1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setExceptionPointerRegister(SystemZ::R6D); 118 setExceptionSelectorRegister(SystemZ::R7D); 119 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 120 121 // TODO: It may be better to default to latency-oriented scheduling, however 122 // LLVM's current latency-oriented scheduler can't handle physreg definitions 123 // such as SystemZ has with CC, so set this to the register-pressure 124 // scheduler, because it can. 125 setSchedulingPreference(Sched::RegPressure); 126 127 setBooleanContents(ZeroOrOneBooleanContent); 128 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 129 130 // Instructions are strings of 2-byte aligned 2-byte values. 131 setMinFunctionAlignment(2); 132 133 // Handle operations that are handled in a similar way for all types. 134 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 135 I <= MVT::LAST_FP_VALUETYPE; 136 ++I) { 137 MVT VT = MVT::SimpleValueType(I); 138 if (isTypeLegal(VT)) { 139 // Lower SET_CC into an IPM-based sequence. 140 setOperationAction(ISD::SETCC, VT, Custom); 141 142 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 143 setOperationAction(ISD::SELECT, VT, Expand); 144 145 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 146 setOperationAction(ISD::SELECT_CC, VT, Custom); 147 setOperationAction(ISD::BR_CC, VT, Custom); 148 } 149 } 150 151 // Expand jump table branches as address arithmetic followed by an 152 // indirect jump. 153 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 154 155 // Expand BRCOND into a BR_CC (see above). 156 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 157 158 // Handle integer types. 159 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 160 I <= MVT::LAST_INTEGER_VALUETYPE; 161 ++I) { 162 MVT VT = MVT::SimpleValueType(I); 163 if (isTypeLegal(VT)) { 164 // Expand individual DIV and REMs into DIVREMs. 165 setOperationAction(ISD::SDIV, VT, Expand); 166 setOperationAction(ISD::UDIV, VT, Expand); 167 setOperationAction(ISD::SREM, VT, Expand); 168 setOperationAction(ISD::UREM, VT, Expand); 169 setOperationAction(ISD::SDIVREM, VT, Custom); 170 setOperationAction(ISD::UDIVREM, VT, Custom); 171 172 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 173 // stores, putting a serialization instruction after the stores. 174 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 175 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 176 177 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 178 // available, or if the operand is constant. 179 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 180 181 // Use POPCNT on z196 and above. 182 if (Subtarget.hasPopulationCount()) 183 setOperationAction(ISD::CTPOP, VT, Custom); 184 else 185 setOperationAction(ISD::CTPOP, VT, Expand); 186 187 // No special instructions for these. 188 setOperationAction(ISD::CTTZ, VT, Expand); 189 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 190 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 191 setOperationAction(ISD::ROTR, VT, Expand); 192 193 // Use *MUL_LOHI where possible instead of MULH*. 194 setOperationAction(ISD::MULHS, VT, Expand); 195 setOperationAction(ISD::MULHU, VT, Expand); 196 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 197 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 198 199 // Only z196 and above have native support for conversions to unsigned. 200 if (!Subtarget.hasFPExtension()) 201 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 202 } 203 } 204 205 // Type legalization will convert 8- and 16-bit atomic operations into 206 // forms that operate on i32s (but still keeping the original memory VT). 207 // Lower them into full i32 operations. 208 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 220 221 // z10 has instructions for signed but not unsigned FP conversion. 222 // Handle unsigned 32-bit types as signed 64-bit types. 223 if (!Subtarget.hasFPExtension()) { 224 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 225 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 226 } 227 228 // We have native support for a 64-bit CTLZ, via FLOGR. 229 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 230 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 231 232 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 233 setOperationAction(ISD::OR, MVT::i64, Custom); 234 235 // FIXME: Can we support these natively? 236 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 237 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 239 240 // We have native instructions for i8, i16 and i32 extensions, but not i1. 241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 242 for (MVT VT : MVT::integer_valuetypes()) { 243 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 244 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 246 } 247 248 // Handle the various types of symbolic address. 249 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 250 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 251 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 252 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 253 setOperationAction(ISD::JumpTable, PtrVT, Custom); 254 255 // We need to handle dynamic allocations specially because of the 256 // 160-byte area at the bottom of the stack. 257 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 258 259 // Use custom expanders so that we can force the function to use 260 // a frame pointer. 261 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 262 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 263 264 // Handle prefetches with PFD or PFDRL. 265 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 266 267 for (MVT VT : MVT::vector_valuetypes()) { 268 // Assume by default that all vector operations need to be expanded. 269 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 270 if (getOperationAction(Opcode, VT) == Legal) 271 setOperationAction(Opcode, VT, Expand); 272 273 // Likewise all truncating stores and extending loads. 274 for (MVT InnerVT : MVT::vector_valuetypes()) { 275 setTruncStoreAction(VT, InnerVT, Expand); 276 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 277 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 278 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 279 } 280 281 if (isTypeLegal(VT)) { 282 // These operations are legal for anything that can be stored in a 283 // vector register, even if there is no native support for the format 284 // as such. In particular, we can do these for v4f32 even though there 285 // are no specific instructions for that format. 286 setOperationAction(ISD::LOAD, VT, Legal); 287 setOperationAction(ISD::STORE, VT, Legal); 288 setOperationAction(ISD::VSELECT, VT, Legal); 289 setOperationAction(ISD::BITCAST, VT, Legal); 290 setOperationAction(ISD::UNDEF, VT, Legal); 291 292 // Likewise, except that we need to replace the nodes with something 293 // more specific. 294 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 295 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 296 } 297 } 298 299 // Handle integer vector types. 300 for (MVT VT : MVT::integer_vector_valuetypes()) { 301 if (isTypeLegal(VT)) { 302 // These operations have direct equivalents. 303 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 304 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 305 setOperationAction(ISD::ADD, VT, Legal); 306 setOperationAction(ISD::SUB, VT, Legal); 307 if (VT != MVT::v2i64) 308 setOperationAction(ISD::MUL, VT, Legal); 309 setOperationAction(ISD::AND, VT, Legal); 310 setOperationAction(ISD::OR, VT, Legal); 311 setOperationAction(ISD::XOR, VT, Legal); 312 setOperationAction(ISD::CTPOP, VT, Custom); 313 setOperationAction(ISD::CTTZ, VT, Legal); 314 setOperationAction(ISD::CTLZ, VT, Legal); 315 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 316 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 317 318 // Convert a GPR scalar to a vector by inserting it into element 0. 319 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 320 321 // Use a series of unpacks for extensions. 322 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 323 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 324 325 // Detect shifts by a scalar amount and convert them into 326 // V*_BY_SCALAR. 327 setOperationAction(ISD::SHL, VT, Custom); 328 setOperationAction(ISD::SRA, VT, Custom); 329 setOperationAction(ISD::SRL, VT, Custom); 330 331 // At present ROTL isn't matched by DAGCombiner. ROTR should be 332 // converted into ROTL. 333 setOperationAction(ISD::ROTL, VT, Expand); 334 setOperationAction(ISD::ROTR, VT, Expand); 335 336 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 337 // and inverting the result as necessary. 338 setOperationAction(ISD::SETCC, VT, Custom); 339 } 340 } 341 342 if (Subtarget.hasVector()) { 343 // There should be no need to check for float types other than v2f64 344 // since <2 x f32> isn't a legal type. 345 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 346 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 348 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 349 } 350 351 // Handle floating-point types. 352 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 353 I <= MVT::LAST_FP_VALUETYPE; 354 ++I) { 355 MVT VT = MVT::SimpleValueType(I); 356 if (isTypeLegal(VT)) { 357 // We can use FI for FRINT. 358 setOperationAction(ISD::FRINT, VT, Legal); 359 360 // We can use the extended form of FI for other rounding operations. 361 if (Subtarget.hasFPExtension()) { 362 setOperationAction(ISD::FNEARBYINT, VT, Legal); 363 setOperationAction(ISD::FFLOOR, VT, Legal); 364 setOperationAction(ISD::FCEIL, VT, Legal); 365 setOperationAction(ISD::FTRUNC, VT, Legal); 366 setOperationAction(ISD::FROUND, VT, Legal); 367 } 368 369 // No special instructions for these. 370 setOperationAction(ISD::FSIN, VT, Expand); 371 setOperationAction(ISD::FCOS, VT, Expand); 372 setOperationAction(ISD::FREM, VT, Expand); 373 } 374 } 375 376 // Handle floating-point vector types. 377 if (Subtarget.hasVector()) { 378 // Scalar-to-vector conversion is just a subreg. 379 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 381 382 // Some insertions and extractions can be done directly but others 383 // need to go via integers. 384 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 388 389 // These operations have direct equivalents. 390 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 391 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 392 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 393 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 394 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 395 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 396 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 397 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 398 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 401 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 402 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 403 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 404 } 405 406 // We have fused multiply-addition for f32 and f64 but not f128. 407 setOperationAction(ISD::FMA, MVT::f32, Legal); 408 setOperationAction(ISD::FMA, MVT::f64, Legal); 409 setOperationAction(ISD::FMA, MVT::f128, Expand); 410 411 // Needed so that we don't try to implement f128 constant loads using 412 // a load-and-extend of a f80 constant (in cases where the constant 413 // would fit in an f80). 414 for (MVT VT : MVT::fp_valuetypes()) 415 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 416 417 // Floating-point truncation and stores need to be done separately. 418 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 419 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 420 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 421 422 // We have 64-bit FPR<->GPR moves, but need special handling for 423 // 32-bit forms. 424 if (!Subtarget.hasVector()) { 425 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 426 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 427 } 428 429 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 430 // structure, but VAEND is a no-op. 431 setOperationAction(ISD::VASTART, MVT::Other, Custom); 432 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 433 setOperationAction(ISD::VAEND, MVT::Other, Expand); 434 435 // Codes for which we want to perform some z-specific combinations. 436 setTargetDAGCombine(ISD::SIGN_EXTEND); 437 setTargetDAGCombine(ISD::STORE); 438 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 439 setTargetDAGCombine(ISD::FP_ROUND); 440 441 // Handle intrinsics. 442 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 443 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 444 445 // We want to use MVC in preference to even a single load/store pair. 446 MaxStoresPerMemcpy = 0; 447 MaxStoresPerMemcpyOptSize = 0; 448 449 // The main memset sequence is a byte store followed by an MVC. 450 // Two STC or MV..I stores win over that, but the kind of fused stores 451 // generated by target-independent code don't when the byte value is 452 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 453 // than "STC;MVC". Handle the choice in target-specific code instead. 454 MaxStoresPerMemset = 0; 455 MaxStoresPerMemsetOptSize = 0; 456 } 457 458 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 459 LLVMContext &, EVT VT) const { 460 if (!VT.isVector()) 461 return MVT::i32; 462 return VT.changeVectorElementTypeToInteger(); 463 } 464 465 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 466 VT = VT.getScalarType(); 467 468 if (!VT.isSimple()) 469 return false; 470 471 switch (VT.getSimpleVT().SimpleTy) { 472 case MVT::f32: 473 case MVT::f64: 474 return true; 475 case MVT::f128: 476 return false; 477 default: 478 break; 479 } 480 481 return false; 482 } 483 484 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 485 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 486 return Imm.isZero() || Imm.isNegZero(); 487 } 488 489 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 490 // We can use CGFI or CLGFI. 491 return isInt<32>(Imm) || isUInt<32>(Imm); 492 } 493 494 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 495 // We can use ALGFI or SLGFI. 496 return isUInt<32>(Imm) || isUInt<32>(-Imm); 497 } 498 499 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 500 unsigned, 501 unsigned, 502 bool *Fast) const { 503 // Unaligned accesses should never be slower than the expanded version. 504 // We check specifically for aligned accesses in the few cases where 505 // they are required. 506 if (Fast) 507 *Fast = true; 508 return true; 509 } 510 511 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 512 const AddrMode &AM, Type *Ty, 513 unsigned AS) const { 514 // Punt on globals for now, although they can be used in limited 515 // RELATIVE LONG cases. 516 if (AM.BaseGV) 517 return false; 518 519 // Require a 20-bit signed offset. 520 if (!isInt<20>(AM.BaseOffs)) 521 return false; 522 523 // Indexing is OK but no scale factor can be applied. 524 return AM.Scale == 0 || AM.Scale == 1; 525 } 526 527 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 528 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 529 return false; 530 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 531 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 532 return FromBits > ToBits; 533 } 534 535 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 536 if (!FromVT.isInteger() || !ToVT.isInteger()) 537 return false; 538 unsigned FromBits = FromVT.getSizeInBits(); 539 unsigned ToBits = ToVT.getSizeInBits(); 540 return FromBits > ToBits; 541 } 542 543 //===----------------------------------------------------------------------===// 544 // Inline asm support 545 //===----------------------------------------------------------------------===// 546 547 TargetLowering::ConstraintType 548 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 549 if (Constraint.size() == 1) { 550 switch (Constraint[0]) { 551 case 'a': // Address register 552 case 'd': // Data register (equivalent to 'r') 553 case 'f': // Floating-point register 554 case 'h': // High-part register 555 case 'r': // General-purpose register 556 return C_RegisterClass; 557 558 case 'Q': // Memory with base and unsigned 12-bit displacement 559 case 'R': // Likewise, plus an index 560 case 'S': // Memory with base and signed 20-bit displacement 561 case 'T': // Likewise, plus an index 562 case 'm': // Equivalent to 'T'. 563 return C_Memory; 564 565 case 'I': // Unsigned 8-bit constant 566 case 'J': // Unsigned 12-bit constant 567 case 'K': // Signed 16-bit constant 568 case 'L': // Signed 20-bit displacement (on all targets we support) 569 case 'M': // 0x7fffffff 570 return C_Other; 571 572 default: 573 break; 574 } 575 } 576 return TargetLowering::getConstraintType(Constraint); 577 } 578 579 TargetLowering::ConstraintWeight SystemZTargetLowering:: 580 getSingleConstraintMatchWeight(AsmOperandInfo &info, 581 const char *constraint) const { 582 ConstraintWeight weight = CW_Invalid; 583 Value *CallOperandVal = info.CallOperandVal; 584 // If we don't have a value, we can't do a match, 585 // but allow it at the lowest weight. 586 if (!CallOperandVal) 587 return CW_Default; 588 Type *type = CallOperandVal->getType(); 589 // Look at the constraint type. 590 switch (*constraint) { 591 default: 592 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 593 break; 594 595 case 'a': // Address register 596 case 'd': // Data register (equivalent to 'r') 597 case 'h': // High-part register 598 case 'r': // General-purpose register 599 if (CallOperandVal->getType()->isIntegerTy()) 600 weight = CW_Register; 601 break; 602 603 case 'f': // Floating-point register 604 if (type->isFloatingPointTy()) 605 weight = CW_Register; 606 break; 607 608 case 'I': // Unsigned 8-bit constant 609 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 610 if (isUInt<8>(C->getZExtValue())) 611 weight = CW_Constant; 612 break; 613 614 case 'J': // Unsigned 12-bit constant 615 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 616 if (isUInt<12>(C->getZExtValue())) 617 weight = CW_Constant; 618 break; 619 620 case 'K': // Signed 16-bit constant 621 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 622 if (isInt<16>(C->getSExtValue())) 623 weight = CW_Constant; 624 break; 625 626 case 'L': // Signed 20-bit displacement (on all targets we support) 627 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 628 if (isInt<20>(C->getSExtValue())) 629 weight = CW_Constant; 630 break; 631 632 case 'M': // 0x7fffffff 633 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 634 if (C->getZExtValue() == 0x7fffffff) 635 weight = CW_Constant; 636 break; 637 } 638 return weight; 639 } 640 641 // Parse a "{tNNN}" register constraint for which the register type "t" 642 // has already been verified. MC is the class associated with "t" and 643 // Map maps 0-based register numbers to LLVM register numbers. 644 static std::pair<unsigned, const TargetRegisterClass *> 645 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 646 const unsigned *Map) { 647 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 648 if (isdigit(Constraint[2])) { 649 unsigned Index; 650 bool Failed = 651 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 652 if (!Failed && Index < 16 && Map[Index]) 653 return std::make_pair(Map[Index], RC); 654 } 655 return std::make_pair(0U, nullptr); 656 } 657 658 std::pair<unsigned, const TargetRegisterClass *> 659 SystemZTargetLowering::getRegForInlineAsmConstraint( 660 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 661 if (Constraint.size() == 1) { 662 // GCC Constraint Letters 663 switch (Constraint[0]) { 664 default: break; 665 case 'd': // Data register (equivalent to 'r') 666 case 'r': // General-purpose register 667 if (VT == MVT::i64) 668 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 669 else if (VT == MVT::i128) 670 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 671 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 672 673 case 'a': // Address register 674 if (VT == MVT::i64) 675 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 676 else if (VT == MVT::i128) 677 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 678 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 679 680 case 'h': // High-part register (an LLVM extension) 681 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 682 683 case 'f': // Floating-point register 684 if (VT == MVT::f64) 685 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 686 else if (VT == MVT::f128) 687 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 688 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 689 } 690 } 691 if (Constraint.size() > 0 && Constraint[0] == '{') { 692 // We need to override the default register parsing for GPRs and FPRs 693 // because the interpretation depends on VT. The internal names of 694 // the registers are also different from the external names 695 // (F0D and F0S instead of F0, etc.). 696 if (Constraint[1] == 'r') { 697 if (VT == MVT::i32) 698 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 699 SystemZMC::GR32Regs); 700 if (VT == MVT::i128) 701 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 702 SystemZMC::GR128Regs); 703 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 704 SystemZMC::GR64Regs); 705 } 706 if (Constraint[1] == 'f') { 707 if (VT == MVT::f32) 708 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 709 SystemZMC::FP32Regs); 710 if (VT == MVT::f128) 711 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 712 SystemZMC::FP128Regs); 713 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 714 SystemZMC::FP64Regs); 715 } 716 } 717 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 718 } 719 720 void SystemZTargetLowering:: 721 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 722 std::vector<SDValue> &Ops, 723 SelectionDAG &DAG) const { 724 // Only support length 1 constraints for now. 725 if (Constraint.length() == 1) { 726 switch (Constraint[0]) { 727 case 'I': // Unsigned 8-bit constant 728 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 729 if (isUInt<8>(C->getZExtValue())) 730 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 731 Op.getValueType())); 732 return; 733 734 case 'J': // Unsigned 12-bit constant 735 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 736 if (isUInt<12>(C->getZExtValue())) 737 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 738 Op.getValueType())); 739 return; 740 741 case 'K': // Signed 16-bit constant 742 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 743 if (isInt<16>(C->getSExtValue())) 744 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 745 Op.getValueType())); 746 return; 747 748 case 'L': // Signed 20-bit displacement (on all targets we support) 749 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 750 if (isInt<20>(C->getSExtValue())) 751 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 752 Op.getValueType())); 753 return; 754 755 case 'M': // 0x7fffffff 756 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 757 if (C->getZExtValue() == 0x7fffffff) 758 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 759 Op.getValueType())); 760 return; 761 } 762 } 763 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // Calling conventions 768 //===----------------------------------------------------------------------===// 769 770 #include "SystemZGenCallingConv.inc" 771 772 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 773 Type *ToType) const { 774 return isTruncateFree(FromType, ToType); 775 } 776 777 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 778 if (!CI->isTailCall()) 779 return false; 780 return true; 781 } 782 783 // We do not yet support 128-bit single-element vector types. If the user 784 // attempts to use such types as function argument or return type, prefer 785 // to error out instead of emitting code violating the ABI. 786 static void VerifyVectorType(MVT VT, EVT ArgVT) { 787 if (ArgVT.isVector() && !VT.isVector()) 788 report_fatal_error("Unsupported vector argument or return type"); 789 } 790 791 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 792 for (unsigned i = 0; i < Ins.size(); ++i) 793 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 794 } 795 796 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 797 for (unsigned i = 0; i < Outs.size(); ++i) 798 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 799 } 800 801 // Value is a value that has been passed to us in the location described by VA 802 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 803 // any loads onto Chain. 804 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 805 CCValAssign &VA, SDValue Chain, 806 SDValue Value) { 807 // If the argument has been promoted from a smaller type, insert an 808 // assertion to capture this. 809 if (VA.getLocInfo() == CCValAssign::SExt) 810 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 811 DAG.getValueType(VA.getValVT())); 812 else if (VA.getLocInfo() == CCValAssign::ZExt) 813 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 814 DAG.getValueType(VA.getValVT())); 815 816 if (VA.isExtInLoc()) 817 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 818 else if (VA.getLocInfo() == CCValAssign::Indirect) 819 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 820 MachinePointerInfo(), false, false, false, 0); 821 else if (VA.getLocInfo() == CCValAssign::BCvt) { 822 // If this is a short vector argument loaded from the stack, 823 // extend from i64 to full vector size and then bitcast. 824 assert(VA.getLocVT() == MVT::i64); 825 assert(VA.getValVT().isVector()); 826 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 827 Value, DAG.getUNDEF(MVT::i64)); 828 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 829 } else 830 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 831 return Value; 832 } 833 834 // Value is a value of type VA.getValVT() that we need to copy into 835 // the location described by VA. Return a copy of Value converted to 836 // VA.getValVT(). The caller is responsible for handling indirect values. 837 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 838 CCValAssign &VA, SDValue Value) { 839 switch (VA.getLocInfo()) { 840 case CCValAssign::SExt: 841 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 842 case CCValAssign::ZExt: 843 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 844 case CCValAssign::AExt: 845 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 846 case CCValAssign::BCvt: 847 // If this is a short vector argument to be stored to the stack, 848 // bitcast to v2i64 and then extract first element. 849 assert(VA.getLocVT() == MVT::i64); 850 assert(VA.getValVT().isVector()); 851 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 852 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 853 DAG.getConstant(0, DL, MVT::i32)); 854 case CCValAssign::Full: 855 return Value; 856 default: 857 llvm_unreachable("Unhandled getLocInfo()"); 858 } 859 } 860 861 SDValue SystemZTargetLowering:: 862 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 863 const SmallVectorImpl<ISD::InputArg> &Ins, 864 SDLoc DL, SelectionDAG &DAG, 865 SmallVectorImpl<SDValue> &InVals) const { 866 MachineFunction &MF = DAG.getMachineFunction(); 867 MachineFrameInfo *MFI = MF.getFrameInfo(); 868 MachineRegisterInfo &MRI = MF.getRegInfo(); 869 SystemZMachineFunctionInfo *FuncInfo = 870 MF.getInfo<SystemZMachineFunctionInfo>(); 871 auto *TFL = 872 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 873 874 // Detect unsupported vector argument types. 