1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include <cctype>
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "systemz-lower"
31 
32 namespace {
33 // Represents information about a comparison.
34 struct Comparison {
35   Comparison(SDValue Op0In, SDValue Op1In)
36     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
37 
38   // The operands to the comparison.
39   SDValue Op0, Op1;
40 
41   // The opcode that should be used to compare Op0 and Op1.
42   unsigned Opcode;
43 
44   // A SystemZICMP value.  Only used for integer comparisons.
45   unsigned ICmpType;
46 
47   // The mask of CC values that Opcode can produce.
48   unsigned CCValid;
49 
50   // The mask of CC values for which the original condition is true.
51   unsigned CCMask;
52 };
53 } // end anonymous namespace
54 
55 // Classify VT as either 32 or 64 bit.
56 static bool is32Bit(EVT VT) {
57   switch (VT.getSimpleVT().SimpleTy) {
58   case MVT::i32:
59     return true;
60   case MVT::i64:
61     return false;
62   default:
63     llvm_unreachable("Unsupported type");
64   }
65 }
66 
67 // Return a version of MachineOperand that can be safely used before the
68 // final use.
69 static MachineOperand earlyUseOperand(MachineOperand Op) {
70   if (Op.isReg())
71     Op.setIsKill(false);
72   return Op;
73 }
74 
75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
76                                              const SystemZSubtarget &STI)
77     : TargetLowering(TM), Subtarget(STI) {
78   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
79 
80   // Set up the register classes.
81   if (Subtarget.hasHighWord())
82     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
83   else
84     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
85   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
86   if (Subtarget.hasVector()) {
87     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
88     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
89   } else {
90     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
91     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
92   }
93   if (Subtarget.hasVectorEnhancements1())
94     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
95   else
96     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97 
98   if (Subtarget.hasVector()) {
99     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
100     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
105   }
106 
107   // Compute derived properties from the register classes
108   computeRegisterProperties(Subtarget.getRegisterInfo());
109 
110   // Set up special registers.
111   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
112 
113   // TODO: It may be better to default to latency-oriented scheduling, however
114   // LLVM's current latency-oriented scheduler can't handle physreg definitions
115   // such as SystemZ has with CC, so set this to the register-pressure
116   // scheduler, because it can.
117   setSchedulingPreference(Sched::RegPressure);
118 
119   setBooleanContents(ZeroOrOneBooleanContent);
120   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
121 
122   // Instructions are strings of 2-byte aligned 2-byte values.
123   setMinFunctionAlignment(Align(2));
124   // For performance reasons we prefer 16-byte alignment.
125   setPrefFunctionAlignment(Align(16));
126 
127   // Handle operations that are handled in a similar way for all types.
128   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
129        I <= MVT::LAST_FP_VALUETYPE;
130        ++I) {
131     MVT VT = MVT::SimpleValueType(I);
132     if (isTypeLegal(VT)) {
133       // Lower SET_CC into an IPM-based sequence.
134       setOperationAction(ISD::SETCC, VT, Custom);
135 
136       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
137       setOperationAction(ISD::SELECT, VT, Expand);
138 
139       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
140       setOperationAction(ISD::SELECT_CC, VT, Custom);
141       setOperationAction(ISD::BR_CC,     VT, Custom);
142     }
143   }
144 
145   // Expand jump table branches as address arithmetic followed by an
146   // indirect jump.
147   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
148 
149   // Expand BRCOND into a BR_CC (see above).
150   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
151 
152   // Handle integer types.
153   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
154        I <= MVT::LAST_INTEGER_VALUETYPE;
155        ++I) {
156     MVT VT = MVT::SimpleValueType(I);
157     if (isTypeLegal(VT)) {
158       // Expand individual DIV and REMs into DIVREMs.
159       setOperationAction(ISD::SDIV, VT, Expand);
160       setOperationAction(ISD::UDIV, VT, Expand);
161       setOperationAction(ISD::SREM, VT, Expand);
162       setOperationAction(ISD::UREM, VT, Expand);
163       setOperationAction(ISD::SDIVREM, VT, Custom);
164       setOperationAction(ISD::UDIVREM, VT, Custom);
165 
166       // Support addition/subtraction with overflow.
167       setOperationAction(ISD::SADDO, VT, Custom);
168       setOperationAction(ISD::SSUBO, VT, Custom);
169 
170       // Support addition/subtraction with carry.
171       setOperationAction(ISD::UADDO, VT, Custom);
172       setOperationAction(ISD::USUBO, VT, Custom);
173 
174       // Support carry in as value rather than glue.
175       setOperationAction(ISD::ADDCARRY, VT, Custom);
176       setOperationAction(ISD::SUBCARRY, VT, Custom);
177 
178       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
179       // stores, putting a serialization instruction after the stores.
180       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
181       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
182 
183       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
184       // available, or if the operand is constant.
185       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
186 
187       // Use POPCNT on z196 and above.
188       if (Subtarget.hasPopulationCount())
189         setOperationAction(ISD::CTPOP, VT, Custom);
190       else
191         setOperationAction(ISD::CTPOP, VT, Expand);
192 
193       // No special instructions for these.
194       setOperationAction(ISD::CTTZ,            VT, Expand);
195       setOperationAction(ISD::ROTR,            VT, Expand);
196 
197       // Use *MUL_LOHI where possible instead of MULH*.
198       setOperationAction(ISD::MULHS, VT, Expand);
199       setOperationAction(ISD::MULHU, VT, Expand);
200       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
201       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
202 
203       // Only z196 and above have native support for conversions to unsigned.
204       // On z10, promoting to i64 doesn't generate an inexact condition for
205       // values that are outside the i32 range but in the i64 range, so use
206       // the default expansion.
207       if (!Subtarget.hasFPExtension())
208         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
209 
210       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
211       // default to Expand, so need to be modified to Legal where appropriate.
212       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
213       if (Subtarget.hasFPExtension())
214         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
215     }
216   }
217 
218   // Type legalization will convert 8- and 16-bit atomic operations into
219   // forms that operate on i32s (but still keeping the original memory VT).
220   // Lower them into full i32 operations.
221   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
223   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
224   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
225   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
226   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
227   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
228   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
229   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
230   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
231   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
232 
233   // Even though i128 is not a legal type, we still need to custom lower
234   // the atomic operations in order to exploit SystemZ instructions.
235   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
236   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
237 
238   // We can use the CC result of compare-and-swap to implement
239   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
240   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
242   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
243 
244   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
245 
246   // Traps are legal, as we will convert them to "j .+2".
247   setOperationAction(ISD::TRAP, MVT::Other, Legal);
248 
249   // z10 has instructions for signed but not unsigned FP conversion.
250   // Handle unsigned 32-bit types as signed 64-bit types.
251   if (!Subtarget.hasFPExtension()) {
252     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
253     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
254   }
255 
256   // We have native support for a 64-bit CTLZ, via FLOGR.
257   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
258   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
259   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
260 
261   // On z15 we have native support for a 64-bit CTPOP.
262   if (Subtarget.hasMiscellaneousExtensions3()) {
263     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
264     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
265   }
266 
267   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
268   setOperationAction(ISD::OR, MVT::i64, Custom);
269 
270   // FIXME: Can we support these natively?
271   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
272   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
273   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
274 
275   // We have native instructions for i8, i16 and i32 extensions, but not i1.
276   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
277   for (MVT VT : MVT::integer_valuetypes()) {
278     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
279     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
280     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
281   }
282 
283   // Handle the various types of symbolic address.
284   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
285   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
286   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
287   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
288   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
289 
290   // We need to handle dynamic allocations specially because of the
291   // 160-byte area at the bottom of the stack.
292   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
293   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
294 
295   // Use custom expanders so that we can force the function to use
296   // a frame pointer.
297   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
298   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
299 
300   // Handle prefetches with PFD or PFDRL.
301   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
302 
303   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
304     // Assume by default that all vector operations need to be expanded.
305     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
306       if (getOperationAction(Opcode, VT) == Legal)
307         setOperationAction(Opcode, VT, Expand);
308 
309     // Likewise all truncating stores and extending loads.
310     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
311       setTruncStoreAction(VT, InnerVT, Expand);
312       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
313       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
314       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
315     }
316 
317     if (isTypeLegal(VT)) {
318       // These operations are legal for anything that can be stored in a
319       // vector register, even if there is no native support for the format
320       // as such.  In particular, we can do these for v4f32 even though there
321       // are no specific instructions for that format.
322       setOperationAction(ISD::LOAD, VT, Legal);
323       setOperationAction(ISD::STORE, VT, Legal);
324       setOperationAction(ISD::VSELECT, VT, Legal);
325       setOperationAction(ISD::BITCAST, VT, Legal);
326       setOperationAction(ISD::UNDEF, VT, Legal);
327 
328       // Likewise, except that we need to replace the nodes with something
329       // more specific.
330       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
331       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
332     }
333   }
334 
335   // Handle integer vector types.
336   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
337     if (isTypeLegal(VT)) {
338       // These operations have direct equivalents.
339       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
340       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
341       setOperationAction(ISD::ADD, VT, Legal);
342       setOperationAction(ISD::SUB, VT, Legal);
343       if (VT != MVT::v2i64)
344         setOperationAction(ISD::MUL, VT, Legal);
345       setOperationAction(ISD::AND, VT, Legal);
346       setOperationAction(ISD::OR, VT, Legal);
347       setOperationAction(ISD::XOR, VT, Legal);
348       if (Subtarget.hasVectorEnhancements1())
349         setOperationAction(ISD::CTPOP, VT, Legal);
350       else
351         setOperationAction(ISD::CTPOP, VT, Custom);
352       setOperationAction(ISD::CTTZ, VT, Legal);
353       setOperationAction(ISD::CTLZ, VT, Legal);
354 
355       // Convert a GPR scalar to a vector by inserting it into element 0.
356       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
357 
358       // Use a series of unpacks for extensions.
359       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
360       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
361 
362       // Detect shifts by a scalar amount and convert them into
363       // V*_BY_SCALAR.
364       setOperationAction(ISD::SHL, VT, Custom);
365       setOperationAction(ISD::SRA, VT, Custom);
366       setOperationAction(ISD::SRL, VT, Custom);
367 
368       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
369       // converted into ROTL.
370       setOperationAction(ISD::ROTL, VT, Expand);
371       setOperationAction(ISD::ROTR, VT, Expand);
372 
373       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
374       // and inverting the result as necessary.
375       setOperationAction(ISD::SETCC, VT, Custom);
376     }
377   }
378 
379   if (Subtarget.hasVector()) {
380     // There should be no need to check for float types other than v2f64
381     // since <2 x f32> isn't a legal type.
382     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
383     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
384     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
385     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
386     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
387     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
388     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
389     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
390 
391     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
392     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
393     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
394     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
395   }
396 
397   if (Subtarget.hasVectorEnhancements2()) {
398     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
399     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
400     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
401     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
402     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
403     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
404     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
405     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
406 
407     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
408     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
409     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
410     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
411   }
412 
413   // Handle floating-point types.
414   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
415        I <= MVT::LAST_FP_VALUETYPE;
416        ++I) {
417     MVT VT = MVT::SimpleValueType(I);
418     if (isTypeLegal(VT)) {
419       // We can use FI for FRINT.
420       setOperationAction(ISD::FRINT, VT, Legal);
421 
422       // We can use the extended form of FI for other rounding operations.
423       if (Subtarget.hasFPExtension()) {
424         setOperationAction(ISD::FNEARBYINT, VT, Legal);
425         setOperationAction(ISD::FFLOOR, VT, Legal);
426         setOperationAction(ISD::FCEIL, VT, Legal);
427         setOperationAction(ISD::FTRUNC, VT, Legal);
428         setOperationAction(ISD::FROUND, VT, Legal);
429       }
430 
431       // No special instructions for these.
432       setOperationAction(ISD::FSIN, VT, Expand);
433       setOperationAction(ISD::FCOS, VT, Expand);
434       setOperationAction(ISD::FSINCOS, VT, Expand);
435       setOperationAction(ISD::FREM, VT, Expand);
436       setOperationAction(ISD::FPOW, VT, Expand);
437 
438       // Handle constrained floating-point operations.
439       setOperationAction(ISD::STRICT_FADD, VT, Legal);
440       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
441       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
442       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
443       setOperationAction(ISD::STRICT_FMA, VT, Legal);
444       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
445       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
446       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
447       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
448       if (Subtarget.hasFPExtension()) {
449         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
450         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
451         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
452         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
453         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
454       }
455     }
456   }
457 
458   // Handle floating-point vector types.
459   if (Subtarget.hasVector()) {
460     // Scalar-to-vector conversion is just a subreg.
461     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
462     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
463 
464     // Some insertions and extractions can be done directly but others
465     // need to go via integers.
466     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
467     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
468     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
469     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
470 
471     // These operations have direct equivalents.
472     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
473     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
474     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
475     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
476     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
477     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
478     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
479     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
480     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
481     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
482     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
483     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
484     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
485     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
486 
487     // Handle constrained floating-point operations.
488     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
489     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
490     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
491     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
492     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
493     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
494     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
495     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
496     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
497     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
498     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
499     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
500   }
501 
502   // The vector enhancements facility 1 has instructions for these.
503   if (Subtarget.hasVectorEnhancements1()) {
504     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
505     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
506     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
507     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
508     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
509     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
510     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
511     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
512     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
513     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
514     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
515     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
516     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
517     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
518 
519     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
520     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
521     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
522     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
523 
524     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
525     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
526     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
527     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
528 
529     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
530     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
531     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
532     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
533 
534     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
536     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
537     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
538 
539     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
540     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
541     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
542     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
543 
544     // Handle constrained floating-point operations.
545     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
546     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
547     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
548     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
549     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
550     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
551     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
553     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
554     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
555     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
556     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
557     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
558                      MVT::v4f32, MVT::v2f64 }) {
559       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
560       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
561     }
562   }
563 
564   // We have fused multiply-addition for f32 and f64 but not f128.
565   setOperationAction(ISD::FMA, MVT::f32,  Legal);
566   setOperationAction(ISD::FMA, MVT::f64,  Legal);
567   if (Subtarget.hasVectorEnhancements1())
568     setOperationAction(ISD::FMA, MVT::f128, Legal);
569   else
570     setOperationAction(ISD::FMA, MVT::f128, Expand);
571 
572   // We don't have a copysign instruction on vector registers.
573   if (Subtarget.hasVectorEnhancements1())
574     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
575 
576   // Needed so that we don't try to implement f128 constant loads using
577   // a load-and-extend of a f80 constant (in cases where the constant
578   // would fit in an f80).
579   for (MVT VT : MVT::fp_valuetypes())
580     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
581 
582   // We don't have extending load instruction on vector registers.
583   if (Subtarget.hasVectorEnhancements1()) {
584     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
585     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
586   }
587 
588   // Floating-point truncation and stores need to be done separately.
589   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
590   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
591   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
592 
593   // We have 64-bit FPR<->GPR moves, but need special handling for
594   // 32-bit forms.
595   if (!Subtarget.hasVector()) {
596     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
597     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
598   }
599 
600   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
601   // structure, but VAEND is a no-op.
602   setOperationAction(ISD::VASTART, MVT::Other, Custom);
603   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
604   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
605 
606   // Codes for which we want to perform some z-specific combinations.
607   setTargetDAGCombine(ISD::ZERO_EXTEND);
608   setTargetDAGCombine(ISD::SIGN_EXTEND);
609   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
610   setTargetDAGCombine(ISD::LOAD);
611   setTargetDAGCombine(ISD::STORE);
612   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
613   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
614   setTargetDAGCombine(ISD::FP_ROUND);
615   setTargetDAGCombine(ISD::FP_EXTEND);
616   setTargetDAGCombine(ISD::BSWAP);
617   setTargetDAGCombine(ISD::SDIV);
618   setTargetDAGCombine(ISD::UDIV);
619   setTargetDAGCombine(ISD::SREM);
620   setTargetDAGCombine(ISD::UREM);
621 
622   // Handle intrinsics.
623   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
624   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
625 
626   // We want to use MVC in preference to even a single load/store pair.
627   MaxStoresPerMemcpy = 0;
628   MaxStoresPerMemcpyOptSize = 0;
629 
630   // The main memset sequence is a byte store followed by an MVC.
631   // Two STC or MV..I stores win over that, but the kind of fused stores
632   // generated by target-independent code don't when the byte value is
633   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
634   // than "STC;MVC".  Handle the choice in target-specific code instead.
635   MaxStoresPerMemset = 0;
636   MaxStoresPerMemsetOptSize = 0;
637 }
638 
639 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
640                                               LLVMContext &, EVT VT) const {
641   if (!VT.isVector())
642     return MVT::i32;
643   return VT.changeVectorElementTypeToInteger();
644 }
645 
646 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
647     const MachineFunction &MF, EVT VT) const {
648   VT = VT.getScalarType();
649 
650   if (!VT.isSimple())
651     return false;
652 
653   switch (VT.getSimpleVT().SimpleTy) {
654   case MVT::f32:
655   case MVT::f64:
656     return true;
657   case MVT::f128:
658     return Subtarget.hasVectorEnhancements1();
659   default:
660     break;
661   }
662 
663   return false;
664 }
665 
666 // Return true if the constant can be generated with a vector instruction,
667 // such as VGM, VGMB or VREPI.
668 bool SystemZVectorConstantInfo::isVectorConstantLegal(
669     const SystemZSubtarget &Subtarget) {
670   const SystemZInstrInfo *TII =
671       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
672   if (!Subtarget.hasVector() ||
673       (isFP128 && !Subtarget.hasVectorEnhancements1()))
674     return false;
675 
676   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
677   // preferred way of creating all-zero and all-one vectors so give it
678   // priority over other methods below.
679   unsigned Mask = 0;
680   unsigned I = 0;
681   for (; I < SystemZ::VectorBytes; ++I) {
682     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
683     if (Byte == 0xff)
684       Mask |= 1ULL << I;
685     else if (Byte != 0)
686       break;
687   }
688   if (I == SystemZ::VectorBytes) {
689     Opcode = SystemZISD::BYTE_MASK;
690     OpVals.push_back(Mask);
691     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
692     return true;
693   }
694 
695   if (SplatBitSize > 64)
696     return false;
697 
698   auto tryValue = [&](uint64_t Value) -> bool {
699     // Try VECTOR REPLICATE IMMEDIATE
700     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
701     if (isInt<16>(SignedValue)) {
702       OpVals.push_back(((unsigned) SignedValue));
703       Opcode = SystemZISD::REPLICATE;
704       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
705                                SystemZ::VectorBits / SplatBitSize);
706       return true;
707     }
708     // Try VECTOR GENERATE MASK
709     unsigned Start, End;
710     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
711       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
712       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
713       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
714       OpVals.push_back(Start - (64 - SplatBitSize));
715       OpVals.push_back(End - (64 - SplatBitSize));
716       Opcode = SystemZISD::ROTATE_MASK;
717       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
718                                SystemZ::VectorBits / SplatBitSize);
719       return true;
720     }
721     return false;
722   };
723 
724   // First try assuming that any undefined bits above the highest set bit
725   // and below the lowest set bit are 1s.  This increases the likelihood of
726   // being able to use a sign-extended element value in VECTOR REPLICATE
727   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
728   uint64_t SplatBitsZ = SplatBits.getZExtValue();
729   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
730   uint64_t Lower =
731       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
732   uint64_t Upper =
733       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
734   if (tryValue(SplatBitsZ | Upper | Lower))
735     return true;
736 
737   // Now try assuming that any undefined bits between the first and
738   // last defined set bits are set.  This increases the chances of
739   // using a non-wraparound mask.
740   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
741   return tryValue(SplatBitsZ | Middle);
742 }
743 
744 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
745   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
746   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
747 
748   // Find the smallest splat.
749   SplatBits = FPImm.bitcastToAPInt();
750   unsigned Width = SplatBits.getBitWidth();
751   while (Width > 8) {
752     unsigned HalfSize = Width / 2;
753     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
754     APInt LowValue = SplatBits.trunc(HalfSize);
755 
756     // If the two halves do not match, stop here.
757     if (HighValue != LowValue || 8 > HalfSize)
758       break;
759 
760     SplatBits = HighValue;
761     Width = HalfSize;
762   }
763   SplatUndef = 0;
764   SplatBitSize = Width;
765 }
766 
767 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
768   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
769   bool HasAnyUndefs;
770 
771   // Get IntBits by finding the 128 bit splat.
772   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
773                        true);
774 
775   // Get SplatBits by finding the 8 bit or greater splat.
776   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
777                        true);
778 }
779 
780 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
781                                          bool ForCodeSize) const {
782   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
783   if (Imm.isZero() || Imm.isNegZero())
784     return true;
785 
786   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
787 }
788 
789 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
790   // We can use CGFI or CLGFI.
791   return isInt<32>(Imm) || isUInt<32>(Imm);
792 }
793 
794 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
795   // We can use ALGFI or SLGFI.
796   return isUInt<32>(Imm) || isUInt<32>(-Imm);
797 }
798 
799 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
800     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
801   // Unaligned accesses should never be slower than the expanded version.
802   // We check specifically for aligned accesses in the few cases where
803   // they are required.
804   if (Fast)
805     *Fast = true;
806   return true;
807 }
808 
809 // Information about the addressing mode for a memory access.
810 struct AddressingMode {
811   // True if a long displacement is supported.
812   bool LongDisplacement;
813 
814   // True if use of index register is supported.
815   bool IndexReg;
816 
817   AddressingMode(bool LongDispl, bool IdxReg) :
818     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
819 };
820 
821 // Return the desired addressing mode for a Load which has only one use (in
822 // the same block) which is a Store.
823 static AddressingMode getLoadStoreAddrMode(bool HasVector,
824                                           Type *Ty) {
825   // With vector support a Load->Store combination may be combined to either
826   // an MVC or vector operations and it seems to work best to allow the
827   // vector addressing mode.
828   if (HasVector)
829     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
830 
831   // Otherwise only the MVC case is special.
832   bool MVC = Ty->isIntegerTy(8);
833   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
834 }
835 
836 // Return the addressing mode which seems most desirable given an LLVM
837 // Instruction pointer.
838 static AddressingMode
839 supportedAddressingMode(Instruction *I, bool HasVector) {
840   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
841     switch (II->getIntrinsicID()) {
842     default: break;
843     case Intrinsic::memset:
844     case Intrinsic::memmove:
845     case Intrinsic::memcpy:
846       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
847     }
848   }
849 
850   if (isa<LoadInst>(I) && I->hasOneUse()) {
851     auto *SingleUser = cast<Instruction>(*I->user_begin());
852     if (SingleUser->getParent() == I->getParent()) {
853       if (isa<ICmpInst>(SingleUser)) {
854         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
855           if (C->getBitWidth() <= 64 &&
856               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
857             // Comparison of memory with 16 bit signed / unsigned immediate
858             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
859       } else if (isa<StoreInst>(SingleUser))
860         // Load->Store
861         return getLoadStoreAddrMode(HasVector, I->getType());
862     }
863   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
864     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
865       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
866         // Load->Store
867         return getLoadStoreAddrMode(HasVector, LoadI->getType());
868   }
869 
870   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
871 
872     // * Use LDE instead of LE/LEY for z13 to avoid partial register
873     //   dependencies (LDE only supports small offsets).
874     // * Utilize the vector registers to hold floating point
875     //   values (vector load / store instructions only support small
876     //   offsets).
877 
878     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
879                          I->getOperand(0)->getType());
880     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
881     bool IsVectorAccess = MemAccessTy->isVectorTy();
882 
883     // A store of an extracted vector element will be combined into a VSTE type
884     // instruction.
885     if (!IsVectorAccess && isa<StoreInst>(I)) {
886       Value *DataOp = I->getOperand(0);
887       if (isa<ExtractElementInst>(DataOp))
888         IsVectorAccess = true;
889     }
890 
891     // A load which gets inserted into a vector element will be combined into a
892     // VLE type instruction.
893     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
894       User *LoadUser = *I->user_begin();
895       if (isa<InsertElementInst>(LoadUser))
896         IsVectorAccess = true;
897     }
898 
899     if (IsFPAccess || IsVectorAccess)
900       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
901   }
902 
903   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
904 }
905 
906 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
907        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
908   // Punt on globals for now, although they can be used in limited
909   // RELATIVE LONG cases.
910   if (AM.BaseGV)
911     return false;
912 
913   // Require a 20-bit signed offset.
914   if (!isInt<20>(AM.BaseOffs))
915     return false;
916 
917   AddressingMode SupportedAM(true, true);
918   if (I != nullptr)
919     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
920 
921   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
922     return false;
923 
924   if (!SupportedAM.IndexReg)
925     // No indexing allowed.
926     return AM.Scale == 0;
927   else
928     // Indexing is OK but no scale factor can be applied.
929     return AM.Scale == 0 || AM.Scale == 1;
930 }
931 
932 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
933   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
934     return false;
935   unsigned FromBits = FromType->getPrimitiveSizeInBits();
936   unsigned ToBits = ToType->getPrimitiveSizeInBits();
937   return FromBits > ToBits;
938 }
939 
940 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
941   if (!FromVT.isInteger() || !ToVT.isInteger())
942     return false;
943   unsigned FromBits = FromVT.getSizeInBits();
944   unsigned ToBits = ToVT.getSizeInBits();
945   return FromBits > ToBits;
946 }
947 
948 //===----------------------------------------------------------------------===//
949 // Inline asm support
950 //===----------------------------------------------------------------------===//
951 
952 TargetLowering::ConstraintType
953 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
954   if (Constraint.size() == 1) {
955     switch (Constraint[0]) {
956     case 'a': // Address register
957     case 'd': // Data register (equivalent to 'r')
958     case 'f': // Floating-point register
959     case 'h': // High-part register
960     case 'r': // General-purpose register
961     case 'v': // Vector register
962       return C_RegisterClass;
963 
964     case 'Q': // Memory with base and unsigned 12-bit displacement
965     case 'R': // Likewise, plus an index
966     case 'S': // Memory with base and signed 20-bit displacement
967     case 'T': // Likewise, plus an index
968     case 'm': // Equivalent to 'T'.
969       return C_Memory;
970 
971     case 'I': // Unsigned 8-bit constant
972     case 'J': // Unsigned 12-bit constant
973     case 'K': // Signed 16-bit constant
974     case 'L': // Signed 20-bit displacement (on all targets we support)
975     case 'M': // 0x7fffffff
976       return C_Immediate;
977 
978     default:
979       break;
980     }
981   }
982   return TargetLowering::getConstraintType(Constraint);
983 }
984 
985 TargetLowering::ConstraintWeight SystemZTargetLowering::
986 getSingleConstraintMatchWeight(AsmOperandInfo &info,
987                                const char *constraint) const {
988   ConstraintWeight weight = CW_Invalid;
989   Value *CallOperandVal = info.CallOperandVal;
990   // If we don't have a value, we can't do a match,
991   // but allow it at the lowest weight.
992   if (!CallOperandVal)
993     return CW_Default;
994   Type *type = CallOperandVal->getType();
995   // Look at the constraint type.
996   switch (*constraint) {
997   default:
998     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
999     break;
1000 
1001   case 'a': // Address register
1002   case 'd': // Data register (equivalent to 'r')
1003   case 'h': // High-part register
1004   case 'r': // General-purpose register
1005     if (CallOperandVal->getType()->isIntegerTy())
1006       weight = CW_Register;
1007     break;
1008 
1009   case 'f': // Floating-point register
1010     if (type->isFloatingPointTy())
1011       weight = CW_Register;
1012     break;
1013 
1014   case 'v': // Vector register
1015     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1016         Subtarget.hasVector())
1017       weight = CW_Register;
1018     break;
1019 
1020   case 'I': // Unsigned 8-bit constant
1021     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1022       if (isUInt<8>(C->getZExtValue()))
1023         weight = CW_Constant;
1024     break;
1025 
1026   case 'J': // Unsigned 12-bit constant
1027     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1028       if (isUInt<12>(C->getZExtValue()))
1029         weight = CW_Constant;
1030     break;
1031 
1032   case 'K': // Signed 16-bit constant
1033     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1034       if (isInt<16>(C->getSExtValue()))
1035         weight = CW_Constant;
1036     break;
1037 
1038   case 'L': // Signed 20-bit displacement (on all targets we support)
1039     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1040       if (isInt<20>(C->getSExtValue()))
1041         weight = CW_Constant;
1042     break;
1043 
1044   case 'M': // 0x7fffffff
1045     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1046       if (C->getZExtValue() == 0x7fffffff)
1047         weight = CW_Constant;
1048     break;
1049   }
1050   return weight;
1051 }
1052 
1053 // Parse a "{tNNN}" register constraint for which the register type "t"
1054 // has already been verified.  MC is the class associated with "t" and
1055 // Map maps 0-based register numbers to LLVM register numbers.
1056 static std::pair<unsigned, const TargetRegisterClass *>
1057 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1058                     const unsigned *Map, unsigned Size) {
1059   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1060   if (isdigit(Constraint[2])) {
1061     unsigned Index;
1062     bool Failed =
1063         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1064     if (!Failed && Index < Size && Map[Index])
1065       return std::make_pair(Map[Index], RC);
1066   }
1067   return std::make_pair(0U, nullptr);
1068 }
1069 
1070 std::pair<unsigned, const TargetRegisterClass *>
1071 SystemZTargetLowering::getRegForInlineAsmConstraint(
1072     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1073   if (Constraint.size() == 1) {
1074     // GCC Constraint Letters
1075     switch (Constraint[0]) {
1076     default: break;
1077     case 'd': // Data register (equivalent to 'r')
1078     case 'r': // General-purpose register
1079       if (VT == MVT::i64)
1080         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1081       else if (VT == MVT::i128)
1082         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1083       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1084 
1085     case 'a': // Address register
1086       if (VT == MVT::i64)
1087         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1088       else if (VT == MVT::i128)
1089         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1090       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1091 
1092     case 'h': // High-part register (an LLVM extension)
1093       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1094 
1095     case 'f': // Floating-point register
1096       if (VT == MVT::f64)
1097         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1098       else if (VT == MVT::f128)
1099         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1100       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1101 
1102     case 'v': // Vector register
1103       if (Subtarget.hasVector()) {
1104         if (VT == MVT::f32)
1105           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1106         if (VT == MVT::f64)
1107           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1108         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1109       }
1110       break;
1111     }
1112   }
1113   if (Constraint.size() > 0 && Constraint[0] == '{') {
1114     // We need to override the default register parsing for GPRs and FPRs
1115     // because the interpretation depends on VT.  The internal names of
1116     // the registers are also different from the external names
1117     // (F0D and F0S instead of F0, etc.).
