1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In)
37     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38 
39   // The operands to the comparison.
40   SDValue Op0, Op1;
41 
42   // The opcode that should be used to compare Op0 and Op1.
43   unsigned Opcode;
44 
45   // A SystemZICMP value.  Only used for integer comparisons.
46   unsigned ICmpType;
47 
48   // The mask of CC values that Opcode can produce.
49   unsigned CCValid;
50 
51   // The mask of CC values for which the original condition is true.
52   unsigned CCMask;
53 };
54 } // end anonymous namespace
55 
56 // Classify VT as either 32 or 64 bit.
57 static bool is32Bit(EVT VT) {
58   switch (VT.getSimpleVT().SimpleTy) {
59   case MVT::i32:
60     return true;
61   case MVT::i64:
62     return false;
63   default:
64     llvm_unreachable("Unsupported type");
65   }
66 }
67 
68 // Return a version of MachineOperand that can be safely used before the
69 // final use.
70 static MachineOperand earlyUseOperand(MachineOperand Op) {
71   if (Op.isReg())
72     Op.setIsKill(false);
73   return Op;
74 }
75 
76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
77                                              const SystemZSubtarget &STI)
78     : TargetLowering(TM), Subtarget(STI) {
79   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
80 
81   // Set up the register classes.
82   if (Subtarget.hasHighWord())
83     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
84   else
85     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
86   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
87   if (Subtarget.hasVector()) {
88     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
89     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
90   } else {
91     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
92     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93   }
94   if (Subtarget.hasVectorEnhancements1())
95     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
96   else
97     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98 
99   if (Subtarget.hasVector()) {
100     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
105     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
106   }
107 
108   // Compute derived properties from the register classes
109   computeRegisterProperties(Subtarget.getRegisterInfo());
110 
111   // Set up special registers.
112   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113 
114   // TODO: It may be better to default to latency-oriented scheduling, however
115   // LLVM's current latency-oriented scheduler can't handle physreg definitions
116   // such as SystemZ has with CC, so set this to the register-pressure
117   // scheduler, because it can.
118   setSchedulingPreference(Sched::RegPressure);
119 
120   setBooleanContents(ZeroOrOneBooleanContent);
121   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122 
123   // Instructions are strings of 2-byte aligned 2-byte values.
124   setMinFunctionAlignment(2);
125   // For performance reasons we prefer 16-byte alignment.
126   setPrefFunctionAlignment(4);
127 
128   // Handle operations that are handled in a similar way for all types.
129   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
130        I <= MVT::LAST_FP_VALUETYPE;
131        ++I) {
132     MVT VT = MVT::SimpleValueType(I);
133     if (isTypeLegal(VT)) {
134       // Lower SET_CC into an IPM-based sequence.
135       setOperationAction(ISD::SETCC, VT, Custom);
136 
137       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
138       setOperationAction(ISD::SELECT, VT, Expand);
139 
140       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
141       setOperationAction(ISD::SELECT_CC, VT, Custom);
142       setOperationAction(ISD::BR_CC,     VT, Custom);
143     }
144   }
145 
146   // Expand jump table branches as address arithmetic followed by an
147   // indirect jump.
148   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
149 
150   // Expand BRCOND into a BR_CC (see above).
151   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
152 
153   // Handle integer types.
154   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
155        I <= MVT::LAST_INTEGER_VALUETYPE;
156        ++I) {
157     MVT VT = MVT::SimpleValueType(I);
158     if (isTypeLegal(VT)) {
159       // Expand individual DIV and REMs into DIVREMs.
160       setOperationAction(ISD::SDIV, VT, Expand);
161       setOperationAction(ISD::UDIV, VT, Expand);
162       setOperationAction(ISD::SREM, VT, Expand);
163       setOperationAction(ISD::UREM, VT, Expand);
164       setOperationAction(ISD::SDIVREM, VT, Custom);
165       setOperationAction(ISD::UDIVREM, VT, Custom);
166 
167       // Support addition/subtraction with overflow.
168       setOperationAction(ISD::SADDO, VT, Custom);
169       setOperationAction(ISD::SSUBO, VT, Custom);
170 
171       // Support addition/subtraction with carry.
172       setOperationAction(ISD::UADDO, VT, Custom);
173       setOperationAction(ISD::USUBO, VT, Custom);
174 
175       // Support carry in as value rather than glue.
176       setOperationAction(ISD::ADDCARRY, VT, Custom);
177       setOperationAction(ISD::SUBCARRY, VT, Custom);
178 
179       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
180       // stores, putting a serialization instruction after the stores.
181       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
182       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
183 
184       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
185       // available, or if the operand is constant.
186       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
187 
188       // Use POPCNT on z196 and above.
189       if (Subtarget.hasPopulationCount())
190         setOperationAction(ISD::CTPOP, VT, Custom);
191       else
192         setOperationAction(ISD::CTPOP, VT, Expand);
193 
194       // No special instructions for these.
195       setOperationAction(ISD::CTTZ,            VT, Expand);
196       setOperationAction(ISD::ROTR,            VT, Expand);
197 
198       // Use *MUL_LOHI where possible instead of MULH*.
199       setOperationAction(ISD::MULHS, VT, Expand);
200       setOperationAction(ISD::MULHU, VT, Expand);
201       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
202       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
203 
204       // Only z196 and above have native support for conversions to unsigned.
205       // On z10, promoting to i64 doesn't generate an inexact condition for
206       // values that are outside the i32 range but in the i64 range, so use
207       // the default expansion.
208       if (!Subtarget.hasFPExtension())
209         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
210     }
211   }
212 
213   // Type legalization will convert 8- and 16-bit atomic operations into
214   // forms that operate on i32s (but still keeping the original memory VT).
215   // Lower them into full i32 operations.
216   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
217   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
218   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
219   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
220   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
221   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
223   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
224   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
225   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
226   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
227 
228   // Even though i128 is not a legal type, we still need to custom lower
229   // the atomic operations in order to exploit SystemZ instructions.
230   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
231   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
232 
233   // We can use the CC result of compare-and-swap to implement
234   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
235   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
237   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
238 
239   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
240 
241   // Traps are legal, as we will convert them to "j .+2".
242   setOperationAction(ISD::TRAP, MVT::Other, Legal);
243 
244   // z10 has instructions for signed but not unsigned FP conversion.
245   // Handle unsigned 32-bit types as signed 64-bit types.
246   if (!Subtarget.hasFPExtension()) {
247     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
248     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
249   }
250 
251   // We have native support for a 64-bit CTLZ, via FLOGR.
252   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
253   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
254 
255   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
256   setOperationAction(ISD::OR, MVT::i64, Custom);
257 
258   // FIXME: Can we support these natively?
259   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
260   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262 
263   // We have native instructions for i8, i16 and i32 extensions, but not i1.
264   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
265   for (MVT VT : MVT::integer_valuetypes()) {
266     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
267     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
268     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
269   }
270 
271   // Handle the various types of symbolic address.
272   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
273   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
274   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
275   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
276   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
277 
278   // We need to handle dynamic allocations specially because of the
279   // 160-byte area at the bottom of the stack.
280   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
281   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
282 
283   // Use custom expanders so that we can force the function to use
284   // a frame pointer.
285   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
286   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
287 
288   // Handle prefetches with PFD or PFDRL.
289   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
290 
291   for (MVT VT : MVT::vector_valuetypes()) {
292     // Assume by default that all vector operations need to be expanded.
293     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
294       if (getOperationAction(Opcode, VT) == Legal)
295         setOperationAction(Opcode, VT, Expand);
296 
297     // Likewise all truncating stores and extending loads.
298     for (MVT InnerVT : MVT::vector_valuetypes()) {
299       setTruncStoreAction(VT, InnerVT, Expand);
300       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
301       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
302       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
303     }
304 
305     if (isTypeLegal(VT)) {
306       // These operations are legal for anything that can be stored in a
307       // vector register, even if there is no native support for the format
308       // as such.  In particular, we can do these for v4f32 even though there
309       // are no specific instructions for that format.
310       setOperationAction(ISD::LOAD, VT, Legal);
311       setOperationAction(ISD::STORE, VT, Legal);
312       setOperationAction(ISD::VSELECT, VT, Legal);
313       setOperationAction(ISD::BITCAST, VT, Legal);
314       setOperationAction(ISD::UNDEF, VT, Legal);
315 
316       // Likewise, except that we need to replace the nodes with something
317       // more specific.
318       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
319       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
320     }
321   }
322 
323   // Handle integer vector types.
324   for (MVT VT : MVT::integer_vector_valuetypes()) {
325     if (isTypeLegal(VT)) {
326       // These operations have direct equivalents.
327       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
328       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
329       setOperationAction(ISD::ADD, VT, Legal);
330       setOperationAction(ISD::SUB, VT, Legal);
331       if (VT != MVT::v2i64)
332         setOperationAction(ISD::MUL, VT, Legal);
333       setOperationAction(ISD::AND, VT, Legal);
334       setOperationAction(ISD::OR, VT, Legal);
335       setOperationAction(ISD::XOR, VT, Legal);
336       if (Subtarget.hasVectorEnhancements1())
337         setOperationAction(ISD::CTPOP, VT, Legal);
338       else
339         setOperationAction(ISD::CTPOP, VT, Custom);
340       setOperationAction(ISD::CTTZ, VT, Legal);
341       setOperationAction(ISD::CTLZ, VT, Legal);
342 
343       // Convert a GPR scalar to a vector by inserting it into element 0.
344       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
345 
346       // Use a series of unpacks for extensions.
347       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
348       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
349 
350       // Detect shifts by a scalar amount and convert them into
351       // V*_BY_SCALAR.
352       setOperationAction(ISD::SHL, VT, Custom);
353       setOperationAction(ISD::SRA, VT, Custom);
354       setOperationAction(ISD::SRL, VT, Custom);
355 
356       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
357       // converted into ROTL.
358       setOperationAction(ISD::ROTL, VT, Expand);
359       setOperationAction(ISD::ROTR, VT, Expand);
360 
361       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
362       // and inverting the result as necessary.
363       setOperationAction(ISD::SETCC, VT, Custom);
364     }
365   }
366 
367   if (Subtarget.hasVector()) {
368     // There should be no need to check for float types other than v2f64
369     // since <2 x f32> isn't a legal type.
370     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
371     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
372     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
373     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
374     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
375     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
376     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
377     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
378   }
379 
380   // Handle floating-point types.
381   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
382        I <= MVT::LAST_FP_VALUETYPE;
383        ++I) {
384     MVT VT = MVT::SimpleValueType(I);
385     if (isTypeLegal(VT)) {
386       // We can use FI for FRINT.
387       setOperationAction(ISD::FRINT, VT, Legal);
388 
389       // We can use the extended form of FI for other rounding operations.
390       if (Subtarget.hasFPExtension()) {
391         setOperationAction(ISD::FNEARBYINT, VT, Legal);
392         setOperationAction(ISD::FFLOOR, VT, Legal);
393         setOperationAction(ISD::FCEIL, VT, Legal);
394         setOperationAction(ISD::FTRUNC, VT, Legal);
395         setOperationAction(ISD::FROUND, VT, Legal);
396       }
397 
398       // No special instructions for these.
399       setOperationAction(ISD::FSIN, VT, Expand);
400       setOperationAction(ISD::FCOS, VT, Expand);
401       setOperationAction(ISD::FSINCOS, VT, Expand);
402       setOperationAction(ISD::FREM, VT, Expand);
403       setOperationAction(ISD::FPOW, VT, Expand);
404     }
405   }
406 
407   // Handle floating-point vector types.
408   if (Subtarget.hasVector()) {
409     // Scalar-to-vector conversion is just a subreg.
410     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
411     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
412 
413     // Some insertions and extractions can be done directly but others
414     // need to go via integers.
415     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
416     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
417     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
418     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
419 
420     // These operations have direct equivalents.
421     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
422     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
423     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
424     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
425     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
426     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
427     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
428     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
429     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
430     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
431     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
432     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
433     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
434     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
435   }
436 
437   // The vector enhancements facility 1 has instructions for these.
438   if (Subtarget.hasVectorEnhancements1()) {
439     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
440     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
441     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
442     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
443     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
444     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
445     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
446     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
447     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
448     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
449     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
450     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
451     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
452     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
453 
454     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
455     setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
456     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
457     setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
458 
459     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
460     setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
461     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
462     setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
463 
464     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
465     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
466     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
467     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
468 
469     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
470     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
471     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
472     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
473 
474     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
475     setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
476     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
477     setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
478   }
479 
480   // We have fused multiply-addition for f32 and f64 but not f128.
481   setOperationAction(ISD::FMA, MVT::f32,  Legal);
482   setOperationAction(ISD::FMA, MVT::f64,  Legal);
483   if (Subtarget.hasVectorEnhancements1())
484     setOperationAction(ISD::FMA, MVT::f128, Legal);
485   else
486     setOperationAction(ISD::FMA, MVT::f128, Expand);
487 
488   // We don't have a copysign instruction on vector registers.
489   if (Subtarget.hasVectorEnhancements1())
490     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
491 
492   // Needed so that we don't try to implement f128 constant loads using
493   // a load-and-extend of a f80 constant (in cases where the constant
494   // would fit in an f80).
495   for (MVT VT : MVT::fp_valuetypes())
496     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
497 
498   // We don't have extending load instruction on vector registers.
499   if (Subtarget.hasVectorEnhancements1()) {
500     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
501     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
502   }
503 
504   // Floating-point truncation and stores need to be done separately.
505   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
506   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
507   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
508 
509   // We have 64-bit FPR<->GPR moves, but need special handling for
510   // 32-bit forms.
511   if (!Subtarget.hasVector()) {
512     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
513     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
514   }
515 
516   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
517   // structure, but VAEND is a no-op.
518   setOperationAction(ISD::VASTART, MVT::Other, Custom);
519   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
520   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
521 
522   // Codes for which we want to perform some z-specific combinations.
523   setTargetDAGCombine(ISD::ZERO_EXTEND);
524   setTargetDAGCombine(ISD::SIGN_EXTEND);
525   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
526   setTargetDAGCombine(ISD::STORE);
527   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
528   setTargetDAGCombine(ISD::FP_ROUND);
529   setTargetDAGCombine(ISD::BSWAP);
530   setTargetDAGCombine(ISD::SHL);
531   setTargetDAGCombine(ISD::SRA);
532   setTargetDAGCombine(ISD::SRL);
533   setTargetDAGCombine(ISD::ROTL);
534 
535   // Handle intrinsics.
536   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
537   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
538 
539   // We want to use MVC in preference to even a single load/store pair.
540   MaxStoresPerMemcpy = 0;
541   MaxStoresPerMemcpyOptSize = 0;
542 
543   // The main memset sequence is a byte store followed by an MVC.
544   // Two STC or MV..I stores win over that, but the kind of fused stores
545   // generated by target-independent code don't when the byte value is
546   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
547   // than "STC;MVC".  Handle the choice in target-specific code instead.
548   MaxStoresPerMemset = 0;
549   MaxStoresPerMemsetOptSize = 0;
550 }
551 
552 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
553                                               LLVMContext &, EVT VT) const {
554   if (!VT.isVector())
555     return MVT::i32;
556   return VT.changeVectorElementTypeToInteger();
557 }
558 
559 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
560   VT = VT.getScalarType();
561 
562   if (!VT.isSimple())
563     return false;
564 
565   switch (VT.getSimpleVT().SimpleTy) {
566   case MVT::f32:
567   case MVT::f64:
568     return true;
569   case MVT::f128:
570     return Subtarget.hasVectorEnhancements1();
571   default:
572     break;
573   }
574 
575   return false;
576 }
577 
578 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
579   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
580   return Imm.isZero() || Imm.isNegZero();
581 }
582 
583 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
584   // We can use CGFI or CLGFI.
585   return isInt<32>(Imm) || isUInt<32>(Imm);
586 }
587 
588 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
589   // We can use ALGFI or SLGFI.
590   return isUInt<32>(Imm) || isUInt<32>(-Imm);
591 }
592 
593 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
594                                                            unsigned,
595                                                            unsigned,
596                                                            bool *Fast) const {
597   // Unaligned accesses should never be slower than the expanded version.
598   // We check specifically for aligned accesses in the few cases where
599   // they are required.
600   if (Fast)
601     *Fast = true;
602   return true;
603 }
604 
605 // Information about the addressing mode for a memory access.
606 struct AddressingMode {
607   // True if a long displacement is supported.
608   bool LongDisplacement;
609 
610   // True if use of index register is supported.
611   bool IndexReg;
612 
613   AddressingMode(bool LongDispl, bool IdxReg) :
614     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
615 };
616 
617 // Return the desired addressing mode for a Load which has only one use (in
618 // the same block) which is a Store.
619 static AddressingMode getLoadStoreAddrMode(bool HasVector,
620                                           Type *Ty) {
621   // With vector support a Load->Store combination may be combined to either
622   // an MVC or vector operations and it seems to work best to allow the
623   // vector addressing mode.
624   if (HasVector)
625     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
626 
627   // Otherwise only the MVC case is special.
628   bool MVC = Ty->isIntegerTy(8);
629   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
630 }
631 
632 // Return the addressing mode which seems most desirable given an LLVM
633 // Instruction pointer.
634 static AddressingMode
635 supportedAddressingMode(Instruction *I, bool HasVector) {
636   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
637     switch (II->getIntrinsicID()) {
638     default: break;
639     case Intrinsic::memset:
640     case Intrinsic::memmove:
641     case Intrinsic::memcpy:
642       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
643     }
644   }
645 
646   if (isa<LoadInst>(I) && I->hasOneUse()) {
647     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
648     if (SingleUser->getParent() == I->getParent()) {
649       if (isa<ICmpInst>(SingleUser)) {
650         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
651           if (C->getBitWidth() <= 64 &&
652               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
653             // Comparison of memory with 16 bit signed / unsigned immediate
654             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
655       } else if (isa<StoreInst>(SingleUser))
656         // Load->Store
657         return getLoadStoreAddrMode(HasVector, I->getType());
658     }
659   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
660     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
661       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
662         // Load->Store
663         return getLoadStoreAddrMode(HasVector, LoadI->getType());
664   }
665 
666   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
667 
668     // * Use LDE instead of LE/LEY for z13 to avoid partial register
669     //   dependencies (LDE only supports small offsets).
670     // * Utilize the vector registers to hold floating point
671     //   values (vector load / store instructions only support small
672     //   offsets).
673 
674     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
675                          I->getOperand(0)->getType());
676     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
677     bool IsVectorAccess = MemAccessTy->isVectorTy();
678 
679     // A store of an extracted vector element will be combined into a VSTE type
680     // instruction.
681     if (!IsVectorAccess && isa<StoreInst>(I)) {
682       Value *DataOp = I->getOperand(0);
683       if (isa<ExtractElementInst>(DataOp))
684         IsVectorAccess = true;
685     }
686 
687     // A load which gets inserted into a vector element will be combined into a
688     // VLE type instruction.
689     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
690       User *LoadUser = *I->user_begin();
691       if (isa<InsertElementInst>(LoadUser))
692         IsVectorAccess = true;
693     }
694 
695     if (IsFPAccess || IsVectorAccess)
696       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
697   }
698 
699   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
700 }
701 
702 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
703        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
704   // Punt on globals for now, although they can be used in limited
705   // RELATIVE LONG cases.
706   if (AM.BaseGV)
707     return false;
708 
709   // Require a 20-bit signed offset.
710   if (!isInt<20>(AM.BaseOffs))
711     return false;
712 
713   AddressingMode SupportedAM(true, true);
714   if (I != nullptr)
715     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
716 
717   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
718     return false;
719 
720   if (!SupportedAM.IndexReg)
721     // No indexing allowed.
722     return AM.Scale == 0;
723   else
724     // Indexing is OK but no scale factor can be applied.
725     return AM.Scale == 0 || AM.Scale == 1;
726 }
727 
728 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
729   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
730     return false;
731   unsigned FromBits = FromType->getPrimitiveSizeInBits();
732   unsigned ToBits = ToType->getPrimitiveSizeInBits();
733   return FromBits > ToBits;
734 }
735 
736 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
737   if (!FromVT.isInteger() || !ToVT.isInteger())
738     return false;
739   unsigned FromBits = FromVT.getSizeInBits();
740   unsigned ToBits = ToVT.getSizeInBits();
741   return FromBits > ToBits;
742 }
743 
744 //===----------------------------------------------------------------------===//
745 // Inline asm support
746 //===----------------------------------------------------------------------===//
747 
748 TargetLowering::ConstraintType
749 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
750   if (Constraint.size() == 1) {
751     switch (Constraint[0]) {
752     case 'a': // Address register
753     case 'd': // Data register (equivalent to 'r')
754     case 'f': // Floating-point register
755     case 'h': // High-part register
756     case 'r': // General-purpose register
757     case 'v': // Vector register
758       return C_RegisterClass;
759 
760     case 'Q': // Memory with base and unsigned 12-bit displacement
761     case 'R': // Likewise, plus an index
762     case 'S': // Memory with base and signed 20-bit displacement
763     case 'T': // Likewise, plus an index
764     case 'm': // Equivalent to 'T'.
765       return C_Memory;
766 
767     case 'I': // Unsigned 8-bit constant
768     case 'J': // Unsigned 12-bit constant
769     case 'K': // Signed 16-bit constant
770     case 'L': // Signed 20-bit displacement (on all targets we support)
771     case 'M': // 0x7fffffff
772       return C_Other;
773 
774     default:
775       break;
776     }
777   }
778   return TargetLowering::getConstraintType(Constraint);
779 }
780 
781 TargetLowering::ConstraintWeight SystemZTargetLowering::
782 getSingleConstraintMatchWeight(AsmOperandInfo &info,
783                                const char *constraint) const {
784   ConstraintWeight weight = CW_Invalid;
785   Value *CallOperandVal = info.CallOperandVal;
786   // If we don't have a value, we can't do a match,
787   // but allow it at the lowest weight.
788   if (!CallOperandVal)
789     return CW_Default;
790   Type *type = CallOperandVal->getType();
791   // Look at the constraint type.
792   switch (*constraint) {
793   default:
794     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
795     break;
796 
797   case 'a': // Address register
798   case 'd': // Data register (equivalent to 'r')
799   case 'h': // High-part register
800   case 'r': // General-purpose register
801     if (CallOperandVal->getType()->isIntegerTy())
802       weight = CW_Register;
803     break;
804 
805   case 'f': // Floating-point register
806     if (type->isFloatingPointTy())
807       weight = CW_Register;
808     break;
809 
810   case 'v': // Vector register
811     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
812         Subtarget.hasVector())
813       weight = CW_Register;
814     break;
815 
816   case 'I': // Unsigned 8-bit constant
817     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
818       if (isUInt<8>(C->getZExtValue()))
819         weight = CW_Constant;
820     break;
821 
822   case 'J': // Unsigned 12-bit constant
823     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
824       if (isUInt<12>(C->getZExtValue()))
825         weight = CW_Constant;
826     break;
827 
828   case 'K': // Signed 16-bit constant
829     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
830       if (isInt<16>(C->getSExtValue()))
831         weight = CW_Constant;
832     break;
833 
834   case 'L': // Signed 20-bit displacement (on all targets we support)
835     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
836       if (isInt<20>(C->getSExtValue()))
837         weight = CW_Constant;
838     break;
839 
840   case 'M': // 0x7fffffff
841     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
842       if (C->getZExtValue() == 0x7fffffff)
843         weight = CW_Constant;
844     break;
845   }
846   return weight;
847 }
848 
849 // Parse a "{tNNN}" register constraint for which the register type "t"
850 // has already been verified.  MC is the class associated with "t" and
851 // Map maps 0-based register numbers to LLVM register numbers.
852 static std::pair<unsigned, const TargetRegisterClass *>
853 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
854                     const unsigned *Map, unsigned Size) {
855   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
856   if (isdigit(Constraint[2])) {
857     unsigned Index;
858     bool Failed =
859         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
860     if (!Failed && Index < Size && Map[Index])
861       return std::make_pair(Map[Index], RC);
862   }
863   return std::make_pair(0U, nullptr);
864 }
865 
866 std::pair<unsigned, const TargetRegisterClass *>
867 SystemZTargetLowering::getRegForInlineAsmConstraint(
868     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
869   if (Constraint.size() == 1) {
870     // GCC Constraint Letters
871     switch (Constraint[0]) {
872     default: break;
873     case 'd': // Data register (equivalent to 'r')
874     case 'r': // General-purpose register
875       if (VT == MVT::i64)
876         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
877       else if (VT == MVT::i128)
878         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
879       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
880 
881     case 'a': // Address register
882       if (VT == MVT::i64)
883         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
884       else if (VT == MVT::i128)
885         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
886       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
887 
888     case 'h': // High-part register (an LLVM extension)
889       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
890 
891     case 'f': // Floating-point register
892       if (VT == MVT::f64)
893         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
894       else if (VT == MVT::f128)
895         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
896       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
897 
898     case 'v': // Vector register
899       if (Subtarget.hasVector()) {
900         if (VT == MVT::f32)
901           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
902         if (VT == MVT::f64)
903           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
904         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
905       }
906       break;
907     }
908   }
909   if (Constraint.size() > 0 && Constraint[0] == '{') {
910     // We need to override the default register parsing for GPRs and FPRs
911     // because the interpretation depends on VT.  The internal names of
912     // the registers are also different from the external names
913     // (F0D and F0S instead of F0, etc.).
914     if (Constraint[1] == 'r') {
915       if (VT == MVT::i32)
916         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
917                                    SystemZMC::GR32Regs, 16);
918       if (VT == MVT::i128)
919         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
920                                    SystemZMC::GR128Regs, 16);
921       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
922                                  SystemZMC::GR64Regs, 16);
923     }
924     if (Constraint[1] == 'f') {
925       if (VT == MVT::f32)
926         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
927                                    SystemZMC::FP32Regs, 16);
928       if (VT == MVT::f128)
929         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
930                                    SystemZMC::FP128Regs, 16);
931       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
932                                  SystemZMC::FP64Regs, 16);
933     }
934     if (Constraint[1] == 'v') {
935       if (VT == MVT::f32)
936         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
937                                    SystemZMC::VR32Regs, 32);
938       if (VT == MVT::f64)
939         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
940                                    SystemZMC::VR64Regs, 32);
941       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
942                                  SystemZMC::VR128Regs, 32);
943     }
944   }
945   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
946 }
947 
948 void SystemZTargetLowering::
949 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
950                              std::vector<SDValue> &Ops,
951                              SelectionDAG &DAG) const {
952   // Only support length 1 constraints for now.
953   if (Constraint.length() == 1) {
954     switch (Constraint[0]) {
955     case 'I': // Unsigned 8-bit constant
956       if (auto *C = dyn_cast<ConstantSDNode>(Op))
957         if (isUInt<8>(C->getZExtValue()))
958           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
959                                               Op.getValueType()));
960       return;
961 
962     case 'J': // Unsigned 12-bit constant
963       if (auto *C = dyn_cast<ConstantSDNode>(Op))
964         if (isUInt<12>(C->getZExtValue()))
965           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
966                                               Op.getValueType()));
967       return;
968 
969     case 'K': // Signed 16-bit constant
970       if (auto *C = dyn_cast<ConstantSDNode>(Op))
971         if (isInt<16>(C->getSExtValue()))
972           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
973                                               Op.getValueType()));
974       return;
975 
976     case 'L': // Signed 20-bit displacement (on all targets we support)
977       if (auto *C = dyn_cast<ConstantSDNode>(Op))
978         if (isInt<20>(C->getSExtValue()))
979           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
980                                               Op.getValueType()));
981       return;
982 
983     case 'M': // 0x7fffffff
984       if (auto *C = dyn_cast<ConstantSDNode>(Op))
985         if (C->getZExtValue() == 0x7fffffff)
986           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
987                                               Op.getValueType()));
988       return;
989     }
990   }
991   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
992 }
993 
994 //===----------------------------------------------------------------------===//
995 // Calling conventions
996 //===----------------------------------------------------------------------===//
997 
998 #include "SystemZGenCallingConv.inc"
999 
1000 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1001   CallingConv::ID) const {
1002   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1003                                            SystemZ::R14D, 0 };
1004   return ScratchRegs;
1005 }
1006 
1007 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1008                                                      Type *ToType) const {
1009   return isTruncateFree(FromType, ToType);
1010 }
1011 
1012 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1013   return CI->isTailCall();
1014 }
1015 
1016 // We do not yet support 128-bit single-element vector types.  If the user
1017 // attempts to use such types as function argument or return type, prefer
1018 // to error out instead of emitting code violating the ABI.
1019 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1020   if (ArgVT.isVector() && !VT.isVector())
1021     report_fatal_error("Unsupported vector argument or return type");
1022 }
1023 
1024 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1025   for (unsigned i = 0; i < Ins.size(); ++i)
1026     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1027 }
1028 
1029 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1030   for (unsigned i = 0; i < Outs.size(); ++i)
1031     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1032 }
1033 
1034 // Value is a value that has been passed to us in the location described by VA
1035 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1036 // any loads onto Chain.