875 if (Subtarget.hasVector()) 876 VerifyVectorTypes(Ins); 877 878 // Assign locations to all of the incoming arguments. 879 SmallVector<CCValAssign, 16> ArgLocs; 880 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 881 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 882 883 unsigned NumFixedGPRs = 0; 884 unsigned NumFixedFPRs = 0; 885 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 886 SDValue ArgValue; 887 CCValAssign &VA = ArgLocs[I]; 888 EVT LocVT = VA.getLocVT(); 889 if (VA.isRegLoc()) { 890 // Arguments passed in registers 891 const TargetRegisterClass *RC; 892 switch (LocVT.getSimpleVT().SimpleTy) { 893 default: 894 // Integers smaller than i64 should be promoted to i64. 895 llvm_unreachable("Unexpected argument type"); 896 case MVT::i32: 897 NumFixedGPRs += 1; 898 RC = &SystemZ::GR32BitRegClass; 899 break; 900 case MVT::i64: 901 NumFixedGPRs += 1; 902 RC = &SystemZ::GR64BitRegClass; 903 break; 904 case MVT::f32: 905 NumFixedFPRs += 1; 906 RC = &SystemZ::FP32BitRegClass; 907 break; 908 case MVT::f64: 909 NumFixedFPRs += 1; 910 RC = &SystemZ::FP64BitRegClass; 911 break; 912 case MVT::v16i8: 913 case MVT::v8i16: 914 case MVT::v4i32: 915 case MVT::v2i64: 916 case MVT::v4f32: 917 case MVT::v2f64: 918 RC = &SystemZ::VR128BitRegClass; 919 break; 920 } 921 922 unsigned VReg = MRI.createVirtualRegister(RC); 923 MRI.addLiveIn(VA.getLocReg(), VReg); 924 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 925 } else { 926 assert(VA.isMemLoc() && "Argument not register or memory"); 927 928 // Create the frame index object for this incoming parameter. 929 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 930 VA.getLocMemOffset(), true); 931 932 // Create the SelectionDAG nodes corresponding to a load 933 // from this parameter. Unpromoted ints and floats are 934 // passed as right-justified 8-byte values. 935 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 936 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 937 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 938 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 939 DAG.getIntPtrConstant(4, DL)); 940 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 941 MachinePointerInfo::getFixedStack(FI), 942 false, false, false, 0); 943 } 944 945 // Convert the value of the argument register into the value that's 946 // being passed. 947 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 948 } 949 950 if (IsVarArg) { 951 // Save the number of non-varargs registers for later use by va_start, etc. 952 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 953 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 954 955 // Likewise the address (in the form of a frame index) of where the 956 // first stack vararg would be. The 1-byte size here is arbitrary. 957 int64_t StackSize = CCInfo.getNextStackOffset(); 958 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 959 960 // ...and a similar frame index for the caller-allocated save area 961 // that will be used to store the incoming registers. 962 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 963 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 964 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 965 966 // Store the FPR varargs in the reserved frame slots. (We store the 967 // GPRs as part of the prologue.) 968 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 969 SDValue MemOps[SystemZ::NumArgFPRs]; 970 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 971 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 972 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 973 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 974 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 975 &SystemZ::FP64BitRegClass); 976 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 977 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 978 MachinePointerInfo::getFixedStack(FI), 979 false, false, 0); 980 981 } 982 // Join the stores, which are independent of one another. 983 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 984 makeArrayRef(&MemOps[NumFixedFPRs], 985 SystemZ::NumArgFPRs-NumFixedFPRs)); 986 } 987 } 988 989 return Chain; 990 } 991 992 static bool canUseSiblingCall(const CCState &ArgCCInfo, 993 SmallVectorImpl<CCValAssign> &ArgLocs) { 994 // Punt if there are any indirect or stack arguments, or if the call 995 // needs the call-saved argument register R6. 996 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 997 CCValAssign &VA = ArgLocs[I]; 998 if (VA.getLocInfo() == CCValAssign::Indirect) 999 return false; 1000 if (!VA.isRegLoc()) 1001 return false; 1002 unsigned Reg = VA.getLocReg(); 1003 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1004 return false; 1005 } 1006 return true; 1007 } 1008 1009 SDValue 1010 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1011 SmallVectorImpl<SDValue> &InVals) const { 1012 SelectionDAG &DAG = CLI.DAG; 1013 SDLoc &DL = CLI.DL; 1014 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1015 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1016 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1017 SDValue Chain = CLI.Chain; 1018 SDValue Callee = CLI.Callee; 1019 bool &IsTailCall = CLI.IsTailCall; 1020 CallingConv::ID CallConv = CLI.CallConv; 1021 bool IsVarArg = CLI.IsVarArg; 1022 MachineFunction &MF = DAG.getMachineFunction(); 1023 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1024 1025 // Detect unsupported vector argument and return types. 1026 if (Subtarget.hasVector()) { 1027 VerifyVectorTypes(Outs); 1028 VerifyVectorTypes(Ins); 1029 } 1030 1031 // Analyze the operands of the call, assigning locations to each operand. 1032 SmallVector<CCValAssign, 16> ArgLocs; 1033 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1034 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1035 1036 // We don't support GuaranteedTailCallOpt, only automatically-detected 1037 // sibling calls. 1038 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1039 IsTailCall = false; 1040 1041 // Get a count of how many bytes are to be pushed on the stack. 1042 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1043 1044 // Mark the start of the call. 1045 if (!IsTailCall) 1046 Chain = DAG.getCALLSEQ_START(Chain, 1047 DAG.getConstant(NumBytes, DL, PtrVT, true), 1048 DL); 1049 1050 // Copy argument values to their designated locations. 1051 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1052 SmallVector<SDValue, 8> MemOpChains; 1053 SDValue StackPtr; 1054 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1055 CCValAssign &VA = ArgLocs[I]; 1056 SDValue ArgValue = OutVals[I]; 1057 1058 if (VA.getLocInfo() == CCValAssign::Indirect) { 1059 // Store the argument in a stack slot and pass its address. 1060 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1061 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1062 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1063 MachinePointerInfo::getFixedStack(FI), 1064 false, false, 0)); 1065 ArgValue = SpillSlot; 1066 } else 1067 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1068 1069 if (VA.isRegLoc()) 1070 // Queue up the argument copies and emit them at the end. 1071 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1072 else { 1073 assert(VA.isMemLoc() && "Argument not register or memory"); 1074 1075 // Work out the address of the stack slot. Unpromoted ints and 1076 // floats are passed as right-justified 8-byte values. 1077 if (!StackPtr.getNode()) 1078 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1079 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1080 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1081 Offset += 4; 1082 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1083 DAG.getIntPtrConstant(Offset, DL)); 1084 1085 // Emit the store. 1086 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1087 MachinePointerInfo(), 1088 false, false, 0)); 1089 } 1090 } 1091 1092 // Join the stores, which are independent of one another. 1093 if (!MemOpChains.empty()) 1094 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1095 1096 // Accept direct calls by converting symbolic call addresses to the 1097 // associated Target* opcodes. Force %r1 to be used for indirect 1098 // tail calls. 1099 SDValue Glue; 1100 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1101 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1102 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1103 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1104 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1105 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1106 } else if (IsTailCall) { 1107 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1108 Glue = Chain.getValue(1); 1109 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1110 } 1111 1112 // Build a sequence of copy-to-reg nodes, chained and glued together. 1113 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1114 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1115 RegsToPass[I].second, Glue); 1116 Glue = Chain.getValue(1); 1117 } 1118 1119 // The first call operand is the chain and the second is the target address. 1120 SmallVector<SDValue, 8> Ops; 1121 Ops.push_back(Chain); 1122 Ops.push_back(Callee); 1123 1124 // Add argument registers to the end of the list so that they are 1125 // known live into the call. 1126 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1127 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1128 RegsToPass[I].second.getValueType())); 1129 1130 // Add a register mask operand representing the call-preserved registers. 1131 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1132 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1133 assert(Mask && "Missing call preserved mask for calling convention"); 1134 Ops.push_back(DAG.getRegisterMask(Mask)); 1135 1136 // Glue the call to the argument copies, if any. 1137 if (Glue.getNode()) 1138 Ops.push_back(Glue); 1139 1140 // Emit the call. 1141 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1142 if (IsTailCall) 1143 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1144 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1145 Glue = Chain.getValue(1); 1146 1147 // Mark the end of the call, which is glued to the call itself. 1148 Chain = DAG.getCALLSEQ_END(Chain, 1149 DAG.getConstant(NumBytes, DL, PtrVT, true), 1150 DAG.getConstant(0, DL, PtrVT, true), 1151 Glue, DL); 1152 Glue = Chain.getValue(1); 1153 1154 // Assign locations to each value returned by this call. 1155 SmallVector<CCValAssign, 16> RetLocs; 1156 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1157 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1158 1159 // Copy all of the result registers out of their specified physreg. 1160 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1161 CCValAssign &VA = RetLocs[I]; 1162 1163 // Copy the value out, gluing the copy to the end of the call sequence. 1164 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1165 VA.getLocVT(), Glue); 1166 Chain = RetValue.getValue(1); 1167 Glue = RetValue.getValue(2); 1168 1169 // Convert the value of the return register into the value that's 1170 // being returned. 1171 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1172 } 1173 1174 return Chain; 1175 } 1176 1177 SDValue 1178 SystemZTargetLowering::LowerReturn(SDValue Chain, 1179 CallingConv::ID CallConv, bool IsVarArg, 1180 const SmallVectorImpl<ISD::OutputArg> &Outs, 1181 const SmallVectorImpl<SDValue> &OutVals, 1182 SDLoc DL, SelectionDAG &DAG) const { 1183 MachineFunction &MF = DAG.getMachineFunction(); 1184 1185 // Detect unsupported vector return types. 1186 if (Subtarget.hasVector()) 1187 VerifyVectorTypes(Outs); 1188 1189 // Assign locations to each returned value. 1190 SmallVector<CCValAssign, 16> RetLocs; 1191 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1192 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1193 1194 // Quick exit for void returns 1195 if (RetLocs.empty()) 1196 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1197 1198 // Copy the result values into the output registers. 1199 SDValue Glue; 1200 SmallVector<SDValue, 4> RetOps; 1201 RetOps.push_back(Chain); 1202 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1203 CCValAssign &VA = RetLocs[I]; 1204 SDValue RetValue = OutVals[I]; 1205 1206 // Make the return register live on exit. 1207 assert(VA.isRegLoc() && "Can only return in registers!"); 1208 1209 // Promote the value as required. 1210 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1211 1212 // Chain and glue the copies together. 1213 unsigned Reg = VA.getLocReg(); 1214 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1215 Glue = Chain.getValue(1); 1216 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1217 } 1218 1219 // Update chain and glue. 1220 RetOps[0] = Chain; 1221 if (Glue.getNode()) 1222 RetOps.push_back(Glue); 1223 1224 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1225 } 1226 1227 SDValue SystemZTargetLowering:: 1228 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1229 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1230 } 1231 1232 // Return true if Op is an intrinsic node with chain that returns the CC value 1233 // as its only (other) argument. Provide the associated SystemZISD opcode and 1234 // the mask of valid CC values if so. 1235 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1236 unsigned &CCValid) { 1237 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1238 switch (Id) { 1239 case Intrinsic::s390_tbegin: 1240 Opcode = SystemZISD::TBEGIN; 1241 CCValid = SystemZ::CCMASK_TBEGIN; 1242 return true; 1243 1244 case Intrinsic::s390_tbegin_nofloat: 1245 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1246 CCValid = SystemZ::CCMASK_TBEGIN; 1247 return true; 1248 1249 case Intrinsic::s390_tend: 1250 Opcode = SystemZISD::TEND; 1251 CCValid = SystemZ::CCMASK_TEND; 1252 return true; 1253 1254 default: 1255 return false; 1256 } 1257 } 1258 1259 // Return true if Op is an intrinsic node without chain that returns the 1260 // CC value as its final argument. Provide the associated SystemZISD 1261 // opcode and the mask of valid CC values if so. 1262 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1263 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1264 switch (Id) { 1265 case Intrinsic::s390_vpkshs: 1266 case Intrinsic::s390_vpksfs: 1267 case Intrinsic::s390_vpksgs: 1268 Opcode = SystemZISD::PACKS_CC; 1269 CCValid = SystemZ::CCMASK_VCMP; 1270 return true; 1271 1272 case Intrinsic::s390_vpklshs: 1273 case Intrinsic::s390_vpklsfs: 1274 case Intrinsic::s390_vpklsgs: 1275 Opcode = SystemZISD::PACKLS_CC; 1276 CCValid = SystemZ::CCMASK_VCMP; 1277 return true; 1278 1279 case Intrinsic::s390_vceqbs: 1280 case Intrinsic::s390_vceqhs: 1281 case Intrinsic::s390_vceqfs: 1282 case Intrinsic::s390_vceqgs: 1283 Opcode = SystemZISD::VICMPES; 1284 CCValid = SystemZ::CCMASK_VCMP; 1285 return true; 1286 1287 case Intrinsic::s390_vchbs: 1288 case Intrinsic::s390_vchhs: 1289 case Intrinsic::s390_vchfs: 1290 case Intrinsic::s390_vchgs: 1291 Opcode = SystemZISD::VICMPHS; 1292 CCValid = SystemZ::CCMASK_VCMP; 1293 return true; 1294 1295 case Intrinsic::s390_vchlbs: 1296 case Intrinsic::s390_vchlhs: 1297 case Intrinsic::s390_vchlfs: 1298 case Intrinsic::s390_vchlgs: 1299 Opcode = SystemZISD::VICMPHLS; 1300 CCValid = SystemZ::CCMASK_VCMP; 1301 return true; 1302 1303 case Intrinsic::s390_vtm: 1304 Opcode = SystemZISD::VTM; 1305 CCValid = SystemZ::CCMASK_VCMP; 1306 return true; 1307 1308 case Intrinsic::s390_vfaebs: 1309 case Intrinsic::s390_vfaehs: 1310 case Intrinsic::s390_vfaefs: 1311 Opcode = SystemZISD::VFAE_CC; 1312 CCValid = SystemZ::CCMASK_ANY; 1313 return true; 1314 1315 case Intrinsic::s390_vfaezbs: 1316 case Intrinsic::s390_vfaezhs: 1317 case Intrinsic::s390_vfaezfs: 1318 Opcode = SystemZISD::VFAEZ_CC; 1319 CCValid = SystemZ::CCMASK_ANY; 1320 return true; 1321 1322 case Intrinsic::s390_vfeebs: 1323 case Intrinsic::s390_vfeehs: 1324 case Intrinsic::s390_vfeefs: 1325 Opcode = SystemZISD::VFEE_CC; 1326 CCValid = SystemZ::CCMASK_ANY; 1327 return true; 1328 1329 case Intrinsic::s390_vfeezbs: 1330 case Intrinsic::s390_vfeezhs: 1331 case Intrinsic::s390_vfeezfs: 1332 Opcode = SystemZISD::VFEEZ_CC; 1333 CCValid = SystemZ::CCMASK_ANY; 1334 return true; 1335 1336 case Intrinsic::s390_vfenebs: 1337 case Intrinsic::s390_vfenehs: 1338 case Intrinsic::s390_vfenefs: 1339 Opcode = SystemZISD::VFENE_CC; 1340 CCValid = SystemZ::CCMASK_ANY; 1341 return true; 1342 1343 case Intrinsic::s390_vfenezbs: 1344 case Intrinsic::s390_vfenezhs: 1345 case Intrinsic::s390_vfenezfs: 1346 Opcode = SystemZISD::VFENEZ_CC; 1347 CCValid = SystemZ::CCMASK_ANY; 1348 return true; 1349 1350 case Intrinsic::s390_vistrbs: 1351 case Intrinsic::s390_vistrhs: 1352 case Intrinsic::s390_vistrfs: 1353 Opcode = SystemZISD::VISTR_CC; 1354 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1355 return true; 1356 1357 case Intrinsic::s390_vstrcbs: 1358 case Intrinsic::s390_vstrchs: 1359 case Intrinsic::s390_vstrcfs: 1360 Opcode = SystemZISD::VSTRC_CC; 1361 CCValid = SystemZ::CCMASK_ANY; 1362 return true; 1363 1364 case Intrinsic::s390_vstrczbs: 1365 case Intrinsic::s390_vstrczhs: 1366 case Intrinsic::s390_vstrczfs: 1367 Opcode = SystemZISD::VSTRCZ_CC; 1368 CCValid = SystemZ::CCMASK_ANY; 1369 return true; 1370 1371 case Intrinsic::s390_vfcedbs: 1372 Opcode = SystemZISD::VFCMPES; 1373 CCValid = SystemZ::CCMASK_VCMP; 1374 return true; 1375 1376 case Intrinsic::s390_vfchdbs: 1377 Opcode = SystemZISD::VFCMPHS; 1378 CCValid = SystemZ::CCMASK_VCMP; 1379 return true; 1380 1381 case Intrinsic::s390_vfchedbs: 1382 Opcode = SystemZISD::VFCMPHES; 1383 CCValid = SystemZ::CCMASK_VCMP; 1384 return true; 1385 1386 case Intrinsic::s390_vftcidb: 1387 Opcode = SystemZISD::VFTCI; 1388 CCValid = SystemZ::CCMASK_VCMP; 1389 return true; 1390 1391 default: 1392 return false; 1393 } 1394 } 1395 1396 // Emit an intrinsic with chain with a glued value instead of its CC result. 1397 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1398 unsigned Opcode) { 1399 // Copy all operands except the intrinsic ID. 1400 unsigned NumOps = Op.getNumOperands(); 1401 SmallVector<SDValue, 6> Ops; 1402 Ops.reserve(NumOps - 1); 1403 Ops.push_back(Op.getOperand(0)); 1404 for (unsigned I = 2; I < NumOps; ++I) 1405 Ops.push_back(Op.getOperand(I)); 1406 1407 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1408 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1409 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1410 SDValue OldChain = SDValue(Op.getNode(), 1); 1411 SDValue NewChain = SDValue(Intr.getNode(), 0); 1412 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1413 return Intr; 1414 } 1415 1416 // Emit an intrinsic with a glued value instead of its CC result. 1417 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1418 unsigned Opcode) { 1419 // Copy all operands except the intrinsic ID. 1420 unsigned NumOps = Op.getNumOperands(); 1421 SmallVector<SDValue, 6> Ops; 1422 Ops.reserve(NumOps - 1); 1423 for (unsigned I = 1; I < NumOps; ++I) 1424 Ops.push_back(Op.getOperand(I)); 1425 1426 if (Op->getNumValues() == 1) 1427 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1428 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1429 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1430 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1431 } 1432 1433 // CC is a comparison that will be implemented using an integer or 1434 // floating-point comparison. Return the condition code mask for 1435 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1436 // unsigned comparisons and clear for signed ones. In the floating-point 1437 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1438 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1439 #define CONV(X) \ 1440 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1441 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1442 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1443 1444 switch (CC) { 1445 default: 1446 llvm_unreachable("Invalid integer condition!"); 1447 1448 CONV(EQ); 1449 CONV(NE); 1450 CONV(GT); 1451 CONV(GE); 1452 CONV(LT); 1453 CONV(LE); 1454 1455 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1456 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1457 } 1458 #undef CONV 1459 } 1460 1461 // Return a sequence for getting a 1 from an IPM result when CC has a 1462 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1463 // The handling of CC values outside CCValid doesn't matter. 1464 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1465 // Deal with cases where the result can be taken directly from a bit 1466 // of the IPM result. 1467 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1468 return IPMConversion(0, 0, SystemZ::IPM_CC); 1469 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1470 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1471 1472 // Deal with cases where we can add a value to force the sign bit 1473 // to contain the right value. Putting the bit in 31 means we can 1474 // use SRL rather than RISBG(L), and also makes it easier to get a 1475 // 0/-1 value, so it has priority over the other tests below. 1476 // 1477 // These sequences rely on the fact that the upper two bits of the 1478 // IPM result are zero. 1479 uint64_t TopBit = uint64_t(1) << 31; 1480 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1481 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1482 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1483 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1484 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1485 | SystemZ::CCMASK_1 1486 | SystemZ::CCMASK_2))) 1487 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1488 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1489 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1490 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1491 | SystemZ::CCMASK_2 1492 | SystemZ::CCMASK_3))) 1493 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1494 1495 // Next try inverting the value and testing a bit. 0/1 could be 1496 // handled this way too, but we dealt with that case above. 1497 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1498 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1499 1500 // Handle cases where adding a value forces a non-sign bit to contain 1501 // the right value. 1502 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1503 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1504 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1505 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1506 1507 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1508 // can be done by inverting the low CC bit and applying one of the 1509 // sign-based extractions above. 1510 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1511 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1512 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1513 return IPMConversion(1 << SystemZ::IPM_CC, 1514 TopBit - (3 << SystemZ::IPM_CC), 31); 1515 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1516 | SystemZ::CCMASK_1 1517 | SystemZ::CCMASK_3))) 1518 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1519 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1520 | SystemZ::CCMASK_2 1521 | SystemZ::CCMASK_3))) 1522 return IPMConversion(1 << SystemZ::IPM_CC, 1523 TopBit - (1 << SystemZ::IPM_CC), 31); 1524 1525 llvm_unreachable("Unexpected CC combination"); 1526 } 1527 1528 // If C can be converted to a comparison against zero, adjust the operands 1529 // as necessary. 1530 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1531 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1532 return; 1533 1534 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1535 if (!ConstOp1) 1536 return; 1537 1538 int64_t Value = ConstOp1->getSExtValue(); 1539 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1540 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1541 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1542 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1543 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1544 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1545 } 1546 } 1547 1548 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1549 // adjust the operands as necessary. 1550 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1551 // For us to make any changes, it must a comparison between a single-use 1552 // load and a constant. 1553 if (!C.Op0.hasOneUse() || 1554 C.Op0.getOpcode() != ISD::LOAD || 1555 C.Op1.getOpcode() != ISD::Constant) 1556 return; 1557 1558 // We must have an 8- or 16-bit load. 1559 auto *Load = cast<LoadSDNode>(C.Op0); 1560 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1561 if (NumBits != 8 && NumBits != 16) 1562 return; 1563 1564 // The load must be an extending one and the constant must be within the 1565 // range of the unextended value. 1566 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1567 uint64_t Value = ConstOp1->getZExtValue(); 1568 uint64_t Mask = (1 << NumBits) - 1; 1569 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1570 // Make sure that ConstOp1 is in range of C.Op0. 1571 int64_t SignedValue = ConstOp1->getSExtValue(); 1572 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1573 return; 1574 if (C.ICmpType != SystemZICMP::SignedOnly) { 1575 // Unsigned comparison between two sign-extended values is equivalent 1576 // to unsigned comparison between two zero-extended values. 1577 Value &= Mask; 1578 } else if (NumBits == 8) { 1579 // Try to treat the comparison as unsigned, so that we can use CLI. 1580 // Adjust CCMask and Value as necessary. 1581 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1582 // Test whether the high bit of the byte is set. 1583 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1584 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1585 // Test whether the high bit of the byte is clear. 1586 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1587 else 1588 // No instruction exists for this combination. 1589 return; 1590 C.ICmpType = SystemZICMP::UnsignedOnly; 1591 } 1592 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1593 if (Value > Mask) 1594 return; 1595 assert(C.ICmpType == SystemZICMP::Any && 1596 "Signedness shouldn't matter here."); 1597 } else 1598 return; 1599 1600 // Make sure that the first operand is an i32 of the right extension type. 1601 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1602 ISD::SEXTLOAD : 1603 ISD::ZEXTLOAD); 1604 if (C.Op0.getValueType() != MVT::i32 || 1605 Load->getExtensionType() != ExtType) 1606 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1607 Load->getChain(), Load->getBasePtr(), 1608 Load->getPointerInfo(), Load->getMemoryVT(), 1609 Load->isVolatile(), Load->isNonTemporal(), 1610 Load->isInvariant(), Load->getAlignment()); 1611 1612 // Make sure that the second operand is an i32 with the right value. 