1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       // Expand individual DIV and REMs into DIVREMs.
168       setOperationAction(ISD::SDIV, VT, Expand);
169       setOperationAction(ISD::UDIV, VT, Expand);
170       setOperationAction(ISD::SREM, VT, Expand);
171       setOperationAction(ISD::UREM, VT, Expand);
172       setOperationAction(ISD::SDIVREM, VT, Custom);
173       setOperationAction(ISD::UDIVREM, VT, Custom);
174 
175       // Support addition/subtraction with overflow.
176       setOperationAction(ISD::SADDO, VT, Custom);
177       setOperationAction(ISD::SSUBO, VT, Custom);
178 
179       // Support addition/subtraction with carry.
180       setOperationAction(ISD::UADDO, VT, Custom);
181       setOperationAction(ISD::USUBO, VT, Custom);
182 
183       // Support carry in as value rather than glue.
184       setOperationAction(ISD::ADDCARRY, VT, Custom);
185       setOperationAction(ISD::SUBCARRY, VT, Custom);
186 
187       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
188       // stores, putting a serialization instruction after the stores.
189       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
190       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
191 
192       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
193       // available, or if the operand is constant.
194       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
195 
196       // Use POPCNT on z196 and above.
197       if (Subtarget.hasPopulationCount())
198         setOperationAction(ISD::CTPOP, VT, Custom);
199       else
200         setOperationAction(ISD::CTPOP, VT, Expand);
201 
202       // No special instructions for these.
203       setOperationAction(ISD::CTTZ,            VT, Expand);
204       setOperationAction(ISD::ROTR,            VT, Expand);
205 
206       // Use *MUL_LOHI where possible instead of MULH*.
207       setOperationAction(ISD::MULHS, VT, Expand);
208       setOperationAction(ISD::MULHU, VT, Expand);
209       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
210       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
211 
212       // Only z196 and above have native support for conversions to unsigned.
213       // On z10, promoting to i64 doesn't generate an inexact condition for
214       // values that are outside the i32 range but in the i64 range, so use
215       // the default expansion.
216       if (!Subtarget.hasFPExtension())
217         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
218 
219       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
220       // default to Expand, so need to be modified to Legal where appropriate.
221       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
222       if (Subtarget.hasFPExtension())
223         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
224 
225       // And similarly for STRICT_[SU]INT_TO_FP.
226       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
227       if (Subtarget.hasFPExtension())
228         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
229     }
230   }
231 
232   // Type legalization will convert 8- and 16-bit atomic operations into
233   // forms that operate on i32s (but still keeping the original memory VT).
234   // Lower them into full i32 operations.
235   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
246 
247   // Even though i128 is not a legal type, we still need to custom lower
248   // the atomic operations in order to exploit SystemZ instructions.
249   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
250   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
251 
252   // We can use the CC result of compare-and-swap to implement
253   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
255   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
257 
258   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
259 
260   // Traps are legal, as we will convert them to "j .+2".
261   setOperationAction(ISD::TRAP, MVT::Other, Legal);
262 
263   // z10 has instructions for signed but not unsigned FP conversion.
264   // Handle unsigned 32-bit types as signed 64-bit types.
265   if (!Subtarget.hasFPExtension()) {
266     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
268     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
270   }
271 
272   // We have native support for a 64-bit CTLZ, via FLOGR.
273   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
274   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
275   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
276 
277   // On z15 we have native support for a 64-bit CTPOP.
278   if (Subtarget.hasMiscellaneousExtensions3()) {
279     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
280     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
281   }
282 
283   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
284   setOperationAction(ISD::OR, MVT::i64, Custom);
285 
286   // FIXME: Can we support these natively?
287   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
288   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
289   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
290 
291   // We have native instructions for i8, i16 and i32 extensions, but not i1.
292   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
293   for (MVT VT : MVT::integer_valuetypes()) {
294     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
295     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
296     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
297   }
298 
299   // Handle the various types of symbolic address.
300   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
301   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
302   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
303   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
304   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
305 
306   // We need to handle dynamic allocations specially because of the
307   // 160-byte area at the bottom of the stack.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
309   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
310 
311   // Use custom expanders so that we can force the function to use
312   // a frame pointer.
313   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
314   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
315 
316   // Handle prefetches with PFD or PFDRL.
317   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
318 
319   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
320     // Assume by default that all vector operations need to be expanded.
321     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
322       if (getOperationAction(Opcode, VT) == Legal)
323         setOperationAction(Opcode, VT, Expand);
324 
325     // Likewise all truncating stores and extending loads.
326     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
327       setTruncStoreAction(VT, InnerVT, Expand);
328       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
329       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
330       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
331     }
332 
333     if (isTypeLegal(VT)) {
334       // These operations are legal for anything that can be stored in a
335       // vector register, even if there is no native support for the format
336       // as such.  In particular, we can do these for v4f32 even though there
337       // are no specific instructions for that format.