1118     if (Constraint[1] == 'r') {
1119       if (VT == MVT::i32)
1120         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1121                                    SystemZMC::GR32Regs, 16);
1122       if (VT == MVT::i128)
1123         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1124                                    SystemZMC::GR128Regs, 16);
1125       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1126                                  SystemZMC::GR64Regs, 16);
1127     }
1128     if (Constraint[1] == 'f') {
1129       if (VT == MVT::f32)
1130         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1131                                    SystemZMC::FP32Regs, 16);
1132       if (VT == MVT::f128)
1133         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1134                                    SystemZMC::FP128Regs, 16);
1135       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1136                                  SystemZMC::FP64Regs, 16);
1137     }
1138     if (Constraint[1] == 'v') {
1139       if (VT == MVT::f32)
1140         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1141                                    SystemZMC::VR32Regs, 32);
1142       if (VT == MVT::f64)
1143         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1144                                    SystemZMC::VR64Regs, 32);
1145       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1146                                  SystemZMC::VR128Regs, 32);
1147     }
1148   }
1149   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1150 }
1151 
1152 void SystemZTargetLowering::
1153 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1154                              std::vector<SDValue> &Ops,
1155                              SelectionDAG &DAG) const {
1156   // Only support length 1 constraints for now.
1157   if (Constraint.length() == 1) {
1158     switch (Constraint[0]) {
1159     case 'I': // Unsigned 8-bit constant
1160       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1161         if (isUInt<8>(C->getZExtValue()))
1162           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1163                                               Op.getValueType()));
1164       return;
1165 
1166     case 'J': // Unsigned 12-bit constant
1167       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1168         if (isUInt<12>(C->getZExtValue()))
1169           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1170                                               Op.getValueType()));
1171       return;
1172 
1173     case 'K': // Signed 16-bit constant
1174       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1175         if (isInt<16>(C->getSExtValue()))
1176           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1177                                               Op.getValueType()));
1178       return;
1179 
1180     case 'L': // Signed 20-bit displacement (on all targets we support)
1181       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1182         if (isInt<20>(C->getSExtValue()))
1183           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1184                                               Op.getValueType()));
1185       return;
1186 
1187     case 'M': // 0x7fffffff
1188       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1189         if (C->getZExtValue() == 0x7fffffff)
1190           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1191                                               Op.getValueType()));
1192       return;
1193     }
1194   }
1195   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 // Calling conventions
1200 //===----------------------------------------------------------------------===//
1201 
1202 #include "SystemZGenCallingConv.inc"
1203 
1204 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1205   CallingConv::ID) const {
1206   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1207                                            SystemZ::R14D, 0 };
1208   return ScratchRegs;
1209 }
1210 
1211 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1212                                                      Type *ToType) const {
1213   return isTruncateFree(FromType, ToType);
1214 }
1215 
1216 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1217   return CI->isTailCall();
1218 }
1219 
1220 // We do not yet support 128-bit single-element vector types.  If the user
1221 // attempts to use such types as function argument or return type, prefer
1222 // to error out instead of emitting code violating the ABI.
1223 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1224   if (ArgVT.isVector() && !VT.isVector())
1225     report_fatal_error("Unsupported vector argument or return type");
1226 }
1227 
1228 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1229   for (unsigned i = 0; i < Ins.size(); ++i)
1230     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1231 }
1232 
1233 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1234   for (unsigned i = 0; i < Outs.size(); ++i)
1235     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1236 }
1237 
1238 // Value is a value that has been passed to us in the location described by VA
1239 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1240 // any loads onto Chain.
1241 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1242                                    CCValAssign &VA, SDValue Chain,
1243                                    SDValue Value) {
1244   // If the argument has been promoted from a smaller type, insert an
1245   // assertion to capture this.
1246   if (VA.getLocInfo() == CCValAssign::SExt)
1247     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1248                         DAG.getValueType(VA.getValVT()));
1249   else if (VA.getLocInfo() == CCValAssign::ZExt)
1250     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1251                         DAG.getValueType(VA.getValVT()));
1252 
1253   if (VA.isExtInLoc())
1254     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1255   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1256     // If this is a short vector argument loaded from the stack,
1257     // extend from i64 to full vector size and then bitcast.
1258     assert(VA.getLocVT() == MVT::i64);
1259     assert(VA.getValVT().isVector());
1260     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1261     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1262   } else
1263     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1264   return Value;
1265 }
1266 
1267 // Value is a value of type VA.getValVT() that we need to copy into
1268 // the location described by VA.  Return a copy of Value converted to
1269 // VA.getValVT().  The caller is responsible for handling indirect values.
1270 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1271                                    CCValAssign &VA, SDValue Value) {
1272   switch (VA.getLocInfo()) {
1273   case CCValAssign::SExt:
1274     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1275   case CCValAssign::ZExt:
1276     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1277   case CCValAssign::AExt:
1278     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1279   case CCValAssign::BCvt:
1280     // If this is a short vector argument to be stored to the stack,
1281     // bitcast to v2i64 and then extract first element.
1282     assert(VA.getLocVT() == MVT::i64);
1283     assert(VA.getValVT().isVector());
1284     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1285     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1286                        DAG.getConstant(0, DL, MVT::i32));
1287   case CCValAssign::Full:
1288     return Value;
1289   default:
1290     llvm_unreachable("Unhandled getLocInfo()");
1291   }
1292 }
1293 
1294 SDValue SystemZTargetLowering::LowerFormalArguments(
1295     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1296     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1297     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1298   MachineFunction &MF = DAG.getMachineFunction();
1299   MachineFrameInfo &MFI = MF.getFrameInfo();
1300   MachineRegisterInfo &MRI = MF.getRegInfo();
1301   SystemZMachineFunctionInfo *FuncInfo =
1302       MF.getInfo<SystemZMachineFunctionInfo>();
1303   auto *TFL =
1304       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1305   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1306 
1307   // Detect unsupported vector argument types.
1308   if (Subtarget.hasVector())
1309     VerifyVectorTypes(Ins);
1310 
1311   // Assign locations to all of the incoming arguments.
1312   SmallVector<CCValAssign, 16> ArgLocs;
1313   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1314   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1315 
1316   unsigned NumFixedGPRs = 0;
1317   unsigned NumFixedFPRs = 0;
1318   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1319     SDValue ArgValue;
1320     CCValAssign &VA = ArgLocs[I];
1321     EVT LocVT = VA.getLocVT();
1322     if (VA.isRegLoc()) {
1323       // Arguments passed in registers
1324       const TargetRegisterClass *RC;
1325       switch (LocVT.getSimpleVT().SimpleTy) {
1326       default:
1327         // Integers smaller than i64 should be promoted to i64.
1328         llvm_unreachable("Unexpected argument type");
1329       case MVT::i32:
1330         NumFixedGPRs += 1;
1331         RC = &SystemZ::GR32BitRegClass;
1332         break;
1333       case MVT::i64:
1334         NumFixedGPRs += 1;
1335         RC = &SystemZ::GR64BitRegClass;
1336         break;
1337       case MVT::f32:
1338         NumFixedFPRs += 1;
1339         RC = &SystemZ::FP32BitRegClass;
1340         break;
1341       case MVT::f64:
1342         NumFixedFPRs += 1;
1343         RC = &SystemZ::FP64BitRegClass;
1344         break;
1345       case MVT::v16i8:
1346       case MVT::v8i16:
1347       case MVT::v4i32:
1348       case MVT::v2i64:
1349       case MVT::v4f32:
1350       case MVT::v2f64:
1351         RC = &SystemZ::VR128BitRegClass;
1352         break;
1353       }
1354 
1355       Register VReg = MRI.createVirtualRegister(RC);
1356       MRI.addLiveIn(VA.getLocReg(), VReg);
1357       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1358     } else {
1359       assert(VA.isMemLoc() && "Argument not register or memory");
1360 
1361       // Create the frame index object for this incoming parameter.
1362       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1363                                      VA.getLocMemOffset(), true);
1364 
1365       // Create the SelectionDAG nodes corresponding to a load
1366       // from this parameter.  Unpromoted ints and floats are
1367       // passed as right-justified 8-byte values.
1368       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1369       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1370         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1371                           DAG.getIntPtrConstant(4, DL));
1372       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1373                              MachinePointerInfo::getFixedStack(MF, FI));
1374     }
1375 
1376     // Convert the value of the argument register into the value that's
1377     // being passed.
1378     if (VA.getLocInfo() == CCValAssign::Indirect) {
1379       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1380                                    MachinePointerInfo()));
1381       // If the original argument was split (e.g. i128), we need
1382       // to load all parts of it here (using the same address).
1383       unsigned ArgIndex = Ins[I].OrigArgIndex;
1384       assert (Ins[I].PartOffset == 0);
1385       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1386         CCValAssign &PartVA = ArgLocs[I + 1];
1387         unsigned PartOffset = Ins[I + 1].PartOffset;
1388         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1389                                       DAG.getIntPtrConstant(PartOffset, DL));
1390         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1391                                      MachinePointerInfo()));
1392         ++I;
1393       }
1394     } else
1395       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1396   }
1397 
1398   if (IsVarArg) {
1399     // Save the number of non-varargs registers for later use by va_start, etc.
1400     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1401     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1402 
1403     // Likewise the address (in the form of a frame index) of where the
1404     // first stack vararg would be.  The 1-byte size here is arbitrary.
1405     int64_t StackSize = CCInfo.getNextStackOffset();
1406     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1407 
1408     // ...and a similar frame index for the caller-allocated save area
1409     // that will be used to store the incoming registers.
1410     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1411     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1412     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1413 
1414     // Store the FPR varargs in the reserved frame slots.  (We store the
1415     // GPRs as part of the prologue.)
1416     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1417       SDValue MemOps[SystemZ::NumArgFPRs];
1418       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1419         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1420         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1421         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1422         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1423                                      &SystemZ::FP64BitRegClass);
1424         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1425         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1426                                  MachinePointerInfo::getFixedStack(MF, FI));
1427       }
1428       // Join the stores, which are independent of one another.
1429       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1430                           makeArrayRef(&MemOps[NumFixedFPRs],
1431                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1432     }
1433   }
1434 
1435   return Chain;
1436 }
1437 
1438 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1439                               SmallVectorImpl<CCValAssign> &ArgLocs,
1440                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1441   // Punt if there are any indirect or stack arguments, or if the call
1442   // needs the callee-saved argument register R6, or if the call uses
1443   // the callee-saved register arguments SwiftSelf and SwiftError.
1444   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1445     CCValAssign &VA = ArgLocs[I];
1446     if (VA.getLocInfo() == CCValAssign::Indirect)
1447       return false;
1448     if (!VA.isRegLoc())
1449       return false;
1450     Register Reg = VA.getLocReg();
1451     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1452       return false;
1453     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1454       return false;
1455   }
1456   return true;
1457 }
1458 
1459 SDValue
1460 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1461                                  SmallVectorImpl<SDValue> &InVals) const {
1462   SelectionDAG &DAG = CLI.DAG;
1463   SDLoc &DL = CLI.DL;
1464   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1465   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1466   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1467   SDValue Chain = CLI.Chain;
1468   SDValue Callee = CLI.Callee;
1469   bool &IsTailCall = CLI.IsTailCall;
1470   CallingConv::ID CallConv = CLI.CallConv;
1471   bool IsVarArg = CLI.IsVarArg;
1472   MachineFunction &MF = DAG.getMachineFunction();
1473   EVT PtrVT = getPointerTy(MF.getDataLayout());
1474 
1475   // Detect unsupported vector argument and return types.
1476   if (Subtarget.hasVector()) {
1477     VerifyVectorTypes(Outs);
1478     VerifyVectorTypes(Ins);
1479   }
1480 
1481   // Analyze the operands of the call, assigning locations to each operand.
1482   SmallVector<CCValAssign, 16> ArgLocs;
1483   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1484   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1485 
1486   // We don't support GuaranteedTailCallOpt, only automatically-detected
1487   // sibling calls.
1488   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1489     IsTailCall = false;
1490 
1491   // Get a count of how many bytes are to be pushed on the stack.
1492   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1493 
1494   // Mark the start of the call.
1495   if (!IsTailCall)
1496     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1497 
1498   // Copy argument values to their designated locations.
1499   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1500   SmallVector<SDValue, 8> MemOpChains;
1501   SDValue StackPtr;
1502   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1503     CCValAssign &VA = ArgLocs[I];
1504     SDValue ArgValue = OutVals[I];
1505 
1506     if (VA.getLocInfo() == CCValAssign::Indirect) {
1507       // Store the argument in a stack slot and pass its address.
1508       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1509       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1510       MemOpChains.push_back(
1511           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1512                        MachinePointerInfo::getFixedStack(MF, FI)));
1513       // If the original argument was split (e.g. i128), we need
1514       // to store all parts of it here (and pass just one address).
1515       unsigned ArgIndex = Outs[I].OrigArgIndex;
1516       assert (Outs[I].PartOffset == 0);
1517       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1518         SDValue PartValue = OutVals[I + 1];
1519         unsigned PartOffset = Outs[I + 1].PartOffset;
1520         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1521                                       DAG.getIntPtrConstant(PartOffset, DL));
1522         MemOpChains.push_back(
1523             DAG.getStore(Chain, DL, PartValue, Address,
1524                          MachinePointerInfo::getFixedStack(MF, FI)));
1525         ++I;
1526       }
1527       ArgValue = SpillSlot;
1528     } else
1529       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1530 
1531     if (VA.isRegLoc())
1532       // Queue up the argument copies and emit them at the end.
1533       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1534     else {
1535       assert(VA.isMemLoc() && "Argument not register or memory");
1536 
1537       // Work out the address of the stack slot.  Unpromoted ints and
1538       // floats are passed as right-justified 8-byte values.
1539       if (!StackPtr.getNode())
1540         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1541       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1542       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1543         Offset += 4;
1544       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1545                                     DAG.getIntPtrConstant(Offset, DL));
1546 
1547       // Emit the store.
1548       MemOpChains.push_back(
1549           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1550     }
1551   }
1552 
1553   // Join the stores, which are independent of one another.
1554   if (!MemOpChains.empty())
1555     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1556 
1557   // Accept direct calls by converting symbolic call addresses to the
1558   // associated Target* opcodes.  Force %r1 to be used for indirect
1559   // tail calls.
1560   SDValue Glue;
1561   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1562     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1563     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1564   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1565     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1566     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1567   } else if (IsTailCall) {
1568     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1569     Glue = Chain.getValue(1);
1570     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1571   }
1572 
1573   // Build a sequence of copy-to-reg nodes, chained and glued together.
1574   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1575     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1576                              RegsToPass[I].second, Glue);
1577     Glue = Chain.getValue(1);
1578   }
1579 
1580   // The first call operand is the chain and the second is the target address.
1581   SmallVector<SDValue, 8> Ops;
1582   Ops.push_back(Chain);
1583   Ops.push_back(Callee);
1584 
1585   // Add argument registers to the end of the list so that they are
1586   // known live into the call.
1587   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1588     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1589                                   RegsToPass[I].second.getValueType()));
1590 
1591   // Add a register mask operand representing the call-preserved registers.
1592   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1593   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1594   assert(Mask && "Missing call preserved mask for calling convention");
1595   Ops.push_back(DAG.getRegisterMask(Mask));
1596 
1597   // Glue the call to the argument copies, if any.
1598   if (Glue.getNode())
1599     Ops.push_back(Glue);
1600 
1601   // Emit the call.
1602   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1603   if (IsTailCall)
1604     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1605   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1606   Glue = Chain.getValue(1);
1607 
1608   // Mark the end of the call, which is glued to the call itself.
1609   Chain = DAG.getCALLSEQ_END(Chain,
1610                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1611                              DAG.getConstant(0, DL, PtrVT, true),
1612                              Glue, DL);
1613   Glue = Chain.getValue(1);
1614 
1615   // Assign locations to each value returned by this call.
1616   SmallVector<CCValAssign, 16> RetLocs;
1617   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1618   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1619 
1620   // Copy all of the result registers out of their specified physreg.
1621   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1622     CCValAssign &VA = RetLocs[I];
1623 
1624     // Copy the value out, gluing the copy to the end of the call sequence.
1625     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1626                                           VA.getLocVT(), Glue);
1627     Chain = RetValue.getValue(1);
1628     Glue = RetValue.getValue(2);
1629 
1630     // Convert the value of the return register into the value that's
1631     // being returned.
1632     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1633   }
1634 
1635   return Chain;
1636 }
1637 
1638 bool SystemZTargetLowering::
1639 CanLowerReturn(CallingConv::ID CallConv,
1640                MachineFunction &MF, bool isVarArg,
1641                const SmallVectorImpl<ISD::OutputArg> &Outs,
1642                LLVMContext &Context) const {
1643   // Detect unsupported vector return types.
1644   if (Subtarget.hasVector())
1645     VerifyVectorTypes(Outs);
1646 
1647   // Special case that we cannot easily detect in RetCC_SystemZ since
1648   // i128 is not a legal type.
1649   for (auto &Out : Outs)
1650     if (Out.ArgVT == MVT::i128)
1651       return false;
1652 
1653   SmallVector<CCValAssign, 16> RetLocs;
1654   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1655   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1656 }
1657 
1658 SDValue
1659 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1660                                    bool IsVarArg,
1661                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1662                                    const SmallVectorImpl<SDValue> &OutVals,
1663                                    const SDLoc &DL, SelectionDAG &DAG) const {
1664   MachineFunction &MF = DAG.getMachineFunction();
1665 
1666   // Detect unsupported vector return types.
1667   if (Subtarget.hasVector())
1668     VerifyVectorTypes(Outs);
1669 
1670   // Assign locations to each returned value.
1671   SmallVector<CCValAssign, 16> RetLocs;
1672   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1673   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1674 
1675   // Quick exit for void returns
1676   if (RetLocs.empty())
1677     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1678 
1679   if (CallConv == CallingConv::GHC)
1680     report_fatal_error("GHC functions return void only");
1681 
1682   // Copy the result values into the output registers.
1683   SDValue Glue;
1684   SmallVector<SDValue, 4> RetOps;
1685   RetOps.push_back(Chain);
1686   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1687     CCValAssign &VA = RetLocs[I];
1688     SDValue RetValue = OutVals[I];
1689 
1690     // Make the return register live on exit.
1691     assert(VA.isRegLoc() && "Can only return in registers!");
1692 
1693     // Promote the value as required.
1694     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1695 
1696     // Chain and glue the copies together.
1697     Register Reg = VA.getLocReg();
1698     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1699     Glue = Chain.getValue(1);
1700     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1701   }
1702 
1703   // Update chain and glue.
1704   RetOps[0] = Chain;
1705   if (Glue.getNode())
1706     RetOps.push_back(Glue);
1707 
1708   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1709 }
1710 
1711 // Return true if Op is an intrinsic node with chain that returns the CC value
1712 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1713 // the mask of valid CC values if so.
1714 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1715                                       unsigned &CCValid) {
1716   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1717   switch (Id) {
1718   case Intrinsic::s390_tbegin:
1719     Opcode = SystemZISD::TBEGIN;
1720     CCValid = SystemZ::CCMASK_TBEGIN;
1721     return true;
1722 
1723   case Intrinsic::s390_tbegin_nofloat:
1724     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1725     CCValid = SystemZ::CCMASK_TBEGIN;
1726     return true;
1727 
1728   case Intrinsic::s390_tend:
1729     Opcode = SystemZISD::TEND;
1730     CCValid = SystemZ::CCMASK_TEND;
1731     return true;
1732 
1733   default:
1734     return false;
1735   }
1736 }
1737 
1738 // Return true if Op is an intrinsic node without chain that returns the
1739 // CC value as its final argument.  Provide the associated SystemZISD
1740 // opcode and the mask of valid CC values if so.
1741 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1742   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1743   switch (Id) {
1744   case Intrinsic::s390_vpkshs:
1745   case Intrinsic::s390_vpksfs:
1746   case Intrinsic::s390_vpksgs:
1747     Opcode = SystemZISD::PACKS_CC;
1748     CCValid = SystemZ::CCMASK_VCMP;
1749     return true;
1750 
1751   case Intrinsic::s390_vpklshs:
1752   case Intrinsic::s390_vpklsfs:
1753   case Intrinsic::s390_vpklsgs:
1754     Opcode = SystemZISD::PACKLS_CC;
1755     CCValid = SystemZ::CCMASK_VCMP;
1756     return true;
1757 
1758   case Intrinsic::s390_vceqbs:
1759   case Intrinsic::s390_vceqhs:
1760   case Intrinsic::s390_vceqfs:
1761   case Intrinsic::s390_vceqgs:
1762     Opcode = SystemZISD::VICMPES;
1763     CCValid = SystemZ::CCMASK_VCMP;
1764     return true;
1765 
1766   case Intrinsic::s390_vchbs:
1767   case Intrinsic::s390_vchhs:
1768   case Intrinsic::s390_vchfs:
1769   case Intrinsic::s390_vchgs:
1770     Opcode = SystemZISD::VICMPHS;
1771     CCValid = SystemZ::CCMASK_VCMP;
1772     return true;
1773 
1774   case Intrinsic::s390_vchlbs:
1775   case Intrinsic::s390_vchlhs:
1776   case Intrinsic::s390_vchlfs:
1777   case Intrinsic::s390_vchlgs:
1778     Opcode = SystemZISD::VICMPHLS;
1779     CCValid = SystemZ::CCMASK_VCMP;
1780     return true;
1781 
1782   case Intrinsic::s390_vtm:
1783     Opcode = SystemZISD::VTM;
1784     CCValid = SystemZ::CCMASK_VCMP;
1785     return true;
1786 
1787   case Intrinsic::s390_vfaebs:
1788   case Intrinsic::s390_vfaehs:
1789   case Intrinsic::s390_vfaefs:
1790     Opcode = SystemZISD::VFAE_CC;
1791     CCValid = SystemZ::CCMASK_ANY;
1792     return true;
1793 
1794   case Intrinsic::s390_vfaezbs:
1795   case Intrinsic::s390_vfaezhs:
1796   case Intrinsic::s390_vfaezfs:
1797     Opcode = SystemZISD::VFAEZ_CC;
1798     CCValid = SystemZ::CCMASK_ANY;
1799     return true;
1800 
1801   case Intrinsic::s390_vfeebs:
1802   case Intrinsic::s390_vfeehs:
1803   case Intrinsic::s390_vfeefs:
1804     Opcode = SystemZISD::VFEE_CC;
1805     CCValid = SystemZ::CCMASK_ANY;
1806     return true;
1807 
1808   case Intrinsic::s390_vfeezbs:
1809   case Intrinsic::s390_vfeezhs:
1810   case Intrinsic::s390_vfeezfs:
1811     Opcode = SystemZISD::VFEEZ_CC;
1812     CCValid = SystemZ::CCMASK_ANY;
1813     return true;
1814 
1815   case Intrinsic::s390_vfenebs:
1816   case Intrinsic::s390_vfenehs:
1817   case Intrinsic::s390_vfenefs:
1818     Opcode = SystemZISD::VFENE_CC;
1819     CCValid = SystemZ::CCMASK_ANY;
1820     return true;
1821 
1822   case Intrinsic::s390_vfenezbs:
1823   case Intrinsic::s390_vfenezhs:
1824   case Intrinsic::s390_vfenezfs:
1825     Opcode = SystemZISD::VFENEZ_CC;
1826     CCValid = SystemZ::CCMASK_ANY;
1827     return true;
1828 
1829   case Intrinsic::s390_vistrbs:
1830   case Intrinsic::s390_vistrhs:
1831   case Intrinsic::s390_vistrfs:
1832     Opcode = SystemZISD::VISTR_CC;
1833     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1834     return true;
1835 
1836   case Intrinsic::s390_vstrcbs:
1837   case Intrinsic::s390_vstrchs:
1838   case Intrinsic::s390_vstrcfs:
1839     Opcode = SystemZISD::VSTRC_CC;
1840     CCValid = SystemZ::CCMASK_ANY;
1841     return true;
1842 
1843   case Intrinsic::s390_vstrczbs:
1844   case Intrinsic::s390_vstrczhs:
1845   case Intrinsic::s390_vstrczfs:
1846     Opcode = SystemZISD::VSTRCZ_CC;
1847     CCValid = SystemZ::CCMASK_ANY;
1848     return true;
1849 
1850   case Intrinsic::s390_vstrsb:
1851   case Intrinsic::s390_vstrsh:
1852   case Intrinsic::s390_vstrsf:
1853     Opcode = SystemZISD::VSTRS_CC;
1854     CCValid = SystemZ::CCMASK_ANY;
1855     return true;
1856 
1857   case Intrinsic::s390_vstrszb:
1858   case Intrinsic::s390_vstrszh:
1859   case Intrinsic::s390_vstrszf:
1860     Opcode = SystemZISD::VSTRSZ_CC;
1861     CCValid = SystemZ::CCMASK_ANY;
1862     return true;
1863 
1864   case Intrinsic::s390_vfcedbs:
1865   case Intrinsic::s390_vfcesbs:
1866     Opcode = SystemZISD::VFCMPES;
1867     CCValid = SystemZ::CCMASK_VCMP;
1868     return true;
1869 
1870   case Intrinsic::s390_vfchdbs:
1871   case Intrinsic::s390_vfchsbs:
1872     Opcode = SystemZISD::VFCMPHS;
1873     CCValid = SystemZ::CCMASK_VCMP;
1874     return true;
1875 
1876   case Intrinsic::s390_vfchedbs:
1877   case Intrinsic::s390_vfchesbs:
1878     Opcode = SystemZISD::VFCMPHES;
1879     CCValid = SystemZ::CCMASK_VCMP;
1880     return true;
1881 
1882   case Intrinsic::s390_vftcidb:
1883   case Intrinsic::s390_vftcisb:
1884     Opcode = SystemZISD::VFTCI;
1885     CCValid = SystemZ::CCMASK_VCMP;
1886     return true;
1887 
1888   case Intrinsic::s390_tdc:
1889     Opcode = SystemZISD::TDC;
1890     CCValid = SystemZ::CCMASK_TDC;
1891     return true;
1892 
1893   default:
1894     return false;
1895   }
1896 }
1897 
1898 // Emit an intrinsic with chain and an explicit CC register result.
1899 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1900                                            unsigned Opcode) {
1901   // Copy all operands except the intrinsic ID.
1902   unsigned NumOps = Op.getNumOperands();
1903   SmallVector<SDValue, 6> Ops;
1904   Ops.reserve(NumOps - 1);
1905   Ops.push_back(Op.getOperand(0));
1906   for (unsigned I = 2; I < NumOps; ++I)
1907     Ops.push_back(Op.getOperand(I));
1908 
1909   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1910   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1911   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1912   SDValue OldChain = SDValue(Op.getNode(), 1);
1913   SDValue NewChain = SDValue(Intr.getNode(), 1);
1914   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1915   return Intr.getNode();
1916 }
1917 
1918 // Emit an intrinsic with an explicit CC register result.
1919 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1920                                    unsigned Opcode) {
1921   // Copy all operands except the intrinsic ID.
1922   unsigned NumOps = Op.getNumOperands();
1923   SmallVector<SDValue, 6> Ops;
1924   Ops.reserve(NumOps - 1);
1925   for (unsigned I = 1; I < NumOps; ++I)
1926     Ops.push_back(Op.getOperand(I));
1927 
1928   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1929   return Intr.getNode();
1930 }
1931 
1932 // CC is a comparison that will be implemented using an integer or
1933 // floating-point comparison.  Return the condition code mask for
1934 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1935 // unsigned comparisons and clear for signed ones.  In the floating-point
1936 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1937 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1938 #define CONV(X) \
1939   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1940   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1941   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1942 
1943   switch (CC) {
1944   default:
1945     llvm_unreachable("Invalid integer condition!");
1946 
1947   CONV(EQ);
1948   CONV(NE);
1949   CONV(GT);
1950   CONV(GE);
1951   CONV(LT);
1952   CONV(LE);
1953 
1954   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1955   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1956   }
1957 #undef CONV
1958 }
1959 
1960 // If C can be converted to a comparison against zero, adjust the operands
1961 // as necessary.
1962 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1963   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1964     return;
1965 
1966   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1967   if (!ConstOp1)
1968     return;
1969 
1970   int64_t Value = ConstOp1->getSExtValue();
1971   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1972       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1973       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1974       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1975     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1976     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1977   }
1978 }
1979 
1980 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1981 // adjust the operands as necessary.
1982 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1983                              Comparison &C) {
1984   // For us to make any changes, it must a comparison between a single-use
1985   // load and a constant.
1986   if (!C.Op0.hasOneUse() ||
1987       C.Op0.getOpcode() != ISD::LOAD ||
1988       C.Op1.getOpcode() != ISD::Constant)
1989     return;
1990 
1991   // We must have an 8- or 16-bit load.
1992   auto *Load = cast<LoadSDNode>(C.Op0);
1993   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1994   if (NumBits != 8 && NumBits != 16)
1995     return;
1996 
1997   // The load must be an extending one and the constant must be within the
1998   // range of the unextended value.
1999   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2000   uint64_t Value = ConstOp1->getZExtValue();
2001   uint64_t Mask = (1 << NumBits) - 1;
2002   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2003     // Make sure that ConstOp1 is in range of C.Op0.
2004     int64_t SignedValue = ConstOp1->getSExtValue();
2005     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2006       return;
2007     if (C.ICmpType != SystemZICMP::SignedOnly) {
2008       // Unsigned comparison between two sign-extended values is equivalent
2009       // to unsigned comparison between two zero-extended values.
2010       Value &= Mask;
2011     } else if (NumBits == 8) {
2012       // Try to treat the comparison as unsigned, so that we can use CLI.
2013       // Adjust CCMask and Value as necessary.
2014       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2015         // Test whether the high bit of the byte is set.
2016         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2017       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2018         // Test whether the high bit of the byte is clear.
2019         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2020       else
2021         // No instruction exists for this combination.
2022         return;
2023       C.ICmpType = SystemZICMP::UnsignedOnly;
2024     }
2025   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2026     if (Value > Mask)
2027       return;
2028     // If the constant is in range, we can use any comparison.
2029     C.ICmpType = SystemZICMP::Any;
2030   } else
2031     return;
2032 
2033   // Make sure that the first operand is an i32 of the right extension type.
2034   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2035                               ISD::SEXTLOAD :
2036                               ISD::ZEXTLOAD);
2037   if (C.Op0.getValueType() != MVT::i32 ||
2038       Load->getExtensionType() != ExtType) {
2039     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2040                            Load->getBasePtr(), Load->getPointerInfo(),
2041                            Load->getMemoryVT(), Load->getAlignment(),
2042                            Load->getMemOperand()->getFlags());
2043     // Update the chain uses.