1613 if (C.Op1.getValueType() != MVT::i32 || 1614 Value != ConstOp1->getZExtValue()) 1615 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1616 } 1617 1618 // Return true if Op is either an unextended load, or a load suitable 1619 // for integer register-memory comparisons of type ICmpType. 1620 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1621 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1622 if (Load) { 1623 // There are no instructions to compare a register with a memory byte. 1624 if (Load->getMemoryVT() == MVT::i8) 1625 return false; 1626 // Otherwise decide on extension type. 1627 switch (Load->getExtensionType()) { 1628 case ISD::NON_EXTLOAD: 1629 return true; 1630 case ISD::SEXTLOAD: 1631 return ICmpType != SystemZICMP::UnsignedOnly; 1632 case ISD::ZEXTLOAD: 1633 return ICmpType != SystemZICMP::SignedOnly; 1634 default: 1635 break; 1636 } 1637 } 1638 return false; 1639 } 1640 1641 // Return true if it is better to swap the operands of C. 1642 static bool shouldSwapCmpOperands(const Comparison &C) { 1643 // Leave f128 comparisons alone, since they have no memory forms. 1644 if (C.Op0.getValueType() == MVT::f128) 1645 return false; 1646 1647 // Always keep a floating-point constant second, since comparisons with 1648 // zero can use LOAD TEST and comparisons with other constants make a 1649 // natural memory operand. 1650 if (isa<ConstantFPSDNode>(C.Op1)) 1651 return false; 1652 1653 // Never swap comparisons with zero since there are many ways to optimize 1654 // those later. 1655 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1656 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1657 return false; 1658 1659 // Also keep natural memory operands second if the loaded value is 1660 // only used here. Several comparisons have memory forms. 1661 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1662 return false; 1663 1664 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1665 // In that case we generally prefer the memory to be second. 1666 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1667 // The only exceptions are when the second operand is a constant and 1668 // we can use things like CHHSI. 1669 if (!ConstOp1) 1670 return true; 1671 // The unsigned memory-immediate instructions can handle 16-bit 1672 // unsigned integers. 1673 if (C.ICmpType != SystemZICMP::SignedOnly && 1674 isUInt<16>(ConstOp1->getZExtValue())) 1675 return false; 1676 // The signed memory-immediate instructions can handle 16-bit 1677 // signed integers. 1678 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1679 isInt<16>(ConstOp1->getSExtValue())) 1680 return false; 1681 return true; 1682 } 1683 1684 // Try to promote the use of CGFR and CLGFR. 1685 unsigned Opcode0 = C.Op0.getOpcode(); 1686 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1687 return true; 1688 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1689 return true; 1690 if (C.ICmpType != SystemZICMP::SignedOnly && 1691 Opcode0 == ISD::AND && 1692 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1693 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1694 return true; 1695 1696 return false; 1697 } 1698 1699 // Return a version of comparison CC mask CCMask in which the LT and GT 1700 // actions are swapped. 1701 static unsigned reverseCCMask(unsigned CCMask) { 1702 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1703 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1704 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1705 (CCMask & SystemZ::CCMASK_CMP_UO)); 1706 } 1707 1708 // Check whether C tests for equality between X and Y and whether X - Y 1709 // or Y - X is also computed. In that case it's better to compare the 1710 // result of the subtraction against zero. 1711 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1712 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1713 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1714 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1715 SDNode *N = *I; 1716 if (N->getOpcode() == ISD::SUB && 1717 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1718 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1719 C.Op0 = SDValue(N, 0); 1720 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1721 return; 1722 } 1723 } 1724 } 1725 } 1726 1727 // Check whether C compares a floating-point value with zero and if that 1728 // floating-point value is also negated. In this case we can use the 1729 // negation to set CC, so avoiding separate LOAD AND TEST and 1730 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1731 static void adjustForFNeg(Comparison &C) { 1732 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1733 if (C1 && C1->isZero()) { 1734 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1735 SDNode *N = *I; 1736 if (N->getOpcode() == ISD::FNEG) { 1737 C.Op0 = SDValue(N, 0); 1738 C.CCMask = reverseCCMask(C.CCMask); 1739 return; 1740 } 1741 } 1742 } 1743 } 1744 1745 // Check whether C compares (shl X, 32) with 0 and whether X is 1746 // also sign-extended. In that case it is better to test the result 1747 // of the sign extension using LTGFR. 1748 // 1749 // This case is important because InstCombine transforms a comparison 1750 // with (sext (trunc X)) into a comparison with (shl X, 32). 1751 static void adjustForLTGFR(Comparison &C) { 1752 // Check for a comparison between (shl X, 32) and 0. 1753 if (C.Op0.getOpcode() == ISD::SHL && 1754 C.Op0.getValueType() == MVT::i64 && 1755 C.Op1.getOpcode() == ISD::Constant && 1756 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1757 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1758 if (C1 && C1->getZExtValue() == 32) { 1759 SDValue ShlOp0 = C.Op0.getOperand(0); 1760 // See whether X has any SIGN_EXTEND_INREG uses. 1761 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1762 SDNode *N = *I; 1763 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1764 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1765 C.Op0 = SDValue(N, 0); 1766 return; 1767 } 1768 } 1769 } 1770 } 1771 } 1772 1773 // If C compares the truncation of an extending load, try to compare 1774 // the untruncated value instead. This exposes more opportunities to 1775 // reuse CC. 1776 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1777 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1778 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1779 C.Op1.getOpcode() == ISD::Constant && 1780 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1781 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1782 if (L->getMemoryVT().getStoreSizeInBits() 1783 <= C.Op0.getValueType().getSizeInBits()) { 1784 unsigned Type = L->getExtensionType(); 1785 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1786 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1787 C.Op0 = C.Op0.getOperand(0); 1788 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1789 } 1790 } 1791 } 1792 } 1793 1794 // Return true if shift operation N has an in-range constant shift value. 1795 // Store it in ShiftVal if so. 1796 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1797 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1798 if (!Shift) 1799 return false; 1800 1801 uint64_t Amount = Shift->getZExtValue(); 1802 if (Amount >= N.getValueType().getSizeInBits()) 1803 return false; 1804 1805 ShiftVal = Amount; 1806 return true; 1807 } 1808 1809 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1810 // instruction and whether the CC value is descriptive enough to handle 1811 // a comparison of type Opcode between the AND result and CmpVal. 1812 // CCMask says which comparison result is being tested and BitSize is 1813 // the number of bits in the operands. If TEST UNDER MASK can be used, 1814 // return the corresponding CC mask, otherwise return 0. 1815 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1816 uint64_t Mask, uint64_t CmpVal, 1817 unsigned ICmpType) { 1818 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1819 1820 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1821 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1822 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1823 return 0; 1824 1825 // Work out the masks for the lowest and highest bits. 1826 unsigned HighShift = 63 - countLeadingZeros(Mask); 1827 uint64_t High = uint64_t(1) << HighShift; 1828 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1829 1830 // Signed ordered comparisons are effectively unsigned if the sign 1831 // bit is dropped. 1832 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1833 1834 // Check for equality comparisons with 0, or the equivalent. 1835 if (CmpVal == 0) { 1836 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1837 return SystemZ::CCMASK_TM_ALL_0; 1838 if (CCMask == SystemZ::CCMASK_CMP_NE) 1839 return SystemZ::CCMASK_TM_SOME_1; 1840 } 1841 if (EffectivelyUnsigned && CmpVal <= Low) { 1842 if (CCMask == SystemZ::CCMASK_CMP_LT) 1843 return SystemZ::CCMASK_TM_ALL_0; 1844 if (CCMask == SystemZ::CCMASK_CMP_GE) 1845 return SystemZ::CCMASK_TM_SOME_1; 1846 } 1847 if (EffectivelyUnsigned && CmpVal < Low) { 1848 if (CCMask == SystemZ::CCMASK_CMP_LE) 1849 return SystemZ::CCMASK_TM_ALL_0; 1850 if (CCMask == SystemZ::CCMASK_CMP_GT) 1851 return SystemZ::CCMASK_TM_SOME_1; 1852 } 1853 1854 // Check for equality comparisons with the mask, or the equivalent. 1855 if (CmpVal == Mask) { 1856 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1857 return SystemZ::CCMASK_TM_ALL_1; 1858 if (CCMask == SystemZ::CCMASK_CMP_NE) 1859 return SystemZ::CCMASK_TM_SOME_0; 1860 } 1861 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1862 if (CCMask == SystemZ::CCMASK_CMP_GT) 1863 return SystemZ::CCMASK_TM_ALL_1; 1864 if (CCMask == SystemZ::CCMASK_CMP_LE) 1865 return SystemZ::CCMASK_TM_SOME_0; 1866 } 1867 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1868 if (CCMask == SystemZ::CCMASK_CMP_GE) 1869 return SystemZ::CCMASK_TM_ALL_1; 1870 if (CCMask == SystemZ::CCMASK_CMP_LT) 1871 return SystemZ::CCMASK_TM_SOME_0; 1872 } 1873 1874 // Check for ordered comparisons with the top bit. 1875 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1876 if (CCMask == SystemZ::CCMASK_CMP_LE) 1877 return SystemZ::CCMASK_TM_MSB_0; 1878 if (CCMask == SystemZ::CCMASK_CMP_GT) 1879 return SystemZ::CCMASK_TM_MSB_1; 1880 } 1881 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1882 if (CCMask == SystemZ::CCMASK_CMP_LT) 1883 return SystemZ::CCMASK_TM_MSB_0; 1884 if (CCMask == SystemZ::CCMASK_CMP_GE) 1885 return SystemZ::CCMASK_TM_MSB_1; 1886 } 1887 1888 // If there are just two bits, we can do equality checks for Low and High 1889 // as well. 1890 if (Mask == Low + High) { 1891 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1892 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1893 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1894 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1895 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1896 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1897 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1898 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1899 } 1900 1901 // Looks like we've exhausted our options. 1902 return 0; 1903 } 1904 1905 // See whether C can be implemented as a TEST UNDER MASK instruction. 1906 // Update the arguments with the TM version if so. 1907 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1908 // Check that we have a comparison with a constant. 1909 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1910 if (!ConstOp1) 1911 return; 1912 uint64_t CmpVal = ConstOp1->getZExtValue(); 1913 1914 // Check whether the nonconstant input is an AND with a constant mask. 1915 Comparison NewC(C); 1916 uint64_t MaskVal; 1917 ConstantSDNode *Mask = nullptr; 1918 if (C.Op0.getOpcode() == ISD::AND) { 1919 NewC.Op0 = C.Op0.getOperand(0); 1920 NewC.Op1 = C.Op0.getOperand(1); 1921 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1922 if (!Mask) 1923 return; 1924 MaskVal = Mask->getZExtValue(); 1925 } else { 1926 // There is no instruction to compare with a 64-bit immediate 1927 // so use TMHH instead if possible. We need an unsigned ordered 1928 // comparison with an i64 immediate. 1929 if (NewC.Op0.getValueType() != MVT::i64 || 1930 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1931 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1932 NewC.ICmpType == SystemZICMP::SignedOnly) 1933 return; 1934 // Convert LE and GT comparisons into LT and GE. 1935 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1936 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1937 if (CmpVal == uint64_t(-1)) 1938 return; 1939 CmpVal += 1; 1940 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1941 } 1942 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1943 // be masked off without changing the result. 1944 MaskVal = -(CmpVal & -CmpVal); 1945 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1946 } 1947 if (!MaskVal) 1948 return; 1949 1950 // Check whether the combination of mask, comparison value and comparison 1951 // type are suitable. 1952 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1953 unsigned NewCCMask, ShiftVal; 1954 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1955 NewC.Op0.getOpcode() == ISD::SHL && 1956 isSimpleShift(NewC.Op0, ShiftVal) && 1957 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1958 MaskVal >> ShiftVal, 1959 CmpVal >> ShiftVal, 1960 SystemZICMP::Any))) { 1961 NewC.Op0 = NewC.Op0.getOperand(0); 1962 MaskVal >>= ShiftVal; 1963 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1964 NewC.Op0.getOpcode() == ISD::SRL && 1965 isSimpleShift(NewC.Op0, ShiftVal) && 1966 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1967 MaskVal << ShiftVal, 1968 CmpVal << ShiftVal, 1969 SystemZICMP::UnsignedOnly))) { 1970 NewC.Op0 = NewC.Op0.getOperand(0); 1971 MaskVal <<= ShiftVal; 1972 } else { 1973 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1974 NewC.ICmpType); 1975 if (!NewCCMask) 1976 return; 1977 } 1978 1979 // Go ahead and make the change. 1980 C.Opcode = SystemZISD::TM; 1981 C.Op0 = NewC.Op0; 1982 if (Mask && Mask->getZExtValue() == MaskVal) 1983 C.Op1 = SDValue(Mask, 0); 1984 else 1985 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 1986 C.CCValid = SystemZ::CCMASK_TM; 1987 C.CCMask = NewCCMask; 1988 } 1989 1990 // Return a Comparison that tests the condition-code result of intrinsic 1991 // node Call against constant integer CC using comparison code Cond. 1992 // Opcode is the opcode of the SystemZISD operation for the intrinsic 1993 // and CCValid is the set of possible condition-code results. 1994 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 1995 SDValue Call, unsigned CCValid, uint64_t CC, 1996 ISD::CondCode Cond) { 1997 Comparison C(Call, SDValue()); 1998 C.Opcode = Opcode; 1999 C.CCValid = CCValid; 2000 if (Cond == ISD::SETEQ) 2001 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2002 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2003 else if (Cond == ISD::SETNE) 2004 // ...and the inverse of that. 2005 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2006 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2007 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2008 // always true for CC>3. 2009 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2010 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2011 // ...and the inverse of that. 2012 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2013 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2014 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2015 // always true for CC>3. 2016 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2017 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2018 // ...and the inverse of that. 2019 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2020 else 2021 llvm_unreachable("Unexpected integer comparison type"); 2022 C.CCMask &= CCValid; 2023 return C; 2024 } 2025 2026 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2027 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2028 ISD::CondCode Cond, SDLoc DL) { 2029 if (CmpOp1.getOpcode() == ISD::Constant) { 2030 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2031 unsigned Opcode, CCValid; 2032 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2033 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2034 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2035 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2036 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2037 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2038 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2039 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2040 } 2041 Comparison C(CmpOp0, CmpOp1); 2042 C.CCMask = CCMaskForCondCode(Cond); 2043 if (C.Op0.getValueType().isFloatingPoint()) { 2044 C.CCValid = SystemZ::CCMASK_FCMP; 2045 C.Opcode = SystemZISD::FCMP; 2046 adjustForFNeg(C); 2047 } else { 2048 C.CCValid = SystemZ::CCMASK_ICMP; 2049 C.Opcode = SystemZISD::ICMP; 2050 // Choose the type of comparison. Equality and inequality tests can 2051 // use either signed or unsigned comparisons. The choice also doesn't 2052 // matter if both sign bits are known to be clear. In those cases we 2053 // want to give the main isel code the freedom to choose whichever 2054 // form fits best. 2055 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2056 C.CCMask == SystemZ::CCMASK_CMP_NE || 2057 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2058 C.ICmpType = SystemZICMP::Any; 2059 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2060 C.ICmpType = SystemZICMP::UnsignedOnly; 2061 else 2062 C.ICmpType = SystemZICMP::SignedOnly; 2063 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2064 adjustZeroCmp(DAG, DL, C); 2065 adjustSubwordCmp(DAG, DL, C); 2066 adjustForSubtraction(DAG, DL, C); 2067 adjustForLTGFR(C); 2068 adjustICmpTruncate(DAG, DL, C); 2069 } 2070 2071 if (shouldSwapCmpOperands(C)) { 2072 std::swap(C.Op0, C.Op1); 2073 C.CCMask = reverseCCMask(C.CCMask); 2074 } 2075 2076 adjustForTestUnderMask(DAG, DL, C); 2077 return C; 2078 } 2079 2080 // Emit the comparison instruction described by C. 2081 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2082 if (!C.Op1.getNode()) { 2083 SDValue Op; 2084 switch (C.Op0.getOpcode()) { 2085 case ISD::INTRINSIC_W_CHAIN: 2086 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2087 break; 2088 case ISD::INTRINSIC_WO_CHAIN: 2089 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2090 break; 2091 default: 2092 llvm_unreachable("Invalid comparison operands"); 2093 } 2094 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2095 } 2096 if (C.Opcode == SystemZISD::ICMP) 2097 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2098 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2099 if (C.Opcode == SystemZISD::TM) { 2100 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2101 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2102 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2103 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2104 } 2105 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2106 } 2107 2108 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2109 // 64 bits. Extend is the extension type to use. Store the high part 2110 // in Hi and the low part in Lo. 2111 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2112 unsigned Extend, SDValue Op0, SDValue Op1, 2113 SDValue &Hi, SDValue &Lo) { 2114 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2115 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2116 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2117 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2118 DAG.getConstant(32, DL, MVT::i64)); 2119 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2120 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2121 } 2122 2123 // Lower a binary operation that produces two VT results, one in each 2124 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2125 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2126 // on the extended Op0 and (unextended) Op1. Store the even register result 2127 // in Even and the odd register result in Odd. 2128 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2129 unsigned Extend, unsigned Opcode, 2130 SDValue Op0, SDValue Op1, 2131 SDValue &Even, SDValue &Odd) { 2132 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2133 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2134 SDValue(In128, 0), Op1); 2135 bool Is32Bit = is32Bit(VT); 2136 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2137 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2138 } 2139 2140 // Return an i32 value that is 1 if the CC value produced by Glue is 2141 // in the mask CCMask and 0 otherwise. CC is known to have a value 2142 // in CCValid, so other values can be ignored. 2143 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2144 unsigned CCValid, unsigned CCMask) { 2145 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2146 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2147 2148 if (Conversion.XORValue) 2149 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2150 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2151 2152 if (Conversion.AddValue) 2153 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2154 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2155 2156 // The SHR/AND sequence should get optimized to an RISBG. 2157 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2158 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2159 if (Conversion.Bit != 31) 2160 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2161 DAG.getConstant(1, DL, MVT::i32)); 2162 return Result; 2163 } 2164 2165 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2166 // be done directly. IsFP is true if CC is for a floating-point rather than 2167 // integer comparison. 2168 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2169 switch (CC) { 2170 case ISD::SETOEQ: 2171 case ISD::SETEQ: 2172 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2173 2174 case ISD::SETOGE: 2175 case ISD::SETGE: 2176 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2177 2178 case ISD::SETOGT: 2179 case ISD::SETGT: 2180 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2181 2182 case ISD::SETUGT: 2183 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2184 2185 default: 2186 return 0; 2187 } 2188 } 2189 2190 // Return the SystemZISD vector comparison operation for CC or its inverse, 2191 // or 0 if neither can be done directly. Indicate in Invert whether the 2192 // result is for the inverse of CC. IsFP is true if CC is for a 2193 // floating-point rather than integer comparison. 2194 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2195 bool &Invert) { 2196 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2197 Invert = false; 2198 return Opcode; 2199 } 2200 2201 CC = ISD::getSetCCInverse(CC, !IsFP); 2202 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2203 Invert = true; 2204 return Opcode; 2205 } 2206 2207 return 0; 2208 } 2209 2210 // Return a v2f64 that contains the extended form of elements Start and Start+1 2211 // of v4f32 value Op. 2212 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2213 SDValue Op) { 2214 int Mask[] = { Start, -1, Start + 1, -1 }; 2215 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2216 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2217 } 2218 2219 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2220 // producing a result of type VT. 2221 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2222 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2223 // There is no hardware support for v4f32, so extend the vector into 2224 // two v2f64s and compare those. 2225 if (CmpOp0.getValueType() == MVT::v4f32) { 2226 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2227 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2228 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2229 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2230 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2231 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2232 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2233 } 2234 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2235 } 2236 2237 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2238 // an integer mask of type VT. 2239 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2240 ISD::CondCode CC, SDValue CmpOp0, 2241 SDValue CmpOp1) { 2242 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2243 bool Invert = false; 2244 SDValue Cmp; 2245 switch (CC) { 2246 // Handle tests for order using (or (ogt y x) (oge x y)). 2247 case ISD::SETUO: 2248 Invert = true; 2249 case ISD::SETO: { 2250 assert(IsFP && "Unexpected integer comparison"); 2251 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2252 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2253 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2254 break; 2255 } 2256 2257 // Handle <> tests using (or (ogt y x) (ogt x y)). 2258 case ISD::SETUEQ: 2259 Invert = true; 2260 case ISD::SETONE: { 2261 assert(IsFP && "Unexpected integer comparison"); 2262 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2263 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2264 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2265 break; 2266 } 2267 2268 // Otherwise a single comparison is enough. It doesn't really 2269 // matter whether we try the inversion or the swap first, since 2270 // there are no cases where both work. 2271 default: 2272 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2273 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2274 else { 2275 CC = ISD::getSetCCSwappedOperands(CC); 2276 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2277 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2278 else 2279 llvm_unreachable("Unhandled comparison"); 2280 } 2281 break; 2282 } 2283 if (Invert) { 2284 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2285 DAG.getConstant(65535, DL, MVT::i32)); 2286 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2287 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2288 } 2289 return Cmp; 2290 } 2291 2292 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2293 SelectionDAG &DAG) const { 2294 SDValue CmpOp0 = Op.getOperand(0); 2295 SDValue CmpOp1 = Op.getOperand(1); 2296 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2297 SDLoc DL(Op); 2298 EVT VT = Op.getValueType(); 2299 if (VT.isVector()) 2300 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2301 2302 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2303 SDValue Glue = emitCmp(DAG, DL, C); 2304 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2305 } 2306 2307 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2308 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2309 SDValue CmpOp0 = Op.getOperand(2); 2310 SDValue CmpOp1 = Op.getOperand(3); 2311 SDValue Dest = Op.getOperand(4); 2312 SDLoc DL(Op); 2313 2314 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2315 SDValue Glue = emitCmp(DAG, DL, C); 2316 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2317 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2318 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2319 } 2320 2321 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2322 // allowing Pos and Neg to be wider than CmpOp. 