1037 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1038                                    CCValAssign &VA, SDValue Chain,
1039                                    SDValue Value) {
1040   // If the argument has been promoted from a smaller type, insert an
1041   // assertion to capture this.
1042   if (VA.getLocInfo() == CCValAssign::SExt)
1043     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1044                         DAG.getValueType(VA.getValVT()));
1045   else if (VA.getLocInfo() == CCValAssign::ZExt)
1046     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1047                         DAG.getValueType(VA.getValVT()));
1048 
1049   if (VA.isExtInLoc())
1050     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1051   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1052     // If this is a short vector argument loaded from the stack,
1053     // extend from i64 to full vector size and then bitcast.
1054     assert(VA.getLocVT() == MVT::i64);
1055     assert(VA.getValVT().isVector());
1056     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1057     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1058   } else
1059     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1060   return Value;
1061 }
1062 
1063 // Value is a value of type VA.getValVT() that we need to copy into
1064 // the location described by VA.  Return a copy of Value converted to
1065 // VA.getValVT().  The caller is responsible for handling indirect values.
1066 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1067                                    CCValAssign &VA, SDValue Value) {
1068   switch (VA.getLocInfo()) {
1069   case CCValAssign::SExt:
1070     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1071   case CCValAssign::ZExt:
1072     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1073   case CCValAssign::AExt:
1074     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1075   case CCValAssign::BCvt:
1076     // If this is a short vector argument to be stored to the stack,
1077     // bitcast to v2i64 and then extract first element.
1078     assert(VA.getLocVT() == MVT::i64);
1079     assert(VA.getValVT().isVector());
1080     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1081     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1082                        DAG.getConstant(0, DL, MVT::i32));
1083   case CCValAssign::Full:
1084     return Value;
1085   default:
1086     llvm_unreachable("Unhandled getLocInfo()");
1087   }
1088 }
1089 
1090 SDValue SystemZTargetLowering::LowerFormalArguments(
1091     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1092     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1093     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1094   MachineFunction &MF = DAG.getMachineFunction();
1095   MachineFrameInfo &MFI = MF.getFrameInfo();
1096   MachineRegisterInfo &MRI = MF.getRegInfo();
1097   SystemZMachineFunctionInfo *FuncInfo =
1098       MF.getInfo<SystemZMachineFunctionInfo>();
1099   auto *TFL =
1100       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1101   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1102 
1103   // Detect unsupported vector argument types.
1104   if (Subtarget.hasVector())
1105     VerifyVectorTypes(Ins);
1106 
1107   // Assign locations to all of the incoming arguments.
1108   SmallVector<CCValAssign, 16> ArgLocs;
1109   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1110   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1111 
1112   unsigned NumFixedGPRs = 0;
1113   unsigned NumFixedFPRs = 0;
1114   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1115     SDValue ArgValue;
1116     CCValAssign &VA = ArgLocs[I];
1117     EVT LocVT = VA.getLocVT();
1118     if (VA.isRegLoc()) {
1119       // Arguments passed in registers
1120       const TargetRegisterClass *RC;
1121       switch (LocVT.getSimpleVT().SimpleTy) {
1122       default:
1123         // Integers smaller than i64 should be promoted to i64.
1124         llvm_unreachable("Unexpected argument type");
1125       case MVT::i32:
1126         NumFixedGPRs += 1;
1127         RC = &SystemZ::GR32BitRegClass;
1128         break;
1129       case MVT::i64:
1130         NumFixedGPRs += 1;
1131         RC = &SystemZ::GR64BitRegClass;
1132         break;
1133       case MVT::f32:
1134         NumFixedFPRs += 1;
1135         RC = &SystemZ::FP32BitRegClass;
1136         break;
1137       case MVT::f64:
1138         NumFixedFPRs += 1;
1139         RC = &SystemZ::FP64BitRegClass;
1140         break;
1141       case MVT::v16i8:
1142       case MVT::v8i16:
1143       case MVT::v4i32:
1144       case MVT::v2i64:
1145       case MVT::v4f32:
1146       case MVT::v2f64:
1147         RC = &SystemZ::VR128BitRegClass;
1148         break;
1149       }
1150 
1151       unsigned VReg = MRI.createVirtualRegister(RC);
1152       MRI.addLiveIn(VA.getLocReg(), VReg);
1153       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1154     } else {
1155       assert(VA.isMemLoc() && "Argument not register or memory");
1156 
1157       // Create the frame index object for this incoming parameter.
1158       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1159                                      VA.getLocMemOffset(), true);
1160 
1161       // Create the SelectionDAG nodes corresponding to a load
1162       // from this parameter.  Unpromoted ints and floats are
1163       // passed as right-justified 8-byte values.
1164       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1165       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1166         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1167                           DAG.getIntPtrConstant(4, DL));
1168       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1169                              MachinePointerInfo::getFixedStack(MF, FI));
1170     }
1171 
1172     // Convert the value of the argument register into the value that's
1173     // being passed.
1174     if (VA.getLocInfo() == CCValAssign::Indirect) {
1175       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1176                                    MachinePointerInfo()));
1177       // If the original argument was split (e.g. i128), we need
1178       // to load all parts of it here (using the same address).
1179       unsigned ArgIndex = Ins[I].OrigArgIndex;
1180       assert (Ins[I].PartOffset == 0);
1181       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1182         CCValAssign &PartVA = ArgLocs[I + 1];
1183         unsigned PartOffset = Ins[I + 1].PartOffset;
1184         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1185                                       DAG.getIntPtrConstant(PartOffset, DL));
1186         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1187                                      MachinePointerInfo()));
1188         ++I;
1189       }
1190     } else
1191       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1192   }
1193 
1194   if (IsVarArg) {
1195     // Save the number of non-varargs registers for later use by va_start, etc.
1196     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1197     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1198 
1199     // Likewise the address (in the form of a frame index) of where the
1200     // first stack vararg would be.  The 1-byte size here is arbitrary.
1201     int64_t StackSize = CCInfo.getNextStackOffset();
1202     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1203 
1204     // ...and a similar frame index for the caller-allocated save area
1205     // that will be used to store the incoming registers.
1206     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1207     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1208     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1209 
1210     // Store the FPR varargs in the reserved frame slots.  (We store the
1211     // GPRs as part of the prologue.)
1212     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1213       SDValue MemOps[SystemZ::NumArgFPRs];
1214       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1215         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1216         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1217         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1218         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1219                                      &SystemZ::FP64BitRegClass);
1220         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1221         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1222                                  MachinePointerInfo::getFixedStack(MF, FI));
1223       }
1224       // Join the stores, which are independent of one another.
1225       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1226                           makeArrayRef(&MemOps[NumFixedFPRs],
1227                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1228     }
1229   }
1230 
1231   return Chain;
1232 }
1233 
1234 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1235                               SmallVectorImpl<CCValAssign> &ArgLocs,
1236                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1237   // Punt if there are any indirect or stack arguments, or if the call
1238   // needs the callee-saved argument register R6, or if the call uses
1239   // the callee-saved register arguments SwiftSelf and SwiftError.
1240   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1241     CCValAssign &VA = ArgLocs[I];
1242     if (VA.getLocInfo() == CCValAssign::Indirect)
1243       return false;
1244     if (!VA.isRegLoc())
1245       return false;
1246     unsigned Reg = VA.getLocReg();
1247     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1248       return false;
1249     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1250       return false;
1251   }
1252   return true;
1253 }
1254 
1255 SDValue
1256 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1257                                  SmallVectorImpl<SDValue> &InVals) const {
1258   SelectionDAG &DAG = CLI.DAG;
1259   SDLoc &DL = CLI.DL;
1260   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1261   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1262   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1263   SDValue Chain = CLI.Chain;
1264   SDValue Callee = CLI.Callee;
1265   bool &IsTailCall = CLI.IsTailCall;
1266   CallingConv::ID CallConv = CLI.CallConv;
1267   bool IsVarArg = CLI.IsVarArg;
1268   MachineFunction &MF = DAG.getMachineFunction();
1269   EVT PtrVT = getPointerTy(MF.getDataLayout());
1270 
1271   // Detect unsupported vector argument and return types.
1272   if (Subtarget.hasVector()) {
1273     VerifyVectorTypes(Outs);
1274     VerifyVectorTypes(Ins);
1275   }
1276 
1277   // Analyze the operands of the call, assigning locations to each operand.
1278   SmallVector<CCValAssign, 16> ArgLocs;
1279   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1280   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1281 
1282   // We don't support GuaranteedTailCallOpt, only automatically-detected
1283   // sibling calls.
1284   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1285     IsTailCall = false;
1286 
1287   // Get a count of how many bytes are to be pushed on the stack.
1288   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1289 
1290   // Mark the start of the call.
1291   if (!IsTailCall)
1292     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1293 
1294   // Copy argument values to their designated locations.
1295   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1296   SmallVector<SDValue, 8> MemOpChains;
1297   SDValue StackPtr;
1298   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1299     CCValAssign &VA = ArgLocs[I];
1300     SDValue ArgValue = OutVals[I];
1301 
1302     if (VA.getLocInfo() == CCValAssign::Indirect) {
1303       // Store the argument in a stack slot and pass its address.
1304       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1305       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1306       MemOpChains.push_back(
1307           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1308                        MachinePointerInfo::getFixedStack(MF, FI)));
1309       // If the original argument was split (e.g. i128), we need
1310       // to store all parts of it here (and pass just one address).
1311       unsigned ArgIndex = Outs[I].OrigArgIndex;
1312       assert (Outs[I].PartOffset == 0);
1313       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1314         SDValue PartValue = OutVals[I + 1];
1315         unsigned PartOffset = Outs[I + 1].PartOffset;
1316         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1317                                       DAG.getIntPtrConstant(PartOffset, DL));
1318         MemOpChains.push_back(
1319             DAG.getStore(Chain, DL, PartValue, Address,
1320                          MachinePointerInfo::getFixedStack(MF, FI)));
1321         ++I;
1322       }
1323       ArgValue = SpillSlot;
1324     } else
1325       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1326 
1327     if (VA.isRegLoc())
1328       // Queue up the argument copies and emit them at the end.
1329       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1330     else {
1331       assert(VA.isMemLoc() && "Argument not register or memory");
1332 
1333       // Work out the address of the stack slot.  Unpromoted ints and
1334       // floats are passed as right-justified 8-byte values.
1335       if (!StackPtr.getNode())
1336         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1337       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1338       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1339         Offset += 4;
1340       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1341                                     DAG.getIntPtrConstant(Offset, DL));
1342 
1343       // Emit the store.
1344       MemOpChains.push_back(
1345           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1346     }
1347   }
1348 
1349   // Join the stores, which are independent of one another.
1350   if (!MemOpChains.empty())
1351     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1352 
1353   // Accept direct calls by converting symbolic call addresses to the
1354   // associated Target* opcodes.  Force %r1 to be used for indirect
1355   // tail calls.
1356   SDValue Glue;
1357   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1358     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1359     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1360   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1361     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1362     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1363   } else if (IsTailCall) {
1364     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1365     Glue = Chain.getValue(1);
1366     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1367   }
1368 
1369   // Build a sequence of copy-to-reg nodes, chained and glued together.
1370   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1371     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1372                              RegsToPass[I].second, Glue);
1373     Glue = Chain.getValue(1);
1374   }
1375 
1376   // The first call operand is the chain and the second is the target address.
1377   SmallVector<SDValue, 8> Ops;
1378   Ops.push_back(Chain);
1379   Ops.push_back(Callee);
1380 
1381   // Add argument registers to the end of the list so that they are
1382   // known live into the call.
1383   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1384     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1385                                   RegsToPass[I].second.getValueType()));
1386 
1387   // Add a register mask operand representing the call-preserved registers.
1388   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1389   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1390   assert(Mask && "Missing call preserved mask for calling convention");
1391   Ops.push_back(DAG.getRegisterMask(Mask));
1392 
1393   // Glue the call to the argument copies, if any.
1394   if (Glue.getNode())
1395     Ops.push_back(Glue);
1396 
1397   // Emit the call.
1398   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1399   if (IsTailCall)
1400     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1401   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1402   Glue = Chain.getValue(1);
1403 
1404   // Mark the end of the call, which is glued to the call itself.
1405   Chain = DAG.getCALLSEQ_END(Chain,
1406                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1407                              DAG.getConstant(0, DL, PtrVT, true),
1408                              Glue, DL);
1409   Glue = Chain.getValue(1);
1410 
1411   // Assign locations to each value returned by this call.
1412   SmallVector<CCValAssign, 16> RetLocs;
1413   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1414   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1415 
1416   // Copy all of the result registers out of their specified physreg.
1417   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1418     CCValAssign &VA = RetLocs[I];
1419 
1420     // Copy the value out, gluing the copy to the end of the call sequence.
1421     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1422                                           VA.getLocVT(), Glue);
1423     Chain = RetValue.getValue(1);
1424     Glue = RetValue.getValue(2);
1425 
1426     // Convert the value of the return register into the value that's
1427     // being returned.
1428     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1429   }
1430 
1431   return Chain;
1432 }
1433 
1434 bool SystemZTargetLowering::
1435 CanLowerReturn(CallingConv::ID CallConv,
1436                MachineFunction &MF, bool isVarArg,
1437                const SmallVectorImpl<ISD::OutputArg> &Outs,
1438                LLVMContext &Context) const {
1439   // Detect unsupported vector return types.
1440   if (Subtarget.hasVector())
1441     VerifyVectorTypes(Outs);
1442 
1443   // Special case that we cannot easily detect in RetCC_SystemZ since
1444   // i128 is not a legal type.
1445   for (auto &Out : Outs)
1446     if (Out.ArgVT == MVT::i128)
1447       return false;
1448 
1449   SmallVector<CCValAssign, 16> RetLocs;
1450   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1451   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1452 }
1453 
1454 SDValue
1455 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1456                                    bool IsVarArg,
1457                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1458                                    const SmallVectorImpl<SDValue> &OutVals,
1459                                    const SDLoc &DL, SelectionDAG &DAG) const {
1460   MachineFunction &MF = DAG.getMachineFunction();
1461 
1462   // Detect unsupported vector return types.
1463   if (Subtarget.hasVector())
1464     VerifyVectorTypes(Outs);
1465 
1466   // Assign locations to each returned value.
1467   SmallVector<CCValAssign, 16> RetLocs;
1468   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1469   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1470 
1471   // Quick exit for void returns
1472   if (RetLocs.empty())
1473     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1474 
1475   // Copy the result values into the output registers.
1476   SDValue Glue;
1477   SmallVector<SDValue, 4> RetOps;
1478   RetOps.push_back(Chain);
1479   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1480     CCValAssign &VA = RetLocs[I];
1481     SDValue RetValue = OutVals[I];
1482 
1483     // Make the return register live on exit.
1484     assert(VA.isRegLoc() && "Can only return in registers!");
1485 
1486     // Promote the value as required.
1487     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1488 
1489     // Chain and glue the copies together.
1490     unsigned Reg = VA.getLocReg();
1491     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1492     Glue = Chain.getValue(1);
1493     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1494   }
1495 
1496   // Update chain and glue.
1497   RetOps[0] = Chain;
1498   if (Glue.getNode())
1499     RetOps.push_back(Glue);
1500 
1501   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1502 }
1503 
1504 // Return true if Op is an intrinsic node with chain that returns the CC value
1505 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1506 // the mask of valid CC values if so.
1507 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1508                                       unsigned &CCValid) {
1509   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1510   switch (Id) {
1511   case Intrinsic::s390_tbegin:
1512     Opcode = SystemZISD::TBEGIN;
1513     CCValid = SystemZ::CCMASK_TBEGIN;
1514     return true;
1515 
1516   case Intrinsic::s390_tbegin_nofloat:
1517     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1518     CCValid = SystemZ::CCMASK_TBEGIN;
1519     return true;
1520 
1521   case Intrinsic::s390_tend:
1522     Opcode = SystemZISD::TEND;
1523     CCValid = SystemZ::CCMASK_TEND;
1524     return true;
1525 
1526   default:
1527     return false;
1528   }
1529 }
1530 
1531 // Return true if Op is an intrinsic node without chain that returns the
1532 // CC value as its final argument.  Provide the associated SystemZISD
1533 // opcode and the mask of valid CC values if so.
1534 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1535   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1536   switch (Id) {
1537   case Intrinsic::s390_vpkshs:
1538   case Intrinsic::s390_vpksfs:
1539   case Intrinsic::s390_vpksgs:
1540     Opcode = SystemZISD::PACKS_CC;
1541     CCValid = SystemZ::CCMASK_VCMP;
1542     return true;
1543 
1544   case Intrinsic::s390_vpklshs:
1545   case Intrinsic::s390_vpklsfs:
1546   case Intrinsic::s390_vpklsgs:
1547     Opcode = SystemZISD::PACKLS_CC;
1548     CCValid = SystemZ::CCMASK_VCMP;
1549     return true;
1550 
1551   case Intrinsic::s390_vceqbs:
1552   case Intrinsic::s390_vceqhs:
1553   case Intrinsic::s390_vceqfs:
1554   case Intrinsic::s390_vceqgs:
1555     Opcode = SystemZISD::VICMPES;
1556     CCValid = SystemZ::CCMASK_VCMP;
1557     return true;
1558 
1559   case Intrinsic::s390_vchbs:
1560   case Intrinsic::s390_vchhs:
1561   case Intrinsic::s390_vchfs:
1562   case Intrinsic::s390_vchgs:
1563     Opcode = SystemZISD::VICMPHS;
1564     CCValid = SystemZ::CCMASK_VCMP;
1565     return true;
1566 
1567   case Intrinsic::s390_vchlbs:
1568   case Intrinsic::s390_vchlhs:
1569   case Intrinsic::s390_vchlfs:
1570   case Intrinsic::s390_vchlgs:
1571     Opcode = SystemZISD::VICMPHLS;
1572     CCValid = SystemZ::CCMASK_VCMP;
1573     return true;
1574 
1575   case Intrinsic::s390_vtm:
1576     Opcode = SystemZISD::VTM;
1577     CCValid = SystemZ::CCMASK_VCMP;
1578     return true;
1579 
1580   case Intrinsic::s390_vfaebs:
1581   case Intrinsic::s390_vfaehs:
1582   case Intrinsic::s390_vfaefs:
1583     Opcode = SystemZISD::VFAE_CC;
1584     CCValid = SystemZ::CCMASK_ANY;
1585     return true;
1586 
1587   case Intrinsic::s390_vfaezbs:
1588   case Intrinsic::s390_vfaezhs:
1589   case Intrinsic::s390_vfaezfs:
1590     Opcode = SystemZISD::VFAEZ_CC;
1591     CCValid = SystemZ::CCMASK_ANY;
1592     return true;
1593 
1594   case Intrinsic::s390_vfeebs:
1595   case Intrinsic::s390_vfeehs:
1596   case Intrinsic::s390_vfeefs:
1597     Opcode = SystemZISD::VFEE_CC;
1598     CCValid = SystemZ::CCMASK_ANY;
1599     return true;
1600 
1601   case Intrinsic::s390_vfeezbs:
1602   case Intrinsic::s390_vfeezhs:
1603   case Intrinsic::s390_vfeezfs:
1604     Opcode = SystemZISD::VFEEZ_CC;
1605     CCValid = SystemZ::CCMASK_ANY;
1606     return true;
1607 
1608   case Intrinsic::s390_vfenebs:
1609   case Intrinsic::s390_vfenehs:
1610   case Intrinsic::s390_vfenefs:
1611     Opcode = SystemZISD::VFENE_CC;
1612     CCValid = SystemZ::CCMASK_ANY;
1613     return true;
1614 
1615   case Intrinsic::s390_vfenezbs:
1616   case Intrinsic::s390_vfenezhs:
1617   case Intrinsic::s390_vfenezfs:
1618     Opcode = SystemZISD::VFENEZ_CC;
1619     CCValid = SystemZ::CCMASK_ANY;
1620     return true;
1621 
1622   case Intrinsic::s390_vistrbs:
1623   case Intrinsic::s390_vistrhs:
1624   case Intrinsic::s390_vistrfs:
1625     Opcode = SystemZISD::VISTR_CC;
1626     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1627     return true;
1628 
1629   case Intrinsic::s390_vstrcbs:
1630   case Intrinsic::s390_vstrchs:
1631   case Intrinsic::s390_vstrcfs:
1632     Opcode = SystemZISD::VSTRC_CC;
1633     CCValid = SystemZ::CCMASK_ANY;
1634     return true;
1635 
1636   case Intrinsic::s390_vstrczbs:
1637   case Intrinsic::s390_vstrczhs:
1638   case Intrinsic::s390_vstrczfs:
1639     Opcode = SystemZISD::VSTRCZ_CC;
1640     CCValid = SystemZ::CCMASK_ANY;
1641     return true;
1642 
1643   case Intrinsic::s390_vfcedbs:
1644   case Intrinsic::s390_vfcesbs:
1645     Opcode = SystemZISD::VFCMPES;
1646     CCValid = SystemZ::CCMASK_VCMP;
1647     return true;
1648 
1649   case Intrinsic::s390_vfchdbs:
1650   case Intrinsic::s390_vfchsbs:
1651     Opcode = SystemZISD::VFCMPHS;
1652     CCValid = SystemZ::CCMASK_VCMP;
1653     return true;
1654 
1655   case Intrinsic::s390_vfchedbs:
1656   case Intrinsic::s390_vfchesbs:
1657     Opcode = SystemZISD::VFCMPHES;
1658     CCValid = SystemZ::CCMASK_VCMP;
1659     return true;
1660 
1661   case Intrinsic::s390_vftcidb:
1662   case Intrinsic::s390_vftcisb:
1663     Opcode = SystemZISD::VFTCI;
1664     CCValid = SystemZ::CCMASK_VCMP;
1665     return true;
1666 
1667   case Intrinsic::s390_tdc:
1668     Opcode = SystemZISD::TDC;
1669     CCValid = SystemZ::CCMASK_TDC;
1670     return true;
1671 
1672   default:
1673     return false;
1674   }
1675 }
1676 
1677 // Emit an intrinsic with chain and an explicit CC register result.
1678 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1679                                            unsigned Opcode) {
1680   // Copy all operands except the intrinsic ID.
1681   unsigned NumOps = Op.getNumOperands();
1682   SmallVector<SDValue, 6> Ops;
1683   Ops.reserve(NumOps - 1);
1684   Ops.push_back(Op.getOperand(0));
1685   for (unsigned I = 2; I < NumOps; ++I)
1686     Ops.push_back(Op.getOperand(I));
1687 
1688   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1689   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1690   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1691   SDValue OldChain = SDValue(Op.getNode(), 1);
1692   SDValue NewChain = SDValue(Intr.getNode(), 1);
1693   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1694   return Intr.getNode();
1695 }
1696 
1697 // Emit an intrinsic with an explicit CC register result.
1698 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1699                                    unsigned Opcode) {
1700   // Copy all operands except the intrinsic ID.
1701   unsigned NumOps = Op.getNumOperands();
1702   SmallVector<SDValue, 6> Ops;
1703   Ops.reserve(NumOps - 1);
1704   for (unsigned I = 1; I < NumOps; ++I)
1705     Ops.push_back(Op.getOperand(I));
1706 
1707   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1708   return Intr.getNode();
1709 }
1710 
1711 // CC is a comparison that will be implemented using an integer or
1712 // floating-point comparison.  Return the condition code mask for
1713 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1714 // unsigned comparisons and clear for signed ones.  In the floating-point
1715 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1716 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1717 #define CONV(X) \
1718   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1719   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1720   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1721 
1722   switch (CC) {
1723   default:
1724     llvm_unreachable("Invalid integer condition!");
1725 
1726   CONV(EQ);
1727   CONV(NE);
1728   CONV(GT);
1729   CONV(GE);
1730   CONV(LT);
1731   CONV(LE);
1732 
1733   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1734   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1735   }
1736 #undef CONV
1737 }
1738 
1739 // If C can be converted to a comparison against zero, adjust the operands
1740 // as necessary.
1741 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1742   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1743     return;
1744 
1745   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1746   if (!ConstOp1)
1747     return;
1748 
1749   int64_t Value = ConstOp1->getSExtValue();
1750   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1751       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1752       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1753       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1754     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1755     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1756   }
1757 }
1758 
1759 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1760 // adjust the operands as necessary.
1761 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1762                              Comparison &C) {
1763   // For us to make any changes, it must a comparison between a single-use
1764   // load and a constant.
1765   if (!C.Op0.hasOneUse() ||
1766       C.Op0.getOpcode() != ISD::LOAD ||
1767       C.Op1.getOpcode() != ISD::Constant)
1768     return;
1769 
1770   // We must have an 8- or 16-bit load.
1771   auto *Load = cast<LoadSDNode>(C.Op0);
1772   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1773   if (NumBits != 8 && NumBits != 16)
1774     return;
1775 
1776   // The load must be an extending one and the constant must be within the
1777   // range of the unextended value.
1778   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1779   uint64_t Value = ConstOp1->getZExtValue();
1780   uint64_t Mask = (1 << NumBits) - 1;
1781   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1782     // Make sure that ConstOp1 is in range of C.Op0.
1783     int64_t SignedValue = ConstOp1->getSExtValue();
1784     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1785       return;
1786     if (C.ICmpType != SystemZICMP::SignedOnly) {
1787       // Unsigned comparison between two sign-extended values is equivalent
1788       // to unsigned comparison between two zero-extended values.
1789       Value &= Mask;
1790     } else if (NumBits == 8) {
1791       // Try to treat the comparison as unsigned, so that we can use CLI.
1792       // Adjust CCMask and Value as necessary.
1793       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1794         // Test whether the high bit of the byte is set.
1795         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1796       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1797         // Test whether the high bit of the byte is clear.
1798         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1799       else
1800         // No instruction exists for this combination.
1801         return;
1802       C.ICmpType = SystemZICMP::UnsignedOnly;
1803     }
1804   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1805     if (Value > Mask)
1806       return;
1807     // If the constant is in range, we can use any comparison.
1808     C.ICmpType = SystemZICMP::Any;
1809   } else
1810     return;
1811 
1812   // Make sure that the first operand is an i32 of the right extension type.
1813   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1814                               ISD::SEXTLOAD :
1815                               ISD::ZEXTLOAD);
1816   if (C.Op0.getValueType() != MVT::i32 ||
1817       Load->getExtensionType() != ExtType) {
1818     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1819                            Load->getBasePtr(), Load->getPointerInfo(),
1820                            Load->getMemoryVT(), Load->getAlignment(),
1821                            Load->getMemOperand()->getFlags());
1822     // Update the chain uses.
1823     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1824   }
1825 
1826   // Make sure that the second operand is an i32 with the right value.
1827   if (C.Op1.getValueType() != MVT::i32 ||
1828       Value != ConstOp1->getZExtValue())
1829     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1830 }
1831 
1832 // Return true if Op is either an unextended load, or a load suitable
1833 // for integer register-memory comparisons of type ICmpType.
1834 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1835   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1836   if (Load) {
1837     // There are no instructions to compare a register with a memory byte.
1838     if (Load->getMemoryVT() == MVT::i8)
1839       return false;
1840     // Otherwise decide on extension type.
1841     switch (Load->getExtensionType()) {
1842     case ISD::NON_EXTLOAD:
1843       return true;
1844     case ISD::SEXTLOAD:
1845       return ICmpType != SystemZICMP::UnsignedOnly;
1846     case ISD::ZEXTLOAD:
1847       return ICmpType != SystemZICMP::SignedOnly;
1848     default:
1849       break;
1850     }
1851   }
1852   return false;
1853 }
1854 
1855 // Return true if it is better to swap the operands of C.
1856 static bool shouldSwapCmpOperands(const Comparison &C) {
1857   // Leave f128 comparisons alone, since they have no memory forms.
1858   if (C.Op0.getValueType() == MVT::f128)
1859     return false;
1860 
1861   // Always keep a floating-point constant second, since comparisons with
1862   // zero can use LOAD TEST and comparisons with other constants make a
1863   // natural memory operand.
1864   if (isa<ConstantFPSDNode>(C.Op1))
1865     return false;
1866 
1867   // Never swap comparisons with zero since there are many ways to optimize
1868   // those later.
1869   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1870   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1871     return false;
1872 
1873   // Also keep natural memory operands second if the loaded value is
1874   // only used here.  Several comparisons have memory forms.
1875   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1876     return false;
1877 
1878   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1879   // In that case we generally prefer the memory to be second.
1880   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1881     // The only exceptions are when the second operand is a constant and
1882     // we can use things like CHHSI.
1883     if (!ConstOp1)
1884       return true;
1885     // The unsigned memory-immediate instructions can handle 16-bit
1886     // unsigned integers.
1887     if (C.ICmpType != SystemZICMP::SignedOnly &&
1888         isUInt<16>(ConstOp1->getZExtValue()))
1889       return false;
1890     // The signed memory-immediate instructions can handle 16-bit
1891     // signed integers.
1892     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1893         isInt<16>(ConstOp1->getSExtValue()))
1894       return false;
1895     return true;
1896   }
1897 
1898   // Try to promote the use of CGFR and CLGFR.