2044     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2045   }
2046 
2047   // Make sure that the second operand is an i32 with the right value.
2048   if (C.Op1.getValueType() != MVT::i32 ||
2049       Value != ConstOp1->getZExtValue())
2050     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2051 }
2052 
2053 // Return true if Op is either an unextended load, or a load suitable
2054 // for integer register-memory comparisons of type ICmpType.
2055 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2056   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2057   if (Load) {
2058     // There are no instructions to compare a register with a memory byte.
2059     if (Load->getMemoryVT() == MVT::i8)
2060       return false;
2061     // Otherwise decide on extension type.
2062     switch (Load->getExtensionType()) {
2063     case ISD::NON_EXTLOAD:
2064       return true;
2065     case ISD::SEXTLOAD:
2066       return ICmpType != SystemZICMP::UnsignedOnly;
2067     case ISD::ZEXTLOAD:
2068       return ICmpType != SystemZICMP::SignedOnly;
2069     default:
2070       break;
2071     }
2072   }
2073   return false;
2074 }
2075 
2076 // Return true if it is better to swap the operands of C.
2077 static bool shouldSwapCmpOperands(const Comparison &C) {
2078   // Leave f128 comparisons alone, since they have no memory forms.
2079   if (C.Op0.getValueType() == MVT::f128)
2080     return false;
2081 
2082   // Always keep a floating-point constant second, since comparisons with
2083   // zero can use LOAD TEST and comparisons with other constants make a
2084   // natural memory operand.
2085   if (isa<ConstantFPSDNode>(C.Op1))
2086     return false;
2087 
2088   // Never swap comparisons with zero since there are many ways to optimize
2089   // those later.
2090   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2091   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2092     return false;
2093 
2094   // Also keep natural memory operands second if the loaded value is
2095   // only used here.  Several comparisons have memory forms.
2096   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2097     return false;
2098 
2099   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2100   // In that case we generally prefer the memory to be second.
2101   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2102     // The only exceptions are when the second operand is a constant and
2103     // we can use things like CHHSI.
2104     if (!ConstOp1)
2105       return true;
2106     // The unsigned memory-immediate instructions can handle 16-bit
2107     // unsigned integers.
2108     if (C.ICmpType != SystemZICMP::SignedOnly &&
2109         isUInt<16>(ConstOp1->getZExtValue()))
2110       return false;
2111     // The signed memory-immediate instructions can handle 16-bit
2112     // signed integers.
2113     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2114         isInt<16>(ConstOp1->getSExtValue()))
2115       return false;
2116     return true;
2117   }
2118 
2119   // Try to promote the use of CGFR and CLGFR.
2120   unsigned Opcode0 = C.Op0.getOpcode();
2121   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2122     return true;
2123   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2124     return true;
2125   if (C.ICmpType != SystemZICMP::SignedOnly &&
2126       Opcode0 == ISD::AND &&
2127       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2128       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2129     return true;
2130 
2131   return false;
2132 }
2133 
2134 // Return a version of comparison CC mask CCMask in which the LT and GT
2135 // actions are swapped.
2136 static unsigned reverseCCMask(unsigned CCMask) {
2137   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2138           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2139           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2140           (CCMask & SystemZ::CCMASK_CMP_UO));
2141 }
2142 
2143 // Check whether C tests for equality between X and Y and whether X - Y
2144 // or Y - X is also computed.  In that case it's better to compare the
2145 // result of the subtraction against zero.
2146 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2147                                  Comparison &C) {
2148   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2149       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2150     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2151       SDNode *N = *I;
2152       if (N->getOpcode() == ISD::SUB &&
2153           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2154            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2155         C.Op0 = SDValue(N, 0);
2156         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2157         return;
2158       }
2159     }
2160   }
2161 }
2162 
2163 // Check whether C compares a floating-point value with zero and if that
2164 // floating-point value is also negated.  In this case we can use the
2165 // negation to set CC, so avoiding separate LOAD AND TEST and
2166 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2167 static void adjustForFNeg(Comparison &C) {
2168   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2169   if (C1 && C1->isZero()) {
2170     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2171       SDNode *N = *I;
2172       if (N->getOpcode() == ISD::FNEG) {
2173         C.Op0 = SDValue(N, 0);
2174         C.CCMask = reverseCCMask(C.CCMask);
2175         return;
2176       }
2177     }
2178   }
2179 }
2180 
2181 // Check whether C compares (shl X, 32) with 0 and whether X is
2182 // also sign-extended.  In that case it is better to test the result
2183 // of the sign extension using LTGFR.
2184 //
2185 // This case is important because InstCombine transforms a comparison
2186 // with (sext (trunc X)) into a comparison with (shl X, 32).
2187 static void adjustForLTGFR(Comparison &C) {
2188   // Check for a comparison between (shl X, 32) and 0.
2189   if (C.Op0.getOpcode() == ISD::SHL &&
2190       C.Op0.getValueType() == MVT::i64 &&
2191       C.Op1.getOpcode() == ISD::Constant &&
2192       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2193     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2194     if (C1 && C1->getZExtValue() == 32) {
2195       SDValue ShlOp0 = C.Op0.getOperand(0);
2196       // See whether X has any SIGN_EXTEND_INREG uses.
2197       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2198         SDNode *N = *I;
2199         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2200             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2201           C.Op0 = SDValue(N, 0);
2202           return;
2203         }
2204       }
2205     }
2206   }
2207 }
2208 
2209 // If C compares the truncation of an extending load, try to compare
2210 // the untruncated value instead.  This exposes more opportunities to
2211 // reuse CC.
2212 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2213                                Comparison &C) {
2214   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2215       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2216       C.Op1.getOpcode() == ISD::Constant &&
2217       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2218     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2219     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2220       unsigned Type = L->getExtensionType();
2221       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2222           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2223         C.Op0 = C.Op0.getOperand(0);
2224         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2225       }
2226     }
2227   }
2228 }
2229 
2230 // Return true if shift operation N has an in-range constant shift value.
2231 // Store it in ShiftVal if so.
2232 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2233   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2234   if (!Shift)
2235     return false;
2236 
2237   uint64_t Amount = Shift->getZExtValue();
2238   if (Amount >= N.getValueSizeInBits())
2239     return false;
2240 
2241   ShiftVal = Amount;
2242   return true;
2243 }
2244 
2245 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2246 // instruction and whether the CC value is descriptive enough to handle
2247 // a comparison of type Opcode between the AND result and CmpVal.
2248 // CCMask says which comparison result is being tested and BitSize is
2249 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2250 // return the corresponding CC mask, otherwise return 0.
2251 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2252                                      uint64_t Mask, uint64_t CmpVal,
2253                                      unsigned ICmpType) {
2254   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2255 
2256   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2257   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2258       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2259     return 0;
2260 
2261   // Work out the masks for the lowest and highest bits.
2262   unsigned HighShift = 63 - countLeadingZeros(Mask);
2263   uint64_t High = uint64_t(1) << HighShift;
2264   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2265 
2266   // Signed ordered comparisons are effectively unsigned if the sign
2267   // bit is dropped.
2268   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2269 
2270   // Check for equality comparisons with 0, or the equivalent.
2271   if (CmpVal == 0) {
2272     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2273       return SystemZ::CCMASK_TM_ALL_0;
2274     if (CCMask == SystemZ::CCMASK_CMP_NE)
2275       return SystemZ::CCMASK_TM_SOME_1;
2276   }
2277   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2278     if (CCMask == SystemZ::CCMASK_CMP_LT)
2279       return SystemZ::CCMASK_TM_ALL_0;
2280     if (CCMask == SystemZ::CCMASK_CMP_GE)
2281       return SystemZ::CCMASK_TM_SOME_1;
2282   }
2283   if (EffectivelyUnsigned && CmpVal < Low) {
2284     if (CCMask == SystemZ::CCMASK_CMP_LE)
2285       return SystemZ::CCMASK_TM_ALL_0;
2286     if (CCMask == SystemZ::CCMASK_CMP_GT)
2287       return SystemZ::CCMASK_TM_SOME_1;
2288   }
2289 
2290   // Check for equality comparisons with the mask, or the equivalent.
2291   if (CmpVal == Mask) {
2292     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2293       return SystemZ::CCMASK_TM_ALL_1;
2294     if (CCMask == SystemZ::CCMASK_CMP_NE)
2295       return SystemZ::CCMASK_TM_SOME_0;
2296   }
2297   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2298     if (CCMask == SystemZ::CCMASK_CMP_GT)
2299       return SystemZ::CCMASK_TM_ALL_1;
2300     if (CCMask == SystemZ::CCMASK_CMP_LE)
2301       return SystemZ::CCMASK_TM_SOME_0;
2302   }
2303   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2304     if (CCMask == SystemZ::CCMASK_CMP_GE)
2305       return SystemZ::CCMASK_TM_ALL_1;
2306     if (CCMask == SystemZ::CCMASK_CMP_LT)
2307       return SystemZ::CCMASK_TM_SOME_0;
2308   }
2309 
2310   // Check for ordered comparisons with the top bit.
2311   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2312     if (CCMask == SystemZ::CCMASK_CMP_LE)
2313       return SystemZ::CCMASK_TM_MSB_0;
2314     if (CCMask == SystemZ::CCMASK_CMP_GT)
2315       return SystemZ::CCMASK_TM_MSB_1;
2316   }
2317   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2318     if (CCMask == SystemZ::CCMASK_CMP_LT)
2319       return SystemZ::CCMASK_TM_MSB_0;
2320     if (CCMask == SystemZ::CCMASK_CMP_GE)
2321       return SystemZ::CCMASK_TM_MSB_1;
2322   }
2323 
2324   // If there are just two bits, we can do equality checks for Low and High
2325   // as well.
2326   if (Mask == Low + High) {
2327     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2328       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2329     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2330       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2331     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2332       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2333     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2334       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2335   }
2336 
2337   // Looks like we've exhausted our options.
2338   return 0;
2339 }
2340 
2341 // See whether C can be implemented as a TEST UNDER MASK instruction.
2342 // Update the arguments with the TM version if so.
2343 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2344                                    Comparison &C) {
2345   // Check that we have a comparison with a constant.
2346   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2347   if (!ConstOp1)
2348     return;
2349   uint64_t CmpVal = ConstOp1->getZExtValue();
2350 
2351   // Check whether the nonconstant input is an AND with a constant mask.
2352   Comparison NewC(C);
2353   uint64_t MaskVal;
2354   ConstantSDNode *Mask = nullptr;
2355   if (C.Op0.getOpcode() == ISD::AND) {
2356     NewC.Op0 = C.Op0.getOperand(0);
2357     NewC.Op1 = C.Op0.getOperand(1);
2358     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2359     if (!Mask)
2360       return;
2361     MaskVal = Mask->getZExtValue();
2362   } else {
2363     // There is no instruction to compare with a 64-bit immediate
2364     // so use TMHH instead if possible.  We need an unsigned ordered
2365     // comparison with an i64 immediate.
2366     if (NewC.Op0.getValueType() != MVT::i64 ||
2367         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2368         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2369         NewC.ICmpType == SystemZICMP::SignedOnly)
2370       return;
2371     // Convert LE and GT comparisons into LT and GE.
2372     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2373         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2374       if (CmpVal == uint64_t(-1))
2375         return;
2376       CmpVal += 1;
2377       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2378     }
2379     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2380     // be masked off without changing the result.
2381     MaskVal = -(CmpVal & -CmpVal);
2382     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2383   }
2384   if (!MaskVal)
2385     return;
2386 
2387   // Check whether the combination of mask, comparison value and comparison
2388   // type are suitable.
2389   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2390   unsigned NewCCMask, ShiftVal;
2391   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2392       NewC.Op0.getOpcode() == ISD::SHL &&
2393       isSimpleShift(NewC.Op0, ShiftVal) &&
2394       (MaskVal >> ShiftVal != 0) &&
2395       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2396       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2397                                         MaskVal >> ShiftVal,
2398                                         CmpVal >> ShiftVal,
2399                                         SystemZICMP::Any))) {
2400     NewC.Op0 = NewC.Op0.getOperand(0);
2401     MaskVal >>= ShiftVal;
2402   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2403              NewC.Op0.getOpcode() == ISD::SRL &&
2404              isSimpleShift(NewC.Op0, ShiftVal) &&
2405              (MaskVal << ShiftVal != 0) &&
2406              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2407              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2408                                                MaskVal << ShiftVal,
2409                                                CmpVal << ShiftVal,
2410                                                SystemZICMP::UnsignedOnly))) {
2411     NewC.Op0 = NewC.Op0.getOperand(0);
2412     MaskVal <<= ShiftVal;
2413   } else {
2414     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2415                                      NewC.ICmpType);
2416     if (!NewCCMask)
2417       return;
2418   }
2419 
2420   // Go ahead and make the change.
2421   C.Opcode = SystemZISD::TM;
2422   C.Op0 = NewC.Op0;
2423   if (Mask && Mask->getZExtValue() == MaskVal)
2424     C.Op1 = SDValue(Mask, 0);
2425   else
2426     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2427   C.CCValid = SystemZ::CCMASK_TM;
2428   C.CCMask = NewCCMask;
2429 }
2430 
2431 // See whether the comparison argument contains a redundant AND
2432 // and remove it if so.  This sometimes happens due to the generic
2433 // BRCOND expansion.
2434 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2435                                   Comparison &C) {
2436   if (C.Op0.getOpcode() != ISD::AND)
2437     return;
2438   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2439   if (!Mask)
2440     return;
2441   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2442   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2443     return;
2444 
2445   C.Op0 = C.Op0.getOperand(0);
2446 }
2447 
2448 // Return a Comparison that tests the condition-code result of intrinsic
2449 // node Call against constant integer CC using comparison code Cond.
2450 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2451 // and CCValid is the set of possible condition-code results.
2452 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2453                                   SDValue Call, unsigned CCValid, uint64_t CC,
2454                                   ISD::CondCode Cond) {
2455   Comparison C(Call, SDValue());
2456   C.Opcode = Opcode;
2457   C.CCValid = CCValid;
2458   if (Cond == ISD::SETEQ)
2459     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2460     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2461   else if (Cond == ISD::SETNE)
2462     // ...and the inverse of that.
2463     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2464   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2465     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2466     // always true for CC>3.
2467     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2468   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2469     // ...and the inverse of that.
2470     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2471   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2472     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2473     // always true for CC>3.
2474     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2475   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2476     // ...and the inverse of that.
2477     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2478   else
2479     llvm_unreachable("Unexpected integer comparison type");
2480   C.CCMask &= CCValid;
2481   return C;
2482 }
2483 
2484 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2485 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2486                          ISD::CondCode Cond, const SDLoc &DL) {
2487   if (CmpOp1.getOpcode() == ISD::Constant) {
2488     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2489     unsigned Opcode, CCValid;
2490     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2491         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2492         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2493       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2494     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2495         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2496         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2497       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2498   }
2499   Comparison C(CmpOp0, CmpOp1);
2500   C.CCMask = CCMaskForCondCode(Cond);
2501   if (C.Op0.getValueType().isFloatingPoint()) {
2502     C.CCValid = SystemZ::CCMASK_FCMP;
2503     C.Opcode = SystemZISD::FCMP;
2504     adjustForFNeg(C);
2505   } else {
2506     C.CCValid = SystemZ::CCMASK_ICMP;
2507     C.Opcode = SystemZISD::ICMP;
2508     // Choose the type of comparison.  Equality and inequality tests can
2509     // use either signed or unsigned comparisons.  The choice also doesn't
2510     // matter if both sign bits are known to be clear.  In those cases we
2511     // want to give the main isel code the freedom to choose whichever
2512     // form fits best.
2513     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2514         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2515         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2516       C.ICmpType = SystemZICMP::Any;
2517     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2518       C.ICmpType = SystemZICMP::UnsignedOnly;
2519     else
2520       C.ICmpType = SystemZICMP::SignedOnly;
2521     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2522     adjustForRedundantAnd(DAG, DL, C);
2523     adjustZeroCmp(DAG, DL, C);
2524     adjustSubwordCmp(DAG, DL, C);
2525     adjustForSubtraction(DAG, DL, C);
2526     adjustForLTGFR(C);
2527     adjustICmpTruncate(DAG, DL, C);
2528   }
2529 
2530   if (shouldSwapCmpOperands(C)) {
2531     std::swap(C.Op0, C.Op1);
2532     C.CCMask = reverseCCMask(C.CCMask);
2533   }
2534 
2535   adjustForTestUnderMask(DAG, DL, C);
2536   return C;
2537 }
2538 
2539 // Emit the comparison instruction described by C.
2540 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2541   if (!C.Op1.getNode()) {
2542     SDNode *Node;
2543     switch (C.Op0.getOpcode()) {
2544     case ISD::INTRINSIC_W_CHAIN:
2545       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2546       return SDValue(Node, 0);
2547     case ISD::INTRINSIC_WO_CHAIN:
2548       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2549       return SDValue(Node, Node->getNumValues() - 1);
2550     default:
2551       llvm_unreachable("Invalid comparison operands");
2552     }
2553   }
2554   if (C.Opcode == SystemZISD::ICMP)
2555     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2556                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2557   if (C.Opcode == SystemZISD::TM) {
2558     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2559                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2560     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2561                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2562   }
2563   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2564 }
2565 
2566 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2567 // 64 bits.  Extend is the extension type to use.  Store the high part
2568 // in Hi and the low part in Lo.
2569 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2570                             SDValue Op0, SDValue Op1, SDValue &Hi,
2571                             SDValue &Lo) {
2572   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2573   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2574   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2575   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2576                    DAG.getConstant(32, DL, MVT::i64));
2577   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2578   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2579 }
2580 
2581 // Lower a binary operation that produces two VT results, one in each
2582 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2583 // and Opcode performs the GR128 operation.  Store the even register result
2584 // in Even and the odd register result in Odd.
2585 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2586                              unsigned Opcode, SDValue Op0, SDValue Op1,
2587                              SDValue &Even, SDValue &Odd) {
2588   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2589   bool Is32Bit = is32Bit(VT);
2590   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2591   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2592 }
2593 
2594 // Return an i32 value that is 1 if the CC value produced by CCReg is
2595 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2596 // in CCValid, so other values can be ignored.
2597 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2598                          unsigned CCValid, unsigned CCMask) {
2599   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2600                    DAG.getConstant(0, DL, MVT::i32),
2601                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2602                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2603   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2604 }
2605 
2606 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2607 // be done directly.  IsFP is true if CC is for a floating-point rather than
2608 // integer comparison.
2609 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2610   switch (CC) {
2611   case ISD::SETOEQ:
2612   case ISD::SETEQ:
2613     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2614 
2615   case ISD::SETOGE:
2616   case ISD::SETGE:
2617     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2618 
2619   case ISD::SETOGT:
2620   case ISD::SETGT:
2621     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2622 
2623   case ISD::SETUGT:
2624     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2625 
2626   default:
2627     return 0;
2628   }
2629 }
2630 
2631 // Return the SystemZISD vector comparison operation for CC or its inverse,
2632 // or 0 if neither can be done directly.  Indicate in Invert whether the
2633 // result is for the inverse of CC.  IsFP is true if CC is for a
2634 // floating-point rather than integer comparison.
2635 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2636                                             bool &Invert) {
2637   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2638     Invert = false;
2639     return Opcode;
2640   }
2641 
2642   CC = ISD::getSetCCInverse(CC, !IsFP);
2643   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2644     Invert = true;
2645     return Opcode;
2646   }
2647 
2648   return 0;
2649 }
2650 
2651 // Return a v2f64 that contains the extended form of elements Start and Start+1
2652 // of v4f32 value Op.
2653 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2654                                   SDValue Op) {
2655   int Mask[] = { Start, -1, Start + 1, -1 };
2656   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2657   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2658 }
2659 
2660 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2661 // producing a result of type VT.
2662 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2663                                             const SDLoc &DL, EVT VT,
2664                                             SDValue CmpOp0,
2665                                             SDValue CmpOp1) const {
2666   // There is no hardware support for v4f32 (unless we have the vector
2667   // enhancements facility 1), so extend the vector into two v2f64s
2668   // and compare those.
2669   if (CmpOp0.getValueType() == MVT::v4f32 &&
2670       !Subtarget.hasVectorEnhancements1()) {
2671     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2672     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2673     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2674     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2675     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2676     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2677     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2678   }
2679   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2680 }
2681 
2682 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2683 // an integer mask of type VT.
2684 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2685                                                 const SDLoc &DL, EVT VT,
2686                                                 ISD::CondCode CC,
2687                                                 SDValue CmpOp0,
2688                                                 SDValue CmpOp1) const {
2689   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2690   bool Invert = false;
2691   SDValue Cmp;
2692   switch (CC) {
2693     // Handle tests for order using (or (ogt y x) (oge x y)).
2694   case ISD::SETUO:
2695     Invert = true;
2696     LLVM_FALLTHROUGH;
2697   case ISD::SETO: {
2698     assert(IsFP && "Unexpected integer comparison");
2699     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2700     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2701     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2702     break;
2703   }
2704 
2705     // Handle <> tests using (or (ogt y x) (ogt x y)).
2706   case ISD::SETUEQ:
2707     Invert = true;
2708     LLVM_FALLTHROUGH;
2709   case ISD::SETONE: {
2710     assert(IsFP && "Unexpected integer comparison");
2711     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2712     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2713     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2714     break;
2715   }
2716 
2717     // Otherwise a single comparison is enough.  It doesn't really
2718     // matter whether we try the inversion or the swap first, since
2719     // there are no cases where both work.
2720   default:
2721     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2722       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2723     else {
2724       CC = ISD::getSetCCSwappedOperands(CC);
2725       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2726         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2727       else
2728         llvm_unreachable("Unhandled comparison");
2729     }
2730     break;
2731   }
2732   if (Invert) {
2733     SDValue Mask =
2734       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2735     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2736   }
2737   return Cmp;
2738 }
2739 
2740 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2741                                           SelectionDAG &DAG) const {
2742   SDValue CmpOp0   = Op.getOperand(0);
2743   SDValue CmpOp1   = Op.getOperand(1);
2744   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2745   SDLoc DL(Op);
2746   EVT VT = Op.getValueType();
2747   if (VT.isVector())
2748     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2749 
2750   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2751   SDValue CCReg = emitCmp(DAG, DL, C);
2752   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2753 }
2754 
2755 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2756   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2757   SDValue CmpOp0   = Op.getOperand(2);
2758   SDValue CmpOp1   = Op.getOperand(3);
2759   SDValue Dest     = Op.getOperand(4);
2760   SDLoc DL(Op);
2761 
2762   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2763   SDValue CCReg = emitCmp(DAG, DL, C);
2764   return DAG.getNode(
2765       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2766       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2767       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2768 }
2769 
2770 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2771 // allowing Pos and Neg to be wider than CmpOp.
2772 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2773   return (Neg.getOpcode() == ISD::SUB &&
2774           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2775           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2776           Neg.getOperand(1) == Pos &&
2777           (Pos == CmpOp ||
2778            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2779             Pos.getOperand(0) == CmpOp)));
2780 }
2781 
2782 // Return the absolute or negative absolute of Op; IsNegative decides which.
2783 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2784                            bool IsNegative) {
2785   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2786   if (IsNegative)
2787     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2788                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2789   return Op;
2790 }
2791 
2792 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2793                                               SelectionDAG &DAG) const {
2794   SDValue CmpOp0   = Op.getOperand(0);
2795   SDValue CmpOp1   = Op.getOperand(1);
2796   SDValue TrueOp   = Op.getOperand(2);
2797   SDValue FalseOp  = Op.getOperand(3);
2798   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2799   SDLoc DL(Op);
2800 
2801   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2802 
2803   // Check for absolute and negative-absolute selections, including those
2804   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2805   // This check supplements the one in DAGCombiner.
2806   if (C.Opcode == SystemZISD::ICMP &&
2807       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2808       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2809       C.Op1.getOpcode() == ISD::Constant &&
2810       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2811     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2812       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2813     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2814       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2815   }
2816 
2817   SDValue CCReg = emitCmp(DAG, DL, C);
2818   SDValue Ops[] = {TrueOp, FalseOp,
2819                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2820                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2821 
2822   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2823 }
2824 
2825 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2826                                                   SelectionDAG &DAG) const {
2827   SDLoc DL(Node);
2828   const GlobalValue *GV = Node->getGlobal();
2829   int64_t Offset = Node->getOffset();
2830   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2831   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2832 
2833   SDValue Result;
2834   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2835     if (isInt<32>(Offset)) {
2836       // Assign anchors at 1<<12 byte boundaries.
2837       uint64_t Anchor = Offset & ~uint64_t(0xfff);
2838       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2839       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2840 
2841       // The offset can be folded into the address if it is aligned to a
2842       // halfword.
2843       Offset -= Anchor;
2844       if (Offset != 0 && (Offset & 1) == 0) {
2845         SDValue Full =
2846           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2847         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2848         Offset = 0;
2849       }
2850     } else {
2851       // Conservatively load a constant offset greater than 32 bits into a
2852       // register below.
2853       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
2854       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2855     }
2856   } else {
2857     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2858     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2859     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2860                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2861   }
2862 
2863   // If there was a non-zero offset that we didn't fold, create an explicit
2864   // addition for it.
2865   if (Offset != 0)
2866     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2867                          DAG.getConstant(Offset, DL, PtrVT));
2868 
2869   return Result;
2870 }
2871 
2872 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2873                                                  SelectionDAG &DAG,
2874                                                  unsigned Opcode,
2875                                                  SDValue GOTOffset) const {
2876   SDLoc DL(Node);
2877   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2878   SDValue Chain = DAG.getEntryNode();
2879   SDValue Glue;
2880 
2881   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2882       CallingConv::GHC)
2883     report_fatal_error("In GHC calling convention TLS is not supported");
2884 
2885   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2886   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2887   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2888   Glue = Chain.getValue(1);
2889   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2890   Glue = Chain.getValue(1);
2891 
2892   // The first call operand is the chain and the second is the TLS symbol.
2893   SmallVector<SDValue, 8> Ops;
2894   Ops.push_back(Chain);
2895   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2896                                            Node->getValueType(0),
2897                                            0, 0));
2898 
2899   // Add argument registers to the end of the list so that they are
2900   // known live into the call.
2901   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2902   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2903 
2904   // Add a register mask operand representing the call-preserved registers.
2905   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2906   const uint32_t *Mask =
2907       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2908   assert(Mask && "Missing call preserved mask for calling convention");
2909   Ops.push_back(DAG.getRegisterMask(Mask));
2910 
2911   // Glue the call to the argument copies.
2912   Ops.push_back(Glue);
2913 
2914   // Emit the call.
2915   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2916   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2917   Glue = Chain.getValue(1);
2918 
2919   // Copy the return value from %r2.
2920   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2921 }
2922 
2923 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2924                                                   SelectionDAG &DAG) const {
2925   SDValue Chain = DAG.getEntryNode();
2926   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2927 
2928   // The high part of the thread pointer is in access register 0.
2929   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2930   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2931 
2932   // The low part of the thread pointer is in access register 1.
2933   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2934   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2935 
2936   // Merge them into a single 64-bit address.
2937   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2938                                     DAG.getConstant(32, DL, PtrVT));
2939   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2940 }
2941 
2942 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2943                                                      SelectionDAG &DAG) const {
2944   if (DAG.getTarget().useEmulatedTLS())
2945     return LowerToTLSEmulatedModel(Node, DAG);
2946   SDLoc DL(Node);
2947   const GlobalValue *GV = Node->getGlobal();
2948   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2949   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2950 
2951   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2952       CallingConv::GHC)
2953     report_fatal_error("In GHC calling convention TLS is not supported");
2954 
2955   SDValue TP = lowerThreadPointer(DL, DAG);
2956 
2957   // Get the offset of GA from the thread pointer, based on the TLS model.
2958   SDValue Offset;
2959   switch (model) {
2960     case TLSModel::GeneralDynamic: {
2961       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2962       SystemZConstantPoolValue *CPV =
2963         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2964 
2965       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2966       Offset = DAG.getLoad(
2967           PtrVT, DL, DAG.getEntryNode(), Offset,
2968           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2969 
2970       // Call __tls_get_offset to retrieve the offset.
2971       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2972       break;
2973     }
2974 
2975     case TLSModel::LocalDynamic: {
2976       // Load the GOT offset of the module ID.
2977       SystemZConstantPoolValue *CPV =
2978         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2979 
2980       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2981       Offset = DAG.getLoad(
2982           PtrVT, DL, DAG.getEntryNode(), Offset,
2983           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2984 
2985       // Call __tls_get_offset to retrieve the module base offset.
2986       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2987 
2988       // Note: The SystemZLDCleanupPass will remove redundant computations
2989       // of the module base offset.  Count total number of local-dynamic
2990       // accesses to trigger execution of that pass.
2991       SystemZMachineFunctionInfo* MFI =
2992         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2993       MFI->incNumLocalDynamicTLSAccesses();
2994 
2995       // Add the per-symbol offset.
2996       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2997 
2998       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2999       DTPOffset = DAG.getLoad(
3000           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3001           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3002 
3003       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3004       break;
3005     }
3006 
3007     case TLSModel::InitialExec: {
3008       // Load the offset from the GOT.
3009       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3010                                           SystemZII::MO_INDNTPOFF);
3011       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3012       Offset =
3013           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3014                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3015       break;
3016     }
3017 
3018     case TLSModel::LocalExec: {
3019       // Force the offset into the constant pool and load it from there.
3020       SystemZConstantPoolValue *CPV =
3021         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3022 
3023       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3024       Offset = DAG.getLoad(
3025           PtrVT, DL, DAG.getEntryNode(), Offset,
3026           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3027       break;
3028     }
3029   }
3030 
3031   // Add the base and offset together.
3032   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3033 }
3034 
3035 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3036                                                  SelectionDAG &DAG) const {
3037   SDLoc DL(Node);
3038   const BlockAddress *BA = Node->getBlockAddress();
3039   int64_t Offset = Node->getOffset();
3040   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3041 
3042   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3043   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3044   return Result;
3045 }
3046 
3047 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3048                                               SelectionDAG &DAG) const {
3049   SDLoc DL(JT);
3050   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3051   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3052 
3053   // Use LARL to load the address of the table.
3054   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3055 }
3056 
3057 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3058                                                  SelectionDAG &DAG) const {
3059   SDLoc DL(CP);
3060   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3061 
3062   SDValue Result;
3063   if (CP->isMachineConstantPoolEntry())
3064     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3065                                        CP->getAlignment());
3066   else
3067     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3068                                        CP->getAlignment(), CP->getOffset());
3069 
3070   // Use LARL to load the address of the constant pool entry.