2323 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2324 return (Neg.getOpcode() == ISD::SUB && 2325 Neg.getOperand(0).getOpcode() == ISD::Constant && 2326 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2327 Neg.getOperand(1) == Pos && 2328 (Pos == CmpOp || 2329 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2330 Pos.getOperand(0) == CmpOp))); 2331 } 2332 2333 // Return the absolute or negative absolute of Op; IsNegative decides which. 2334 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2335 bool IsNegative) { 2336 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2337 if (IsNegative) 2338 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2339 DAG.getConstant(0, DL, Op.getValueType()), Op); 2340 return Op; 2341 } 2342 2343 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2344 SelectionDAG &DAG) const { 2345 SDValue CmpOp0 = Op.getOperand(0); 2346 SDValue CmpOp1 = Op.getOperand(1); 2347 SDValue TrueOp = Op.getOperand(2); 2348 SDValue FalseOp = Op.getOperand(3); 2349 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2350 SDLoc DL(Op); 2351 2352 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2353 2354 // Check for absolute and negative-absolute selections, including those 2355 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2356 // This check supplements the one in DAGCombiner. 2357 if (C.Opcode == SystemZISD::ICMP && 2358 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2359 C.CCMask != SystemZ::CCMASK_CMP_NE && 2360 C.Op1.getOpcode() == ISD::Constant && 2361 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2362 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2363 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2364 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2365 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2366 } 2367 2368 SDValue Glue = emitCmp(DAG, DL, C); 2369 2370 // Special case for handling -1/0 results. The shifts we use here 2371 // should get optimized with the IPM conversion sequence. 2372 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2373 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2374 if (TrueC && FalseC) { 2375 int64_t TrueVal = TrueC->getSExtValue(); 2376 int64_t FalseVal = FalseC->getSExtValue(); 2377 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2378 // Invert the condition if we want -1 on false. 2379 if (TrueVal == 0) 2380 C.CCMask ^= C.CCValid; 2381 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2382 EVT VT = Op.getValueType(); 2383 // Extend the result to VT. Upper bits are ignored. 2384 if (!is32Bit(VT)) 2385 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2386 // Sign-extend from the low bit. 2387 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2388 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2389 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2390 } 2391 } 2392 2393 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2394 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2395 2396 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2397 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2398 } 2399 2400 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2401 SelectionDAG &DAG) const { 2402 SDLoc DL(Node); 2403 const GlobalValue *GV = Node->getGlobal(); 2404 int64_t Offset = Node->getOffset(); 2405 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2406 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2407 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2408 2409 SDValue Result; 2410 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2411 // Assign anchors at 1<<12 byte boundaries. 2412 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2413 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2414 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2415 2416 // The offset can be folded into the address if it is aligned to a halfword. 2417 Offset -= Anchor; 2418 if (Offset != 0 && (Offset & 1) == 0) { 2419 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2420 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2421 Offset = 0; 2422 } 2423 } else { 2424 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2425 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2426 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2427 MachinePointerInfo::getGOT(), false, false, false, 0); 2428 } 2429 2430 // If there was a non-zero offset that we didn't fold, create an explicit 2431 // addition for it. 2432 if (Offset != 0) 2433 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2434 DAG.getConstant(Offset, DL, PtrVT)); 2435 2436 return Result; 2437 } 2438 2439 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2440 SelectionDAG &DAG, 2441 unsigned Opcode, 2442 SDValue GOTOffset) const { 2443 SDLoc DL(Node); 2444 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2445 SDValue Chain = DAG.getEntryNode(); 2446 SDValue Glue; 2447 2448 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2449 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2450 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2451 Glue = Chain.getValue(1); 2452 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2453 Glue = Chain.getValue(1); 2454 2455 // The first call operand is the chain and the second is the TLS symbol. 2456 SmallVector<SDValue, 8> Ops; 2457 Ops.push_back(Chain); 2458 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2459 Node->getValueType(0), 2460 0, 0)); 2461 2462 // Add argument registers to the end of the list so that they are 2463 // known live into the call. 2464 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2465 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2466 2467 // Add a register mask operand representing the call-preserved registers. 2468 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2469 const uint32_t *Mask = 2470 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2471 assert(Mask && "Missing call preserved mask for calling convention"); 2472 Ops.push_back(DAG.getRegisterMask(Mask)); 2473 2474 // Glue the call to the argument copies. 2475 Ops.push_back(Glue); 2476 2477 // Emit the call. 2478 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2479 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2480 Glue = Chain.getValue(1); 2481 2482 // Copy the return value from %r2. 2483 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2484 } 2485 2486 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2487 SelectionDAG &DAG) const { 2488 if (DAG.getTarget().Options.EmulatedTLS) 2489 return LowerToTLSEmulatedModel(Node, DAG); 2490 SDLoc DL(Node); 2491 const GlobalValue *GV = Node->getGlobal(); 2492 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2493 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2494 2495 // The high part of the thread pointer is in access register 0. 2496 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2497 DAG.getConstant(0, DL, MVT::i32)); 2498 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2499 2500 // The low part of the thread pointer is in access register 1. 2501 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2502 DAG.getConstant(1, DL, MVT::i32)); 2503 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2504 2505 // Merge them into a single 64-bit address. 2506 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2507 DAG.getConstant(32, DL, PtrVT)); 2508 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2509 2510 // Get the offset of GA from the thread pointer, based on the TLS model. 2511 SDValue Offset; 2512 switch (model) { 2513 case TLSModel::GeneralDynamic: { 2514 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2515 SystemZConstantPoolValue *CPV = 2516 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2517 2518 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2519 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2520 Offset, MachinePointerInfo::getConstantPool(), 2521 false, false, false, 0); 2522 2523 // Call __tls_get_offset to retrieve the offset. 2524 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2525 break; 2526 } 2527 2528 case TLSModel::LocalDynamic: { 2529 // Load the GOT offset of the module ID. 2530 SystemZConstantPoolValue *CPV = 2531 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2532 2533 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2534 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2535 Offset, MachinePointerInfo::getConstantPool(), 2536 false, false, false, 0); 2537 2538 // Call __tls_get_offset to retrieve the module base offset. 2539 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2540 2541 // Note: The SystemZLDCleanupPass will remove redundant computations 2542 // of the module base offset. Count total number of local-dynamic 2543 // accesses to trigger execution of that pass. 2544 SystemZMachineFunctionInfo* MFI = 2545 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2546 MFI->incNumLocalDynamicTLSAccesses(); 2547 2548 // Add the per-symbol offset. 2549 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2550 2551 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2552 DTPOffset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2553 DTPOffset, MachinePointerInfo::getConstantPool(), 2554 false, false, false, 0); 2555 2556 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2557 break; 2558 } 2559 2560 case TLSModel::InitialExec: { 2561 // Load the offset from the GOT. 2562 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2563 SystemZII::MO_INDNTPOFF); 2564 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2565 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2566 Offset, MachinePointerInfo::getGOT(), 2567 false, false, false, 0); 2568 break; 2569 } 2570 2571 case TLSModel::LocalExec: { 2572 // Force the offset into the constant pool and load it from there. 2573 SystemZConstantPoolValue *CPV = 2574 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2575 2576 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2577 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2578 Offset, MachinePointerInfo::getConstantPool(), 2579 false, false, false, 0); 2580 break; 2581 } 2582 } 2583 2584 // Add the base and offset together. 2585 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2586 } 2587 2588 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2589 SelectionDAG &DAG) const { 2590 SDLoc DL(Node); 2591 const BlockAddress *BA = Node->getBlockAddress(); 2592 int64_t Offset = Node->getOffset(); 2593 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2594 2595 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2596 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2597 return Result; 2598 } 2599 2600 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2601 SelectionDAG &DAG) const { 2602 SDLoc DL(JT); 2603 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2604 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2605 2606 // Use LARL to load the address of the table. 2607 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2608 } 2609 2610 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2611 SelectionDAG &DAG) const { 2612 SDLoc DL(CP); 2613 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2614 2615 SDValue Result; 2616 if (CP->isMachineConstantPoolEntry()) 2617 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2618 CP->getAlignment()); 2619 else 2620 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2621 CP->getAlignment(), CP->getOffset()); 2622 2623 // Use LARL to load the address of the constant pool entry. 2624 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2625 } 2626 2627 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2628 SelectionDAG &DAG) const { 2629 SDLoc DL(Op); 2630 SDValue In = Op.getOperand(0); 2631 EVT InVT = In.getValueType(); 2632 EVT ResVT = Op.getValueType(); 2633 2634 // Convert loads directly. This is normally done by DAGCombiner, 2635 // but we need this case for bitcasts that are created during lowering 2636 // and which are then lowered themselves. 2637 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2638 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2639 LoadN->getMemOperand()); 2640 2641 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2642 SDValue In64; 2643 if (Subtarget.hasHighWord()) { 2644 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2645 MVT::i64); 2646 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2647 MVT::i64, SDValue(U64, 0), In); 2648 } else { 2649 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2650 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2651 DAG.getConstant(32, DL, MVT::i64)); 2652 } 2653 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2654 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2655 DL, MVT::f32, Out64); 2656 } 2657 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2658 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2659 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2660 MVT::f64, SDValue(U64, 0), In); 2661 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2662 if (Subtarget.hasHighWord()) 2663 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2664 MVT::i32, Out64); 2665 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2666 DAG.getConstant(32, DL, MVT::i64)); 2667 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2668 } 2669 llvm_unreachable("Unexpected bitcast combination"); 2670 } 2671 2672 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2673 SelectionDAG &DAG) const { 2674 MachineFunction &MF = DAG.getMachineFunction(); 2675 SystemZMachineFunctionInfo *FuncInfo = 2676 MF.getInfo<SystemZMachineFunctionInfo>(); 2677 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2678 2679 SDValue Chain = Op.getOperand(0); 2680 SDValue Addr = Op.getOperand(1); 2681 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2682 SDLoc DL(Op); 2683 2684 // The initial values of each field. 2685 const unsigned NumFields = 4; 2686 SDValue Fields[NumFields] = { 2687 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2688 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2689 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2690 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2691 }; 2692 2693 // Store each field into its respective slot. 2694 SDValue MemOps[NumFields]; 2695 unsigned Offset = 0; 2696 for (unsigned I = 0; I < NumFields; ++I) { 2697 SDValue FieldAddr = Addr; 2698 if (Offset != 0) 2699 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2700 DAG.getIntPtrConstant(Offset, DL)); 2701 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2702 MachinePointerInfo(SV, Offset), 2703 false, false, 0); 2704 Offset += 8; 2705 } 2706 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2707 } 2708 2709 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2710 SelectionDAG &DAG) const { 2711 SDValue Chain = Op.getOperand(0); 2712 SDValue DstPtr = Op.getOperand(1); 2713 SDValue SrcPtr = Op.getOperand(2); 2714 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2715 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2716 SDLoc DL(Op); 2717 2718 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2719 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2720 /*isTailCall*/false, 2721 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2722 } 2723 2724 SDValue SystemZTargetLowering:: 2725 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2726 SDValue Chain = Op.getOperand(0); 2727 SDValue Size = Op.getOperand(1); 2728 SDLoc DL(Op); 2729 2730 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2731 2732 // Get a reference to the stack pointer. 2733 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2734 2735 // Get the new stack pointer value. 2736 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2737 2738 // Copy the new stack pointer back. 2739 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2740 2741 // The allocated data lives above the 160 bytes allocated for the standard 2742 // frame, plus any outgoing stack arguments. We don't know how much that 2743 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2744 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2745 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2746 2747 SDValue Ops[2] = { Result, Chain }; 2748 return DAG.getMergeValues(Ops, DL); 2749 } 2750 2751 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2752 SelectionDAG &DAG) const { 2753 EVT VT = Op.getValueType(); 2754 SDLoc DL(Op); 2755 SDValue Ops[2]; 2756 if (is32Bit(VT)) 2757 // Just do a normal 64-bit multiplication and extract the results. 2758 // We define this so that it can be used for constant division. 2759 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2760 Op.getOperand(1), Ops[1], Ops[0]); 2761 else { 2762 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2763 // 2764 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2765 // 2766 // but using the fact that the upper halves are either all zeros 2767 // or all ones: 2768 // 2769 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2770 // 2771 // and grouping the right terms together since they are quicker than the 2772 // multiplication: 2773 // 2774 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2775 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2776 SDValue LL = Op.getOperand(0); 2777 SDValue RL = Op.getOperand(1); 2778 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2779 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2780 // UMUL_LOHI64 returns the low result in the odd register and the high 2781 // result in the even register. SMUL_LOHI is defined to return the 2782 // low half first, so the results are in reverse order. 2783 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2784 LL, RL, Ops[1], Ops[0]); 2785 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2786 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2787 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2788 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2789 } 2790 return DAG.getMergeValues(Ops, DL); 2791 } 2792 2793 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2794 SelectionDAG &DAG) const { 2795 EVT VT = Op.getValueType(); 2796 SDLoc DL(Op); 2797 SDValue Ops[2]; 2798 if (is32Bit(VT)) 2799 // Just do a normal 64-bit multiplication and extract the results. 2800 // We define this so that it can be used for constant division. 2801 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2802 Op.getOperand(1), Ops[1], Ops[0]); 2803 else 2804 // UMUL_LOHI64 returns the low result in the odd register and the high 2805 // result in the even register. UMUL_LOHI is defined to return the 2806 // low half first, so the results are in reverse order. 2807 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2808 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2809 return DAG.getMergeValues(Ops, DL); 2810 } 2811 2812 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2813 SelectionDAG &DAG) const { 2814 SDValue Op0 = Op.getOperand(0); 2815 SDValue Op1 = Op.getOperand(1); 2816 EVT VT = Op.getValueType(); 2817 SDLoc DL(Op); 2818 unsigned Opcode; 2819 2820 // We use DSGF for 32-bit division. 2821 if (is32Bit(VT)) { 2822 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2823 Opcode = SystemZISD::SDIVREM32; 2824 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2825 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2826 Opcode = SystemZISD::SDIVREM32; 2827 } else 2828 Opcode = SystemZISD::SDIVREM64; 2829 2830 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2831 // input is "don't care". The instruction returns the remainder in 2832 // the even register and the quotient in the odd register. 2833 SDValue Ops[2]; 2834 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2835 Op0, Op1, Ops[1], Ops[0]); 2836 return DAG.getMergeValues(Ops, DL); 2837 } 2838 2839 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2840 SelectionDAG &DAG) const { 2841 EVT VT = Op.getValueType(); 2842 SDLoc DL(Op); 2843 2844 // DL(G) uses a double-width dividend, so we need to clear the even 2845 // register in the GR128 input. The instruction returns the remainder 2846 // in the even register and the quotient in the odd register. 2847 SDValue Ops[2]; 2848 if (is32Bit(VT)) 2849 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2850 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2851 else 2852 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2853 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2854 return DAG.getMergeValues(Ops, DL); 2855 } 2856 2857 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2858 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2859 2860 // Get the known-zero masks for each operand. 2861 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2862 APInt KnownZero[2], KnownOne[2]; 2863 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2864 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2865 2866 // See if the upper 32 bits of one operand and the lower 32 bits of the 2867 // other are known zero. They are the low and high operands respectively. 2868 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2869 KnownZero[1].getZExtValue() }; 2870 unsigned High, Low; 2871 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2872 High = 1, Low = 0; 2873 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2874 High = 0, Low = 1; 2875 else 2876 return Op; 2877 2878 SDValue LowOp = Ops[Low]; 2879 SDValue HighOp = Ops[High]; 2880 2881 // If the high part is a constant, we're better off using IILH. 2882 if (HighOp.getOpcode() == ISD::Constant) 2883 return Op; 2884 2885 // If the low part is a constant that is outside the range of LHI, 2886 // then we're better off using IILF. 2887 if (LowOp.getOpcode() == ISD::Constant) { 2888 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2889 if (!isInt<16>(Value)) 2890 return Op; 2891 } 2892 2893 // Check whether the high part is an AND that doesn't change the 2894 // high 32 bits and just masks out low bits. We can skip it if so. 2895 if (HighOp.getOpcode() == ISD::AND && 2896 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2897 SDValue HighOp0 = HighOp.getOperand(0); 2898 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2899 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2900 HighOp = HighOp0; 2901 } 2902 2903 // Take advantage of the fact that all GR32 operations only change the 2904 // low 32 bits by truncating Low to an i32 and inserting it directly 2905 // using a subreg. The interesting cases are those where the truncation 2906 // can be folded. 2907 SDLoc DL(Op); 2908 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2909 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2910 MVT::i64, HighOp, Low32); 2911 } 2912 2913 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2914 SelectionDAG &DAG) const { 2915 EVT VT = Op.getValueType(); 2916 SDLoc DL(Op); 2917 Op = Op.getOperand(0); 2918 2919 // Handle vector types via VPOPCT. 2920 if (VT.isVector()) { 2921 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 2922 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 2923 switch (VT.getVectorElementType().getSizeInBits()) { 2924 case 8: 2925 break; 2926 case 16: { 2927 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 2928 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 2929 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 2930 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2931 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 2932 break; 2933 } 2934 case 32: { 2935 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2936 DAG.getConstant(0, DL, MVT::i32)); 2937 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2938 break; 2939 } 2940 case 64: { 2941 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2942 DAG.getConstant(0, DL, MVT::i32)); 2943 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 2944 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2945 break; 2946 } 2947 default: 2948 llvm_unreachable("Unexpected type"); 2949 } 2950 return Op; 2951 } 2952 2953 // Get the known-zero mask for the operand. 2954 APInt KnownZero, KnownOne; 2955 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2956 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 2957 if (NumSignificantBits == 0) 2958 return DAG.getConstant(0, DL, VT); 2959 2960 // Skip known-zero high parts of the operand. 2961 int64_t OrigBitSize = VT.getSizeInBits(); 2962 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 2963 BitSize = std::min(BitSize, OrigBitSize); 2964 2965 // The POPCNT instruction counts the number of bits in each byte. 2966 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 2967 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 2968 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 2969 2970 // Add up per-byte counts in a binary tree. All bits of Op at 2971 // position larger than BitSize remain zero throughout. 2972 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 2973 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 2974 if (BitSize != OrigBitSize) 2975 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 2976 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 2977 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2978 } 2979 2980 // Extract overall result from high byte. 2981 if (BitSize > 8) 2982 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 2983 DAG.getConstant(BitSize - 8, DL, VT)); 2984 2985 return Op; 2986 } 2987 2988 // Op is an atomic load. Lower it into a normal volatile load. 2989 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 2990 SelectionDAG &DAG) const { 2991 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2992 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 2993 Node->getChain(), Node->getBasePtr(), 2994 Node->getMemoryVT(), Node->getMemOperand()); 2995 } 2996 2997 // Op is an atomic store. Lower it into a normal volatile store followed 2998 // by a serialization. 2999 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3000 SelectionDAG &DAG) const { 3001 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3002 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3003 Node->getBasePtr(), Node->getMemoryVT(), 3004 Node->getMemOperand()); 3005 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3006 Chain), 0); 3007 } 3008 3009 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3010 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3011 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3012 SelectionDAG &DAG, 3013 unsigned Opcode) const { 3014 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3015 3016 // 32-bit operations need no code outside the main loop. 3017 EVT NarrowVT = Node->getMemoryVT(); 3018 EVT WideVT = MVT::i32; 3019 if (NarrowVT == WideVT) 3020 return Op; 3021 3022 int64_t BitSize = NarrowVT.getSizeInBits(); 3023 SDValue ChainIn = Node->getChain(); 3024 SDValue Addr = Node->getBasePtr(); 3025 SDValue Src2 = Node->getVal(); 3026 MachineMemOperand *MMO = Node->getMemOperand(); 3027 SDLoc DL(Node); 3028 EVT PtrVT = Addr.getValueType(); 3029 3030 // Convert atomic subtracts of constants into additions. 