1899   unsigned Opcode0 = C.Op0.getOpcode();
1900   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1901     return true;
1902   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1903     return true;
1904   if (C.ICmpType != SystemZICMP::SignedOnly &&
1905       Opcode0 == ISD::AND &&
1906       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1907       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1908     return true;
1909 
1910   return false;
1911 }
1912 
1913 // Return a version of comparison CC mask CCMask in which the LT and GT
1914 // actions are swapped.
1915 static unsigned reverseCCMask(unsigned CCMask) {
1916   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1917           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1918           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1919           (CCMask & SystemZ::CCMASK_CMP_UO));
1920 }
1921 
1922 // Check whether C tests for equality between X and Y and whether X - Y
1923 // or Y - X is also computed.  In that case it's better to compare the
1924 // result of the subtraction against zero.
1925 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1926                                  Comparison &C) {
1927   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1928       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1929     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1930       SDNode *N = *I;
1931       if (N->getOpcode() == ISD::SUB &&
1932           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1933            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1934         C.Op0 = SDValue(N, 0);
1935         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1936         return;
1937       }
1938     }
1939   }
1940 }
1941 
1942 // Check whether C compares a floating-point value with zero and if that
1943 // floating-point value is also negated.  In this case we can use the
1944 // negation to set CC, so avoiding separate LOAD AND TEST and
1945 // LOAD (NEGATIVE/COMPLEMENT) instructions.
1946 static void adjustForFNeg(Comparison &C) {
1947   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1948   if (C1 && C1->isZero()) {
1949     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1950       SDNode *N = *I;
1951       if (N->getOpcode() == ISD::FNEG) {
1952         C.Op0 = SDValue(N, 0);
1953         C.CCMask = reverseCCMask(C.CCMask);
1954         return;
1955       }
1956     }
1957   }
1958 }
1959 
1960 // Check whether C compares (shl X, 32) with 0 and whether X is
1961 // also sign-extended.  In that case it is better to test the result
1962 // of the sign extension using LTGFR.
1963 //
1964 // This case is important because InstCombine transforms a comparison
1965 // with (sext (trunc X)) into a comparison with (shl X, 32).
1966 static void adjustForLTGFR(Comparison &C) {
1967   // Check for a comparison between (shl X, 32) and 0.
1968   if (C.Op0.getOpcode() == ISD::SHL &&
1969       C.Op0.getValueType() == MVT::i64 &&
1970       C.Op1.getOpcode() == ISD::Constant &&
1971       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1972     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1973     if (C1 && C1->getZExtValue() == 32) {
1974       SDValue ShlOp0 = C.Op0.getOperand(0);
1975       // See whether X has any SIGN_EXTEND_INREG uses.
1976       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1977         SDNode *N = *I;
1978         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1979             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1980           C.Op0 = SDValue(N, 0);
1981           return;
1982         }
1983       }
1984     }
1985   }
1986 }
1987 
1988 // If C compares the truncation of an extending load, try to compare
1989 // the untruncated value instead.  This exposes more opportunities to
1990 // reuse CC.
1991 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1992                                Comparison &C) {
1993   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1994       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1995       C.Op1.getOpcode() == ISD::Constant &&
1996       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1997     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1998     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
1999       unsigned Type = L->getExtensionType();
2000       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2001           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2002         C.Op0 = C.Op0.getOperand(0);
2003         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2004       }
2005     }
2006   }
2007 }
2008 
2009 // Return true if shift operation N has an in-range constant shift value.
2010 // Store it in ShiftVal if so.
2011 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2012   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2013   if (!Shift)
2014     return false;
2015 
2016   uint64_t Amount = Shift->getZExtValue();
2017   if (Amount >= N.getValueSizeInBits())
2018     return false;
2019 
2020   ShiftVal = Amount;
2021   return true;
2022 }
2023 
2024 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2025 // instruction and whether the CC value is descriptive enough to handle
2026 // a comparison of type Opcode between the AND result and CmpVal.
2027 // CCMask says which comparison result is being tested and BitSize is
2028 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2029 // return the corresponding CC mask, otherwise return 0.
2030 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2031                                      uint64_t Mask, uint64_t CmpVal,
2032                                      unsigned ICmpType) {
2033   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2034 
2035   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2036   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2037       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2038     return 0;
2039 
2040   // Work out the masks for the lowest and highest bits.
2041   unsigned HighShift = 63 - countLeadingZeros(Mask);
2042   uint64_t High = uint64_t(1) << HighShift;
2043   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2044 
2045   // Signed ordered comparisons are effectively unsigned if the sign
2046   // bit is dropped.
2047   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2048 
2049   // Check for equality comparisons with 0, or the equivalent.
2050   if (CmpVal == 0) {
2051     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2052       return SystemZ::CCMASK_TM_ALL_0;
2053     if (CCMask == SystemZ::CCMASK_CMP_NE)
2054       return SystemZ::CCMASK_TM_SOME_1;
2055   }
2056   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2057     if (CCMask == SystemZ::CCMASK_CMP_LT)
2058       return SystemZ::CCMASK_TM_ALL_0;
2059     if (CCMask == SystemZ::CCMASK_CMP_GE)
2060       return SystemZ::CCMASK_TM_SOME_1;
2061   }
2062   if (EffectivelyUnsigned && CmpVal < Low) {
2063     if (CCMask == SystemZ::CCMASK_CMP_LE)
2064       return SystemZ::CCMASK_TM_ALL_0;
2065     if (CCMask == SystemZ::CCMASK_CMP_GT)
2066       return SystemZ::CCMASK_TM_SOME_1;
2067   }
2068 
2069   // Check for equality comparisons with the mask, or the equivalent.
2070   if (CmpVal == Mask) {
2071     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2072       return SystemZ::CCMASK_TM_ALL_1;
2073     if (CCMask == SystemZ::CCMASK_CMP_NE)
2074       return SystemZ::CCMASK_TM_SOME_0;
2075   }
2076   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2077     if (CCMask == SystemZ::CCMASK_CMP_GT)
2078       return SystemZ::CCMASK_TM_ALL_1;
2079     if (CCMask == SystemZ::CCMASK_CMP_LE)
2080       return SystemZ::CCMASK_TM_SOME_0;
2081   }
2082   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2083     if (CCMask == SystemZ::CCMASK_CMP_GE)
2084       return SystemZ::CCMASK_TM_ALL_1;
2085     if (CCMask == SystemZ::CCMASK_CMP_LT)
2086       return SystemZ::CCMASK_TM_SOME_0;
2087   }
2088 
2089   // Check for ordered comparisons with the top bit.
2090   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2091     if (CCMask == SystemZ::CCMASK_CMP_LE)
2092       return SystemZ::CCMASK_TM_MSB_0;
2093     if (CCMask == SystemZ::CCMASK_CMP_GT)
2094       return SystemZ::CCMASK_TM_MSB_1;
2095   }
2096   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2097     if (CCMask == SystemZ::CCMASK_CMP_LT)
2098       return SystemZ::CCMASK_TM_MSB_0;
2099     if (CCMask == SystemZ::CCMASK_CMP_GE)
2100       return SystemZ::CCMASK_TM_MSB_1;
2101   }
2102 
2103   // If there are just two bits, we can do equality checks for Low and High
2104   // as well.
2105   if (Mask == Low + High) {
2106     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2107       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2108     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2109       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2110     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2111       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2112     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2113       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2114   }
2115 
2116   // Looks like we've exhausted our options.
2117   return 0;
2118 }
2119 
2120 // See whether C can be implemented as a TEST UNDER MASK instruction.
2121 // Update the arguments with the TM version if so.
2122 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2123                                    Comparison &C) {
2124   // Check that we have a comparison with a constant.
2125   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2126   if (!ConstOp1)
2127     return;
2128   uint64_t CmpVal = ConstOp1->getZExtValue();
2129 
2130   // Check whether the nonconstant input is an AND with a constant mask.
2131   Comparison NewC(C);
2132   uint64_t MaskVal;
2133   ConstantSDNode *Mask = nullptr;
2134   if (C.Op0.getOpcode() == ISD::AND) {
2135     NewC.Op0 = C.Op0.getOperand(0);
2136     NewC.Op1 = C.Op0.getOperand(1);
2137     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2138     if (!Mask)
2139       return;
2140     MaskVal = Mask->getZExtValue();
2141   } else {
2142     // There is no instruction to compare with a 64-bit immediate
2143     // so use TMHH instead if possible.  We need an unsigned ordered
2144     // comparison with an i64 immediate.
2145     if (NewC.Op0.getValueType() != MVT::i64 ||
2146         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2147         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2148         NewC.ICmpType == SystemZICMP::SignedOnly)
2149       return;
2150     // Convert LE and GT comparisons into LT and GE.
2151     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2152         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2153       if (CmpVal == uint64_t(-1))
2154         return;
2155       CmpVal += 1;
2156       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2157     }
2158     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2159     // be masked off without changing the result.
2160     MaskVal = -(CmpVal & -CmpVal);
2161     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2162   }
2163   if (!MaskVal)
2164     return;
2165 
2166   // Check whether the combination of mask, comparison value and comparison
2167   // type are suitable.
2168   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2169   unsigned NewCCMask, ShiftVal;
2170   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2171       NewC.Op0.getOpcode() == ISD::SHL &&
2172       isSimpleShift(NewC.Op0, ShiftVal) &&
2173       (MaskVal >> ShiftVal != 0) &&
2174       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2175       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2176                                         MaskVal >> ShiftVal,
2177                                         CmpVal >> ShiftVal,
2178                                         SystemZICMP::Any))) {
2179     NewC.Op0 = NewC.Op0.getOperand(0);
2180     MaskVal >>= ShiftVal;
2181   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2182              NewC.Op0.getOpcode() == ISD::SRL &&
2183              isSimpleShift(NewC.Op0, ShiftVal) &&
2184              (MaskVal << ShiftVal != 0) &&
2185              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2186              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2187                                                MaskVal << ShiftVal,
2188                                                CmpVal << ShiftVal,
2189                                                SystemZICMP::UnsignedOnly))) {
2190     NewC.Op0 = NewC.Op0.getOperand(0);
2191     MaskVal <<= ShiftVal;
2192   } else {
2193     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2194                                      NewC.ICmpType);
2195     if (!NewCCMask)
2196       return;
2197   }
2198 
2199   // Go ahead and make the change.
2200   C.Opcode = SystemZISD::TM;
2201   C.Op0 = NewC.Op0;
2202   if (Mask && Mask->getZExtValue() == MaskVal)
2203     C.Op1 = SDValue(Mask, 0);
2204   else
2205     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2206   C.CCValid = SystemZ::CCMASK_TM;
2207   C.CCMask = NewCCMask;
2208 }
2209 
2210 // See whether the comparison argument contains a redundant AND
2211 // and remove it if so.  This sometimes happens due to the generic
2212 // BRCOND expansion.
2213 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2214                                   Comparison &C) {
2215   if (C.Op0.getOpcode() != ISD::AND)
2216     return;
2217   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2218   if (!Mask)
2219     return;
2220   KnownBits Known;
2221   DAG.computeKnownBits(C.Op0.getOperand(0), Known);
2222   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2223     return;
2224 
2225   C.Op0 = C.Op0.getOperand(0);
2226 }
2227 
2228 // Return a Comparison that tests the condition-code result of intrinsic
2229 // node Call against constant integer CC using comparison code Cond.
2230 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2231 // and CCValid is the set of possible condition-code results.
2232 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2233                                   SDValue Call, unsigned CCValid, uint64_t CC,
2234                                   ISD::CondCode Cond) {
2235   Comparison C(Call, SDValue());
2236   C.Opcode = Opcode;
2237   C.CCValid = CCValid;
2238   if (Cond == ISD::SETEQ)
2239     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2240     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2241   else if (Cond == ISD::SETNE)
2242     // ...and the inverse of that.
2243     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2244   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2245     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2246     // always true for CC>3.
2247     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2248   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2249     // ...and the inverse of that.
2250     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2251   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2252     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2253     // always true for CC>3.
2254     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2255   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2256     // ...and the inverse of that.
2257     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2258   else
2259     llvm_unreachable("Unexpected integer comparison type");
2260   C.CCMask &= CCValid;
2261   return C;
2262 }
2263 
2264 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2265 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2266                          ISD::CondCode Cond, const SDLoc &DL) {
2267   if (CmpOp1.getOpcode() == ISD::Constant) {
2268     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2269     unsigned Opcode, CCValid;
2270     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2271         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2272         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2273       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2274     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2275         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2276         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2277       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2278   }
2279   Comparison C(CmpOp0, CmpOp1);
2280   C.CCMask = CCMaskForCondCode(Cond);
2281   if (C.Op0.getValueType().isFloatingPoint()) {
2282     C.CCValid = SystemZ::CCMASK_FCMP;
2283     C.Opcode = SystemZISD::FCMP;
2284     adjustForFNeg(C);
2285   } else {
2286     C.CCValid = SystemZ::CCMASK_ICMP;
2287     C.Opcode = SystemZISD::ICMP;
2288     // Choose the type of comparison.  Equality and inequality tests can
2289     // use either signed or unsigned comparisons.  The choice also doesn't
2290     // matter if both sign bits are known to be clear.  In those cases we
2291     // want to give the main isel code the freedom to choose whichever
2292     // form fits best.
2293     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2294         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2295         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2296       C.ICmpType = SystemZICMP::Any;
2297     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2298       C.ICmpType = SystemZICMP::UnsignedOnly;
2299     else
2300       C.ICmpType = SystemZICMP::SignedOnly;
2301     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2302     adjustForRedundantAnd(DAG, DL, C);
2303     adjustZeroCmp(DAG, DL, C);
2304     adjustSubwordCmp(DAG, DL, C);
2305     adjustForSubtraction(DAG, DL, C);
2306     adjustForLTGFR(C);
2307     adjustICmpTruncate(DAG, DL, C);
2308   }
2309 
2310   if (shouldSwapCmpOperands(C)) {
2311     std::swap(C.Op0, C.Op1);
2312     C.CCMask = reverseCCMask(C.CCMask);
2313   }
2314 
2315   adjustForTestUnderMask(DAG, DL, C);
2316   return C;
2317 }
2318 
2319 // Emit the comparison instruction described by C.
2320 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2321   if (!C.Op1.getNode()) {
2322     SDNode *Node;
2323     switch (C.Op0.getOpcode()) {
2324     case ISD::INTRINSIC_W_CHAIN:
2325       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2326       return SDValue(Node, 0);
2327     case ISD::INTRINSIC_WO_CHAIN:
2328       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2329       return SDValue(Node, Node->getNumValues() - 1);
2330     default:
2331       llvm_unreachable("Invalid comparison operands");
2332     }
2333   }
2334   if (C.Opcode == SystemZISD::ICMP)
2335     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2336                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2337   if (C.Opcode == SystemZISD::TM) {
2338     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2339                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2340     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2341                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2342   }
2343   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2344 }
2345 
2346 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2347 // 64 bits.  Extend is the extension type to use.  Store the high part
2348 // in Hi and the low part in Lo.
2349 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2350                             SDValue Op0, SDValue Op1, SDValue &Hi,
2351                             SDValue &Lo) {
2352   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2353   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2354   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2355   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2356                    DAG.getConstant(32, DL, MVT::i64));
2357   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2358   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2359 }
2360 
2361 // Lower a binary operation that produces two VT results, one in each
2362 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2363 // and Opcode performs the GR128 operation.  Store the even register result
2364 // in Even and the odd register result in Odd.
2365 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2366                              unsigned Opcode, SDValue Op0, SDValue Op1,
2367                              SDValue &Even, SDValue &Odd) {
2368   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2369   bool Is32Bit = is32Bit(VT);
2370   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2371   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2372 }
2373 
2374 // Return an i32 value that is 1 if the CC value produced by CCReg is
2375 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2376 // in CCValid, so other values can be ignored.
2377 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2378                          unsigned CCValid, unsigned CCMask) {
2379   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2380                     DAG.getConstant(0, DL, MVT::i32),
2381                     DAG.getConstant(CCValid, DL, MVT::i32),
2382                     DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2383   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2384 }
2385 
2386 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2387 // be done directly.  IsFP is true if CC is for a floating-point rather than
2388 // integer comparison.
2389 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2390   switch (CC) {
2391   case ISD::SETOEQ:
2392   case ISD::SETEQ:
2393     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2394 
2395   case ISD::SETOGE:
2396   case ISD::SETGE:
2397     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2398 
2399   case ISD::SETOGT:
2400   case ISD::SETGT:
2401     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2402 
2403   case ISD::SETUGT:
2404     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2405 
2406   default:
2407     return 0;
2408   }
2409 }
2410 
2411 // Return the SystemZISD vector comparison operation for CC or its inverse,
2412 // or 0 if neither can be done directly.  Indicate in Invert whether the
2413 // result is for the inverse of CC.  IsFP is true if CC is for a
2414 // floating-point rather than integer comparison.
2415 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2416                                             bool &Invert) {
2417   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2418     Invert = false;
2419     return Opcode;
2420   }
2421 
2422   CC = ISD::getSetCCInverse(CC, !IsFP);
2423   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2424     Invert = true;
2425     return Opcode;
2426   }
2427 
2428   return 0;
2429 }
2430 
2431 // Return a v2f64 that contains the extended form of elements Start and Start+1
2432 // of v4f32 value Op.
2433 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2434                                   SDValue Op) {
2435   int Mask[] = { Start, -1, Start + 1, -1 };
2436   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2437   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2438 }
2439 
2440 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2441 // producing a result of type VT.
2442 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2443                                             const SDLoc &DL, EVT VT,
2444                                             SDValue CmpOp0,
2445                                             SDValue CmpOp1) const {
2446   // There is no hardware support for v4f32 (unless we have the vector
2447   // enhancements facility 1), so extend the vector into two v2f64s
2448   // and compare those.
2449   if (CmpOp0.getValueType() == MVT::v4f32 &&
2450       !Subtarget.hasVectorEnhancements1()) {
2451     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2452     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2453     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2454     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2455     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2456     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2457     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2458   }
2459   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2460 }
2461 
2462 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2463 // an integer mask of type VT.
2464 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2465                                                 const SDLoc &DL, EVT VT,
2466                                                 ISD::CondCode CC,
2467                                                 SDValue CmpOp0,
2468                                                 SDValue CmpOp1) const {
2469   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2470   bool Invert = false;
2471   SDValue Cmp;
2472   switch (CC) {
2473     // Handle tests for order using (or (ogt y x) (oge x y)).
2474   case ISD::SETUO:
2475     Invert = true;
2476     LLVM_FALLTHROUGH;
2477   case ISD::SETO: {
2478     assert(IsFP && "Unexpected integer comparison");
2479     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2480     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2481     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2482     break;
2483   }
2484 
2485     // Handle <> tests using (or (ogt y x) (ogt x y)).
2486   case ISD::SETUEQ:
2487     Invert = true;
2488     LLVM_FALLTHROUGH;
2489   case ISD::SETONE: {
2490     assert(IsFP && "Unexpected integer comparison");
2491     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2492     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2493     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2494     break;
2495   }
2496 
2497     // Otherwise a single comparison is enough.  It doesn't really
2498     // matter whether we try the inversion or the swap first, since
2499     // there are no cases where both work.
2500   default:
2501     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2502       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2503     else {
2504       CC = ISD::getSetCCSwappedOperands(CC);
2505       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2506         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2507       else
2508         llvm_unreachable("Unhandled comparison");
2509     }
2510     break;
2511   }
2512   if (Invert) {
2513     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2514                                DAG.getConstant(65535, DL, MVT::i32));
2515     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2516     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2517   }
2518   return Cmp;
2519 }
2520 
2521 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2522                                           SelectionDAG &DAG) const {
2523   SDValue CmpOp0   = Op.getOperand(0);
2524   SDValue CmpOp1   = Op.getOperand(1);
2525   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2526   SDLoc DL(Op);
2527   EVT VT = Op.getValueType();
2528   if (VT.isVector())
2529     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2530 
2531   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2532   SDValue CCReg = emitCmp(DAG, DL, C);
2533   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2534 }
2535 
2536 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2537   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2538   SDValue CmpOp0   = Op.getOperand(2);
2539   SDValue CmpOp1   = Op.getOperand(3);
2540   SDValue Dest     = Op.getOperand(4);
2541   SDLoc DL(Op);
2542 
2543   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2544   SDValue CCReg = emitCmp(DAG, DL, C);
2545   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2546                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2547                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2548 }
2549 
2550 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2551 // allowing Pos and Neg to be wider than CmpOp.
2552 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2553   return (Neg.getOpcode() == ISD::SUB &&
2554           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2555           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2556           Neg.getOperand(1) == Pos &&
2557           (Pos == CmpOp ||
2558            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2559             Pos.getOperand(0) == CmpOp)));
2560 }
2561 
2562 // Return the absolute or negative absolute of Op; IsNegative decides which.
2563 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2564                            bool IsNegative) {
2565   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2566   if (IsNegative)
2567     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2568                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2569   return Op;
2570 }
2571 
2572 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2573                                               SelectionDAG &DAG) const {
2574   SDValue CmpOp0   = Op.getOperand(0);
2575   SDValue CmpOp1   = Op.getOperand(1);
2576   SDValue TrueOp   = Op.getOperand(2);
2577   SDValue FalseOp  = Op.getOperand(3);
2578   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2579   SDLoc DL(Op);
2580 
2581   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2582 
2583   // Check for absolute and negative-absolute selections, including those
2584   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2585   // This check supplements the one in DAGCombiner.
2586   if (C.Opcode == SystemZISD::ICMP &&
2587       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2588       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2589       C.Op1.getOpcode() == ISD::Constant &&
2590       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2591     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2592       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2593     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2594       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2595   }
2596 
2597   SDValue CCReg = emitCmp(DAG, DL, C);
2598   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2599                    DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2600 
2601   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2602 }
2603 
2604 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2605                                                   SelectionDAG &DAG) const {
2606   SDLoc DL(Node);
2607   const GlobalValue *GV = Node->getGlobal();
2608   int64_t Offset = Node->getOffset();
2609   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2610   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2611 
2612   SDValue Result;
2613   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2614     // Assign anchors at 1<<12 byte boundaries.
2615     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2616     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2617     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2618 
2619     // The offset can be folded into the address if it is aligned to a halfword.
2620     Offset -= Anchor;
2621     if (Offset != 0 && (Offset & 1) == 0) {
2622       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2623       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2624       Offset = 0;
2625     }
2626   } else {
2627     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2628     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2629     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2630                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2631   }
2632 
2633   // If there was a non-zero offset that we didn't fold, create an explicit
2634   // addition for it.
2635   if (Offset != 0)
2636     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2637                          DAG.getConstant(Offset, DL, PtrVT));
2638 
2639   return Result;
2640 }
2641 
2642 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2643                                                  SelectionDAG &DAG,
2644                                                  unsigned Opcode,
2645                                                  SDValue GOTOffset) const {
2646   SDLoc DL(Node);
2647   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2648   SDValue Chain = DAG.getEntryNode();
2649   SDValue Glue;
2650 
2651   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2652   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2653   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2654   Glue = Chain.getValue(1);
2655   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2656   Glue = Chain.getValue(1);
2657 
2658   // The first call operand is the chain and the second is the TLS symbol.
2659   SmallVector<SDValue, 8> Ops;
2660   Ops.push_back(Chain);
2661   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2662                                            Node->getValueType(0),
2663                                            0, 0));
2664 
2665   // Add argument registers to the end of the list so that they are
2666   // known live into the call.
2667   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2668   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2669 
2670   // Add a register mask operand representing the call-preserved registers.
2671   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2672   const uint32_t *Mask =
2673       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2674   assert(Mask && "Missing call preserved mask for calling convention");
2675   Ops.push_back(DAG.getRegisterMask(Mask));
2676 
2677   // Glue the call to the argument copies.
2678   Ops.push_back(Glue);
2679 
2680   // Emit the call.
2681   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2682   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2683   Glue = Chain.getValue(1);
2684 
2685   // Copy the return value from %r2.
2686   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2687 }
2688 
2689 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2690                                                   SelectionDAG &DAG) const {
2691   SDValue Chain = DAG.getEntryNode();
2692   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2693 
2694   // The high part of the thread pointer is in access register 0.
2695   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2696   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2697 
2698   // The low part of the thread pointer is in access register 1.
2699   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2700   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2701 
2702   // Merge them into a single 64-bit address.
2703   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2704                                     DAG.getConstant(32, DL, PtrVT));
2705   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2706 }
2707 
2708 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2709                                                      SelectionDAG &DAG) const {
2710   if (DAG.getTarget().useEmulatedTLS())
2711     return LowerToTLSEmulatedModel(Node, DAG);
2712   SDLoc DL(Node);
2713   const GlobalValue *GV = Node->getGlobal();
2714   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2715   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2716 
2717   SDValue TP = lowerThreadPointer(DL, DAG);
2718 
2719   // Get the offset of GA from the thread pointer, based on the TLS model.
2720   SDValue Offset;
2721   switch (model) {
2722     case TLSModel::GeneralDynamic: {
2723       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2724       SystemZConstantPoolValue *CPV =
2725         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2726 
2727       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2728       Offset = DAG.getLoad(
2729           PtrVT, DL, DAG.getEntryNode(), Offset,
2730           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2731 
2732       // Call __tls_get_offset to retrieve the offset.
2733       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2734       break;
2735     }
2736 
2737     case TLSModel::LocalDynamic: {
2738       // Load the GOT offset of the module ID.
2739       SystemZConstantPoolValue *CPV =
2740         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2741 
2742       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2743       Offset = DAG.getLoad(
2744           PtrVT, DL, DAG.getEntryNode(), Offset,
2745           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2746 
2747       // Call __tls_get_offset to retrieve the module base offset.
2748       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2749 
2750       // Note: The SystemZLDCleanupPass will remove redundant computations
2751       // of the module base offset.  Count total number of local-dynamic
2752       // accesses to trigger execution of that pass.
2753       SystemZMachineFunctionInfo* MFI =
2754         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2755       MFI->incNumLocalDynamicTLSAccesses();
2756 
2757       // Add the per-symbol offset.
2758       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2759 
2760       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2761       DTPOffset = DAG.getLoad(
2762           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2763           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2764 
2765       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2766       break;
2767     }
2768 
2769     case TLSModel::InitialExec: {
2770       // Load the offset from the GOT.
2771       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2772                                           SystemZII::MO_INDNTPOFF);
2773       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2774       Offset =
2775           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2776                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2777       break;
2778     }
2779 
2780     case TLSModel::LocalExec: {
2781       // Force the offset into the constant pool and load it from there.
2782       SystemZConstantPoolValue *CPV =
2783         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2784 
2785       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2786       Offset = DAG.getLoad(
2787           PtrVT, DL, DAG.getEntryNode(), Offset,
2788           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2789       break;
2790     }
2791   }
2792 
2793   // Add the base and offset together.
2794   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2795 }
2796 
2797 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2798                                                  SelectionDAG &DAG) const {
2799   SDLoc DL(Node);
2800   const BlockAddress *BA = Node->getBlockAddress();
2801   int64_t Offset = Node->getOffset();
2802   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2803 
2804   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2805   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2806   return Result;
2807 }
2808 
2809 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2810                                               SelectionDAG &DAG) const {
2811   SDLoc DL(JT);
2812   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2813   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2814 
2815   // Use LARL to load the address of the table.
2816   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2817 }
2818 
2819 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2820                                                  SelectionDAG &DAG) const {
2821   SDLoc DL(CP);
2822   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2823 
2824   SDValue Result;
2825   if (CP->isMachineConstantPoolEntry())
2826     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2827                                        CP->getAlignment());
2828   else
2829     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2830                                        CP->getAlignment(), CP->getOffset());
2831 
2832   // Use LARL to load the address of the constant pool entry.
2833   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2834 }
2835 
2836 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2837                                               SelectionDAG &DAG) const {
2838   MachineFunction &MF = DAG.getMachineFunction();
2839   MachineFrameInfo &MFI = MF.getFrameInfo();
2840   MFI.setFrameAddressIsTaken(true);
2841 
2842   SDLoc DL(Op);
2843   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2844   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2845 
2846   // If the back chain frame index has not been allocated yet, do so.
2847   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2848   int BackChainIdx = FI->getFramePointerSaveIndex();
2849   if (!BackChainIdx) {
2850     // By definition, the frame address is the address of the back chain.
2851     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2852     FI->setFramePointerSaveIndex(BackChainIdx);
2853   }
2854   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2855 
2856   // FIXME The frontend should detect this case.
2857   if (Depth > 0) {
2858     report_fatal_error("Unsupported stack frame traversal count");
2859   }
2860 
2861   return BackChain;
2862 }
2863 
2864 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2865                                                SelectionDAG &DAG) const {
2866   MachineFunction &MF = DAG.getMachineFunction();
2867   MachineFrameInfo &MFI = MF.getFrameInfo();
2868   MFI.setReturnAddressIsTaken(true);
2869 
2870   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2871     return SDValue();
2872 
2873   SDLoc DL(Op);
2874   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2875   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2876 
2877   // FIXME The frontend should detect this case.