338       setOperationAction(ISD::LOAD, VT, Legal);
339       setOperationAction(ISD::STORE, VT, Legal);
340       setOperationAction(ISD::VSELECT, VT, Legal);
341       setOperationAction(ISD::BITCAST, VT, Legal);
342       setOperationAction(ISD::UNDEF, VT, Legal);
343 
344       // Likewise, except that we need to replace the nodes with something
345       // more specific.
346       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
348     }
349   }
350 
351   // Handle integer vector types.
352   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
353     if (isTypeLegal(VT)) {
354       // These operations have direct equivalents.
355       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
356       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
357       setOperationAction(ISD::ADD, VT, Legal);
358       setOperationAction(ISD::SUB, VT, Legal);
359       if (VT != MVT::v2i64)
360         setOperationAction(ISD::MUL, VT, Legal);
361       setOperationAction(ISD::AND, VT, Legal);
362       setOperationAction(ISD::OR, VT, Legal);
363       setOperationAction(ISD::XOR, VT, Legal);
364       if (Subtarget.hasVectorEnhancements1())
365         setOperationAction(ISD::CTPOP, VT, Legal);
366       else
367         setOperationAction(ISD::CTPOP, VT, Custom);
368       setOperationAction(ISD::CTTZ, VT, Legal);
369       setOperationAction(ISD::CTLZ, VT, Legal);
370 
371       // Convert a GPR scalar to a vector by inserting it into element 0.
372       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
373 
374       // Use a series of unpacks for extensions.
375       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
376       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
377 
378       // Detect shifts by a scalar amount and convert them into
379       // V*_BY_SCALAR.
380       setOperationAction(ISD::SHL, VT, Custom);
381       setOperationAction(ISD::SRA, VT, Custom);
382       setOperationAction(ISD::SRL, VT, Custom);
383 
384       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
385       // converted into ROTL.
386       setOperationAction(ISD::ROTL, VT, Expand);
387       setOperationAction(ISD::ROTR, VT, Expand);
388 
389       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
390       // and inverting the result as necessary.
391       setOperationAction(ISD::SETCC, VT, Custom);
392       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
393       if (Subtarget.hasVectorEnhancements1())
394         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
395     }
396   }
397 
398   if (Subtarget.hasVector()) {
399     // There should be no need to check for float types other than v2f64
400     // since <2 x f32> isn't a legal type.
401     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
404     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
407     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
408     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
409 
410     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
418   }
419 
420   if (Subtarget.hasVectorEnhancements2()) {
421     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
424     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
425     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
427     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
429 
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
438   }
439 
440   // Handle floating-point types.
441   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
442        I <= MVT::LAST_FP_VALUETYPE;
443        ++I) {
444     MVT VT = MVT::SimpleValueType(I);
445     if (isTypeLegal(VT)) {
446       // We can use FI for FRINT.
447       setOperationAction(ISD::FRINT, VT, Legal);
448 
449       // We can use the extended form of FI for other rounding operations.
450       if (Subtarget.hasFPExtension()) {
451         setOperationAction(ISD::FNEARBYINT, VT, Legal);
452         setOperationAction(ISD::FFLOOR, VT, Legal);
453         setOperationAction(ISD::FCEIL, VT, Legal);
454         setOperationAction(ISD::FTRUNC, VT, Legal);
455         setOperationAction(ISD::FROUND, VT, Legal);
456       }
457 
458       // No special instructions for these.
459       setOperationAction(ISD::FSIN, VT, Expand);
460       setOperationAction(ISD::FCOS, VT, Expand);
461       setOperationAction(ISD::FSINCOS, VT, Expand);
462       setOperationAction(ISD::FREM, VT, Expand);
463       setOperationAction(ISD::FPOW, VT, Expand);
464 
465       // Handle constrained floating-point operations.
466       setOperationAction(ISD::STRICT_FADD, VT, Legal);
467       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
468       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
469       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
470       setOperationAction(ISD::STRICT_FMA, VT, Legal);
471       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
472       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
473       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
474       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
475       if (Subtarget.hasFPExtension()) {
476         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
477         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
478         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
479         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
480         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
481       }
482     }
483   }
484 
485   // Handle floating-point vector types.
486   if (Subtarget.hasVector()) {
487     // Scalar-to-vector conversion is just a subreg.
488     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
489     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
490 
491     // Some insertions and extractions can be done directly but others
492     // need to go via integers.
493     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
495     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
496     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
497 
498     // These operations have direct equivalents.
499     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
500     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
501     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
502     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
503     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
504     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
505     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
506     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
512     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
513 
514     // Handle constrained floating-point operations.
515     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
527   }
528 
529   // The vector enhancements facility 1 has instructions for these.
