3981 struct GeneralShuffle {
3982   GeneralShuffle(EVT vt) : VT(vt) {}
3983   void addUndef();
3984   bool add(SDValue, unsigned);
3985   SDValue getNode(SelectionDAG &, const SDLoc &);
3986 
3987   // The operands of the shuffle.
3988   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3989 
3990   // Index I is -1 if byte I of the result is undefined.  Otherwise the
3991   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3992   // Bytes[I] / SystemZ::VectorBytes.
3993   SmallVector<int, SystemZ::VectorBytes> Bytes;
3994 
3995   // The type of the shuffle result.
3996   EVT VT;
3997 };
3998 }
3999 
4000 // Add an extra undefined element to the shuffle.
4001 void GeneralShuffle::addUndef() {
4002   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4003   for (unsigned I = 0; I < BytesPerElement; ++I)
4004     Bytes.push_back(-1);
4005 }
4006 
4007 // Add an extra element to the shuffle, taking it from element Elem of Op.
4008 // A null Op indicates a vector input whose value will be calculated later;
4009 // there is at most one such input per shuffle and it always has the same
4010 // type as the result. Aborts and returns false if the source vector elements
4011 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4012 // LLVM they become implicitly extended, but this is rare and not optimized.
4013 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4014   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4015 
4016   // The source vector can have wider elements than the result,
4017   // either through an explicit TRUNCATE or because of type legalization.
4018   // We want the least significant part.
4019   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4020   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4021 
4022   // Return false if the source elements are smaller than their destination
4023   // elements.
4024   if (FromBytesPerElement < BytesPerElement)
4025     return false;
4026 
4027   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4028                    (FromBytesPerElement - BytesPerElement));
4029 
4030   // Look through things like shuffles and bitcasts.
4031   while (Op.getNode()) {
4032     if (Op.getOpcode() == ISD::BITCAST)
4033       Op = Op.getOperand(0);
4034     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4035       // See whether the bytes we need come from a contiguous part of one
4036       // operand.
4037       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4038       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
4039       int NewByte;
4040       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4041         break;
4042       if (NewByte < 0) {
4043         addUndef();
4044         return true;
4045       }
4046       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4047       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4048     } else if (Op.isUndef()) {
4049       addUndef();
4050       return true;
4051     } else
4052       break;
4053   }
4054 
4055   // Make sure that the source of the extraction is in Ops.
4056   unsigned OpNo = 0;
4057   for (; OpNo < Ops.size(); ++OpNo)
4058     if (Ops[OpNo] == Op)
4059       break;
4060   if (OpNo == Ops.size())
4061     Ops.push_back(Op);
4062 
4063   // Add the element to Bytes.
4064   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4065   for (unsigned I = 0; I < BytesPerElement; ++I)
4066     Bytes.push_back(Base + I);
4067 
4068   return true;
4069 }
4070 
4071 // Return SDNodes for the completed shuffle.
4072 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4073   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4074 
4075   if (Ops.size() == 0)
4076     return DAG.getUNDEF(VT);
4077 
4078   // Make sure that there are at least two shuffle operands.
4079   if (Ops.size() == 1)
4080     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4081 
4082   // Create a tree of shuffles, deferring root node until after the loop.
4083   // Try to redistribute the undefined elements of non-root nodes so that
4084   // the non-root shuffles match something like a pack or merge, then adjust
4085   // the parent node's permute vector to compensate for the new order.
4086   // Among other things, this copes with vectors like <2 x i16> that were
4087   // padded with undefined elements during type legalization.
4088   //
4089   // In the best case this redistribution will lead to the whole tree
4090   // using packs and merges.  It should rarely be a loss in other cases.
4091   unsigned Stride = 1;
4092   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4093     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4094       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4095 
4096       // Create a mask for just these two operands.
4097       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4098       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4099         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4100         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4101         if (OpNo == I)
4102           NewBytes[J] = Byte;
4103         else if (OpNo == I + Stride)
4104           NewBytes[J] = SystemZ::VectorBytes + Byte;
4105         else
4106           NewBytes[J] = -1;
4107       }
4108       // See if it would be better to reorganize NewMask to avoid using VPERM.
4109       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4110       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4111         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4112         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4113         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4114           if (NewBytes[J] >= 0) {
4115             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4116                    "Invalid double permute");
4117             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4118           } else
4119             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4120         }
4121       } else {
4122         // Just use NewBytes on the operands.
4123         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4124         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4125           if (NewBytes[J] >= 0)
4126             Bytes[J] = I * SystemZ::VectorBytes + J;
4127       }
4128     }
4129   }
4130 
4131   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4132   if (Stride > 1) {
4133     Ops[1] = Ops[Stride];
4134     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4135       if (Bytes[I] >= int(SystemZ::VectorBytes))
4136         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4137   }
4138 
4139   // Look for an instruction that can do the permute without resorting
4140   // to VPERM.
4141   unsigned OpNo0, OpNo1;
4142   SDValue Op;
4143   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4144     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4145   else
4146     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4147   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4148 }
4149 
4150 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4151 static bool isScalarToVector(SDValue Op) {
4152   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4153     if (!Op.getOperand(I).isUndef())
4154       return false;
4155   return true;
4156 }
4157 
4158 // Return a vector of type VT that contains Value in the first element.
4159 // The other elements don't matter.
4160 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4161                                    SDValue Value) {
4162   // If we have a constant, replicate it to all elements and let the
4163   // BUILD_VECTOR lowering take care of it.
4164   if (Value.getOpcode() == ISD::Constant ||
4165       Value.getOpcode() == ISD::ConstantFP) {
4166     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4167     return DAG.getBuildVector(VT, DL, Ops);
4168   }
4169   if (Value.isUndef())
4170     return DAG.getUNDEF(VT);
4171   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4172 }
4173 
4174 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4175 // element 1.  Used for cases in which replication is cheap.
4176 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4177                                  SDValue Op0, SDValue Op1) {
4178   if (Op0.isUndef()) {
4179     if (Op1.isUndef())
4180       return DAG.getUNDEF(VT);
4181     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4182   }
4183   if (Op1.isUndef())
4184     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4185   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4186                      buildScalarToVector(DAG, DL, VT, Op0),
4187                      buildScalarToVector(DAG, DL, VT, Op1));
4188 }
4189 
4190 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4191 // vector for them.
4192 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4193                           SDValue Op1) {
4194   if (Op0.isUndef() && Op1.isUndef())
4195     return DAG.getUNDEF(MVT::v2i64);
4196   // If one of the two inputs is undefined then replicate the other one,
4197   // in order to avoid using another register unnecessarily.
4198   if (Op0.isUndef())
4199     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4200   else if (Op1.isUndef())
4201     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4202   else {
4203     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4204     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4205   }
4206   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4207 }
4208 
4209 // Try to represent constant BUILD_VECTOR node BVN using a
4210 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4211 // on success.
4212 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4213   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4214   unsigned BytesPerElement = ElemVT.getStoreSize();
4215   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4216     SDValue Op = BVN->getOperand(I);
4217     if (!Op.isUndef()) {
4218       uint64_t Value;
4219       if (Op.getOpcode() == ISD::Constant)
4220         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4221       else if (Op.getOpcode() == ISD::ConstantFP)
4222         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4223                  .getZExtValue());
4224       else
4225         return false;
4226       for (unsigned J = 0; J < BytesPerElement; ++J) {
4227         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4228         if (Byte == 0xff)
4229           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4230         else if (Byte != 0)
4231           return false;
4232       }
4233     }
4234   }
4235   return true;
4236 }
4237 
4238 // Try to load a vector constant in which BitsPerElement-bit value Value
4239 // is replicated to fill the vector.  VT is the type of the resulting
4240 // constant, which may have elements of a different size from BitsPerElement.
4241 // Return the SDValue of the constant on success, otherwise return
4242 // an empty value.
4243 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4244                                        const SystemZInstrInfo *TII,
4245                                        const SDLoc &DL, EVT VT, uint64_t Value,
4246                                        unsigned BitsPerElement) {
4247   // Signed 16-bit values can be replicated using VREPI.
4248   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4249   if (isInt<16>(SignedValue)) {
4250     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4251                                  SystemZ::VectorBits / BitsPerElement);
4252     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4253                              DAG.getConstant(SignedValue, DL, MVT::i32));
4254     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4255   }
4256   // See whether rotating the constant left some N places gives a value that
4257   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4258   // If so we can use VGM.
4259   unsigned Start, End;
4260   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4261     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4262     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4263     // bit numbers for an BitsPerElement value, so that 0 denotes
4264     // 1 << (BitsPerElement-1).
4265     Start -= 64 - BitsPerElement;
4266     End -= 64 - BitsPerElement;
4267     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4268                                  SystemZ::VectorBits / BitsPerElement);
4269     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4270                              DAG.getConstant(Start, DL, MVT::i32),
4271                              DAG.getConstant(End, DL, MVT::i32));
4272     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4273   }
4274   return SDValue();
4275 }
4276 
4277 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4278 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4279 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4280 // would benefit from this representation and return it if so.
4281 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4282                                      BuildVectorSDNode *BVN) {
4283   EVT VT = BVN->getValueType(0);
4284   unsigned NumElements = VT.getVectorNumElements();
4285 
4286   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4287   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4288   // need a BUILD_VECTOR, add an additional placeholder operand for that
4289   // BUILD_VECTOR and store its operands in ResidueOps.
4290   GeneralShuffle GS(VT);
4291   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4292   bool FoundOne = false;
4293   for (unsigned I = 0; I < NumElements; ++I) {
4294     SDValue Op = BVN->getOperand(I);
4295     if (Op.getOpcode() == ISD::TRUNCATE)
4296       Op = Op.getOperand(0);
4297     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4298         Op.getOperand(1).getOpcode() == ISD::Constant) {
4299       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4300       if (!GS.add(Op.getOperand(0), Elem))
4301         return SDValue();
4302       FoundOne = true;
4303     } else if (Op.isUndef()) {
4304       GS.addUndef();
4305     } else {
4306       if (!GS.add(SDValue(), ResidueOps.size()))
4307         return SDValue();
4308       ResidueOps.push_back(BVN->getOperand(I));
4309     }
4310   }
4311 
4312   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4313   if (!FoundOne)
4314     return SDValue();
4315 
4316   // Create the BUILD_VECTOR for the remaining elements, if any.
4317   if (!ResidueOps.empty()) {
4318     while (ResidueOps.size() < NumElements)
4319       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4320     for (auto &Op : GS.Ops) {
4321       if (!Op.getNode()) {
4322         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4323         break;
4324       }
4325     }
4326   }
4327   return GS.getNode(DAG, SDLoc(BVN));
4328 }
4329 
4330 // Combine GPR scalar values Elems into a vector of type VT.
4331 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4332                            SmallVectorImpl<SDValue> &Elems) {
4333   // See whether there is a single replicated value.
4334   SDValue Single;
4335   unsigned int NumElements = Elems.size();
4336   unsigned int Count = 0;
4337   for (auto Elem : Elems) {
4338     if (!Elem.isUndef()) {
4339       if (!Single.getNode())
4340         Single = Elem;
4341       else if (Elem != Single) {
4342         Single = SDValue();
4343         break;
4344       }
4345       Count += 1;
4346     }
4347   }
4348   // There are three cases here:
4349   //
4350   // - if the only defined element is a loaded one, the best sequence
4351   //   is a replicating load.
4352   //
4353   // - otherwise, if the only defined element is an i64 value, we will
4354   //   end up with the same VLVGP sequence regardless of whether we short-cut
4355   //   for replication or fall through to the later code.