2878   if (Depth > 0) {
2879     report_fatal_error("Unsupported stack frame traversal count");
2880   }
2881 
2882   // Return R14D, which has the return address. Mark it an implicit live-in.
2883   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2884   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2885 }
2886 
2887 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2888                                             SelectionDAG &DAG) const {
2889   SDLoc DL(Op);
2890   SDValue In = Op.getOperand(0);
2891   EVT InVT = In.getValueType();
2892   EVT ResVT = Op.getValueType();
2893 
2894   // Convert loads directly.  This is normally done by DAGCombiner,
2895   // but we need this case for bitcasts that are created during lowering
2896   // and which are then lowered themselves.
2897   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2898     if (ISD::isNormalLoad(LoadN)) {
2899       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2900                                     LoadN->getBasePtr(), LoadN->getMemOperand());
2901       // Update the chain uses.
2902       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2903       return NewLoad;
2904     }
2905 
2906   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2907     SDValue In64;
2908     if (Subtarget.hasHighWord()) {
2909       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2910                                        MVT::i64);
2911       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2912                                        MVT::i64, SDValue(U64, 0), In);
2913     } else {
2914       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2915       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2916                          DAG.getConstant(32, DL, MVT::i64));
2917     }
2918     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2919     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2920                                       DL, MVT::f32, Out64);
2921   }
2922   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2923     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2924     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2925                                              MVT::f64, SDValue(U64, 0), In);
2926     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2927     if (Subtarget.hasHighWord())
2928       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2929                                         MVT::i32, Out64);
2930     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2931                                 DAG.getConstant(32, DL, MVT::i64));
2932     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2933   }
2934   llvm_unreachable("Unexpected bitcast combination");
2935 }
2936 
2937 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2938                                             SelectionDAG &DAG) const {
2939   MachineFunction &MF = DAG.getMachineFunction();
2940   SystemZMachineFunctionInfo *FuncInfo =
2941     MF.getInfo<SystemZMachineFunctionInfo>();
2942   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2943 
2944   SDValue Chain   = Op.getOperand(0);
2945   SDValue Addr    = Op.getOperand(1);
2946   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2947   SDLoc DL(Op);
2948 
2949   // The initial values of each field.
2950   const unsigned NumFields = 4;
2951   SDValue Fields[NumFields] = {
2952     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2953     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2954     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2955     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2956   };
2957 
2958   // Store each field into its respective slot.
2959   SDValue MemOps[NumFields];
2960   unsigned Offset = 0;
2961   for (unsigned I = 0; I < NumFields; ++I) {
2962     SDValue FieldAddr = Addr;
2963     if (Offset != 0)
2964       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2965                               DAG.getIntPtrConstant(Offset, DL));
2966     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2967                              MachinePointerInfo(SV, Offset));
2968     Offset += 8;
2969   }
2970   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2971 }
2972 
2973 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2974                                            SelectionDAG &DAG) const {
2975   SDValue Chain      = Op.getOperand(0);
2976   SDValue DstPtr     = Op.getOperand(1);
2977   SDValue SrcPtr     = Op.getOperand(2);
2978   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2979   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2980   SDLoc DL(Op);
2981 
2982   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2983                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2984                        /*isTailCall*/false,
2985                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2986 }
2987 
2988 SDValue SystemZTargetLowering::
2989 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2990   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2991   MachineFunction &MF = DAG.getMachineFunction();
2992   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
2993   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
2994 
2995   SDValue Chain = Op.getOperand(0);
2996   SDValue Size  = Op.getOperand(1);
2997   SDValue Align = Op.getOperand(2);
2998   SDLoc DL(Op);
2999 
3000   // If user has set the no alignment function attribute, ignore
3001   // alloca alignments.
3002   uint64_t AlignVal = (RealignOpt ?
3003                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3004 
3005   uint64_t StackAlign = TFI->getStackAlignment();
3006   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3007   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3008 
3009   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3010   SDValue NeededSpace = Size;
3011 
3012   // Get a reference to the stack pointer.
3013   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3014 
3015   // If we need a backchain, save it now.
3016   SDValue Backchain;
3017   if (StoreBackchain)
3018     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3019 
3020   // Add extra space for alignment if needed.
3021   if (ExtraAlignSpace)
3022     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3023                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3024 
3025   // Get the new stack pointer value.
3026   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3027 
3028   // Copy the new stack pointer back.
3029   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3030 
3031   // The allocated data lives above the 160 bytes allocated for the standard
3032   // frame, plus any outgoing stack arguments.  We don't know how much that
3033   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3034   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3035   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3036 
3037   // Dynamically realign if needed.
3038   if (RequiredAlign > StackAlign) {
3039     Result =
3040       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3041                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3042     Result =
3043       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3044                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3045   }
3046 
3047   if (StoreBackchain)
3048     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3049 
3050   SDValue Ops[2] = { Result, Chain };
3051   return DAG.getMergeValues(Ops, DL);
3052 }
3053 
3054 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3055     SDValue Op, SelectionDAG &DAG) const {
3056   SDLoc DL(Op);
3057 
3058   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3059 }
3060 
3061 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3062                                               SelectionDAG &DAG) const {
3063   EVT VT = Op.getValueType();
3064   SDLoc DL(Op);
3065   SDValue Ops[2];
3066   if (is32Bit(VT))
3067     // Just do a normal 64-bit multiplication and extract the results.
3068     // We define this so that it can be used for constant division.
3069     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3070                     Op.getOperand(1), Ops[1], Ops[0]);
3071   else if (Subtarget.hasMiscellaneousExtensions2())
3072     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3073     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3074     // return the low half first, so the results are in reverse order.
3075     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3076                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3077   else {
3078     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3079     //
3080     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3081     //
3082     // but using the fact that the upper halves are either all zeros
3083     // or all ones:
3084     //
3085     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3086     //
3087     // and grouping the right terms together since they are quicker than the
3088     // multiplication:
3089     //
3090     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3091     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3092     SDValue LL = Op.getOperand(0);
3093     SDValue RL = Op.getOperand(1);
3094     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3095     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3096     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3097     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3098     // return the low half first, so the results are in reverse order.
3099     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3100                      LL, RL, Ops[1], Ops[0]);
3101     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3102     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3103     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3104     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3105   }
3106   return DAG.getMergeValues(Ops, DL);
3107 }
3108 
3109 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3110                                               SelectionDAG &DAG) const {
3111   EVT VT = Op.getValueType();
3112   SDLoc DL(Op);
3113   SDValue Ops[2];
3114   if (is32Bit(VT))
3115     // Just do a normal 64-bit multiplication and extract the results.
3116     // We define this so that it can be used for constant division.
3117     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3118                     Op.getOperand(1), Ops[1], Ops[0]);
3119   else
3120     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3121     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3122     // return the low half first, so the results are in reverse order.
3123     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3124                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3125   return DAG.getMergeValues(Ops, DL);
3126 }
3127 
3128 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3129                                             SelectionDAG &DAG) const {
3130   SDValue Op0 = Op.getOperand(0);
3131   SDValue Op1 = Op.getOperand(1);
3132   EVT VT = Op.getValueType();
3133   SDLoc DL(Op);
3134 
3135   // We use DSGF for 32-bit division.  This means the first operand must
3136   // always be 64-bit, and the second operand should be 32-bit whenever
3137   // that is possible, to improve performance.
3138   if (is32Bit(VT))
3139     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3140   else if (DAG.ComputeNumSignBits(Op1) > 32)
3141     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3142 
3143   // DSG(F) returns the remainder in the even register and the
3144   // quotient in the odd register.
3145   SDValue Ops[2];
3146   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3147   return DAG.getMergeValues(Ops, DL);
3148 }
3149 
3150 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3151                                             SelectionDAG &DAG) const {
3152   EVT VT = Op.getValueType();
3153   SDLoc DL(Op);
3154 
3155   // DL(G) returns the remainder in the even register and the
3156   // quotient in the odd register.
3157   SDValue Ops[2];
3158   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3159                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3160   return DAG.getMergeValues(Ops, DL);
3161 }
3162 
3163 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3164   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3165 
3166   // Get the known-zero masks for each operand.
3167   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3168   KnownBits Known[2];
3169   DAG.computeKnownBits(Ops[0], Known[0]);
3170   DAG.computeKnownBits(Ops[1], Known[1]);
3171 
3172   // See if the upper 32 bits of one operand and the lower 32 bits of the
3173   // other are known zero.  They are the low and high operands respectively.
3174   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3175                        Known[1].Zero.getZExtValue() };
3176   unsigned High, Low;
3177   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3178     High = 1, Low = 0;
3179   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3180     High = 0, Low = 1;
3181   else
3182     return Op;
3183 
3184   SDValue LowOp = Ops[Low];
3185   SDValue HighOp = Ops[High];
3186 
3187   // If the high part is a constant, we're better off using IILH.
3188   if (HighOp.getOpcode() == ISD::Constant)
3189     return Op;
3190 
3191   // If the low part is a constant that is outside the range of LHI,
3192   // then we're better off using IILF.
3193   if (LowOp.getOpcode() == ISD::Constant) {
3194     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3195     if (!isInt<16>(Value))
3196       return Op;
3197   }
3198 
3199   // Check whether the high part is an AND that doesn't change the
3200   // high 32 bits and just masks out low bits.  We can skip it if so.
3201   if (HighOp.getOpcode() == ISD::AND &&
3202       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3203     SDValue HighOp0 = HighOp.getOperand(0);
3204     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3205     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3206       HighOp = HighOp0;
3207   }
3208 
3209   // Take advantage of the fact that all GR32 operations only change the
3210   // low 32 bits by truncating Low to an i32 and inserting it directly
3211   // using a subreg.  The interesting cases are those where the truncation
3212   // can be folded.
3213   SDLoc DL(Op);
3214   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3215   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3216                                    MVT::i64, HighOp, Low32);
3217 }
3218 
3219 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3220 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3221                                           SelectionDAG &DAG) const {
3222   SDNode *N = Op.getNode();
3223   SDValue LHS = N->getOperand(0);
3224   SDValue RHS = N->getOperand(1);
3225   SDLoc DL(N);
3226   unsigned BaseOp = 0;
3227   unsigned CCValid = 0;
3228   unsigned CCMask = 0;
3229 
3230   switch (Op.getOpcode()) {
3231   default: llvm_unreachable("Unknown instruction!");
3232   case ISD::SADDO:
3233     BaseOp = SystemZISD::SADDO;
3234     CCValid = SystemZ::CCMASK_ARITH;
3235     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3236     break;
3237   case ISD::SSUBO:
3238     BaseOp = SystemZISD::SSUBO;
3239     CCValid = SystemZ::CCMASK_ARITH;
3240     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3241     break;
3242   case ISD::UADDO:
3243     BaseOp = SystemZISD::UADDO;
3244     CCValid = SystemZ::CCMASK_LOGICAL;
3245     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3246     break;
3247   case ISD::USUBO:
3248     BaseOp = SystemZISD::USUBO;
3249     CCValid = SystemZ::CCMASK_LOGICAL;
3250     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3251     break;
3252   }
3253 
3254   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3255   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3256 
3257   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3258   if (N->getValueType(1) == MVT::i1)
3259     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3260 
3261   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3262 }
3263 
3264 // Lower ADDCARRY/SUBCARRY nodes.
3265 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3266                                                 SelectionDAG &DAG) const {
3267 
3268   SDNode *N = Op.getNode();
3269   MVT VT = N->getSimpleValueType(0);
3270 
3271   // Let legalize expand this if it isn't a legal type yet.
3272   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3273     return SDValue();
3274 
3275   SDValue LHS = N->getOperand(0);
3276   SDValue RHS = N->getOperand(1);
3277   SDValue Carry = Op.getOperand(2);
3278   SDLoc DL(N);
3279   unsigned BaseOp = 0;
3280   unsigned CCValid = 0;
3281   unsigned CCMask = 0;
3282 
3283   switch (Op.getOpcode()) {
3284   default: llvm_unreachable("Unknown instruction!");
3285   case ISD::ADDCARRY:
3286     BaseOp = SystemZISD::ADDCARRY;
3287     CCValid = SystemZ::CCMASK_LOGICAL;
3288     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3289     break;
3290   case ISD::SUBCARRY:
3291     BaseOp = SystemZISD::SUBCARRY;
3292     CCValid = SystemZ::CCMASK_LOGICAL;
3293     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3294     break;
3295   }
3296 
3297   // Set the condition code from the carry flag.
3298   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3299                       DAG.getConstant(CCValid, DL, MVT::i32),
3300                       DAG.getConstant(CCMask, DL, MVT::i32));
3301 
3302   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3303   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3304 
3305   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3306   if (N->getValueType(1) == MVT::i1)
3307     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3308 
3309   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3310 }
3311 
3312 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3313                                           SelectionDAG &DAG) const {
3314   EVT VT = Op.getValueType();
3315   SDLoc DL(Op);
3316   Op = Op.getOperand(0);
3317 
3318   // Handle vector types via VPOPCT.
3319   if (VT.isVector()) {
3320     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3321     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3322     switch (VT.getScalarSizeInBits()) {
3323     case 8:
3324       break;
3325     case 16: {
3326       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3327       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3328       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3329       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3330       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3331       break;
3332     }
3333     case 32: {
3334       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3335                                 DAG.getConstant(0, DL, MVT::i32));
3336       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3337       break;
3338     }
3339     case 64: {
3340       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3341                                 DAG.getConstant(0, DL, MVT::i32));
3342       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3343       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3344       break;
3345     }
3346     default:
3347       llvm_unreachable("Unexpected type");
3348     }
3349     return Op;
3350   }
3351 
3352   // Get the known-zero mask for the operand.
3353   KnownBits Known;
3354   DAG.computeKnownBits(Op, Known);
3355   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3356   if (NumSignificantBits == 0)
3357     return DAG.getConstant(0, DL, VT);
3358 
3359   // Skip known-zero high parts of the operand.
3360   int64_t OrigBitSize = VT.getSizeInBits();
3361   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3362   BitSize = std::min(BitSize, OrigBitSize);
3363 
3364   // The POPCNT instruction counts the number of bits in each byte.
3365   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3366   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3367   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3368 
3369   // Add up per-byte counts in a binary tree.  All bits of Op at
3370   // position larger than BitSize remain zero throughout.
3371   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3372     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3373     if (BitSize != OrigBitSize)
3374       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3375                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3376     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3377   }
3378 
3379   // Extract overall result from high byte.
3380   if (BitSize > 8)
3381     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3382                      DAG.getConstant(BitSize - 8, DL, VT));
3383 
3384   return Op;
3385 }
3386 
3387 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3388                                                  SelectionDAG &DAG) const {
3389   SDLoc DL(Op);
3390   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3391     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3392   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3393     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3394 
3395   // The only fence that needs an instruction is a sequentially-consistent
3396   // cross-thread fence.
3397   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3398       FenceSSID == SyncScope::System) {
3399     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3400                                       Op.getOperand(0)),
3401                    0);
3402   }
3403 
3404   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3405   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3406 }
3407 
3408 // Op is an atomic load.  Lower it into a normal volatile load.
3409 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3410                                                 SelectionDAG &DAG) const {
3411   auto *Node = cast<AtomicSDNode>(Op.getNode());
3412   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3413                         Node->getChain(), Node->getBasePtr(),
3414                         Node->getMemoryVT(), Node->getMemOperand());
3415 }
3416 
3417 // Op is an atomic store.  Lower it into a normal volatile store.
3418 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3419                                                  SelectionDAG &DAG) const {
3420   auto *Node = cast<AtomicSDNode>(Op.getNode());
3421   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3422                                     Node->getBasePtr(), Node->getMemoryVT(),
3423                                     Node->getMemOperand());
3424   // We have to enforce sequential consistency by performing a
3425   // serialization operation after the store.
3426   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3427     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3428                                        MVT::Other, Chain), 0);
3429   return Chain;
3430 }
3431 
3432 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3433 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3434 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3435                                                    SelectionDAG &DAG,
3436                                                    unsigned Opcode) const {
3437   auto *Node = cast<AtomicSDNode>(Op.getNode());
3438 
3439   // 32-bit operations need no code outside the main loop.
3440   EVT NarrowVT = Node->getMemoryVT();
3441   EVT WideVT = MVT::i32;
3442   if (NarrowVT == WideVT)
3443     return Op;
3444 
3445   int64_t BitSize = NarrowVT.getSizeInBits();
3446   SDValue ChainIn = Node->getChain();
3447   SDValue Addr = Node->getBasePtr();
3448   SDValue Src2 = Node->getVal();
3449   MachineMemOperand *MMO = Node->getMemOperand();
3450   SDLoc DL(Node);
3451   EVT PtrVT = Addr.getValueType();
3452 
3453   // Convert atomic subtracts of constants into additions.
3454   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3455     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3456       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3457       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3458     }
3459 
3460   // Get the address of the containing word.
3461   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3462                                     DAG.getConstant(-4, DL, PtrVT));
3463 
3464   // Get the number of bits that the word must be rotated left in order
3465   // to bring the field to the top bits of a GR32.
3466   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3467                                  DAG.getConstant(3, DL, PtrVT));
3468   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3469 
3470   // Get the complementing shift amount, for rotating a field in the top
3471   // bits back to its proper position.
3472   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3473                                     DAG.getConstant(0, DL, WideVT), BitShift);
3474 
3475   // Extend the source operand to 32 bits and prepare it for the inner loop.
3476   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3477   // operations require the source to be shifted in advance.  (This shift
3478   // can be folded if the source is constant.)  For AND and NAND, the lower
3479   // bits must be set, while for other opcodes they should be left clear.
3480   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3481     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3482                        DAG.getConstant(32 - BitSize, DL, WideVT));
3483   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3484       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3485     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3486                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3487 
3488   // Construct the ATOMIC_LOADW_* node.
3489   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3490   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3491                     DAG.getConstant(BitSize, DL, WideVT) };
3492   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3493                                              NarrowVT, MMO);
3494 
3495   // Rotate the result of the final CS so that the field is in the lower
3496   // bits of a GR32, then truncate it.
3497   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3498                                     DAG.getConstant(BitSize, DL, WideVT));
3499   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3500 
3501   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3502   return DAG.getMergeValues(RetOps, DL);
3503 }
3504 
3505 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3506 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3507 // operations into additions.
3508 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3509                                                     SelectionDAG &DAG) const {
3510   auto *Node = cast<AtomicSDNode>(Op.getNode());
3511   EVT MemVT = Node->getMemoryVT();
3512   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3513     // A full-width operation.
3514     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3515     SDValue Src2 = Node->getVal();
3516     SDValue NegSrc2;
3517     SDLoc DL(Src2);
3518 
3519     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3520       // Use an addition if the operand is constant and either LAA(G) is
3521       // available or the negative value is in the range of A(G)FHI.
3522       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3523       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3524         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3525     } else if (Subtarget.hasInterlockedAccess1())
3526       // Use LAA(G) if available.
3527       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3528                             Src2);
3529 
3530     if (NegSrc2.getNode())
3531       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3532                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3533                            Node->getMemOperand());
3534 
3535     // Use the node as-is.
3536     return Op;
3537   }
3538 
3539   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3540 }
3541 
3542 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3543 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3544                                                     SelectionDAG &DAG) const {
3545   auto *Node = cast<AtomicSDNode>(Op.getNode());
3546   SDValue ChainIn = Node->getOperand(0);
3547   SDValue Addr = Node->getOperand(1);
3548   SDValue CmpVal = Node->getOperand(2);
3549   SDValue SwapVal = Node->getOperand(3);
3550   MachineMemOperand *MMO = Node->getMemOperand();
3551   SDLoc DL(Node);
3552 
3553   // We have native support for 32-bit and 64-bit compare and swap, but we
3554   // still need to expand extracting the "success" result from the CC.
3555   EVT NarrowVT = Node->getMemoryVT();
3556   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3557   if (NarrowVT == WideVT) {
3558     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3559     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3560     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3561                                                DL, Tys, Ops, NarrowVT, MMO);
3562     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3563                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3564 
3565     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3566     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3567     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3568     return SDValue();
3569   }
3570 
3571   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3572   // via a fullword ATOMIC_CMP_SWAPW operation.
3573   int64_t BitSize = NarrowVT.getSizeInBits();
3574   EVT PtrVT = Addr.getValueType();
3575 
3576   // Get the address of the containing word.
3577   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3578                                     DAG.getConstant(-4, DL, PtrVT));
3579 
3580   // Get the number of bits that the word must be rotated left in order
3581   // to bring the field to the top bits of a GR32.
3582   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3583                                  DAG.getConstant(3, DL, PtrVT));
3584   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3585 
3586   // Get the complementing shift amount, for rotating a field in the top
3587   // bits back to its proper position.
3588   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3589                                     DAG.getConstant(0, DL, WideVT), BitShift);
3590 
3591   // Construct the ATOMIC_CMP_SWAPW node.
3592   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3593   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3594                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3595   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3596                                              VTList, Ops, NarrowVT, MMO);
3597   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3598                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3599 
3600   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3601   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3602   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3603   return SDValue();
3604 }
3605 
3606 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3607                                               SelectionDAG &DAG) const {
3608   MachineFunction &MF = DAG.getMachineFunction();
3609   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3610   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3611                             SystemZ::R15D, Op.getValueType());
3612 }
3613 
3614 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3615                                                  SelectionDAG &DAG) const {
3616   MachineFunction &MF = DAG.getMachineFunction();
3617   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3618   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3619 
3620   SDValue Chain = Op.getOperand(0);
3621   SDValue NewSP = Op.getOperand(1);
3622   SDValue Backchain;
3623   SDLoc DL(Op);
3624 
3625   if (StoreBackchain) {
3626     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3627     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3628   }
3629 
3630   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3631 
3632   if (StoreBackchain)
3633     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3634 
3635   return Chain;
3636 }
3637 
3638 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3639                                              SelectionDAG &DAG) const {
3640   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3641   if (!IsData)
3642     // Just preserve the chain.
3643     return Op.getOperand(0);
3644 
3645   SDLoc DL(Op);
3646   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3647   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3648   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3649   SDValue Ops[] = {
3650     Op.getOperand(0),
3651     DAG.getConstant(Code, DL, MVT::i32),
3652     Op.getOperand(1)
3653   };
3654   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3655                                  Node->getVTList(), Ops,
3656                                  Node->getMemoryVT(), Node->getMemOperand());
3657 }
3658 
3659 // Convert condition code in CCReg to an i32 value.
3660 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3661   SDLoc DL(CCReg);
3662   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3663   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3664                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3665 }
3666 
3667 SDValue
3668 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3669                                               SelectionDAG &DAG) const {
3670   unsigned Opcode, CCValid;
3671   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3672     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3673     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3674     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3675     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3676     return SDValue();
3677   }
3678 
3679   return SDValue();
3680 }
3681 
3682 SDValue
3683 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3684                                                SelectionDAG &DAG) const {
3685   unsigned Opcode, CCValid;
3686   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3687     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3688     if (Op->getNumValues() == 1)
3689       return getCCResult(DAG, SDValue(Node, 0));
3690     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3691     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3692                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3693   }
3694 
3695   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3696   switch (Id) {
3697   case Intrinsic::thread_pointer:
3698     return lowerThreadPointer(SDLoc(Op), DAG);
3699 
3700   case Intrinsic::s390_vpdi:
3701     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3702                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3703 
3704   case Intrinsic::s390_vperm:
3705     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3706                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3707 
3708   case Intrinsic::s390_vuphb:
3709   case Intrinsic::s390_vuphh:
3710   case Intrinsic::s390_vuphf:
3711     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3712                        Op.getOperand(1));
3713 
3714   case Intrinsic::s390_vuplhb:
3715   case Intrinsic::s390_vuplhh:
3716   case Intrinsic::s390_vuplhf:
3717     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3718                        Op.getOperand(1));
3719 
3720   case Intrinsic::s390_vuplb:
3721   case Intrinsic::s390_vuplhw:
3722   case Intrinsic::s390_vuplf:
3723     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3724                        Op.getOperand(1));
3725 
3726   case Intrinsic::s390_vupllb:
3727   case Intrinsic::s390_vupllh:
3728   case Intrinsic::s390_vupllf:
3729     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3730                        Op.getOperand(1));
3731 
3732   case Intrinsic::s390_vsumb:
3733   case Intrinsic::s390_vsumh:
3734   case Intrinsic::s390_vsumgh:
3735   case Intrinsic::s390_vsumgf:
3736   case Intrinsic::s390_vsumqf:
3737   case Intrinsic::s390_vsumqg:
3738     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3739                        Op.getOperand(1), Op.getOperand(2));
3740   }
3741 
3742   return SDValue();
3743 }
3744 
3745 namespace {
3746 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3747 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3748 // Operand is the constant third operand, otherwise it is the number of
3749 // bytes in each element of the result.
3750 struct Permute {
3751   unsigned Opcode;
3752   unsigned Operand;
3753   unsigned char Bytes[SystemZ::VectorBytes];
3754 };
3755 }
3756 
3757 static const Permute PermuteForms[] = {
3758   // VMRHG
3759   { SystemZISD::MERGE_HIGH, 8,
3760     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3761   // VMRHF
3762   { SystemZISD::MERGE_HIGH, 4,
3763     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3764   // VMRHH
3765   { SystemZISD::MERGE_HIGH, 2,
3766     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3767   // VMRHB
3768   { SystemZISD::MERGE_HIGH, 1,
3769     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3770   // VMRLG
3771   { SystemZISD::MERGE_LOW, 8,
3772     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3773   // VMRLF
3774   { SystemZISD::MERGE_LOW, 4,
3775     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3776   // VMRLH
3777   { SystemZISD::MERGE_LOW, 2,
3778     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3779   // VMRLB
3780   { SystemZISD::MERGE_LOW, 1,
3781     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3782   // VPKG
3783   { SystemZISD::PACK, 4,
3784     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3785   // VPKF
3786   { SystemZISD::PACK, 2,
3787     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3788   // VPKH
3789   { SystemZISD::PACK, 1,
3790     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3791   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3792   { SystemZISD::PERMUTE_DWORDS, 4,
3793     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3794   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3795   { SystemZISD::PERMUTE_DWORDS, 1,
3796     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3797 };
3798 
3799 // Called after matching a vector shuffle against a particular pattern.
3800 // Both the original shuffle and the pattern have two vector operands.
3801 // OpNos[0] is the operand of the original shuffle that should be used for
3802 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3803 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3804 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3805 // for operands 0 and 1 of the pattern.
3806 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3807   if (OpNos[0] < 0) {
3808     if (OpNos[1] < 0)
3809       return false;
3810     OpNo0 = OpNo1 = OpNos[1];
3811   } else if (OpNos[1] < 0) {
3812     OpNo0 = OpNo1 = OpNos[0];
3813   } else {
3814     OpNo0 = OpNos[0];
3815     OpNo1 = OpNos[1];
3816   }
3817   return true;
3818 }
3819 
3820 // Bytes is a VPERM-like permute vector, except that -1 is used for
3821 // undefined bytes.  Return true if the VPERM can be implemented using P.
3822 // When returning true set OpNo0 to the VPERM operand that should be
3823 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3824 //
3825 // For example, if swapping the VPERM operands allows P to match, OpNo0
3826 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3827 // operand, but rewriting it to use two duplicated operands allows it to
3828 // match P, then OpNo0 and OpNo1 will be the same.
3829 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3830                          unsigned &OpNo0, unsigned &OpNo1) {
3831   int OpNos[] = { -1, -1 };
3832   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3833     int Elt = Bytes[I];
3834     if (Elt >= 0) {
3835       // Make sure that the two permute vectors use the same suboperand
3836       // byte number.  Only the operand numbers (the high bits) are
3837       // allowed to differ.
3838       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3839         return false;
3840       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3841       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3842       // Make sure that the operand mappings are consistent with previous
3843       // elements.
3844       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3845         return false;
3846       OpNos[ModelOpNo] = RealOpNo;
3847     }
3848   }
3849   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3850 }
3851 
3852 // As above, but search for a matching permute.
3853 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3854                                    unsigned &OpNo0, unsigned &OpNo1) {
3855   for (auto &P : PermuteForms)
3856     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3857       return &P;
3858   return nullptr;
3859 }
3860 
3861 // Bytes is a VPERM-like permute vector, except that -1 is used for
3862 // undefined bytes.  This permute is an operand of an outer permute.
3863 // See whether redistributing the -1 bytes gives a shuffle that can be
3864 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3865 // that, when applied to the result of P, gives the original permute in Bytes.
3866 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3867                                const Permute &P,
3868                                SmallVectorImpl<int> &Transform) {
3869   unsigned To = 0;
3870   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3871     int Elt = Bytes[From];
3872     if (Elt < 0)
3873       // Byte number From of the result is undefined.
3874       Transform[From] = -1;
3875     else {
3876       while (P.Bytes[To] != Elt) {
3877         To += 1;
3878         if (To == SystemZ::VectorBytes)
3879           return false;
3880       }
3881       Transform[From] = To;
3882     }
3883   }
3884   return true;
3885 }
3886 
3887 // As above, but search for a matching permute.