3031 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3032 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3033 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3034 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3035 } 3036 3037 // Get the address of the containing word. 3038 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3039 DAG.getConstant(-4, DL, PtrVT)); 3040 3041 // Get the number of bits that the word must be rotated left in order 3042 // to bring the field to the top bits of a GR32. 3043 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3044 DAG.getConstant(3, DL, PtrVT)); 3045 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3046 3047 // Get the complementing shift amount, for rotating a field in the top 3048 // bits back to its proper position. 3049 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3050 DAG.getConstant(0, DL, WideVT), BitShift); 3051 3052 // Extend the source operand to 32 bits and prepare it for the inner loop. 3053 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3054 // operations require the source to be shifted in advance. (This shift 3055 // can be folded if the source is constant.) For AND and NAND, the lower 3056 // bits must be set, while for other opcodes they should be left clear. 3057 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3058 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3059 DAG.getConstant(32 - BitSize, DL, WideVT)); 3060 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3061 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3062 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3063 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3064 3065 // Construct the ATOMIC_LOADW_* node. 3066 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3067 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3068 DAG.getConstant(BitSize, DL, WideVT) }; 3069 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3070 NarrowVT, MMO); 3071 3072 // Rotate the result of the final CS so that the field is in the lower 3073 // bits of a GR32, then truncate it. 3074 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3075 DAG.getConstant(BitSize, DL, WideVT)); 3076 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3077 3078 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3079 return DAG.getMergeValues(RetOps, DL); 3080 } 3081 3082 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3083 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3084 // operations into additions. 3085 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3086 SelectionDAG &DAG) const { 3087 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3088 EVT MemVT = Node->getMemoryVT(); 3089 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3090 // A full-width operation. 3091 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3092 SDValue Src2 = Node->getVal(); 3093 SDValue NegSrc2; 3094 SDLoc DL(Src2); 3095 3096 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3097 // Use an addition if the operand is constant and either LAA(G) is 3098 // available or the negative value is in the range of A(G)FHI. 3099 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3100 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3101 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3102 } else if (Subtarget.hasInterlockedAccess1()) 3103 // Use LAA(G) if available. 3104 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3105 Src2); 3106 3107 if (NegSrc2.getNode()) 3108 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3109 Node->getChain(), Node->getBasePtr(), NegSrc2, 3110 Node->getMemOperand(), Node->getOrdering(), 3111 Node->getSynchScope()); 3112 3113 // Use the node as-is. 3114 return Op; 3115 } 3116 3117 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3118 } 3119 3120 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3121 // into a fullword ATOMIC_CMP_SWAPW operation. 3122 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3123 SelectionDAG &DAG) const { 3124 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3125 3126 // We have native support for 32-bit compare and swap. 3127 EVT NarrowVT = Node->getMemoryVT(); 3128 EVT WideVT = MVT::i32; 3129 if (NarrowVT == WideVT) 3130 return Op; 3131 3132 int64_t BitSize = NarrowVT.getSizeInBits(); 3133 SDValue ChainIn = Node->getOperand(0); 3134 SDValue Addr = Node->getOperand(1); 3135 SDValue CmpVal = Node->getOperand(2); 3136 SDValue SwapVal = Node->getOperand(3); 3137 MachineMemOperand *MMO = Node->getMemOperand(); 3138 SDLoc DL(Node); 3139 EVT PtrVT = Addr.getValueType(); 3140 3141 // Get the address of the containing word. 3142 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3143 DAG.getConstant(-4, DL, PtrVT)); 3144 3145 // Get the number of bits that the word must be rotated left in order 3146 // to bring the field to the top bits of a GR32. 3147 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3148 DAG.getConstant(3, DL, PtrVT)); 3149 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3150 3151 // Get the complementing shift amount, for rotating a field in the top 3152 // bits back to its proper position. 3153 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3154 DAG.getConstant(0, DL, WideVT), BitShift); 3155 3156 // Construct the ATOMIC_CMP_SWAPW node. 3157 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3158 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3159 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3160 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3161 VTList, Ops, NarrowVT, MMO); 3162 return AtomicOp; 3163 } 3164 3165 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3166 SelectionDAG &DAG) const { 3167 MachineFunction &MF = DAG.getMachineFunction(); 3168 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3169 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3170 SystemZ::R15D, Op.getValueType()); 3171 } 3172 3173 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3174 SelectionDAG &DAG) const { 3175 MachineFunction &MF = DAG.getMachineFunction(); 3176 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3177 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3178 SystemZ::R15D, Op.getOperand(1)); 3179 } 3180 3181 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3182 SelectionDAG &DAG) const { 3183 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3184 if (!IsData) 3185 // Just preserve the chain. 3186 return Op.getOperand(0); 3187 3188 SDLoc DL(Op); 3189 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3190 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3191 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3192 SDValue Ops[] = { 3193 Op.getOperand(0), 3194 DAG.getConstant(Code, DL, MVT::i32), 3195 Op.getOperand(1) 3196 }; 3197 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3198 Node->getVTList(), Ops, 3199 Node->getMemoryVT(), Node->getMemOperand()); 3200 } 3201 3202 // Return an i32 that contains the value of CC immediately after After, 3203 // whose final operand must be MVT::Glue. 3204 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3205 SDLoc DL(After); 3206 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3207 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3208 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3209 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3210 } 3211 3212 SDValue 3213 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3214 SelectionDAG &DAG) const { 3215 unsigned Opcode, CCValid; 3216 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3217 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3218 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3219 SDValue CC = getCCResult(DAG, Glued.getNode()); 3220 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3221 return SDValue(); 3222 } 3223 3224 return SDValue(); 3225 } 3226 3227 SDValue 3228 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3229 SelectionDAG &DAG) const { 3230 unsigned Opcode, CCValid; 3231 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3232 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3233 SDValue CC = getCCResult(DAG, Glued.getNode()); 3234 if (Op->getNumValues() == 1) 3235 return CC; 3236 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3237 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3238 Glued, CC); 3239 } 3240 3241 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3242 switch (Id) { 3243 case Intrinsic::s390_vpdi: 3244 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3245 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3246 3247 case Intrinsic::s390_vperm: 3248 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3249 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3250 3251 case Intrinsic::s390_vuphb: 3252 case Intrinsic::s390_vuphh: 3253 case Intrinsic::s390_vuphf: 3254 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3255 Op.getOperand(1)); 3256 3257 case Intrinsic::s390_vuplhb: 3258 case Intrinsic::s390_vuplhh: 3259 case Intrinsic::s390_vuplhf: 3260 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3261 Op.getOperand(1)); 3262 3263 case Intrinsic::s390_vuplb: 3264 case Intrinsic::s390_vuplhw: 3265 case Intrinsic::s390_vuplf: 3266 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3267 Op.getOperand(1)); 3268 3269 case Intrinsic::s390_vupllb: 3270 case Intrinsic::s390_vupllh: 3271 case Intrinsic::s390_vupllf: 3272 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3273 Op.getOperand(1)); 3274 3275 case Intrinsic::s390_vsumb: 3276 case Intrinsic::s390_vsumh: 3277 case Intrinsic::s390_vsumgh: 3278 case Intrinsic::s390_vsumgf: 3279 case Intrinsic::s390_vsumqf: 3280 case Intrinsic::s390_vsumqg: 3281 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3282 Op.getOperand(1), Op.getOperand(2)); 3283 } 3284 3285 return SDValue(); 3286 } 3287 3288 namespace { 3289 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3290 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3291 // Operand is the constant third operand, otherwise it is the number of 3292 // bytes in each element of the result. 3293 struct Permute { 3294 unsigned Opcode; 3295 unsigned Operand; 3296 unsigned char Bytes[SystemZ::VectorBytes]; 3297 }; 3298 } 3299 3300 static const Permute PermuteForms[] = { 3301 // VMRHG 3302 { SystemZISD::MERGE_HIGH, 8, 3303 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3304 // VMRHF 3305 { SystemZISD::MERGE_HIGH, 4, 3306 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3307 // VMRHH 3308 { SystemZISD::MERGE_HIGH, 2, 3309 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3310 // VMRHB 3311 { SystemZISD::MERGE_HIGH, 1, 3312 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3313 // VMRLG 3314 { SystemZISD::MERGE_LOW, 8, 3315 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3316 // VMRLF 3317 { SystemZISD::MERGE_LOW, 4, 3318 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3319 // VMRLH 3320 { SystemZISD::MERGE_LOW, 2, 3321 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3322 // VMRLB 3323 { SystemZISD::MERGE_LOW, 1, 3324 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3325 // VPKG 3326 { SystemZISD::PACK, 4, 3327 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3328 // VPKF 3329 { SystemZISD::PACK, 2, 3330 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3331 // VPKH 3332 { SystemZISD::PACK, 1, 3333 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3334 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3335 { SystemZISD::PERMUTE_DWORDS, 4, 3336 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3337 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3338 { SystemZISD::PERMUTE_DWORDS, 1, 3339 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3340 }; 3341 3342 // Called after matching a vector shuffle against a particular pattern. 3343 // Both the original shuffle and the pattern have two vector operands. 3344 // OpNos[0] is the operand of the original shuffle that should be used for 3345 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3346 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3347 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3348 // for operands 0 and 1 of the pattern. 3349 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3350 if (OpNos[0] < 0) { 3351 if (OpNos[1] < 0) 3352 return false; 3353 OpNo0 = OpNo1 = OpNos[1]; 3354 } else if (OpNos[1] < 0) { 3355 OpNo0 = OpNo1 = OpNos[0]; 3356 } else { 3357 OpNo0 = OpNos[0]; 3358 OpNo1 = OpNos[1]; 3359 } 3360 return true; 3361 } 3362 3363 // Bytes is a VPERM-like permute vector, except that -1 is used for 3364 // undefined bytes. Return true if the VPERM can be implemented using P. 3365 // When returning true set OpNo0 to the VPERM operand that should be 3366 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3367 // 3368 // For example, if swapping the VPERM operands allows P to match, OpNo0 3369 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3370 // operand, but rewriting it to use two duplicated operands allows it to 3371 // match P, then OpNo0 and OpNo1 will be the same. 3372 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3373 unsigned &OpNo0, unsigned &OpNo1) { 3374 int OpNos[] = { -1, -1 }; 3375 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3376 int Elt = Bytes[I]; 3377 if (Elt >= 0) { 3378 // Make sure that the two permute vectors use the same suboperand 3379 // byte number. Only the operand numbers (the high bits) are 3380 // allowed to differ. 3381 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3382 return false; 3383 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3384 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3385 // Make sure that the operand mappings are consistent with previous 3386 // elements. 3387 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3388 return false; 3389 OpNos[ModelOpNo] = RealOpNo; 3390 } 3391 } 3392 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3393 } 3394 3395 // As above, but search for a matching permute. 3396 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3397 unsigned &OpNo0, unsigned &OpNo1) { 3398 for (auto &P : PermuteForms) 3399 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3400 return &P; 3401 return nullptr; 3402 } 3403 3404 // Bytes is a VPERM-like permute vector, except that -1 is used for 3405 // undefined bytes. This permute is an operand of an outer permute. 3406 // See whether redistributing the -1 bytes gives a shuffle that can be 3407 // implemented using P. If so, set Transform to a VPERM-like permute vector 3408 // that, when applied to the result of P, gives the original permute in Bytes. 3409 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3410 const Permute &P, 3411 SmallVectorImpl<int> &Transform) { 3412 unsigned To = 0; 3413 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3414 int Elt = Bytes[From]; 3415 if (Elt < 0) 3416 // Byte number From of the result is undefined. 3417 Transform[From] = -1; 3418 else { 3419 while (P.Bytes[To] != Elt) { 3420 To += 1; 3421 if (To == SystemZ::VectorBytes) 3422 return false; 3423 } 3424 Transform[From] = To; 3425 } 3426 } 3427 return true; 3428 } 3429 3430 // As above, but search for a matching permute. 3431 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3432 SmallVectorImpl<int> &Transform) { 3433 for (auto &P : PermuteForms) 3434 if (matchDoublePermute(Bytes, P, Transform)) 3435 return &P; 3436 return nullptr; 3437 } 3438 3439 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3440 // as if it had type vNi8. 3441 static void getVPermMask(ShuffleVectorSDNode *VSN, 3442 SmallVectorImpl<int> &Bytes) { 3443 EVT VT = VSN->getValueType(0); 3444 unsigned NumElements = VT.getVectorNumElements(); 3445 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3446 Bytes.resize(NumElements * BytesPerElement, -1); 3447 for (unsigned I = 0; I < NumElements; ++I) { 3448 int Index = VSN->getMaskElt(I); 3449 if (Index >= 0) 3450 for (unsigned J = 0; J < BytesPerElement; ++J) 3451 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3452 } 3453 } 3454 3455 // Bytes is a VPERM-like permute vector, except that -1 is used for 3456 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3457 // the result come from a contiguous sequence of bytes from one input. 3458 // Set Base to the selector for the first byte if so. 3459 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3460 unsigned BytesPerElement, int &Base) { 3461 Base = -1; 3462 for (unsigned I = 0; I < BytesPerElement; ++I) { 3463 if (Bytes[Start + I] >= 0) { 3464 unsigned Elem = Bytes[Start + I]; 3465 if (Base < 0) { 3466 Base = Elem - I; 3467 // Make sure the bytes would come from one input operand. 3468 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3469 return false; 3470 } else if (unsigned(Base) != Elem - I) 3471 return false; 3472 } 3473 } 3474 return true; 3475 } 3476 3477 // Bytes is a VPERM-like permute vector, except that -1 is used for 3478 // undefined bytes. Return true if it can be performed using VSLDI. 3479 // When returning true, set StartIndex to the shift amount and OpNo0 3480 // and OpNo1 to the VPERM operands that should be used as the first 3481 // and second shift operand respectively. 3482 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3483 unsigned &StartIndex, unsigned &OpNo0, 3484 unsigned &OpNo1) { 3485 int OpNos[] = { -1, -1 }; 3486 int Shift = -1; 3487 for (unsigned I = 0; I < 16; ++I) { 3488 int Index = Bytes[I]; 3489 if (Index >= 0) { 3490 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3491 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3492 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3493 if (Shift < 0) 3494 Shift = ExpectedShift; 3495 else if (Shift != ExpectedShift) 3496 return false; 3497 // Make sure that the operand mappings are consistent with previous 3498 // elements. 3499 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3500 return false; 3501 OpNos[ModelOpNo] = RealOpNo; 3502 } 3503 } 3504 StartIndex = Shift; 3505 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3506 } 3507 3508 // Create a node that performs P on operands Op0 and Op1, casting the 3509 // operands to the appropriate type. The type of the result is determined by P. 3510 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3511 const Permute &P, SDValue Op0, SDValue Op1) { 3512 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3513 // elements of a PACK are twice as wide as the outputs. 3514 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3515 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3516 P.Operand); 3517 // Cast both operands to the appropriate type. 3518 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3519 SystemZ::VectorBytes / InBytes); 3520 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3521 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3522 SDValue Op; 3523 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3524 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3525 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3526 } else if (P.Opcode == SystemZISD::PACK) { 3527 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3528 SystemZ::VectorBytes / P.Operand); 3529 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3530 } else { 3531 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3532 } 3533 return Op; 3534 } 3535 3536 // Bytes is a VPERM-like permute vector, except that -1 is used for 3537 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3538 // VSLDI or VPERM. 3539 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3540 const SmallVectorImpl<int> &Bytes) { 3541 for (unsigned I = 0; I < 2; ++I) 3542 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3543 3544 // First see whether VSLDI can be used. 3545 unsigned StartIndex, OpNo0, OpNo1; 3546 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3547 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3548 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3549 3550 // Fall back on VPERM. Construct an SDNode for the permute vector. 3551 SDValue IndexNodes[SystemZ::VectorBytes]; 3552 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3553 if (Bytes[I] >= 0) 3554 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3555 else 3556 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3557 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3558 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3559 } 3560 3561 namespace { 3562 // Describes a general N-operand vector shuffle. 3563 struct GeneralShuffle { 3564 GeneralShuffle(EVT vt) : VT(vt) {} 3565 void addUndef(); 3566 void add(SDValue, unsigned); 3567 SDValue getNode(SelectionDAG &, SDLoc); 3568 3569 // The operands of the shuffle. 3570 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3571 3572 // Index I is -1 if byte I of the result is undefined. Otherwise the 3573 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3574 // Bytes[I] / SystemZ::VectorBytes. 3575 SmallVector<int, SystemZ::VectorBytes> Bytes; 3576 3577 // The type of the shuffle result. 3578 EVT VT; 3579 }; 3580 } 3581 3582 // Add an extra undefined element to the shuffle. 3583 void GeneralShuffle::addUndef() { 3584 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3585 for (unsigned I = 0; I < BytesPerElement; ++I) 3586 Bytes.push_back(-1); 3587 } 3588 3589 // Add an extra element to the shuffle, taking it from element Elem of Op. 3590 // A null Op indicates a vector input whose value will be calculated later; 3591 // there is at most one such input per shuffle and it always has the same 3592 // type as the result. 3593 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3594 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3595 3596 // The source vector can have wider elements than the result, 3597 // either through an explicit TRUNCATE or because of type legalization. 3598 // We want the least significant part. 3599 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3600 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3601 assert(FromBytesPerElement >= BytesPerElement && 3602 "Invalid EXTRACT_VECTOR_ELT"); 3603 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3604 (FromBytesPerElement - BytesPerElement)); 3605 3606 // Look through things like shuffles and bitcasts. 3607 while (Op.getNode()) { 3608 if (Op.getOpcode() == ISD::BITCAST) 3609 Op = Op.getOperand(0); 3610 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3611 // See whether the bytes we need come from a contiguous part of one 3612 // operand. 3613 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3614 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3615 int NewByte; 3616 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3617 break; 3618 if (NewByte < 0) { 3619 addUndef(); 3620 return; 3621 } 3622 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3623 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3624 } else if (Op.getOpcode() == ISD::UNDEF) { 3625 addUndef(); 3626 return; 3627 } else 3628 break; 3629 } 3630 3631 // Make sure that the source of the extraction is in Ops. 3632 unsigned OpNo = 0; 3633 for (; OpNo < Ops.size(); ++OpNo) 3634 if (Ops[OpNo] == Op) 3635 break; 3636 if (OpNo == Ops.size()) 3637 Ops.push_back(Op); 3638 3639 // Add the element to Bytes. 3640 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3641 for (unsigned I = 0; I < BytesPerElement; ++I) 3642 Bytes.push_back(Base + I); 3643 } 3644 3645 // Return SDNodes for the completed shuffle. 3646 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3647 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3648 3649 if (Ops.size() == 0) 3650 return DAG.getUNDEF(VT); 3651 3652 // Make sure that there are at least two shuffle operands. 3653 if (Ops.size() == 1) 3654 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3655 3656 // Create a tree of shuffles, deferring root node until after the loop. 3657 // Try to redistribute the undefined elements of non-root nodes so that 3658 // the non-root shuffles match something like a pack or merge, then adjust 3659 // the parent node's permute vector to compensate for the new order. 3660 // Among other things, this copes with vectors like <2 x i16> that were 3661 // padded with undefined elements during type legalization. 3662 // 3663 // In the best case this redistribution will lead to the whole tree 3664 // using packs and merges. It should rarely be a loss in other cases. 3665 unsigned Stride = 1; 3666 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3667 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3668 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3669 3670 // Create a mask for just these two operands. 3671 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3672 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3673 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3674 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3675 if (OpNo == I) 3676 NewBytes[J] = Byte; 3677 else if (OpNo == I + Stride) 3678 NewBytes[J] = SystemZ::VectorBytes + Byte; 3679 else 3680 NewBytes[J] = -1; 3681 } 3682 // See if it would be better to reorganize NewMask to avoid using VPERM. 3683 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3684 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3685 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3686 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3687 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3688 if (NewBytes[J] >= 0) { 3689 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3690 "Invalid double permute"); 3691 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3692 } else 3693 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3694 } 3695 } else { 3696 // Just use NewBytes on the operands. 3697 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3698 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3699 if (NewBytes[J] >= 0) 3700 Bytes[J] = I * SystemZ::VectorBytes + J; 3701 } 3702 } 3703 } 3704 3705 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3706 if (Stride > 1) { 3707 Ops[1] = Ops[Stride]; 3708 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3709 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3710 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3711 } 3712 3713 // Look for an instruction that can do the permute without resorting 3714 // to VPERM. 3715 unsigned OpNo0, OpNo1; 3716 SDValue Op; 3717 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3718 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3719 else 3720 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3721 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3722 } 3723 3724 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3725 static bool isScalarToVector(SDValue Op) { 3726 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3727 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3728 return false; 3729 return true; 3730 } 3731 3732 // Return a vector of type VT that contains Value in the first element. 3733 // The other elements don't matter. 3734 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3735 SDValue Value) { 3736 // If we have a constant, replicate it to all elements and let the 3737 // BUILD_VECTOR lowering take care of it. 3738 if (Value.getOpcode() == ISD::Constant || 3739 Value.getOpcode() == ISD::ConstantFP) { 3740 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3741 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3742 } 3743 if (Value.getOpcode() == ISD::UNDEF) 3744 return DAG.getUNDEF(VT); 3745 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3746 } 3747 3748 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3749 // element 1. Used for cases in which replication is cheap. 