530   if (Subtarget.hasVectorEnhancements1()) {
531     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
532     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
533     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
536     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
537     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
538     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
540     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
541     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
542     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
543     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
544     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
545 
546     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
548     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
549     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
550 
551     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
555 
556     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
558     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
559     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
560 
561     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
563     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
564     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
565 
566     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
568     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
569     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
570 
571     // Handle constrained floating-point operations.
572     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
584     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
585                      MVT::v4f32, MVT::v2f64 }) {
586       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
588       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
589       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
590     }
591   }
592 
593   // We only have fused f128 multiply-addition on vector registers.
594   if (!Subtarget.hasVectorEnhancements1()) {
595     setOperationAction(ISD::FMA, MVT::f128, Expand);
596     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
597   }
598 
599   // We don't have a copysign instruction on vector registers.
600   if (Subtarget.hasVectorEnhancements1())
601     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
602 
603   // Needed so that we don't try to implement f128 constant loads using
604   // a load-and-extend of a f80 constant (in cases where the constant
605   // would fit in an f80).
606   for (MVT VT : MVT::fp_valuetypes())
607     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
608 
609   // We don't have extending load instruction on vector registers.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
612     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
613   }
614 
615   // Floating-point truncation and stores need to be done separately.
616   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
619 
620   // We have 64-bit FPR<->GPR moves, but need special handling for
621   // 32-bit forms.
622   if (!Subtarget.hasVector()) {
623     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
624     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
625   }
626 
627   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
628   // structure, but VAEND is a no-op.
629   setOperationAction(ISD::VASTART, MVT::Other, Custom);
630   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
631   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
632 
633   // Codes for which we want to perform some z-specific combinations.
634   setTargetDAGCombine(ISD::ZERO_EXTEND);
635   setTargetDAGCombine(ISD::SIGN_EXTEND);
636   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
637   setTargetDAGCombine(ISD::LOAD);
638   setTargetDAGCombine(ISD::STORE);
639   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
641   setTargetDAGCombine(ISD::FP_ROUND);
642   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
643   setTargetDAGCombine(ISD::FP_EXTEND);
644   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
645   setTargetDAGCombine(ISD::BSWAP);
646   setTargetDAGCombine(ISD::SDIV);
647   setTargetDAGCombine(ISD::UDIV);
648   setTargetDAGCombine(ISD::SREM);
649   setTargetDAGCombine(ISD::UREM);
650 
651   // Handle intrinsics.
652   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
653   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
654 
655   // We want to use MVC in preference to even a single load/store pair.
656   MaxStoresPerMemcpy = 0;
657   MaxStoresPerMemcpyOptSize = 0;
658 
659   // The main memset sequence is a byte store followed by an MVC.
660   // Two STC or MV..I stores win over that, but the kind of fused stores
661   // generated by target-independent code don't when the byte value is
662   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
663   // than "STC;MVC".  Handle the choice in target-specific code instead.
664   MaxStoresPerMemset = 0;
665   MaxStoresPerMemsetOptSize = 0;
666 
667   // Default to having -disable-strictnode-mutation on
668   IsStrictFPEnabled = true;
669 }
670 
671 bool SystemZTargetLowering::useSoftFloat() const {
672   return Subtarget.hasSoftFloat();
673 }
674 
675 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
676                                               LLVMContext &, EVT VT) const {
677   if (!VT.isVector())
678     return MVT::i32;
679   return VT.changeVectorElementTypeToInteger();
680 }
681 
682 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
683     const MachineFunction &MF, EVT VT) const {
684   VT = VT.getScalarType();
685 
686   if (!VT.isSimple())
687     return false;
688 
689   switch (VT.getSimpleVT().SimpleTy) {
690   case MVT::f32:
691   case MVT::f64:
692     return true;
693   case MVT::f128:
694     return Subtarget.hasVectorEnhancements1();
695   default:
696     break;
697   }
698 
699   return false;
700 }
701 
702 // Return true if the constant can be generated with a vector instruction,
703 // such as VGM, VGMB or VREPI.
704 bool SystemZVectorConstantInfo::isVectorConstantLegal(
705     const SystemZSubtarget &Subtarget) {
706   const SystemZInstrInfo *TII =
707       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
708   if (!Subtarget.hasVector() ||
709       (isFP128 && !Subtarget.hasVectorEnhancements1()))
710     return false;
711 
712   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
713   // preferred way of creating all-zero and all-one vectors so give it
714   // priority over other methods below.