3888 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3889                                          SmallVectorImpl<int> &Transform) {
3890   for (auto &P : PermuteForms)
3891     if (matchDoublePermute(Bytes, P, Transform))
3892       return &P;
3893   return nullptr;
3894 }
3895 
3896 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3897 // as if it had type vNi8.
3898 static void getVPermMask(ShuffleVectorSDNode *VSN,
3899                          SmallVectorImpl<int> &Bytes) {
3900   EVT VT = VSN->getValueType(0);
3901   unsigned NumElements = VT.getVectorNumElements();
3902   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3903   Bytes.resize(NumElements * BytesPerElement, -1);
3904   for (unsigned I = 0; I < NumElements; ++I) {
3905     int Index = VSN->getMaskElt(I);
3906     if (Index >= 0)
3907       for (unsigned J = 0; J < BytesPerElement; ++J)
3908         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3909   }
3910 }
3911 
3912 // Bytes is a VPERM-like permute vector, except that -1 is used for
3913 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3914 // the result come from a contiguous sequence of bytes from one input.
3915 // Set Base to the selector for the first byte if so.
3916 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3917                             unsigned BytesPerElement, int &Base) {
3918   Base = -1;
3919   for (unsigned I = 0; I < BytesPerElement; ++I) {
3920     if (Bytes[Start + I] >= 0) {
3921       unsigned Elem = Bytes[Start + I];
3922       if (Base < 0) {
3923         Base = Elem - I;
3924         // Make sure the bytes would come from one input operand.
3925         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3926           return false;
3927       } else if (unsigned(Base) != Elem - I)
3928         return false;
3929     }
3930   }
3931   return true;
3932 }
3933 
3934 // Bytes is a VPERM-like permute vector, except that -1 is used for
3935 // undefined bytes.  Return true if it can be performed using VSLDI.
3936 // When returning true, set StartIndex to the shift amount and OpNo0
3937 // and OpNo1 to the VPERM operands that should be used as the first
3938 // and second shift operand respectively.
3939 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3940                                unsigned &StartIndex, unsigned &OpNo0,
3941                                unsigned &OpNo1) {
3942   int OpNos[] = { -1, -1 };
3943   int Shift = -1;
3944   for (unsigned I = 0; I < 16; ++I) {
3945     int Index = Bytes[I];
3946     if (Index >= 0) {
3947       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3948       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3949       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3950       if (Shift < 0)
3951         Shift = ExpectedShift;
3952       else if (Shift != ExpectedShift)
3953         return false;
3954       // Make sure that the operand mappings are consistent with previous
3955       // elements.
3956       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3957         return false;
3958       OpNos[ModelOpNo] = RealOpNo;
3959     }
3960   }
3961   StartIndex = Shift;
3962   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3963 }
3964 
3965 // Create a node that performs P on operands Op0 and Op1, casting the
3966 // operands to the appropriate type.  The type of the result is determined by P.
3967 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3968                               const Permute &P, SDValue Op0, SDValue Op1) {
3969   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3970   // elements of a PACK are twice as wide as the outputs.
3971   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3972                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3973                       P.Operand);
3974   // Cast both operands to the appropriate type.
3975   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3976                               SystemZ::VectorBytes / InBytes);
3977   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3978   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3979   SDValue Op;
3980   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3981     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3982     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3983   } else if (P.Opcode == SystemZISD::PACK) {
3984     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3985                                  SystemZ::VectorBytes / P.Operand);
3986     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3987   } else {
3988     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3989   }
3990   return Op;
3991 }
3992 
3993 // Bytes is a VPERM-like permute vector, except that -1 is used for
3994 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3995 // VSLDI or VPERM.
3996 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3997                                      SDValue *Ops,
3998                                      const SmallVectorImpl<int> &Bytes) {
3999   for (unsigned I = 0; I < 2; ++I)
4000     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4001 
4002   // First see whether VSLDI can be used.
4003   unsigned StartIndex, OpNo0, OpNo1;
4004   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4005     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4006                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4007 
4008   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4009   SDValue IndexNodes[SystemZ::VectorBytes];
4010   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4011     if (Bytes[I] >= 0)
4012       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4013     else
4014       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4015   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4016   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4017 }
4018 
4019 namespace {
4020 // Describes a general N-operand vector shuffle.
4021 struct GeneralShuffle {
4022   GeneralShuffle(EVT vt) : VT(vt) {}
4023   void addUndef();
4024   bool add(SDValue, unsigned);
4025   SDValue getNode(SelectionDAG &, const SDLoc &);
4026 
4027   // The operands of the shuffle.
4028   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4029 
4030   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4031   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4032   // Bytes[I] / SystemZ::VectorBytes.
4033   SmallVector<int, SystemZ::VectorBytes> Bytes;
4034 
4035   // The type of the shuffle result.
4036   EVT VT;
4037 };
4038 }
4039 
4040 // Add an extra undefined element to the shuffle.
4041 void GeneralShuffle::addUndef() {
4042   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4043   for (unsigned I = 0; I < BytesPerElement; ++I)
4044     Bytes.push_back(-1);
4045 }
4046 
4047 // Add an extra element to the shuffle, taking it from element Elem of Op.
4048 // A null Op indicates a vector input whose value will be calculated later;
4049 // there is at most one such input per shuffle and it always has the same
4050 // type as the result. Aborts and returns false if the source vector elements
4051 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4052 // LLVM they become implicitly extended, but this is rare and not optimized.
4053 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4054   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4055 
4056   // The source vector can have wider elements than the result,
4057   // either through an explicit TRUNCATE or because of type legalization.
4058   // We want the least significant part.
4059   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4060   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4061 
4062   // Return false if the source elements are smaller than their destination
4063   // elements.
4064   if (FromBytesPerElement < BytesPerElement)
4065     return false;
4066 
4067   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4068                    (FromBytesPerElement - BytesPerElement));
4069 
4070   // Look through things like shuffles and bitcasts.
4071   while (Op.getNode()) {
4072     if (Op.getOpcode() == ISD::BITCAST)
4073       Op = Op.getOperand(0);
4074     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4075       // See whether the bytes we need come from a contiguous part of one
4076       // operand.
4077       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4078       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
4079       int NewByte;
4080       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4081         break;
4082       if (NewByte < 0) {
4083         addUndef();
4084         return true;
4085       }
4086       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4087       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4088     } else if (Op.isUndef()) {
4089       addUndef();
4090       return true;
4091     } else
4092       break;
4093   }
4094 
4095   // Make sure that the source of the extraction is in Ops.
4096   unsigned OpNo = 0;
4097   for (; OpNo < Ops.size(); ++OpNo)
4098     if (Ops[OpNo] == Op)
4099       break;
4100   if (OpNo == Ops.size())
4101     Ops.push_back(Op);
4102 
4103   // Add the element to Bytes.
4104   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4105   for (unsigned I = 0; I < BytesPerElement; ++I)
4106     Bytes.push_back(Base + I);
4107 
4108   return true;
4109 }
4110 
4111 // Return SDNodes for the completed shuffle.
4112 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4113   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4114 
4115   if (Ops.size() == 0)
4116     return DAG.getUNDEF(VT);
4117 
4118   // Make sure that there are at least two shuffle operands.
4119   if (Ops.size() == 1)
4120     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4121 
4122   // Create a tree of shuffles, deferring root node until after the loop.
4123   // Try to redistribute the undefined elements of non-root nodes so that
4124   // the non-root shuffles match something like a pack or merge, then adjust
4125   // the parent node's permute vector to compensate for the new order.
4126   // Among other things, this copes with vectors like <2 x i16> that were
4127   // padded with undefined elements during type legalization.
4128   //
4129   // In the best case this redistribution will lead to the whole tree
4130   // using packs and merges.  It should rarely be a loss in other cases.
4131   unsigned Stride = 1;
4132   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4133     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4134       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4135 
4136       // Create a mask for just these two operands.
4137       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4138       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4139         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4140         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4141         if (OpNo == I)
4142           NewBytes[J] = Byte;
4143         else if (OpNo == I + Stride)
4144           NewBytes[J] = SystemZ::VectorBytes + Byte;
4145         else
4146           NewBytes[J] = -1;
4147       }
4148       // See if it would be better to reorganize NewMask to avoid using VPERM.
4149       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4150       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4151         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4152         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4153         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4154           if (NewBytes[J] >= 0) {
4155             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4156                    "Invalid double permute");
4157             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4158           } else
4159             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4160         }
4161       } else {
4162         // Just use NewBytes on the operands.
4163         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4164         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4165           if (NewBytes[J] >= 0)
4166             Bytes[J] = I * SystemZ::VectorBytes + J;
4167       }
4168     }
4169   }
4170 
4171   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4172   if (Stride > 1) {
4173     Ops[1] = Ops[Stride];
4174     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4175       if (Bytes[I] >= int(SystemZ::VectorBytes))
4176         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4177   }
4178 
4179   // Look for an instruction that can do the permute without resorting
4180   // to VPERM.
4181   unsigned OpNo0, OpNo1;
4182   SDValue Op;
4183   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4184     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4185   else
4186     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4187   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4188 }
4189 
4190 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4191 static bool isScalarToVector(SDValue Op) {
4192   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4193     if (!Op.getOperand(I).isUndef())
4194       return false;
4195   return true;
4196 }
4197 
4198 // Return a vector of type VT that contains Value in the first element.
4199 // The other elements don't matter.
4200 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4201                                    SDValue Value) {
4202   // If we have a constant, replicate it to all elements and let the
4203   // BUILD_VECTOR lowering take care of it.
4204   if (Value.getOpcode() == ISD::Constant ||
4205       Value.getOpcode() == ISD::ConstantFP) {
4206     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4207     return DAG.getBuildVector(VT, DL, Ops);
4208   }
4209   if (Value.isUndef())
4210     return DAG.getUNDEF(VT);
4211   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4212 }
4213 
4214 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4215 // element 1.  Used for cases in which replication is cheap.
4216 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4217                                  SDValue Op0, SDValue Op1) {
4218   if (Op0.isUndef()) {
4219     if (Op1.isUndef())
4220       return DAG.getUNDEF(VT);
4221     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4222   }
4223   if (Op1.isUndef())
4224     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4225   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4226                      buildScalarToVector(DAG, DL, VT, Op0),
4227                      buildScalarToVector(DAG, DL, VT, Op1));
4228 }
4229 
4230 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4231 // vector for them.
4232 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4233                           SDValue Op1) {
4234   if (Op0.isUndef() && Op1.isUndef())
4235     return DAG.getUNDEF(MVT::v2i64);
4236   // If one of the two inputs is undefined then replicate the other one,
4237   // in order to avoid using another register unnecessarily.
4238   if (Op0.isUndef())
4239     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4240   else if (Op1.isUndef())
4241     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4242   else {
4243     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4244     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4245   }
4246   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4247 }
4248 
4249 // Try to represent constant BUILD_VECTOR node BVN using a
4250 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4251 // on success.
4252 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4253   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4254   unsigned BytesPerElement = ElemVT.getStoreSize();
4255   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4256     SDValue Op = BVN->getOperand(I);
4257     if (!Op.isUndef()) {
4258       uint64_t Value;
4259       if (Op.getOpcode() == ISD::Constant)
4260         Value = cast<ConstantSDNode>(Op)->getZExtValue();
4261       else if (Op.getOpcode() == ISD::ConstantFP)
4262         Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4263                  .getZExtValue());
4264       else
4265         return false;
4266       for (unsigned J = 0; J < BytesPerElement; ++J) {
4267         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4268         if (Byte == 0xff)
4269           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4270         else if (Byte != 0)
4271           return false;
4272       }
4273     }
4274   }
4275   return true;
4276 }
4277 
4278 // Try to load a vector constant in which BitsPerElement-bit value Value
4279 // is replicated to fill the vector.  VT is the type of the resulting
4280 // constant, which may have elements of a different size from BitsPerElement.
4281 // Return the SDValue of the constant on success, otherwise return
4282 // an empty value.
4283 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4284                                        const SystemZInstrInfo *TII,
4285                                        const SDLoc &DL, EVT VT, uint64_t Value,
4286                                        unsigned BitsPerElement) {
4287   // Signed 16-bit values can be replicated using VREPI.
4288   // Mark the constants as opaque or DAGCombiner will convert back to
4289   // BUILD_VECTOR.
4290   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4291   if (isInt<16>(SignedValue)) {
4292     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4293                                  SystemZ::VectorBits / BitsPerElement);
4294     SDValue Op = DAG.getNode(
4295         SystemZISD::REPLICATE, DL, VecVT,
4296         DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/));
4297     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4298   }
4299   // See whether rotating the constant left some N places gives a value that
4300   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4301   // If so we can use VGM.
4302   unsigned Start, End;
4303   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4304     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4305     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4306     // bit numbers for an BitsPerElement value, so that 0 denotes
4307     // 1 << (BitsPerElement-1).
4308     Start -= 64 - BitsPerElement;
4309     End -= 64 - BitsPerElement;
4310     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4311                                  SystemZ::VectorBits / BitsPerElement);
4312     SDValue Op = DAG.getNode(
4313         SystemZISD::ROTATE_MASK, DL, VecVT,
4314         DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/),
4315         DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/));
4316     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4317   }
4318   return SDValue();
4319 }
4320 
4321 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4322 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4323 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4324 // would benefit from this representation and return it if so.
4325 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4326                                      BuildVectorSDNode *BVN) {
4327   EVT VT = BVN->getValueType(0);
4328   unsigned NumElements = VT.getVectorNumElements();
4329 
4330   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4331   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4332   // need a BUILD_VECTOR, add an additional placeholder operand for that
4333   // BUILD_VECTOR and store its operands in ResidueOps.
4334   GeneralShuffle GS(VT);
4335   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4336   bool FoundOne = false;
4337   for (unsigned I = 0; I < NumElements; ++I) {
4338     SDValue Op = BVN->getOperand(I);
4339     if (Op.getOpcode() == ISD::TRUNCATE)
4340       Op = Op.getOperand(0);
4341     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4342         Op.getOperand(1).getOpcode() == ISD::Constant) {
4343       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4344       if (!GS.add(Op.getOperand(0), Elem))
4345         return SDValue();
4346       FoundOne = true;
4347     } else if (Op.isUndef()) {
4348       GS.addUndef();
4349     } else {
4350       if (!GS.add(SDValue(), ResidueOps.size()))
4351         return SDValue();
4352       ResidueOps.push_back(BVN->getOperand(I));
4353     }
4354   }
4355 
4356   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4357   if (!FoundOne)
4358     return SDValue();
4359 
4360   // Create the BUILD_VECTOR for the remaining elements, if any.
4361   if (!ResidueOps.empty()) {
4362     while (ResidueOps.size() < NumElements)
4363       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4364     for (auto &Op : GS.Ops) {
4365       if (!Op.getNode()) {
4366         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4367         break;
4368       }
4369     }
4370   }
4371   return GS.getNode(DAG, SDLoc(BVN));
4372 }
4373 
4374 // Combine GPR scalar values Elems into a vector of type VT.
4375 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4376                            SmallVectorImpl<SDValue> &Elems) {
4377   // See whether there is a single replicated value.
4378   SDValue Single;
4379   unsigned int NumElements = Elems.size();
4380   unsigned int Count = 0;
4381   for (auto Elem : Elems) {
4382     if (!Elem.isUndef()) {
4383       if (!Single.getNode())
4384         Single = Elem;
4385       else if (Elem != Single) {
4386         Single = SDValue();
4387         break;
4388       }
4389       Count += 1;
4390     }
4391   }
4392   // There are three cases here:
4393   //
4394   // - if the only defined element is a loaded one, the best sequence
4395   //   is a replicating load.
4396   //
4397   // - otherwise, if the only defined element is an i64 value, we will
4398   //   end up with the same VLVGP sequence regardless of whether we short-cut
4399   //   for replication or fall through to the later code.
4400   //
4401   // - otherwise, if the only defined element is an i32 or smaller value,
4402   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4403   //   This is only a win if the single defined element is used more than once.
4404   //   In other cases we're better off using a single VLVGx.
4405   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4406     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4407 
4408   // If all elements are loads, use VLREP/VLEs (below).
4409   bool AllLoads = true;
4410   for (auto Elem : Elems)
4411     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4412       AllLoads = false;
4413       break;
4414     }
4415 
4416   // The best way of building a v2i64 from two i64s is to use VLVGP.
4417   if (VT == MVT::v2i64 && !AllLoads)
4418     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4419 
4420   // Use a 64-bit merge high to combine two doubles.
4421   if (VT == MVT::v2f64 && !AllLoads)
4422     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4423 
4424   // Build v4f32 values directly from the FPRs:
4425   //
4426   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4427   //         V              V         VMRHF
4428   //      <ABxx>         <CDxx>
4429   //                V                 VMRHG
4430   //              <ABCD>
4431   if (VT == MVT::v4f32 && !AllLoads) {
4432     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4433     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4434     // Avoid unnecessary undefs by reusing the other operand.
4435     if (Op01.isUndef())
4436       Op01 = Op23;
4437     else if (Op23.isUndef())
4438       Op23 = Op01;
4439     // Merging identical replications is a no-op.
4440     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4441       return Op01;
4442     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4443     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4444     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4445                              DL, MVT::v2i64, Op01, Op23);
4446     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4447   }
4448 
4449   // Collect the constant terms.
4450   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4451   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4452 
4453   unsigned NumConstants = 0;
4454   for (unsigned I = 0; I < NumElements; ++I) {
4455     SDValue Elem = Elems[I];
4456     if (Elem.getOpcode() == ISD::Constant ||
4457         Elem.getOpcode() == ISD::ConstantFP) {
4458       NumConstants += 1;
4459       Constants[I] = Elem;
4460       Done[I] = true;
4461     }
4462   }
4463   // If there was at least one constant, fill in the other elements of
4464   // Constants with undefs to get a full vector constant and use that
4465   // as the starting point.
4466   SDValue Result;
4467   if (NumConstants > 0) {
4468     for (unsigned I = 0; I < NumElements; ++I)
4469       if (!Constants[I].getNode())
4470         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4471     Result = DAG.getBuildVector(VT, DL, Constants);
4472   } else {
4473     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4474     // avoid a false dependency on any previous contents of the vector
4475     // register.
4476 
4477     // Use a VLREP if at least one element is a load.
4478     unsigned LoadElIdx = UINT_MAX;
4479     for (unsigned I = 0; I < NumElements; ++I)
4480       if (Elems[I].getOpcode() == ISD::LOAD &&
4481           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4482         LoadElIdx = I;
4483         break;
4484       }
4485     if (LoadElIdx != UINT_MAX) {
4486       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]);
4487       Done[LoadElIdx] = true;
4488     } else {
4489       // Try to use VLVGP.
4490       unsigned I1 = NumElements / 2 - 1;
4491       unsigned I2 = NumElements - 1;
4492       bool Def1 = !Elems[I1].isUndef();
4493       bool Def2 = !Elems[I2].isUndef();
4494       if (Def1 || Def2) {
4495         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4496         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4497         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4498                              joinDwords(DAG, DL, Elem1, Elem2));
4499         Done[I1] = true;
4500         Done[I2] = true;
4501       } else
4502         Result = DAG.getUNDEF(VT);
4503     }
4504   }
4505 
4506   // Use VLVGx to insert the other elements.
4507   for (unsigned I = 0; I < NumElements; ++I)
4508     if (!Done[I] && !Elems[I].isUndef())
4509       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4510                            DAG.getConstant(I, DL, MVT::i32));
4511   return Result;
4512 }
4513 
4514 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4515                                                  SelectionDAG &DAG) const {
4516   const SystemZInstrInfo *TII =
4517     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4518   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4519   SDLoc DL(Op);
4520   EVT VT = Op.getValueType();
4521 
4522   if (BVN->isConstant()) {
4523     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4524     // preferred way of creating all-zero and all-one vectors so give it
4525     // priority over other methods below.
4526     uint64_t Mask = 0;
4527     if (tryBuildVectorByteMask(BVN, Mask)) {
4528       SDValue Op = DAG.getNode(
4529           SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4530           DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/));
4531       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4532     }
4533 
4534     // Try using some form of replication.
4535     APInt SplatBits, SplatUndef;
4536     unsigned SplatBitSize;
4537     bool HasAnyUndefs;
4538     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4539                              8, true) &&
4540         SplatBitSize <= 64) {
4541       // First try assuming that any undefined bits above the highest set bit
4542       // and below the lowest set bit are 1s.  This increases the likelihood of
4543       // being able to use a sign-extended element value in VECTOR REPLICATE
4544       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4545       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4546       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4547       uint64_t Lower = (SplatUndefZ
4548                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4549       uint64_t Upper = (SplatUndefZ
4550                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4551       uint64_t Value = SplatBitsZ | Upper | Lower;
4552       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4553                                            SplatBitSize);
4554       if (Op.getNode())
4555         return Op;
4556 
4557       // Now try assuming that any undefined bits between the first and
4558       // last defined set bits are set.  This increases the chances of
4559       // using a non-wraparound mask.
4560       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4561       Value = SplatBitsZ | Middle;
4562       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4563       if (Op.getNode())
4564         return Op;
4565     }
4566 
4567     // Fall back to loading it from memory.
4568     return SDValue();
4569   }
4570 
4571   // See if we should use shuffles to construct the vector from other vectors.
4572   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4573     return Res;
4574 
4575   // Detect SCALAR_TO_VECTOR conversions.
4576   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4577     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4578 
4579   // Otherwise use buildVector to build the vector up from GPRs.
4580   unsigned NumElements = Op.getNumOperands();
4581   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4582   for (unsigned I = 0; I < NumElements; ++I)
4583     Ops[I] = Op.getOperand(I);
4584   return buildVector(DAG, DL, VT, Ops);
4585 }
4586 
4587 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4588                                                    SelectionDAG &DAG) const {
4589   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4590   SDLoc DL(Op);
4591   EVT VT = Op.getValueType();
4592   unsigned NumElements = VT.getVectorNumElements();
4593 
4594   if (VSN->isSplat()) {
4595     SDValue Op0 = Op.getOperand(0);
4596     unsigned Index = VSN->getSplatIndex();
4597     assert(Index < VT.getVectorNumElements() &&
4598            "Splat index should be defined and in first operand");
4599     // See whether the value we're splatting is directly available as a scalar.
4600     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4601         Op0.getOpcode() == ISD::BUILD_VECTOR)
4602       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4603     // Otherwise keep it as a vector-to-vector operation.
4604     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4605                        DAG.getConstant(Index, DL, MVT::i32));
4606   }
4607 
4608   GeneralShuffle GS(VT);
4609   for (unsigned I = 0; I < NumElements; ++I) {
4610     int Elt = VSN->getMaskElt(I);
4611     if (Elt < 0)
4612       GS.addUndef();
4613     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4614                      unsigned(Elt) % NumElements))
4615       return SDValue();
4616   }
4617   return GS.getNode(DAG, SDLoc(VSN));
4618 }
4619 
4620 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4621                                                      SelectionDAG &DAG) const {
4622   SDLoc DL(Op);
4623   // Just insert the scalar into element 0 of an undefined vector.
4624   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4625                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4626                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4627 }
4628 
4629 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4630                                                       SelectionDAG &DAG) const {
4631   // Handle insertions of floating-point values.
4632   SDLoc DL(Op);
4633   SDValue Op0 = Op.getOperand(0);
4634   SDValue Op1 = Op.getOperand(1);
4635   SDValue Op2 = Op.getOperand(2);
4636   EVT VT = Op.getValueType();
4637 
4638   // Insertions into constant indices of a v2f64 can be done using VPDI.
4639   // However, if the inserted value is a bitcast or a constant then it's
4640   // better to use GPRs, as below.
4641   if (VT == MVT::v2f64 &&
4642       Op1.getOpcode() != ISD::BITCAST &&
4643       Op1.getOpcode() != ISD::ConstantFP &&
4644       Op2.getOpcode() == ISD::Constant) {
4645     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4646     unsigned Mask = VT.getVectorNumElements() - 1;
4647     if (Index <= Mask)
4648       return Op;
4649   }
4650 
4651   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4652   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4653   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4654   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4655                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4656                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4657   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4658 }
4659 
4660 SDValue
4661 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4662                                                SelectionDAG &DAG) const {
4663   // Handle extractions of floating-point values.
4664   SDLoc DL(Op);
4665   SDValue Op0 = Op.getOperand(0);
4666   SDValue Op1 = Op.getOperand(1);
4667   EVT VT = Op.getValueType();
4668   EVT VecVT = Op0.getValueType();
4669 
4670   // Extractions of constant indices can be done directly.
4671   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4672     uint64_t Index = CIndexN->getZExtValue();
4673     unsigned Mask = VecVT.getVectorNumElements() - 1;
4674     if (Index <= Mask)
4675       return Op;
4676   }
4677 
4678   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4679   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4680   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4681   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4682                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4683   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4684 }
4685 
4686 SDValue
4687 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4688                                               unsigned UnpackHigh) const {
4689   SDValue PackedOp = Op.getOperand(0);
4690   EVT OutVT = Op.getValueType();
4691   EVT InVT = PackedOp.getValueType();
4692   unsigned ToBits = OutVT.getScalarSizeInBits();
4693   unsigned FromBits = InVT.getScalarSizeInBits();
4694   do {
4695     FromBits *= 2;
4696     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4697                                  SystemZ::VectorBits / FromBits);
4698     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4699   } while (FromBits != ToBits);
4700   return PackedOp;
4701 }
4702 
4703 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4704                                           unsigned ByScalar) const {
4705   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4706   SDValue Op0 = Op.getOperand(0);
4707   SDValue Op1 = Op.getOperand(1);
4708   SDLoc DL(Op);
4709   EVT VT = Op.getValueType();
4710   unsigned ElemBitSize = VT.getScalarSizeInBits();
4711 
4712   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4713   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4714     APInt SplatBits, SplatUndef;
4715     unsigned SplatBitSize;
4716     bool HasAnyUndefs;
4717     // Check for constant splats.  Use ElemBitSize as the minimum element
4718     // width and reject splats that need wider elements.
4719     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4720                              ElemBitSize, true) &&
4721         SplatBitSize == ElemBitSize) {
4722       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4723                                       DL, MVT::i32);
4724       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4725     }
4726     // Check for variable splats.
4727     BitVector UndefElements;
4728     SDValue Splat = BVN->getSplatValue(&UndefElements);
4729     if (Splat) {
4730       // Since i32 is the smallest legal type, we either need a no-op
4731       // or a truncation.
4732       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4733       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4734     }
4735   }
4736 
4737   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4738   // and the shift amount is directly available in a GPR.
4739   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4740     if (VSN->isSplat()) {
4741       SDValue VSNOp0 = VSN->getOperand(0);
4742       unsigned Index = VSN->getSplatIndex();
4743       assert(Index < VT.getVectorNumElements() &&
4744              "Splat index should be defined and in first operand");
4745       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4746           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4747         // Since i32 is the smallest legal type, we either need a no-op
4748         // or a truncation.
4749         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4750                                     VSNOp0.getOperand(Index));
4751         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4752       }
4753     }
4754   }
4755 
4756   // Otherwise just treat the current form as legal.