3750 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3751 SDValue Op0, SDValue Op1) { 3752 if (Op0.getOpcode() == ISD::UNDEF) { 3753 if (Op1.getOpcode() == ISD::UNDEF) 3754 return DAG.getUNDEF(VT); 3755 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3756 } 3757 if (Op1.getOpcode() == ISD::UNDEF) 3758 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3759 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3760 buildScalarToVector(DAG, DL, VT, Op0), 3761 buildScalarToVector(DAG, DL, VT, Op1)); 3762 } 3763 3764 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3765 // vector for them. 3766 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3767 SDValue Op1) { 3768 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3769 return DAG.getUNDEF(MVT::v2i64); 3770 // If one of the two inputs is undefined then replicate the other one, 3771 // in order to avoid using another register unnecessarily. 3772 if (Op0.getOpcode() == ISD::UNDEF) 3773 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3774 else if (Op1.getOpcode() == ISD::UNDEF) 3775 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3776 else { 3777 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3778 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3779 } 3780 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3781 } 3782 3783 // Try to represent constant BUILD_VECTOR node BVN using a 3784 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3785 // on success. 3786 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3787 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3788 unsigned BytesPerElement = ElemVT.getStoreSize(); 3789 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3790 SDValue Op = BVN->getOperand(I); 3791 if (Op.getOpcode() != ISD::UNDEF) { 3792 uint64_t Value; 3793 if (Op.getOpcode() == ISD::Constant) 3794 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3795 else if (Op.getOpcode() == ISD::ConstantFP) 3796 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3797 .getZExtValue()); 3798 else 3799 return false; 3800 for (unsigned J = 0; J < BytesPerElement; ++J) { 3801 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3802 if (Byte == 0xff) 3803 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3804 else if (Byte != 0) 3805 return false; 3806 } 3807 } 3808 } 3809 return true; 3810 } 3811 3812 // Try to load a vector constant in which BitsPerElement-bit value Value 3813 // is replicated to fill the vector. VT is the type of the resulting 3814 // constant, which may have elements of a different size from BitsPerElement. 3815 // Return the SDValue of the constant on success, otherwise return 3816 // an empty value. 3817 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3818 const SystemZInstrInfo *TII, 3819 SDLoc DL, EVT VT, uint64_t Value, 3820 unsigned BitsPerElement) { 3821 // Signed 16-bit values can be replicated using VREPI. 3822 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3823 if (isInt<16>(SignedValue)) { 3824 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3825 SystemZ::VectorBits / BitsPerElement); 3826 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3827 DAG.getConstant(SignedValue, DL, MVT::i32)); 3828 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3829 } 3830 // See whether rotating the constant left some N places gives a value that 3831 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3832 // If so we can use VGM. 3833 unsigned Start, End; 3834 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3835 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3836 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3837 // bit numbers for an BitsPerElement value, so that 0 denotes 3838 // 1 << (BitsPerElement-1). 3839 Start -= 64 - BitsPerElement; 3840 End -= 64 - BitsPerElement; 3841 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3842 SystemZ::VectorBits / BitsPerElement); 3843 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3844 DAG.getConstant(Start, DL, MVT::i32), 3845 DAG.getConstant(End, DL, MVT::i32)); 3846 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3847 } 3848 return SDValue(); 3849 } 3850 3851 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3852 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3853 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3854 // would benefit from this representation and return it if so. 3855 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3856 BuildVectorSDNode *BVN) { 3857 EVT VT = BVN->getValueType(0); 3858 unsigned NumElements = VT.getVectorNumElements(); 3859 3860 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3861 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3862 // need a BUILD_VECTOR, add an additional placeholder operand for that 3863 // BUILD_VECTOR and store its operands in ResidueOps. 3864 GeneralShuffle GS(VT); 3865 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3866 bool FoundOne = false; 3867 for (unsigned I = 0; I < NumElements; ++I) { 3868 SDValue Op = BVN->getOperand(I); 3869 if (Op.getOpcode() == ISD::TRUNCATE) 3870 Op = Op.getOperand(0); 3871 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3872 Op.getOperand(1).getOpcode() == ISD::Constant) { 3873 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3874 GS.add(Op.getOperand(0), Elem); 3875 FoundOne = true; 3876 } else if (Op.getOpcode() == ISD::UNDEF) { 3877 GS.addUndef(); 3878 } else { 3879 GS.add(SDValue(), ResidueOps.size()); 3880 ResidueOps.push_back(Op); 3881 } 3882 } 3883 3884 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3885 if (!FoundOne) 3886 return SDValue(); 3887 3888 // Create the BUILD_VECTOR for the remaining elements, if any. 3889 if (!ResidueOps.empty()) { 3890 while (ResidueOps.size() < NumElements) 3891 ResidueOps.push_back(DAG.getUNDEF(VT.getVectorElementType())); 3892 for (auto &Op : GS.Ops) { 3893 if (!Op.getNode()) { 3894 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3895 break; 3896 } 3897 } 3898 } 3899 return GS.getNode(DAG, SDLoc(BVN)); 3900 } 3901 3902 // Combine GPR scalar values Elems into a vector of type VT. 3903 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3904 SmallVectorImpl<SDValue> &Elems) { 3905 // See whether there is a single replicated value. 3906 SDValue Single; 3907 unsigned int NumElements = Elems.size(); 3908 unsigned int Count = 0; 3909 for (auto Elem : Elems) { 3910 if (Elem.getOpcode() != ISD::UNDEF) { 3911 if (!Single.getNode()) 3912 Single = Elem; 3913 else if (Elem != Single) { 3914 Single = SDValue(); 3915 break; 3916 } 3917 Count += 1; 3918 } 3919 } 3920 // There are three cases here: 3921 // 3922 // - if the only defined element is a loaded one, the best sequence 3923 // is a replicating load. 3924 // 3925 // - otherwise, if the only defined element is an i64 value, we will 3926 // end up with the same VLVGP sequence regardless of whether we short-cut 3927 // for replication or fall through to the later code. 3928 // 3929 // - otherwise, if the only defined element is an i32 or smaller value, 3930 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 3931 // This is only a win if the single defined element is used more than once. 3932 // In other cases we're better off using a single VLVGx. 3933 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 3934 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 3935 3936 // The best way of building a v2i64 from two i64s is to use VLVGP. 3937 if (VT == MVT::v2i64) 3938 return joinDwords(DAG, DL, Elems[0], Elems[1]); 3939 3940 // Use a 64-bit merge high to combine two doubles. 3941 if (VT == MVT::v2f64) 3942 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3943 3944 // Build v4f32 values directly from the FPRs: 3945 // 3946 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 3947 // V V VMRHF 3948 // <ABxx> <CDxx> 3949 // V VMRHG 3950 // <ABCD> 3951 if (VT == MVT::v4f32) { 3952 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3953 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 3954 // Avoid unnecessary undefs by reusing the other operand. 3955 if (Op01.getOpcode() == ISD::UNDEF) 3956 Op01 = Op23; 3957 else if (Op23.getOpcode() == ISD::UNDEF) 3958 Op23 = Op01; 3959 // Merging identical replications is a no-op. 3960 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 3961 return Op01; 3962 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 3963 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 3964 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 3965 DL, MVT::v2i64, Op01, Op23); 3966 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3967 } 3968 3969 // Collect the constant terms. 3970 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 3971 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 3972 3973 unsigned NumConstants = 0; 3974 for (unsigned I = 0; I < NumElements; ++I) { 3975 SDValue Elem = Elems[I]; 3976 if (Elem.getOpcode() == ISD::Constant || 3977 Elem.getOpcode() == ISD::ConstantFP) { 3978 NumConstants += 1; 3979 Constants[I] = Elem; 3980 Done[I] = true; 3981 } 3982 } 3983 // If there was at least one constant, fill in the other elements of 3984 // Constants with undefs to get a full vector constant and use that 3985 // as the starting point. 3986 SDValue Result; 3987 if (NumConstants > 0) { 3988 for (unsigned I = 0; I < NumElements; ++I) 3989 if (!Constants[I].getNode()) 3990 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 3991 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 3992 } else { 3993 // Otherwise try to use VLVGP to start the sequence in order to 3994 // avoid a false dependency on any previous contents of the vector 3995 // register. This only makes sense if one of the associated elements 3996 // is defined. 3997 unsigned I1 = NumElements / 2 - 1; 3998 unsigned I2 = NumElements - 1; 3999 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 4000 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 4001 if (Def1 || Def2) { 4002 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4003 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4004 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4005 joinDwords(DAG, DL, Elem1, Elem2)); 4006 Done[I1] = true; 4007 Done[I2] = true; 4008 } else 4009 Result = DAG.getUNDEF(VT); 4010 } 4011 4012 // Use VLVGx to insert the other elements. 4013 for (unsigned I = 0; I < NumElements; ++I) 4014 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4015 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4016 DAG.getConstant(I, DL, MVT::i32)); 4017 return Result; 4018 } 4019 4020 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4021 SelectionDAG &DAG) const { 4022 const SystemZInstrInfo *TII = 4023 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4024 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4025 SDLoc DL(Op); 4026 EVT VT = Op.getValueType(); 4027 4028 if (BVN->isConstant()) { 4029 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4030 // preferred way of creating all-zero and all-one vectors so give it 4031 // priority over other methods below. 4032 uint64_t Mask = 0; 4033 if (tryBuildVectorByteMask(BVN, Mask)) { 4034 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4035 DAG.getConstant(Mask, DL, MVT::i32)); 4036 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4037 } 4038 4039 // Try using some form of replication. 4040 APInt SplatBits, SplatUndef; 4041 unsigned SplatBitSize; 4042 bool HasAnyUndefs; 4043 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4044 8, true) && 4045 SplatBitSize <= 64) { 4046 // First try assuming that any undefined bits above the highest set bit 4047 // and below the lowest set bit are 1s. This increases the likelihood of 4048 // being able to use a sign-extended element value in VECTOR REPLICATE 4049 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4050 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4051 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4052 uint64_t Lower = (SplatUndefZ 4053 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4054 uint64_t Upper = (SplatUndefZ 4055 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4056 uint64_t Value = SplatBitsZ | Upper | Lower; 4057 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4058 SplatBitSize); 4059 if (Op.getNode()) 4060 return Op; 4061 4062 // Now try assuming that any undefined bits between the first and 4063 // last defined set bits are set. This increases the chances of 4064 // using a non-wraparound mask. 4065 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4066 Value = SplatBitsZ | Middle; 4067 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4068 if (Op.getNode()) 4069 return Op; 4070 } 4071 4072 // Fall back to loading it from memory. 4073 return SDValue(); 4074 } 4075 4076 // See if we should use shuffles to construct the vector from other vectors. 4077 SDValue Res = tryBuildVectorShuffle(DAG, BVN); 4078 if (Res.getNode()) 4079 return Res; 4080 4081 // Detect SCALAR_TO_VECTOR conversions. 4082 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4083 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4084 4085 // Otherwise use buildVector to build the vector up from GPRs. 4086 unsigned NumElements = Op.getNumOperands(); 4087 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4088 for (unsigned I = 0; I < NumElements; ++I) 4089 Ops[I] = Op.getOperand(I); 4090 return buildVector(DAG, DL, VT, Ops); 4091 } 4092 4093 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4094 SelectionDAG &DAG) const { 4095 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4096 SDLoc DL(Op); 4097 EVT VT = Op.getValueType(); 4098 unsigned NumElements = VT.getVectorNumElements(); 4099 4100 if (VSN->isSplat()) { 4101 SDValue Op0 = Op.getOperand(0); 4102 unsigned Index = VSN->getSplatIndex(); 4103 assert(Index < VT.getVectorNumElements() && 4104 "Splat index should be defined and in first operand"); 4105 // See whether the value we're splatting is directly available as a scalar. 4106 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4107 Op0.getOpcode() == ISD::BUILD_VECTOR) 4108 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4109 // Otherwise keep it as a vector-to-vector operation. 4110 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4111 DAG.getConstant(Index, DL, MVT::i32)); 4112 } 4113 4114 GeneralShuffle GS(VT); 4115 for (unsigned I = 0; I < NumElements; ++I) { 4116 int Elt = VSN->getMaskElt(I); 4117 if (Elt < 0) 4118 GS.addUndef(); 4119 else 4120 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4121 unsigned(Elt) % NumElements); 4122 } 4123 return GS.getNode(DAG, SDLoc(VSN)); 4124 } 4125 4126 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4127 SelectionDAG &DAG) const { 4128 SDLoc DL(Op); 4129 // Just insert the scalar into element 0 of an undefined vector. 4130 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4131 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4132 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4133 } 4134 4135 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4136 SelectionDAG &DAG) const { 4137 // Handle insertions of floating-point values. 4138 SDLoc DL(Op); 4139 SDValue Op0 = Op.getOperand(0); 4140 SDValue Op1 = Op.getOperand(1); 4141 SDValue Op2 = Op.getOperand(2); 4142 EVT VT = Op.getValueType(); 4143 4144 // Insertions into constant indices of a v2f64 can be done using VPDI. 4145 // However, if the inserted value is a bitcast or a constant then it's 4146 // better to use GPRs, as below. 4147 if (VT == MVT::v2f64 && 4148 Op1.getOpcode() != ISD::BITCAST && 4149 Op1.getOpcode() != ISD::ConstantFP && 4150 Op2.getOpcode() == ISD::Constant) { 4151 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4152 unsigned Mask = VT.getVectorNumElements() - 1; 4153 if (Index <= Mask) 4154 return Op; 4155 } 4156 4157 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4158 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4159 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4160 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4161 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4162 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4163 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4164 } 4165 4166 SDValue 4167 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4168 SelectionDAG &DAG) const { 4169 // Handle extractions of floating-point values. 4170 SDLoc DL(Op); 4171 SDValue Op0 = Op.getOperand(0); 4172 SDValue Op1 = Op.getOperand(1); 4173 EVT VT = Op.getValueType(); 4174 EVT VecVT = Op0.getValueType(); 4175 4176 // Extractions of constant indices can be done directly. 4177 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4178 uint64_t Index = CIndexN->getZExtValue(); 4179 unsigned Mask = VecVT.getVectorNumElements() - 1; 4180 if (Index <= Mask) 4181 return Op; 4182 } 4183 4184 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4185 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4186 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4187 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4188 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4189 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4190 } 4191 4192 SDValue 4193 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4194 unsigned UnpackHigh) const { 4195 SDValue PackedOp = Op.getOperand(0); 4196 EVT OutVT = Op.getValueType(); 4197 EVT InVT = PackedOp.getValueType(); 4198 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4199 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4200 do { 4201 FromBits *= 2; 4202 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4203 SystemZ::VectorBits / FromBits); 4204 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4205 } while (FromBits != ToBits); 4206 return PackedOp; 4207 } 4208 4209 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4210 unsigned ByScalar) const { 4211 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4212 SDValue Op0 = Op.getOperand(0); 4213 SDValue Op1 = Op.getOperand(1); 4214 SDLoc DL(Op); 4215 EVT VT = Op.getValueType(); 4216 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4217 4218 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4219 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4220 APInt SplatBits, SplatUndef; 4221 unsigned SplatBitSize; 4222 bool HasAnyUndefs; 4223 // Check for constant splats. Use ElemBitSize as the minimum element 4224 // width and reject splats that need wider elements. 4225 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4226 ElemBitSize, true) && 4227 SplatBitSize == ElemBitSize) { 4228 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4229 DL, MVT::i32); 4230 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4231 } 4232 // Check for variable splats. 4233 BitVector UndefElements; 4234 SDValue Splat = BVN->getSplatValue(&UndefElements); 4235 if (Splat) { 4236 // Since i32 is the smallest legal type, we either need a no-op 4237 // or a truncation. 4238 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4239 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4240 } 4241 } 4242 4243 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4244 // and the shift amount is directly available in a GPR. 4245 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4246 if (VSN->isSplat()) { 4247 SDValue VSNOp0 = VSN->getOperand(0); 4248 unsigned Index = VSN->getSplatIndex(); 4249 assert(Index < VT.getVectorNumElements() && 4250 "Splat index should be defined and in first operand"); 4251 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4252 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4253 // Since i32 is the smallest legal type, we either need a no-op 4254 // or a truncation. 4255 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4256 VSNOp0.getOperand(Index)); 4257 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4258 } 4259 } 4260 } 4261 4262 // Otherwise just treat the current form as legal. 4263 return Op; 4264 } 4265 4266 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4267 SelectionDAG &DAG) const { 4268 switch (Op.getOpcode()) { 4269 case ISD::BR_CC: 4270 return lowerBR_CC(Op, DAG); 4271 case ISD::SELECT_CC: 4272 return lowerSELECT_CC(Op, DAG); 4273 case ISD::SETCC: 4274 return lowerSETCC(Op, DAG); 4275 case ISD::GlobalAddress: 4276 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4277 case ISD::GlobalTLSAddress: 4278 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4279 case ISD::BlockAddress: 4280 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4281 case ISD::JumpTable: 4282 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4283 case ISD::ConstantPool: 4284 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4285 case ISD::BITCAST: 4286 return lowerBITCAST(Op, DAG); 4287 case ISD::VASTART: 4288 return lowerVASTART(Op, DAG); 4289 case ISD::VACOPY: 4290 return lowerVACOPY(Op, DAG); 4291 case ISD::DYNAMIC_STACKALLOC: 4292 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4293 case ISD::SMUL_LOHI: 4294 return lowerSMUL_LOHI(Op, DAG); 4295 case ISD::UMUL_LOHI: 4296 return lowerUMUL_LOHI(Op, DAG); 4297 case ISD::SDIVREM: 4298 return lowerSDIVREM(Op, DAG); 4299 case ISD::UDIVREM: 4300 return lowerUDIVREM(Op, DAG); 4301 case ISD::OR: 4302 return lowerOR(Op, DAG); 4303 case ISD::CTPOP: 4304 return lowerCTPOP(Op, DAG); 4305 case ISD::CTLZ_ZERO_UNDEF: 4306 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4307 Op.getValueType(), Op.getOperand(0)); 4308 case ISD::CTTZ_ZERO_UNDEF: 4309 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4310 Op.getValueType(), Op.getOperand(0)); 4311 case ISD::ATOMIC_SWAP: 4312 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4313 case ISD::ATOMIC_STORE: 4314 return lowerATOMIC_STORE(Op, DAG); 4315 case ISD::ATOMIC_LOAD: 4316 return lowerATOMIC_LOAD(Op, DAG); 4317 case ISD::ATOMIC_LOAD_ADD: 4318 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4319 case ISD::ATOMIC_LOAD_SUB: 4320 return lowerATOMIC_LOAD_SUB(Op, DAG); 4321 case ISD::ATOMIC_LOAD_AND: 4322 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4323 case ISD::ATOMIC_LOAD_OR: 4324 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4325 case ISD::ATOMIC_LOAD_XOR: 4326 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4327 case ISD::ATOMIC_LOAD_NAND: 4328 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4329 case ISD::ATOMIC_LOAD_MIN: 4330 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4331 case ISD::ATOMIC_LOAD_MAX: 4332 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4333 case ISD::ATOMIC_LOAD_UMIN: 4334 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4335 case ISD::ATOMIC_LOAD_UMAX: 4336 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4337 case ISD::ATOMIC_CMP_SWAP: 4338 return lowerATOMIC_CMP_SWAP(Op, DAG); 4339 case ISD::STACKSAVE: 4340 return lowerSTACKSAVE(Op, DAG); 4341 case ISD::STACKRESTORE: 4342 return lowerSTACKRESTORE(Op, DAG); 4343 case ISD::PREFETCH: 4344 return lowerPREFETCH(Op, DAG); 4345 case ISD::INTRINSIC_W_CHAIN: 4346 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4347 case ISD::INTRINSIC_WO_CHAIN: 4348 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4349 case ISD::BUILD_VECTOR: 4350 return lowerBUILD_VECTOR(Op, DAG); 4351 case ISD::VECTOR_SHUFFLE: 4352 return lowerVECTOR_SHUFFLE(Op, DAG); 4353 case ISD::SCALAR_TO_VECTOR: 4354 return lowerSCALAR_TO_VECTOR(Op, DAG); 4355 case ISD::INSERT_VECTOR_ELT: 4356 return lowerINSERT_VECTOR_ELT(Op, DAG); 4357 case ISD::EXTRACT_VECTOR_ELT: 4358 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4359 case ISD::SIGN_EXTEND_VECTOR_INREG: 4360 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4361 case ISD::ZERO_EXTEND_VECTOR_INREG: 4362 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4363 case ISD::SHL: 4364 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4365 case ISD::SRL: 4366 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4367 case ISD::SRA: 4368 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4369 default: 4370 llvm_unreachable("Unexpected node to lower"); 4371 } 4372 } 4373 4374 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4375 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4376 switch ((SystemZISD::NodeType)Opcode) { 4377 case SystemZISD::FIRST_NUMBER: break; 4378 OPCODE(RET_FLAG); 4379 OPCODE(CALL); 4380 OPCODE(SIBCALL); 4381 OPCODE(TLS_GDCALL); 4382 OPCODE(TLS_LDCALL); 4383 OPCODE(PCREL_WRAPPER); 4384 OPCODE(PCREL_OFFSET); 4385 OPCODE(IABS); 4386 OPCODE(ICMP); 4387 OPCODE(FCMP); 4388 OPCODE(TM); 4389 OPCODE(BR_CCMASK); 4390 OPCODE(SELECT_CCMASK); 4391 OPCODE(ADJDYNALLOC); 4392 OPCODE(EXTRACT_ACCESS); 4393 OPCODE(POPCNT); 4394 OPCODE(UMUL_LOHI64); 4395 OPCODE(SDIVREM32); 4396 OPCODE(SDIVREM64); 4397 OPCODE(UDIVREM32); 4398 OPCODE(UDIVREM64); 4399 OPCODE(MVC); 4400 OPCODE(MVC_LOOP); 4401 OPCODE(NC); 4402 OPCODE(NC_LOOP); 4403 OPCODE(OC); 4404 OPCODE(OC_LOOP); 4405 OPCODE(XC); 4406 OPCODE(XC_LOOP); 4407 OPCODE(CLC); 4408 OPCODE(CLC_LOOP); 4409 OPCODE(STPCPY); 4410 OPCODE(STRCMP); 4411 OPCODE(SEARCH_STRING); 4412 OPCODE(IPM); 4413 OPCODE(SERIALIZE); 4414 OPCODE(TBEGIN); 4415 OPCODE(TBEGIN_NOFLOAT); 4416 OPCODE(TEND); 4417 OPCODE(BYTE_MASK); 4418 OPCODE(ROTATE_MASK); 4419 OPCODE(REPLICATE); 4420 OPCODE(JOIN_DWORDS); 4421 OPCODE(SPLAT); 4422 OPCODE(MERGE_HIGH); 4423 OPCODE(MERGE_LOW); 4424 OPCODE(SHL_DOUBLE); 4425 OPCODE(PERMUTE_DWORDS); 4426 OPCODE(PERMUTE); 4427 OPCODE(PACK); 4428 OPCODE(PACKS_CC); 4429 OPCODE(PACKLS_CC); 4430 OPCODE(UNPACK_HIGH); 4431 OPCODE(UNPACKL_HIGH); 4432 OPCODE(UNPACK_LOW); 4433 OPCODE(UNPACKL_LOW); 4434 OPCODE(VSHL_BY_SCALAR); 4435 OPCODE(VSRL_BY_SCALAR); 4436 OPCODE(VSRA_BY_SCALAR); 4437 OPCODE(VSUM); 4438 OPCODE(VICMPE); 4439 OPCODE(VICMPH); 4440 OPCODE(VICMPHL); 4441 OPCODE(VICMPES); 4442 OPCODE(VICMPHS); 4443 OPCODE(VICMPHLS); 4444 OPCODE(VFCMPE); 4445 OPCODE(VFCMPH); 4446 OPCODE(VFCMPHE); 4447 OPCODE(VFCMPES); 4448 OPCODE(VFCMPHS); 4449 OPCODE(VFCMPHES); 4450 OPCODE(VFTCI); 4451 OPCODE(VEXTEND); 4452 OPCODE(VROUND); 4453 OPCODE(VTM); 4454 OPCODE(VFAE_CC); 4455 OPCODE(VFAEZ_CC); 4456 OPCODE(VFEE_CC); 4457 OPCODE(VFEEZ_CC); 4458 OPCODE(VFENE_CC); 4459 OPCODE(VFENEZ_CC); 4460 OPCODE(VISTR_CC); 4461 OPCODE(VSTRC_CC); 4462 OPCODE(VSTRCZ_CC); 4463 OPCODE(ATOMIC_SWAPW); 4464 OPCODE(ATOMIC_LOADW_ADD); 4465 OPCODE(ATOMIC_LOADW_SUB); 4466 OPCODE(ATOMIC_LOADW_AND); 4467 OPCODE(ATOMIC_LOADW_OR); 4468 OPCODE(ATOMIC_LOADW_XOR); 4469 OPCODE(ATOMIC_LOADW_NAND); 4470 OPCODE(ATOMIC_LOADW_MIN); 4471 OPCODE(ATOMIC_LOADW_MAX); 4472 OPCODE(ATOMIC_LOADW_UMIN); 4473 OPCODE(ATOMIC_LOADW_UMAX); 4474 OPCODE(ATOMIC_CMP_SWAPW); 4475 OPCODE(PREFETCH); 4476 } 4477 return nullptr; 4478 #undef OPCODE 4479 } 4480 4481 // Return true if VT is a vector whose elements are a whole number of bytes 4482 // in width. 