4356   //
4357   // - otherwise, if the only defined element is an i32 or smaller value,
4358   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4359   //   This is only a win if the single defined element is used more than once.
4360   //   In other cases we're better off using a single VLVGx.
4361   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4362     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4363 
4364   // If all elements are loads, use VLREP/VLEs (below).
4365   bool AllLoads = true;
4366   for (auto Elem : Elems)
4367     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4368       AllLoads = false;
4369       break;
4370     }
4371 
4372   // The best way of building a v2i64 from two i64s is to use VLVGP.
4373   if (VT == MVT::v2i64 && !AllLoads)
4374     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4375 
4376   // Use a 64-bit merge high to combine two doubles.
4377   if (VT == MVT::v2f64 && !AllLoads)
4378     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4379 
4380   // Build v4f32 values directly from the FPRs:
4381   //
4382   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4383   //         V              V         VMRHF
4384   //      <ABxx>         <CDxx>
4385   //                V                 VMRHG
4386   //              <ABCD>
4387   if (VT == MVT::v4f32 && !AllLoads) {
4388     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4389     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4390     // Avoid unnecessary undefs by reusing the other operand.
4391     if (Op01.isUndef())
4392       Op01 = Op23;
4393     else if (Op23.isUndef())
4394       Op23 = Op01;
4395     // Merging identical replications is a no-op.
4396     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4397       return Op01;
4398     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4399     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4400     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4401                              DL, MVT::v2i64, Op01, Op23);
4402     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4403   }
4404 
4405   // Collect the constant terms.
4406   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4407   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4408 
4409   unsigned NumConstants = 0;
4410   for (unsigned I = 0; I < NumElements; ++I) {
4411     SDValue Elem = Elems[I];
4412     if (Elem.getOpcode() == ISD::Constant ||
4413         Elem.getOpcode() == ISD::ConstantFP) {
4414       NumConstants += 1;
4415       Constants[I] = Elem;
4416       Done[I] = true;
4417     }
4418   }
4419   // If there was at least one constant, fill in the other elements of
4420   // Constants with undefs to get a full vector constant and use that
4421   // as the starting point.
4422   SDValue Result;
4423   if (NumConstants > 0) {
4424     for (unsigned I = 0; I < NumElements; ++I)
4425       if (!Constants[I].getNode())
4426         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4427     Result = DAG.getBuildVector(VT, DL, Constants);
4428   } else {
4429     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4430     // avoid a false dependency on any previous contents of the vector
4431     // register.
4432 
4433     // Use a VLREP if at least one element is a load.
4434     unsigned LoadElIdx = UINT_MAX;
4435     for (unsigned I = 0; I < NumElements; ++I)
4436       if (Elems[I].getOpcode() == ISD::LOAD &&
4437           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4438         LoadElIdx = I;
4439         break;
4440       }
4441     if (LoadElIdx != UINT_MAX) {
4442       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]);
4443       Done[LoadElIdx] = true;
4444     } else {
4445       // Try to use VLVGP.
4446       unsigned I1 = NumElements / 2 - 1;
4447       unsigned I2 = NumElements - 1;
4448       bool Def1 = !Elems[I1].isUndef();
4449       bool Def2 = !Elems[I2].isUndef();
4450       if (Def1 || Def2) {
4451         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4452         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4453         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4454                              joinDwords(DAG, DL, Elem1, Elem2));
4455         Done[I1] = true;
4456         Done[I2] = true;
4457       } else
4458         Result = DAG.getUNDEF(VT);
4459     }
4460   }
4461 
4462   // Use VLVGx to insert the other elements.
4463   for (unsigned I = 0; I < NumElements; ++I)
4464     if (!Done[I] && !Elems[I].isUndef())
4465       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4466                            DAG.getConstant(I, DL, MVT::i32));
4467   return Result;
4468 }
4469 
4470 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4471                                                  SelectionDAG &DAG) const {
4472   const SystemZInstrInfo *TII =
4473     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4474   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4475   SDLoc DL(Op);
4476   EVT VT = Op.getValueType();
4477 
4478   if (BVN->isConstant()) {
4479     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4480     // preferred way of creating all-zero and all-one vectors so give it
4481     // priority over other methods below.
4482     uint64_t Mask = 0;
4483     if (tryBuildVectorByteMask(BVN, Mask)) {
4484       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4485                                DAG.getConstant(Mask, DL, MVT::i32));
4486       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4487     }
4488 
4489     // Try using some form of replication.
4490     APInt SplatBits, SplatUndef;
4491     unsigned SplatBitSize;
4492     bool HasAnyUndefs;
4493     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4494                              8, true) &&
4495         SplatBitSize <= 64) {
4496       // First try assuming that any undefined bits above the highest set bit
4497       // and below the lowest set bit are 1s.  This increases the likelihood of
4498       // being able to use a sign-extended element value in VECTOR REPLICATE
4499       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4500       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4501       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4502       uint64_t Lower = (SplatUndefZ
4503                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4504       uint64_t Upper = (SplatUndefZ
4505                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4506       uint64_t Value = SplatBitsZ | Upper | Lower;
4507       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4508                                            SplatBitSize);
4509       if (Op.getNode())
4510         return Op;
4511 
4512       // Now try assuming that any undefined bits between the first and
4513       // last defined set bits are set.  This increases the chances of
4514       // using a non-wraparound mask.
4515       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4516       Value = SplatBitsZ | Middle;
4517       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4518       if (Op.getNode())
4519         return Op;
4520     }
4521 
4522     // Fall back to loading it from memory.
4523     return SDValue();
4524   }
4525 
4526   // See if we should use shuffles to construct the vector from other vectors.
4527   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4528     return Res;
4529 
4530   // Detect SCALAR_TO_VECTOR conversions.
4531   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4532     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4533 
4534   // Otherwise use buildVector to build the vector up from GPRs.
4535   unsigned NumElements = Op.getNumOperands();
4536   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4537   for (unsigned I = 0; I < NumElements; ++I)
4538     Ops[I] = Op.getOperand(I);
4539   return buildVector(DAG, DL, VT, Ops);
4540 }
4541 
4542 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4543                                                    SelectionDAG &DAG) const {
4544   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4545   SDLoc DL(Op);
4546   EVT VT = Op.getValueType();
4547   unsigned NumElements = VT.getVectorNumElements();
4548 
4549   if (VSN->isSplat()) {
4550     SDValue Op0 = Op.getOperand(0);
4551     unsigned Index = VSN->getSplatIndex();
4552     assert(Index < VT.getVectorNumElements() &&
4553            "Splat index should be defined and in first operand");
4554     // See whether the value we're splatting is directly available as a scalar.
4555     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4556         Op0.getOpcode() == ISD::BUILD_VECTOR)
4557       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4558     // Otherwise keep it as a vector-to-vector operation.
4559     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4560                        DAG.getConstant(Index, DL, MVT::i32));
4561   }
4562 
4563   GeneralShuffle GS(VT);
4564   for (unsigned I = 0; I < NumElements; ++I) {
4565     int Elt = VSN->getMaskElt(I);
4566     if (Elt < 0)
4567       GS.addUndef();
4568     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4569                      unsigned(Elt) % NumElements))
4570       return SDValue();
4571   }
4572   return GS.getNode(DAG, SDLoc(VSN));
4573 }
4574 
4575 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4576                                                      SelectionDAG &DAG) const {
4577   SDLoc DL(Op);
4578   // Just insert the scalar into element 0 of an undefined vector.
4579   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4580                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4581                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4582 }
4583 
4584 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4585                                                       SelectionDAG &DAG) const {
4586   // Handle insertions of floating-point values.
4587   SDLoc DL(Op);
4588   SDValue Op0 = Op.getOperand(0);
4589   SDValue Op1 = Op.getOperand(1);
4590   SDValue Op2 = Op.getOperand(2);
4591   EVT VT = Op.getValueType();
4592 
4593   // Insertions into constant indices of a v2f64 can be done using VPDI.
4594   // However, if the inserted value is a bitcast or a constant then it's
4595   // better to use GPRs, as below.
4596   if (VT == MVT::v2f64 &&
4597       Op1.getOpcode() != ISD::BITCAST &&
4598       Op1.getOpcode() != ISD::ConstantFP &&
4599       Op2.getOpcode() == ISD::Constant) {
4600     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4601     unsigned Mask = VT.getVectorNumElements() - 1;
4602     if (Index <= Mask)
4603       return Op;
4604   }
4605 
4606   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4607   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4608   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4609   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4610                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4611                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4612   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4613 }
4614 
4615 SDValue
4616 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4617                                                SelectionDAG &DAG) const {
4618   // Handle extractions of floating-point values.
4619   SDLoc DL(Op);
4620   SDValue Op0 = Op.getOperand(0);
4621   SDValue Op1 = Op.getOperand(1);
4622   EVT VT = Op.getValueType();
4623   EVT VecVT = Op0.getValueType();
4624 
4625   // Extractions of constant indices can be done directly.
4626   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4627     uint64_t Index = CIndexN->getZExtValue();
4628     unsigned Mask = VecVT.getVectorNumElements() - 1;
4629     if (Index <= Mask)
4630       return Op;
4631   }
4632 
4633   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4634   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4635   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4636   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4637                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4638   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4639 }
4640 
4641 SDValue
4642 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4643                                               unsigned UnpackHigh) const {
4644   SDValue PackedOp = Op.getOperand(0);
4645   EVT OutVT = Op.getValueType();
4646   EVT InVT = PackedOp.getValueType();
4647   unsigned ToBits = OutVT.getScalarSizeInBits();
4648   unsigned FromBits = InVT.getScalarSizeInBits();
4649   do {
4650     FromBits *= 2;
4651     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4652                                  SystemZ::VectorBits / FromBits);
4653     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4654   } while (FromBits != ToBits);
4655   return PackedOp;
4656 }
4657 
4658 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4659                                           unsigned ByScalar) const {
4660   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4661   SDValue Op0 = Op.getOperand(0);
4662   SDValue Op1 = Op.getOperand(1);
4663   SDLoc DL(Op);
4664   EVT VT = Op.getValueType();
4665   unsigned ElemBitSize = VT.getScalarSizeInBits();
4666 
4667   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4668   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4669     APInt SplatBits, SplatUndef;
4670     unsigned SplatBitSize;
4671     bool HasAnyUndefs;
4672     // Check for constant splats.  Use ElemBitSize as the minimum element
4673     // width and reject splats that need wider elements.
4674     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4675                              ElemBitSize, true) &&
4676         SplatBitSize == ElemBitSize) {
4677       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4678                                       DL, MVT::i32);
4679       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4680     }
4681     // Check for variable splats.
4682     BitVector UndefElements;
4683     SDValue Splat = BVN->getSplatValue(&UndefElements);
4684     if (Splat) {
4685       // Since i32 is the smallest legal type, we either need a no-op
4686       // or a truncation.
4687       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4688       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4689     }
4690   }
4691 
4692   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4693   // and the shift amount is directly available in a GPR.
4694   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4695     if (VSN->isSplat()) {
4696       SDValue VSNOp0 = VSN->getOperand(0);
4697       unsigned Index = VSN->getSplatIndex();
4698       assert(Index < VT.getVectorNumElements() &&
4699              "Splat index should be defined and in first operand");
4700       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4701           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4702         // Since i32 is the smallest legal type, we either need a no-op
4703         // or a truncation.
4704         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4705                                     VSNOp0.getOperand(Index));
4706         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4707       }
4708     }
4709   }
4710 
4711   // Otherwise just treat the current form as legal.