3071   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3072 }
3073 
3074 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3075                                               SelectionDAG &DAG) const {
3076   MachineFunction &MF = DAG.getMachineFunction();
3077   MachineFrameInfo &MFI = MF.getFrameInfo();
3078   MFI.setFrameAddressIsTaken(true);
3079 
3080   SDLoc DL(Op);
3081   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3082   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3083 
3084   // If the back chain frame index has not been allocated yet, do so.
3085   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
3086   int BackChainIdx = FI->getFramePointerSaveIndex();
3087   if (!BackChainIdx) {
3088     // By definition, the frame address is the address of the back chain.
3089     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
3090     FI->setFramePointerSaveIndex(BackChainIdx);
3091   }
3092   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3093 
3094   // FIXME The frontend should detect this case.
3095   if (Depth > 0) {
3096     report_fatal_error("Unsupported stack frame traversal count");
3097   }
3098 
3099   return BackChain;
3100 }
3101 
3102 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3103                                                SelectionDAG &DAG) const {
3104   MachineFunction &MF = DAG.getMachineFunction();
3105   MachineFrameInfo &MFI = MF.getFrameInfo();
3106   MFI.setReturnAddressIsTaken(true);
3107 
3108   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3109     return SDValue();
3110 
3111   SDLoc DL(Op);
3112   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3113   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3114 
3115   // FIXME The frontend should detect this case.
3116   if (Depth > 0) {
3117     report_fatal_error("Unsupported stack frame traversal count");
3118   }
3119 
3120   // Return R14D, which has the return address. Mark it an implicit live-in.
3121   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3122   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3123 }
3124 
3125 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3126                                             SelectionDAG &DAG) const {
3127   SDLoc DL(Op);
3128   SDValue In = Op.getOperand(0);
3129   EVT InVT = In.getValueType();
3130   EVT ResVT = Op.getValueType();
3131 
3132   // Convert loads directly.  This is normally done by DAGCombiner,
3133   // but we need this case for bitcasts that are created during lowering
3134   // and which are then lowered themselves.
3135   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3136     if (ISD::isNormalLoad(LoadN)) {
3137       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3138                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3139       // Update the chain uses.
3140       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3141       return NewLoad;
3142     }
3143 
3144   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3145     SDValue In64;
3146     if (Subtarget.hasHighWord()) {
3147       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3148                                        MVT::i64);
3149       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3150                                        MVT::i64, SDValue(U64, 0), In);
3151     } else {
3152       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3153       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3154                          DAG.getConstant(32, DL, MVT::i64));
3155     }
3156     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3157     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3158                                       DL, MVT::f32, Out64);
3159   }
3160   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3161     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3162     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3163                                              MVT::f64, SDValue(U64, 0), In);
3164     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3165     if (Subtarget.hasHighWord())
3166       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3167                                         MVT::i32, Out64);
3168     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3169                                 DAG.getConstant(32, DL, MVT::i64));
3170     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3171   }
3172   llvm_unreachable("Unexpected bitcast combination");
3173 }
3174 
3175 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3176                                             SelectionDAG &DAG) const {
3177   MachineFunction &MF = DAG.getMachineFunction();
3178   SystemZMachineFunctionInfo *FuncInfo =
3179     MF.getInfo<SystemZMachineFunctionInfo>();
3180   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3181 
3182   SDValue Chain   = Op.getOperand(0);
3183   SDValue Addr    = Op.getOperand(1);
3184   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3185   SDLoc DL(Op);
3186 
3187   // The initial values of each field.
3188   const unsigned NumFields = 4;
3189   SDValue Fields[NumFields] = {
3190     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3191     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3192     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3193     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3194   };
3195 
3196   // Store each field into its respective slot.
3197   SDValue MemOps[NumFields];
3198   unsigned Offset = 0;
3199   for (unsigned I = 0; I < NumFields; ++I) {
3200     SDValue FieldAddr = Addr;
3201     if (Offset != 0)
3202       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3203                               DAG.getIntPtrConstant(Offset, DL));
3204     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3205                              MachinePointerInfo(SV, Offset));
3206     Offset += 8;
3207   }
3208   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3209 }
3210 
3211 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3212                                            SelectionDAG &DAG) const {
3213   SDValue Chain      = Op.getOperand(0);
3214   SDValue DstPtr     = Op.getOperand(1);
3215   SDValue SrcPtr     = Op.getOperand(2);
3216   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3217   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3218   SDLoc DL(Op);
3219 
3220   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3221                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3222                        /*isTailCall*/false,
3223                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3224 }
3225 
3226 SDValue SystemZTargetLowering::
3227 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3228   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3229   MachineFunction &MF = DAG.getMachineFunction();
3230   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3231   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3232 
3233   SDValue Chain = Op.getOperand(0);
3234   SDValue Size  = Op.getOperand(1);
3235   SDValue Align = Op.getOperand(2);
3236   SDLoc DL(Op);
3237 
3238   // If user has set the no alignment function attribute, ignore
3239   // alloca alignments.
3240   uint64_t AlignVal = (RealignOpt ?
3241                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3242 
3243   uint64_t StackAlign = TFI->getStackAlignment();
3244   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3245   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3246 
3247   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3248   SDValue NeededSpace = Size;
3249 
3250   // Get a reference to the stack pointer.
3251   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3252 
3253   // If we need a backchain, save it now.
3254   SDValue Backchain;
3255   if (StoreBackchain)
3256     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3257 
3258   // Add extra space for alignment if needed.
3259   if (ExtraAlignSpace)
3260     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3261                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3262 
3263   // Get the new stack pointer value.
3264   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3265 
3266   // Copy the new stack pointer back.
3267   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3268 
3269   // The allocated data lives above the 160 bytes allocated for the standard
3270   // frame, plus any outgoing stack arguments.  We don't know how much that
3271   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3272   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3273   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3274 
3275   // Dynamically realign if needed.
3276   if (RequiredAlign > StackAlign) {
3277     Result =
3278       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3279                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3280     Result =
3281       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3282                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3283   }
3284 
3285   if (StoreBackchain)
3286     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3287 
3288   SDValue Ops[2] = { Result, Chain };
3289   return DAG.getMergeValues(Ops, DL);
3290 }
3291 
3292 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3293     SDValue Op, SelectionDAG &DAG) const {
3294   SDLoc DL(Op);
3295 
3296   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3297 }
3298 
3299 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3300                                               SelectionDAG &DAG) const {
3301   EVT VT = Op.getValueType();
3302   SDLoc DL(Op);
3303   SDValue Ops[2];
3304   if (is32Bit(VT))
3305     // Just do a normal 64-bit multiplication and extract the results.
3306     // We define this so that it can be used for constant division.
3307     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3308                     Op.getOperand(1), Ops[1], Ops[0]);
3309   else if (Subtarget.hasMiscellaneousExtensions2())
3310     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3311     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3312     // return the low half first, so the results are in reverse order.
3313     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3314                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3315   else {
3316     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3317     //
3318     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3319     //
3320     // but using the fact that the upper halves are either all zeros
3321     // or all ones:
3322     //
3323     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3324     //
3325     // and grouping the right terms together since they are quicker than the
3326     // multiplication:
3327     //
3328     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3329     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3330     SDValue LL = Op.getOperand(0);
3331     SDValue RL = Op.getOperand(1);
3332     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3333     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3334     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3335     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3336     // return the low half first, so the results are in reverse order.
3337     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3338                      LL, RL, Ops[1], Ops[0]);
3339     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3340     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3341     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3342     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3343   }
3344   return DAG.getMergeValues(Ops, DL);
3345 }
3346 
3347 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3348                                               SelectionDAG &DAG) const {
3349   EVT VT = Op.getValueType();
3350   SDLoc DL(Op);
3351   SDValue Ops[2];
3352   if (is32Bit(VT))
3353     // Just do a normal 64-bit multiplication and extract the results.
3354     // We define this so that it can be used for constant division.
3355     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3356                     Op.getOperand(1), Ops[1], Ops[0]);
3357   else
3358     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3359     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3360     // return the low half first, so the results are in reverse order.
3361     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3362                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3363   return DAG.getMergeValues(Ops, DL);
3364 }
3365 
3366 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3367                                             SelectionDAG &DAG) const {
3368   SDValue Op0 = Op.getOperand(0);
3369   SDValue Op1 = Op.getOperand(1);
3370   EVT VT = Op.getValueType();
3371   SDLoc DL(Op);
3372 
3373   // We use DSGF for 32-bit division.  This means the first operand must
3374   // always be 64-bit, and the second operand should be 32-bit whenever
3375   // that is possible, to improve performance.
3376   if (is32Bit(VT))
3377     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3378   else if (DAG.ComputeNumSignBits(Op1) > 32)
3379     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3380 
3381   // DSG(F) returns the remainder in the even register and the
3382   // quotient in the odd register.
3383   SDValue Ops[2];
3384   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3385   return DAG.getMergeValues(Ops, DL);
3386 }
3387 
3388 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3389                                             SelectionDAG &DAG) const {
3390   EVT VT = Op.getValueType();
3391   SDLoc DL(Op);
3392 
3393   // DL(G) returns the remainder in the even register and the
3394   // quotient in the odd register.
3395   SDValue Ops[2];
3396   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3397                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3398   return DAG.getMergeValues(Ops, DL);
3399 }
3400 
3401 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3402   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3403 
3404   // Get the known-zero masks for each operand.
3405   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3406   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3407                         DAG.computeKnownBits(Ops[1])};
3408 
3409   // See if the upper 32 bits of one operand and the lower 32 bits of the
3410   // other are known zero.  They are the low and high operands respectively.
3411   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3412                        Known[1].Zero.getZExtValue() };
3413   unsigned High, Low;
3414   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3415     High = 1, Low = 0;
3416   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3417     High = 0, Low = 1;
3418   else
3419     return Op;
3420 
3421   SDValue LowOp = Ops[Low];
3422   SDValue HighOp = Ops[High];
3423 
3424   // If the high part is a constant, we're better off using IILH.
3425   if (HighOp.getOpcode() == ISD::Constant)
3426     return Op;
3427 
3428   // If the low part is a constant that is outside the range of LHI,
3429   // then we're better off using IILF.
3430   if (LowOp.getOpcode() == ISD::Constant) {
3431     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3432     if (!isInt<16>(Value))
3433       return Op;
3434   }
3435 
3436   // Check whether the high part is an AND that doesn't change the
3437   // high 32 bits and just masks out low bits.  We can skip it if so.
3438   if (HighOp.getOpcode() == ISD::AND &&
3439       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3440     SDValue HighOp0 = HighOp.getOperand(0);
3441     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3442     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3443       HighOp = HighOp0;
3444   }
3445 
3446   // Take advantage of the fact that all GR32 operations only change the
3447   // low 32 bits by truncating Low to an i32 and inserting it directly
3448   // using a subreg.  The interesting cases are those where the truncation
3449   // can be folded.
3450   SDLoc DL(Op);
3451   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3452   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3453                                    MVT::i64, HighOp, Low32);
3454 }
3455 
3456 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3457 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3458                                           SelectionDAG &DAG) const {
3459   SDNode *N = Op.getNode();
3460   SDValue LHS = N->getOperand(0);
3461   SDValue RHS = N->getOperand(1);
3462   SDLoc DL(N);
3463   unsigned BaseOp = 0;
3464   unsigned CCValid = 0;
3465   unsigned CCMask = 0;
3466 
3467   switch (Op.getOpcode()) {
3468   default: llvm_unreachable("Unknown instruction!");
3469   case ISD::SADDO:
3470     BaseOp = SystemZISD::SADDO;
3471     CCValid = SystemZ::CCMASK_ARITH;
3472     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3473     break;
3474   case ISD::SSUBO:
3475     BaseOp = SystemZISD::SSUBO;
3476     CCValid = SystemZ::CCMASK_ARITH;
3477     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3478     break;
3479   case ISD::UADDO:
3480     BaseOp = SystemZISD::UADDO;
3481     CCValid = SystemZ::CCMASK_LOGICAL;
3482     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3483     break;
3484   case ISD::USUBO:
3485     BaseOp = SystemZISD::USUBO;
3486     CCValid = SystemZ::CCMASK_LOGICAL;
3487     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3488     break;
3489   }
3490 
3491   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3492   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3493 
3494   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3495   if (N->getValueType(1) == MVT::i1)
3496     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3497 
3498   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3499 }
3500 
3501 static bool isAddCarryChain(SDValue Carry) {
3502   while (Carry.getOpcode() == ISD::ADDCARRY)
3503     Carry = Carry.getOperand(2);
3504   return Carry.getOpcode() == ISD::UADDO;
3505 }
3506 
3507 static bool isSubBorrowChain(SDValue Carry) {
3508   while (Carry.getOpcode() == ISD::SUBCARRY)
3509     Carry = Carry.getOperand(2);
3510   return Carry.getOpcode() == ISD::USUBO;
3511 }
3512 
3513 // Lower ADDCARRY/SUBCARRY nodes.
3514 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3515                                                 SelectionDAG &DAG) const {
3516 
3517   SDNode *N = Op.getNode();
3518   MVT VT = N->getSimpleValueType(0);
3519 
3520   // Let legalize expand this if it isn't a legal type yet.
3521   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3522     return SDValue();
3523 
3524   SDValue LHS = N->getOperand(0);
3525   SDValue RHS = N->getOperand(1);
3526   SDValue Carry = Op.getOperand(2);
3527   SDLoc DL(N);
3528   unsigned BaseOp = 0;
3529   unsigned CCValid = 0;
3530   unsigned CCMask = 0;
3531 
3532   switch (Op.getOpcode()) {
3533   default: llvm_unreachable("Unknown instruction!");
3534   case ISD::ADDCARRY:
3535     if (!isAddCarryChain(Carry))
3536       return SDValue();
3537 
3538     BaseOp = SystemZISD::ADDCARRY;
3539     CCValid = SystemZ::CCMASK_LOGICAL;
3540     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3541     break;
3542   case ISD::SUBCARRY:
3543     if (!isSubBorrowChain(Carry))
3544       return SDValue();
3545 
3546     BaseOp = SystemZISD::SUBCARRY;
3547     CCValid = SystemZ::CCMASK_LOGICAL;
3548     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3549     break;
3550   }
3551 
3552   // Set the condition code from the carry flag.
3553   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3554                       DAG.getConstant(CCValid, DL, MVT::i32),
3555                       DAG.getConstant(CCMask, DL, MVT::i32));
3556 
3557   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3558   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3559 
3560   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3561   if (N->getValueType(1) == MVT::i1)
3562     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3563 
3564   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3565 }
3566 
3567 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3568                                           SelectionDAG &DAG) const {
3569   EVT VT = Op.getValueType();
3570   SDLoc DL(Op);
3571   Op = Op.getOperand(0);
3572 
3573   // Handle vector types via VPOPCT.
3574   if (VT.isVector()) {
3575     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3576     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3577     switch (VT.getScalarSizeInBits()) {
3578     case 8:
3579       break;
3580     case 16: {
3581       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3582       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3583       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3584       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3585       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3586       break;
3587     }
3588     case 32: {
3589       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3590                                             DAG.getConstant(0, DL, MVT::i32));
3591       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3592       break;
3593     }
3594     case 64: {
3595       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3596                                             DAG.getConstant(0, DL, MVT::i32));
3597       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3598       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3599       break;
3600     }
3601     default:
3602       llvm_unreachable("Unexpected type");
3603     }
3604     return Op;
3605   }
3606 
3607   // Get the known-zero mask for the operand.
3608   KnownBits Known = DAG.computeKnownBits(Op);
3609   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3610   if (NumSignificantBits == 0)
3611     return DAG.getConstant(0, DL, VT);
3612 
3613   // Skip known-zero high parts of the operand.
3614   int64_t OrigBitSize = VT.getSizeInBits();
3615   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3616   BitSize = std::min(BitSize, OrigBitSize);
3617 
3618   // The POPCNT instruction counts the number of bits in each byte.
3619   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3620   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3621   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3622 
3623   // Add up per-byte counts in a binary tree.  All bits of Op at
3624   // position larger than BitSize remain zero throughout.
3625   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3626     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3627     if (BitSize != OrigBitSize)
3628       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3629                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3630     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3631   }
3632 
3633   // Extract overall result from high byte.
3634   if (BitSize > 8)
3635     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3636                      DAG.getConstant(BitSize - 8, DL, VT));
3637 
3638   return Op;
3639 }
3640 
3641 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3642                                                  SelectionDAG &DAG) const {
3643   SDLoc DL(Op);
3644   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3645     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3646   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3647     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3648 
3649   // The only fence that needs an instruction is a sequentially-consistent
3650   // cross-thread fence.
3651   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3652       FenceSSID == SyncScope::System) {
3653     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3654                                       Op.getOperand(0)),
3655                    0);
3656   }
3657 
3658   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3659   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3660 }
3661 
3662 // Op is an atomic load.  Lower it into a normal volatile load.
3663 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3664                                                 SelectionDAG &DAG) const {
3665   auto *Node = cast<AtomicSDNode>(Op.getNode());
3666   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3667                         Node->getChain(), Node->getBasePtr(),
3668                         Node->getMemoryVT(), Node->getMemOperand());
3669 }
3670 
3671 // Op is an atomic store.  Lower it into a normal volatile store.
3672 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3673                                                  SelectionDAG &DAG) const {
3674   auto *Node = cast<AtomicSDNode>(Op.getNode());
3675   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3676                                     Node->getBasePtr(), Node->getMemoryVT(),
3677                                     Node->getMemOperand());
3678   // We have to enforce sequential consistency by performing a
3679   // serialization operation after the store.
3680   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3681     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3682                                        MVT::Other, Chain), 0);
3683   return Chain;
3684 }
3685 
3686 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3687 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3688 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3689                                                    SelectionDAG &DAG,
3690                                                    unsigned Opcode) const {
3691   auto *Node = cast<AtomicSDNode>(Op.getNode());
3692 
3693   // 32-bit operations need no code outside the main loop.
3694   EVT NarrowVT = Node->getMemoryVT();
3695   EVT WideVT = MVT::i32;
3696   if (NarrowVT == WideVT)
3697     return Op;
3698 
3699   int64_t BitSize = NarrowVT.getSizeInBits();
3700   SDValue ChainIn = Node->getChain();
3701   SDValue Addr = Node->getBasePtr();
3702   SDValue Src2 = Node->getVal();
3703   MachineMemOperand *MMO = Node->getMemOperand();
3704   SDLoc DL(Node);
3705   EVT PtrVT = Addr.getValueType();
3706 
3707   // Convert atomic subtracts of constants into additions.
3708   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3709     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3710       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3711       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3712     }
3713 
3714   // Get the address of the containing word.
3715   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3716                                     DAG.getConstant(-4, DL, PtrVT));
3717 
3718   // Get the number of bits that the word must be rotated left in order
3719   // to bring the field to the top bits of a GR32.
3720   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3721                                  DAG.getConstant(3, DL, PtrVT));
3722   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3723 
3724   // Get the complementing shift amount, for rotating a field in the top
3725   // bits back to its proper position.
3726   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3727                                     DAG.getConstant(0, DL, WideVT), BitShift);
3728 
3729   // Extend the source operand to 32 bits and prepare it for the inner loop.
3730   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3731   // operations require the source to be shifted in advance.  (This shift
3732   // can be folded if the source is constant.)  For AND and NAND, the lower
3733   // bits must be set, while for other opcodes they should be left clear.
3734   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3735     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3736                        DAG.getConstant(32 - BitSize, DL, WideVT));
3737   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3738       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3739     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3740                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3741 
3742   // Construct the ATOMIC_LOADW_* node.
3743   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3744   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3745                     DAG.getConstant(BitSize, DL, WideVT) };
3746   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3747                                              NarrowVT, MMO);
3748 
3749   // Rotate the result of the final CS so that the field is in the lower
3750   // bits of a GR32, then truncate it.
3751   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3752                                     DAG.getConstant(BitSize, DL, WideVT));
3753   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3754 
3755   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3756   return DAG.getMergeValues(RetOps, DL);
3757 }
3758 
3759 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3760 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3761 // operations into additions.
3762 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3763                                                     SelectionDAG &DAG) const {
3764   auto *Node = cast<AtomicSDNode>(Op.getNode());
3765   EVT MemVT = Node->getMemoryVT();
3766   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3767     // A full-width operation.
3768     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3769     SDValue Src2 = Node->getVal();
3770     SDValue NegSrc2;
3771     SDLoc DL(Src2);
3772 
3773     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3774       // Use an addition if the operand is constant and either LAA(G) is
3775       // available or the negative value is in the range of A(G)FHI.
3776       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3777       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3778         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3779     } else if (Subtarget.hasInterlockedAccess1())
3780       // Use LAA(G) if available.
3781       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3782                             Src2);
3783 
3784     if (NegSrc2.getNode())
3785       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3786                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3787                            Node->getMemOperand());
3788 
3789     // Use the node as-is.
3790     return Op;
3791   }
3792 
3793   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3794 }
3795 
3796 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3797 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3798                                                     SelectionDAG &DAG) const {
3799   auto *Node = cast<AtomicSDNode>(Op.getNode());
3800   SDValue ChainIn = Node->getOperand(0);
3801   SDValue Addr = Node->getOperand(1);
3802   SDValue CmpVal = Node->getOperand(2);
3803   SDValue SwapVal = Node->getOperand(3);
3804   MachineMemOperand *MMO = Node->getMemOperand();
3805   SDLoc DL(Node);
3806 
3807   // We have native support for 32-bit and 64-bit compare and swap, but we
3808   // still need to expand extracting the "success" result from the CC.
3809   EVT NarrowVT = Node->getMemoryVT();
3810   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3811   if (NarrowVT == WideVT) {
3812     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3813     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3814     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3815                                                DL, Tys, Ops, NarrowVT, MMO);
3816     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3817                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3818 
3819     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3820     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3821     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3822     return SDValue();
3823   }
3824 
3825   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3826   // via a fullword ATOMIC_CMP_SWAPW operation.
3827   int64_t BitSize = NarrowVT.getSizeInBits();
3828   EVT PtrVT = Addr.getValueType();
3829 
3830   // Get the address of the containing word.
3831   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3832                                     DAG.getConstant(-4, DL, PtrVT));
3833 
3834   // Get the number of bits that the word must be rotated left in order
3835   // to bring the field to the top bits of a GR32.
3836   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3837                                  DAG.getConstant(3, DL, PtrVT));
3838   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3839 
3840   // Get the complementing shift amount, for rotating a field in the top
3841   // bits back to its proper position.
3842   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3843                                     DAG.getConstant(0, DL, WideVT), BitShift);
3844 
3845   // Construct the ATOMIC_CMP_SWAPW node.
3846   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3847   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3848                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3849   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3850                                              VTList, Ops, NarrowVT, MMO);
3851   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3852                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3853 
3854   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3855   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3856   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3857   return SDValue();
3858 }
3859 
3860 MachineMemOperand::Flags
3861 SystemZTargetLowering::getMMOFlags(const Instruction &I) const {
3862   // Because of how we convert atomic_load and atomic_store to normal loads and
3863   // stores in the DAG, we need to ensure that the MMOs are marked volatile
3864   // since DAGCombine hasn't been updated to account for atomic, but non
3865   // volatile loads.  (See D57601)
3866   if (auto *SI = dyn_cast<StoreInst>(&I))
3867     if (SI->isAtomic())
3868       return MachineMemOperand::MOVolatile;
3869   if (auto *LI = dyn_cast<LoadInst>(&I))
3870     if (LI->isAtomic())
3871       return MachineMemOperand::MOVolatile;
3872   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
3873     if (AI->isAtomic())
3874       return MachineMemOperand::MOVolatile;
3875   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
3876     if (AI->isAtomic())
3877       return MachineMemOperand::MOVolatile;
3878   return MachineMemOperand::MONone;
3879 }
3880 
3881 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3882                                               SelectionDAG &DAG) const {
3883   MachineFunction &MF = DAG.getMachineFunction();
3884   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3885   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
3886     report_fatal_error("Variable-sized stack allocations are not supported "
3887                        "in GHC calling convention");
3888   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3889                             SystemZ::R15D, Op.getValueType());
3890 }
3891 
3892 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3893                                                  SelectionDAG &DAG) const {
3894   MachineFunction &MF = DAG.getMachineFunction();
3895   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3896   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3897 
3898   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
3899     report_fatal_error("Variable-sized stack allocations are not supported "
3900                        "in GHC calling convention");
3901 
3902   SDValue Chain = Op.getOperand(0);
3903   SDValue NewSP = Op.getOperand(1);
3904   SDValue Backchain;
3905   SDLoc DL(Op);
3906 
3907   if (StoreBackchain) {
3908     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3909     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3910   }
3911 
3912   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3913 
3914   if (StoreBackchain)
3915     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3916 
3917   return Chain;
3918 }
3919 
3920 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3921                                              SelectionDAG &DAG) const {
3922   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3923   if (!IsData)
3924     // Just preserve the chain.
3925     return Op.getOperand(0);
3926 
3927   SDLoc DL(Op);
3928   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3929   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3930   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3931   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
3932                    Op.getOperand(1)};
3933   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3934                                  Node->getVTList(), Ops,
3935                                  Node->getMemoryVT(), Node->getMemOperand());
3936 }
3937 
3938 // Convert condition code in CCReg to an i32 value.
3939 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3940   SDLoc DL(CCReg);
3941   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3942   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3943                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3944 }
3945 
3946 SDValue
3947 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3948                                               SelectionDAG &DAG) const {
3949   unsigned Opcode, CCValid;
3950   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3951     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3952     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3953     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3954     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3955     return SDValue();
3956   }
3957 
3958   return SDValue();
3959 }
3960 
3961 SDValue
3962 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3963                                                SelectionDAG &DAG) const {
3964   unsigned Opcode, CCValid;
3965   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3966     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3967     if (Op->getNumValues() == 1)
3968       return getCCResult(DAG, SDValue(Node, 0));
3969     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3970     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3971                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3972   }
3973 
3974   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3975   switch (Id) {
3976   case Intrinsic::thread_pointer:
3977     return lowerThreadPointer(SDLoc(Op), DAG);
3978 
3979   case Intrinsic::s390_vpdi:
3980     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3981                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3982 
3983   case Intrinsic::s390_vperm:
3984     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3985                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3986 
3987   case Intrinsic::s390_vuphb:
3988   case Intrinsic::s390_vuphh:
3989   case Intrinsic::s390_vuphf:
3990     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3991                        Op.getOperand(1));
3992 
3993   case Intrinsic::s390_vuplhb:
3994   case Intrinsic::s390_vuplhh:
3995   case Intrinsic::s390_vuplhf:
3996     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3997                        Op.getOperand(1));
3998 
3999   case Intrinsic::s390_vuplb:
4000   case Intrinsic::s390_vuplhw:
4001   case Intrinsic::s390_vuplf:
4002     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4003                        Op.getOperand(1));
4004 
4005   case Intrinsic::s390_vupllb:
4006   case Intrinsic::s390_vupllh:
4007   case Intrinsic::s390_vupllf:
4008     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4009                        Op.getOperand(1));
4010 
4011   case Intrinsic::s390_vsumb:
4012   case Intrinsic::s390_vsumh:
4013   case Intrinsic::s390_vsumgh:
4014   case Intrinsic::s390_vsumgf:
4015   case Intrinsic::s390_vsumqf:
4016   case Intrinsic::s390_vsumqg:
4017     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4018                        Op.getOperand(1), Op.getOperand(2));
4019   }
4020 
4021   return SDValue();
4022 }
4023 
4024 namespace {
4025 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4026 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4027 // Operand is the constant third operand, otherwise it is the number of
4028 // bytes in each element of the result.
4029 struct Permute {
4030   unsigned Opcode;
4031   unsigned Operand;
4032   unsigned char Bytes[SystemZ::VectorBytes];
4033 };
4034 }
4035 
4036 static const Permute PermuteForms[] = {
4037   // VMRHG
4038   { SystemZISD::MERGE_HIGH, 8,
4039     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4040   // VMRHF
4041   { SystemZISD::MERGE_HIGH, 4,
4042     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4043   // VMRHH
4044   { SystemZISD::MERGE_HIGH, 2,
4045     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4046   // VMRHB
4047   { SystemZISD::MERGE_HIGH, 1,
4048     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4049   // VMRLG
4050   { SystemZISD::MERGE_LOW, 8,
4051     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4052   // VMRLF
4053   { SystemZISD::MERGE_LOW, 4,
4054     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4055   // VMRLH
4056   { SystemZISD::MERGE_LOW, 2,
4057     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4058   // VMRLB
4059   { SystemZISD::MERGE_LOW, 1,
4060     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4061   // VPKG
4062   { SystemZISD::PACK, 4,
4063     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4064   // VPKF
4065   { SystemZISD::PACK, 2,
4066     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4067   // VPKH
4068   { SystemZISD::PACK, 1,
4069     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4070   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4071   { SystemZISD::PERMUTE_DWORDS, 4,
4072     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4073   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4074   { SystemZISD::PERMUTE_DWORDS, 1,
4075     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4076 };
4077 
4078 // Called after matching a vector shuffle against a particular pattern.
4079 // Both the original shuffle and the pattern have two vector operands.
4080 // OpNos[0] is the operand of the original shuffle that should be used for
4081 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4082 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4083 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4084 // for operands 0 and 1 of the pattern.
4085 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4086   if (OpNos[0] < 0) {
4087     if (OpNos[1] < 0)
4088       return false;
4089     OpNo0 = OpNo1 = OpNos[1];
4090   } else if (OpNos[1] < 0) {
4091     OpNo0 = OpNo1 = OpNos[0];
4092   } else {
4093     OpNo0 = OpNos[0];
4094     OpNo1 = OpNos[1];
4095   }
4096   return true;
4097 }
4098 
4099 // Bytes is a VPERM-like permute vector, except that -1 is used for
4100 // undefined bytes.  Return true if the VPERM can be implemented using P.
4101 // When returning true set OpNo0 to the VPERM operand that should be
4102 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4103 //
4104 // For example, if swapping the VPERM operands allows P to match, OpNo0
4105 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4106 // operand, but rewriting it to use two duplicated operands allows it to
4107 // match P, then OpNo0 and OpNo1 will be the same.
4108 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4109                          unsigned &OpNo0, unsigned &OpNo1) {
4110   int OpNos[] = { -1, -1 };
4111   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4112     int Elt = Bytes[I];
4113     if (Elt >= 0) {
4114       // Make sure that the two permute vectors use the same suboperand
4115       // byte number.  Only the operand numbers (the high bits) are
4116       // allowed to differ.
4117       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4118         return false;
4119       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4120       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4121       // Make sure that the operand mappings are consistent with previous
4122       // elements.