715   unsigned Mask = 0;
716   unsigned I = 0;
717   for (; I < SystemZ::VectorBytes; ++I) {
718     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
719     if (Byte == 0xff)
720       Mask |= 1ULL << I;
721     else if (Byte != 0)
722       break;
723   }
724   if (I == SystemZ::VectorBytes) {
725     Opcode = SystemZISD::BYTE_MASK;
726     OpVals.push_back(Mask);
727     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
728     return true;
729   }
730 
731   if (SplatBitSize > 64)
732     return false;
733 
734   auto tryValue = [&](uint64_t Value) -> bool {
735     // Try VECTOR REPLICATE IMMEDIATE
736     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
737     if (isInt<16>(SignedValue)) {
738       OpVals.push_back(((unsigned) SignedValue));
739       Opcode = SystemZISD::REPLICATE;
740       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
741                                SystemZ::VectorBits / SplatBitSize);
742       return true;
743     }
744     // Try VECTOR GENERATE MASK
745     unsigned Start, End;
746     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
747       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
748       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
749       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
750       OpVals.push_back(Start - (64 - SplatBitSize));
751       OpVals.push_back(End - (64 - SplatBitSize));
752       Opcode = SystemZISD::ROTATE_MASK;
753       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
754                                SystemZ::VectorBits / SplatBitSize);
755       return true;
756     }
757     return false;
758   };
759 
760   // First try assuming that any undefined bits above the highest set bit
761   // and below the lowest set bit are 1s.  This increases the likelihood of
762   // being able to use a sign-extended element value in VECTOR REPLICATE
763   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
764   uint64_t SplatBitsZ = SplatBits.getZExtValue();
765   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
766   uint64_t Lower =
767       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
768   uint64_t Upper =
769       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
770   if (tryValue(SplatBitsZ | Upper | Lower))
771     return true;
772 
773   // Now try assuming that any undefined bits between the first and
774   // last defined set bits are set.  This increases the chances of
775   // using a non-wraparound mask.
776   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
777   return tryValue(SplatBitsZ | Middle);
778 }
779 
780 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
781   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
782   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
783 
784   // Find the smallest splat.
785   SplatBits = FPImm.bitcastToAPInt();
786   unsigned Width = SplatBits.getBitWidth();
787   while (Width > 8) {
788     unsigned HalfSize = Width / 2;
789     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
790     APInt LowValue = SplatBits.trunc(HalfSize);
791 
792     // If the two halves do not match, stop here.
793     if (HighValue != LowValue || 8 > HalfSize)
794       break;
795 
796     SplatBits = HighValue;
797     Width = HalfSize;
798   }
799   SplatUndef = 0;
800   SplatBitSize = Width;
801 }
802 
803 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
804   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
805   bool HasAnyUndefs;
806 
807   // Get IntBits by finding the 128 bit splat.
808   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
809                        true);
810 
811   // Get SplatBits by finding the 8 bit or greater splat.
812   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
813                        true);
814 }
815 
816 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
817                                          bool ForCodeSize) const {
818   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
819   if (Imm.isZero() || Imm.isNegZero())
820     return true;
821 
822   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
823 }
824 
825 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
826   // We can use CGFI or CLGFI.
827   return isInt<32>(Imm) || isUInt<32>(Imm);
828 }
829 
830 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
831   // We can use ALGFI or SLGFI.
832   return isUInt<32>(Imm) || isUInt<32>(-Imm);
833 }
834 
835 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
836     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
837   // Unaligned accesses should never be slower than the expanded version.
838   // We check specifically for aligned accesses in the few cases where
839   // they are required.
840   if (Fast)
841     *Fast = true;
842   return true;
843 }
844 
845 // Information about the addressing mode for a memory access.
846 struct AddressingMode {
847   // True if a long displacement is supported.
848   bool LongDisplacement;
849 
850   // True if use of index register is supported.
851   bool IndexReg;
852 
853   AddressingMode(bool LongDispl, bool IdxReg) :
854     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
855 };
856 
857 // Return the desired addressing mode for a Load which has only one use (in
858 // the same block) which is a Store.
859 static AddressingMode getLoadStoreAddrMode(bool HasVector,
860                                           Type *Ty) {
861   // With vector support a Load->Store combination may be combined to either
862   // an MVC or vector operations and it seems to work best to allow the
863   // vector addressing mode.
864   if (HasVector)
865     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
866 
867   // Otherwise only the MVC case is special.
868   bool MVC = Ty->isIntegerTy(8);
869   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
870 }
871 
872 // Return the addressing mode which seems most desirable given an LLVM
873 // Instruction pointer.
874 static AddressingMode
875 supportedAddressingMode(Instruction *I, bool HasVector) {
876   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
877     switch (II->getIntrinsicID()) {
878     default: break;
879     case Intrinsic::memset:
880     case Intrinsic::memmove:
881     case Intrinsic::memcpy:
882       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
883     }
884   }
885 
886   if (isa<LoadInst>(I) && I->hasOneUse()) {
887     auto *SingleUser = cast<Instruction>(*I->user_begin());
888     if (SingleUser->getParent() == I->getParent()) {
889       if (isa<ICmpInst>(SingleUser)) {
890         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
891           if (C->getBitWidth() <= 64 &&
892               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
893             // Comparison of memory with 16 bit signed / unsigned immediate
894             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
895       } else if (isa<StoreInst>(SingleUser))
896         // Load->Store
897         return getLoadStoreAddrMode(HasVector, I->getType());
898     }
899   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
900     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
901       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
902         // Load->Store
903         return getLoadStoreAddrMode(HasVector, LoadI->getType());
904   }
905 
906   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
907 
908     // * Use LDE instead of LE/LEY for z13 to avoid partial register
909     //   dependencies (LDE only supports small offsets).