4712   return Op;
4713 }
4714 
4715 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4716                                               SelectionDAG &DAG) const {
4717   switch (Op.getOpcode()) {
4718   case ISD::FRAMEADDR:
4719     return lowerFRAMEADDR(Op, DAG);
4720   case ISD::RETURNADDR:
4721     return lowerRETURNADDR(Op, DAG);
4722   case ISD::BR_CC:
4723     return lowerBR_CC(Op, DAG);
4724   case ISD::SELECT_CC:
4725     return lowerSELECT_CC(Op, DAG);
4726   case ISD::SETCC:
4727     return lowerSETCC(Op, DAG);
4728   case ISD::GlobalAddress:
4729     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4730   case ISD::GlobalTLSAddress:
4731     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4732   case ISD::BlockAddress:
4733     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4734   case ISD::JumpTable:
4735     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4736   case ISD::ConstantPool:
4737     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4738   case ISD::BITCAST:
4739     return lowerBITCAST(Op, DAG);
4740   case ISD::VASTART:
4741     return lowerVASTART(Op, DAG);
4742   case ISD::VACOPY:
4743     return lowerVACOPY(Op, DAG);
4744   case ISD::DYNAMIC_STACKALLOC:
4745     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4746   case ISD::GET_DYNAMIC_AREA_OFFSET:
4747     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4748   case ISD::SMUL_LOHI:
4749     return lowerSMUL_LOHI(Op, DAG);
4750   case ISD::UMUL_LOHI:
4751     return lowerUMUL_LOHI(Op, DAG);
4752   case ISD::SDIVREM:
4753     return lowerSDIVREM(Op, DAG);
4754   case ISD::UDIVREM:
4755     return lowerUDIVREM(Op, DAG);
4756   case ISD::OR:
4757     return lowerOR(Op, DAG);
4758   case ISD::CTPOP:
4759     return lowerCTPOP(Op, DAG);
4760   case ISD::ATOMIC_FENCE:
4761     return lowerATOMIC_FENCE(Op, DAG);
4762   case ISD::ATOMIC_SWAP:
4763     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4764   case ISD::ATOMIC_STORE:
4765     return lowerATOMIC_STORE(Op, DAG);
4766   case ISD::ATOMIC_LOAD:
4767     return lowerATOMIC_LOAD(Op, DAG);
4768   case ISD::ATOMIC_LOAD_ADD:
4769     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4770   case ISD::ATOMIC_LOAD_SUB:
4771     return lowerATOMIC_LOAD_SUB(Op, DAG);
4772   case ISD::ATOMIC_LOAD_AND:
4773     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4774   case ISD::ATOMIC_LOAD_OR:
4775     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4776   case ISD::ATOMIC_LOAD_XOR:
4777     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4778   case ISD::ATOMIC_LOAD_NAND:
4779     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4780   case ISD::ATOMIC_LOAD_MIN:
4781     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4782   case ISD::ATOMIC_LOAD_MAX:
4783     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4784   case ISD::ATOMIC_LOAD_UMIN:
4785     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4786   case ISD::ATOMIC_LOAD_UMAX:
4787     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4788   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4789     return lowerATOMIC_CMP_SWAP(Op, DAG);
4790   case ISD::STACKSAVE:
4791     return lowerSTACKSAVE(Op, DAG);
4792   case ISD::STACKRESTORE:
4793     return lowerSTACKRESTORE(Op, DAG);
4794   case ISD::PREFETCH:
4795     return lowerPREFETCH(Op, DAG);
4796   case ISD::INTRINSIC_W_CHAIN:
4797     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4798   case ISD::INTRINSIC_WO_CHAIN:
4799     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4800   case ISD::BUILD_VECTOR:
4801     return lowerBUILD_VECTOR(Op, DAG);
4802   case ISD::VECTOR_SHUFFLE:
4803     return lowerVECTOR_SHUFFLE(Op, DAG);
4804   case ISD::SCALAR_TO_VECTOR:
4805     return lowerSCALAR_TO_VECTOR(Op, DAG);
4806   case ISD::INSERT_VECTOR_ELT:
4807     return lowerINSERT_VECTOR_ELT(Op, DAG);
4808   case ISD::EXTRACT_VECTOR_ELT:
4809     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4810   case ISD::SIGN_EXTEND_VECTOR_INREG:
4811     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4812   case ISD::ZERO_EXTEND_VECTOR_INREG:
4813     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4814   case ISD::SHL:
4815     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4816   case ISD::SRL:
4817     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4818   case ISD::SRA:
4819     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4820   default:
4821     llvm_unreachable("Unexpected node to lower");
4822   }
4823 }
4824 
4825 // Lower operations with invalid operand or result types (currently used
4826 // only for 128-bit integer types).
4827 
4828 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4829   SDLoc DL(In);
4830   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4831                            DAG.getIntPtrConstant(0, DL));
4832   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4833                            DAG.getIntPtrConstant(1, DL));
4834   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4835                                     MVT::Untyped, Hi, Lo);
4836   return SDValue(Pair, 0);
4837 }
4838 
4839 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4840   SDLoc DL(In);
4841   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4842                                           DL, MVT::i64, In);
4843   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4844                                           DL, MVT::i64, In);
4845   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4846 }
4847 
4848 void
4849 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4850                                              SmallVectorImpl<SDValue> &Results,
4851                                              SelectionDAG &DAG) const {
4852   switch (N->getOpcode()) {
4853   case ISD::ATOMIC_LOAD: {
4854     SDLoc DL(N);
4855     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4856     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4857     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4858     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4859                                           DL, Tys, Ops, MVT::i128, MMO);
4860     Results.push_back(lowerGR128ToI128(DAG, Res));
4861     Results.push_back(Res.getValue(1));
4862     break;
4863   }
4864   case ISD::ATOMIC_STORE: {
4865     SDLoc DL(N);
4866     SDVTList Tys = DAG.getVTList(MVT::Other);
4867     SDValue Ops[] = { N->getOperand(0),
4868                       lowerI128ToGR128(DAG, N->getOperand(2)),
4869                       N->getOperand(1) };
4870     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4871     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4872                                           DL, Tys, Ops, MVT::i128, MMO);
4873     // We have to enforce sequential consistency by performing a
4874     // serialization operation after the store.
4875     if (cast<AtomicSDNode>(N)->getOrdering() ==
4876         AtomicOrdering::SequentiallyConsistent)
4877       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4878                                        MVT::Other, Res), 0);
4879     Results.push_back(Res);
4880     break;
4881   }
4882   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4883     SDLoc DL(N);
4884     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other, MVT::Glue);
4885     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4886                       lowerI128ToGR128(DAG, N->getOperand(2)),
4887                       lowerI128ToGR128(DAG, N->getOperand(3)) };
4888     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4889     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4890                                           DL, Tys, Ops, MVT::i128, MMO);
4891     SDValue Success = emitSETCC(DAG, DL, Res.getValue(2),
4892                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4893     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4894     Results.push_back(lowerGR128ToI128(DAG, Res));
4895     Results.push_back(Success);
4896     Results.push_back(Res.getValue(1));
4897     break;
4898   }
4899   default:
4900     llvm_unreachable("Unexpected node to lower");
4901   }
4902 }
4903 
4904 void
4905 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4906                                           SmallVectorImpl<SDValue> &Results,
4907                                           SelectionDAG &DAG) const {
4908   return LowerOperationWrapper(N, Results, DAG);
4909 }
4910 
4911 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4912 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4913   switch ((SystemZISD::NodeType)Opcode) {
4914     case SystemZISD::FIRST_NUMBER: break;
4915     OPCODE(RET_FLAG);
4916     OPCODE(CALL);
4917     OPCODE(SIBCALL);
4918     OPCODE(TLS_GDCALL);
4919     OPCODE(TLS_LDCALL);
4920     OPCODE(PCREL_WRAPPER);
4921     OPCODE(PCREL_OFFSET);
4922     OPCODE(IABS);
4923     OPCODE(ICMP);
4924     OPCODE(FCMP);
4925     OPCODE(TM);
4926     OPCODE(BR_CCMASK);
4927     OPCODE(SELECT_CCMASK);
4928     OPCODE(ADJDYNALLOC);
4929     OPCODE(POPCNT);
4930     OPCODE(SMUL_LOHI);
4931     OPCODE(UMUL_LOHI);
4932     OPCODE(SDIVREM);
4933     OPCODE(UDIVREM);
4934     OPCODE(MVC);
4935     OPCODE(MVC_LOOP);
4936     OPCODE(NC);
4937     OPCODE(NC_LOOP);
4938     OPCODE(OC);
4939     OPCODE(OC_LOOP);
4940     OPCODE(XC);
4941     OPCODE(XC_LOOP);
4942     OPCODE(CLC);
4943     OPCODE(CLC_LOOP);
4944     OPCODE(STPCPY);
4945     OPCODE(STRCMP);
4946     OPCODE(SEARCH_STRING);
4947     OPCODE(IPM);
4948     OPCODE(MEMBARRIER);
4949     OPCODE(TBEGIN);
4950     OPCODE(TBEGIN_NOFLOAT);
4951     OPCODE(TEND);
4952     OPCODE(BYTE_MASK);
4953     OPCODE(ROTATE_MASK);
4954     OPCODE(REPLICATE);
4955     OPCODE(JOIN_DWORDS);
4956     OPCODE(SPLAT);
4957     OPCODE(MERGE_HIGH);
4958     OPCODE(MERGE_LOW);
4959     OPCODE(SHL_DOUBLE);
4960     OPCODE(PERMUTE_DWORDS);
4961     OPCODE(PERMUTE);
4962     OPCODE(PACK);
4963     OPCODE(PACKS_CC);
4964     OPCODE(PACKLS_CC);
4965     OPCODE(UNPACK_HIGH);
4966     OPCODE(UNPACKL_HIGH);
4967     OPCODE(UNPACK_LOW);
4968     OPCODE(UNPACKL_LOW);
4969     OPCODE(VSHL_BY_SCALAR);
4970     OPCODE(VSRL_BY_SCALAR);
4971     OPCODE(VSRA_BY_SCALAR);
4972     OPCODE(VSUM);
4973     OPCODE(VICMPE);
4974     OPCODE(VICMPH);
4975     OPCODE(VICMPHL);
4976     OPCODE(VICMPES);
4977     OPCODE(VICMPHS);
4978     OPCODE(VICMPHLS);
4979     OPCODE(VFCMPE);
4980     OPCODE(VFCMPH);
4981     OPCODE(VFCMPHE);
4982     OPCODE(VFCMPES);
4983     OPCODE(VFCMPHS);
4984     OPCODE(VFCMPHES);
4985     OPCODE(VFTCI);
4986     OPCODE(VEXTEND);
4987     OPCODE(VROUND);
4988     OPCODE(VTM);
4989     OPCODE(VFAE_CC);
4990     OPCODE(VFAEZ_CC);
4991     OPCODE(VFEE_CC);
4992     OPCODE(VFEEZ_CC);
4993     OPCODE(VFENE_CC);
4994     OPCODE(VFENEZ_CC);
4995     OPCODE(VISTR_CC);
4996     OPCODE(VSTRC_CC);
4997     OPCODE(VSTRCZ_CC);
4998     OPCODE(TDC);
4999     OPCODE(ATOMIC_SWAPW);
5000     OPCODE(ATOMIC_LOADW_ADD);
5001     OPCODE(ATOMIC_LOADW_SUB);
5002     OPCODE(ATOMIC_LOADW_AND);
5003     OPCODE(ATOMIC_LOADW_OR);
5004     OPCODE(ATOMIC_LOADW_XOR);
5005     OPCODE(ATOMIC_LOADW_NAND);
5006     OPCODE(ATOMIC_LOADW_MIN);
5007     OPCODE(ATOMIC_LOADW_MAX);
5008     OPCODE(ATOMIC_LOADW_UMIN);
5009     OPCODE(ATOMIC_LOADW_UMAX);
5010     OPCODE(ATOMIC_CMP_SWAPW);
5011     OPCODE(ATOMIC_CMP_SWAP);
5012     OPCODE(ATOMIC_LOAD_128);
5013     OPCODE(ATOMIC_STORE_128);
5014     OPCODE(ATOMIC_CMP_SWAP_128);
5015     OPCODE(LRV);
5016     OPCODE(STRV);
5017     OPCODE(PREFETCH);
5018   }
5019   return nullptr;
5020 #undef OPCODE
5021 }
5022 
5023 // Return true if VT is a vector whose elements are a whole number of bytes
5024 // in width. Also check for presence of vector support.