4123       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4124         return false;
4125       OpNos[ModelOpNo] = RealOpNo;
4126     }
4127   }
4128   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4129 }
4130 
4131 // As above, but search for a matching permute.
4132 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4133                                    unsigned &OpNo0, unsigned &OpNo1) {
4134   for (auto &P : PermuteForms)
4135     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4136       return &P;
4137   return nullptr;
4138 }
4139 
4140 // Bytes is a VPERM-like permute vector, except that -1 is used for
4141 // undefined bytes.  This permute is an operand of an outer permute.
4142 // See whether redistributing the -1 bytes gives a shuffle that can be
4143 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4144 // that, when applied to the result of P, gives the original permute in Bytes.
4145 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4146                                const Permute &P,
4147                                SmallVectorImpl<int> &Transform) {
4148   unsigned To = 0;
4149   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4150     int Elt = Bytes[From];
4151     if (Elt < 0)
4152       // Byte number From of the result is undefined.
4153       Transform[From] = -1;
4154     else {
4155       while (P.Bytes[To] != Elt) {
4156         To += 1;
4157         if (To == SystemZ::VectorBytes)
4158           return false;
4159       }
4160       Transform[From] = To;
4161     }
4162   }
4163   return true;
4164 }
4165 
4166 // As above, but search for a matching permute.
4167 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4168                                          SmallVectorImpl<int> &Transform) {
4169   for (auto &P : PermuteForms)
4170     if (matchDoublePermute(Bytes, P, Transform))
4171       return &P;
4172   return nullptr;
4173 }
4174 
4175 // Convert the mask of the given shuffle op into a byte-level mask,
4176 // as if it had type vNi8.
4177 static bool getVPermMask(SDValue ShuffleOp,
4178                          SmallVectorImpl<int> &Bytes) {
4179   EVT VT = ShuffleOp.getValueType();
4180   unsigned NumElements = VT.getVectorNumElements();
4181   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4182 
4183   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4184     Bytes.resize(NumElements * BytesPerElement, -1);
4185     for (unsigned I = 0; I < NumElements; ++I) {
4186       int Index = VSN->getMaskElt(I);
4187       if (Index >= 0)
4188         for (unsigned J = 0; J < BytesPerElement; ++J)
4189           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4190     }
4191     return true;
4192   }
4193   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4194       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4195     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4196     Bytes.resize(NumElements * BytesPerElement, -1);
4197     for (unsigned I = 0; I < NumElements; ++I)
4198       for (unsigned J = 0; J < BytesPerElement; ++J)
4199         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4200     return true;
4201   }
4202   return false;
4203 }
4204 
4205 // Bytes is a VPERM-like permute vector, except that -1 is used for
4206 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4207 // the result come from a contiguous sequence of bytes from one input.
4208 // Set Base to the selector for the first byte if so.
4209 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4210                             unsigned BytesPerElement, int &Base) {
4211   Base = -1;
4212   for (unsigned I = 0; I < BytesPerElement; ++I) {
4213     if (Bytes[Start + I] >= 0) {
4214       unsigned Elem = Bytes[Start + I];
4215       if (Base < 0) {
4216         Base = Elem - I;
4217         // Make sure the bytes would come from one input operand.
4218         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4219           return false;
4220       } else if (unsigned(Base) != Elem - I)
4221         return false;
4222     }
4223   }
4224   return true;
4225 }
4226 
4227 // Bytes is a VPERM-like permute vector, except that -1 is used for
4228 // undefined bytes.  Return true if it can be performed using VSLDI.
4229 // When returning true, set StartIndex to the shift amount and OpNo0
4230 // and OpNo1 to the VPERM operands that should be used as the first
4231 // and second shift operand respectively.
4232 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4233                                unsigned &StartIndex, unsigned &OpNo0,
4234                                unsigned &OpNo1) {
4235   int OpNos[] = { -1, -1 };
4236   int Shift = -1;
4237   for (unsigned I = 0; I < 16; ++I) {
4238     int Index = Bytes[I];
4239     if (Index >= 0) {
4240       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4241       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4242       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4243       if (Shift < 0)
4244         Shift = ExpectedShift;
4245       else if (Shift != ExpectedShift)
4246         return false;
4247       // Make sure that the operand mappings are consistent with previous
4248       // elements.
4249       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4250         return false;
4251       OpNos[ModelOpNo] = RealOpNo;
4252     }
4253   }
4254   StartIndex = Shift;
4255   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4256 }
4257 
4258 // Create a node that performs P on operands Op0 and Op1, casting the
4259 // operands to the appropriate type.  The type of the result is determined by P.
4260 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4261                               const Permute &P, SDValue Op0, SDValue Op1) {
4262   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4263   // elements of a PACK are twice as wide as the outputs.
4264   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4265                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4266                       P.Operand);
4267   // Cast both operands to the appropriate type.
4268   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4269                               SystemZ::VectorBytes / InBytes);
4270   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4271   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4272   SDValue Op;
4273   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4274     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4275     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4276   } else if (P.Opcode == SystemZISD::PACK) {
4277     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4278                                  SystemZ::VectorBytes / P.Operand);
4279     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4280   } else {
4281     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4282   }
4283   return Op;
4284 }
4285 
4286 // Bytes is a VPERM-like permute vector, except that -1 is used for
4287 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4288 // VSLDI or VPERM.
4289 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4290                                      SDValue *Ops,
4291                                      const SmallVectorImpl<int> &Bytes) {
4292   for (unsigned I = 0; I < 2; ++I)
4293     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4294 
4295   // First see whether VSLDI can be used.
4296   unsigned StartIndex, OpNo0, OpNo1;
4297   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4298     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4299                        Ops[OpNo1],
4300                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4301 
4302   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4303   SDValue IndexNodes[SystemZ::VectorBytes];
4304   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4305     if (Bytes[I] >= 0)
4306       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4307     else
4308       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4309   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4310   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4311 }
4312 
4313 namespace {
4314 // Describes a general N-operand vector shuffle.
4315 struct GeneralShuffle {
4316   GeneralShuffle(EVT vt) : VT(vt) {}
4317   void addUndef();
4318   bool add(SDValue, unsigned);
4319   SDValue getNode(SelectionDAG &, const SDLoc &);
4320 
4321   // The operands of the shuffle.
4322   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4323 
4324   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4325   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4326   // Bytes[I] / SystemZ::VectorBytes.
4327   SmallVector<int, SystemZ::VectorBytes> Bytes;
4328 
4329   // The type of the shuffle result.
4330   EVT VT;
4331 };
4332 }
4333 
4334 // Add an extra undefined element to the shuffle.
4335 void GeneralShuffle::addUndef() {
4336   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4337   for (unsigned I = 0; I < BytesPerElement; ++I)
4338     Bytes.push_back(-1);
4339 }
4340 
4341 // Add an extra element to the shuffle, taking it from element Elem of Op.
4342 // A null Op indicates a vector input whose value will be calculated later;
4343 // there is at most one such input per shuffle and it always has the same
4344 // type as the result. Aborts and returns false if the source vector elements
4345 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4346 // LLVM they become implicitly extended, but this is rare and not optimized.
4347 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4348   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4349 
4350   // The source vector can have wider elements than the result,
4351   // either through an explicit TRUNCATE or because of type legalization.
4352   // We want the least significant part.
4353   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4354   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4355 
4356   // Return false if the source elements are smaller than their destination
4357   // elements.
4358   if (FromBytesPerElement < BytesPerElement)
4359     return false;
4360 
4361   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4362                    (FromBytesPerElement - BytesPerElement));
4363 
4364   // Look through things like shuffles and bitcasts.
4365   while (Op.getNode()) {
4366     if (Op.getOpcode() == ISD::BITCAST)
4367       Op = Op.getOperand(0);
4368     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4369       // See whether the bytes we need come from a contiguous part of one
4370       // operand.
4371       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4372       if (!getVPermMask(Op, OpBytes))
4373         break;
4374       int NewByte;
4375       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4376         break;
4377       if (NewByte < 0) {
4378         addUndef();
4379         return true;
4380       }
4381       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4382       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4383     } else if (Op.isUndef()) {
4384       addUndef();
4385       return true;
4386     } else
4387       break;
4388   }
4389 
4390   // Make sure that the source of the extraction is in Ops.
4391   unsigned OpNo = 0;
4392   for (; OpNo < Ops.size(); ++OpNo)
4393     if (Ops[OpNo] == Op)
4394       break;
4395   if (OpNo == Ops.size())
4396     Ops.push_back(Op);
4397 
4398   // Add the element to Bytes.
4399   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4400   for (unsigned I = 0; I < BytesPerElement; ++I)
4401     Bytes.push_back(Base + I);
4402 
4403   return true;
4404 }
4405 
4406 // Return SDNodes for the completed shuffle.
4407 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4408   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4409 
4410   if (Ops.size() == 0)
4411     return DAG.getUNDEF(VT);
4412 
4413   // Make sure that there are at least two shuffle operands.
4414   if (Ops.size() == 1)
4415     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4416 
4417   // Create a tree of shuffles, deferring root node until after the loop.
4418   // Try to redistribute the undefined elements of non-root nodes so that
4419   // the non-root shuffles match something like a pack or merge, then adjust
4420   // the parent node's permute vector to compensate for the new order.
4421   // Among other things, this copes with vectors like <2 x i16> that were
4422   // padded with undefined elements during type legalization.
4423   //
4424   // In the best case this redistribution will lead to the whole tree
4425   // using packs and merges.  It should rarely be a loss in other cases.
4426   unsigned Stride = 1;
4427   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4428     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4429       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4430 
4431       // Create a mask for just these two operands.
4432       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4433       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4434         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4435         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4436         if (OpNo == I)
4437           NewBytes[J] = Byte;
4438         else if (OpNo == I + Stride)
4439           NewBytes[J] = SystemZ::VectorBytes + Byte;
4440         else
4441           NewBytes[J] = -1;
4442       }
4443       // See if it would be better to reorganize NewMask to avoid using VPERM.
4444       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4445       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4446         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4447         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4448         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4449           if (NewBytes[J] >= 0) {
4450             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4451                    "Invalid double permute");
4452             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4453           } else
4454             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4455         }
4456       } else {
4457         // Just use NewBytes on the operands.
4458         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4459         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4460           if (NewBytes[J] >= 0)
4461             Bytes[J] = I * SystemZ::VectorBytes + J;
4462       }
4463     }
4464   }
4465 
4466   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4467   if (Stride > 1) {
4468     Ops[1] = Ops[Stride];
4469     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4470       if (Bytes[I] >= int(SystemZ::VectorBytes))
4471         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4472   }
4473 
4474   // Look for an instruction that can do the permute without resorting
4475   // to VPERM.
4476   unsigned OpNo0, OpNo1;
4477   SDValue Op;
4478   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4479     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4480   else
4481     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4482   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4483 }
4484 
4485 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4486 static bool isScalarToVector(SDValue Op) {
4487   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4488     if (!Op.getOperand(I).isUndef())
4489       return false;
4490   return true;
4491 }
4492 
4493 // Return a vector of type VT that contains Value in the first element.
4494 // The other elements don't matter.
4495 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4496                                    SDValue Value) {
4497   // If we have a constant, replicate it to all elements and let the
4498   // BUILD_VECTOR lowering take care of it.
4499   if (Value.getOpcode() == ISD::Constant ||
4500       Value.getOpcode() == ISD::ConstantFP) {
4501     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4502     return DAG.getBuildVector(VT, DL, Ops);
4503   }
4504   if (Value.isUndef())
4505     return DAG.getUNDEF(VT);
4506   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4507 }
4508 
4509 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4510 // element 1.  Used for cases in which replication is cheap.
4511 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4512                                  SDValue Op0, SDValue Op1) {
4513   if (Op0.isUndef()) {
4514     if (Op1.isUndef())
4515       return DAG.getUNDEF(VT);
4516     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4517   }
4518   if (Op1.isUndef())
4519     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4520   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4521                      buildScalarToVector(DAG, DL, VT, Op0),
4522                      buildScalarToVector(DAG, DL, VT, Op1));
4523 }
4524 
4525 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4526 // vector for them.
4527 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4528                           SDValue Op1) {
4529   if (Op0.isUndef() && Op1.isUndef())
4530     return DAG.getUNDEF(MVT::v2i64);
4531   // If one of the two inputs is undefined then replicate the other one,
4532   // in order to avoid using another register unnecessarily.
4533   if (Op0.isUndef())
4534     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4535   else if (Op1.isUndef())
4536     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4537   else {
4538     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4539     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4540   }
4541   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4542 }
4543 
4544 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4545 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4546 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4547 // would benefit from this representation and return it if so.
4548 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4549                                      BuildVectorSDNode *BVN) {
4550   EVT VT = BVN->getValueType(0);
4551   unsigned NumElements = VT.getVectorNumElements();
4552 
4553   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4554   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4555   // need a BUILD_VECTOR, add an additional placeholder operand for that
4556   // BUILD_VECTOR and store its operands in ResidueOps.
4557   GeneralShuffle GS(VT);
4558   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4559   bool FoundOne = false;
4560   for (unsigned I = 0; I < NumElements; ++I) {
4561     SDValue Op = BVN->getOperand(I);
4562     if (Op.getOpcode() == ISD::TRUNCATE)
4563       Op = Op.getOperand(0);
4564     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4565         Op.getOperand(1).getOpcode() == ISD::Constant) {
4566       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4567       if (!GS.add(Op.getOperand(0), Elem))
4568         return SDValue();
4569       FoundOne = true;
4570     } else if (Op.isUndef()) {
4571       GS.addUndef();
4572     } else {
4573       if (!GS.add(SDValue(), ResidueOps.size()))
4574         return SDValue();
4575       ResidueOps.push_back(BVN->getOperand(I));
4576     }
4577   }
4578 
4579   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4580   if (!FoundOne)
4581     return SDValue();
4582 
4583   // Create the BUILD_VECTOR for the remaining elements, if any.
4584   if (!ResidueOps.empty()) {
4585     while (ResidueOps.size() < NumElements)
4586       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4587     for (auto &Op : GS.Ops) {
4588       if (!Op.getNode()) {
4589         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4590         break;
4591       }
4592     }
4593   }
4594   return GS.getNode(DAG, SDLoc(BVN));
4595 }
4596 
4597 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4598   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4599     return true;
4600   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4601     return true;
4602   return false;
4603 }
4604 
4605 // Combine GPR scalar values Elems into a vector of type VT.
4606 SDValue
4607 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4608                                    SmallVectorImpl<SDValue> &Elems) const {
4609   // See whether there is a single replicated value.
4610   SDValue Single;
4611   unsigned int NumElements = Elems.size();
4612   unsigned int Count = 0;
4613   for (auto Elem : Elems) {
4614     if (!Elem.isUndef()) {
4615       if (!Single.getNode())
4616         Single = Elem;
4617       else if (Elem != Single) {
4618         Single = SDValue();
4619         break;
4620       }
4621       Count += 1;
4622     }
4623   }
4624   // There are three cases here:
4625   //
4626   // - if the only defined element is a loaded one, the best sequence
4627   //   is a replicating load.
4628   //
4629   // - otherwise, if the only defined element is an i64 value, we will
4630   //   end up with the same VLVGP sequence regardless of whether we short-cut
4631   //   for replication or fall through to the later code.
4632   //
4633   // - otherwise, if the only defined element is an i32 or smaller value,
4634   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4635   //   This is only a win if the single defined element is used more than once.
4636   //   In other cases we're better off using a single VLVGx.
4637   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4638     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4639 
4640   // If all elements are loads, use VLREP/VLEs (below).
4641   bool AllLoads = true;
4642   for (auto Elem : Elems)
4643     if (!isVectorElementLoad(Elem)) {
4644       AllLoads = false;
4645       break;
4646     }
4647 
4648   // The best way of building a v2i64 from two i64s is to use VLVGP.
4649   if (VT == MVT::v2i64 && !AllLoads)
4650     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4651 
4652   // Use a 64-bit merge high to combine two doubles.
4653   if (VT == MVT::v2f64 && !AllLoads)
4654     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4655 
4656   // Build v4f32 values directly from the FPRs:
4657   //
4658   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4659   //         V              V         VMRHF
4660   //      <ABxx>         <CDxx>
4661   //                V                 VMRHG
4662   //              <ABCD>
4663   if (VT == MVT::v4f32 && !AllLoads) {
4664     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4665     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4666     // Avoid unnecessary undefs by reusing the other operand.
4667     if (Op01.isUndef())
4668       Op01 = Op23;
4669     else if (Op23.isUndef())
4670       Op23 = Op01;
4671     // Merging identical replications is a no-op.
4672     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4673       return Op01;
4674     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4675     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4676     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4677                              DL, MVT::v2i64, Op01, Op23);
4678     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4679   }
4680 
4681   // Collect the constant terms.
4682   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4683   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4684 
4685   unsigned NumConstants = 0;
4686   for (unsigned I = 0; I < NumElements; ++I) {
4687     SDValue Elem = Elems[I];
4688     if (Elem.getOpcode() == ISD::Constant ||
4689         Elem.getOpcode() == ISD::ConstantFP) {
4690       NumConstants += 1;
4691       Constants[I] = Elem;
4692       Done[I] = true;
4693     }
4694   }
4695   // If there was at least one constant, fill in the other elements of
4696   // Constants with undefs to get a full vector constant and use that
4697   // as the starting point.
4698   SDValue Result;
4699   SDValue ReplicatedVal;
4700   if (NumConstants > 0) {
4701     for (unsigned I = 0; I < NumElements; ++I)
4702       if (!Constants[I].getNode())
4703         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4704     Result = DAG.getBuildVector(VT, DL, Constants);
4705   } else {
4706     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4707     // avoid a false dependency on any previous contents of the vector
4708     // register.
4709 
4710     // Use a VLREP if at least one element is a load. Make sure to replicate
4711     // the load with the most elements having its value.
4712     std::map<const SDNode*, unsigned> UseCounts;
4713     SDNode *LoadMaxUses = nullptr;
4714     for (unsigned I = 0; I < NumElements; ++I)
4715       if (isVectorElementLoad(Elems[I])) {
4716         SDNode *Ld = Elems[I].getNode();
4717         UseCounts[Ld]++;
4718         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4719           LoadMaxUses = Ld;
4720       }
4721     if (LoadMaxUses != nullptr) {
4722       ReplicatedVal = SDValue(LoadMaxUses, 0);
4723       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4724     } else {
4725       // Try to use VLVGP.
4726       unsigned I1 = NumElements / 2 - 1;
4727       unsigned I2 = NumElements - 1;
4728       bool Def1 = !Elems[I1].isUndef();
4729       bool Def2 = !Elems[I2].isUndef();
4730       if (Def1 || Def2) {
4731         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4732         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4733         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4734                              joinDwords(DAG, DL, Elem1, Elem2));
4735         Done[I1] = true;
4736         Done[I2] = true;
4737       } else
4738         Result = DAG.getUNDEF(VT);
4739     }
4740   }
4741 
4742   // Use VLVGx to insert the other elements.
4743   for (unsigned I = 0; I < NumElements; ++I)
4744     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4745       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4746                            DAG.getConstant(I, DL, MVT::i32));
4747   return Result;
4748 }
4749 
4750 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4751                                                  SelectionDAG &DAG) const {
4752   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4753   SDLoc DL(Op);
4754   EVT VT = Op.getValueType();
4755 
4756   if (BVN->isConstant()) {
4757     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4758       return Op;
4759 
4760     // Fall back to loading it from memory.
4761     return SDValue();
4762   }
4763 
4764   // See if we should use shuffles to construct the vector from other vectors.
4765   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4766     return Res;
4767 
4768   // Detect SCALAR_TO_VECTOR conversions.
4769   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4770     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4771 
4772   // Otherwise use buildVector to build the vector up from GPRs.
4773   unsigned NumElements = Op.getNumOperands();
4774   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4775   for (unsigned I = 0; I < NumElements; ++I)
4776     Ops[I] = Op.getOperand(I);
4777   return buildVector(DAG, DL, VT, Ops);
4778 }
4779 
4780 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4781                                                    SelectionDAG &DAG) const {
4782   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4783   SDLoc DL(Op);
4784   EVT VT = Op.getValueType();
4785   unsigned NumElements = VT.getVectorNumElements();
4786 
4787   if (VSN->isSplat()) {
4788     SDValue Op0 = Op.getOperand(0);
4789     unsigned Index = VSN->getSplatIndex();
4790     assert(Index < VT.getVectorNumElements() &&
4791            "Splat index should be defined and in first operand");
4792     // See whether the value we're splatting is directly available as a scalar.
4793     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4794         Op0.getOpcode() == ISD::BUILD_VECTOR)
4795       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4796     // Otherwise keep it as a vector-to-vector operation.
4797     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4798                        DAG.getTargetConstant(Index, DL, MVT::i32));
4799   }
4800 
4801   GeneralShuffle GS(VT);
4802   for (unsigned I = 0; I < NumElements; ++I) {
4803     int Elt = VSN->getMaskElt(I);
4804     if (Elt < 0)
4805       GS.addUndef();
4806     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4807                      unsigned(Elt) % NumElements))
4808       return SDValue();
4809   }
4810   return GS.getNode(DAG, SDLoc(VSN));
4811 }
4812 
4813 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4814                                                      SelectionDAG &DAG) const {
4815   SDLoc DL(Op);
4816   // Just insert the scalar into element 0 of an undefined vector.
4817   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4818                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4819                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4820 }
4821 
4822 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4823                                                       SelectionDAG &DAG) const {
4824   // Handle insertions of floating-point values.
4825   SDLoc DL(Op);
4826   SDValue Op0 = Op.getOperand(0);
4827   SDValue Op1 = Op.getOperand(1);
4828   SDValue Op2 = Op.getOperand(2);
4829   EVT VT = Op.getValueType();
4830 
4831   // Insertions into constant indices of a v2f64 can be done using VPDI.
4832   // However, if the inserted value is a bitcast or a constant then it's
4833   // better to use GPRs, as below.
4834   if (VT == MVT::v2f64 &&
4835       Op1.getOpcode() != ISD::BITCAST &&
4836       Op1.getOpcode() != ISD::ConstantFP &&
4837       Op2.getOpcode() == ISD::Constant) {
4838     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4839     unsigned Mask = VT.getVectorNumElements() - 1;
4840     if (Index <= Mask)
4841       return Op;
4842   }
4843 
4844   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4845   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4846   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4847   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4848                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4849                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4850   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4851 }
4852 
4853 SDValue
4854 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4855                                                SelectionDAG &DAG) const {
4856   // Handle extractions of floating-point values.
4857   SDLoc DL(Op);
4858   SDValue Op0 = Op.getOperand(0);
4859   SDValue Op1 = Op.getOperand(1);
4860   EVT VT = Op.getValueType();
4861   EVT VecVT = Op0.getValueType();
4862 
4863   // Extractions of constant indices can be done directly.
4864   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4865     uint64_t Index = CIndexN->getZExtValue();
4866     unsigned Mask = VecVT.getVectorNumElements() - 1;
4867     if (Index <= Mask)
4868       return Op;
4869   }
4870 
4871   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4872   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4873   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4874   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4875                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4876   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4877 }
4878 
4879 SDValue
4880 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4881                                               unsigned UnpackHigh) const {
4882   SDValue PackedOp = Op.getOperand(0);
4883   EVT OutVT = Op.getValueType();
4884   EVT InVT = PackedOp.getValueType();
4885   unsigned ToBits = OutVT.getScalarSizeInBits();
4886   unsigned FromBits = InVT.getScalarSizeInBits();
4887   do {
4888     FromBits *= 2;
4889     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4890                                  SystemZ::VectorBits / FromBits);
4891     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4892   } while (FromBits != ToBits);
4893   return PackedOp;
4894 }
4895 
4896 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4897                                           unsigned ByScalar) const {
4898   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4899   SDValue Op0 = Op.getOperand(0);
4900   SDValue Op1 = Op.getOperand(1);
4901   SDLoc DL(Op);
4902   EVT VT = Op.getValueType();
4903   unsigned ElemBitSize = VT.getScalarSizeInBits();
4904 
4905   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4906   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4907     APInt SplatBits, SplatUndef;
4908     unsigned SplatBitSize;
4909     bool HasAnyUndefs;
4910     // Check for constant splats.  Use ElemBitSize as the minimum element
4911     // width and reject splats that need wider elements.
4912     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4913                              ElemBitSize, true) &&
4914         SplatBitSize == ElemBitSize) {
4915       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4916                                       DL, MVT::i32);
4917       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4918     }
4919     // Check for variable splats.
4920     BitVector UndefElements;
4921     SDValue Splat = BVN->getSplatValue(&UndefElements);
4922     if (Splat) {
4923       // Since i32 is the smallest legal type, we either need a no-op
4924       // or a truncation.
4925       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4926       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4927     }
4928   }
4929 
4930   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4931   // and the shift amount is directly available in a GPR.
4932   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4933     if (VSN->isSplat()) {
4934       SDValue VSNOp0 = VSN->getOperand(0);
4935       unsigned Index = VSN->getSplatIndex();
4936       assert(Index < VT.getVectorNumElements() &&
4937              "Splat index should be defined and in first operand");
4938       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4939           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4940         // Since i32 is the smallest legal type, we either need a no-op
4941         // or a truncation.
4942         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4943                                     VSNOp0.getOperand(Index));
4944         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4945       }
4946     }
4947   }
4948 
4949   // Otherwise just treat the current form as legal.
4950   return Op;
4951 }
4952 
4953 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4954                                               SelectionDAG &DAG) const {
4955   switch (Op.getOpcode()) {
4956   case ISD::FRAMEADDR:
4957     return lowerFRAMEADDR(Op, DAG);
4958   case ISD::RETURNADDR:
4959     return lowerRETURNADDR(Op, DAG);
4960   case ISD::BR_CC:
4961     return lowerBR_CC(Op, DAG);
4962   case ISD::SELECT_CC:
4963     return lowerSELECT_CC(Op, DAG);
4964   case ISD::SETCC:
4965     return lowerSETCC(Op, DAG);
4966   case ISD::GlobalAddress:
4967     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4968   case ISD::GlobalTLSAddress:
4969     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4970   case ISD::BlockAddress:
4971     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4972   case ISD::JumpTable:
4973     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4974   case ISD::ConstantPool:
4975     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4976   case ISD::BITCAST:
4977     return lowerBITCAST(Op, DAG);
4978   case ISD::VASTART:
4979     return lowerVASTART(Op, DAG);
4980   case ISD::VACOPY:
4981     return lowerVACOPY(Op, DAG);
4982   case ISD::DYNAMIC_STACKALLOC:
4983     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4984   case ISD::GET_DYNAMIC_AREA_OFFSET:
4985     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4986   case ISD::SMUL_LOHI:
4987     return lowerSMUL_LOHI(Op, DAG);
4988   case ISD::UMUL_LOHI:
4989     return lowerUMUL_LOHI(Op, DAG);
4990   case ISD::SDIVREM:
4991     return lowerSDIVREM(Op, DAG);
4992   case ISD::UDIVREM:
4993     return lowerUDIVREM(Op, DAG);
4994   case ISD::SADDO:
4995   case ISD::SSUBO:
4996   case ISD::UADDO:
4997   case ISD::USUBO:
4998     return lowerXALUO(Op, DAG);
4999   case ISD::ADDCARRY:
5000   case ISD::SUBCARRY:
5001     return lowerADDSUBCARRY(Op, DAG);
5002   case ISD::OR:
5003     return lowerOR(Op, DAG);
5004   case ISD::CTPOP:
5005     return lowerCTPOP(Op, DAG);
5006   case ISD::ATOMIC_FENCE:
5007     return lowerATOMIC_FENCE(Op, DAG);
5008   case ISD::ATOMIC_SWAP:
5009     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5010   case ISD::ATOMIC_STORE:
5011     return lowerATOMIC_STORE(Op, DAG);
5012   case ISD::ATOMIC_LOAD:
5013     return lowerATOMIC_LOAD(Op, DAG);
5014   case ISD::ATOMIC_LOAD_ADD:
5015     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5016   case ISD::ATOMIC_LOAD_SUB:
5017     return lowerATOMIC_LOAD_SUB(Op, DAG);
5018   case ISD::ATOMIC_LOAD_AND:
5019     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5020   case ISD::ATOMIC_LOAD_OR:
5021     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5022   case ISD::ATOMIC_LOAD_XOR:
5023     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5024   case ISD::ATOMIC_LOAD_NAND:
5025     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5026   case ISD::ATOMIC_LOAD_MIN:
5027     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5028   case ISD::ATOMIC_LOAD_MAX:
5029     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5030   case ISD::ATOMIC_LOAD_UMIN:
5031     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5032   case ISD::ATOMIC_LOAD_UMAX:
5033     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5034   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5035     return lowerATOMIC_CMP_SWAP(Op, DAG);
5036   case ISD::STACKSAVE:
5037     return lowerSTACKSAVE(Op, DAG);
5038   case ISD::STACKRESTORE:
5039     return lowerSTACKRESTORE(Op, DAG);
5040   case ISD::PREFETCH:
5041     return lowerPREFETCH(Op, DAG);
5042   case ISD::INTRINSIC_W_CHAIN:
5043     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5044   case ISD::INTRINSIC_WO_CHAIN:
5045     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5046   case ISD::BUILD_VECTOR:
5047     return lowerBUILD_VECTOR(Op, DAG);
5048   case ISD::VECTOR_SHUFFLE:
5049     return lowerVECTOR_SHUFFLE(Op, DAG);
5050   case ISD::SCALAR_TO_VECTOR:
5051     return lowerSCALAR_TO_VECTOR(Op, DAG);
5052   case ISD::INSERT_VECTOR_ELT:
5053     return lowerINSERT_VECTOR_ELT(Op, DAG);
5054   case ISD::EXTRACT_VECTOR_ELT:
5055     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5056   case ISD::SIGN_EXTEND_VECTOR_INREG:
5057     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5058   case ISD::ZERO_EXTEND_VECTOR_INREG:
5059     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5060   case ISD::SHL:
5061     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5062   case ISD::SRL:
5063     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5064   case ISD::SRA:
5065     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5066   default:
5067     llvm_unreachable("Unexpected node to lower");
5068   }
5069 }
5070 
5071 // Lower operations with invalid operand or result types (currently used
5072 // only for 128-bit integer types).