910     // * Utilize the vector registers to hold floating point
911     //   values (vector load / store instructions only support small
912     //   offsets).
913 
914     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
915                          I->getOperand(0)->getType());
916     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
917     bool IsVectorAccess = MemAccessTy->isVectorTy();
918 
919     // A store of an extracted vector element will be combined into a VSTE type
920     // instruction.
921     if (!IsVectorAccess && isa<StoreInst>(I)) {
922       Value *DataOp = I->getOperand(0);
923       if (isa<ExtractElementInst>(DataOp))
924         IsVectorAccess = true;
925     }
926 
927     // A load which gets inserted into a vector element will be combined into a
928     // VLE type instruction.
929     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
930       User *LoadUser = *I->user_begin();
931       if (isa<InsertElementInst>(LoadUser))
932         IsVectorAccess = true;
933     }
934 
935     if (IsFPAccess || IsVectorAccess)
936       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
937   }
938 
939   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
940 }
941 
942 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
943        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
944   // Punt on globals for now, although they can be used in limited
945   // RELATIVE LONG cases.
946   if (AM.BaseGV)
947     return false;
948 
949   // Require a 20-bit signed offset.
950   if (!isInt<20>(AM.BaseOffs))
951     return false;
952 
953   AddressingMode SupportedAM(true, true);
954   if (I != nullptr)
955     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
956 
957   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
958     return false;
959 
960   if (!SupportedAM.IndexReg)
961     // No indexing allowed.
962     return AM.Scale == 0;
963   else
964     // Indexing is OK but no scale factor can be applied.
965     return AM.Scale == 0 || AM.Scale == 1;
966 }
967 
968 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
969   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
970     return false;
971   unsigned FromBits = FromType->getPrimitiveSizeInBits();
972   unsigned ToBits = ToType->getPrimitiveSizeInBits();
973   return FromBits > ToBits;
974 }
975 
976 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
977   if (!FromVT.isInteger() || !ToVT.isInteger())
978     return false;
979   unsigned FromBits = FromVT.getSizeInBits();
980   unsigned ToBits = ToVT.getSizeInBits();
981   return FromBits > ToBits;
982 }
983 
984 //===----------------------------------------------------------------------===//
985 // Inline asm support
986 //===----------------------------------------------------------------------===//
987 
988 TargetLowering::ConstraintType
989 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
990   if (Constraint.size() == 1) {
991     switch (Constraint[0]) {
992     case 'a': // Address register
993     case 'd': // Data register (equivalent to 'r')
994     case 'f': // Floating-point register
995     case 'h': // High-part register
996     case 'r': // General-purpose register
997     case 'v': // Vector register
998       return C_RegisterClass;
999 
1000     case 'Q': // Memory with base and unsigned 12-bit displacement
1001     case 'R': // Likewise, plus an index
1002     case 'S': // Memory with base and signed 20-bit displacement
1003     case 'T': // Likewise, plus an index
1004     case 'm': // Equivalent to 'T'.
1005       return C_Memory;
1006 
1007     case 'I': // Unsigned 8-bit constant
1008     case 'J': // Unsigned 12-bit constant
1009     case 'K': // Signed 16-bit constant
1010     case 'L': // Signed 20-bit displacement (on all targets we support)
1011     case 'M': // 0x7fffffff
1012       return C_Immediate;
1013 
1014     default:
1015       break;
1016     }
1017   }
1018   return TargetLowering::getConstraintType(Constraint);
1019 }
1020 
1021 TargetLowering::ConstraintWeight SystemZTargetLowering::
1022 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1023                                const char *constraint) const {
1024   ConstraintWeight weight = CW_Invalid;
1025   Value *CallOperandVal = info.CallOperandVal;
1026   // If we don't have a value, we can't do a match,
1027   // but allow it at the lowest weight.
1028   if (!CallOperandVal)
1029     return CW_Default;
1030   Type *type = CallOperandVal->getType();
1031   // Look at the constraint type.