4483 static bool canTreatAsByteVector(EVT VT) { 4484 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4485 } 4486 4487 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4488 // producing a result of type ResVT. Op is a possibly bitcast version 4489 // of the input vector and Index is the index (based on type VecVT) that 4490 // should be extracted. Return the new extraction if a simplification 4491 // was possible or if Force is true. 4492 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4493 SDValue Op, unsigned Index, 4494 DAGCombinerInfo &DCI, 4495 bool Force) const { 4496 SelectionDAG &DAG = DCI.DAG; 4497 4498 // The number of bytes being extracted. 4499 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4500 4501 for (;;) { 4502 unsigned Opcode = Op.getOpcode(); 4503 if (Opcode == ISD::BITCAST) 4504 // Look through bitcasts. 4505 Op = Op.getOperand(0); 4506 else if (Opcode == ISD::VECTOR_SHUFFLE && 4507 canTreatAsByteVector(Op.getValueType())) { 4508 // Get a VPERM-like permute mask and see whether the bytes covered 4509 // by the extracted element are a contiguous sequence from one 4510 // source operand. 4511 SmallVector<int, SystemZ::VectorBytes> Bytes; 4512 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4513 int First; 4514 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4515 BytesPerElement, First)) 4516 break; 4517 if (First < 0) 4518 return DAG.getUNDEF(ResVT); 4519 // Make sure the contiguous sequence starts at a multiple of the 4520 // original element size. 4521 unsigned Byte = unsigned(First) % Bytes.size(); 4522 if (Byte % BytesPerElement != 0) 4523 break; 4524 // We can get the extracted value directly from an input. 4525 Index = Byte / BytesPerElement; 4526 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4527 Force = true; 4528 } else if (Opcode == ISD::BUILD_VECTOR && 4529 canTreatAsByteVector(Op.getValueType())) { 4530 // We can only optimize this case if the BUILD_VECTOR elements are 4531 // at least as wide as the extracted value. 4532 EVT OpVT = Op.getValueType(); 4533 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4534 if (OpBytesPerElement < BytesPerElement) 4535 break; 4536 // Make sure that the least-significant bit of the extracted value 4537 // is the least significant bit of an input. 4538 unsigned End = (Index + 1) * BytesPerElement; 4539 if (End % OpBytesPerElement != 0) 4540 break; 4541 // We're extracting the low part of one operand of the BUILD_VECTOR. 4542 Op = Op.getOperand(End / OpBytesPerElement - 1); 4543 if (!Op.getValueType().isInteger()) { 4544 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4545 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4546 DCI.AddToWorklist(Op.getNode()); 4547 } 4548 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4549 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4550 if (VT != ResVT) { 4551 DCI.AddToWorklist(Op.getNode()); 4552 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4553 } 4554 return Op; 4555 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4556 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4557 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4558 canTreatAsByteVector(Op.getValueType()) && 4559 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4560 // Make sure that only the unextended bits are significant. 4561 EVT ExtVT = Op.getValueType(); 4562 EVT OpVT = Op.getOperand(0).getValueType(); 4563 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4564 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4565 unsigned Byte = Index * BytesPerElement; 4566 unsigned SubByte = Byte % ExtBytesPerElement; 4567 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4568 if (SubByte < MinSubByte || 4569 SubByte + BytesPerElement > ExtBytesPerElement) 4570 break; 4571 // Get the byte offset of the unextended element 4572 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4573 // ...then add the byte offset relative to that element. 4574 Byte += SubByte - MinSubByte; 4575 if (Byte % BytesPerElement != 0) 4576 break; 4577 Op = Op.getOperand(0); 4578 Index = Byte / BytesPerElement; 4579 Force = true; 4580 } else 4581 break; 4582 } 4583 if (Force) { 4584 if (Op.getValueType() != VecVT) { 4585 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4586 DCI.AddToWorklist(Op.getNode()); 4587 } 4588 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4589 DAG.getConstant(Index, DL, MVT::i32)); 4590 } 4591 return SDValue(); 4592 } 4593 4594 // Optimize vector operations in scalar value Op on the basis that Op 4595 // is truncated to TruncVT. 4596 SDValue 4597 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4598 DAGCombinerInfo &DCI) const { 4599 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4600 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4601 // of type TruncVT. 4602 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4603 TruncVT.getSizeInBits() % 8 == 0) { 4604 SDValue Vec = Op.getOperand(0); 4605 EVT VecVT = Vec.getValueType(); 4606 if (canTreatAsByteVector(VecVT)) { 4607 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4608 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4609 unsigned TruncBytes = TruncVT.getStoreSize(); 4610 if (BytesPerElement % TruncBytes == 0) { 4611 // Calculate the value of Y' in the above description. We are 4612 // splitting the original elements into Scale equal-sized pieces 4613 // and for truncation purposes want the last (least-significant) 4614 // of these pieces for IndexN. This is easiest to do by calculating 4615 // the start index of the following element and then subtracting 1. 4616 unsigned Scale = BytesPerElement / TruncBytes; 4617 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4618 4619 // Defer the creation of the bitcast from X to combineExtract, 4620 // which might be able to optimize the extraction. 4621 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4622 VecVT.getStoreSize() / TruncBytes); 4623 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4624 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4625 } 4626 } 4627 } 4628 } 4629 return SDValue(); 4630 } 4631 4632 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4633 DAGCombinerInfo &DCI) const { 4634 SelectionDAG &DAG = DCI.DAG; 4635 unsigned Opcode = N->getOpcode(); 4636 if (Opcode == ISD::SIGN_EXTEND) { 4637 // Convert (sext (ashr (shl X, C1), C2)) to 4638 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4639 // cheap as narrower ones. 4640 SDValue N0 = N->getOperand(0); 4641 EVT VT = N->getValueType(0); 4642 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4643 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4644 SDValue Inner = N0.getOperand(0); 4645 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4646 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4647 unsigned Extra = (VT.getSizeInBits() - 4648 N0.getValueType().getSizeInBits()); 4649 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4650 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4651 EVT ShiftVT = N0.getOperand(1).getValueType(); 4652 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4653 Inner.getOperand(0)); 4654 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4655 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4656 ShiftVT)); 4657 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4658 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4659 } 4660 } 4661 } 4662 } 4663 if (Opcode == SystemZISD::MERGE_HIGH || 4664 Opcode == SystemZISD::MERGE_LOW) { 4665 SDValue Op0 = N->getOperand(0); 4666 SDValue Op1 = N->getOperand(1); 4667 if (Op0.getOpcode() == ISD::BITCAST) 4668 Op0 = Op0.getOperand(0); 4669 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4670 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4671 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4672 // for v4f32. 4673 if (Op1 == N->getOperand(0)) 4674 return Op1; 4675 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4676 EVT VT = Op1.getValueType(); 4677 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4678 if (ElemBytes <= 4) { 4679 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4680 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4681 EVT InVT = VT.changeVectorElementTypeToInteger(); 4682 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4683 SystemZ::VectorBytes / ElemBytes / 2); 4684 if (VT != InVT) { 4685 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4686 DCI.AddToWorklist(Op1.getNode()); 4687 } 4688 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4689 DCI.AddToWorklist(Op.getNode()); 4690 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4691 } 4692 } 4693 } 4694 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4695 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4696 // If X has wider elements then convert it to: 4697 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4698 if (Opcode == ISD::STORE) { 4699 auto *SN = cast<StoreSDNode>(N); 4700 EVT MemVT = SN->getMemoryVT(); 4701 if (MemVT.isInteger()) { 4702 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, 4703 SN->getValue(), DCI); 4704 if (Value.getNode()) { 4705 DCI.AddToWorklist(Value.getNode()); 4706 4707 // Rewrite the store with the new form of stored value. 4708 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4709 SN->getBasePtr(), SN->getMemoryVT(), 4710 SN->getMemOperand()); 4711 } 4712 } 4713 } 4714 // Try to simplify a vector extraction. 4715 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4716 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4717 SDValue Op0 = N->getOperand(0); 4718 EVT VecVT = Op0.getValueType(); 4719 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4720 IndexN->getZExtValue(), DCI, false); 4721 } 4722 } 4723 // (join_dwords X, X) == (replicate X) 4724 if (Opcode == SystemZISD::JOIN_DWORDS && 4725 N->getOperand(0) == N->getOperand(1)) 4726 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4727 N->getOperand(0)); 4728 // (fround (extract_vector_elt X 0)) 4729 // (fround (extract_vector_elt X 1)) -> 4730 // (extract_vector_elt (VROUND X) 0) 4731 // (extract_vector_elt (VROUND X) 1) 4732 // 4733 // This is a special case since the target doesn't really support v2f32s. 4734 if (Opcode == ISD::FP_ROUND) { 4735 SDValue Op0 = N->getOperand(0); 4736 if (N->getValueType(0) == MVT::f32 && 4737 Op0.hasOneUse() && 4738 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4739 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4740 Op0.getOperand(1).getOpcode() == ISD::Constant && 4741 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4742 SDValue Vec = Op0.getOperand(0); 4743 for (auto *U : Vec->uses()) { 4744 if (U != Op0.getNode() && 4745 U->hasOneUse() && 4746 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4747 U->getOperand(0) == Vec && 4748 U->getOperand(1).getOpcode() == ISD::Constant && 4749 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4750 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4751 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4752 OtherRound.getOperand(0) == SDValue(U, 0) && 4753 OtherRound.getValueType() == MVT::f32) { 4754 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4755 MVT::v4f32, Vec); 4756 DCI.AddToWorklist(VRound.getNode()); 4757 SDValue Extract1 = 4758 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4759 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4760 DCI.AddToWorklist(Extract1.getNode()); 4761 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4762 SDValue Extract0 = 4763 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4764 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4765 return Extract0; 4766 } 4767 } 4768 } 4769 } 4770 } 4771 return SDValue(); 4772 } 4773 4774 //===----------------------------------------------------------------------===// 4775 // Custom insertion 4776 //===----------------------------------------------------------------------===// 4777 4778 // Create a new basic block after MBB. 4779 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4780 MachineFunction &MF = *MBB->getParent(); 4781 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4782 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4783 return NewMBB; 4784 } 4785 4786 // Split MBB after MI and return the new block (the one that contains 4787 // instructions after MI). 4788 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4789 MachineBasicBlock *MBB) { 4790 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4791 NewMBB->splice(NewMBB->begin(), MBB, 4792 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4793 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4794 return NewMBB; 4795 } 4796 4797 // Split MBB before MI and return the new block (the one that contains MI). 4798 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4799 MachineBasicBlock *MBB) { 4800 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4801 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4802 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4803 return NewMBB; 4804 } 4805 4806 // Force base value Base into a register before MI. Return the register. 4807 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4808 const SystemZInstrInfo *TII) { 4809 if (Base.isReg()) 4810 return Base.getReg(); 4811 4812 MachineBasicBlock *MBB = MI->getParent(); 4813 MachineFunction &MF = *MBB->getParent(); 4814 MachineRegisterInfo &MRI = MF.getRegInfo(); 4815 4816 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4817 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4818 .addOperand(Base).addImm(0).addReg(0); 4819 return Reg; 4820 } 4821 4822 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4823 MachineBasicBlock * 4824 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4825 MachineBasicBlock *MBB) const { 4826 const SystemZInstrInfo *TII = 4827 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4828 4829 unsigned DestReg = MI->getOperand(0).getReg(); 4830 unsigned TrueReg = MI->getOperand(1).getReg(); 4831 unsigned FalseReg = MI->getOperand(2).getReg(); 4832 unsigned CCValid = MI->getOperand(3).getImm(); 4833 unsigned CCMask = MI->getOperand(4).getImm(); 4834 DebugLoc DL = MI->getDebugLoc(); 4835 4836 MachineBasicBlock *StartMBB = MBB; 4837 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4838 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4839 4840 // StartMBB: 4841 // BRC CCMask, JoinMBB 4842 // # fallthrough to FalseMBB 4843 MBB = StartMBB; 4844 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4845 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4846 MBB->addSuccessor(JoinMBB); 4847 MBB->addSuccessor(FalseMBB); 4848 4849 // FalseMBB: 4850 // # fallthrough to JoinMBB 4851 MBB = FalseMBB; 4852 MBB->addSuccessor(JoinMBB); 4853 4854 // JoinMBB: 4855 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4856 // ... 4857 MBB = JoinMBB; 4858 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4859 .addReg(TrueReg).addMBB(StartMBB) 4860 .addReg(FalseReg).addMBB(FalseMBB); 4861 4862 MI->eraseFromParent(); 4863 return JoinMBB; 4864 } 4865 4866 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4867 // StoreOpcode is the store to use and Invert says whether the store should 4868 // happen when the condition is false rather than true. If a STORE ON 4869 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4870 MachineBasicBlock * 4871 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4872 MachineBasicBlock *MBB, 4873 unsigned StoreOpcode, unsigned STOCOpcode, 4874 bool Invert) const { 4875 const SystemZInstrInfo *TII = 4876 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4877 4878 unsigned SrcReg = MI->getOperand(0).getReg(); 4879 MachineOperand Base = MI->getOperand(1); 4880 int64_t Disp = MI->getOperand(2).getImm(); 4881 unsigned IndexReg = MI->getOperand(3).getReg(); 4882 unsigned CCValid = MI->getOperand(4).getImm(); 4883 unsigned CCMask = MI->getOperand(5).getImm(); 4884 DebugLoc DL = MI->getDebugLoc(); 4885 4886 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4887 4888 // Use STOCOpcode if possible. We could use different store patterns in 4889 // order to avoid matching the index register, but the performance trade-offs 4890 // might be more complicated in that case. 4891 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4892 if (Invert) 4893 CCMask ^= CCValid; 4894 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4895 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4896 .addImm(CCValid).addImm(CCMask); 4897 MI->eraseFromParent(); 4898 return MBB; 4899 } 4900 4901 // Get the condition needed to branch around the store. 4902 if (!Invert) 4903 CCMask ^= CCValid; 4904 4905 MachineBasicBlock *StartMBB = MBB; 4906 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4907 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4908 4909 // StartMBB: 4910 // BRC CCMask, JoinMBB 4911 // # fallthrough to FalseMBB 4912 MBB = StartMBB; 4913 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4914 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4915 MBB->addSuccessor(JoinMBB); 4916 MBB->addSuccessor(FalseMBB); 4917 4918 // FalseMBB: 4919 // store %SrcReg, %Disp(%Index,%Base) 4920 // # fallthrough to JoinMBB 4921 MBB = FalseMBB; 4922 BuildMI(MBB, DL, TII->get(StoreOpcode)) 4923 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 4924 MBB->addSuccessor(JoinMBB); 4925 4926 MI->eraseFromParent(); 4927 return JoinMBB; 4928 } 4929 4930 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 4931 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 4932 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 4933 // BitSize is the width of the field in bits, or 0 if this is a partword 4934 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 4935 // is one of the operands. Invert says whether the field should be 4936 // inverted after performing BinOpcode (e.g. for NAND). 4937 MachineBasicBlock * 4938 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 4939 MachineBasicBlock *MBB, 4940 unsigned BinOpcode, 4941 unsigned BitSize, 4942 bool Invert) const { 4943 MachineFunction &MF = *MBB->getParent(); 4944 const SystemZInstrInfo *TII = 4945 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4946 MachineRegisterInfo &MRI = MF.getRegInfo(); 4947 bool IsSubWord = (BitSize < 32); 4948 4949 // Extract the operands. Base can be a register or a frame index. 4950 // Src2 can be a register or immediate. 4951 unsigned Dest = MI->getOperand(0).getReg(); 4952 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 4953 int64_t Disp = MI->getOperand(2).getImm(); 4954 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 4955 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 4956 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 4957 DebugLoc DL = MI->getDebugLoc(); 4958 if (IsSubWord) 4959 BitSize = MI->getOperand(6).getImm(); 4960 4961 // Subword operations use 32-bit registers. 4962 const TargetRegisterClass *RC = (BitSize <= 32 ? 4963 &SystemZ::GR32BitRegClass : 4964 &SystemZ::GR64BitRegClass); 4965 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 4966 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 4967 4968 // Get the right opcodes for the displacement. 4969 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 4970 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 4971 assert(LOpcode && CSOpcode && "Displacement out of range"); 4972 4973 // Create virtual registers for temporary results. 4974 unsigned OrigVal = MRI.createVirtualRegister(RC); 4975 unsigned OldVal = MRI.createVirtualRegister(RC); 4976 unsigned NewVal = (BinOpcode || IsSubWord ? 4977 MRI.createVirtualRegister(RC) : Src2.getReg()); 4978 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 4979 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 4980 4981 // Insert a basic block for the main loop. 4982 MachineBasicBlock *StartMBB = MBB; 4983 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 4984 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 4985 4986 // StartMBB: 4987 // ... 4988 // %OrigVal = L Disp(%Base) 4989 // # fall through to LoopMMB 4990 MBB = StartMBB; 4991 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 4992 .addOperand(Base).addImm(Disp).addReg(0); 4993 MBB->addSuccessor(LoopMBB); 4994 4995 // LoopMBB: 4996 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 4997 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 4998 // %RotatedNewVal = OP %RotatedOldVal, %Src2 4999 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5000 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5001 // JNE LoopMBB 5002 // # fall through to DoneMMB 5003 MBB = LoopMBB; 5004 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5005 .addReg(OrigVal).addMBB(StartMBB) 5006 .addReg(Dest).addMBB(LoopMBB); 5007 if (IsSubWord) 5008 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5009 .addReg(OldVal).addReg(BitShift).addImm(0); 5010 if (Invert) { 5011 // Perform the operation normally and then invert every bit of the field. 5012 unsigned Tmp = MRI.createVirtualRegister(RC); 5013 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5014 .addReg(RotatedOldVal).addOperand(Src2); 5015 if (BitSize <= 32) 5016 // XILF with the upper BitSize bits set. 5017 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5018 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5019 else { 5020 // Use LCGR and add -1 to the result, which is more compact than 5021 // an XILF, XILH pair. 5022 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5023 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5024 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5025 .addReg(Tmp2).addImm(-1); 5026 } 5027 } else if (BinOpcode) 5028 // A simply binary operation. 5029 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5030 .addReg(RotatedOldVal).addOperand(Src2); 5031 else if (IsSubWord) 5032 // Use RISBG to rotate Src2 into position and use it to replace the 5033 // field in RotatedOldVal. 5034 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5035 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5036 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5037 if (IsSubWord) 5038 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5039 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5040 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5041 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5042 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5043 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5044 MBB->addSuccessor(LoopMBB); 5045 MBB->addSuccessor(DoneMBB); 5046 5047 MI->eraseFromParent(); 5048 return DoneMBB; 5049 } 5050 5051 // Implement EmitInstrWithCustomInserter for pseudo 5052 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5053 // instruction that should be used to compare the current field with the 5054 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5055 // for when the current field should be kept. BitSize is the width of 5056 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5057 MachineBasicBlock * 5058 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5059 MachineBasicBlock *MBB, 5060 unsigned CompareOpcode, 5061 unsigned KeepOldMask, 5062 unsigned BitSize) const { 5063 MachineFunction &MF = *MBB->getParent(); 5064 const SystemZInstrInfo *TII = 5065 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5066 MachineRegisterInfo &MRI = MF.getRegInfo(); 5067 bool IsSubWord = (BitSize < 32); 5068 5069 // Extract the operands. Base can be a register or a frame index. 5070 unsigned Dest = MI->getOperand(0).getReg(); 5071 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5072 int64_t Disp = MI->getOperand(2).getImm(); 5073 unsigned Src2 = MI->getOperand(3).getReg(); 5074 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5075 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5076 DebugLoc DL = MI->getDebugLoc(); 5077 if (IsSubWord) 5078 BitSize = MI->getOperand(6).getImm(); 5079 5080 // Subword operations use 32-bit registers. 5081 const TargetRegisterClass *RC = (BitSize <= 32 ? 5082 &SystemZ::GR32BitRegClass : 5083 &SystemZ::GR64BitRegClass); 5084 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5085 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5086 5087 // Get the right opcodes for the displacement. 5088 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5089 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5090 assert(LOpcode && CSOpcode && "Displacement out of range"); 5091 5092 // Create virtual registers for temporary results. 5093 unsigned OrigVal = MRI.createVirtualRegister(RC); 5094 unsigned OldVal = MRI.createVirtualRegister(RC); 5095 unsigned NewVal = MRI.createVirtualRegister(RC); 5096 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5097 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5098 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5099 5100 // Insert 3 basic blocks for the loop. 5101 MachineBasicBlock *StartMBB = MBB; 5102 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5103 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5104 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5105 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5106 5107 // StartMBB: 5108 // ... 5109 // %OrigVal = L Disp(%Base) 5110 // # fall through to LoopMMB 5111 MBB = StartMBB; 5112 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5113 .addOperand(Base).addImm(Disp).addReg(0); 5114 MBB->addSuccessor(LoopMBB); 5115 5116 // LoopMBB: 5117 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5118 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5119 // CompareOpcode %RotatedOldVal, %Src2 5120 // BRC KeepOldMask, UpdateMBB 5121 MBB = LoopMBB; 5122 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5123 .addReg(OrigVal).addMBB(StartMBB) 5124 .addReg(Dest).addMBB(UpdateMBB); 5125 if (IsSubWord) 5126 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5127 .addReg(OldVal).addReg(BitShift).addImm(0); 5128 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5129 .addReg(RotatedOldVal).addReg(Src2); 5130 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5131 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5132 MBB->addSuccessor(UpdateMBB); 5133 MBB->addSuccessor(UseAltMBB); 5134 5135 // UseAltMBB: 5136 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5137 // # fall through to UpdateMMB 5138 MBB = UseAltMBB; 5139 if (IsSubWord) 5140 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5141 .addReg(RotatedOldVal).addReg(Src2) 5142 .addImm(32).addImm(31 + BitSize).addImm(0); 5143 MBB->addSuccessor(UpdateMBB); 5144 5145 // UpdateMBB: 5146 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5147 // [ %RotatedAltVal, UseAltMBB ] 5148 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5149 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5150 // JNE LoopMBB 5151 // # fall through to DoneMMB 5152 MBB = UpdateMBB; 5153 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5154 .addReg(RotatedOldVal).addMBB(LoopMBB) 5155 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5156 if (IsSubWord) 5157 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5158 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5159 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5160 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5161 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5162 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5163 MBB->addSuccessor(LoopMBB); 5164 MBB->addSuccessor(DoneMBB); 5165 5166 MI->eraseFromParent(); 5167 return DoneMBB; 5168 } 5169 5170 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5171 // instruction MI. 5172 MachineBasicBlock * 5173 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5174 MachineBasicBlock *MBB) const { 5175 MachineFunction &MF = *MBB->getParent(); 5176 const SystemZInstrInfo *TII = 5177 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5178 MachineRegisterInfo &MRI = MF.getRegInfo(); 5179 5180 // Extract the operands. Base can be a register or a frame index. 