5073 
5074 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5075   SDLoc DL(In);
5076   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5077                            DAG.getIntPtrConstant(0, DL));
5078   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5079                            DAG.getIntPtrConstant(1, DL));
5080   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5081                                     MVT::Untyped, Hi, Lo);
5082   return SDValue(Pair, 0);
5083 }
5084 
5085 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5086   SDLoc DL(In);
5087   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5088                                           DL, MVT::i64, In);
5089   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5090                                           DL, MVT::i64, In);
5091   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5092 }
5093 
5094 void
5095 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5096                                              SmallVectorImpl<SDValue> &Results,
5097                                              SelectionDAG &DAG) const {
5098   switch (N->getOpcode()) {
5099   case ISD::ATOMIC_LOAD: {
5100     SDLoc DL(N);
5101     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5102     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5103     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5104     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5105                                           DL, Tys, Ops, MVT::i128, MMO);
5106     Results.push_back(lowerGR128ToI128(DAG, Res));
5107     Results.push_back(Res.getValue(1));
5108     break;
5109   }
5110   case ISD::ATOMIC_STORE: {
5111     SDLoc DL(N);
5112     SDVTList Tys = DAG.getVTList(MVT::Other);
5113     SDValue Ops[] = { N->getOperand(0),
5114                       lowerI128ToGR128(DAG, N->getOperand(2)),
5115                       N->getOperand(1) };
5116     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5117     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5118                                           DL, Tys, Ops, MVT::i128, MMO);
5119     // We have to enforce sequential consistency by performing a
5120     // serialization operation after the store.
5121     if (cast<AtomicSDNode>(N)->getOrdering() ==
5122         AtomicOrdering::SequentiallyConsistent)
5123       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5124                                        MVT::Other, Res), 0);
5125     Results.push_back(Res);
5126     break;
5127   }
5128   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5129     SDLoc DL(N);
5130     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5131     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5132                       lowerI128ToGR128(DAG, N->getOperand(2)),
5133                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5134     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5135     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5136                                           DL, Tys, Ops, MVT::i128, MMO);
5137     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5138                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5139     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5140     Results.push_back(lowerGR128ToI128(DAG, Res));
5141     Results.push_back(Success);
5142     Results.push_back(Res.getValue(2));
5143     break;
5144   }
5145   default:
5146     llvm_unreachable("Unexpected node to lower");
5147   }
5148 }
5149 
5150 void
5151 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5152                                           SmallVectorImpl<SDValue> &Results,
5153                                           SelectionDAG &DAG) const {
5154   return LowerOperationWrapper(N, Results, DAG);
5155 }
5156 
5157 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5158 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5159   switch ((SystemZISD::NodeType)Opcode) {
5160     case SystemZISD::FIRST_NUMBER: break;
5161     OPCODE(RET_FLAG);
5162     OPCODE(CALL);
5163     OPCODE(SIBCALL);
5164     OPCODE(TLS_GDCALL);
5165     OPCODE(TLS_LDCALL);
5166     OPCODE(PCREL_WRAPPER);
5167     OPCODE(PCREL_OFFSET);
5168     OPCODE(IABS);
5169     OPCODE(ICMP);
5170     OPCODE(FCMP);
5171     OPCODE(TM);
5172     OPCODE(BR_CCMASK);
5173     OPCODE(SELECT_CCMASK);
5174     OPCODE(ADJDYNALLOC);
5175     OPCODE(POPCNT);
5176     OPCODE(SMUL_LOHI);
5177     OPCODE(UMUL_LOHI);
5178     OPCODE(SDIVREM);
5179     OPCODE(UDIVREM);
5180     OPCODE(SADDO);
5181     OPCODE(SSUBO);
5182     OPCODE(UADDO);
5183     OPCODE(USUBO);
5184     OPCODE(ADDCARRY);
5185     OPCODE(SUBCARRY);
5186     OPCODE(GET_CCMASK);
5187     OPCODE(MVC);
5188     OPCODE(MVC_LOOP);
5189     OPCODE(NC);
5190     OPCODE(NC_LOOP);
5191     OPCODE(OC);
5192     OPCODE(OC_LOOP);
5193     OPCODE(XC);
5194     OPCODE(XC_LOOP);
5195     OPCODE(CLC);
5196     OPCODE(CLC_LOOP);
5197     OPCODE(STPCPY);
5198     OPCODE(STRCMP);
5199     OPCODE(SEARCH_STRING);
5200     OPCODE(IPM);
5201     OPCODE(MEMBARRIER);
5202     OPCODE(TBEGIN);
5203     OPCODE(TBEGIN_NOFLOAT);
5204     OPCODE(TEND);
5205     OPCODE(BYTE_MASK);
5206     OPCODE(ROTATE_MASK);
5207     OPCODE(REPLICATE);
5208     OPCODE(JOIN_DWORDS);
5209     OPCODE(SPLAT);
5210     OPCODE(MERGE_HIGH);
5211     OPCODE(MERGE_LOW);
5212     OPCODE(SHL_DOUBLE);
5213     OPCODE(PERMUTE_DWORDS);
5214     OPCODE(PERMUTE);
5215     OPCODE(PACK);
5216     OPCODE(PACKS_CC);
5217     OPCODE(PACKLS_CC);
5218     OPCODE(UNPACK_HIGH);
5219     OPCODE(UNPACKL_HIGH);
5220     OPCODE(UNPACK_LOW);
5221     OPCODE(UNPACKL_LOW);
5222     OPCODE(VSHL_BY_SCALAR);
5223     OPCODE(VSRL_BY_SCALAR);
5224     OPCODE(VSRA_BY_SCALAR);
5225     OPCODE(VSUM);
5226     OPCODE(VICMPE);
5227     OPCODE(VICMPH);
5228     OPCODE(VICMPHL);
5229     OPCODE(VICMPES);
5230     OPCODE(VICMPHS);
5231     OPCODE(VICMPHLS);
5232     OPCODE(VFCMPE);
5233     OPCODE(VFCMPH);
5234     OPCODE(VFCMPHE);
5235     OPCODE(VFCMPES);
5236     OPCODE(VFCMPHS);
5237     OPCODE(VFCMPHES);
5238     OPCODE(VFTCI);
5239     OPCODE(VEXTEND);
5240     OPCODE(VROUND);
5241     OPCODE(VTM);
5242     OPCODE(VFAE_CC);
5243     OPCODE(VFAEZ_CC);
5244     OPCODE(VFEE_CC);
5245     OPCODE(VFEEZ_CC);
5246     OPCODE(VFENE_CC);
5247     OPCODE(VFENEZ_CC);
5248     OPCODE(VISTR_CC);
5249     OPCODE(VSTRC_CC);
5250     OPCODE(VSTRCZ_CC);
5251     OPCODE(VSTRS_CC);
5252     OPCODE(VSTRSZ_CC);
5253     OPCODE(TDC);
5254     OPCODE(ATOMIC_SWAPW);
5255     OPCODE(ATOMIC_LOADW_ADD);
5256     OPCODE(ATOMIC_LOADW_SUB);
5257     OPCODE(ATOMIC_LOADW_AND);
5258     OPCODE(ATOMIC_LOADW_OR);
5259     OPCODE(ATOMIC_LOADW_XOR);
5260     OPCODE(ATOMIC_LOADW_NAND);
5261     OPCODE(ATOMIC_LOADW_MIN);
5262     OPCODE(ATOMIC_LOADW_MAX);
5263     OPCODE(ATOMIC_LOADW_UMIN);
5264     OPCODE(ATOMIC_LOADW_UMAX);
5265     OPCODE(ATOMIC_CMP_SWAPW);
5266     OPCODE(ATOMIC_CMP_SWAP);
5267     OPCODE(ATOMIC_LOAD_128);
5268     OPCODE(ATOMIC_STORE_128);
5269     OPCODE(ATOMIC_CMP_SWAP_128);
5270     OPCODE(LRV);
5271     OPCODE(STRV);
5272     OPCODE(VLER);
5273     OPCODE(VSTER);
5274     OPCODE(PREFETCH);
5275   }
5276   return nullptr;
5277 #undef OPCODE
5278 }
5279 
5280 // Return true if VT is a vector whose elements are a whole number of bytes
5281 // in width. Also check for presence of vector support.
5282 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5283   if (!Subtarget.hasVector())
5284     return false;
5285 
5286   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5287 }
5288 
5289 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5290 // producing a result of type ResVT.  Op is a possibly bitcast version
5291 // of the input vector and Index is the index (based on type VecVT) that
5292 // should be extracted.  Return the new extraction if a simplification
5293 // was possible or if Force is true.
5294 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5295                                               EVT VecVT, SDValue Op,
5296                                               unsigned Index,
5297                                               DAGCombinerInfo &DCI,
5298                                               bool Force) const {
5299   SelectionDAG &DAG = DCI.DAG;
5300 
5301   // The number of bytes being extracted.
5302   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5303 
5304   for (;;) {
5305     unsigned Opcode = Op.getOpcode();
5306     if (Opcode == ISD::BITCAST)
5307       // Look through bitcasts.
5308       Op = Op.getOperand(0);
5309     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5310              canTreatAsByteVector(Op.getValueType())) {
5311       // Get a VPERM-like permute mask and see whether the bytes covered
5312       // by the extracted element are a contiguous sequence from one
5313       // source operand.
5314       SmallVector<int, SystemZ::VectorBytes> Bytes;
5315       if (!getVPermMask(Op, Bytes))
5316         break;
5317       int First;
5318       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5319                            BytesPerElement, First))
5320         break;
5321       if (First < 0)
5322         return DAG.getUNDEF(ResVT);
5323       // Make sure the contiguous sequence starts at a multiple of the
5324       // original element size.
5325       unsigned Byte = unsigned(First) % Bytes.size();
5326       if (Byte % BytesPerElement != 0)
5327         break;
5328       // We can get the extracted value directly from an input.
5329       Index = Byte / BytesPerElement;
5330       Op = Op.getOperand(unsigned(First) / Bytes.size());
5331       Force = true;
5332     } else if (Opcode == ISD::BUILD_VECTOR &&
5333                canTreatAsByteVector(Op.getValueType())) {
5334       // We can only optimize this case if the BUILD_VECTOR elements are
5335       // at least as wide as the extracted value.
5336       EVT OpVT = Op.getValueType();
5337       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5338       if (OpBytesPerElement < BytesPerElement)
5339         break;
5340       // Make sure that the least-significant bit of the extracted value
5341       // is the least significant bit of an input.
5342       unsigned End = (Index + 1) * BytesPerElement;
5343       if (End % OpBytesPerElement != 0)
5344         break;
5345       // We're extracting the low part of one operand of the BUILD_VECTOR.
5346       Op = Op.getOperand(End / OpBytesPerElement - 1);
5347       if (!Op.getValueType().isInteger()) {
5348         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5349         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5350         DCI.AddToWorklist(Op.getNode());
5351       }
5352       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5353       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5354       if (VT != ResVT) {
5355         DCI.AddToWorklist(Op.getNode());
5356         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5357       }
5358       return Op;
5359     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5360                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5361                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5362                canTreatAsByteVector(Op.getValueType()) &&
5363                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5364       // Make sure that only the unextended bits are significant.
5365       EVT ExtVT = Op.getValueType();
5366       EVT OpVT = Op.getOperand(0).getValueType();
5367       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5368       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5369       unsigned Byte = Index * BytesPerElement;
5370       unsigned SubByte = Byte % ExtBytesPerElement;
5371       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5372       if (SubByte < MinSubByte ||
5373           SubByte + BytesPerElement > ExtBytesPerElement)
5374         break;
5375       // Get the byte offset of the unextended element
5376       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5377       // ...then add the byte offset relative to that element.
5378       Byte += SubByte - MinSubByte;
5379       if (Byte % BytesPerElement != 0)
5380         break;
5381       Op = Op.getOperand(0);
5382       Index = Byte / BytesPerElement;
5383       Force = true;
5384     } else
5385       break;
5386   }
5387   if (Force) {
5388     if (Op.getValueType() != VecVT) {
5389       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5390       DCI.AddToWorklist(Op.getNode());
5391     }
5392     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5393                        DAG.getConstant(Index, DL, MVT::i32));
5394   }
5395   return SDValue();
5396 }
5397 
5398 // Optimize vector operations in scalar value Op on the basis that Op
5399 // is truncated to TruncVT.
5400 SDValue SystemZTargetLowering::combineTruncateExtract(
5401     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5402   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5403   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5404   // of type TruncVT.
5405   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5406       TruncVT.getSizeInBits() % 8 == 0) {
5407     SDValue Vec = Op.getOperand(0);
5408     EVT VecVT = Vec.getValueType();
5409     if (canTreatAsByteVector(VecVT)) {
5410       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5411         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5412         unsigned TruncBytes = TruncVT.getStoreSize();
5413         if (BytesPerElement % TruncBytes == 0) {
5414           // Calculate the value of Y' in the above description.  We are
5415           // splitting the original elements into Scale equal-sized pieces
5416           // and for truncation purposes want the last (least-significant)
5417           // of these pieces for IndexN.  This is easiest to do by calculating
5418           // the start index of the following element and then subtracting 1.
5419           unsigned Scale = BytesPerElement / TruncBytes;
5420           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5421 
5422           // Defer the creation of the bitcast from X to combineExtract,
5423           // which might be able to optimize the extraction.
5424           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5425                                    VecVT.getStoreSize() / TruncBytes);
5426           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5427           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5428         }
5429       }
5430     }
5431   }
5432   return SDValue();
5433 }
5434 
5435 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5436     SDNode *N, DAGCombinerInfo &DCI) const {
5437   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5438   SelectionDAG &DAG = DCI.DAG;
5439   SDValue N0 = N->getOperand(0);
5440   EVT VT = N->getValueType(0);
5441   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5442     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5443     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5444     if (TrueOp && FalseOp) {
5445       SDLoc DL(N0);
5446       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5447                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5448                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5449       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5450       // If N0 has multiple uses, change other uses as well.
5451       if (!N0.hasOneUse()) {
5452         SDValue TruncSelect =
5453           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5454         DCI.CombineTo(N0.getNode(), TruncSelect);
5455       }
5456       return NewSelect;
5457     }
5458   }
5459   return SDValue();
5460 }
5461 
5462 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5463     SDNode *N, DAGCombinerInfo &DCI) const {
5464   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5465   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5466   // into (select_cc LHS, RHS, -1, 0, COND)
5467   SelectionDAG &DAG = DCI.DAG;
5468   SDValue N0 = N->getOperand(0);
5469   EVT VT = N->getValueType(0);
5470   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5471   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5472     N0 = N0.getOperand(0);
5473   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5474     SDLoc DL(N0);
5475     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5476                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5477                       N0.getOperand(2) };
5478     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5479   }
5480   return SDValue();
5481 }
5482 
5483 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5484     SDNode *N, DAGCombinerInfo &DCI) const {
5485   // Convert (sext (ashr (shl X, C1), C2)) to
5486   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5487   // cheap as narrower ones.
5488   SelectionDAG &DAG = DCI.DAG;
5489   SDValue N0 = N->getOperand(0);
5490   EVT VT = N->getValueType(0);
5491   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5492     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5493     SDValue Inner = N0.getOperand(0);
5494     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5495       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5496         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5497         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5498         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5499         EVT ShiftVT = N0.getOperand(1).getValueType();
5500         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5501                                   Inner.getOperand(0));
5502         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5503                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5504                                                   ShiftVT));
5505         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5506                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5507       }
5508     }
5509   }
5510   return SDValue();
5511 }
5512 
5513 SDValue SystemZTargetLowering::combineMERGE(
5514     SDNode *N, DAGCombinerInfo &DCI) const {
5515   SelectionDAG &DAG = DCI.DAG;
5516   unsigned Opcode = N->getOpcode();
5517   SDValue Op0 = N->getOperand(0);
5518   SDValue Op1 = N->getOperand(1);
5519   if (Op0.getOpcode() == ISD::BITCAST)
5520     Op0 = Op0.getOperand(0);
5521   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5522     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5523     // for v4f32.
5524     if (Op1 == N->getOperand(0))
5525       return Op1;
5526     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5527     EVT VT = Op1.getValueType();
5528     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5529     if (ElemBytes <= 4) {
5530       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5531                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5532       EVT InVT = VT.changeVectorElementTypeToInteger();
5533       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5534                                    SystemZ::VectorBytes / ElemBytes / 2);
5535       if (VT != InVT) {
5536         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5537         DCI.AddToWorklist(Op1.getNode());
5538       }
5539       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5540       DCI.AddToWorklist(Op.getNode());
5541       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5542     }
5543   }
5544   return SDValue();
5545 }
5546 
5547 SDValue SystemZTargetLowering::combineLOAD(
5548     SDNode *N, DAGCombinerInfo &DCI) const {
5549   SelectionDAG &DAG = DCI.DAG;
5550   EVT LdVT = N->getValueType(0);
5551   if (LdVT.isVector() || LdVT.isInteger())
5552     return SDValue();
5553   // Transform a scalar load that is REPLICATEd as well as having other
5554   // use(s) to the form where the other use(s) use the first element of the
5555   // REPLICATE instead of the load. Otherwise instruction selection will not
5556   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5557   // point loads.
5558 
5559   SDValue Replicate;
5560   SmallVector<SDNode*, 8> OtherUses;
5561   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5562        UI != UE; ++UI) {
5563     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5564       if (Replicate)
5565         return SDValue(); // Should never happen
5566       Replicate = SDValue(*UI, 0);
5567     }
5568     else if (UI.getUse().getResNo() == 0)
5569       OtherUses.push_back(*UI);
5570   }
5571   if (!Replicate || OtherUses.empty())
5572     return SDValue();
5573 
5574   SDLoc DL(N);
5575   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5576                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5577   // Update uses of the loaded Value while preserving old chains.
5578   for (SDNode *U : OtherUses) {
5579     SmallVector<SDValue, 8> Ops;
5580     for (SDValue Op : U->ops())
5581       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5582     DAG.UpdateNodeOperands(U, Ops);
5583   }
5584   return SDValue(N, 0);
5585 }
5586 
5587 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5588   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5589     return true;
5590   if (Subtarget.hasVectorEnhancements2())
5591     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5592       return true;
5593   return false;
5594 }
5595 
5596 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5597   if (!VT.isVector() || !VT.isSimple() ||
5598       VT.getSizeInBits() != 128 ||
5599       VT.getScalarSizeInBits() % 8 != 0)
5600     return false;
5601 
5602   unsigned NumElts = VT.getVectorNumElements();
5603   for (unsigned i = 0; i < NumElts; ++i) {
5604     if (M[i] < 0) continue; // ignore UNDEF indices
5605     if ((unsigned) M[i] != NumElts - 1 - i)
5606       return false;
5607   }
5608 
5609   return true;
5610 }
5611 
5612 SDValue SystemZTargetLowering::combineSTORE(
5613     SDNode *N, DAGCombinerInfo &DCI) const {
5614   SelectionDAG &DAG = DCI.DAG;
5615   auto *SN = cast<StoreSDNode>(N);
5616   auto &Op1 = N->getOperand(1);
5617   EVT MemVT = SN->getMemoryVT();
5618   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5619   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5620   // If X has wider elements then convert it to:
5621   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5622   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5623     if (SDValue Value =
5624             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5625       DCI.AddToWorklist(Value.getNode());
5626 
5627       // Rewrite the store with the new form of stored value.
5628       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5629                                SN->getBasePtr(), SN->getMemoryVT(),
5630                                SN->getMemOperand());
5631     }
5632   }
5633   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5634   if (!SN->isTruncatingStore() &&
5635       Op1.getOpcode() == ISD::BSWAP &&
5636       Op1.getNode()->hasOneUse() &&
5637       canLoadStoreByteSwapped(Op1.getValueType())) {
5638 
5639       SDValue BSwapOp = Op1.getOperand(0);
5640 
5641       if (BSwapOp.getValueType() == MVT::i16)
5642         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5643 
5644       SDValue Ops[] = {
5645         N->getOperand(0), BSwapOp, N->getOperand(2)
5646       };
5647 
5648       return
5649         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5650                                 Ops, MemVT, SN->getMemOperand());
5651     }
5652   // Combine STORE (element-swap) into VSTER
5653   if (!SN->isTruncatingStore() &&
5654       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5655       Op1.getNode()->hasOneUse() &&
5656       Subtarget.hasVectorEnhancements2()) {
5657     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5658     ArrayRef<int> ShuffleMask = SVN->getMask();
5659     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5660       SDValue Ops[] = {
5661         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5662       };
5663 
5664       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5665                                      DAG.getVTList(MVT::Other),
5666                                      Ops, MemVT, SN->getMemOperand());
5667     }
5668   }
5669 
5670   return SDValue();
5671 }
5672 
5673 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5674     SDNode *N, DAGCombinerInfo &DCI) const {
5675   SelectionDAG &DAG = DCI.DAG;
5676   // Combine element-swap (LOAD) into VLER
5677   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5678       N->getOperand(0).hasOneUse() &&
5679       Subtarget.hasVectorEnhancements2()) {
5680     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5681     ArrayRef<int> ShuffleMask = SVN->getMask();
5682     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5683       SDValue Load = N->getOperand(0);
5684       LoadSDNode *LD = cast<LoadSDNode>(Load);
5685 
5686       // Create the element-swapping load.
5687       SDValue Ops[] = {
5688         LD->getChain(),    // Chain
5689         LD->getBasePtr()   // Ptr
5690       };
5691       SDValue ESLoad =
5692         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5693                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
5694                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5695 
5696       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5697       // by the load dead.
5698       DCI.CombineTo(N, ESLoad);
5699 
5700       // Next, combine the load away, we give it a bogus result value but a real
5701       // chain result.  The result value is dead because the shuffle is dead.
5702       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5703 
5704       // Return N so it doesn't get rechecked!
5705       return SDValue(N, 0);
5706     }
5707   }
5708 
5709   return SDValue();
5710 }
5711 
5712 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5713     SDNode *N, DAGCombinerInfo &DCI) const {
5714   SelectionDAG &DAG = DCI.DAG;
5715 
5716   if (!Subtarget.hasVector())
5717     return SDValue();
5718 
5719   // Look through bitcasts that retain the number of vector elements.
5720   SDValue Op = N->getOperand(0);
5721   if (Op.getOpcode() == ISD::BITCAST &&
5722       Op.getValueType().isVector() &&
5723       Op.getOperand(0).getValueType().isVector() &&
5724       Op.getValueType().getVectorNumElements() ==
5725       Op.getOperand(0).getValueType().getVectorNumElements())
5726     Op = Op.getOperand(0);
5727 
5728   // Pull BSWAP out of a vector extraction.
5729   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5730     EVT VecVT = Op.getValueType();
5731     EVT EltVT = VecVT.getVectorElementType();
5732     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5733                      Op.getOperand(0), N->getOperand(1));
5734     DCI.AddToWorklist(Op.getNode());
5735     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5736     if (EltVT != N->getValueType(0)) {
5737       DCI.AddToWorklist(Op.getNode());
5738       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5739     }
5740     return Op;
5741   }
5742 
5743   // Try to simplify a vector extraction.
5744   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5745     SDValue Op0 = N->getOperand(0);
5746     EVT VecVT = Op0.getValueType();
5747     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5748                           IndexN->getZExtValue(), DCI, false);
5749   }
5750   return SDValue();
5751 }
5752 
5753 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5754     SDNode *N, DAGCombinerInfo &DCI) const {
5755   SelectionDAG &DAG = DCI.DAG;
5756   // (join_dwords X, X) == (replicate X)
5757   if (N->getOperand(0) == N->getOperand(1))
5758     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5759                        N->getOperand(0));
5760   return SDValue();
5761 }
5762 
5763 SDValue SystemZTargetLowering::combineFP_ROUND(
5764     SDNode *N, DAGCombinerInfo &DCI) const {
5765 
5766   if (!Subtarget.hasVector())
5767     return SDValue();
5768 
5769   // (fpround (extract_vector_elt X 0))
5770   // (fpround (extract_vector_elt X 1)) ->
5771   // (extract_vector_elt (VROUND X) 0)
5772   // (extract_vector_elt (VROUND X) 2)
5773   //
5774   // This is a special case since the target doesn't really support v2f32s.
5775   SelectionDAG &DAG = DCI.DAG;
5776   SDValue Op0 = N->getOperand(0);
5777   if (N->getValueType(0) == MVT::f32 &&
5778       Op0.hasOneUse() &&
5779       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5780       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5781       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5782       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5783     SDValue Vec = Op0.getOperand(0);
5784     for (auto *U : Vec->uses()) {
5785       if (U != Op0.getNode() &&
5786           U->hasOneUse() &&
5787           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5788           U->getOperand(0) == Vec &&
5789           U->getOperand(1).getOpcode() == ISD::Constant &&
5790           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5791         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5792         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5793             OtherRound.getOperand(0) == SDValue(U, 0) &&
5794             OtherRound.getValueType() == MVT::f32) {
5795           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5796                                        MVT::v4f32, Vec);
5797           DCI.AddToWorklist(VRound.getNode());
5798           SDValue Extract1 =
5799             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5800                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5801           DCI.AddToWorklist(Extract1.getNode());
5802           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5803           SDValue Extract0 =
5804             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5805                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5806           return Extract0;
5807         }
5808       }
5809     }
5810   }
5811   return SDValue();
5812 }
5813 
5814 SDValue SystemZTargetLowering::combineFP_EXTEND(
5815     SDNode *N, DAGCombinerInfo &DCI) const {
5816 
5817   if (!Subtarget.hasVector())
5818     return SDValue();
5819 
5820   // (fpextend (extract_vector_elt X 0))
5821   // (fpextend (extract_vector_elt X 2)) ->
5822   // (extract_vector_elt (VEXTEND X) 0)
5823   // (extract_vector_elt (VEXTEND X) 1)
5824   //
5825   // This is a special case since the target doesn't really support v2f32s.
5826   SelectionDAG &DAG = DCI.DAG;
5827   SDValue Op0 = N->getOperand(0);
5828   if (N->getValueType(0) == MVT::f64 &&
5829       Op0.hasOneUse() &&
5830       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5831       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
5832       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5833       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5834     SDValue Vec = Op0.getOperand(0);
5835     for (auto *U : Vec->uses()) {
5836       if (U != Op0.getNode() &&
5837           U->hasOneUse() &&
5838           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5839           U->getOperand(0) == Vec &&
5840           U->getOperand(1).getOpcode() == ISD::Constant &&
5841           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
5842         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
5843         if (OtherExtend.getOpcode() == ISD::FP_EXTEND &&
5844             OtherExtend.getOperand(0) == SDValue(U, 0) &&
5845             OtherExtend.getValueType() == MVT::f64) {
5846           SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
5847                                         MVT::v2f64, Vec);
5848           DCI.AddToWorklist(VExtend.getNode());
5849           SDValue Extract1 =
5850             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
5851                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
5852           DCI.AddToWorklist(Extract1.getNode());
5853           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
5854           SDValue Extract0 =
5855             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
5856                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5857           return Extract0;
5858         }
5859       }
5860     }
5861   }
5862   return SDValue();
5863 }
5864 
5865 SDValue SystemZTargetLowering::combineBSWAP(
5866     SDNode *N, DAGCombinerInfo &DCI) const {
5867   SelectionDAG &DAG = DCI.DAG;
5868   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
5869   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5870       N->getOperand(0).hasOneUse() &&
5871       canLoadStoreByteSwapped(N->getValueType(0))) {
5872       SDValue Load = N->getOperand(0);
5873       LoadSDNode *LD = cast<LoadSDNode>(Load);
5874 
5875       // Create the byte-swapping load.
5876       SDValue Ops[] = {
5877         LD->getChain(),    // Chain
5878         LD->getBasePtr()   // Ptr
5879       };
5880       EVT LoadVT = N->getValueType(0);
5881       if (LoadVT == MVT::i16)
5882         LoadVT = MVT::i32;
5883       SDValue BSLoad =
5884         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5885                                 DAG.getVTList(LoadVT, MVT::Other),
5886                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5887 
5888       // If this is an i16 load, insert the truncate.
5889       SDValue ResVal = BSLoad;
5890       if (N->getValueType(0) == MVT::i16)
5891         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5892 
5893       // First, combine the bswap away.  This makes the value produced by the
5894       // load dead.
5895       DCI.CombineTo(N, ResVal);
5896 
5897       // Next, combine the load away, we give it a bogus result value but a real
5898       // chain result.  The result value is dead because the bswap is dead.
5899       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5900 
5901       // Return N so it doesn't get rechecked!
5902       return SDValue(N, 0);
5903     }
5904 
5905   // Look through bitcasts that retain the number of vector elements.
5906   SDValue Op = N->getOperand(0);
5907   if (Op.getOpcode() == ISD::BITCAST &&
5908       Op.getValueType().isVector() &&
5909       Op.getOperand(0).getValueType().isVector() &&
5910       Op.getValueType().getVectorNumElements() ==
5911       Op.getOperand(0).getValueType().getVectorNumElements())
5912     Op = Op.getOperand(0);
5913 
5914   // Push BSWAP into a vector insertion if at least one side then simplifies.
5915   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
5916     SDValue Vec = Op.getOperand(0);
5917     SDValue Elt = Op.getOperand(1);
5918     SDValue Idx = Op.getOperand(2);
5919 
5920     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
5921         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
5922         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
5923         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
5924         (canLoadStoreByteSwapped(N->getValueType(0)) &&
5925          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
5926       EVT VecVT = N->getValueType(0);
5927       EVT EltVT = N->getValueType(0).getVectorElementType();
5928       if (VecVT != Vec.getValueType()) {
5929         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
5930         DCI.AddToWorklist(Vec.getNode());
5931       }
5932       if (EltVT != Elt.getValueType()) {
5933         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
5934         DCI.AddToWorklist(Elt.getNode());
5935       }
5936       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
5937       DCI.AddToWorklist(Vec.getNode());
5938       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
5939       DCI.AddToWorklist(Elt.getNode());
5940       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
5941                          Vec, Elt, Idx);
5942     }
5943   }
5944 
5945   // Push BSWAP into a vector shuffle if at least one side then simplifies.
5946   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
5947   if (SV && Op.hasOneUse()) {
5948     SDValue Op0 = Op.getOperand(0);
5949     SDValue Op1 = Op.getOperand(1);
5950 
5951     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
5952         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
5953         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
5954         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
5955       EVT VecVT = N->getValueType(0);
5956       if (VecVT != Op0.getValueType()) {
5957         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
5958         DCI.AddToWorklist(Op0.getNode());
5959       }
5960       if (VecVT != Op1.getValueType()) {
5961         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
5962         DCI.AddToWorklist(Op1.getNode());
5963       }
5964       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
5965       DCI.AddToWorklist(Op0.getNode());
5966       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
5967       DCI.AddToWorklist(Op1.getNode());
5968       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
5969     }
5970   }
5971 
5972   return SDValue();
5973 }
5974 
5975 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5976   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5977   // set by the CCReg instruction using the CCValid / CCMask masks,
5978   // If the CCReg instruction is itself a ICMP testing the condition
5979   // code set by some other instruction, see whether we can directly
5980   // use that condition code.