5025 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5026   if (!Subtarget.hasVector())
5027     return false;
5028 
5029   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5030 }
5031 
5032 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5033 // producing a result of type ResVT.  Op is a possibly bitcast version
5034 // of the input vector and Index is the index (based on type VecVT) that
5035 // should be extracted.  Return the new extraction if a simplification
5036 // was possible or if Force is true.
5037 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5038                                               EVT VecVT, SDValue Op,
5039                                               unsigned Index,
5040                                               DAGCombinerInfo &DCI,
5041                                               bool Force) const {
5042   SelectionDAG &DAG = DCI.DAG;
5043 
5044   // The number of bytes being extracted.
5045   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5046 
5047   for (;;) {
5048     unsigned Opcode = Op.getOpcode();
5049     if (Opcode == ISD::BITCAST)
5050       // Look through bitcasts.
5051       Op = Op.getOperand(0);
5052     else if (Opcode == ISD::VECTOR_SHUFFLE &&
5053              canTreatAsByteVector(Op.getValueType())) {
5054       // Get a VPERM-like permute mask and see whether the bytes covered
5055       // by the extracted element are a contiguous sequence from one
5056       // source operand.
5057       SmallVector<int, SystemZ::VectorBytes> Bytes;
5058       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
5059       int First;
5060       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5061                            BytesPerElement, First))
5062         break;
5063       if (First < 0)
5064         return DAG.getUNDEF(ResVT);
5065       // Make sure the contiguous sequence starts at a multiple of the
5066       // original element size.
5067       unsigned Byte = unsigned(First) % Bytes.size();
5068       if (Byte % BytesPerElement != 0)
5069         break;
5070       // We can get the extracted value directly from an input.
5071       Index = Byte / BytesPerElement;
5072       Op = Op.getOperand(unsigned(First) / Bytes.size());
5073       Force = true;
5074     } else if (Opcode == ISD::BUILD_VECTOR &&
5075                canTreatAsByteVector(Op.getValueType())) {
5076       // We can only optimize this case if the BUILD_VECTOR elements are
5077       // at least as wide as the extracted value.
5078       EVT OpVT = Op.getValueType();
5079       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5080       if (OpBytesPerElement < BytesPerElement)
5081         break;
5082       // Make sure that the least-significant bit of the extracted value
5083       // is the least significant bit of an input.
5084       unsigned End = (Index + 1) * BytesPerElement;
5085       if (End % OpBytesPerElement != 0)
5086         break;
5087       // We're extracting the low part of one operand of the BUILD_VECTOR.
5088       Op = Op.getOperand(End / OpBytesPerElement - 1);
5089       if (!Op.getValueType().isInteger()) {
5090         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5091         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5092         DCI.AddToWorklist(Op.getNode());
5093       }
5094       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5095       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5096       if (VT != ResVT) {
5097         DCI.AddToWorklist(Op.getNode());
5098         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5099       }
5100       return Op;
5101     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5102                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5103                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5104                canTreatAsByteVector(Op.getValueType()) &&
5105                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5106       // Make sure that only the unextended bits are significant.
5107       EVT ExtVT = Op.getValueType();
5108       EVT OpVT = Op.getOperand(0).getValueType();
5109       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5110       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5111       unsigned Byte = Index * BytesPerElement;
5112       unsigned SubByte = Byte % ExtBytesPerElement;
5113       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5114       if (SubByte < MinSubByte ||
5115           SubByte + BytesPerElement > ExtBytesPerElement)
5116         break;
5117       // Get the byte offset of the unextended element
5118       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5119       // ...then add the byte offset relative to that element.
5120       Byte += SubByte - MinSubByte;
5121       if (Byte % BytesPerElement != 0)
5122         break;
5123       Op = Op.getOperand(0);
5124       Index = Byte / BytesPerElement;
5125       Force = true;
5126     } else
5127       break;
5128   }
5129   if (Force) {
5130     if (Op.getValueType() != VecVT) {
5131       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5132       DCI.AddToWorklist(Op.getNode());
5133     }
5134     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5135                        DAG.getConstant(Index, DL, MVT::i32));
5136   }
5137   return SDValue();
5138 }
5139 
5140 // Optimize vector operations in scalar value Op on the basis that Op
5141 // is truncated to TruncVT.
5142 SDValue SystemZTargetLowering::combineTruncateExtract(
5143     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5144   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5145   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5146   // of type TruncVT.
5147   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5148       TruncVT.getSizeInBits() % 8 == 0) {
5149     SDValue Vec = Op.getOperand(0);
5150     EVT VecVT = Vec.getValueType();
5151     if (canTreatAsByteVector(VecVT)) {
5152       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5153         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5154         unsigned TruncBytes = TruncVT.getStoreSize();
5155         if (BytesPerElement % TruncBytes == 0) {
5156           // Calculate the value of Y' in the above description.  We are
5157           // splitting the original elements into Scale equal-sized pieces
5158           // and for truncation purposes want the last (least-significant)
5159           // of these pieces for IndexN.  This is easiest to do by calculating
5160           // the start index of the following element and then subtracting 1.
5161           unsigned Scale = BytesPerElement / TruncBytes;
5162           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5163 
5164           // Defer the creation of the bitcast from X to combineExtract,
5165           // which might be able to optimize the extraction.
5166           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5167                                    VecVT.getStoreSize() / TruncBytes);
5168           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5169           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5170         }
5171       }
5172     }
5173   }
5174   return SDValue();
5175 }
5176 
5177 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5178     SDNode *N, DAGCombinerInfo &DCI) const {
5179   // Convert (sext (ashr (shl X, C1), C2)) to
5180   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5181   // cheap as narrower ones.
5182   SelectionDAG &DAG = DCI.DAG;
5183   SDValue N0 = N->getOperand(0);
5184   EVT VT = N->getValueType(0);
5185   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5186     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5187     SDValue Inner = N0.getOperand(0);
5188     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5189       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5190         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5191         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5192         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5193         EVT ShiftVT = N0.getOperand(1).getValueType();
5194         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5195                                   Inner.getOperand(0));
5196         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5197                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5198                                                   ShiftVT));
5199         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5200                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5201       }
5202     }
5203   }
5204   return SDValue();
5205 }
5206 
5207 SDValue SystemZTargetLowering::combineMERGE(
5208     SDNode *N, DAGCombinerInfo &DCI) const {
5209   SelectionDAG &DAG = DCI.DAG;
5210   unsigned Opcode = N->getOpcode();
5211   SDValue Op0 = N->getOperand(0);
5212   SDValue Op1 = N->getOperand(1);
5213   if (Op0.getOpcode() == ISD::BITCAST)
5214     Op0 = Op0.getOperand(0);
5215   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5216       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5217     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5218     // for v4f32.
5219     if (Op1 == N->getOperand(0))
5220       return Op1;
5221     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5222     EVT VT = Op1.getValueType();
5223     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5224     if (ElemBytes <= 4) {
5225       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5226                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5227       EVT InVT = VT.changeVectorElementTypeToInteger();
5228       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5229                                    SystemZ::VectorBytes / ElemBytes / 2);
5230       if (VT != InVT) {
5231         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5232         DCI.AddToWorklist(Op1.getNode());
5233       }
5234       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5235       DCI.AddToWorklist(Op.getNode());
5236       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5237     }
5238   }
5239   return SDValue();
5240 }
5241 
5242 SDValue SystemZTargetLowering::combineSTORE(
5243     SDNode *N, DAGCombinerInfo &DCI) const {
5244   SelectionDAG &DAG = DCI.DAG;
5245   auto *SN = cast<StoreSDNode>(N);
5246   auto &Op1 = N->getOperand(1);
5247   EVT MemVT = SN->getMemoryVT();
5248   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5249   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5250   // If X has wider elements then convert it to:
5251   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5252   if (MemVT.isInteger()) {
5253     if (SDValue Value =
5254             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5255       DCI.AddToWorklist(Value.getNode());
5256 
5257       // Rewrite the store with the new form of stored value.
5258       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5259                                SN->getBasePtr(), SN->getMemoryVT(),
5260                                SN->getMemOperand());
5261     }
5262   }
5263   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5264   // See comment in combineBSWAP about volatile accesses.
5265   if (!SN->isTruncatingStore() &&
5266       !SN->isVolatile() &&
5267       Op1.getOpcode() == ISD::BSWAP &&
5268       Op1.getNode()->hasOneUse() &&
5269       (Op1.getValueType() == MVT::i16 ||
5270        Op1.getValueType() == MVT::i32 ||
5271        Op1.getValueType() == MVT::i64)) {
5272 
5273       SDValue BSwapOp = Op1.getOperand(0);
5274 
5275       if (BSwapOp.getValueType() == MVT::i16)
5276         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5277 
5278       SDValue Ops[] = {
5279         N->getOperand(0), BSwapOp, N->getOperand(2),
5280         DAG.getValueType(Op1.getValueType())
5281       };
5282 
5283       return
5284         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5285                                 Ops, MemVT, SN->getMemOperand());
5286     }
5287   return SDValue();
5288 }
5289 
5290 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5291     SDNode *N, DAGCombinerInfo &DCI) const {
5292 
5293   if (!Subtarget.hasVector())
5294     return SDValue();
5295 
5296   // Try to simplify a vector extraction.
5297   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5298     SDValue Op0 = N->getOperand(0);
5299     EVT VecVT = Op0.getValueType();
5300     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5301                           IndexN->getZExtValue(), DCI, false);
5302   }
5303   return SDValue();
5304 }
5305 
5306 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5307     SDNode *N, DAGCombinerInfo &DCI) const {
5308   SelectionDAG &DAG = DCI.DAG;
5309   // (join_dwords X, X) == (replicate X)
5310   if (N->getOperand(0) == N->getOperand(1))
5311     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5312                        N->getOperand(0));
5313   return SDValue();
5314 }
5315 
5316 SDValue SystemZTargetLowering::combineFP_ROUND(
5317     SDNode *N, DAGCombinerInfo &DCI) const {
5318   // (fpround (extract_vector_elt X 0))
5319   // (fpround (extract_vector_elt X 1)) ->
5320   // (extract_vector_elt (VROUND X) 0)
5321   // (extract_vector_elt (VROUND X) 1)
5322   //
5323   // This is a special case since the target doesn't really support v2f32s.