4757   return Op;
4758 }
4759 
4760 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4761                                               SelectionDAG &DAG) const {
4762   switch (Op.getOpcode()) {
4763   case ISD::FRAMEADDR:
4764     return lowerFRAMEADDR(Op, DAG);
4765   case ISD::RETURNADDR:
4766     return lowerRETURNADDR(Op, DAG);
4767   case ISD::BR_CC:
4768     return lowerBR_CC(Op, DAG);
4769   case ISD::SELECT_CC:
4770     return lowerSELECT_CC(Op, DAG);
4771   case ISD::SETCC:
4772     return lowerSETCC(Op, DAG);
4773   case ISD::GlobalAddress:
4774     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4775   case ISD::GlobalTLSAddress:
4776     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4777   case ISD::BlockAddress:
4778     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4779   case ISD::JumpTable:
4780     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4781   case ISD::ConstantPool:
4782     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4783   case ISD::BITCAST:
4784     return lowerBITCAST(Op, DAG);
4785   case ISD::VASTART:
4786     return lowerVASTART(Op, DAG);
4787   case ISD::VACOPY:
4788     return lowerVACOPY(Op, DAG);
4789   case ISD::DYNAMIC_STACKALLOC:
4790     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4791   case ISD::GET_DYNAMIC_AREA_OFFSET:
4792     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4793   case ISD::SMUL_LOHI:
4794     return lowerSMUL_LOHI(Op, DAG);
4795   case ISD::UMUL_LOHI:
4796     return lowerUMUL_LOHI(Op, DAG);
4797   case ISD::SDIVREM:
4798     return lowerSDIVREM(Op, DAG);
4799   case ISD::UDIVREM:
4800     return lowerUDIVREM(Op, DAG);
4801   case ISD::SADDO:
4802   case ISD::SSUBO:
4803   case ISD::UADDO:
4804   case ISD::USUBO:
4805     return lowerXALUO(Op, DAG);
4806   case ISD::ADDCARRY:
4807   case ISD::SUBCARRY:
4808     return lowerADDSUBCARRY(Op, DAG);
4809   case ISD::OR:
4810     return lowerOR(Op, DAG);
4811   case ISD::CTPOP:
4812     return lowerCTPOP(Op, DAG);
4813   case ISD::ATOMIC_FENCE:
4814     return lowerATOMIC_FENCE(Op, DAG);
4815   case ISD::ATOMIC_SWAP:
4816     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4817   case ISD::ATOMIC_STORE:
4818     return lowerATOMIC_STORE(Op, DAG);
4819   case ISD::ATOMIC_LOAD:
4820     return lowerATOMIC_LOAD(Op, DAG);
4821   case ISD::ATOMIC_LOAD_ADD:
4822     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4823   case ISD::ATOMIC_LOAD_SUB:
4824     return lowerATOMIC_LOAD_SUB(Op, DAG);
4825   case ISD::ATOMIC_LOAD_AND:
4826     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4827   case ISD::ATOMIC_LOAD_OR:
4828     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4829   case ISD::ATOMIC_LOAD_XOR:
4830     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4831   case ISD::ATOMIC_LOAD_NAND:
4832     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4833   case ISD::ATOMIC_LOAD_MIN:
4834     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4835   case ISD::ATOMIC_LOAD_MAX:
4836     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4837   case ISD::ATOMIC_LOAD_UMIN:
4838     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4839   case ISD::ATOMIC_LOAD_UMAX:
4840     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4841   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4842     return lowerATOMIC_CMP_SWAP(Op, DAG);
4843   case ISD::STACKSAVE:
4844     return lowerSTACKSAVE(Op, DAG);
4845   case ISD::STACKRESTORE:
4846     return lowerSTACKRESTORE(Op, DAG);
4847   case ISD::PREFETCH:
4848     return lowerPREFETCH(Op, DAG);
4849   case ISD::INTRINSIC_W_CHAIN:
4850     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4851   case ISD::INTRINSIC_WO_CHAIN:
4852     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4853   case ISD::BUILD_VECTOR:
4854     return lowerBUILD_VECTOR(Op, DAG);
4855   case ISD::VECTOR_SHUFFLE:
4856     return lowerVECTOR_SHUFFLE(Op, DAG);
4857   case ISD::SCALAR_TO_VECTOR:
4858     return lowerSCALAR_TO_VECTOR(Op, DAG);
4859   case ISD::INSERT_VECTOR_ELT:
4860     return lowerINSERT_VECTOR_ELT(Op, DAG);
4861   case ISD::EXTRACT_VECTOR_ELT:
4862     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4863   case ISD::SIGN_EXTEND_VECTOR_INREG:
4864     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4865   case ISD::ZERO_EXTEND_VECTOR_INREG:
4866     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4867   case ISD::SHL:
4868     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4869   case ISD::SRL:
4870     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4871   case ISD::SRA:
4872     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4873   default:
4874     llvm_unreachable("Unexpected node to lower");
4875   }
4876 }
4877 
4878 // Lower operations with invalid operand or result types (currently used
4879 // only for 128-bit integer types).
4880 
4881 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4882   SDLoc DL(In);
4883   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4884                            DAG.getIntPtrConstant(0, DL));
4885   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4886                            DAG.getIntPtrConstant(1, DL));
4887   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4888                                     MVT::Untyped, Hi, Lo);
4889   return SDValue(Pair, 0);
4890 }
4891 
4892 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4893   SDLoc DL(In);
4894   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4895                                           DL, MVT::i64, In);
4896   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4897                                           DL, MVT::i64, In);
4898   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4899 }
4900 
4901 void
4902 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4903                                              SmallVectorImpl<SDValue> &Results,
4904                                              SelectionDAG &DAG) const {
4905   switch (N->getOpcode()) {
4906   case ISD::ATOMIC_LOAD: {
4907     SDLoc DL(N);
4908     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4909     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4910     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4911     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4912                                           DL, Tys, Ops, MVT::i128, MMO);
4913     Results.push_back(lowerGR128ToI128(DAG, Res));
4914     Results.push_back(Res.getValue(1));
4915     break;
4916   }
4917   case ISD::ATOMIC_STORE: {
4918     SDLoc DL(N);
4919     SDVTList Tys = DAG.getVTList(MVT::Other);
4920     SDValue Ops[] = { N->getOperand(0),
4921                       lowerI128ToGR128(DAG, N->getOperand(2)),
4922                       N->getOperand(1) };
4923     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4924     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4925                                           DL, Tys, Ops, MVT::i128, MMO);
4926     // We have to enforce sequential consistency by performing a
4927     // serialization operation after the store.
4928     if (cast<AtomicSDNode>(N)->getOrdering() ==
4929         AtomicOrdering::SequentiallyConsistent)
4930       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4931                                        MVT::Other, Res), 0);
4932     Results.push_back(Res);
4933     break;
4934   }
4935   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4936     SDLoc DL(N);
4937     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
4938     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4939                       lowerI128ToGR128(DAG, N->getOperand(2)),
4940                       lowerI128ToGR128(DAG, N->getOperand(3)) };
4941     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4942     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4943                                           DL, Tys, Ops, MVT::i128, MMO);
4944     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
4945                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4946     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4947     Results.push_back(lowerGR128ToI128(DAG, Res));
4948     Results.push_back(Success);
4949     Results.push_back(Res.getValue(2));
4950     break;
4951   }
4952   default:
4953     llvm_unreachable("Unexpected node to lower");
4954   }
4955 }
4956 
4957 void
4958 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4959                                           SmallVectorImpl<SDValue> &Results,
4960                                           SelectionDAG &DAG) const {
4961   return LowerOperationWrapper(N, Results, DAG);
4962 }
4963 
4964 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4965 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4966   switch ((SystemZISD::NodeType)Opcode) {
4967     case SystemZISD::FIRST_NUMBER: break;
4968     OPCODE(RET_FLAG);
4969     OPCODE(CALL);
4970     OPCODE(SIBCALL);
4971     OPCODE(TLS_GDCALL);
4972     OPCODE(TLS_LDCALL);
4973     OPCODE(PCREL_WRAPPER);
4974     OPCODE(PCREL_OFFSET);
4975     OPCODE(IABS);
4976     OPCODE(ICMP);
4977     OPCODE(FCMP);
4978     OPCODE(TM);
4979     OPCODE(BR_CCMASK);
4980     OPCODE(SELECT_CCMASK);
4981     OPCODE(ADJDYNALLOC);
4982     OPCODE(POPCNT);
4983     OPCODE(SMUL_LOHI);
4984     OPCODE(UMUL_LOHI);
4985     OPCODE(SDIVREM);
4986     OPCODE(UDIVREM);
4987     OPCODE(SADDO);
4988     OPCODE(SSUBO);
4989     OPCODE(UADDO);
4990     OPCODE(USUBO);
4991     OPCODE(ADDCARRY);
4992     OPCODE(SUBCARRY);
4993     OPCODE(GET_CCMASK);
4994     OPCODE(MVC);
4995     OPCODE(MVC_LOOP);
4996     OPCODE(NC);
4997     OPCODE(NC_LOOP);
4998     OPCODE(OC);
4999     OPCODE(OC_LOOP);
5000     OPCODE(XC);
5001     OPCODE(XC_LOOP);
5002     OPCODE(CLC);
5003     OPCODE(CLC_LOOP);
5004     OPCODE(STPCPY);
5005     OPCODE(STRCMP);
5006     OPCODE(SEARCH_STRING);
5007     OPCODE(IPM);
5008     OPCODE(MEMBARRIER);
5009     OPCODE(TBEGIN);
5010     OPCODE(TBEGIN_NOFLOAT);
5011     OPCODE(TEND);
5012     OPCODE(BYTE_MASK);
5013     OPCODE(ROTATE_MASK);
5014     OPCODE(REPLICATE);
5015     OPCODE(JOIN_DWORDS);
5016     OPCODE(SPLAT);
5017     OPCODE(MERGE_HIGH);
5018     OPCODE(MERGE_LOW);
5019     OPCODE(SHL_DOUBLE);
5020     OPCODE(PERMUTE_DWORDS);
5021     OPCODE(PERMUTE);
5022     OPCODE(PACK);
5023     OPCODE(PACKS_CC);
5024     OPCODE(PACKLS_CC);
5025     OPCODE(UNPACK_HIGH);
5026     OPCODE(UNPACKL_HIGH);
5027     OPCODE(UNPACK_LOW);
5028     OPCODE(UNPACKL_LOW);
5029     OPCODE(VSHL_BY_SCALAR);
5030     OPCODE(VSRL_BY_SCALAR);
5031     OPCODE(VSRA_BY_SCALAR);
5032     OPCODE(VSUM);
5033     OPCODE(VICMPE);
5034     OPCODE(VICMPH);
5035     OPCODE(VICMPHL);
5036     OPCODE(VICMPES);
5037     OPCODE(VICMPHS);
5038     OPCODE(VICMPHLS);
5039     OPCODE(VFCMPE);
5040     OPCODE(VFCMPH);
5041     OPCODE(VFCMPHE);
5042     OPCODE(VFCMPES);
5043     OPCODE(VFCMPHS);
5044     OPCODE(VFCMPHES);
5045     OPCODE(VFTCI);
5046     OPCODE(VEXTEND);
5047     OPCODE(VROUND);
5048     OPCODE(VTM);
5049     OPCODE(VFAE_CC);
5050     OPCODE(VFAEZ_CC);
5051     OPCODE(VFEE_CC);
5052     OPCODE(VFEEZ_CC);
5053     OPCODE(VFENE_CC);
5054     OPCODE(VFENEZ_CC);
5055     OPCODE(VISTR_CC);
5056     OPCODE(VSTRC_CC);
5057     OPCODE(VSTRCZ_CC);
5058     OPCODE(TDC);
5059     OPCODE(ATOMIC_SWAPW);
5060     OPCODE(ATOMIC_LOADW_ADD);
5061     OPCODE(ATOMIC_LOADW_SUB);
5062     OPCODE(ATOMIC_LOADW_AND);
5063     OPCODE(ATOMIC_LOADW_OR);
5064     OPCODE(ATOMIC_LOADW_XOR);
5065     OPCODE(ATOMIC_LOADW_NAND);
5066     OPCODE(ATOMIC_LOADW_MIN);
5067     OPCODE(ATOMIC_LOADW_MAX);
5068     OPCODE(ATOMIC_LOADW_UMIN);
5069     OPCODE(ATOMIC_LOADW_UMAX);
5070     OPCODE(ATOMIC_CMP_SWAPW);
5071     OPCODE(ATOMIC_CMP_SWAP);
5072     OPCODE(ATOMIC_LOAD_128);
5073     OPCODE(ATOMIC_STORE_128);
5074     OPCODE(ATOMIC_CMP_SWAP_128);
5075     OPCODE(LRV);
5076     OPCODE(STRV);
5077     OPCODE(PREFETCH);
5078   }
5079   return nullptr;
5080 #undef OPCODE
5081 }
5082 
5083 // Return true if VT is a vector whose elements are a whole number of bytes
5084 // in width. Also check for presence of vector support.
5085 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5086   if (!Subtarget.hasVector())
5087     return false;
5088 
5089   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5090 }
5091 
5092 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5093 // producing a result of type ResVT.  Op is a possibly bitcast version
5094 // of the input vector and Index is the index (based on type VecVT) that
5095 // should be extracted.  Return the new extraction if a simplification
5096 // was possible or if Force is true.
5097 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5098                                               EVT VecVT, SDValue Op,
5099                                               unsigned Index,
5100                                               DAGCombinerInfo &DCI,
5101                                               bool Force) const {
5102   SelectionDAG &DAG = DCI.DAG;
5103 
5104   // The number of bytes being extracted.
5105   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5106 
5107   for (;;) {
5108     unsigned Opcode = Op.getOpcode();
5109     if (Opcode == ISD::BITCAST)
5110       // Look through bitcasts.
5111       Op = Op.getOperand(0);
5112     else if (Opcode == ISD::VECTOR_SHUFFLE &&
5113              canTreatAsByteVector(Op.getValueType())) {
5114       // Get a VPERM-like permute mask and see whether the bytes covered
5115       // by the extracted element are a contiguous sequence from one
5116       // source operand.
5117       SmallVector<int, SystemZ::VectorBytes> Bytes;
5118       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
5119       int First;
5120       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5121                            BytesPerElement, First))
5122         break;
5123       if (First < 0)
5124         return DAG.getUNDEF(ResVT);
5125       // Make sure the contiguous sequence starts at a multiple of the
5126       // original element size.
5127       unsigned Byte = unsigned(First) % Bytes.size();
5128       if (Byte % BytesPerElement != 0)
5129         break;
5130       // We can get the extracted value directly from an input.
5131       Index = Byte / BytesPerElement;
5132       Op = Op.getOperand(unsigned(First) / Bytes.size());
5133       Force = true;
5134     } else if (Opcode == ISD::BUILD_VECTOR &&
5135                canTreatAsByteVector(Op.getValueType())) {
5136       // We can only optimize this case if the BUILD_VECTOR elements are
5137       // at least as wide as the extracted value.
5138       EVT OpVT = Op.getValueType();
5139       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5140       if (OpBytesPerElement < BytesPerElement)
5141         break;
5142       // Make sure that the least-significant bit of the extracted value
5143       // is the least significant bit of an input.
5144       unsigned End = (Index + 1) * BytesPerElement;
5145       if (End % OpBytesPerElement != 0)
5146         break;
5147       // We're extracting the low part of one operand of the BUILD_VECTOR.
5148       Op = Op.getOperand(End / OpBytesPerElement - 1);
5149       if (!Op.getValueType().isInteger()) {
5150         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5151         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5152         DCI.AddToWorklist(Op.getNode());
5153       }
5154       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5155       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5156       if (VT != ResVT) {
5157         DCI.AddToWorklist(Op.getNode());
5158         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5159       }
5160       return Op;
5161     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5162                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5163                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5164                canTreatAsByteVector(Op.getValueType()) &&
5165                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5166       // Make sure that only the unextended bits are significant.
5167       EVT ExtVT = Op.getValueType();
5168       EVT OpVT = Op.getOperand(0).getValueType();
5169       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5170       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5171       unsigned Byte = Index * BytesPerElement;
5172       unsigned SubByte = Byte % ExtBytesPerElement;
5173       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5174       if (SubByte < MinSubByte ||
5175           SubByte + BytesPerElement > ExtBytesPerElement)
5176         break;
5177       // Get the byte offset of the unextended element
5178       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5179       // ...then add the byte offset relative to that element.
5180       Byte += SubByte - MinSubByte;
5181       if (Byte % BytesPerElement != 0)
5182         break;
5183       Op = Op.getOperand(0);
5184       Index = Byte / BytesPerElement;
5185       Force = true;
5186     } else
5187       break;
5188   }
5189   if (Force) {
5190     if (Op.getValueType() != VecVT) {
5191       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5192       DCI.AddToWorklist(Op.getNode());
5193     }
5194     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5195                        DAG.getConstant(Index, DL, MVT::i32));
5196   }
5197   return SDValue();
5198 }
5199 
5200 // Optimize vector operations in scalar value Op on the basis that Op
5201 // is truncated to TruncVT.
5202 SDValue SystemZTargetLowering::combineTruncateExtract(
5203     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5204   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5205   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5206   // of type TruncVT.
5207   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5208       TruncVT.getSizeInBits() % 8 == 0) {
5209     SDValue Vec = Op.getOperand(0);
5210     EVT VecVT = Vec.getValueType();
5211     if (canTreatAsByteVector(VecVT)) {
5212       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5213         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5214         unsigned TruncBytes = TruncVT.getStoreSize();
5215         if (BytesPerElement % TruncBytes == 0) {
5216           // Calculate the value of Y' in the above description.  We are
5217           // splitting the original elements into Scale equal-sized pieces
5218           // and for truncation purposes want the last (least-significant)
5219           // of these pieces for IndexN.  This is easiest to do by calculating
5220           // the start index of the following element and then subtracting 1.
5221           unsigned Scale = BytesPerElement / TruncBytes;
5222           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5223 
5224           // Defer the creation of the bitcast from X to combineExtract,
5225           // which might be able to optimize the extraction.
5226           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5227                                    VecVT.getStoreSize() / TruncBytes);
5228           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5229           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5230         }
5231       }
5232     }
5233   }
5234   return SDValue();
5235 }
5236 
5237 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5238     SDNode *N, DAGCombinerInfo &DCI) const {
5239   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5240   SelectionDAG &DAG = DCI.DAG;
5241   SDValue N0 = N->getOperand(0);
5242   EVT VT = N->getValueType(0);
5243   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5244     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5245     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5246     if (TrueOp && FalseOp) {
5247       SDLoc DL(N0);
5248       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5249                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5250                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5251       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5252       // If N0 has multiple uses, change other uses as well.
5253       if (!N0.hasOneUse()) {
5254         SDValue TruncSelect =
5255           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5256         DCI.CombineTo(N0.getNode(), TruncSelect);
5257       }
5258       return NewSelect;
5259     }
5260   }
5261   return SDValue();
5262 }
5263 
5264 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5265     SDNode *N, DAGCombinerInfo &DCI) const {
5266   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5267   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5268   // into (select_cc LHS, RHS, -1, 0, COND)
5269   SelectionDAG &DAG = DCI.DAG;
5270   SDValue N0 = N->getOperand(0);
5271   EVT VT = N->getValueType(0);
5272   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5273   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5274     N0 = N0.getOperand(0);
5275   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5276     SDLoc DL(N0);
5277     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5278                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5279                       N0.getOperand(2) };
5280     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5281   }
5282   return SDValue();
5283 }
5284 
5285 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5286     SDNode *N, DAGCombinerInfo &DCI) const {
5287   // Convert (sext (ashr (shl X, C1), C2)) to
5288   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5289   // cheap as narrower ones.
5290   SelectionDAG &DAG = DCI.DAG;
5291   SDValue N0 = N->getOperand(0);
5292   EVT VT = N->getValueType(0);
5293   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5294     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5295     SDValue Inner = N0.getOperand(0);
5296     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5297       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5298         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5299         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5300         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5301         EVT ShiftVT = N0.getOperand(1).getValueType();
5302         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5303                                   Inner.getOperand(0));
5304         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5305                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5306                                                   ShiftVT));
5307         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5308                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5309       }
5310     }
5311   }
5312   return SDValue();
5313 }
5314 
5315 SDValue SystemZTargetLowering::combineMERGE(
5316     SDNode *N, DAGCombinerInfo &DCI) const {
5317   SelectionDAG &DAG = DCI.DAG;
5318   unsigned Opcode = N->getOpcode();
5319   SDValue Op0 = N->getOperand(0);
5320   SDValue Op1 = N->getOperand(1);
5321   if (Op0.getOpcode() == ISD::BITCAST)
5322     Op0 = Op0.getOperand(0);
5323   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5324       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5325     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5326     // for v4f32.
5327     if (Op1 == N->getOperand(0))
5328       return Op1;
5329     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5330     EVT VT = Op1.getValueType();
5331     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5332     if (ElemBytes <= 4) {
5333       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5334                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5335       EVT InVT = VT.changeVectorElementTypeToInteger();
5336       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5337                                    SystemZ::VectorBytes / ElemBytes / 2);
5338       if (VT != InVT) {
5339         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5340         DCI.AddToWorklist(Op1.getNode());
5341       }
5342       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5343       DCI.AddToWorklist(Op.getNode());
5344       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5345     }
5346   }
5347   return SDValue();
5348 }
5349 
5350 SDValue SystemZTargetLowering::combineSTORE(
5351     SDNode *N, DAGCombinerInfo &DCI) const {
5352   SelectionDAG &DAG = DCI.DAG;
5353   auto *SN = cast<StoreSDNode>(N);
5354   auto &Op1 = N->getOperand(1);
5355   EVT MemVT = SN->getMemoryVT();
5356   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5357   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5358   // If X has wider elements then convert it to:
5359   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5360   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5361     if (SDValue Value =
5362             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5363       DCI.AddToWorklist(Value.getNode());
5364 
5365       // Rewrite the store with the new form of stored value.
5366       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5367                                SN->getBasePtr(), SN->getMemoryVT(),
5368                                SN->getMemOperand());
5369     }
5370   }
5371   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5372   if (!SN->isTruncatingStore() &&
5373       Op1.getOpcode() == ISD::BSWAP &&
5374       Op1.getNode()->hasOneUse() &&
5375       (Op1.getValueType() == MVT::i16 ||
5376        Op1.getValueType() == MVT::i32 ||
5377        Op1.getValueType() == MVT::i64)) {
5378 
5379       SDValue BSwapOp = Op1.getOperand(0);
5380 
5381       if (BSwapOp.getValueType() == MVT::i16)
5382         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5383 
5384       SDValue Ops[] = {
5385         N->getOperand(0), BSwapOp, N->getOperand(2),
5386         DAG.getValueType(Op1.getValueType())
5387       };
5388 
5389       return
5390         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5391                                 Ops, MemVT, SN->getMemOperand());
5392     }
5393   return SDValue();
5394 }
5395 
5396 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5397     SDNode *N, DAGCombinerInfo &DCI) const {
5398 
5399   if (!Subtarget.hasVector())
5400     return SDValue();
5401 
5402   // Try to simplify a vector extraction.
5403   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5404     SDValue Op0 = N->getOperand(0);
5405     EVT VecVT = Op0.getValueType();
5406     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5407                           IndexN->getZExtValue(), DCI, false);
5408   }
5409   return SDValue();
5410 }
5411 
5412 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5413     SDNode *N, DAGCombinerInfo &DCI) const {
5414   SelectionDAG &DAG = DCI.DAG;
5415   // (join_dwords X, X) == (replicate X)
5416   if (N->getOperand(0) == N->getOperand(1))
5417     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5418                        N->getOperand(0));
5419   return SDValue();
5420 }
5421 
5422 SDValue SystemZTargetLowering::combineFP_ROUND(
5423     SDNode *N, DAGCombinerInfo &DCI) const {
5424   // (fpround (extract_vector_elt X 0))
5425   // (fpround (extract_vector_elt X 1)) ->
5426   // (extract_vector_elt (VROUND X) 0)
5427   // (extract_vector_elt (VROUND X) 1)
5428   //
5429   // This is a special case since the target doesn't really support v2f32s.
5430   SelectionDAG &DAG = DCI.DAG;
5431   SDValue Op0 = N->getOperand(0);
5432   if (N->getValueType(0) == MVT::f32 &&
5433       Op0.hasOneUse() &&
5434       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5435       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5436       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5437       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5438     SDValue Vec = Op0.getOperand(0);
5439     for (auto *U : Vec->uses()) {
5440       if (U != Op0.getNode() &&
5441           U->hasOneUse() &&
5442           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5443           U->getOperand(0) == Vec &&
5444           U->getOperand(1).getOpcode() == ISD::Constant &&
5445           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5446         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5447         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5448             OtherRound.getOperand(0) == SDValue(U, 0) &&
5449             OtherRound.getValueType() == MVT::f32) {
5450           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5451                                        MVT::v4f32, Vec);
5452           DCI.AddToWorklist(VRound.getNode());
5453           SDValue Extract1 =
5454             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5455                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5456           DCI.AddToWorklist(Extract1.getNode());
5457           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5458           SDValue Extract0 =
5459             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5460                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5461           return Extract0;
5462         }
5463       }
5464     }
5465   }
5466   return SDValue();
5467 }
5468 
5469 SDValue SystemZTargetLowering::combineBSWAP(
5470     SDNode *N, DAGCombinerInfo &DCI) const {
5471   SelectionDAG &DAG = DCI.DAG;
5472   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5473   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5474       N->getOperand(0).hasOneUse() &&
5475       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5476        N->getValueType(0) == MVT::i64)) {
5477       SDValue Load = N->getOperand(0);
5478       LoadSDNode *LD = cast<LoadSDNode>(Load);
5479 
5480       // Create the byte-swapping load.
5481       SDValue Ops[] = {
5482         LD->getChain(),    // Chain
5483         LD->getBasePtr(),  // Ptr
5484         DAG.getValueType(N->getValueType(0)) // VT
5485       };
5486       SDValue BSLoad =
5487         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5488                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5489                                               MVT::i64 : MVT::i32, MVT::Other),
5490                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5491 
5492       // If this is an i16 load, insert the truncate.
5493       SDValue ResVal = BSLoad;
5494       if (N->getValueType(0) == MVT::i16)
5495         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5496 
5497       // First, combine the bswap away.  This makes the value produced by the
5498       // load dead.
5499       DCI.CombineTo(N, ResVal);
5500 
5501       // Next, combine the load away, we give it a bogus result value but a real
5502       // chain result.  The result value is dead because the bswap is dead.
5503       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5504 
5505       // Return N so it doesn't get rechecked!
5506       return SDValue(N, 0);
5507     }
5508   return SDValue();
5509 }
5510 
5511 SDValue SystemZTargetLowering::combineSHIFTROT(
5512     SDNode *N, DAGCombinerInfo &DCI) const {
5513 
5514   SelectionDAG &DAG = DCI.DAG;
5515 
5516   // Shift/rotate instructions only use the last 6 bits of the second operand
5517   // register. If the second operand is the result of an AND with an immediate
5518   // value that has its last 6 bits set, we can safely remove the AND operation.
5519   //
5520   // If the AND operation doesn't have the last 6 bits set, we can't remove it
5521   // entirely, but we can still truncate it to a 16-bit value. This prevents
5522   // us from ending up with a NILL with a signed operand, which will cause the
5523   // instruction printer to abort.
5524   SDValue N1 = N->getOperand(1);
5525   if (N1.getOpcode() == ISD::AND) {
5526     SDValue AndMaskOp = N1->getOperand(1);
5527     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
5528 
5529     // The AND mask is constant
5530     if (AndMask) {
5531       auto AmtVal = AndMask->getZExtValue();
5532 
5533       // Bottom 6 bits are set
5534       if ((AmtVal & 0x3f) == 0x3f) {
5535         SDValue AndOp = N1->getOperand(0);
5536 
5537         // This is the only use, so remove the node
5538         if (N1.hasOneUse()) {
5539           // Combine the AND away
5540           DCI.CombineTo(N1.getNode(), AndOp);
5541 
5542           // Return N so it isn't rechecked
5543           return SDValue(N, 0);
5544 
5545         // The node will be reused, so create a new node for this one use
5546         } else {
5547           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5548                                         N->getValueType(0), N->getOperand(0),
5549                                         AndOp);
5550           DCI.AddToWorklist(Replace.getNode());
5551 
5552           return Replace;
5553         }
5554 
5555       // We can't remove the AND, but we can use NILL here (normally we would
5556       // use NILF). Only keep the last 16 bits of the mask. The actual
5557       // transformation will be handled by .td definitions.
5558       } else if (AmtVal >> 16 != 0) {
5559         SDValue AndOp = N1->getOperand(0);
5560 
5561         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
5562                                        SDLoc(AndMaskOp),
5563                                        AndMaskOp.getValueType());
5564 
5565         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
5566                                   AndOp, NewMask);
5567 
5568         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5569                                       N->getValueType(0), N->getOperand(0),
5570                                       NewAnd);
5571         DCI.AddToWorklist(Replace.getNode());
5572 
5573         return Replace;
5574       }
5575     }
5576   }
5577 
5578   return SDValue();
5579 }
5580 
5581 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5582   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5583   // set by the CCReg instruction using the CCValid / CCMask masks,
5584   // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing
5585   // the condition code set by some other instruction, see whether we
5586   // can directly use that condition code.
5587   bool Invert = false;
5588 
5589   // Verify that we have an appropriate mask for a EQ or NE comparison.
5590   if (CCValid != SystemZ::CCMASK_ICMP)
5591     return false;
5592   if (CCMask == SystemZ::CCMASK_CMP_NE)
5593     Invert = !Invert;
5594   else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5595     return false;
5596 
5597   // Verify that we have an ICMP that is the user of a SELECT_CCMASK.
5598   SDNode *ICmp = CCReg.getNode();
5599   if (ICmp->getOpcode() != SystemZISD::ICMP)
5600     return false;
5601   SDNode *Select = ICmp->getOperand(0).getNode();
5602   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5603     return false;
5604 
5605   // Verify that the ICMP compares against one of select values.
5606   auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5607   if (!CompareVal)
5608     return false;
5609   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5610   if (!TrueVal)
5611     return false;
5612   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5613   if (!FalseVal)
5614     return false;
5615   if (CompareVal->getZExtValue() == FalseVal->getZExtValue())
5616     Invert = !Invert;
5617   else if (CompareVal->getZExtValue() != TrueVal->getZExtValue())
5618     return false;
5619 
5620   // Compute the effective CC mask for the new branch or select.
5621   auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5622   auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5623   if (!NewCCValid || !NewCCMask)
5624     return false;
5625   CCValid = NewCCValid->getZExtValue();
5626   CCMask = NewCCMask->getZExtValue();
5627   if (Invert)
5628     CCMask ^= CCValid;
5629 
5630   // Return the updated CCReg link.