5981 
5982   // Verify that we have an ICMP against some constant.
5983   if (CCValid != SystemZ::CCMASK_ICMP)
5984     return false;
5985   auto *ICmp = CCReg.getNode();
5986   if (ICmp->getOpcode() != SystemZISD::ICMP)
5987     return false;
5988   auto *CompareLHS = ICmp->getOperand(0).getNode();
5989   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5990   if (!CompareRHS)
5991     return false;
5992 
5993   // Optimize the case where CompareLHS is a SELECT_CCMASK.
5994   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
5995     // Verify that we have an appropriate mask for a EQ or NE comparison.
5996     bool Invert = false;
5997     if (CCMask == SystemZ::CCMASK_CMP_NE)
5998       Invert = !Invert;
5999     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6000       return false;
6001 
6002     // Verify that the ICMP compares against one of select values.
6003     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6004     if (!TrueVal)
6005       return false;
6006     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6007     if (!FalseVal)
6008       return false;
6009     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6010       Invert = !Invert;
6011     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6012       return false;
6013 
6014     // Compute the effective CC mask for the new branch or select.
6015     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6016     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6017     if (!NewCCValid || !NewCCMask)
6018       return false;
6019     CCValid = NewCCValid->getZExtValue();
6020     CCMask = NewCCMask->getZExtValue();
6021     if (Invert)
6022       CCMask ^= CCValid;
6023 
6024     // Return the updated CCReg link.
6025     CCReg = CompareLHS->getOperand(4);
6026     return true;
6027   }
6028 
6029   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6030   if (CompareLHS->getOpcode() == ISD::SRA) {
6031     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6032     if (!SRACount || SRACount->getZExtValue() != 30)
6033       return false;
6034     auto *SHL = CompareLHS->getOperand(0).getNode();
6035     if (SHL->getOpcode() != ISD::SHL)
6036       return false;
6037     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6038     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6039       return false;
6040     auto *IPM = SHL->getOperand(0).getNode();
6041     if (IPM->getOpcode() != SystemZISD::IPM)
6042       return false;
6043 
6044     // Avoid introducing CC spills (because SRA would clobber CC).
6045     if (!CompareLHS->hasOneUse())
6046       return false;
6047     // Verify that the ICMP compares against zero.
6048     if (CompareRHS->getZExtValue() != 0)
6049       return false;
6050 
6051     // Compute the effective CC mask for the new branch or select.
6052     switch (CCMask) {
6053     case SystemZ::CCMASK_CMP_EQ: break;
6054     case SystemZ::CCMASK_CMP_NE: break;
6055     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6056     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6057     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6058     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6059     default: return false;
6060     }
6061 
6062     // Return the updated CCReg link.
6063     CCReg = IPM->getOperand(0);
6064     return true;
6065   }
6066 
6067   return false;
6068 }
6069 
6070 SDValue SystemZTargetLowering::combineBR_CCMASK(
6071     SDNode *N, DAGCombinerInfo &DCI) const {
6072   SelectionDAG &DAG = DCI.DAG;
6073 
6074   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6075   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6076   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6077   if (!CCValid || !CCMask)
6078     return SDValue();
6079 
6080   int CCValidVal = CCValid->getZExtValue();
6081   int CCMaskVal = CCMask->getZExtValue();
6082   SDValue Chain = N->getOperand(0);
6083   SDValue CCReg = N->getOperand(4);
6084 
6085   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6086     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6087                        Chain,
6088                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6089                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6090                        N->getOperand(3), CCReg);
6091   return SDValue();
6092 }
6093 
6094 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6095     SDNode *N, DAGCombinerInfo &DCI) const {
6096   SelectionDAG &DAG = DCI.DAG;
6097 
6098   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6099   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6100   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6101   if (!CCValid || !CCMask)
6102     return SDValue();
6103 
6104   int CCValidVal = CCValid->getZExtValue();
6105   int CCMaskVal = CCMask->getZExtValue();
6106   SDValue CCReg = N->getOperand(4);
6107 
6108   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6109     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6110                        N->getOperand(0), N->getOperand(1),
6111                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6112                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6113                        CCReg);
6114   return SDValue();
6115 }
6116 
6117 
6118 SDValue SystemZTargetLowering::combineGET_CCMASK(
6119     SDNode *N, DAGCombinerInfo &DCI) const {
6120 
6121   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6122   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6123   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6124   if (!CCValid || !CCMask)
6125     return SDValue();
6126   int CCValidVal = CCValid->getZExtValue();
6127   int CCMaskVal = CCMask->getZExtValue();
6128 
6129   SDValue Select = N->getOperand(0);
6130   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6131     return SDValue();
6132 
6133   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6134   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6135   if (!SelectCCValid || !SelectCCMask)
6136     return SDValue();
6137   int SelectCCValidVal = SelectCCValid->getZExtValue();
6138   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6139 
6140   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6141   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6142   if (!TrueVal || !FalseVal)
6143     return SDValue();
6144   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6145     ;
6146   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6147     SelectCCMaskVal ^= SelectCCValidVal;
6148   else
6149     return SDValue();
6150 
6151   if (SelectCCValidVal & ~CCValidVal)
6152     return SDValue();
6153   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6154     return SDValue();
6155 
6156   return Select->getOperand(4);
6157 }
6158 
6159 SDValue SystemZTargetLowering::combineIntDIVREM(
6160     SDNode *N, DAGCombinerInfo &DCI) const {
6161   SelectionDAG &DAG = DCI.DAG;
6162   EVT VT = N->getValueType(0);
6163   // In the case where the divisor is a vector of constants a cheaper
6164   // sequence of instructions can replace the divide. BuildSDIV is called to
6165   // do this during DAG combining, but it only succeeds when it can build a
6166   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6167   // since it is not Legal but Custom it can only happen before
6168   // legalization. Therefore we must scalarize this early before Combine
6169   // 1. For widened vectors, this is already the result of type legalization.
6170   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6171       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6172     return DAG.UnrollVectorOp(N);
6173   return SDValue();
6174 }
6175 
6176 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6177   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6178     return N->getOperand(0);
6179   return N;
6180 }
6181 
6182 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6183                                                  DAGCombinerInfo &DCI) const {
6184   switch(N->getOpcode()) {
6185   default: break;
6186   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6187   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6188   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6189   case SystemZISD::MERGE_HIGH:
6190   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6191   case ISD::LOAD:               return combineLOAD(N, DCI);
6192   case ISD::STORE:              return combineSTORE(N, DCI);
6193   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6194   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6195   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6196   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6197   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6198   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6199   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6200   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6201   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6202   case ISD::SDIV:
6203   case ISD::UDIV:
6204   case ISD::SREM:
6205   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6206   }
6207 
6208   return SDValue();
6209 }
6210 
6211 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6212 // are for Op.
6213 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6214                                     unsigned OpNo) {
6215   EVT VT = Op.getValueType();
6216   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6217   APInt SrcDemE;
6218   unsigned Opcode = Op.getOpcode();
6219   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6220     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6221     switch (Id) {
6222     case Intrinsic::s390_vpksh:   // PACKS
6223     case Intrinsic::s390_vpksf:
6224     case Intrinsic::s390_vpksg:
6225     case Intrinsic::s390_vpkshs:  // PACKS_CC
6226     case Intrinsic::s390_vpksfs:
6227     case Intrinsic::s390_vpksgs:
6228     case Intrinsic::s390_vpklsh:  // PACKLS
6229     case Intrinsic::s390_vpklsf:
6230     case Intrinsic::s390_vpklsg:
6231     case Intrinsic::s390_vpklshs: // PACKLS_CC
6232     case Intrinsic::s390_vpklsfs:
6233     case Intrinsic::s390_vpklsgs:
6234       // VECTOR PACK truncates the elements of two source vectors into one.
6235       SrcDemE = DemandedElts;
6236       if (OpNo == 2)
6237         SrcDemE.lshrInPlace(NumElts / 2);
6238       SrcDemE = SrcDemE.trunc(NumElts / 2);
6239       break;
6240       // VECTOR UNPACK extends half the elements of the source vector.
6241     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6242     case Intrinsic::s390_vuphh:
6243     case Intrinsic::s390_vuphf:
6244     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6245     case Intrinsic::s390_vuplhh:
6246     case Intrinsic::s390_vuplhf:
6247       SrcDemE = APInt(NumElts * 2, 0);
6248       SrcDemE.insertBits(DemandedElts, 0);
6249       break;
6250     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6251     case Intrinsic::s390_vuplhw:
6252     case Intrinsic::s390_vuplf:
6253     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6254     case Intrinsic::s390_vupllh:
6255     case Intrinsic::s390_vupllf:
6256       SrcDemE = APInt(NumElts * 2, 0);
6257       SrcDemE.insertBits(DemandedElts, NumElts);
6258       break;
6259     case Intrinsic::s390_vpdi: {
6260       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6261       SrcDemE = APInt(NumElts, 0);
6262       if (!DemandedElts[OpNo - 1])
6263         break;
6264       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6265       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6266       // Demand input element 0 or 1, given by the mask bit value.
6267       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6268       break;
6269     }
6270     case Intrinsic::s390_vsldb: {
6271       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6272       assert(VT == MVT::v16i8 && "Unexpected type.");
6273       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6274       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6275       unsigned NumSrc0Els = 16 - FirstIdx;
6276       SrcDemE = APInt(NumElts, 0);
6277       if (OpNo == 1) {
6278         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6279         SrcDemE.insertBits(DemEls, FirstIdx);
6280       } else {
6281         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6282         SrcDemE.insertBits(DemEls, 0);
6283       }
6284       break;
6285     }
6286     case Intrinsic::s390_vperm:
6287       SrcDemE = APInt(NumElts, 1);
6288       break;
6289     default:
6290       llvm_unreachable("Unhandled intrinsic.");
6291       break;
6292     }
6293   } else {
6294     switch (Opcode) {
6295     case SystemZISD::JOIN_DWORDS:
6296       // Scalar operand.
6297       SrcDemE = APInt(1, 1);
6298       break;
6299     case SystemZISD::SELECT_CCMASK:
6300       SrcDemE = DemandedElts;
6301       break;
6302     default:
6303       llvm_unreachable("Unhandled opcode.");
6304       break;
6305     }
6306   }
6307   return SrcDemE;
6308 }
6309 
6310 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6311                                   const APInt &DemandedElts,
6312                                   const SelectionDAG &DAG, unsigned Depth,
6313                                   unsigned OpNo) {
6314   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6315   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6316   KnownBits LHSKnown =
6317       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6318   KnownBits RHSKnown =
6319       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6320   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6321   Known.One = LHSKnown.One & RHSKnown.One;
6322 }
6323 
6324 void
6325 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6326                                                      KnownBits &Known,
6327                                                      const APInt &DemandedElts,
6328                                                      const SelectionDAG &DAG,
6329                                                      unsigned Depth) const {
6330   Known.resetAll();
6331 
6332   // Intrinsic CC result is returned in the two low bits.
6333   unsigned tmp0, tmp1; // not used
6334   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6335     Known.Zero.setBitsFrom(2);
6336     return;
6337   }
6338   EVT VT = Op.getValueType();
6339   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6340     return;
6341   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6342           "KnownBits does not match VT in bitwidth");
6343   assert ((!VT.isVector() ||
6344            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6345           "DemandedElts does not match VT number of elements");
6346   unsigned BitWidth = Known.getBitWidth();
6347   unsigned Opcode = Op.getOpcode();
6348   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6349     bool IsLogical = false;
6350     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6351     switch (Id) {
6352     case Intrinsic::s390_vpksh:   // PACKS
6353     case Intrinsic::s390_vpksf:
6354     case Intrinsic::s390_vpksg:
6355     case Intrinsic::s390_vpkshs:  // PACKS_CC
6356     case Intrinsic::s390_vpksfs:
6357     case Intrinsic::s390_vpksgs:
6358     case Intrinsic::s390_vpklsh:  // PACKLS
6359     case Intrinsic::s390_vpklsf:
6360     case Intrinsic::s390_vpklsg:
6361     case Intrinsic::s390_vpklshs: // PACKLS_CC
6362     case Intrinsic::s390_vpklsfs:
6363     case Intrinsic::s390_vpklsgs:
6364     case Intrinsic::s390_vpdi:
6365     case Intrinsic::s390_vsldb:
6366     case Intrinsic::s390_vperm:
6367       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6368       break;
6369     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6370     case Intrinsic::s390_vuplhh:
6371     case Intrinsic::s390_vuplhf:
6372     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6373     case Intrinsic::s390_vupllh:
6374     case Intrinsic::s390_vupllf:
6375       IsLogical = true;
6376       LLVM_FALLTHROUGH;
6377     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6378     case Intrinsic::s390_vuphh:
6379     case Intrinsic::s390_vuphf:
6380     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6381     case Intrinsic::s390_vuplhw:
6382     case Intrinsic::s390_vuplf: {
6383       SDValue SrcOp = Op.getOperand(1);
6384       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6385       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6386       if (IsLogical) {
6387         Known = Known.zext(BitWidth, true);
6388       } else
6389         Known = Known.sext(BitWidth);
6390       break;
6391     }
6392     default:
6393       break;
6394     }
6395   } else {
6396     switch (Opcode) {
6397     case SystemZISD::JOIN_DWORDS:
6398     case SystemZISD::SELECT_CCMASK:
6399       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6400       break;
6401     case SystemZISD::REPLICATE: {
6402       SDValue SrcOp = Op.getOperand(0);
6403       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6404       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6405         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6406       break;
6407     }
6408     default:
6409       break;
6410     }
6411   }
6412 
6413   // Known has the width of the source operand(s). Adjust if needed to match
6414   // the passed bitwidth.
6415   if (Known.getBitWidth() != BitWidth)
6416     Known = Known.zextOrTrunc(BitWidth, false);
6417 }
6418 
6419 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6420                                         const SelectionDAG &DAG, unsigned Depth,
6421                                         unsigned OpNo) {
6422   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6423   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6424   if (LHS == 1) return 1; // Early out.
6425   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6426   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6427   if (RHS == 1) return 1; // Early out.
6428   unsigned Common = std::min(LHS, RHS);
6429   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6430   EVT VT = Op.getValueType();
6431   unsigned VTBits = VT.getScalarSizeInBits();
6432   if (SrcBitWidth > VTBits) { // PACK
6433     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6434     if (Common > SrcExtraBits)
6435       return (Common - SrcExtraBits);
6436     return 1;
6437   }
6438   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6439   return Common;
6440 }
6441 
6442 unsigned
6443 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6444     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6445     unsigned Depth) const {
6446   if (Op.getResNo() != 0)
6447     return 1;
6448   unsigned Opcode = Op.getOpcode();
6449   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6450     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6451     switch (Id) {
6452     case Intrinsic::s390_vpksh:   // PACKS
6453     case Intrinsic::s390_vpksf:
6454     case Intrinsic::s390_vpksg:
6455     case Intrinsic::s390_vpkshs:  // PACKS_CC
6456     case Intrinsic::s390_vpksfs:
6457     case Intrinsic::s390_vpksgs:
6458     case Intrinsic::s390_vpklsh:  // PACKLS
6459     case Intrinsic::s390_vpklsf:
6460     case Intrinsic::s390_vpklsg:
6461     case Intrinsic::s390_vpklshs: // PACKLS_CC
6462     case Intrinsic::s390_vpklsfs:
6463     case Intrinsic::s390_vpklsgs:
6464     case Intrinsic::s390_vpdi:
6465     case Intrinsic::s390_vsldb:
6466     case Intrinsic::s390_vperm:
6467       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6468     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6469     case Intrinsic::s390_vuphh:
6470     case Intrinsic::s390_vuphf:
6471     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6472     case Intrinsic::s390_vuplhw:
6473     case Intrinsic::s390_vuplf: {
6474       SDValue PackedOp = Op.getOperand(1);
6475       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6476       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6477       EVT VT = Op.getValueType();
6478       unsigned VTBits = VT.getScalarSizeInBits();
6479       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6480       return Tmp;
6481     }
6482     default:
6483       break;
6484     }
6485   } else {
6486     switch (Opcode) {
6487     case SystemZISD::SELECT_CCMASK:
6488       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6489     default:
6490       break;
6491     }
6492   }
6493 
6494   return 1;
6495 }
6496 
6497 //===----------------------------------------------------------------------===//
6498 // Custom insertion
6499 //===----------------------------------------------------------------------===//
6500 
6501 // Create a new basic block after MBB.
6502 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6503   MachineFunction &MF = *MBB->getParent();
6504   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6505   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6506   return NewMBB;
6507 }
6508 
6509 // Split MBB after MI and return the new block (the one that contains
6510 // instructions after MI).
6511 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6512                                           MachineBasicBlock *MBB) {
6513   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6514   NewMBB->splice(NewMBB->begin(), MBB,
6515                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6516   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6517   return NewMBB;
6518 }
6519 
6520 // Split MBB before MI and return the new block (the one that contains MI).
6521 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6522                                            MachineBasicBlock *MBB) {
6523   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6524   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6525   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6526   return NewMBB;
6527 }
6528 
6529 // Force base value Base into a register before MI.  Return the register.
6530 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6531                          const SystemZInstrInfo *TII) {
6532   if (Base.isReg())
6533     return Base.getReg();
6534 
6535   MachineBasicBlock *MBB = MI.getParent();
6536   MachineFunction &MF = *MBB->getParent();
6537   MachineRegisterInfo &MRI = MF.getRegInfo();
6538 
6539   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6540   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6541       .add(Base)
6542       .addImm(0)
6543       .addReg(0);
6544   return Reg;
6545 }
6546 
6547 // The CC operand of MI might be missing a kill marker because there
6548 // were multiple uses of CC, and ISel didn't know which to mark.
6549 // Figure out whether MI should have had a kill marker.
6550 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6551   // Scan forward through BB for a use/def of CC.
6552   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6553   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6554     const MachineInstr& mi = *miI;
6555     if (mi.readsRegister(SystemZ::CC))
6556       return false;
6557     if (mi.definesRegister(SystemZ::CC))
6558       break; // Should have kill-flag - update below.
6559   }
6560 
6561   // If we hit the end of the block, check whether CC is live into a
6562   // successor.
6563   if (miI == MBB->end()) {
6564     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6565       if ((*SI)->isLiveIn(SystemZ::CC))
6566         return false;
6567   }
6568 
6569   return true;
6570 }
6571 
6572 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6573 // together with other Select pseudo-opcodes into a single basic-block with
6574 // a conditional jump around it.
6575 static bool isSelectPseudo(MachineInstr &MI) {
6576   switch (MI.getOpcode()) {
6577   case SystemZ::Select32:
6578   case SystemZ::Select64:
6579   case SystemZ::SelectF32:
6580   case SystemZ::SelectF64:
6581   case SystemZ::SelectF128:
6582   case SystemZ::SelectVR32:
6583   case SystemZ::SelectVR64:
6584   case SystemZ::SelectVR128:
6585     return true;
6586 
6587   default:
6588     return false;
6589   }
6590 }
6591 
6592 // Helper function, which inserts PHI functions into SinkMBB:
6593 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6594 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
6595 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
6596                                  MachineBasicBlock *TrueMBB,
6597                                  MachineBasicBlock *FalseMBB,
6598                                  MachineBasicBlock *SinkMBB) {
6599   MachineFunction *MF = TrueMBB->getParent();
6600   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6601 
6602   MachineInstr *FirstMI = Selects.front();
6603   unsigned CCValid = FirstMI->getOperand(3).getImm();
6604   unsigned CCMask = FirstMI->getOperand(4).getImm();
6605 
6606   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6607 
6608   // As we are creating the PHIs, we have to be careful if there is more than
6609   // one.  Later Selects may reference the results of earlier Selects, but later
6610   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6611   // That also means that PHI construction must work forward from earlier to
6612   // later, and that the code must maintain a mapping from earlier PHI's
6613   // destination registers, and the registers that went into the PHI.
6614   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6615 
6616   for (auto MI : Selects) {
6617     Register DestReg = MI->getOperand(0).getReg();
6618     Register TrueReg = MI->getOperand(1).getReg();
6619     Register FalseReg = MI->getOperand(2).getReg();
6620 
6621     // If this Select we are generating is the opposite condition from
6622     // the jump we generated, then we have to swap the operands for the
6623     // PHI that is going to be generated.
6624     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
6625       std::swap(TrueReg, FalseReg);
6626 
6627     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6628       TrueReg = RegRewriteTable[TrueReg].first;
6629 
6630     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6631       FalseReg = RegRewriteTable[FalseReg].second;
6632 
6633     DebugLoc DL = MI->getDebugLoc();
6634     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6635       .addReg(TrueReg).addMBB(TrueMBB)
6636       .addReg(FalseReg).addMBB(FalseMBB);
6637 
6638     // Add this PHI to the rewrite table.
6639     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6640   }
6641 
6642   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6643 }
6644 
6645 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6646 MachineBasicBlock *
6647 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6648                                   MachineBasicBlock *MBB) const {
6649   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
6650   const SystemZInstrInfo *TII =
6651       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6652 
6653   unsigned CCValid = MI.getOperand(3).getImm();
6654   unsigned CCMask = MI.getOperand(4).getImm();
6655 
6656   // If we have a sequence of Select* pseudo instructions using the
6657   // same condition code value, we want to expand all of them into
6658   // a single pair of basic blocks using the same condition.
6659   SmallVector<MachineInstr*, 8> Selects;
6660   SmallVector<MachineInstr*, 8> DbgValues;
6661   Selects.push_back(&MI);
6662   unsigned Count = 0;
6663   for (MachineBasicBlock::iterator NextMIIt =
6664          std::next(MachineBasicBlock::iterator(MI));
6665        NextMIIt != MBB->end(); ++NextMIIt) {
6666     if (NextMIIt->definesRegister(SystemZ::CC))
6667       break;
6668     if (isSelectPseudo(*NextMIIt)) {
6669       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
6670              "Bad CCValid operands since CC was not redefined.");
6671       if (NextMIIt->getOperand(4).getImm() == CCMask ||
6672           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
6673         Selects.push_back(&*NextMIIt);
6674         continue;
6675       }
6676       break;
6677     }
6678     bool User = false;
6679     for (auto SelMI : Selects)
6680       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
6681         User = true;
6682         break;
6683       }
6684     if (NextMIIt->isDebugInstr()) {
6685       if (User) {
6686         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
6687         DbgValues.push_back(&*NextMIIt);
6688       }
6689     }
6690     else if (User || ++Count > 20)
6691       break;
6692   }
6693 
6694   MachineInstr *LastMI = Selects.back();
6695   bool CCKilled =
6696       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
6697   MachineBasicBlock *StartMBB = MBB;
6698   MachineBasicBlock *JoinMBB  = splitBlockAfter(LastMI, MBB);
6699   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6700 
6701   // Unless CC was killed in the last Select instruction, mark it as
6702   // live-in to both FalseMBB and JoinMBB.
6703   if (!CCKilled) {
6704     FalseMBB->addLiveIn(SystemZ::CC);
6705     JoinMBB->addLiveIn(SystemZ::CC);
6706   }
6707 
6708   //  StartMBB:
6709   //   BRC CCMask, JoinMBB
6710   //   # fallthrough to FalseMBB
6711   MBB = StartMBB;
6712   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
6713     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6714   MBB->addSuccessor(JoinMBB);
6715   MBB->addSuccessor(FalseMBB);
6716 
6717   //  FalseMBB:
6718   //   # fallthrough to JoinMBB
6719   MBB = FalseMBB;
6720   MBB->addSuccessor(JoinMBB);
6721 
6722   //  JoinMBB:
6723   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6724   //  ...
6725   MBB = JoinMBB;
6726   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
6727   for (auto SelMI : Selects)
6728     SelMI->eraseFromParent();
6729 
6730   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
6731   for (auto DbgMI : DbgValues)
6732     MBB->splice(InsertPos, StartMBB, DbgMI);
6733 
6734   return JoinMBB;
6735 }
6736 
6737 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6738 // StoreOpcode is the store to use and Invert says whether the store should
6739 // happen when the condition is false rather than true.  If a STORE ON
6740 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6741 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6742                                                         MachineBasicBlock *MBB,
6743                                                         unsigned StoreOpcode,
6744                                                         unsigned STOCOpcode,
6745                                                         bool Invert) const {
6746   const SystemZInstrInfo *TII =
6747       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6748 
6749   Register SrcReg = MI.getOperand(0).getReg();
6750   MachineOperand Base = MI.getOperand(1);
6751   int64_t Disp = MI.getOperand(2).getImm();
6752   Register IndexReg = MI.getOperand(3).getReg();
6753   unsigned CCValid = MI.getOperand(4).getImm();
6754   unsigned CCMask = MI.getOperand(5).getImm();
6755   DebugLoc DL = MI.getDebugLoc();
6756 
6757   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6758 
6759   // Use STOCOpcode if possible.  We could use different store patterns in
6760   // order to avoid matching the index register, but the performance trade-offs
6761   // might be more complicated in that case.
6762   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6763     if (Invert)
6764       CCMask ^= CCValid;
6765 
6766     // ISel pattern matching also adds a load memory operand of the same
6767     // address, so take special care to find the storing memory operand.
6768     MachineMemOperand *MMO = nullptr;
6769     for (auto *I : MI.memoperands())
6770       if (I->isStore()) {
6771           MMO = I;
6772           break;
6773         }
6774 
6775     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6776       .addReg(SrcReg)
6777       .add(Base)
6778       .addImm(Disp)
6779       .addImm(CCValid)
6780       .addImm(CCMask)
6781       .addMemOperand(MMO);
6782 
6783     MI.eraseFromParent();
6784     return MBB;
6785   }
6786 
6787   // Get the condition needed to branch around the store.
6788   if (!Invert)
6789     CCMask ^= CCValid;
6790 
6791   MachineBasicBlock *StartMBB = MBB;
6792   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6793   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6794 
6795   // Unless CC was killed in the CondStore instruction, mark it as
6796   // live-in to both FalseMBB and JoinMBB.
6797   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6798     FalseMBB->addLiveIn(SystemZ::CC);
6799     JoinMBB->addLiveIn(SystemZ::CC);
6800   }
6801 
6802   //  StartMBB:
6803   //   BRC CCMask, JoinMBB
6804   //   # fallthrough to FalseMBB
6805   MBB = StartMBB;
6806   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6807     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6808   MBB->addSuccessor(JoinMBB);
6809   MBB->addSuccessor(FalseMBB);
6810 
6811   //  FalseMBB:
6812   //   store %SrcReg, %Disp(%Index,%Base)
6813   //   # fallthrough to JoinMBB
6814   MBB = FalseMBB;
6815   BuildMI(MBB, DL, TII->get(StoreOpcode))
6816       .addReg(SrcReg)
6817       .add(Base)
6818       .addImm(Disp)
6819       .addReg(IndexReg);
6820   MBB->addSuccessor(JoinMBB);
6821 
6822   MI.eraseFromParent();
6823   return JoinMBB;
6824 }
6825 
6826 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6827 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
6828 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6829 // BitSize is the width of the field in bits, or 0 if this is a partword
6830 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6831 // is one of the operands.  Invert says whether the field should be
6832 // inverted after performing BinOpcode (e.g. for NAND).
6833 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6834     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6835     unsigned BitSize, bool Invert) const {
6836   MachineFunction &MF = *MBB->getParent();
6837   const SystemZInstrInfo *TII =
6838       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6839   MachineRegisterInfo &MRI = MF.getRegInfo();
6840   bool IsSubWord = (BitSize < 32);
6841 
6842   // Extract the operands.  Base can be a register or a frame index.
6843   // Src2 can be a register or immediate.
6844   Register Dest = MI.getOperand(0).getReg();
6845   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6846   int64_t Disp = MI.getOperand(2).getImm();
6847   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6848   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
6849   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
6850   DebugLoc DL = MI.getDebugLoc();
6851   if (IsSubWord)
6852     BitSize = MI.getOperand(6).getImm();
6853 
6854   // Subword operations use 32-bit registers.
6855   const TargetRegisterClass *RC = (BitSize <= 32 ?
6856                                    &SystemZ::GR32BitRegClass :
6857                                    &SystemZ::GR64BitRegClass);
6858   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6859   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6860 
6861   // Get the right opcodes for the displacement.
6862   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6863   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6864   assert(LOpcode && CSOpcode && "Displacement out of range");
6865 
6866   // Create virtual registers for temporary results.
6867   Register OrigVal       = MRI.createVirtualRegister(RC);
6868   Register OldVal        = MRI.createVirtualRegister(RC);
6869   Register NewVal        = (BinOpcode || IsSubWord ?
6870                             MRI.createVirtualRegister(RC) : Src2.getReg());
6871   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6872   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6873 
6874   // Insert a basic block for the main loop.
6875   MachineBasicBlock *StartMBB = MBB;
6876   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6877   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6878 
6879   //  StartMBB:
6880   //   ...
6881   //   %OrigVal = L Disp(%Base)
6882   //   # fall through to LoopMMB
6883   MBB = StartMBB;
6884   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6885   MBB->addSuccessor(LoopMBB);
6886 
6887   //  LoopMBB:
6888   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6889   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6890   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
6891   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6892   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6893   //   JNE LoopMBB
6894   //   # fall through to DoneMMB
6895   MBB = LoopMBB;
6896   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6897     .addReg(OrigVal).addMBB(StartMBB)
6898     .addReg(Dest).addMBB(LoopMBB);
6899   if (IsSubWord)
6900     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6901       .addReg(OldVal).addReg(BitShift).addImm(0);
6902   if (Invert) {
6903     // Perform the operation normally and then invert every bit of the field.
6904     Register Tmp = MRI.createVirtualRegister(RC);
6905     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6906     if (BitSize <= 32)
6907       // XILF with the upper BitSize bits set.
6908       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6909         .addReg(Tmp).addImm(-1U << (32 - BitSize));
6910     else {
6911       // Use LCGR and add -1 to the result, which is more compact than
6912       // an XILF, XILH pair.
6913       Register Tmp2 = MRI.createVirtualRegister(RC);
6914       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6915       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6916         .addReg(Tmp2).addImm(-1);
6917     }
6918   } else if (BinOpcode)
6919     // A simply binary operation.
6920     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6921         .addReg(RotatedOldVal)
6922         .add(Src2);
6923   else if (IsSubWord)
6924     // Use RISBG to rotate Src2 into position and use it to replace the
6925     // field in RotatedOldVal.