5324   SelectionDAG &DAG = DCI.DAG;
5325   SDValue Op0 = N->getOperand(0);
5326   if (N->getValueType(0) == MVT::f32 &&
5327       Op0.hasOneUse() &&
5328       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5329       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5330       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5331       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5332     SDValue Vec = Op0.getOperand(0);
5333     for (auto *U : Vec->uses()) {
5334       if (U != Op0.getNode() &&
5335           U->hasOneUse() &&
5336           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5337           U->getOperand(0) == Vec &&
5338           U->getOperand(1).getOpcode() == ISD::Constant &&
5339           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5340         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5341         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5342             OtherRound.getOperand(0) == SDValue(U, 0) &&
5343             OtherRound.getValueType() == MVT::f32) {
5344           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5345                                        MVT::v4f32, Vec);
5346           DCI.AddToWorklist(VRound.getNode());
5347           SDValue Extract1 =
5348             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5349                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5350           DCI.AddToWorklist(Extract1.getNode());
5351           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5352           SDValue Extract0 =
5353             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5354                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5355           return Extract0;
5356         }
5357       }
5358     }
5359   }
5360   return SDValue();
5361 }
5362 
5363 SDValue SystemZTargetLowering::combineBSWAP(
5364     SDNode *N, DAGCombinerInfo &DCI) const {
5365   SelectionDAG &DAG = DCI.DAG;
5366   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5367   // These loads are allowed to access memory multiple times, and so we must check
5368   // that the loads are not volatile before performing the combine.
5369   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5370       N->getOperand(0).hasOneUse() &&
5371       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5372        N->getValueType(0) == MVT::i64) &&
5373        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
5374       SDValue Load = N->getOperand(0);
5375       LoadSDNode *LD = cast<LoadSDNode>(Load);
5376 
5377       // Create the byte-swapping load.
5378       SDValue Ops[] = {
5379         LD->getChain(),    // Chain
5380         LD->getBasePtr(),  // Ptr
5381         DAG.getValueType(N->getValueType(0)) // VT
5382       };
5383       SDValue BSLoad =
5384         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5385                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5386                                               MVT::i64 : MVT::i32, MVT::Other),
5387                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5388 
5389       // If this is an i16 load, insert the truncate.
5390       SDValue ResVal = BSLoad;
5391       if (N->getValueType(0) == MVT::i16)
5392         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5393 
5394       // First, combine the bswap away.  This makes the value produced by the
5395       // load dead.
5396       DCI.CombineTo(N, ResVal);
5397 
5398       // Next, combine the load away, we give it a bogus result value but a real
5399       // chain result.  The result value is dead because the bswap is dead.
5400       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5401 
5402       // Return N so it doesn't get rechecked!
5403       return SDValue(N, 0);
5404     }
5405   return SDValue();
5406 }
5407 
5408 SDValue SystemZTargetLowering::combineSHIFTROT(
5409     SDNode *N, DAGCombinerInfo &DCI) const {
5410 
5411   SelectionDAG &DAG = DCI.DAG;
5412 
5413   // Shift/rotate instructions only use the last 6 bits of the second operand
5414   // register. If the second operand is the result of an AND with an immediate
5415   // value that has its last 6 bits set, we can safely remove the AND operation.
5416   //
5417   // If the AND operation doesn't have the last 6 bits set, we can't remove it
5418   // entirely, but we can still truncate it to a 16-bit value. This prevents
5419   // us from ending up with a NILL with a signed operand, which will cause the
5420   // instruction printer to abort.
5421   SDValue N1 = N->getOperand(1);
5422   if (N1.getOpcode() == ISD::AND) {
5423     SDValue AndMaskOp = N1->getOperand(1);
5424     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
5425 
5426     // The AND mask is constant
5427     if (AndMask) {
5428       auto AmtVal = AndMask->getZExtValue();
5429 
5430       // Bottom 6 bits are set
5431       if ((AmtVal & 0x3f) == 0x3f) {
5432         SDValue AndOp = N1->getOperand(0);
5433 
5434         // This is the only use, so remove the node
5435         if (N1.hasOneUse()) {
5436           // Combine the AND away
5437           DCI.CombineTo(N1.getNode(), AndOp);
5438 
5439           // Return N so it isn't rechecked
5440           return SDValue(N, 0);
5441 
5442         // The node will be reused, so create a new node for this one use
5443         } else {
5444           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5445                                         N->getValueType(0), N->getOperand(0),
5446                                         AndOp);
5447           DCI.AddToWorklist(Replace.getNode());
5448 
5449           return Replace;
5450         }
5451 
5452       // We can't remove the AND, but we can use NILL here (normally we would
5453       // use NILF). Only keep the last 16 bits of the mask. The actual
5454       // transformation will be handled by .td definitions.
5455       } else if (AmtVal >> 16 != 0) {
5456         SDValue AndOp = N1->getOperand(0);
5457 
5458         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
5459                                        SDLoc(AndMaskOp),
5460                                        AndMaskOp.getValueType());
5461 
5462         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
5463                                   AndOp, NewMask);
5464 
5465         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5466                                       N->getValueType(0), N->getOperand(0),
5467                                       NewAnd);
5468         DCI.AddToWorklist(Replace.getNode());
5469 
5470         return Replace;
5471       }
5472     }
5473   }
5474 
5475   return SDValue();
5476 }
5477 
5478 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5479                                                  DAGCombinerInfo &DCI) const {
5480   switch(N->getOpcode()) {
5481   default: break;
5482   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5483   case SystemZISD::MERGE_HIGH:
5484   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5485   case ISD::STORE:              return combineSTORE(N, DCI);
5486   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5487   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5488   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5489   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5490   case ISD::SHL:
5491   case ISD::SRA:
5492   case ISD::SRL:
5493   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5494   }
5495 
5496   return SDValue();
5497 }
5498 
5499 //===----------------------------------------------------------------------===//
5500 // Custom insertion
5501 //===----------------------------------------------------------------------===//
5502 
5503 // Create a new basic block after MBB.
5504 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5505   MachineFunction &MF = *MBB->getParent();
5506   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5507   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5508   return NewMBB;
5509 }
5510 
5511 // Split MBB after MI and return the new block (the one that contains
5512 // instructions after MI).
5513 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5514                                           MachineBasicBlock *MBB) {
5515   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5516   NewMBB->splice(NewMBB->begin(), MBB,
5517                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5518   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5519   return NewMBB;
5520 }
5521 
5522 // Split MBB before MI and return the new block (the one that contains MI).
5523 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5524                                            MachineBasicBlock *MBB) {
5525   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5526   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5527   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5528   return NewMBB;
5529 }
5530 
5531 // Force base value Base into a register before MI.  Return the register.
5532 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5533                          const SystemZInstrInfo *TII) {
5534   if (Base.isReg())
5535     return Base.getReg();
5536 
5537   MachineBasicBlock *MBB = MI.getParent();
5538   MachineFunction &MF = *MBB->getParent();
5539   MachineRegisterInfo &MRI = MF.getRegInfo();
5540 
5541   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5542   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5543       .add(Base)
5544       .addImm(0)
5545       .addReg(0);
5546   return Reg;
5547 }
5548 
5549 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5550 MachineBasicBlock *
5551 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5552                                   MachineBasicBlock *MBB,
5553                                   unsigned LOCROpcode) const {
5554   const SystemZInstrInfo *TII =
5555       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5556 
5557   unsigned DestReg = MI.getOperand(0).getReg();
5558   unsigned TrueReg = MI.getOperand(1).getReg();
5559   unsigned FalseReg = MI.getOperand(2).getReg();
5560   unsigned CCValid = MI.getOperand(3).getImm();
5561   unsigned CCMask = MI.getOperand(4).getImm();
5562   DebugLoc DL = MI.getDebugLoc();
5563 
5564   // Use LOCROpcode if possible.
5565   if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) {
5566     BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg)
5567       .addReg(FalseReg).addReg(TrueReg)
5568       .addImm(CCValid).addImm(CCMask);
5569     MI.eraseFromParent();
5570     return MBB;
5571   }
5572 
5573   MachineBasicBlock *StartMBB = MBB;
5574   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5575   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5576 
5577   //  StartMBB:
5578   //   BRC CCMask, JoinMBB
5579   //   # fallthrough to FalseMBB
5580   MBB = StartMBB;
5581   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5582     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5583   MBB->addSuccessor(JoinMBB);
5584   MBB->addSuccessor(FalseMBB);
5585 
5586   //  FalseMBB:
5587   //   # fallthrough to JoinMBB
5588   MBB = FalseMBB;
5589   MBB->addSuccessor(JoinMBB);
5590 
5591   //  JoinMBB:
5592   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5593   //  ...
5594   MBB = JoinMBB;
5595   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5596     .addReg(TrueReg).addMBB(StartMBB)
5597     .addReg(FalseReg).addMBB(FalseMBB);
5598 
5599   MI.eraseFromParent();
5600   return JoinMBB;
5601 }
5602 
5603 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5604 // StoreOpcode is the store to use and Invert says whether the store should
5605 // happen when the condition is false rather than true.  If a STORE ON
5606 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
5607 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5608                                                         MachineBasicBlock *MBB,
5609                                                         unsigned StoreOpcode,
5610                                                         unsigned STOCOpcode,
5611                                                         bool Invert) const {
5612   const SystemZInstrInfo *TII =
5613       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5614 
5615   unsigned SrcReg = MI.getOperand(0).getReg();
5616   MachineOperand Base = MI.getOperand(1);
5617   int64_t Disp = MI.getOperand(2).getImm();
5618   unsigned IndexReg = MI.getOperand(3).getReg();
5619   unsigned CCValid = MI.getOperand(4).getImm();
5620   unsigned CCMask = MI.getOperand(5).getImm();
5621   DebugLoc DL = MI.getDebugLoc();
5622 
5623   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5624 
5625   // Use STOCOpcode if possible.  We could use different store patterns in
5626   // order to avoid matching the index register, but the performance trade-offs
5627   // might be more complicated in that case.
5628   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
5629     if (Invert)
5630       CCMask ^= CCValid;
5631 
5632     // ISel pattern matching also adds a load memory operand of the same
5633     // address, so take special care to find the storing memory operand.
5634     MachineMemOperand *MMO = nullptr;
5635     for (auto *I : MI.memoperands())
5636       if (I->isStore()) {
5637           MMO = I;
5638           break;
5639         }
5640 
5641     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
5642       .addReg(SrcReg)
5643       .add(Base)
5644       .addImm(Disp)
5645       .addImm(CCValid)
5646       .addImm(CCMask)
5647       .addMemOperand(MMO);
5648 
5649     MI.eraseFromParent();
5650     return MBB;
5651   }
5652 
5653   // Get the condition needed to branch around the store.
5654   if (!Invert)
5655     CCMask ^= CCValid;
5656 
5657   MachineBasicBlock *StartMBB = MBB;
5658   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5659   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5660 
5661   //  StartMBB:
5662   //   BRC CCMask, JoinMBB
5663   //   # fallthrough to FalseMBB
5664   MBB = StartMBB;
5665   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5666     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5667   MBB->addSuccessor(JoinMBB);
5668   MBB->addSuccessor(FalseMBB);
5669 
5670   //  FalseMBB:
5671   //   store %SrcReg, %Disp(%Index,%Base)
5672   //   # fallthrough to JoinMBB
5673   MBB = FalseMBB;
5674   BuildMI(MBB, DL, TII->get(StoreOpcode))
5675       .addReg(SrcReg)
5676       .add(Base)
5677       .addImm(Disp)
5678       .addReg(IndexReg);
5679   MBB->addSuccessor(JoinMBB);
5680 
5681   MI.eraseFromParent();
5682   return JoinMBB;
5683 }
5684 
5685 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5686 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
5687 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5688 // BitSize is the width of the field in bits, or 0 if this is a partword
5689 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5690 // is one of the operands.  Invert says whether the field should be
5691 // inverted after performing BinOpcode (e.g. for NAND).