1032   switch (*constraint) {
1033   default:
1034     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1035     break;
1036 
1037   case 'a': // Address register
1038   case 'd': // Data register (equivalent to 'r')
1039   case 'h': // High-part register
1040   case 'r': // General-purpose register
1041     if (CallOperandVal->getType()->isIntegerTy())
1042       weight = CW_Register;
1043     break;
1044 
1045   case 'f': // Floating-point register
1046     if (type->isFloatingPointTy())
1047       weight = CW_Register;
1048     break;
1049 
1050   case 'v': // Vector register
1051     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1052         Subtarget.hasVector())
1053       weight = CW_Register;
1054     break;
1055 
1056   case 'I': // Unsigned 8-bit constant
1057     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1058       if (isUInt<8>(C->getZExtValue()))
1059         weight = CW_Constant;
1060     break;
1061 
1062   case 'J': // Unsigned 12-bit constant
1063     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1064       if (isUInt<12>(C->getZExtValue()))
1065         weight = CW_Constant;
1066     break;
1067 
1068   case 'K': // Signed 16-bit constant
1069     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1070       if (isInt<16>(C->getSExtValue()))
1071         weight = CW_Constant;
1072     break;
1073 
1074   case 'L': // Signed 20-bit displacement (on all targets we support)
1075     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1076       if (isInt<20>(C->getSExtValue()))
1077         weight = CW_Constant;
1078     break;
1079 
1080   case 'M': // 0x7fffffff
1081     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1082       if (C->getZExtValue() == 0x7fffffff)
1083         weight = CW_Constant;
1084     break;
1085   }
1086   return weight;
1087 }
1088 
1089 // Parse a "{tNNN}" register constraint for which the register type "t"
1090 // has already been verified.  MC is the class associated with "t" and
1091 // Map maps 0-based register numbers to LLVM register numbers.
1092 static std::pair<unsigned, const TargetRegisterClass *>
1093 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1094                     const unsigned *Map, unsigned Size) {
1095   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1096   if (isdigit(Constraint[2])) {
1097     unsigned Index;
1098     bool Failed =
1099         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1100     if (!Failed && Index < Size && Map[Index])
1101       return std::make_pair(Map[Index], RC);
1102   }
1103   return std::make_pair(0U, nullptr);
1104 }
1105 
1106 std::pair<unsigned, const TargetRegisterClass *>
1107 SystemZTargetLowering::getRegForInlineAsmConstraint(
1108     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1109   if (Constraint.size() == 1) {
1110     // GCC Constraint Letters
1111     switch (Constraint[0]) {
1112     default: break;
1113     case 'd': // Data register (equivalent to 'r')
1114     case 'r': // General-purpose register
1115       if (VT == MVT::i64)
1116         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1117       else if (VT == MVT::i128)
1118         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1119       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1120 
1121     case 'a': // Address register
1122       if (VT == MVT::i64)
1123         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1124       else if (VT == MVT::i128)
1125         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1126       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1127 
1128     case 'h': // High-part register (an LLVM extension)
1129       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1130 
1131     case 'f': // Floating-point register
1132       if (!useSoftFloat()) {
1133         if (VT == MVT::f64)
1134           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1135         else if (VT == MVT::f128)
1136           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1137         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1138       }
1139       break;
1140     case 'v': // Vector register
1141       if (Subtarget.hasVector()) {
1142         if (VT == MVT::f32)
1143           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1144         if (VT == MVT::f64)
1145           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1146         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1147       }
1148       break;
1149     }
1150   }
1151   if (Constraint.size() > 0 && Constraint[0] == '{') {
1152     // We need to override the default register parsing for GPRs and FPRs
1153     // because the interpretation depends on VT.  The internal names of
1154     // the registers are also different from the external names
1155     // (F0D and F0S instead of F0, etc.).
1156     if (Constraint[1] == 'r') {
1157       if (VT == MVT::i32)
1158         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1159                                    SystemZMC::GR32Regs, 16);
1160       if (VT == MVT::i128)
1161         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1162                                    SystemZMC::GR128Regs, 16);
1163       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1164                                  SystemZMC::GR64Regs, 16);
1165     }
1166     if (Constraint[1] == 'f') {
1167       if (useSoftFloat())
1168         return std::make_pair(
1169             0u, static_cast<const TargetRegisterClass *>(nullptr));
1170       if (VT == MVT::f32)
1171         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1172                                    SystemZMC::FP32Regs, 16);
1173       if (VT == MVT::f128)
1174         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1175                                    SystemZMC::FP128Regs, 16);
1176       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1177                                  SystemZMC::FP64Regs, 16);
1178     }
1179     if (Constraint[1] == 'v') {
1180       if (!Subtarget.hasVector())
1181         return std::make_pair(
1182             0u, static_cast<const TargetRegisterClass *>(nullptr));
1183       if (VT == MVT::f32)
1184         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1185                                    SystemZMC::VR32Regs, 32);
1186       if (VT == MVT::f64)
1187         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1188                                    SystemZMC::VR64Regs, 32);
1189       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1190                                  SystemZMC::VR128Regs, 32);
1191     }
1192   }
1193   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1194 }
1195 
1196 // FIXME? Maybe this could be a TableGen attribute on some registers and
1197 // this table could be generated automatically from RegInfo.