5181 unsigned Dest = MI->getOperand(0).getReg(); 5182 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5183 int64_t Disp = MI->getOperand(2).getImm(); 5184 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5185 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5186 unsigned BitShift = MI->getOperand(5).getReg(); 5187 unsigned NegBitShift = MI->getOperand(6).getReg(); 5188 int64_t BitSize = MI->getOperand(7).getImm(); 5189 DebugLoc DL = MI->getDebugLoc(); 5190 5191 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5192 5193 // Get the right opcodes for the displacement. 5194 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5195 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5196 assert(LOpcode && CSOpcode && "Displacement out of range"); 5197 5198 // Create virtual registers for temporary results. 5199 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5200 unsigned OldVal = MRI.createVirtualRegister(RC); 5201 unsigned CmpVal = MRI.createVirtualRegister(RC); 5202 unsigned SwapVal = MRI.createVirtualRegister(RC); 5203 unsigned StoreVal = MRI.createVirtualRegister(RC); 5204 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5205 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5206 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5207 5208 // Insert 2 basic blocks for the loop. 5209 MachineBasicBlock *StartMBB = MBB; 5210 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5211 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5212 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5213 5214 // StartMBB: 5215 // ... 5216 // %OrigOldVal = L Disp(%Base) 5217 // # fall through to LoopMMB 5218 MBB = StartMBB; 5219 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5220 .addOperand(Base).addImm(Disp).addReg(0); 5221 MBB->addSuccessor(LoopMBB); 5222 5223 // LoopMBB: 5224 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5225 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5226 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5227 // %Dest = RLL %OldVal, BitSize(%BitShift) 5228 // ^^ The low BitSize bits contain the field 5229 // of interest. 5230 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5231 // ^^ Replace the upper 32-BitSize bits of the 5232 // comparison value with those that we loaded, 5233 // so that we can use a full word comparison. 5234 // CR %Dest, %RetryCmpVal 5235 // JNE DoneMBB 5236 // # Fall through to SetMBB 5237 MBB = LoopMBB; 5238 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5239 .addReg(OrigOldVal).addMBB(StartMBB) 5240 .addReg(RetryOldVal).addMBB(SetMBB); 5241 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5242 .addReg(OrigCmpVal).addMBB(StartMBB) 5243 .addReg(RetryCmpVal).addMBB(SetMBB); 5244 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5245 .addReg(OrigSwapVal).addMBB(StartMBB) 5246 .addReg(RetrySwapVal).addMBB(SetMBB); 5247 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5248 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5249 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5250 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5251 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5252 .addReg(Dest).addReg(RetryCmpVal); 5253 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5254 .addImm(SystemZ::CCMASK_ICMP) 5255 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5256 MBB->addSuccessor(DoneMBB); 5257 MBB->addSuccessor(SetMBB); 5258 5259 // SetMBB: 5260 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5261 // ^^ Replace the upper 32-BitSize bits of the new 5262 // value with those that we loaded. 5263 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5264 // ^^ Rotate the new field to its proper position. 5265 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5266 // JNE LoopMBB 5267 // # fall through to ExitMMB 5268 MBB = SetMBB; 5269 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5270 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5271 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5272 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5273 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5274 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5275 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5276 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5277 MBB->addSuccessor(LoopMBB); 5278 MBB->addSuccessor(DoneMBB); 5279 5280 MI->eraseFromParent(); 5281 return DoneMBB; 5282 } 5283 5284 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5285 // if the high register of the GR128 value must be cleared or false if 5286 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5287 // and subreg_l64 when extending a GR64. 5288 MachineBasicBlock * 5289 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5290 MachineBasicBlock *MBB, 5291 bool ClearEven, unsigned SubReg) const { 5292 MachineFunction &MF = *MBB->getParent(); 5293 const SystemZInstrInfo *TII = 5294 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5295 MachineRegisterInfo &MRI = MF.getRegInfo(); 5296 DebugLoc DL = MI->getDebugLoc(); 5297 5298 unsigned Dest = MI->getOperand(0).getReg(); 5299 unsigned Src = MI->getOperand(1).getReg(); 5300 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5301 5302 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5303 if (ClearEven) { 5304 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5305 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5306 5307 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5308 .addImm(0); 5309 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5310 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5311 In128 = NewIn128; 5312 } 5313 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5314 .addReg(In128).addReg(Src).addImm(SubReg); 5315 5316 MI->eraseFromParent(); 5317 return MBB; 5318 } 5319 5320 MachineBasicBlock * 5321 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5322 MachineBasicBlock *MBB, 5323 unsigned Opcode) const { 5324 MachineFunction &MF = *MBB->getParent(); 5325 const SystemZInstrInfo *TII = 5326 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5327 MachineRegisterInfo &MRI = MF.getRegInfo(); 5328 DebugLoc DL = MI->getDebugLoc(); 5329 5330 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5331 uint64_t DestDisp = MI->getOperand(1).getImm(); 5332 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5333 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5334 uint64_t Length = MI->getOperand(4).getImm(); 5335 5336 // When generating more than one CLC, all but the last will need to 5337 // branch to the end when a difference is found. 5338 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5339 splitBlockAfter(MI, MBB) : nullptr); 5340 5341 // Check for the loop form, in which operand 5 is the trip count. 5342 if (MI->getNumExplicitOperands() > 5) { 5343 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5344 5345 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5346 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5347 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5348 forceReg(MI, DestBase, TII)); 5349 5350 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5351 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5352 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5353 MRI.createVirtualRegister(RC)); 5354 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5355 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5356 MRI.createVirtualRegister(RC)); 5357 5358 RC = &SystemZ::GR64BitRegClass; 5359 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5360 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5361 5362 MachineBasicBlock *StartMBB = MBB; 5363 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5364 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5365 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5366 5367 // StartMBB: 5368 // # fall through to LoopMMB 5369 MBB->addSuccessor(LoopMBB); 5370 5371 // LoopMBB: 5372 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5373 // [ %NextDestReg, NextMBB ] 5374 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5375 // [ %NextSrcReg, NextMBB ] 5376 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5377 // [ %NextCountReg, NextMBB ] 5378 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5379 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5380 // ( JLH EndMBB ) 5381 // 5382 // The prefetch is used only for MVC. The JLH is used only for CLC. 5383 MBB = LoopMBB; 5384 5385 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5386 .addReg(StartDestReg).addMBB(StartMBB) 5387 .addReg(NextDestReg).addMBB(NextMBB); 5388 if (!HaveSingleBase) 5389 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5390 .addReg(StartSrcReg).addMBB(StartMBB) 5391 .addReg(NextSrcReg).addMBB(NextMBB); 5392 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5393 .addReg(StartCountReg).addMBB(StartMBB) 5394 .addReg(NextCountReg).addMBB(NextMBB); 5395 if (Opcode == SystemZ::MVC) 5396 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5397 .addImm(SystemZ::PFD_WRITE) 5398 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5399 BuildMI(MBB, DL, TII->get(Opcode)) 5400 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5401 .addReg(ThisSrcReg).addImm(SrcDisp); 5402 if (EndMBB) { 5403 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5404 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5405 .addMBB(EndMBB); 5406 MBB->addSuccessor(EndMBB); 5407 MBB->addSuccessor(NextMBB); 5408 } 5409 5410 // NextMBB: 5411 // %NextDestReg = LA 256(%ThisDestReg) 5412 // %NextSrcReg = LA 256(%ThisSrcReg) 5413 // %NextCountReg = AGHI %ThisCountReg, -1 5414 // CGHI %NextCountReg, 0 5415 // JLH LoopMBB 5416 // # fall through to DoneMMB 5417 // 5418 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5419 MBB = NextMBB; 5420 5421 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5422 .addReg(ThisDestReg).addImm(256).addReg(0); 5423 if (!HaveSingleBase) 5424 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5425 .addReg(ThisSrcReg).addImm(256).addReg(0); 5426 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5427 .addReg(ThisCountReg).addImm(-1); 5428 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5429 .addReg(NextCountReg).addImm(0); 5430 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5431 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5432 .addMBB(LoopMBB); 5433 MBB->addSuccessor(LoopMBB); 5434 MBB->addSuccessor(DoneMBB); 5435 5436 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5437 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5438 Length &= 255; 5439 MBB = DoneMBB; 5440 } 5441 // Handle any remaining bytes with straight-line code. 5442 while (Length > 0) { 5443 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5444 // The previous iteration might have created out-of-range displacements. 5445 // Apply them using LAY if so. 5446 if (!isUInt<12>(DestDisp)) { 5447 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5448 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5449 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5450 DestBase = MachineOperand::CreateReg(Reg, false); 5451 DestDisp = 0; 5452 } 5453 if (!isUInt<12>(SrcDisp)) { 5454 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5455 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5456 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5457 SrcBase = MachineOperand::CreateReg(Reg, false); 5458 SrcDisp = 0; 5459 } 5460 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5461 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5462 .addOperand(SrcBase).addImm(SrcDisp); 5463 DestDisp += ThisLength; 5464 SrcDisp += ThisLength; 5465 Length -= ThisLength; 5466 // If there's another CLC to go, branch to the end if a difference 5467 // was found. 5468 if (EndMBB && Length > 0) { 5469 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5470 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5471 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5472 .addMBB(EndMBB); 5473 MBB->addSuccessor(EndMBB); 5474 MBB->addSuccessor(NextMBB); 5475 MBB = NextMBB; 5476 } 5477 } 5478 if (EndMBB) { 5479 MBB->addSuccessor(EndMBB); 5480 MBB = EndMBB; 5481 MBB->addLiveIn(SystemZ::CC); 5482 } 5483 5484 MI->eraseFromParent(); 5485 return MBB; 5486 } 5487 5488 // Decompose string pseudo-instruction MI into a loop that continually performs 5489 // Opcode until CC != 3. 5490 MachineBasicBlock * 5491 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5492 MachineBasicBlock *MBB, 5493 unsigned Opcode) const { 5494 MachineFunction &MF = *MBB->getParent(); 5495 const SystemZInstrInfo *TII = 5496 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5497 MachineRegisterInfo &MRI = MF.getRegInfo(); 5498 DebugLoc DL = MI->getDebugLoc(); 5499 5500 uint64_t End1Reg = MI->getOperand(0).getReg(); 5501 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5502 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5503 uint64_t CharReg = MI->getOperand(3).getReg(); 5504 5505 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5506 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5507 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5508 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5509 5510 MachineBasicBlock *StartMBB = MBB; 5511 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5512 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5513 5514 // StartMBB: 5515 // # fall through to LoopMMB 5516 MBB->addSuccessor(LoopMBB); 5517 5518 // LoopMBB: 5519 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5520 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5521 // R0L = %CharReg 5522 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5523 // JO LoopMBB 5524 // # fall through to DoneMMB 5525 // 5526 // The load of R0L can be hoisted by post-RA LICM. 5527 MBB = LoopMBB; 5528 5529 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5530 .addReg(Start1Reg).addMBB(StartMBB) 5531 .addReg(End1Reg).addMBB(LoopMBB); 5532 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5533 .addReg(Start2Reg).addMBB(StartMBB) 5534 .addReg(End2Reg).addMBB(LoopMBB); 5535 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5536 BuildMI(MBB, DL, TII->get(Opcode)) 5537 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5538 .addReg(This1Reg).addReg(This2Reg); 5539 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5540 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5541 MBB->addSuccessor(LoopMBB); 5542 MBB->addSuccessor(DoneMBB); 5543 5544 DoneMBB->addLiveIn(SystemZ::CC); 5545 5546 MI->eraseFromParent(); 5547 return DoneMBB; 5548 } 5549 5550 // Update TBEGIN instruction with final opcode and register clobbers. 5551 MachineBasicBlock * 5552 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5553 MachineBasicBlock *MBB, 5554 unsigned Opcode, 5555 bool NoFloat) const { 5556 MachineFunction &MF = *MBB->getParent(); 5557 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5558 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5559 5560 // Update opcode. 5561 MI->setDesc(TII->get(Opcode)); 5562 5563 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5564 // Make sure to add the corresponding GRSM bits if they are missing. 5565 uint64_t Control = MI->getOperand(2).getImm(); 5566 static const unsigned GPRControlBit[16] = { 5567 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5568 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5569 }; 5570 Control |= GPRControlBit[15]; 5571 if (TFI->hasFP(MF)) 5572 Control |= GPRControlBit[11]; 5573 MI->getOperand(2).setImm(Control); 5574 5575 // Add GPR clobbers. 5576 for (int I = 0; I < 16; I++) { 5577 if ((Control & GPRControlBit[I]) == 0) { 5578 unsigned Reg = SystemZMC::GR64Regs[I]; 5579 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5580 } 5581 } 5582 5583 // Add FPR/VR clobbers. 5584 if (!NoFloat && (Control & 4) != 0) { 5585 if (Subtarget.hasVector()) { 5586 for (int I = 0; I < 32; I++) { 5587 unsigned Reg = SystemZMC::VR128Regs[I]; 5588 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5589 } 5590 } else { 5591 for (int I = 0; I < 16; I++) { 5592 unsigned Reg = SystemZMC::FP64Regs[I]; 5593 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5594 } 5595 } 5596 } 5597 5598 return MBB; 5599 } 5600 5601 MachineBasicBlock *SystemZTargetLowering:: 5602 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5603 switch (MI->getOpcode()) { 5604 case SystemZ::Select32Mux: 5605 case SystemZ::Select32: 5606 case SystemZ::SelectF32: 5607 case SystemZ::Select64: 5608 case SystemZ::SelectF64: 5609 case SystemZ::SelectF128: 5610 return emitSelect(MI, MBB); 5611 5612 case SystemZ::CondStore8Mux: 5613 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5614 case SystemZ::CondStore8MuxInv: 5615 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5616 case SystemZ::CondStore16Mux: 5617 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5618 case SystemZ::CondStore16MuxInv: 5619 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5620 case SystemZ::CondStore8: 5621 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5622 case SystemZ::CondStore8Inv: 5623 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5624 case SystemZ::CondStore16: 5625 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5626 case SystemZ::CondStore16Inv: 5627 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5628 case SystemZ::CondStore32: 5629 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5630 case SystemZ::CondStore32Inv: 5631 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5632 case SystemZ::CondStore64: 5633 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5634 case SystemZ::CondStore64Inv: 5635 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5636 case SystemZ::CondStoreF32: 5637 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5638 case SystemZ::CondStoreF32Inv: 5639 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5640 case SystemZ::CondStoreF64: 5641 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5642 case SystemZ::CondStoreF64Inv: 5643 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5644 5645 case SystemZ::AEXT128_64: 5646 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5647 case SystemZ::ZEXT128_32: 5648 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5649 case SystemZ::ZEXT128_64: 5650 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5651 5652 case SystemZ::ATOMIC_SWAPW: 5653 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5654 case SystemZ::ATOMIC_SWAP_32: 5655 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5656 case SystemZ::ATOMIC_SWAP_64: 5657 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5658 5659 case SystemZ::ATOMIC_LOADW_AR: 5660 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5661 case SystemZ::ATOMIC_LOADW_AFI: 5662 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5663 case SystemZ::ATOMIC_LOAD_AR: 5664 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5665 case SystemZ::ATOMIC_LOAD_AHI: 5666 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5667 case SystemZ::ATOMIC_LOAD_AFI: 5668 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5669 case SystemZ::ATOMIC_LOAD_AGR: 5670 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5671 case SystemZ::ATOMIC_LOAD_AGHI: 5672 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5673 case SystemZ::ATOMIC_LOAD_AGFI: 5674 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5675 5676 case SystemZ::ATOMIC_LOADW_SR: 5677 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5678 case SystemZ::ATOMIC_LOAD_SR: 5679 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5680 case SystemZ::ATOMIC_LOAD_SGR: 5681 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5682 5683 case SystemZ::ATOMIC_LOADW_NR: 5684 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5685 case SystemZ::ATOMIC_LOADW_NILH: 5686 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5687 case SystemZ::ATOMIC_LOAD_NR: 5688 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5689 case SystemZ::ATOMIC_LOAD_NILL: 5690 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5691 case SystemZ::ATOMIC_LOAD_NILH: 5692 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5693 case SystemZ::ATOMIC_LOAD_NILF: 5694 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5695 case SystemZ::ATOMIC_LOAD_NGR: 5696 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5697 case SystemZ::ATOMIC_LOAD_NILL64: 5698 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5699 case SystemZ::ATOMIC_LOAD_NILH64: 5700 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5701 case SystemZ::ATOMIC_LOAD_NIHL64: 5702 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5703 case SystemZ::ATOMIC_LOAD_NIHH64: 5704 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5705 case SystemZ::ATOMIC_LOAD_NILF64: 5706 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5707 case SystemZ::ATOMIC_LOAD_NIHF64: 5708 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5709 5710 case SystemZ::ATOMIC_LOADW_OR: 5711 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5712 case SystemZ::ATOMIC_LOADW_OILH: 5713 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5714 case SystemZ::ATOMIC_LOAD_OR: 5715 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5716 case SystemZ::ATOMIC_LOAD_OILL: 5717 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5718 case SystemZ::ATOMIC_LOAD_OILH: 5719 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5720 case SystemZ::ATOMIC_LOAD_OILF: 5721 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5722 case SystemZ::ATOMIC_LOAD_OGR: 5723 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5724 case SystemZ::ATOMIC_LOAD_OILL64: 5725 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5726 case SystemZ::ATOMIC_LOAD_OILH64: 5727 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5728 case SystemZ::ATOMIC_LOAD_OIHL64: 5729 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5730 case SystemZ::ATOMIC_LOAD_OIHH64: 5731 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5732 case SystemZ::ATOMIC_LOAD_OILF64: 5733 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5734 case SystemZ::ATOMIC_LOAD_OIHF64: 5735 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5736 5737 case SystemZ::ATOMIC_LOADW_XR: 5738 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5739 case SystemZ::ATOMIC_LOADW_XILF: 5740 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5741 case SystemZ::ATOMIC_LOAD_XR: 5742 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5743 case SystemZ::ATOMIC_LOAD_XILF: 5744 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5745 case SystemZ::ATOMIC_LOAD_XGR: 5746 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5747 case SystemZ::ATOMIC_LOAD_XILF64: 5748 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5749 case SystemZ::ATOMIC_LOAD_XIHF64: 5750 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5751 5752 case SystemZ::ATOMIC_LOADW_NRi: 5753 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5754 case SystemZ::ATOMIC_LOADW_NILHi: 5755 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5756 case SystemZ::ATOMIC_LOAD_NRi: 5757 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5758 case SystemZ::ATOMIC_LOAD_NILLi: 5759 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5760 case SystemZ::ATOMIC_LOAD_NILHi: 5761 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5762 case SystemZ::ATOMIC_LOAD_NILFi: 5763 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5764 case SystemZ::ATOMIC_LOAD_NGRi: 5765 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5766 case SystemZ::ATOMIC_LOAD_NILL64i: 5767 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5768 case SystemZ::ATOMIC_LOAD_NILH64i: 5769 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5770 case SystemZ::ATOMIC_LOAD_NIHL64i: 5771 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5772 case SystemZ::ATOMIC_LOAD_NIHH64i: 5773 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5774 case SystemZ::ATOMIC_LOAD_NILF64i: 5775 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5776 case SystemZ::ATOMIC_LOAD_NIHF64i: 5777 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5778 5779 case SystemZ::ATOMIC_LOADW_MIN: 5780 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5781 SystemZ::CCMASK_CMP_LE, 0); 5782 case SystemZ::ATOMIC_LOAD_MIN_32: 5783 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5784 SystemZ::CCMASK_CMP_LE, 32); 5785 case SystemZ::ATOMIC_LOAD_MIN_64: 5786 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5787 SystemZ::CCMASK_CMP_LE, 64); 5788 5789 case SystemZ::ATOMIC_LOADW_MAX: 5790 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5791 SystemZ::CCMASK_CMP_GE, 0); 5792 case SystemZ::ATOMIC_LOAD_MAX_32: 5793 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5794 SystemZ::CCMASK_CMP_GE, 32); 5795 case SystemZ::ATOMIC_LOAD_MAX_64: 5796 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5797 SystemZ::CCMASK_CMP_GE, 64); 5798 5799 case SystemZ::ATOMIC_LOADW_UMIN: 5800 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5801 SystemZ::CCMASK_CMP_LE, 0); 5802 case SystemZ::ATOMIC_LOAD_UMIN_32: 5803 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5804 SystemZ::CCMASK_CMP_LE, 32); 5805 case SystemZ::ATOMIC_LOAD_UMIN_64: 5806 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5807 SystemZ::CCMASK_CMP_LE, 64); 5808 5809 case SystemZ::ATOMIC_LOADW_UMAX: 5810 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5811 SystemZ::CCMASK_CMP_GE, 0); 5812 case SystemZ::ATOMIC_LOAD_UMAX_32: 5813 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5814 SystemZ::CCMASK_CMP_GE, 32); 5815 case SystemZ::ATOMIC_LOAD_UMAX_64: 5816 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5817 SystemZ::CCMASK_CMP_GE, 64); 5818 5819 case SystemZ::ATOMIC_CMP_SWAPW: 5820 return emitAtomicCmpSwapW(MI, MBB); 5821 case SystemZ::MVCSequence: 5822 case SystemZ::MVCLoop: 5823 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5824 case SystemZ::NCSequence: 5825 case SystemZ::NCLoop: 5826 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5827 case SystemZ::OCSequence: 5828 case SystemZ::OCLoop: 5829 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5830 case SystemZ::XCSequence: 5831 case SystemZ::XCLoop: 5832 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5833 case SystemZ::CLCSequence: 5834 case SystemZ::CLCLoop: 5835 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5836 case SystemZ::CLSTLoop: 5837 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5838 case SystemZ::MVSTLoop: 5839 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5840 case SystemZ::SRSTLoop: 5841 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5842 case SystemZ::TBEGIN: 5843 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5844 case SystemZ::TBEGIN_nofloat: 5845 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5846 case SystemZ::TBEGINC: 5847 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5848 default: 5849 llvm_unreachable("Unexpected instr type to insert"); 5850 } 5851 } 5852