5692 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5693     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5694     unsigned BitSize, bool Invert) const {
5695   MachineFunction &MF = *MBB->getParent();
5696   const SystemZInstrInfo *TII =
5697       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5698   MachineRegisterInfo &MRI = MF.getRegInfo();
5699   bool IsSubWord = (BitSize < 32);
5700 
5701   // Extract the operands.  Base can be a register or a frame index.
5702   // Src2 can be a register or immediate.
5703   unsigned Dest = MI.getOperand(0).getReg();
5704   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5705   int64_t Disp = MI.getOperand(2).getImm();
5706   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5707   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5708   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5709   DebugLoc DL = MI.getDebugLoc();
5710   if (IsSubWord)
5711     BitSize = MI.getOperand(6).getImm();
5712 
5713   // Subword operations use 32-bit registers.
5714   const TargetRegisterClass *RC = (BitSize <= 32 ?
5715                                    &SystemZ::GR32BitRegClass :
5716                                    &SystemZ::GR64BitRegClass);
5717   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5718   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5719 
5720   // Get the right opcodes for the displacement.
5721   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5722   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5723   assert(LOpcode && CSOpcode && "Displacement out of range");
5724 
5725   // Create virtual registers for temporary results.
5726   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5727   unsigned OldVal        = MRI.createVirtualRegister(RC);
5728   unsigned NewVal        = (BinOpcode || IsSubWord ?
5729                             MRI.createVirtualRegister(RC) : Src2.getReg());
5730   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5731   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5732 
5733   // Insert a basic block for the main loop.
5734   MachineBasicBlock *StartMBB = MBB;
5735   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5736   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5737 
5738   //  StartMBB:
5739   //   ...
5740   //   %OrigVal = L Disp(%Base)
5741   //   # fall through to LoopMMB
5742   MBB = StartMBB;
5743   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
5744   MBB->addSuccessor(LoopMBB);
5745 
5746   //  LoopMBB:
5747   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5748   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5749   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
5750   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5751   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5752   //   JNE LoopMBB
5753   //   # fall through to DoneMMB
5754   MBB = LoopMBB;
5755   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5756     .addReg(OrigVal).addMBB(StartMBB)
5757     .addReg(Dest).addMBB(LoopMBB);
5758   if (IsSubWord)
5759     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5760       .addReg(OldVal).addReg(BitShift).addImm(0);
5761   if (Invert) {
5762     // Perform the operation normally and then invert every bit of the field.
5763     unsigned Tmp = MRI.createVirtualRegister(RC);
5764     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
5765     if (BitSize <= 32)
5766       // XILF with the upper BitSize bits set.
5767       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5768         .addReg(Tmp).addImm(-1U << (32 - BitSize));
5769     else {
5770       // Use LCGR and add -1 to the result, which is more compact than
5771       // an XILF, XILH pair.
5772       unsigned Tmp2 = MRI.createVirtualRegister(RC);
5773       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5774       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5775         .addReg(Tmp2).addImm(-1);
5776     }
5777   } else if (BinOpcode)
5778     // A simply binary operation.
5779     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5780         .addReg(RotatedOldVal)
5781         .add(Src2);
5782   else if (IsSubWord)
5783     // Use RISBG to rotate Src2 into position and use it to replace the
5784     // field in RotatedOldVal.
5785     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5786       .addReg(RotatedOldVal).addReg(Src2.getReg())
5787       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5788   if (IsSubWord)
5789     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5790       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5791   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5792       .addReg(OldVal)
5793       .addReg(NewVal)
5794       .add(Base)
5795       .addImm(Disp);
5796   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5797     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5798   MBB->addSuccessor(LoopMBB);
5799   MBB->addSuccessor(DoneMBB);
5800 
5801   MI.eraseFromParent();
5802   return DoneMBB;
5803 }
5804 
5805 // Implement EmitInstrWithCustomInserter for pseudo
5806 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
5807 // instruction that should be used to compare the current field with the
5808 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
5809 // for when the current field should be kept.  BitSize is the width of
5810 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
5811 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5812     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5813     unsigned KeepOldMask, unsigned BitSize) const {
5814   MachineFunction &MF = *MBB->getParent();
5815   const SystemZInstrInfo *TII =
5816       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5817   MachineRegisterInfo &MRI = MF.getRegInfo();
5818   bool IsSubWord = (BitSize < 32);
5819 
5820   // Extract the operands.  Base can be a register or a frame index.
5821   unsigned Dest = MI.getOperand(0).getReg();
5822   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5823   int64_t Disp = MI.getOperand(2).getImm();
5824   unsigned Src2 = MI.getOperand(3).getReg();
5825   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5826   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5827   DebugLoc DL = MI.getDebugLoc();
5828   if (IsSubWord)
5829     BitSize = MI.getOperand(6).getImm();
5830 
5831   // Subword operations use 32-bit registers.
5832   const TargetRegisterClass *RC = (BitSize <= 32 ?
5833                                    &SystemZ::GR32BitRegClass :
5834                                    &SystemZ::GR64BitRegClass);
5835   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5836   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5837 
5838   // Get the right opcodes for the displacement.
5839   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5840   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5841   assert(LOpcode && CSOpcode && "Displacement out of range");
5842 
5843   // Create virtual registers for temporary results.
5844   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5845   unsigned OldVal        = MRI.createVirtualRegister(RC);
5846   unsigned NewVal        = MRI.createVirtualRegister(RC);
5847   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5848   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5849   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5850 
5851   // Insert 3 basic blocks for the loop.
5852   MachineBasicBlock *StartMBB  = MBB;
5853   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
5854   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
5855   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5856   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5857 
5858   //  StartMBB:
5859   //   ...
5860   //   %OrigVal     = L Disp(%Base)
5861   //   # fall through to LoopMMB
5862   MBB = StartMBB;
5863   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
5864   MBB->addSuccessor(LoopMBB);
5865 
5866   //  LoopMBB:
5867   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5868   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5869   //   CompareOpcode %RotatedOldVal, %Src2
5870   //   BRC KeepOldMask, UpdateMBB
5871   MBB = LoopMBB;
5872   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5873     .addReg(OrigVal).addMBB(StartMBB)
5874     .addReg(Dest).addMBB(UpdateMBB);
5875   if (IsSubWord)
5876     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5877       .addReg(OldVal).addReg(BitShift).addImm(0);
5878   BuildMI(MBB, DL, TII->get(CompareOpcode))
5879     .addReg(RotatedOldVal).addReg(Src2);
5880   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5881     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5882   MBB->addSuccessor(UpdateMBB);
5883   MBB->addSuccessor(UseAltMBB);
5884 
5885   //  UseAltMBB:
5886   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5887   //   # fall through to UpdateMMB
5888   MBB = UseAltMBB;
5889   if (IsSubWord)
5890     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5891       .addReg(RotatedOldVal).addReg(Src2)
5892       .addImm(32).addImm(31 + BitSize).addImm(0);
5893   MBB->addSuccessor(UpdateMBB);
5894 
5895   //  UpdateMBB:
5896   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5897   //                        [ %RotatedAltVal, UseAltMBB ]
5898   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5899   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5900   //   JNE LoopMBB
5901   //   # fall through to DoneMMB
5902   MBB = UpdateMBB;
5903   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5904     .addReg(RotatedOldVal).addMBB(LoopMBB)
5905     .addReg(RotatedAltVal).addMBB(UseAltMBB);
5906   if (IsSubWord)
5907     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5908       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5909   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5910       .addReg(OldVal)
5911       .addReg(NewVal)
5912       .add(Base)
5913       .addImm(Disp);
5914   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5915     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5916   MBB->addSuccessor(LoopMBB);
5917   MBB->addSuccessor(DoneMBB);
5918 
5919   MI.eraseFromParent();
5920   return DoneMBB;
5921 }
5922 
5923 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5924 // instruction MI.
5925 MachineBasicBlock *
5926 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
5927                                           MachineBasicBlock *MBB) const {
5928 
5929   MachineFunction &MF = *MBB->getParent();
5930   const SystemZInstrInfo *TII =
5931       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5932   MachineRegisterInfo &MRI = MF.getRegInfo();
5933 
5934   // Extract the operands.  Base can be a register or a frame index.
5935   unsigned Dest = MI.getOperand(0).getReg();
5936   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5937   int64_t Disp = MI.getOperand(2).getImm();
5938   unsigned OrigCmpVal = MI.getOperand(3).getReg();
5939   unsigned OrigSwapVal = MI.getOperand(4).getReg();
5940   unsigned BitShift = MI.getOperand(5).getReg();
5941   unsigned NegBitShift = MI.getOperand(6).getReg();
5942   int64_t BitSize = MI.getOperand(7).getImm();
5943   DebugLoc DL = MI.getDebugLoc();
5944 
5945   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5946 
5947   // Get the right opcodes for the displacement.
5948   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
5949   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5950   assert(LOpcode && CSOpcode && "Displacement out of range");
5951 
5952   // Create virtual registers for temporary results.
5953   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
5954   unsigned OldVal       = MRI.createVirtualRegister(RC);
5955   unsigned CmpVal       = MRI.createVirtualRegister(RC);
5956   unsigned SwapVal      = MRI.createVirtualRegister(RC);
5957   unsigned StoreVal     = MRI.createVirtualRegister(RC);
5958   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
5959   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
5960   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5961 
5962   // Insert 2 basic blocks for the loop.
5963   MachineBasicBlock *StartMBB = MBB;
5964   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5965   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5966   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
5967 
5968   //  StartMBB:
5969   //   ...
5970   //   %OrigOldVal     = L Disp(%Base)
5971   //   # fall through to LoopMMB
5972   MBB = StartMBB;
5973   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5974       .add(Base)
5975       .addImm(Disp)
5976       .addReg(0);
5977   MBB->addSuccessor(LoopMBB);
5978 
5979   //  LoopMBB:
5980   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5981   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5982   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5983   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
5984   //                      ^^ The low BitSize bits contain the field
5985   //                         of interest.
5986   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5987   //                      ^^ Replace the upper 32-BitSize bits of the
5988   //                         comparison value with those that we loaded,
5989   //                         so that we can use a full word comparison.
5990   //   CR %Dest, %RetryCmpVal
5991   //   JNE DoneMBB
5992   //   # Fall through to SetMBB
5993   MBB = LoopMBB;
5994   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5995     .addReg(OrigOldVal).addMBB(StartMBB)
5996     .addReg(RetryOldVal).addMBB(SetMBB);
5997   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5998     .addReg(OrigCmpVal).addMBB(StartMBB)
5999     .addReg(RetryCmpVal).addMBB(SetMBB);
6000   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6001     .addReg(OrigSwapVal).addMBB(StartMBB)
6002     .addReg(RetrySwapVal).addMBB(SetMBB);
6003   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6004     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6005   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6006     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6007   BuildMI(MBB, DL, TII->get(SystemZ::CR))
6008     .addReg(Dest).addReg(RetryCmpVal);
6009   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6010     .addImm(SystemZ::CCMASK_ICMP)
6011     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6012   MBB->addSuccessor(DoneMBB);
6013   MBB->addSuccessor(SetMBB);
6014 
6015   //  SetMBB:
6016   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6017   //                      ^^ Replace the upper 32-BitSize bits of the new
6018   //                         value with those that we loaded.
6019   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6020   //                      ^^ Rotate the new field to its proper position.