1198 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1199                                                   const MachineFunction &MF) const {
1200 
1201   Register Reg = StringSwitch<Register>(RegName)
1202                    .Case("r15", SystemZ::R15D)
1203                    .Default(0);
1204   if (Reg)
1205     return Reg;
1206   report_fatal_error("Invalid register name global variable");
1207 }
1208 
1209 void SystemZTargetLowering::
1210 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1211                              std::vector<SDValue> &Ops,
1212                              SelectionDAG &DAG) const {
1213   // Only support length 1 constraints for now.
1214   if (Constraint.length() == 1) {
1215     switch (Constraint[0]) {
1216     case 'I': // Unsigned 8-bit constant
1217       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1218         if (isUInt<8>(C->getZExtValue()))
1219           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1220                                               Op.getValueType()));
1221       return;
1222 
1223     case 'J': // Unsigned 12-bit constant
1224       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1225         if (isUInt<12>(C->getZExtValue()))
1226           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1227                                               Op.getValueType()));
1228       return;
1229 
1230     case 'K': // Signed 16-bit constant
1231       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1232         if (isInt<16>(C->getSExtValue()))
1233           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1234                                               Op.getValueType()));
1235       return;
1236 
1237     case 'L': // Signed 20-bit displacement (on all targets we support)
1238       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1239         if (isInt<20>(C->getSExtValue()))
1240           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1241                                               Op.getValueType()));
1242       return;
1243 
1244     case 'M': // 0x7fffffff
1245       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1246         if (C->getZExtValue() == 0x7fffffff)
1247           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1248                                               Op.getValueType()));
1249       return;
1250     }
1251   }
1252   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1253 }
1254 
1255 //===----------------------------------------------------------------------===//
1256 // Calling conventions
1257 //===----------------------------------------------------------------------===//
1258 
1259 #include "SystemZGenCallingConv.inc"
1260 
1261 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1262   CallingConv::ID) const {
1263   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1264                                            SystemZ::R14D, 0 };
1265   return ScratchRegs;
1266 }
1267 
1268 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1269                                                      Type *ToType) const {
1270   return isTruncateFree(FromType, ToType);
1271 }
1272 
1273 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1274   return CI->isTailCall();
1275 }
1276 
1277 // We do not yet support 128-bit single-element vector types.  If the user
1278 // attempts to use such types as function argument or return type, prefer
1279 // to error out instead of emitting code violating the ABI.
1280 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1281   if (ArgVT.isVector() && !VT.isVector())
1282     report_fatal_error("Unsupported vector argument or return type");
1283 }
1284 
1285 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1286   for (unsigned i = 0; i < Ins.size(); ++i)
1287     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1288 }
1289 
1290 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1291   for (unsigned i = 0; i < Outs.size(); ++i)
1292     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1293 }
1294 
1295 // Value is a value that has been passed to us in the location described by VA
1296 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1297 // any loads onto Chain.
1298 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1299                                    CCValAssign &VA, SDValue Chain,
1300                                    SDValue Value) {
1301   // If the argument has been promoted from a smaller type, insert an
1302   // assertion to capture this.
1303   if (VA.getLocInfo() == CCValAssign::SExt)
1304     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1305                         DAG.getValueType(VA.getValVT()));
1306   else if (VA.getLocInfo() == CCValAssign::ZExt)
1307     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1308                         DAG.getValueType(VA.getValVT()));
1309 
1310   if (VA.isExtInLoc())
1311     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1312   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1313     // If this is a short vector argument loaded from the stack,
1314     // extend from i64 to full vector size and then bitcast.
1315     assert(VA.getLocVT() == MVT::i64);
1316     assert(VA.getValVT().isVector());
1317     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1318     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1319   } else
1320     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1321   return Value;
1322 }
1323 
1324 // Value is a value of type VA.getValVT() that we need to copy into
1325 // the location described by VA.  Return a copy of Value converted to
1326 // VA.getValVT().  The caller is responsible for handling indirect values.
1327 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1328                                    CCValAssign &VA, SDValue Value) {
1329   switch (VA.getLocInfo()) {
1330   case CCValAssign::SExt:
1331     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1332   case CCValAssign::ZExt:
1333     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1334   case CCValAssign::AExt:
1335     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1336   case CCValAssign::BCvt:
1337     // If this is a short vector argument to be stored to the stack,
1338     // bitcast to v2i64 and then extract first element.
1339     assert(VA.getLocVT() == MVT::i64);
1340     assert(VA.getValVT().isVector());
1341     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1342     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1343                        DAG.getConstant(0, DL, MVT::i32));
1344   case CCValAssign::Full:
1345     return Value;
1346   default:
1347     llvm_unreachable("Unhandled getLocInfo()");
1348   }
1349 }
1350 
1351 SDValue SystemZTargetLowering::LowerFormalArguments(
1352     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1353     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1354     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1355   MachineFunction &MF = DAG.getMachineFunction();
1356   MachineFrameInfo &MFI = MF.getFrameInfo();
1357   MachineRegisterInfo &MRI = MF.getRegInfo();
1358   SystemZMachineFunctionInfo *FuncInfo =
1359       MF.getInfo<SystemZMachineFunctionInfo>();
1360   auto *TFL =
1361       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1362   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1363 
1364   // Detect unsupported vector argument types.