5631   CCReg = Select->getOperand(4);
5632   return true;
5633 }
5634 
5635 SDValue SystemZTargetLowering::combineBR_CCMASK(
5636     SDNode *N, DAGCombinerInfo &DCI) const {
5637   SelectionDAG &DAG = DCI.DAG;
5638 
5639   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5640   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5641   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5642   if (!CCValid || !CCMask)
5643     return SDValue();
5644 
5645   int CCValidVal = CCValid->getZExtValue();
5646   int CCMaskVal = CCMask->getZExtValue();
5647   SDValue Chain = N->getOperand(0);
5648   SDValue CCReg = N->getOperand(4);
5649 
5650   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5651     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5652                        Chain,
5653                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5654                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5655                        N->getOperand(3), CCReg);
5656   return SDValue();
5657 }
5658 
5659 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5660     SDNode *N, DAGCombinerInfo &DCI) const {
5661   SelectionDAG &DAG = DCI.DAG;
5662 
5663   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5664   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5665   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5666   if (!CCValid || !CCMask)
5667     return SDValue();
5668 
5669   int CCValidVal = CCValid->getZExtValue();
5670   int CCMaskVal = CCMask->getZExtValue();
5671   SDValue CCReg = N->getOperand(4);
5672 
5673   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5674     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5675                        N->getOperand(0),
5676                        N->getOperand(1),
5677                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5678                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5679                        CCReg);
5680   return SDValue();
5681 }
5682 
5683 
5684 SDValue SystemZTargetLowering::combineGET_CCMASK(
5685     SDNode *N, DAGCombinerInfo &DCI) const {
5686 
5687   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
5688   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5689   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5690   if (!CCValid || !CCMask)
5691     return SDValue();
5692   int CCValidVal = CCValid->getZExtValue();
5693   int CCMaskVal = CCMask->getZExtValue();
5694 
5695   SDValue Select = N->getOperand(0);
5696   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5697     return SDValue();
5698 
5699   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5700   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5701   if (!SelectCCValid || !SelectCCMask)
5702     return SDValue();
5703   int SelectCCValidVal = SelectCCValid->getZExtValue();
5704   int SelectCCMaskVal = SelectCCMask->getZExtValue();
5705 
5706   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5707   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5708   if (!TrueVal || !FalseVal)
5709     return SDValue();
5710   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
5711     ;
5712   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
5713     SelectCCMaskVal ^= SelectCCValidVal;
5714   else
5715     return SDValue();
5716 
5717   if (SelectCCValidVal & ~CCValidVal)
5718     return SDValue();
5719   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
5720     return SDValue();
5721 
5722   return Select->getOperand(4);
5723 }
5724 
5725 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5726                                                  DAGCombinerInfo &DCI) const {
5727   switch(N->getOpcode()) {
5728   default: break;
5729   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
5730   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5731   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
5732   case SystemZISD::MERGE_HIGH:
5733   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5734   case ISD::STORE:              return combineSTORE(N, DCI);
5735   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5736   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5737   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5738   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5739   case ISD::SHL:
5740   case ISD::SRA:
5741   case ISD::SRL:
5742   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5743   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
5744   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5745   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
5746   }
5747 
5748   return SDValue();
5749 }
5750 
5751 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
5752 // are for Op.
5753 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
5754                                     unsigned OpNo) {
5755   EVT VT = Op.getValueType();
5756   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
5757   APInt SrcDemE;
5758   unsigned Opcode = Op.getOpcode();
5759   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5760     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5761     switch (Id) {
5762     case Intrinsic::s390_vpksh:   // PACKS
5763     case Intrinsic::s390_vpksf:
5764     case Intrinsic::s390_vpksg:
5765     case Intrinsic::s390_vpkshs:  // PACKS_CC
5766     case Intrinsic::s390_vpksfs:
5767     case Intrinsic::s390_vpksgs:
5768     case Intrinsic::s390_vpklsh:  // PACKLS
5769     case Intrinsic::s390_vpklsf:
5770     case Intrinsic::s390_vpklsg:
5771     case Intrinsic::s390_vpklshs: // PACKLS_CC
5772     case Intrinsic::s390_vpklsfs:
5773     case Intrinsic::s390_vpklsgs:
5774       // VECTOR PACK truncates the elements of two source vectors into one.
5775       SrcDemE = DemandedElts;
5776       if (OpNo == 2)
5777         SrcDemE.lshrInPlace(NumElts / 2);
5778       SrcDemE = SrcDemE.trunc(NumElts / 2);
5779       break;
5780       // VECTOR UNPACK extends half the elements of the source vector.
5781     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5782     case Intrinsic::s390_vuphh:
5783     case Intrinsic::s390_vuphf:
5784     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5785     case Intrinsic::s390_vuplhh:
5786     case Intrinsic::s390_vuplhf:
5787       SrcDemE = APInt(NumElts * 2, 0);
5788       SrcDemE.insertBits(DemandedElts, 0);
5789       break;
5790     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5791     case Intrinsic::s390_vuplhw:
5792     case Intrinsic::s390_vuplf:
5793     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5794     case Intrinsic::s390_vupllh:
5795     case Intrinsic::s390_vupllf:
5796       SrcDemE = APInt(NumElts * 2, 0);
5797       SrcDemE.insertBits(DemandedElts, NumElts);
5798       break;
5799     case Intrinsic::s390_vpdi: {
5800       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
5801       SrcDemE = APInt(NumElts, 0);
5802       if (!DemandedElts[OpNo - 1])
5803         break;
5804       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5805       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
5806       // Demand input element 0 or 1, given by the mask bit value.
5807       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
5808       break;
5809     }
5810     case Intrinsic::s390_vsldb: {
5811       // VECTOR SHIFT LEFT DOUBLE BY BYTE
5812       assert(VT == MVT::v16i8 && "Unexpected type.");
5813       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5814       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
5815       unsigned NumSrc0Els = 16 - FirstIdx;
5816       SrcDemE = APInt(NumElts, 0);
5817       if (OpNo == 1) {
5818         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
5819         SrcDemE.insertBits(DemEls, FirstIdx);
5820       } else {
5821         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
5822         SrcDemE.insertBits(DemEls, 0);
5823       }
5824       break;
5825     }
5826     case Intrinsic::s390_vperm:
5827       SrcDemE = APInt(NumElts, 1);
5828       break;
5829     default:
5830       llvm_unreachable("Unhandled intrinsic.");
5831       break;
5832     }
5833   } else {
5834     switch (Opcode) {
5835     case SystemZISD::JOIN_DWORDS:
5836       // Scalar operand.
5837       SrcDemE = APInt(1, 1);
5838       break;
5839     case SystemZISD::SELECT_CCMASK:
5840       SrcDemE = DemandedElts;
5841       break;
5842     default:
5843       llvm_unreachable("Unhandled opcode.");
5844       break;
5845     }
5846   }
5847   return SrcDemE;
5848 }
5849 
5850 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
5851                                   const APInt &DemandedElts,
5852                                   const SelectionDAG &DAG, unsigned Depth,
5853                                   unsigned OpNo) {
5854   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5855   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5856   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
5857   KnownBits LHSKnown(SrcBitWidth), RHSKnown(SrcBitWidth);
5858   DAG.computeKnownBits(Op.getOperand(OpNo), LHSKnown, Src0DemE, Depth + 1);
5859   DAG.computeKnownBits(Op.getOperand(OpNo + 1), RHSKnown, Src1DemE, Depth + 1);
5860   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
5861   Known.One = LHSKnown.One & RHSKnown.One;
5862 }
5863 
5864 void
5865 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5866                                                      KnownBits &Known,
5867                                                      const APInt &DemandedElts,
5868                                                      const SelectionDAG &DAG,
5869                                                      unsigned Depth) const {
5870   Known.resetAll();
5871 
5872   // Intrinsic CC result is returned in the two low bits.
5873   unsigned tmp0, tmp1; // not used
5874   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
5875     Known.Zero.setBitsFrom(2);
5876     return;
5877   }
5878   EVT VT = Op.getValueType();
5879   if (Op.getResNo() != 0 || VT == MVT::Untyped)
5880     return;
5881   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
5882           "KnownBits does not match VT in bitwidth");
5883   assert ((!VT.isVector() ||
5884            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
5885           "DemandedElts does not match VT number of elements");
5886   unsigned BitWidth = Known.getBitWidth();
5887   unsigned Opcode = Op.getOpcode();
5888   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5889     bool IsLogical = false;
5890     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5891     switch (Id) {
5892     case Intrinsic::s390_vpksh:   // PACKS
5893     case Intrinsic::s390_vpksf:
5894     case Intrinsic::s390_vpksg:
5895     case Intrinsic::s390_vpkshs:  // PACKS_CC
5896     case Intrinsic::s390_vpksfs:
5897     case Intrinsic::s390_vpksgs:
5898     case Intrinsic::s390_vpklsh:  // PACKLS
5899     case Intrinsic::s390_vpklsf:
5900     case Intrinsic::s390_vpklsg:
5901     case Intrinsic::s390_vpklshs: // PACKLS_CC
5902     case Intrinsic::s390_vpklsfs:
5903     case Intrinsic::s390_vpklsgs:
5904     case Intrinsic::s390_vpdi:
5905     case Intrinsic::s390_vsldb:
5906     case Intrinsic::s390_vperm:
5907       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
5908       break;
5909     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5910     case Intrinsic::s390_vuplhh:
5911     case Intrinsic::s390_vuplhf:
5912     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5913     case Intrinsic::s390_vupllh:
5914     case Intrinsic::s390_vupllf:
5915       IsLogical = true;
5916       LLVM_FALLTHROUGH;
5917     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5918     case Intrinsic::s390_vuphh:
5919     case Intrinsic::s390_vuphf:
5920     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5921     case Intrinsic::s390_vuplhw:
5922     case Intrinsic::s390_vuplf: {
5923       SDValue SrcOp = Op.getOperand(1);
5924       unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits();
5925       Known = KnownBits(SrcBitWidth);
5926       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
5927       DAG.computeKnownBits(SrcOp, Known, SrcDemE, Depth + 1);
5928       if (IsLogical) {
5929         Known = Known.zext(BitWidth);
5930         Known.Zero.setBitsFrom(SrcBitWidth);
5931       } else
5932         Known = Known.sext(BitWidth);
5933       break;
5934     }
5935     default:
5936       break;
5937     }
5938   } else {
5939     switch (Opcode) {
5940     case SystemZISD::JOIN_DWORDS:
5941     case SystemZISD::SELECT_CCMASK:
5942       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
5943       break;
5944     case SystemZISD::REPLICATE: {
5945       SDValue SrcOp = Op.getOperand(0);
5946       DAG.computeKnownBits(SrcOp, Known, Depth + 1);
5947       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
5948         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
5949       break;
5950     }
5951     default:
5952       break;
5953     }
5954   }
5955 
5956   // Known has the width of the source operand(s). Adjust if needed to match
5957   // the passed bitwidth.
5958   if (Known.getBitWidth() != BitWidth)
5959     Known = Known.zextOrTrunc(BitWidth);
5960 }
5961 
5962 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
5963                                         const SelectionDAG &DAG, unsigned Depth,
5964                                         unsigned OpNo) {
5965   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5966   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
5967   if (LHS == 1) return 1; // Early out.
5968   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5969   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
5970   if (RHS == 1) return 1; // Early out.
5971   unsigned Common = std::min(LHS, RHS);
5972   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
5973   EVT VT = Op.getValueType();
5974   unsigned VTBits = VT.getScalarSizeInBits();
5975   if (SrcBitWidth > VTBits) { // PACK
5976     unsigned SrcExtraBits = SrcBitWidth - VTBits;
5977     if (Common > SrcExtraBits)
5978       return (Common - SrcExtraBits);
5979     return 1;
5980   }
5981   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
5982   return Common;
5983 }
5984 
5985 unsigned
5986 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
5987     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
5988     unsigned Depth) const {
5989   if (Op.getResNo() != 0)
5990     return 1;
5991   unsigned Opcode = Op.getOpcode();
5992   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5993     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5994     switch (Id) {
5995     case Intrinsic::s390_vpksh:   // PACKS
5996     case Intrinsic::s390_vpksf:
5997     case Intrinsic::s390_vpksg:
5998     case Intrinsic::s390_vpkshs:  // PACKS_CC
5999     case Intrinsic::s390_vpksfs:
6000     case Intrinsic::s390_vpksgs:
6001     case Intrinsic::s390_vpklsh:  // PACKLS
6002     case Intrinsic::s390_vpklsf:
6003     case Intrinsic::s390_vpklsg:
6004     case Intrinsic::s390_vpklshs: // PACKLS_CC
6005     case Intrinsic::s390_vpklsfs:
6006     case Intrinsic::s390_vpklsgs:
6007     case Intrinsic::s390_vpdi:
6008     case Intrinsic::s390_vsldb:
6009     case Intrinsic::s390_vperm:
6010       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6011     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6012     case Intrinsic::s390_vuphh:
6013     case Intrinsic::s390_vuphf:
6014     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6015     case Intrinsic::s390_vuplhw:
6016     case Intrinsic::s390_vuplf: {
6017       SDValue PackedOp = Op.getOperand(1);
6018       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6019       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6020       EVT VT = Op.getValueType();
6021       unsigned VTBits = VT.getScalarSizeInBits();
6022       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6023       return Tmp;
6024     }
6025     default:
6026       break;
6027     }
6028   } else {
6029     switch (Opcode) {
6030     case SystemZISD::SELECT_CCMASK:
6031       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6032     default:
6033       break;
6034     }
6035   }
6036 
6037   return 1;
6038 }
6039 
6040 //===----------------------------------------------------------------------===//
6041 // Custom insertion
6042 //===----------------------------------------------------------------------===//
6043 
6044 // Create a new basic block after MBB.
6045 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6046   MachineFunction &MF = *MBB->getParent();
6047   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6048   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6049   return NewMBB;
6050 }
6051 
6052 // Split MBB after MI and return the new block (the one that contains
6053 // instructions after MI).
6054 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6055                                           MachineBasicBlock *MBB) {
6056   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6057   NewMBB->splice(NewMBB->begin(), MBB,
6058                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6059   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6060   return NewMBB;
6061 }
6062 
6063 // Split MBB before MI and return the new block (the one that contains MI).
6064 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6065                                            MachineBasicBlock *MBB) {
6066   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6067   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6068   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6069   return NewMBB;
6070 }
6071 
6072 // Force base value Base into a register before MI.  Return the register.
6073 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
6074                          const SystemZInstrInfo *TII) {
6075   if (Base.isReg())
6076     return Base.getReg();
6077 
6078   MachineBasicBlock *MBB = MI.getParent();
6079   MachineFunction &MF = *MBB->getParent();
6080   MachineRegisterInfo &MRI = MF.getRegInfo();
6081 
6082   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6083   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6084       .add(Base)
6085       .addImm(0)
6086       .addReg(0);
6087   return Reg;
6088 }
6089 
6090 // The CC operand of MI might be missing a kill marker because there
6091 // were multiple uses of CC, and ISel didn't know which to mark.
6092 // Figure out whether MI should have had a kill marker.
6093 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6094   // Scan forward through BB for a use/def of CC.
6095   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6096   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6097     const MachineInstr& mi = *miI;
6098     if (mi.readsRegister(SystemZ::CC))
6099       return false;
6100     if (mi.definesRegister(SystemZ::CC))
6101       break; // Should have kill-flag - update below.
6102   }
6103 
6104   // If we hit the end of the block, check whether CC is live into a
6105   // successor.
6106   if (miI == MBB->end()) {
6107     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6108       if ((*SI)->isLiveIn(SystemZ::CC))
6109         return false;
6110   }
6111 
6112   return true;
6113 }
6114 
6115 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6116 // together with other Select pseudo-opcodes into a single basic-block with
6117 // a conditional jump around it.
6118 static bool isSelectPseudo(MachineInstr &MI) {
6119   switch (MI.getOpcode()) {
6120   case SystemZ::Select32:
6121   case SystemZ::Select64:
6122   case SystemZ::SelectF32:
6123   case SystemZ::SelectF64:
6124   case SystemZ::SelectF128:
6125   case SystemZ::SelectVR32:
6126   case SystemZ::SelectVR64:
6127   case SystemZ::SelectVR128:
6128     return true;
6129 
6130   default:
6131     return false;
6132   }
6133 }
6134 
6135 // Helper function, which inserts PHI functions into SinkMBB:
6136 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6137 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6138 // in [MIItBegin, MIItEnd) range.
6139 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6140                                  MachineBasicBlock::iterator MIItEnd,
6141                                  MachineBasicBlock *TrueMBB,
6142                                  MachineBasicBlock *FalseMBB,
6143                                  MachineBasicBlock *SinkMBB) {
6144   MachineFunction *MF = TrueMBB->getParent();
6145   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6146 
6147   unsigned CCValid = MIItBegin->getOperand(3).getImm();
6148   unsigned CCMask = MIItBegin->getOperand(4).getImm();
6149   DebugLoc DL = MIItBegin->getDebugLoc();
6150 
6151   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6152 
6153   // As we are creating the PHIs, we have to be careful if there is more than
6154   // one.  Later Selects may reference the results of earlier Selects, but later
6155   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6156   // That also means that PHI construction must work forward from earlier to
6157   // later, and that the code must maintain a mapping from earlier PHI's
6158   // destination registers, and the registers that went into the PHI.
6159   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6160 
6161   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
6162     unsigned DestReg = MIIt->getOperand(0).getReg();
6163     unsigned TrueReg = MIIt->getOperand(1).getReg();
6164     unsigned FalseReg = MIIt->getOperand(2).getReg();
6165 
6166     // If this Select we are generating is the opposite condition from
6167     // the jump we generated, then we have to swap the operands for the
6168     // PHI that is going to be generated.
6169     if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6170       std::swap(TrueReg, FalseReg);
6171 
6172     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6173       TrueReg = RegRewriteTable[TrueReg].first;
6174 
6175     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6176       FalseReg = RegRewriteTable[FalseReg].second;
6177 
6178     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6179       .addReg(TrueReg).addMBB(TrueMBB)
6180       .addReg(FalseReg).addMBB(FalseMBB);
6181 
6182     // Add this PHI to the rewrite table.
6183     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6184   }
6185 }
6186 
6187 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6188 MachineBasicBlock *
6189 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6190                                   MachineBasicBlock *MBB) const {
6191   const SystemZInstrInfo *TII =
6192       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6193 
6194   unsigned CCValid = MI.getOperand(3).getImm();
6195   unsigned CCMask = MI.getOperand(4).getImm();
6196   DebugLoc DL = MI.getDebugLoc();
6197 
6198   // If we have a sequence of Select* pseudo instructions using the
6199   // same condition code value, we want to expand all of them into
6200   // a single pair of basic blocks using the same condition.
6201   MachineInstr *LastMI = &MI;
6202   MachineBasicBlock::iterator NextMIIt =
6203       std::next(MachineBasicBlock::iterator(MI));
6204 
6205   if (isSelectPseudo(MI))
6206     while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6207            NextMIIt->getOperand(3).getImm() == CCValid &&
6208            (NextMIIt->getOperand(4).getImm() == CCMask ||
6209             NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6210       LastMI = &*NextMIIt;
6211       ++NextMIIt;
6212     }
6213 
6214   MachineBasicBlock *StartMBB = MBB;
6215   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6216   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6217 
6218   // Unless CC was killed in the last Select instruction, mark it as
6219   // live-in to both FalseMBB and JoinMBB.
6220   if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6221     FalseMBB->addLiveIn(SystemZ::CC);
6222     JoinMBB->addLiveIn(SystemZ::CC);
6223   }
6224 
6225   //  StartMBB:
6226   //   BRC CCMask, JoinMBB
6227   //   # fallthrough to FalseMBB
6228   MBB = StartMBB;
6229   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6230     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6231   MBB->addSuccessor(JoinMBB);
6232   MBB->addSuccessor(FalseMBB);
6233 
6234   //  FalseMBB:
6235   //   # fallthrough to JoinMBB
6236   MBB = FalseMBB;
6237   MBB->addSuccessor(JoinMBB);
6238 
6239   //  JoinMBB:
6240   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6241   //  ...
6242   MBB = JoinMBB;
6243   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6244   MachineBasicBlock::iterator MIItEnd =
6245       std::next(MachineBasicBlock::iterator(LastMI));
6246   createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6247 
6248   StartMBB->erase(MIItBegin, MIItEnd);
6249   return JoinMBB;
6250 }
6251 
6252 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6253 // StoreOpcode is the store to use and Invert says whether the store should
6254 // happen when the condition is false rather than true.  If a STORE ON
6255 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6256 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6257                                                         MachineBasicBlock *MBB,
6258                                                         unsigned StoreOpcode,
6259                                                         unsigned STOCOpcode,
6260                                                         bool Invert) const {
6261   const SystemZInstrInfo *TII =
6262       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6263 
6264   unsigned SrcReg = MI.getOperand(0).getReg();
6265   MachineOperand Base = MI.getOperand(1);
6266   int64_t Disp = MI.getOperand(2).getImm();
6267   unsigned IndexReg = MI.getOperand(3).getReg();
6268   unsigned CCValid = MI.getOperand(4).getImm();
6269   unsigned CCMask = MI.getOperand(5).getImm();
6270   DebugLoc DL = MI.getDebugLoc();
6271 
6272   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6273 
6274   // Use STOCOpcode if possible.  We could use different store patterns in
6275   // order to avoid matching the index register, but the performance trade-offs
6276   // might be more complicated in that case.
6277   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6278     if (Invert)
6279       CCMask ^= CCValid;
6280 
6281     // ISel pattern matching also adds a load memory operand of the same
6282     // address, so take special care to find the storing memory operand.
6283     MachineMemOperand *MMO = nullptr;
6284     for (auto *I : MI.memoperands())
6285       if (I->isStore()) {
6286           MMO = I;
6287           break;
6288         }
6289 
6290     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6291       .addReg(SrcReg)
6292       .add(Base)
6293       .addImm(Disp)
6294       .addImm(CCValid)
6295       .addImm(CCMask)
6296       .addMemOperand(MMO);
6297 
6298     MI.eraseFromParent();
6299     return MBB;
6300   }
6301 
6302   // Get the condition needed to branch around the store.
6303   if (!Invert)
6304     CCMask ^= CCValid;
6305 
6306   MachineBasicBlock *StartMBB = MBB;
6307   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6308   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6309 
6310   // Unless CC was killed in the CondStore instruction, mark it as
6311   // live-in to both FalseMBB and JoinMBB.
6312   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6313     FalseMBB->addLiveIn(SystemZ::CC);
6314     JoinMBB->addLiveIn(SystemZ::CC);
6315   }
6316 
6317   //  StartMBB:
6318   //   BRC CCMask, JoinMBB
6319   //   # fallthrough to FalseMBB
6320   MBB = StartMBB;
6321   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6322     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6323   MBB->addSuccessor(JoinMBB);
6324   MBB->addSuccessor(FalseMBB);
6325 
6326   //  FalseMBB:
6327   //   store %SrcReg, %Disp(%Index,%Base)
6328   //   # fallthrough to JoinMBB
6329   MBB = FalseMBB;
6330   BuildMI(MBB, DL, TII->get(StoreOpcode))
6331       .addReg(SrcReg)
6332       .add(Base)
6333       .addImm(Disp)
6334       .addReg(IndexReg);
6335   MBB->addSuccessor(JoinMBB);
6336 
6337   MI.eraseFromParent();
6338   return JoinMBB;
6339 }
6340 
6341 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6342 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
6343 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6344 // BitSize is the width of the field in bits, or 0 if this is a partword
6345 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6346 // is one of the operands.  Invert says whether the field should be
6347 // inverted after performing BinOpcode (e.g. for NAND).
6348 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6349     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6350     unsigned BitSize, bool Invert) const {
6351   MachineFunction &MF = *MBB->getParent();
6352   const SystemZInstrInfo *TII =
6353       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6354   MachineRegisterInfo &MRI = MF.getRegInfo();
6355   bool IsSubWord = (BitSize < 32);
6356 
6357   // Extract the operands.  Base can be a register or a frame index.
6358   // Src2 can be a register or immediate.
6359   unsigned Dest = MI.getOperand(0).getReg();
6360   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6361   int64_t Disp = MI.getOperand(2).getImm();
6362   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6363   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6364   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6365   DebugLoc DL = MI.getDebugLoc();
6366   if (IsSubWord)
6367     BitSize = MI.getOperand(6).getImm();
6368 
6369   // Subword operations use 32-bit registers.
6370   const TargetRegisterClass *RC = (BitSize <= 32 ?
6371                                    &SystemZ::GR32BitRegClass :
6372                                    &SystemZ::GR64BitRegClass);
6373   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6374   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6375 
6376   // Get the right opcodes for the displacement.
6377   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6378   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6379   assert(LOpcode && CSOpcode && "Displacement out of range");
6380 
6381   // Create virtual registers for temporary results.
6382   unsigned OrigVal       = MRI.createVirtualRegister(RC);
6383   unsigned OldVal        = MRI.createVirtualRegister(RC);
6384   unsigned NewVal        = (BinOpcode || IsSubWord ?
6385                             MRI.createVirtualRegister(RC) : Src2.getReg());
6386   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6387   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6388 
6389   // Insert a basic block for the main loop.
6390   MachineBasicBlock *StartMBB = MBB;
6391   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6392   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6393 
6394   //  StartMBB:
6395   //   ...
6396   //   %OrigVal = L Disp(%Base)
6397   //   # fall through to LoopMMB
6398   MBB = StartMBB;
6399   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6400   MBB->addSuccessor(LoopMBB);
6401 
6402   //  LoopMBB:
6403   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6404   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6405   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
6406   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6407   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6408   //   JNE LoopMBB
6409   //   # fall through to DoneMMB
6410   MBB = LoopMBB;
6411   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6412     .addReg(OrigVal).addMBB(StartMBB)
6413     .addReg(Dest).addMBB(LoopMBB);
6414   if (IsSubWord)
6415     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6416       .addReg(OldVal).addReg(BitShift).addImm(0);
6417   if (Invert) {
6418     // Perform the operation normally and then invert every bit of the field.
6419     unsigned Tmp = MRI.createVirtualRegister(RC);
6420     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6421     if (BitSize <= 32)
6422       // XILF with the upper BitSize bits set.
6423       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6424         .addReg(Tmp).addImm(-1U << (32 - BitSize));
6425     else {
6426       // Use LCGR and add -1 to the result, which is more compact than
6427       // an XILF, XILH pair.
6428       unsigned Tmp2 = MRI.createVirtualRegister(RC);
6429       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6430       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6431         .addReg(Tmp2).addImm(-1);
6432     }
6433   } else if (BinOpcode)
6434     // A simply binary operation.
6435     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6436         .addReg(RotatedOldVal)
6437         .add(Src2);
6438   else if (IsSubWord)
6439     // Use RISBG to rotate Src2 into position and use it to replace the
6440     // field in RotatedOldVal.
6441     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6442       .addReg(RotatedOldVal).addReg(Src2.getReg())
6443       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6444   if (IsSubWord)
6445     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6446       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6447   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6448       .addReg(OldVal)
6449       .addReg(NewVal)
6450       .add(Base)
6451       .addImm(Disp);
6452   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6453     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6454   MBB->addSuccessor(LoopMBB);
6455   MBB->addSuccessor(DoneMBB);
6456 
6457   MI.eraseFromParent();
6458   return DoneMBB;
6459 }
6460 
6461 // Implement EmitInstrWithCustomInserter for pseudo
6462 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
6463 // instruction that should be used to compare the current field with the
6464 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
6465 // for when the current field should be kept.  BitSize is the width of
6466 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
6467 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6468     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6469     unsigned KeepOldMask, unsigned BitSize) const {
6470   MachineFunction &MF = *MBB->getParent();
6471   const SystemZInstrInfo *TII =
6472       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6473   MachineRegisterInfo &MRI = MF.getRegInfo();
6474   bool IsSubWord = (BitSize < 32);
6475 
6476   // Extract the operands.  Base can be a register or a frame index.
6477   unsigned Dest = MI.getOperand(0).getReg();
6478   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6479   int64_t Disp = MI.getOperand(2).getImm();
6480   unsigned Src2 = MI.getOperand(3).getReg();
6481   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6482   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6483   DebugLoc DL = MI.getDebugLoc();
6484   if (IsSubWord)
6485     BitSize = MI.getOperand(6).getImm();
6486 
6487   // Subword operations use 32-bit registers.
6488   const TargetRegisterClass *RC = (BitSize <= 32 ?
6489                                    &SystemZ::GR32BitRegClass :
6490                                    &SystemZ::GR64BitRegClass);
6491   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6492   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6493 
6494   // Get the right opcodes for the displacement.
6495   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6496   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6497   assert(LOpcode && CSOpcode && "Displacement out of range");
6498 
6499   // Create virtual registers for temporary results.
6500   unsigned OrigVal       = MRI.createVirtualRegister(RC);
6501   unsigned OldVal        = MRI.createVirtualRegister(RC);
6502   unsigned NewVal        = MRI.createVirtualRegister(RC);
6503   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6504   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6505   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6506 
6507   // Insert 3 basic blocks for the loop.