6021   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6022   //   JNE LoopMBB
6023   //   # fall through to ExitMMB
6024   MBB = SetMBB;
6025   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6026     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6027   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6028     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6029   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6030       .addReg(OldVal)
6031       .addReg(StoreVal)
6032       .add(Base)
6033       .addImm(Disp);
6034   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6035     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6036   MBB->addSuccessor(LoopMBB);
6037   MBB->addSuccessor(DoneMBB);
6038 
6039   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6040   // to the block after the loop.  At this point, CC may have been defined
6041   // either by the CR in LoopMBB or by the CS in SetMBB.
6042   if (!MI.registerDefIsDead(SystemZ::CC))
6043     DoneMBB->addLiveIn(SystemZ::CC);
6044 
6045   MI.eraseFromParent();
6046   return DoneMBB;
6047 }
6048 
6049 // Emit a move from two GR64s to a GR128.
6050 MachineBasicBlock *
6051 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6052                                    MachineBasicBlock *MBB) const {
6053   MachineFunction &MF = *MBB->getParent();
6054   const SystemZInstrInfo *TII =
6055       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6056   MachineRegisterInfo &MRI = MF.getRegInfo();
6057   DebugLoc DL = MI.getDebugLoc();
6058 
6059   unsigned Dest = MI.getOperand(0).getReg();
6060   unsigned Hi = MI.getOperand(1).getReg();
6061   unsigned Lo = MI.getOperand(2).getReg();
6062   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6063   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6064 
6065   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6066   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6067     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6068   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6069     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6070 
6071   MI.eraseFromParent();
6072   return MBB;
6073 }
6074 
6075 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6076 // if the high register of the GR128 value must be cleared or false if
6077 // it's "don't care".
6078 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6079                                                      MachineBasicBlock *MBB,
6080                                                      bool ClearEven) const {
6081   MachineFunction &MF = *MBB->getParent();
6082   const SystemZInstrInfo *TII =
6083       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6084   MachineRegisterInfo &MRI = MF.getRegInfo();
6085   DebugLoc DL = MI.getDebugLoc();
6086 
6087   unsigned Dest = MI.getOperand(0).getReg();
6088   unsigned Src = MI.getOperand(1).getReg();
6089   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6090 
6091   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6092   if (ClearEven) {
6093     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6094     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6095 
6096     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6097       .addImm(0);
6098     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6099       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6100     In128 = NewIn128;
6101   }
6102   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6103     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6104 
6105   MI.eraseFromParent();
6106   return MBB;
6107 }
6108 
6109 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6110     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6111   MachineFunction &MF = *MBB->getParent();
6112   const SystemZInstrInfo *TII =
6113       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6114   MachineRegisterInfo &MRI = MF.getRegInfo();
6115   DebugLoc DL = MI.getDebugLoc();
6116 
6117   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6118   uint64_t DestDisp = MI.getOperand(1).getImm();
6119   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6120   uint64_t SrcDisp = MI.getOperand(3).getImm();
6121   uint64_t Length = MI.getOperand(4).getImm();
6122 
6123   // When generating more than one CLC, all but the last will need to
6124   // branch to the end when a difference is found.
6125   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6126                                splitBlockAfter(MI, MBB) : nullptr);
6127 
6128   // Check for the loop form, in which operand 5 is the trip count.
6129   if (MI.getNumExplicitOperands() > 5) {
6130     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6131 
6132     uint64_t StartCountReg = MI.getOperand(5).getReg();
6133     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
6134     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
6135                               forceReg(MI, DestBase, TII));
6136 
6137     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6138     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
6139     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6140                             MRI.createVirtualRegister(RC));
6141     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
6142     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6143                             MRI.createVirtualRegister(RC));
6144 
6145     RC = &SystemZ::GR64BitRegClass;
6146     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6147     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6148 
6149     MachineBasicBlock *StartMBB = MBB;
6150     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6151     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6152     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6153 
6154     //  StartMBB:
6155     //   # fall through to LoopMMB
6156     MBB->addSuccessor(LoopMBB);
6157 
6158     //  LoopMBB:
6159     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6160     //                      [ %NextDestReg, NextMBB ]
6161     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6162     //                     [ %NextSrcReg, NextMBB ]
6163     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6164     //                       [ %NextCountReg, NextMBB ]
6165     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
6166     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6167     //   ( JLH EndMBB )
6168     //
6169     // The prefetch is used only for MVC.  The JLH is used only for CLC.
6170     MBB = LoopMBB;
6171 
6172     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6173       .addReg(StartDestReg).addMBB(StartMBB)
6174       .addReg(NextDestReg).addMBB(NextMBB);
6175     if (!HaveSingleBase)
6176       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6177         .addReg(StartSrcReg).addMBB(StartMBB)
6178         .addReg(NextSrcReg).addMBB(NextMBB);
6179     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6180       .addReg(StartCountReg).addMBB(StartMBB)
6181       .addReg(NextCountReg).addMBB(NextMBB);
6182     if (Opcode == SystemZ::MVC)
6183       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6184         .addImm(SystemZ::PFD_WRITE)
6185         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6186     BuildMI(MBB, DL, TII->get(Opcode))
6187       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6188       .addReg(ThisSrcReg).addImm(SrcDisp);
6189     if (EndMBB) {
6190       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6191         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6192         .addMBB(EndMBB);
6193       MBB->addSuccessor(EndMBB);
6194       MBB->addSuccessor(NextMBB);
6195     }
6196 
6197     // NextMBB:
6198     //   %NextDestReg = LA 256(%ThisDestReg)
6199     //   %NextSrcReg = LA 256(%ThisSrcReg)
6200     //   %NextCountReg = AGHI %ThisCountReg, -1
6201     //   CGHI %NextCountReg, 0
6202     //   JLH LoopMBB
6203     //   # fall through to DoneMMB
6204     //
6205     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6206     MBB = NextMBB;
6207 
6208     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6209       .addReg(ThisDestReg).addImm(256).addReg(0);
6210     if (!HaveSingleBase)
6211       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6212         .addReg(ThisSrcReg).addImm(256).addReg(0);
6213     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6214       .addReg(ThisCountReg).addImm(-1);
6215     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6216       .addReg(NextCountReg).addImm(0);
6217     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6218       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6219       .addMBB(LoopMBB);
6220     MBB->addSuccessor(LoopMBB);
6221     MBB->addSuccessor(DoneMBB);
6222 
6223     DestBase = MachineOperand::CreateReg(NextDestReg, false);
6224     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6225     Length &= 255;
6226     MBB = DoneMBB;
6227   }
6228   // Handle any remaining bytes with straight-line code.
6229   while (Length > 0) {
6230     uint64_t ThisLength = std::min(Length, uint64_t(256));
6231     // The previous iteration might have created out-of-range displacements.
6232     // Apply them using LAY if so.
6233     if (!isUInt<12>(DestDisp)) {
6234       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6235       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6236           .add(DestBase)
6237           .addImm(DestDisp)
6238           .addReg(0);
6239       DestBase = MachineOperand::CreateReg(Reg, false);
6240       DestDisp = 0;
6241     }
6242     if (!isUInt<12>(SrcDisp)) {
6243       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6244       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6245           .add(SrcBase)
6246           .addImm(SrcDisp)
6247           .addReg(0);
6248       SrcBase = MachineOperand::CreateReg(Reg, false);
6249       SrcDisp = 0;
6250     }
6251     BuildMI(*MBB, MI, DL, TII->get(Opcode))
6252         .add(DestBase)
6253         .addImm(DestDisp)
6254         .addImm(ThisLength)
6255         .add(SrcBase)
6256         .addImm(SrcDisp)
6257         ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
6258     DestDisp += ThisLength;
6259     SrcDisp += ThisLength;
6260     Length -= ThisLength;
6261     // If there's another CLC to go, branch to the end if a difference
6262     // was found.
6263     if (EndMBB && Length > 0) {
6264       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6265       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6266         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6267         .addMBB(EndMBB);
6268       MBB->addSuccessor(EndMBB);
6269       MBB->addSuccessor(NextMBB);
6270       MBB = NextMBB;
6271     }
6272   }
6273   if (EndMBB) {
6274     MBB->addSuccessor(EndMBB);
6275     MBB = EndMBB;
6276     MBB->addLiveIn(SystemZ::CC);
6277   }
6278 
6279   MI.eraseFromParent();
6280   return MBB;
6281 }
6282 
6283 // Decompose string pseudo-instruction MI into a loop that continually performs
6284 // Opcode until CC != 3.
6285 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
6286     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6287   MachineFunction &MF = *MBB->getParent();
6288   const SystemZInstrInfo *TII =
6289       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6290   MachineRegisterInfo &MRI = MF.getRegInfo();
6291   DebugLoc DL = MI.getDebugLoc();
6292 
6293   uint64_t End1Reg = MI.getOperand(0).getReg();
6294   uint64_t Start1Reg = MI.getOperand(1).getReg();
6295   uint64_t Start2Reg = MI.getOperand(2).getReg();
6296   uint64_t CharReg = MI.getOperand(3).getReg();
6297 
6298   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
6299   uint64_t This1Reg = MRI.createVirtualRegister(RC);
6300   uint64_t This2Reg = MRI.createVirtualRegister(RC);
6301   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
6302 
6303   MachineBasicBlock *StartMBB = MBB;
6304   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6305   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6306 
6307   //  StartMBB:
6308   //   # fall through to LoopMMB
6309   MBB->addSuccessor(LoopMBB);
6310 
6311   //  LoopMBB:
6312   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
6313   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
6314   //   R0L = %CharReg
6315   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
6316   //   JO LoopMBB
6317   //   # fall through to DoneMMB
6318   //
6319   // The load of R0L can be hoisted by post-RA LICM.
6320   MBB = LoopMBB;
6321 
6322   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
6323     .addReg(Start1Reg).addMBB(StartMBB)
6324     .addReg(End1Reg).addMBB(LoopMBB);
6325   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
6326     .addReg(Start2Reg).addMBB(StartMBB)
6327     .addReg(End2Reg).addMBB(LoopMBB);
6328   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
6329   BuildMI(MBB, DL, TII->get(Opcode))
6330     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
6331     .addReg(This1Reg).addReg(This2Reg);
6332   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6333     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
6334   MBB->addSuccessor(LoopMBB);
6335   MBB->addSuccessor(DoneMBB);
6336 
6337   DoneMBB->addLiveIn(SystemZ::CC);
6338 
6339   MI.eraseFromParent();
6340   return DoneMBB;
6341 }
6342 
6343 // Update TBEGIN instruction with final opcode and register clobbers.
6344 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
6345     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
6346     bool NoFloat) const {
6347   MachineFunction &MF = *MBB->getParent();
6348   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6349   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
6350 
6351   // Update opcode.
6352   MI.setDesc(TII->get(Opcode));
6353 
6354   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
6355   // Make sure to add the corresponding GRSM bits if they are missing.
6356   uint64_t Control = MI.getOperand(2).getImm();
6357   static const unsigned GPRControlBit[16] = {
6358     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
6359     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
6360   };
6361   Control |= GPRControlBit[15];
6362   if (TFI->hasFP(MF))
6363     Control |= GPRControlBit[11];
6364   MI.getOperand(2).setImm(Control);
6365 
6366   // Add GPR clobbers.
6367   for (int I = 0; I < 16; I++) {
6368     if ((Control & GPRControlBit[I]) == 0) {
6369       unsigned Reg = SystemZMC::GR64Regs[I];
6370       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6371     }
6372   }
6373 
6374   // Add FPR/VR clobbers.