6926     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6927       .addReg(RotatedOldVal).addReg(Src2.getReg())
6928       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6929   if (IsSubWord)
6930     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6931       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6932   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6933       .addReg(OldVal)
6934       .addReg(NewVal)
6935       .add(Base)
6936       .addImm(Disp);
6937   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6938     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6939   MBB->addSuccessor(LoopMBB);
6940   MBB->addSuccessor(DoneMBB);
6941 
6942   MI.eraseFromParent();
6943   return DoneMBB;
6944 }
6945 
6946 // Implement EmitInstrWithCustomInserter for pseudo
6947 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
6948 // instruction that should be used to compare the current field with the
6949 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
6950 // for when the current field should be kept.  BitSize is the width of
6951 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
6952 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6953     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6954     unsigned KeepOldMask, unsigned BitSize) const {
6955   MachineFunction &MF = *MBB->getParent();
6956   const SystemZInstrInfo *TII =
6957       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6958   MachineRegisterInfo &MRI = MF.getRegInfo();
6959   bool IsSubWord = (BitSize < 32);
6960 
6961   // Extract the operands.  Base can be a register or a frame index.
6962   Register Dest = MI.getOperand(0).getReg();
6963   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6964   int64_t Disp = MI.getOperand(2).getImm();
6965   Register Src2 = MI.getOperand(3).getReg();
6966   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
6967   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
6968   DebugLoc DL = MI.getDebugLoc();
6969   if (IsSubWord)
6970     BitSize = MI.getOperand(6).getImm();
6971 
6972   // Subword operations use 32-bit registers.
6973   const TargetRegisterClass *RC = (BitSize <= 32 ?
6974                                    &SystemZ::GR32BitRegClass :
6975                                    &SystemZ::GR64BitRegClass);
6976   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6977   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6978 
6979   // Get the right opcodes for the displacement.
6980   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6981   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6982   assert(LOpcode && CSOpcode && "Displacement out of range");
6983 
6984   // Create virtual registers for temporary results.
6985   Register OrigVal       = MRI.createVirtualRegister(RC);
6986   Register OldVal        = MRI.createVirtualRegister(RC);
6987   Register NewVal        = MRI.createVirtualRegister(RC);
6988   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6989   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6990   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6991 
6992   // Insert 3 basic blocks for the loop.
6993   MachineBasicBlock *StartMBB  = MBB;
6994   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
6995   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
6996   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6997   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6998 
6999   //  StartMBB:
7000   //   ...
7001   //   %OrigVal     = L Disp(%Base)
7002   //   # fall through to LoopMMB
7003   MBB = StartMBB;
7004   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7005   MBB->addSuccessor(LoopMBB);
7006 
7007   //  LoopMBB:
7008   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7009   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7010   //   CompareOpcode %RotatedOldVal, %Src2
7011   //   BRC KeepOldMask, UpdateMBB
7012   MBB = LoopMBB;
7013   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7014     .addReg(OrigVal).addMBB(StartMBB)
7015     .addReg(Dest).addMBB(UpdateMBB);
7016   if (IsSubWord)
7017     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7018       .addReg(OldVal).addReg(BitShift).addImm(0);
7019   BuildMI(MBB, DL, TII->get(CompareOpcode))
7020     .addReg(RotatedOldVal).addReg(Src2);
7021   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7022     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7023   MBB->addSuccessor(UpdateMBB);
7024   MBB->addSuccessor(UseAltMBB);
7025 
7026   //  UseAltMBB:
7027   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7028   //   # fall through to UpdateMMB
7029   MBB = UseAltMBB;
7030   if (IsSubWord)
7031     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7032       .addReg(RotatedOldVal).addReg(Src2)
7033       .addImm(32).addImm(31 + BitSize).addImm(0);
7034   MBB->addSuccessor(UpdateMBB);
7035 
7036   //  UpdateMBB:
7037   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7038   //                        [ %RotatedAltVal, UseAltMBB ]
7039   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7040   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7041   //   JNE LoopMBB
7042   //   # fall through to DoneMMB
7043   MBB = UpdateMBB;
7044   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7045     .addReg(RotatedOldVal).addMBB(LoopMBB)
7046     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7047   if (IsSubWord)
7048     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7049       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7050   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7051       .addReg(OldVal)
7052       .addReg(NewVal)
7053       .add(Base)
7054       .addImm(Disp);
7055   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7056     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7057   MBB->addSuccessor(LoopMBB);
7058   MBB->addSuccessor(DoneMBB);
7059 
7060   MI.eraseFromParent();
7061   return DoneMBB;
7062 }
7063 
7064 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7065 // instruction MI.
7066 MachineBasicBlock *
7067 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7068                                           MachineBasicBlock *MBB) const {
7069 
7070   MachineFunction &MF = *MBB->getParent();
7071   const SystemZInstrInfo *TII =
7072       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7073   MachineRegisterInfo &MRI = MF.getRegInfo();
7074 
7075   // Extract the operands.  Base can be a register or a frame index.
7076   Register Dest = MI.getOperand(0).getReg();
7077   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7078   int64_t Disp = MI.getOperand(2).getImm();
7079   Register OrigCmpVal = MI.getOperand(3).getReg();
7080   Register OrigSwapVal = MI.getOperand(4).getReg();
7081   Register BitShift = MI.getOperand(5).getReg();
7082   Register NegBitShift = MI.getOperand(6).getReg();
7083   int64_t BitSize = MI.getOperand(7).getImm();
7084   DebugLoc DL = MI.getDebugLoc();
7085 
7086   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7087 
7088   // Get the right opcodes for the displacement.
7089   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7090   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7091   assert(LOpcode && CSOpcode && "Displacement out of range");
7092 
7093   // Create virtual registers for temporary results.
7094   Register OrigOldVal = MRI.createVirtualRegister(RC);
7095   Register OldVal = MRI.createVirtualRegister(RC);
7096   Register CmpVal = MRI.createVirtualRegister(RC);
7097   Register SwapVal = MRI.createVirtualRegister(RC);
7098   Register StoreVal = MRI.createVirtualRegister(RC);
7099   Register RetryOldVal = MRI.createVirtualRegister(RC);
7100   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7101   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7102 
7103   // Insert 2 basic blocks for the loop.
7104   MachineBasicBlock *StartMBB = MBB;
7105   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7106   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7107   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
7108 
7109   //  StartMBB:
7110   //   ...
7111   //   %OrigOldVal     = L Disp(%Base)
7112   //   # fall through to LoopMMB
7113   MBB = StartMBB;
7114   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7115       .add(Base)
7116       .addImm(Disp)
7117       .addReg(0);
7118   MBB->addSuccessor(LoopMBB);
7119 
7120   //  LoopMBB:
7121   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7122   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7123   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7124   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7125   //                      ^^ The low BitSize bits contain the field
7126   //                         of interest.
7127   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7128   //                      ^^ Replace the upper 32-BitSize bits of the
7129   //                         comparison value with those that we loaded,
7130   //                         so that we can use a full word comparison.
7131   //   CR %Dest, %RetryCmpVal
7132   //   JNE DoneMBB
7133   //   # Fall through to SetMBB
7134   MBB = LoopMBB;
7135   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7136     .addReg(OrigOldVal).addMBB(StartMBB)
7137     .addReg(RetryOldVal).addMBB(SetMBB);
7138   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7139     .addReg(OrigCmpVal).addMBB(StartMBB)
7140     .addReg(RetryCmpVal).addMBB(SetMBB);
7141   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7142     .addReg(OrigSwapVal).addMBB(StartMBB)
7143     .addReg(RetrySwapVal).addMBB(SetMBB);
7144   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7145     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7146   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7147     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7148   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7149     .addReg(Dest).addReg(RetryCmpVal);
7150   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7151     .addImm(SystemZ::CCMASK_ICMP)
7152     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7153   MBB->addSuccessor(DoneMBB);
7154   MBB->addSuccessor(SetMBB);
7155 
7156   //  SetMBB:
7157   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7158   //                      ^^ Replace the upper 32-BitSize bits of the new
7159   //                         value with those that we loaded.
7160   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7161   //                      ^^ Rotate the new field to its proper position.
7162   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7163   //   JNE LoopMBB
7164   //   # fall through to ExitMMB
7165   MBB = SetMBB;
7166   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7167     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7168   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7169     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7170   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7171       .addReg(OldVal)
7172       .addReg(StoreVal)
7173       .add(Base)
7174       .addImm(Disp);
7175   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7176     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7177   MBB->addSuccessor(LoopMBB);
7178   MBB->addSuccessor(DoneMBB);
7179 
7180   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7181   // to the block after the loop.  At this point, CC may have been defined
7182   // either by the CR in LoopMBB or by the CS in SetMBB.
7183   if (!MI.registerDefIsDead(SystemZ::CC))
7184     DoneMBB->addLiveIn(SystemZ::CC);
7185 
7186   MI.eraseFromParent();
7187   return DoneMBB;
7188 }
7189 
7190 // Emit a move from two GR64s to a GR128.
7191 MachineBasicBlock *
7192 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7193                                    MachineBasicBlock *MBB) const {
7194   MachineFunction &MF = *MBB->getParent();
7195   const SystemZInstrInfo *TII =
7196       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7197   MachineRegisterInfo &MRI = MF.getRegInfo();
7198   DebugLoc DL = MI.getDebugLoc();
7199 
7200   Register Dest = MI.getOperand(0).getReg();
7201   Register Hi = MI.getOperand(1).getReg();
7202   Register Lo = MI.getOperand(2).getReg();
7203   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7204   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7205 
7206   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7207   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7208     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7209   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7210     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7211 
7212   MI.eraseFromParent();
7213   return MBB;
7214 }
7215 
7216 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7217 // if the high register of the GR128 value must be cleared or false if
7218 // it's "don't care".
7219 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7220                                                      MachineBasicBlock *MBB,
7221                                                      bool ClearEven) const {
7222   MachineFunction &MF = *MBB->getParent();
7223   const SystemZInstrInfo *TII =
7224       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7225   MachineRegisterInfo &MRI = MF.getRegInfo();
7226   DebugLoc DL = MI.getDebugLoc();
7227 
7228   Register Dest = MI.getOperand(0).getReg();
7229   Register Src = MI.getOperand(1).getReg();
7230   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7231 
7232   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7233   if (ClearEven) {
7234     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7235     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7236 
7237     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7238       .addImm(0);
7239     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7240       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7241     In128 = NewIn128;
7242   }
7243   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7244     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7245 
7246   MI.eraseFromParent();
7247   return MBB;
7248 }
7249 
7250 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7251     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7252   MachineFunction &MF = *MBB->getParent();
7253   const SystemZInstrInfo *TII =
7254       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7255   MachineRegisterInfo &MRI = MF.getRegInfo();
7256   DebugLoc DL = MI.getDebugLoc();
7257 
7258   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7259   uint64_t DestDisp = MI.getOperand(1).getImm();
7260   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7261   uint64_t SrcDisp = MI.getOperand(3).getImm();
7262   uint64_t Length = MI.getOperand(4).getImm();
7263 
7264   // When generating more than one CLC, all but the last will need to
7265   // branch to the end when a difference is found.
7266   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7267                                splitBlockAfter(MI, MBB) : nullptr);
7268 
7269   // Check for the loop form, in which operand 5 is the trip count.
7270   if (MI.getNumExplicitOperands() > 5) {
7271     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7272 
7273     Register StartCountReg = MI.getOperand(5).getReg();
7274     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7275     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7276                               forceReg(MI, DestBase, TII));
7277 
7278     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7279     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7280     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7281                             MRI.createVirtualRegister(RC));
7282     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7283     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7284                             MRI.createVirtualRegister(RC));
7285 
7286     RC = &SystemZ::GR64BitRegClass;
7287     Register ThisCountReg = MRI.createVirtualRegister(RC);
7288     Register NextCountReg = MRI.createVirtualRegister(RC);
7289 
7290     MachineBasicBlock *StartMBB = MBB;
7291     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7292     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7293     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7294 
7295     //  StartMBB:
7296     //   # fall through to LoopMMB
7297     MBB->addSuccessor(LoopMBB);
7298 
7299     //  LoopMBB:
7300     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7301     //                      [ %NextDestReg, NextMBB ]
7302     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7303     //                     [ %NextSrcReg, NextMBB ]
7304     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7305     //                       [ %NextCountReg, NextMBB ]
7306     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7307     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7308     //   ( JLH EndMBB )
7309     //
7310     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7311     MBB = LoopMBB;
7312 
7313     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7314       .addReg(StartDestReg).addMBB(StartMBB)
7315       .addReg(NextDestReg).addMBB(NextMBB);
7316     if (!HaveSingleBase)
7317       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7318         .addReg(StartSrcReg).addMBB(StartMBB)
7319         .addReg(NextSrcReg).addMBB(NextMBB);
7320     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7321       .addReg(StartCountReg).addMBB(StartMBB)
7322       .addReg(NextCountReg).addMBB(NextMBB);
7323     if (Opcode == SystemZ::MVC)
7324       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7325         .addImm(SystemZ::PFD_WRITE)
7326         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7327     BuildMI(MBB, DL, TII->get(Opcode))
7328       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7329       .addReg(ThisSrcReg).addImm(SrcDisp);
7330     if (EndMBB) {
7331       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7332         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7333         .addMBB(EndMBB);
7334       MBB->addSuccessor(EndMBB);
7335       MBB->addSuccessor(NextMBB);
7336     }
7337 
7338     // NextMBB:
7339     //   %NextDestReg = LA 256(%ThisDestReg)
7340     //   %NextSrcReg = LA 256(%ThisSrcReg)
7341     //   %NextCountReg = AGHI %ThisCountReg, -1
7342     //   CGHI %NextCountReg, 0
7343     //   JLH LoopMBB
7344     //   # fall through to DoneMMB
7345     //
7346     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7347     MBB = NextMBB;
7348 
7349     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7350       .addReg(ThisDestReg).addImm(256).addReg(0);
7351     if (!HaveSingleBase)
7352       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7353         .addReg(ThisSrcReg).addImm(256).addReg(0);
7354     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7355       .addReg(ThisCountReg).addImm(-1);
7356     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7357       .addReg(NextCountReg).addImm(0);
7358     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7359       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7360       .addMBB(LoopMBB);
7361     MBB->addSuccessor(LoopMBB);
7362     MBB->addSuccessor(DoneMBB);
7363 
7364     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7365     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7366     Length &= 255;
7367     if (EndMBB && !Length)
7368       // If the loop handled the whole CLC range, DoneMBB will be empty with
7369       // CC live-through into EndMBB, so add it as live-in.
7370       DoneMBB->addLiveIn(SystemZ::CC);
7371     MBB = DoneMBB;
7372   }
7373   // Handle any remaining bytes with straight-line code.
7374   while (Length > 0) {
7375     uint64_t ThisLength = std::min(Length, uint64_t(256));
7376     // The previous iteration might have created out-of-range displacements.
7377     // Apply them using LAY if so.
7378     if (!isUInt<12>(DestDisp)) {
7379       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7380       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7381           .add(DestBase)
7382           .addImm(DestDisp)
7383           .addReg(0);
7384       DestBase = MachineOperand::CreateReg(Reg, false);
7385       DestDisp = 0;
7386     }
7387     if (!isUInt<12>(SrcDisp)) {
7388       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7389       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7390           .add(SrcBase)
7391           .addImm(SrcDisp)
7392           .addReg(0);
7393       SrcBase = MachineOperand::CreateReg(Reg, false);
7394       SrcDisp = 0;
7395     }
7396     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7397         .add(DestBase)
7398         .addImm(DestDisp)
7399         .addImm(ThisLength)
7400         .add(SrcBase)
7401         .addImm(SrcDisp)
7402         .setMemRefs(MI.memoperands());
7403     DestDisp += ThisLength;
7404     SrcDisp += ThisLength;
7405     Length -= ThisLength;
7406     // If there's another CLC to go, branch to the end if a difference
7407     // was found.
7408     if (EndMBB && Length > 0) {
7409       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7410       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7411         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7412         .addMBB(EndMBB);
7413       MBB->addSuccessor(EndMBB);
7414       MBB->addSuccessor(NextMBB);
7415       MBB = NextMBB;
7416     }
7417   }
7418   if (EndMBB) {
7419     MBB->addSuccessor(EndMBB);
7420     MBB = EndMBB;
7421     MBB->addLiveIn(SystemZ::CC);
7422   }
7423 
7424   MI.eraseFromParent();
7425   return MBB;
7426 }
7427 
7428 // Decompose string pseudo-instruction MI into a loop that continually performs
7429 // Opcode until CC != 3.
7430 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7431     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7432   MachineFunction &MF = *MBB->getParent();
7433   const SystemZInstrInfo *TII =
7434       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7435   MachineRegisterInfo &MRI = MF.getRegInfo();
7436   DebugLoc DL = MI.getDebugLoc();
7437 
7438   uint64_t End1Reg = MI.getOperand(0).getReg();
7439   uint64_t Start1Reg = MI.getOperand(1).getReg();
7440   uint64_t Start2Reg = MI.getOperand(2).getReg();
7441   uint64_t CharReg = MI.getOperand(3).getReg();
7442 
7443   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7444   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7445   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7446   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7447 
7448   MachineBasicBlock *StartMBB = MBB;
7449   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7450   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7451 
7452   //  StartMBB:
7453   //   # fall through to LoopMMB
7454   MBB->addSuccessor(LoopMBB);
7455 
7456   //  LoopMBB:
7457   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7458   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7459   //   R0L = %CharReg
7460   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7461   //   JO LoopMBB
7462   //   # fall through to DoneMMB
7463   //
7464   // The load of R0L can be hoisted by post-RA LICM.
7465   MBB = LoopMBB;
7466 
7467   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7468     .addReg(Start1Reg).addMBB(StartMBB)
7469     .addReg(End1Reg).addMBB(LoopMBB);
7470   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7471     .addReg(Start2Reg).addMBB(StartMBB)
7472     .addReg(End2Reg).addMBB(LoopMBB);
7473   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7474   BuildMI(MBB, DL, TII->get(Opcode))
7475     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7476     .addReg(This1Reg).addReg(This2Reg);
7477   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7478     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7479   MBB->addSuccessor(LoopMBB);
7480   MBB->addSuccessor(DoneMBB);
7481 
7482   DoneMBB->addLiveIn(SystemZ::CC);
7483 
7484   MI.eraseFromParent();
7485   return DoneMBB;
7486 }
7487 
7488 // Update TBEGIN instruction with final opcode and register clobbers.
7489 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7490     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7491     bool NoFloat) const {
7492   MachineFunction &MF = *MBB->getParent();
7493   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7494   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7495 
7496   // Update opcode.
7497   MI.setDesc(TII->get(Opcode));
7498 
7499   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7500   // Make sure to add the corresponding GRSM bits if they are missing.
7501   uint64_t Control = MI.getOperand(2).getImm();
7502   static const unsigned GPRControlBit[16] = {
7503     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7504     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7505   };
7506   Control |= GPRControlBit[15];
7507   if (TFI->hasFP(MF))
7508     Control |= GPRControlBit[11];
7509   MI.getOperand(2).setImm(Control);
7510 
7511   // Add GPR clobbers.
7512   for (int I = 0; I < 16; I++) {
7513     if ((Control & GPRControlBit[I]) == 0) {
7514       unsigned Reg = SystemZMC::GR64Regs[I];
7515       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7516     }
7517   }
7518 
7519   // Add FPR/VR clobbers.
7520   if (!NoFloat && (Control & 4) != 0) {
7521     if (Subtarget.hasVector()) {
7522       for (int I = 0; I < 32; I++) {
7523         unsigned Reg = SystemZMC::VR128Regs[I];
7524         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7525       }
7526     } else {
7527       for (int I = 0; I < 16; I++) {
7528         unsigned Reg = SystemZMC::FP64Regs[I];
7529         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7530       }
7531     }
7532   }
7533 
7534   return MBB;
7535 }
7536 
7537 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7538     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7539   MachineFunction &MF = *MBB->getParent();
7540   MachineRegisterInfo *MRI = &MF.getRegInfo();
7541   const SystemZInstrInfo *TII =
7542       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7543   DebugLoc DL = MI.getDebugLoc();
7544 
7545   Register SrcReg = MI.getOperand(0).getReg();
7546 
7547   // Create new virtual register of the same class as source.
7548   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7549   Register DstReg = MRI->createVirtualRegister(RC);
7550 
7551   // Replace pseudo with a normal load-and-test that models the def as
7552   // well.
7553   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7554     .addReg(SrcReg);
7555   MI.eraseFromParent();
7556 
7557   return MBB;
7558 }
7559 
7560 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7561     MachineInstr &MI, MachineBasicBlock *MBB) const {
7562   switch (MI.getOpcode()) {
7563   case SystemZ::Select32:
7564   case SystemZ::Select64:
7565   case SystemZ::SelectF32:
7566   case SystemZ::SelectF64:
7567   case SystemZ::SelectF128:
7568   case SystemZ::SelectVR32:
7569   case SystemZ::SelectVR64:
7570   case SystemZ::SelectVR128:
7571     return emitSelect(MI, MBB);
7572 
7573   case SystemZ::CondStore8Mux:
7574     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7575   case SystemZ::CondStore8MuxInv:
7576     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7577   case SystemZ::CondStore16Mux:
7578     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7579   case SystemZ::CondStore16MuxInv:
7580     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7581   case SystemZ::CondStore32Mux:
7582     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7583   case SystemZ::CondStore32MuxInv:
7584     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7585   case SystemZ::CondStore8:
7586     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7587   case SystemZ::CondStore8Inv:
7588     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7589   case SystemZ::CondStore16:
7590     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7591   case SystemZ::CondStore16Inv:
7592     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7593   case SystemZ::CondStore32:
7594     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7595   case SystemZ::CondStore32Inv:
7596     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7597   case SystemZ::CondStore64:
7598     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7599   case SystemZ::CondStore64Inv:
7600     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7601   case SystemZ::CondStoreF32:
7602     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7603   case SystemZ::CondStoreF32Inv:
7604     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7605   case SystemZ::CondStoreF64:
7606     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7607   case SystemZ::CondStoreF64Inv:
7608     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7609 
7610   case SystemZ::PAIR128:
7611     return emitPair128(MI, MBB);
7612   case SystemZ::AEXT128:
7613     return emitExt128(MI, MBB, false);
7614   case SystemZ::ZEXT128:
7615     return emitExt128(MI, MBB, true);
7616 
7617   case SystemZ::ATOMIC_SWAPW:
7618     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7619   case SystemZ::ATOMIC_SWAP_32:
7620     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7621   case SystemZ::ATOMIC_SWAP_64:
7622     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7623 
7624   case SystemZ::ATOMIC_LOADW_AR:
7625     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7626   case SystemZ::ATOMIC_LOADW_AFI:
7627     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7628   case SystemZ::ATOMIC_LOAD_AR:
7629     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7630   case SystemZ::ATOMIC_LOAD_AHI:
7631     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7632   case SystemZ::ATOMIC_LOAD_AFI:
7633     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7634   case SystemZ::ATOMIC_LOAD_AGR:
7635     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7636   case SystemZ::ATOMIC_LOAD_AGHI:
7637     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7638   case SystemZ::ATOMIC_LOAD_AGFI:
7639     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7640 
7641   case SystemZ::ATOMIC_LOADW_SR:
7642     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7643   case SystemZ::ATOMIC_LOAD_SR:
7644     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7645   case SystemZ::ATOMIC_LOAD_SGR:
7646     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7647 
7648   case SystemZ::ATOMIC_LOADW_NR:
7649     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7650   case SystemZ::ATOMIC_LOADW_NILH:
7651     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7652   case SystemZ::ATOMIC_LOAD_NR:
7653     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7654   case SystemZ::ATOMIC_LOAD_NILL:
7655     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7656   case SystemZ::ATOMIC_LOAD_NILH:
7657     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7658   case SystemZ::ATOMIC_LOAD_NILF:
7659     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7660   case SystemZ::ATOMIC_LOAD_NGR:
7661     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7662   case SystemZ::ATOMIC_LOAD_NILL64:
7663     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7664   case SystemZ::ATOMIC_LOAD_NILH64:
7665     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7666   case SystemZ::ATOMIC_LOAD_NIHL64:
7667     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7668   case SystemZ::ATOMIC_LOAD_NIHH64:
7669     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7670   case SystemZ::ATOMIC_LOAD_NILF64:
7671     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7672   case SystemZ::ATOMIC_LOAD_NIHF64:
7673     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7674 
7675   case SystemZ::ATOMIC_LOADW_OR:
7676     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7677   case SystemZ::ATOMIC_LOADW_OILH:
7678     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7679   case SystemZ::ATOMIC_LOAD_OR:
7680     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7681   case SystemZ::ATOMIC_LOAD_OILL:
7682     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7683   case SystemZ::ATOMIC_LOAD_OILH:
7684     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7685   case SystemZ::ATOMIC_LOAD_OILF:
7686     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7687   case SystemZ::ATOMIC_LOAD_OGR:
7688     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7689   case SystemZ::ATOMIC_LOAD_OILL64:
7690     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7691   case SystemZ::ATOMIC_LOAD_OILH64:
7692     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7693   case SystemZ::ATOMIC_LOAD_OIHL64:
7694     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7695   case SystemZ::ATOMIC_LOAD_OIHH64:
7696     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7697   case SystemZ::ATOMIC_LOAD_OILF64:
7698     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7699   case SystemZ::ATOMIC_LOAD_OIHF64:
7700     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7701 
7702   case SystemZ::ATOMIC_LOADW_XR:
7703     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7704   case SystemZ::ATOMIC_LOADW_XILF:
7705     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7706   case SystemZ::ATOMIC_LOAD_XR:
7707     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7708   case SystemZ::ATOMIC_LOAD_XILF:
7709     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7710   case SystemZ::ATOMIC_LOAD_XGR:
7711     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7712   case SystemZ::ATOMIC_LOAD_XILF64:
7713     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7714   case SystemZ::ATOMIC_LOAD_XIHF64:
7715     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7716 
7717   case SystemZ::ATOMIC_LOADW_NRi:
7718     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7719   case SystemZ::ATOMIC_LOADW_NILHi:
7720     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7721   case SystemZ::ATOMIC_LOAD_NRi:
7722     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7723   case SystemZ::ATOMIC_LOAD_NILLi:
7724     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7725   case SystemZ::ATOMIC_LOAD_NILHi:
7726     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7727   case SystemZ::ATOMIC_LOAD_NILFi:
7728     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7729   case SystemZ::ATOMIC_LOAD_NGRi:
7730     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7731   case SystemZ::ATOMIC_LOAD_NILL64i:
7732     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7733   case SystemZ::ATOMIC_LOAD_NILH64i:
7734     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7735   case SystemZ::ATOMIC_LOAD_NIHL64i:
7736     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7737   case SystemZ::ATOMIC_LOAD_NIHH64i:
7738     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7739   case SystemZ::ATOMIC_LOAD_NILF64i:
7740     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7741   case SystemZ::ATOMIC_LOAD_NIHF64i:
7742     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7743 
7744   case SystemZ::ATOMIC_LOADW_MIN:
7745     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7746                                 SystemZ::CCMASK_CMP_LE, 0);
7747   case SystemZ::ATOMIC_LOAD_MIN_32:
7748     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7749                                 SystemZ::CCMASK_CMP_LE, 32);
7750   case SystemZ::ATOMIC_LOAD_MIN_64:
7751     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7752                                 SystemZ::CCMASK_CMP_LE, 64);
7753 
7754   case SystemZ::ATOMIC_LOADW_MAX:
7755     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7756                                 SystemZ::CCMASK_CMP_GE, 0);
7757   case SystemZ::ATOMIC_LOAD_MAX_32:
7758     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7759                                 SystemZ::CCMASK_CMP_GE, 32);
7760   case SystemZ::ATOMIC_LOAD_MAX_64:
7761     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7762                                 SystemZ::CCMASK_CMP_GE, 64);
7763 
7764   case SystemZ::ATOMIC_LOADW_UMIN:
7765     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7766                                 SystemZ::CCMASK_CMP_LE, 0);
7767   case SystemZ::ATOMIC_LOAD_UMIN_32:
7768     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7769                                 SystemZ::CCMASK_CMP_LE, 32);
7770   case SystemZ::ATOMIC_LOAD_UMIN_64:
7771     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7772                                 SystemZ::CCMASK_CMP_LE, 64);
7773 
7774   case SystemZ::ATOMIC_LOADW_UMAX:
7775     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7776                                 SystemZ::CCMASK_CMP_GE, 0);
7777   case SystemZ::ATOMIC_LOAD_UMAX_32:
7778     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7779                                 SystemZ::CCMASK_CMP_GE, 32);
7780   case SystemZ::ATOMIC_LOAD_UMAX_64:
7781     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7782                                 SystemZ::CCMASK_CMP_GE, 64);
7783 
7784   case SystemZ::ATOMIC_CMP_SWAPW:
7785     return emitAtomicCmpSwapW(MI, MBB);
7786   case SystemZ::MVCSequence:
7787   case SystemZ::MVCLoop:
7788     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7789   case SystemZ::NCSequence:
7790   case SystemZ::NCLoop:
7791     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7792   case SystemZ::OCSequence:
7793   case SystemZ::OCLoop:
7794     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7795   case SystemZ::XCSequence:
7796   case SystemZ::XCLoop:
7797     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7798   case SystemZ::CLCSequence:
7799   case SystemZ::CLCLoop:
7800     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7801   case SystemZ::CLSTLoop:
7802     return emitStringWrapper(MI, MBB, SystemZ::CLST);
7803   case SystemZ::MVSTLoop:
7804     return emitStringWrapper(MI, MBB, SystemZ::MVST);
7805   case SystemZ::SRSTLoop:
7806     return emitStringWrapper(MI, MBB, SystemZ::SRST);
7807   case SystemZ::TBEGIN:
7808     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7809   case SystemZ::TBEGIN_nofloat:
7810     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7811   case SystemZ::TBEGINC:
7812     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7813   case SystemZ::LTEBRCompare_VecPseudo:
7814     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7815   case SystemZ::LTDBRCompare_VecPseudo:
7816     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7817   case SystemZ::LTXBRCompare_VecPseudo:
7818     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7819 
7820   case TargetOpcode::STACKMAP:
7821   case TargetOpcode::PATCHPOINT:
7822     return emitPatchPoint(MI, MBB);
7823 
7824   default:
7825     llvm_unreachable("Unexpected instr type to insert");
7826   }
7827 }
7828 
7829 // This is only used by the isel schedulers, and is needed only to prevent
7830 // compiler from crashing when list-ilp is used.
7831 const TargetRegisterClass *
7832 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7833   if (VT == MVT::Untyped)
7834     return &SystemZ::ADDR128BitRegClass;
7835   return TargetLowering::getRepRegClassFor(VT);
7836 }
7837