6508   MachineBasicBlock *StartMBB  = MBB;
6509   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
6510   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
6511   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6512   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6513 
6514   //  StartMBB:
6515   //   ...
6516   //   %OrigVal     = L Disp(%Base)
6517   //   # fall through to LoopMMB
6518   MBB = StartMBB;
6519   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6520   MBB->addSuccessor(LoopMBB);
6521 
6522   //  LoopMBB:
6523   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6524   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6525   //   CompareOpcode %RotatedOldVal, %Src2
6526   //   BRC KeepOldMask, UpdateMBB
6527   MBB = LoopMBB;
6528   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6529     .addReg(OrigVal).addMBB(StartMBB)
6530     .addReg(Dest).addMBB(UpdateMBB);
6531   if (IsSubWord)
6532     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6533       .addReg(OldVal).addReg(BitShift).addImm(0);
6534   BuildMI(MBB, DL, TII->get(CompareOpcode))
6535     .addReg(RotatedOldVal).addReg(Src2);
6536   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6537     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6538   MBB->addSuccessor(UpdateMBB);
6539   MBB->addSuccessor(UseAltMBB);
6540 
6541   //  UseAltMBB:
6542   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6543   //   # fall through to UpdateMMB
6544   MBB = UseAltMBB;
6545   if (IsSubWord)
6546     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6547       .addReg(RotatedOldVal).addReg(Src2)
6548       .addImm(32).addImm(31 + BitSize).addImm(0);
6549   MBB->addSuccessor(UpdateMBB);
6550 
6551   //  UpdateMBB:
6552   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6553   //                        [ %RotatedAltVal, UseAltMBB ]
6554   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6555   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6556   //   JNE LoopMBB
6557   //   # fall through to DoneMMB
6558   MBB = UpdateMBB;
6559   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6560     .addReg(RotatedOldVal).addMBB(LoopMBB)
6561     .addReg(RotatedAltVal).addMBB(UseAltMBB);
6562   if (IsSubWord)
6563     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6564       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6565   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6566       .addReg(OldVal)
6567       .addReg(NewVal)
6568       .add(Base)
6569       .addImm(Disp);
6570   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6571     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6572   MBB->addSuccessor(LoopMBB);
6573   MBB->addSuccessor(DoneMBB);
6574 
6575   MI.eraseFromParent();
6576   return DoneMBB;
6577 }
6578 
6579 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6580 // instruction MI.
6581 MachineBasicBlock *
6582 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6583                                           MachineBasicBlock *MBB) const {
6584 
6585   MachineFunction &MF = *MBB->getParent();
6586   const SystemZInstrInfo *TII =
6587       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6588   MachineRegisterInfo &MRI = MF.getRegInfo();
6589 
6590   // Extract the operands.  Base can be a register or a frame index.
6591   unsigned Dest = MI.getOperand(0).getReg();
6592   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6593   int64_t Disp = MI.getOperand(2).getImm();
6594   unsigned OrigCmpVal = MI.getOperand(3).getReg();
6595   unsigned OrigSwapVal = MI.getOperand(4).getReg();
6596   unsigned BitShift = MI.getOperand(5).getReg();
6597   unsigned NegBitShift = MI.getOperand(6).getReg();
6598   int64_t BitSize = MI.getOperand(7).getImm();
6599   DebugLoc DL = MI.getDebugLoc();
6600 
6601   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6602 
6603   // Get the right opcodes for the displacement.
6604   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
6605   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6606   assert(LOpcode && CSOpcode && "Displacement out of range");
6607 
6608   // Create virtual registers for temporary results.
6609   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
6610   unsigned OldVal       = MRI.createVirtualRegister(RC);
6611   unsigned CmpVal       = MRI.createVirtualRegister(RC);
6612   unsigned SwapVal      = MRI.createVirtualRegister(RC);
6613   unsigned StoreVal     = MRI.createVirtualRegister(RC);
6614   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
6615   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
6616   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6617 
6618   // Insert 2 basic blocks for the loop.
6619   MachineBasicBlock *StartMBB = MBB;
6620   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6621   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6622   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
6623 
6624   //  StartMBB:
6625   //   ...
6626   //   %OrigOldVal     = L Disp(%Base)
6627   //   # fall through to LoopMMB
6628   MBB = StartMBB;
6629   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6630       .add(Base)
6631       .addImm(Disp)
6632       .addReg(0);
6633   MBB->addSuccessor(LoopMBB);
6634 
6635   //  LoopMBB:
6636   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6637   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6638   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6639   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
6640   //                      ^^ The low BitSize bits contain the field
6641   //                         of interest.
6642   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6643   //                      ^^ Replace the upper 32-BitSize bits of the
6644   //                         comparison value with those that we loaded,
6645   //                         so that we can use a full word comparison.
6646   //   CR %Dest, %RetryCmpVal
6647   //   JNE DoneMBB
6648   //   # Fall through to SetMBB
6649   MBB = LoopMBB;
6650   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6651     .addReg(OrigOldVal).addMBB(StartMBB)
6652     .addReg(RetryOldVal).addMBB(SetMBB);
6653   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6654     .addReg(OrigCmpVal).addMBB(StartMBB)
6655     .addReg(RetryCmpVal).addMBB(SetMBB);
6656   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6657     .addReg(OrigSwapVal).addMBB(StartMBB)
6658     .addReg(RetrySwapVal).addMBB(SetMBB);
6659   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6660     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6661   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6662     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6663   BuildMI(MBB, DL, TII->get(SystemZ::CR))
6664     .addReg(Dest).addReg(RetryCmpVal);
6665   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6666     .addImm(SystemZ::CCMASK_ICMP)
6667     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6668   MBB->addSuccessor(DoneMBB);
6669   MBB->addSuccessor(SetMBB);
6670 
6671   //  SetMBB:
6672   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6673   //                      ^^ Replace the upper 32-BitSize bits of the new
6674   //                         value with those that we loaded.
6675   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6676   //                      ^^ Rotate the new field to its proper position.
6677   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6678   //   JNE LoopMBB
6679   //   # fall through to ExitMMB
6680   MBB = SetMBB;
6681   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6682     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6683   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6684     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6685   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6686       .addReg(OldVal)
6687       .addReg(StoreVal)
6688       .add(Base)
6689       .addImm(Disp);
6690   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6691     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6692   MBB->addSuccessor(LoopMBB);
6693   MBB->addSuccessor(DoneMBB);
6694 
6695   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6696   // to the block after the loop.  At this point, CC may have been defined
6697   // either by the CR in LoopMBB or by the CS in SetMBB.
6698   if (!MI.registerDefIsDead(SystemZ::CC))
6699     DoneMBB->addLiveIn(SystemZ::CC);
6700 
6701   MI.eraseFromParent();
6702   return DoneMBB;
6703 }
6704 
6705 // Emit a move from two GR64s to a GR128.
6706 MachineBasicBlock *
6707 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6708                                    MachineBasicBlock *MBB) const {
6709   MachineFunction &MF = *MBB->getParent();
6710   const SystemZInstrInfo *TII =
6711       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6712   MachineRegisterInfo &MRI = MF.getRegInfo();
6713   DebugLoc DL = MI.getDebugLoc();
6714 
6715   unsigned Dest = MI.getOperand(0).getReg();
6716   unsigned Hi = MI.getOperand(1).getReg();
6717   unsigned Lo = MI.getOperand(2).getReg();
6718   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6719   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6720 
6721   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6722   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6723     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6724   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6725     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6726 
6727   MI.eraseFromParent();
6728   return MBB;
6729 }
6730 
6731 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6732 // if the high register of the GR128 value must be cleared or false if
6733 // it's "don't care".
6734 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6735                                                      MachineBasicBlock *MBB,
6736                                                      bool ClearEven) const {
6737   MachineFunction &MF = *MBB->getParent();
6738   const SystemZInstrInfo *TII =
6739       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6740   MachineRegisterInfo &MRI = MF.getRegInfo();
6741   DebugLoc DL = MI.getDebugLoc();
6742 
6743   unsigned Dest = MI.getOperand(0).getReg();
6744   unsigned Src = MI.getOperand(1).getReg();
6745   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6746 
6747   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6748   if (ClearEven) {
6749     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6750     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6751 
6752     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6753       .addImm(0);
6754     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6755       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6756     In128 = NewIn128;
6757   }
6758   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6759     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6760 
6761   MI.eraseFromParent();
6762   return MBB;
6763 }
6764 
6765 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6766     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6767   MachineFunction &MF = *MBB->getParent();
6768   const SystemZInstrInfo *TII =
6769       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6770   MachineRegisterInfo &MRI = MF.getRegInfo();
6771   DebugLoc DL = MI.getDebugLoc();
6772 
6773   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6774   uint64_t DestDisp = MI.getOperand(1).getImm();
6775   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6776   uint64_t SrcDisp = MI.getOperand(3).getImm();
6777   uint64_t Length = MI.getOperand(4).getImm();
6778 
6779   // When generating more than one CLC, all but the last will need to
6780   // branch to the end when a difference is found.
6781   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6782                                splitBlockAfter(MI, MBB) : nullptr);
6783 
6784   // Check for the loop form, in which operand 5 is the trip count.
6785   if (MI.getNumExplicitOperands() > 5) {
6786     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6787 
6788     uint64_t StartCountReg = MI.getOperand(5).getReg();
6789     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
6790     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
6791                               forceReg(MI, DestBase, TII));
6792 
6793     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6794     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
6795     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6796                             MRI.createVirtualRegister(RC));
6797     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
6798     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6799                             MRI.createVirtualRegister(RC));
6800 
6801     RC = &SystemZ::GR64BitRegClass;
6802     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6803     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6804 
6805     MachineBasicBlock *StartMBB = MBB;
6806     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6807     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6808     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6809 
6810     //  StartMBB:
6811     //   # fall through to LoopMMB
6812     MBB->addSuccessor(LoopMBB);
6813 
6814     //  LoopMBB:
6815     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6816     //                      [ %NextDestReg, NextMBB ]
6817     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6818     //                     [ %NextSrcReg, NextMBB ]
6819     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6820     //                       [ %NextCountReg, NextMBB ]
6821     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
6822     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6823     //   ( JLH EndMBB )
6824     //
6825     // The prefetch is used only for MVC.  The JLH is used only for CLC.
6826     MBB = LoopMBB;
6827 
6828     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6829       .addReg(StartDestReg).addMBB(StartMBB)
6830       .addReg(NextDestReg).addMBB(NextMBB);
6831     if (!HaveSingleBase)
6832       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6833         .addReg(StartSrcReg).addMBB(StartMBB)
6834         .addReg(NextSrcReg).addMBB(NextMBB);
6835     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6836       .addReg(StartCountReg).addMBB(StartMBB)
6837       .addReg(NextCountReg).addMBB(NextMBB);
6838     if (Opcode == SystemZ::MVC)
6839       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6840         .addImm(SystemZ::PFD_WRITE)
6841         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6842     BuildMI(MBB, DL, TII->get(Opcode))
6843       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6844       .addReg(ThisSrcReg).addImm(SrcDisp);
6845     if (EndMBB) {
6846       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6847         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6848         .addMBB(EndMBB);
6849       MBB->addSuccessor(EndMBB);
6850       MBB->addSuccessor(NextMBB);
6851     }
6852 
6853     // NextMBB:
6854     //   %NextDestReg = LA 256(%ThisDestReg)
6855     //   %NextSrcReg = LA 256(%ThisSrcReg)
6856     //   %NextCountReg = AGHI %ThisCountReg, -1
6857     //   CGHI %NextCountReg, 0
6858     //   JLH LoopMBB
6859     //   # fall through to DoneMMB
6860     //
6861     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6862     MBB = NextMBB;
6863 
6864     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6865       .addReg(ThisDestReg).addImm(256).addReg(0);
6866     if (!HaveSingleBase)
6867       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6868         .addReg(ThisSrcReg).addImm(256).addReg(0);
6869     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6870       .addReg(ThisCountReg).addImm(-1);
6871     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6872       .addReg(NextCountReg).addImm(0);
6873     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6874       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6875       .addMBB(LoopMBB);
6876     MBB->addSuccessor(LoopMBB);
6877     MBB->addSuccessor(DoneMBB);
6878 
6879     DestBase = MachineOperand::CreateReg(NextDestReg, false);
6880     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6881     Length &= 255;
6882     if (EndMBB && !Length)
6883       // If the loop handled the whole CLC range, DoneMBB will be empty with
6884       // CC live-through into EndMBB, so add it as live-in.
6885       DoneMBB->addLiveIn(SystemZ::CC);
6886     MBB = DoneMBB;
6887   }
6888   // Handle any remaining bytes with straight-line code.
6889   while (Length > 0) {
6890     uint64_t ThisLength = std::min(Length, uint64_t(256));
6891     // The previous iteration might have created out-of-range displacements.
6892     // Apply them using LAY if so.
6893     if (!isUInt<12>(DestDisp)) {
6894       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6895       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6896           .add(DestBase)
6897           .addImm(DestDisp)
6898           .addReg(0);
6899       DestBase = MachineOperand::CreateReg(Reg, false);
6900       DestDisp = 0;
6901     }
6902     if (!isUInt<12>(SrcDisp)) {
6903       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6904       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6905           .add(SrcBase)
6906           .addImm(SrcDisp)
6907           .addReg(0);
6908       SrcBase = MachineOperand::CreateReg(Reg, false);
6909       SrcDisp = 0;
6910     }
6911     BuildMI(*MBB, MI, DL, TII->get(Opcode))
6912         .add(DestBase)
6913         .addImm(DestDisp)
6914         .addImm(ThisLength)
6915         .add(SrcBase)
6916         .addImm(SrcDisp)
6917         ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
6918     DestDisp += ThisLength;
6919     SrcDisp += ThisLength;
6920     Length -= ThisLength;
6921     // If there's another CLC to go, branch to the end if a difference
6922     // was found.
6923     if (EndMBB && Length > 0) {
6924       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6925       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6926         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6927         .addMBB(EndMBB);
6928       MBB->addSuccessor(EndMBB);
6929       MBB->addSuccessor(NextMBB);
6930       MBB = NextMBB;
6931     }
6932   }
6933   if (EndMBB) {
6934     MBB->addSuccessor(EndMBB);
6935     MBB = EndMBB;
6936     MBB->addLiveIn(SystemZ::CC);
6937   }
6938 
6939   MI.eraseFromParent();
6940   return MBB;
6941 }
6942 
6943 // Decompose string pseudo-instruction MI into a loop that continually performs
6944 // Opcode until CC != 3.
6945 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
6946     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6947   MachineFunction &MF = *MBB->getParent();
6948   const SystemZInstrInfo *TII =
6949       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6950   MachineRegisterInfo &MRI = MF.getRegInfo();
6951   DebugLoc DL = MI.getDebugLoc();
6952 
6953   uint64_t End1Reg = MI.getOperand(0).getReg();
6954   uint64_t Start1Reg = MI.getOperand(1).getReg();
6955   uint64_t Start2Reg = MI.getOperand(2).getReg();
6956   uint64_t CharReg = MI.getOperand(3).getReg();
6957 
6958   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
6959   uint64_t This1Reg = MRI.createVirtualRegister(RC);
6960   uint64_t This2Reg = MRI.createVirtualRegister(RC);
6961   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
6962 
6963   MachineBasicBlock *StartMBB = MBB;
6964   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6965   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6966 
6967   //  StartMBB:
6968   //   # fall through to LoopMMB
6969   MBB->addSuccessor(LoopMBB);
6970 
6971   //  LoopMBB:
6972   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
6973   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
6974   //   R0L = %CharReg
6975   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
6976   //   JO LoopMBB
6977   //   # fall through to DoneMMB
6978   //
6979   // The load of R0L can be hoisted by post-RA LICM.
6980   MBB = LoopMBB;
6981 
6982   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
6983     .addReg(Start1Reg).addMBB(StartMBB)
6984     .addReg(End1Reg).addMBB(LoopMBB);
6985   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
6986     .addReg(Start2Reg).addMBB(StartMBB)
6987     .addReg(End2Reg).addMBB(LoopMBB);
6988   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
6989   BuildMI(MBB, DL, TII->get(Opcode))
6990     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
6991     .addReg(This1Reg).addReg(This2Reg);
6992   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6993     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
6994   MBB->addSuccessor(LoopMBB);
6995   MBB->addSuccessor(DoneMBB);
6996 
6997   DoneMBB->addLiveIn(SystemZ::CC);
6998 
6999   MI.eraseFromParent();
7000   return DoneMBB;
7001 }
7002 
7003 // Update TBEGIN instruction with final opcode and register clobbers.
7004 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7005     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7006     bool NoFloat) const {
7007   MachineFunction &MF = *MBB->getParent();
7008   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7009   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7010 
7011   // Update opcode.
7012   MI.setDesc(TII->get(Opcode));
7013 
7014   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7015   // Make sure to add the corresponding GRSM bits if they are missing.
7016   uint64_t Control = MI.getOperand(2).getImm();
7017   static const unsigned GPRControlBit[16] = {
7018     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7019     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7020   };
7021   Control |= GPRControlBit[15];
7022   if (TFI->hasFP(MF))
7023     Control |= GPRControlBit[11];
7024   MI.getOperand(2).setImm(Control);
7025 
7026   // Add GPR clobbers.
7027   for (int I = 0; I < 16; I++) {
7028     if ((Control & GPRControlBit[I]) == 0) {
7029       unsigned Reg = SystemZMC::GR64Regs[I];
7030       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7031     }
7032   }
7033 
7034   // Add FPR/VR clobbers.
7035   if (!NoFloat && (Control & 4) != 0) {
7036     if (Subtarget.hasVector()) {
7037       for (int I = 0; I < 32; I++) {
7038         unsigned Reg = SystemZMC::VR128Regs[I];
7039         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7040       }
7041     } else {
7042       for (int I = 0; I < 16; I++) {
7043         unsigned Reg = SystemZMC::FP64Regs[I];
7044         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7045       }
7046     }
7047   }
7048 
7049   return MBB;
7050 }
7051 
7052 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7053     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7054   MachineFunction &MF = *MBB->getParent();
7055   MachineRegisterInfo *MRI = &MF.getRegInfo();
7056   const SystemZInstrInfo *TII =
7057       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7058   DebugLoc DL = MI.getDebugLoc();
7059 
7060   unsigned SrcReg = MI.getOperand(0).getReg();
7061 
7062   // Create new virtual register of the same class as source.
7063   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7064   unsigned DstReg = MRI->createVirtualRegister(RC);
7065 
7066   // Replace pseudo with a normal load-and-test that models the def as
7067   // well.
7068   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7069     .addReg(SrcReg);
7070   MI.eraseFromParent();
7071 
7072   return MBB;
7073 }
7074 
7075 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7076     MachineInstr &MI, MachineBasicBlock *MBB) const {
7077   switch (MI.getOpcode()) {
7078   case SystemZ::Select32:
7079   case SystemZ::Select64:
7080   case SystemZ::SelectF32:
7081   case SystemZ::SelectF64:
7082   case SystemZ::SelectF128:
7083   case SystemZ::SelectVR32:
7084   case SystemZ::SelectVR64:
7085   case SystemZ::SelectVR128:
7086     return emitSelect(MI, MBB);
7087 
7088   case SystemZ::CondStore8Mux:
7089     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7090   case SystemZ::CondStore8MuxInv:
7091     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7092   case SystemZ::CondStore16Mux:
7093     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7094   case SystemZ::CondStore16MuxInv:
7095     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7096   case SystemZ::CondStore32Mux:
7097     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7098   case SystemZ::CondStore32MuxInv:
7099     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7100   case SystemZ::CondStore8:
7101     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7102   case SystemZ::CondStore8Inv:
7103     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7104   case SystemZ::CondStore16:
7105     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7106   case SystemZ::CondStore16Inv:
7107     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7108   case SystemZ::CondStore32:
7109     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7110   case SystemZ::CondStore32Inv:
7111     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7112   case SystemZ::CondStore64:
7113     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7114   case SystemZ::CondStore64Inv:
7115     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7116   case SystemZ::CondStoreF32:
7117     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7118   case SystemZ::CondStoreF32Inv:
7119     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7120   case SystemZ::CondStoreF64:
7121     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7122   case SystemZ::CondStoreF64Inv:
7123     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7124 
7125   case SystemZ::PAIR128:
7126     return emitPair128(MI, MBB);
7127   case SystemZ::AEXT128:
7128     return emitExt128(MI, MBB, false);
7129   case SystemZ::ZEXT128:
7130     return emitExt128(MI, MBB, true);
7131 
7132   case SystemZ::ATOMIC_SWAPW:
7133     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7134   case SystemZ::ATOMIC_SWAP_32:
7135     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7136   case SystemZ::ATOMIC_SWAP_64:
7137     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7138 
7139   case SystemZ::ATOMIC_LOADW_AR:
7140     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7141   case SystemZ::ATOMIC_LOADW_AFI:
7142     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7143   case SystemZ::ATOMIC_LOAD_AR:
7144     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7145   case SystemZ::ATOMIC_LOAD_AHI:
7146     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7147   case SystemZ::ATOMIC_LOAD_AFI:
7148     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7149   case SystemZ::ATOMIC_LOAD_AGR:
7150     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7151   case SystemZ::ATOMIC_LOAD_AGHI:
7152     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7153   case SystemZ::ATOMIC_LOAD_AGFI:
7154     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7155 
7156   case SystemZ::ATOMIC_LOADW_SR:
7157     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7158   case SystemZ::ATOMIC_LOAD_SR:
7159     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7160   case SystemZ::ATOMIC_LOAD_SGR:
7161     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7162 
7163   case SystemZ::ATOMIC_LOADW_NR:
7164     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7165   case SystemZ::ATOMIC_LOADW_NILH:
7166     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7167   case SystemZ::ATOMIC_LOAD_NR:
7168     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7169   case SystemZ::ATOMIC_LOAD_NILL:
7170     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7171   case SystemZ::ATOMIC_LOAD_NILH:
7172     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7173   case SystemZ::ATOMIC_LOAD_NILF:
7174     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7175   case SystemZ::ATOMIC_LOAD_NGR:
7176     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7177   case SystemZ::ATOMIC_LOAD_NILL64:
7178     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7179   case SystemZ::ATOMIC_LOAD_NILH64:
7180     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7181   case SystemZ::ATOMIC_LOAD_NIHL64:
7182     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7183   case SystemZ::ATOMIC_LOAD_NIHH64:
7184     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7185   case SystemZ::ATOMIC_LOAD_NILF64:
7186     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7187   case SystemZ::ATOMIC_LOAD_NIHF64:
7188     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7189 
7190   case SystemZ::ATOMIC_LOADW_OR:
7191     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7192   case SystemZ::ATOMIC_LOADW_OILH:
7193     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7194   case SystemZ::ATOMIC_LOAD_OR:
7195     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7196   case SystemZ::ATOMIC_LOAD_OILL:
7197     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7198   case SystemZ::ATOMIC_LOAD_OILH:
7199     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7200   case SystemZ::ATOMIC_LOAD_OILF:
7201     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7202   case SystemZ::ATOMIC_LOAD_OGR:
7203     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7204   case SystemZ::ATOMIC_LOAD_OILL64:
7205     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7206   case SystemZ::ATOMIC_LOAD_OILH64:
7207     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7208   case SystemZ::ATOMIC_LOAD_OIHL64:
7209     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7210   case SystemZ::ATOMIC_LOAD_OIHH64:
7211     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7212   case SystemZ::ATOMIC_LOAD_OILF64:
7213     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7214   case SystemZ::ATOMIC_LOAD_OIHF64:
7215     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7216 
7217   case SystemZ::ATOMIC_LOADW_XR:
7218     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7219   case SystemZ::ATOMIC_LOADW_XILF:
7220     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7221   case SystemZ::ATOMIC_LOAD_XR:
7222     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7223   case SystemZ::ATOMIC_LOAD_XILF:
7224     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7225   case SystemZ::ATOMIC_LOAD_XGR:
7226     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7227   case SystemZ::ATOMIC_LOAD_XILF64:
7228     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7229   case SystemZ::ATOMIC_LOAD_XIHF64:
7230     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7231 
7232   case SystemZ::ATOMIC_LOADW_NRi:
7233     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7234   case SystemZ::ATOMIC_LOADW_NILHi:
7235     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7236   case SystemZ::ATOMIC_LOAD_NRi:
7237     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7238   case SystemZ::ATOMIC_LOAD_NILLi:
7239     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7240   case SystemZ::ATOMIC_LOAD_NILHi:
7241     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7242   case SystemZ::ATOMIC_LOAD_NILFi:
7243     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7244   case SystemZ::ATOMIC_LOAD_NGRi:
7245     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7246   case SystemZ::ATOMIC_LOAD_NILL64i:
7247     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7248   case SystemZ::ATOMIC_LOAD_NILH64i:
7249     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7250   case SystemZ::ATOMIC_LOAD_NIHL64i:
7251     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7252   case SystemZ::ATOMIC_LOAD_NIHH64i:
7253     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7254   case SystemZ::ATOMIC_LOAD_NILF64i:
7255     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7256   case SystemZ::ATOMIC_LOAD_NIHF64i:
7257     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7258 
7259   case SystemZ::ATOMIC_LOADW_MIN:
7260     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7261                                 SystemZ::CCMASK_CMP_LE, 0);
7262   case SystemZ::ATOMIC_LOAD_MIN_32:
7263     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7264                                 SystemZ::CCMASK_CMP_LE, 32);
7265   case SystemZ::ATOMIC_LOAD_MIN_64:
7266     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7267                                 SystemZ::CCMASK_CMP_LE, 64);
7268 
7269   case SystemZ::ATOMIC_LOADW_MAX:
7270     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7271                                 SystemZ::CCMASK_CMP_GE, 0);
7272   case SystemZ::ATOMIC_LOAD_MAX_32:
7273     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7274                                 SystemZ::CCMASK_CMP_GE, 32);
7275   case SystemZ::ATOMIC_LOAD_MAX_64:
7276     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7277                                 SystemZ::CCMASK_CMP_GE, 64);
7278 
7279   case SystemZ::ATOMIC_LOADW_UMIN:
7280     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7281                                 SystemZ::CCMASK_CMP_LE, 0);
7282   case SystemZ::ATOMIC_LOAD_UMIN_32:
7283     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7284                                 SystemZ::CCMASK_CMP_LE, 32);
7285   case SystemZ::ATOMIC_LOAD_UMIN_64:
7286     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7287                                 SystemZ::CCMASK_CMP_LE, 64);
7288 
7289   case SystemZ::ATOMIC_LOADW_UMAX:
7290     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7291                                 SystemZ::CCMASK_CMP_GE, 0);
7292   case SystemZ::ATOMIC_LOAD_UMAX_32:
7293     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7294                                 SystemZ::CCMASK_CMP_GE, 32);
7295   case SystemZ::ATOMIC_LOAD_UMAX_64:
7296     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7297                                 SystemZ::CCMASK_CMP_GE, 64);
7298 
7299   case SystemZ::ATOMIC_CMP_SWAPW:
7300     return emitAtomicCmpSwapW(MI, MBB);
7301   case SystemZ::MVCSequence:
7302   case SystemZ::MVCLoop:
7303     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7304   case SystemZ::NCSequence:
7305   case SystemZ::NCLoop:
7306     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7307   case SystemZ::OCSequence:
7308   case SystemZ::OCLoop:
7309     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7310   case SystemZ::XCSequence:
7311   case SystemZ::XCLoop:
7312     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7313   case SystemZ::CLCSequence:
7314   case SystemZ::CLCLoop:
7315     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7316   case SystemZ::CLSTLoop:
7317     return emitStringWrapper(MI, MBB, SystemZ::CLST);
7318   case SystemZ::MVSTLoop:
7319     return emitStringWrapper(MI, MBB, SystemZ::MVST);
7320   case SystemZ::SRSTLoop:
7321     return emitStringWrapper(MI, MBB, SystemZ::SRST);
7322   case SystemZ::TBEGIN:
7323     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7324   case SystemZ::TBEGIN_nofloat:
7325     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7326   case SystemZ::TBEGINC:
7327     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7328   case SystemZ::LTEBRCompare_VecPseudo:
7329     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7330   case SystemZ::LTDBRCompare_VecPseudo:
7331     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7332   case SystemZ::LTXBRCompare_VecPseudo:
7333     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7334 
7335   case TargetOpcode::STACKMAP:
7336   case TargetOpcode::PATCHPOINT:
7337     return emitPatchPoint(MI, MBB);
7338 
7339   default:
7340     llvm_unreachable("Unexpected instr type to insert");
7341   }
7342 }
7343 
7344 // This is only used by the isel schedulers, and is needed only to prevent
7345 // compiler from crashing when list-ilp is used.
7346 const TargetRegisterClass *
7347 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7348   if (VT == MVT::Untyped)
7349     return &SystemZ::ADDR128BitRegClass;
7350   return TargetLowering::getRepRegClassFor(VT);
7351 }
7352