6375   if (!NoFloat && (Control & 4) != 0) {
6376     if (Subtarget.hasVector()) {
6377       for (int I = 0; I < 32; I++) {
6378         unsigned Reg = SystemZMC::VR128Regs[I];
6379         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6380       }
6381     } else {
6382       for (int I = 0; I < 16; I++) {
6383         unsigned Reg = SystemZMC::FP64Regs[I];
6384         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6385       }
6386     }
6387   }
6388 
6389   return MBB;
6390 }
6391 
6392 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6393     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6394   MachineFunction &MF = *MBB->getParent();
6395   MachineRegisterInfo *MRI = &MF.getRegInfo();
6396   const SystemZInstrInfo *TII =
6397       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6398   DebugLoc DL = MI.getDebugLoc();
6399 
6400   unsigned SrcReg = MI.getOperand(0).getReg();
6401 
6402   // Create new virtual register of the same class as source.
6403   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
6404   unsigned DstReg = MRI->createVirtualRegister(RC);
6405 
6406   // Replace pseudo with a normal load-and-test that models the def as
6407   // well.
6408   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
6409     .addReg(SrcReg);
6410   MI.eraseFromParent();
6411 
6412   return MBB;
6413 }
6414 
6415 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
6416     MachineInstr &MI, MachineBasicBlock *MBB) const {
6417   switch (MI.getOpcode()) {
6418   case SystemZ::Select32Mux:
6419     return emitSelect(MI, MBB,
6420                       Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0);
6421   case SystemZ::Select32:
6422     return emitSelect(MI, MBB, SystemZ::LOCR);
6423   case SystemZ::Select64:
6424     return emitSelect(MI, MBB, SystemZ::LOCGR);
6425   case SystemZ::SelectF32:
6426   case SystemZ::SelectF64:
6427   case SystemZ::SelectF128:
6428   case SystemZ::SelectVR128:
6429     return emitSelect(MI, MBB, 0);
6430 
6431   case SystemZ::CondStore8Mux:
6432     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6433   case SystemZ::CondStore8MuxInv:
6434     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6435   case SystemZ::CondStore16Mux:
6436     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6437   case SystemZ::CondStore16MuxInv:
6438     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6439   case SystemZ::CondStore32Mux:
6440     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
6441   case SystemZ::CondStore32MuxInv:
6442     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
6443   case SystemZ::CondStore8:
6444     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6445   case SystemZ::CondStore8Inv:
6446     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6447   case SystemZ::CondStore16:
6448     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6449   case SystemZ::CondStore16Inv:
6450     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6451   case SystemZ::CondStore32:
6452     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6453   case SystemZ::CondStore32Inv:
6454     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6455   case SystemZ::CondStore64:
6456     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6457   case SystemZ::CondStore64Inv:
6458     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6459   case SystemZ::CondStoreF32:
6460     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6461   case SystemZ::CondStoreF32Inv:
6462     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6463   case SystemZ::CondStoreF64:
6464     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6465   case SystemZ::CondStoreF64Inv:
6466     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6467 
6468   case SystemZ::PAIR128:
6469     return emitPair128(MI, MBB);
6470   case SystemZ::AEXT128:
6471     return emitExt128(MI, MBB, false);
6472   case SystemZ::ZEXT128:
6473     return emitExt128(MI, MBB, true);
6474 
6475   case SystemZ::ATOMIC_SWAPW:
6476     return emitAtomicLoadBinary(MI, MBB, 0, 0);
6477   case SystemZ::ATOMIC_SWAP_32:
6478     return emitAtomicLoadBinary(MI, MBB, 0, 32);
6479   case SystemZ::ATOMIC_SWAP_64:
6480     return emitAtomicLoadBinary(MI, MBB, 0, 64);
6481 
6482   case SystemZ::ATOMIC_LOADW_AR:
6483     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6484   case SystemZ::ATOMIC_LOADW_AFI:
6485     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6486   case SystemZ::ATOMIC_LOAD_AR:
6487     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6488   case SystemZ::ATOMIC_LOAD_AHI:
6489     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6490   case SystemZ::ATOMIC_LOAD_AFI:
6491     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6492   case SystemZ::ATOMIC_LOAD_AGR:
6493     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6494   case SystemZ::ATOMIC_LOAD_AGHI:
6495     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6496   case SystemZ::ATOMIC_LOAD_AGFI:
6497     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6498 
6499   case SystemZ::ATOMIC_LOADW_SR:
6500     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6501   case SystemZ::ATOMIC_LOAD_SR:
6502     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6503   case SystemZ::ATOMIC_LOAD_SGR:
6504     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6505 
6506   case SystemZ::ATOMIC_LOADW_NR:
6507     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6508   case SystemZ::ATOMIC_LOADW_NILH:
6509     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6510   case SystemZ::ATOMIC_LOAD_NR:
6511     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6512   case SystemZ::ATOMIC_LOAD_NILL:
6513     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6514   case SystemZ::ATOMIC_LOAD_NILH:
6515     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6516   case SystemZ::ATOMIC_LOAD_NILF:
6517     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6518   case SystemZ::ATOMIC_LOAD_NGR:
6519     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6520   case SystemZ::ATOMIC_LOAD_NILL64:
6521     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6522   case SystemZ::ATOMIC_LOAD_NILH64:
6523     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6524   case SystemZ::ATOMIC_LOAD_NIHL64:
6525     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6526   case SystemZ::ATOMIC_LOAD_NIHH64:
6527     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6528   case SystemZ::ATOMIC_LOAD_NILF64:
6529     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6530   case SystemZ::ATOMIC_LOAD_NIHF64:
6531     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6532 
6533   case SystemZ::ATOMIC_LOADW_OR:
6534     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6535   case SystemZ::ATOMIC_LOADW_OILH:
6536     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6537   case SystemZ::ATOMIC_LOAD_OR:
6538     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6539   case SystemZ::ATOMIC_LOAD_OILL:
6540     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6541   case SystemZ::ATOMIC_LOAD_OILH:
6542     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6543   case SystemZ::ATOMIC_LOAD_OILF:
6544     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6545   case SystemZ::ATOMIC_LOAD_OGR:
6546     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6547   case SystemZ::ATOMIC_LOAD_OILL64:
6548     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6549   case SystemZ::ATOMIC_LOAD_OILH64:
6550     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6551   case SystemZ::ATOMIC_LOAD_OIHL64:
6552     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6553   case SystemZ::ATOMIC_LOAD_OIHH64:
6554     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6555   case SystemZ::ATOMIC_LOAD_OILF64:
6556     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6557   case SystemZ::ATOMIC_LOAD_OIHF64:
6558     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6559 
6560   case SystemZ::ATOMIC_LOADW_XR:
6561     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6562   case SystemZ::ATOMIC_LOADW_XILF:
6563     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6564   case SystemZ::ATOMIC_LOAD_XR:
6565     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6566   case SystemZ::ATOMIC_LOAD_XILF:
6567     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6568   case SystemZ::ATOMIC_LOAD_XGR:
6569     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6570   case SystemZ::ATOMIC_LOAD_XILF64:
6571     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6572   case SystemZ::ATOMIC_LOAD_XIHF64:
6573     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6574 
6575   case SystemZ::ATOMIC_LOADW_NRi:
6576     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6577   case SystemZ::ATOMIC_LOADW_NILHi:
6578     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6579   case SystemZ::ATOMIC_LOAD_NRi:
6580     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6581   case SystemZ::ATOMIC_LOAD_NILLi:
6582     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6583   case SystemZ::ATOMIC_LOAD_NILHi:
6584     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6585   case SystemZ::ATOMIC_LOAD_NILFi:
6586     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6587   case SystemZ::ATOMIC_LOAD_NGRi:
6588     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6589   case SystemZ::ATOMIC_LOAD_NILL64i:
6590     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6591   case SystemZ::ATOMIC_LOAD_NILH64i:
6592     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
6593   case SystemZ::ATOMIC_LOAD_NIHL64i:
6594     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6595   case SystemZ::ATOMIC_LOAD_NIHH64i:
6596     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
6597   case SystemZ::ATOMIC_LOAD_NILF64i:
6598     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
6599   case SystemZ::ATOMIC_LOAD_NIHF64i:
6600     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
6601 
6602   case SystemZ::ATOMIC_LOADW_MIN:
6603     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6604                                 SystemZ::CCMASK_CMP_LE, 0);
6605   case SystemZ::ATOMIC_LOAD_MIN_32:
6606     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6607                                 SystemZ::CCMASK_CMP_LE, 32);
6608   case SystemZ::ATOMIC_LOAD_MIN_64:
6609     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6610                                 SystemZ::CCMASK_CMP_LE, 64);
6611 
6612   case SystemZ::ATOMIC_LOADW_MAX:
6613     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6614                                 SystemZ::CCMASK_CMP_GE, 0);
6615   case SystemZ::ATOMIC_LOAD_MAX_32:
6616     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6617                                 SystemZ::CCMASK_CMP_GE, 32);
6618   case SystemZ::ATOMIC_LOAD_MAX_64:
6619     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6620                                 SystemZ::CCMASK_CMP_GE, 64);
6621 
6622   case SystemZ::ATOMIC_LOADW_UMIN:
6623     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6624                                 SystemZ::CCMASK_CMP_LE, 0);
6625   case SystemZ::ATOMIC_LOAD_UMIN_32:
6626     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6627                                 SystemZ::CCMASK_CMP_LE, 32);
6628   case SystemZ::ATOMIC_LOAD_UMIN_64:
6629     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6630                                 SystemZ::CCMASK_CMP_LE, 64);
6631 
6632   case SystemZ::ATOMIC_LOADW_UMAX:
6633     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6634                                 SystemZ::CCMASK_CMP_GE, 0);
6635   case SystemZ::ATOMIC_LOAD_UMAX_32:
6636     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6637                                 SystemZ::CCMASK_CMP_GE, 32);
6638   case SystemZ::ATOMIC_LOAD_UMAX_64:
6639     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6640                                 SystemZ::CCMASK_CMP_GE, 64);
6641 
6642   case SystemZ::ATOMIC_CMP_SWAPW:
6643     return emitAtomicCmpSwapW(MI, MBB);
6644   case SystemZ::MVCSequence:
6645   case SystemZ::MVCLoop:
6646     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
6647   case SystemZ::NCSequence:
6648   case SystemZ::NCLoop:
6649     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6650   case SystemZ::OCSequence:
6651   case SystemZ::OCLoop:
6652     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6653   case SystemZ::XCSequence:
6654   case SystemZ::XCLoop:
6655     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
6656   case SystemZ::CLCSequence:
6657   case SystemZ::CLCLoop:
6658     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
6659   case SystemZ::CLSTLoop:
6660     return emitStringWrapper(MI, MBB, SystemZ::CLST);
6661   case SystemZ::MVSTLoop:
6662     return emitStringWrapper(MI, MBB, SystemZ::MVST);
6663   case SystemZ::SRSTLoop:
6664     return emitStringWrapper(MI, MBB, SystemZ::SRST);
6665   case SystemZ::TBEGIN:
6666     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6667   case SystemZ::TBEGIN_nofloat:
6668     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6669   case SystemZ::TBEGINC:
6670     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
6671   case SystemZ::LTEBRCompare_VecPseudo:
6672     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6673   case SystemZ::LTDBRCompare_VecPseudo:
6674     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6675   case SystemZ::LTXBRCompare_VecPseudo:
6676     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6677 
6678   default:
6679     llvm_unreachable("Unexpected instr type to insert");
6680   }
6681 }
6682 
6683 // This is only used by the isel schedulers, and is needed only to prevent
6684 // compiler from crashing when list-ilp is used.
6685 const TargetRegisterClass *
6686 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
6687   if (VT == MVT::Untyped)
6688     return &SystemZ::ADDR128BitRegClass;
6689   return TargetLowering::getRepRegClassFor(VT);
6690 }
6691