1365   if (Subtarget.hasVector())
1366     VerifyVectorTypes(Ins);
1367 
1368   // Assign locations to all of the incoming arguments.
1369   SmallVector<CCValAssign, 16> ArgLocs;
1370   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1371   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1372 
1373   unsigned NumFixedGPRs = 0;
1374   unsigned NumFixedFPRs = 0;
1375   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1376     SDValue ArgValue;
1377     CCValAssign &VA = ArgLocs[I];
1378     EVT LocVT = VA.getLocVT();
1379     if (VA.isRegLoc()) {
1380       // Arguments passed in registers
1381       const TargetRegisterClass *RC;
1382       switch (LocVT.getSimpleVT().SimpleTy) {
1383       default:
1384         // Integers smaller than i64 should be promoted to i64.
1385         llvm_unreachable("Unexpected argument type");
1386       case MVT::i32:
1387         NumFixedGPRs += 1;
1388         RC = &SystemZ::GR32BitRegClass;
1389         break;
1390       case MVT::i64:
1391         NumFixedGPRs += 1;
1392         RC = &SystemZ::GR64BitRegClass;
1393         break;
1394       case MVT::f32:
1395         NumFixedFPRs += 1;
1396         RC = &SystemZ::FP32BitRegClass;
1397         break;
1398       case MVT::f64:
1399         NumFixedFPRs += 1;
1400         RC = &SystemZ::FP64BitRegClass;
1401         break;
1402       case MVT::v16i8:
1403       case MVT::v8i16:
1404       case MVT::v4i32:
1405       case MVT::v2i64:
1406       case MVT::v4f32:
1407       case MVT::v2f64:
1408         RC = &SystemZ::VR128BitRegClass;
1409         break;
1410       }
1411 
1412       Register VReg = MRI.createVirtualRegister(RC);
1413       MRI.addLiveIn(VA.getLocReg(), VReg);
1414       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1415     } else {
1416       assert(VA.isMemLoc() && "Argument not register or memory");
1417 
1418       // Create the frame index object for this incoming parameter.
1419       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1420                                      VA.getLocMemOffset(), true);
1421 
1422       // Create the SelectionDAG nodes corresponding to a load
1423       // from this parameter.  Unpromoted ints and floats are
1424       // passed as right-justified 8-byte values.
1425       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1426       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1427         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1428                           DAG.getIntPtrConstant(4, DL));
1429       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1430                              MachinePointerInfo::getFixedStack(MF, FI));
1431     }
1432 
1433     // Convert the value of the argument register into the value that's
1434     // being passed.
1435     if (VA.getLocInfo() == CCValAssign::Indirect) {
1436       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1437                                    MachinePointerInfo()));
1438       // If the original argument was split (e.g. i128), we need
1439       // to load all parts of it here (using the same address).
1440       unsigned ArgIndex = Ins[I].OrigArgIndex;
1441       assert (Ins[I].PartOffset == 0);
1442       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1443         CCValAssign &PartVA = ArgLocs[I + 1];
1444         unsigned PartOffset = Ins[I + 1].PartOffset;
1445         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1446                                       DAG.getIntPtrConstant(PartOffset, DL));
1447         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1448                                      MachinePointerInfo()));
1449         ++I;
1450       }
1451     } else
1452       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1453   }
1454 
1455   if (IsVarArg) {
1456     // Save the number of non-varargs registers for later use by va_start, etc.
1457     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1458     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1459 
1460     // Likewise the address (in the form of a frame index) of where the
1461     // first stack vararg would be.  The 1-byte size here is arbitrary.
1462     int64_t StackSize = CCInfo.getNextStackOffset();
1463     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1464 
1465     // ...and a similar frame index for the caller-allocated save area
1466     // that will be used to store the incoming registers.
1467     int64_t RegSaveOffset = -SystemZMC::CallFrameSize;
1468     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1469     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1470 
1471     // Store the FPR varargs in the reserved frame slots.  (We store the
1472     // GPRs as part of the prologue.)
1473     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1474       SDValue MemOps[SystemZ::NumArgFPRs];
1475       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1476         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1477         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1478         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1479         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1480                                      &SystemZ::FP64BitRegClass);
1481         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1482         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1483                                  MachinePointerInfo::getFixedStack(MF, FI));
1484       }
1485       // Join the stores, which are independent of one another.
1486       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1487                           makeArrayRef(&MemOps[NumFixedFPRs],
1488                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1489     }
1490   }
1491 
1492   return Chain;
1493 }
1494 
1495 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1496                               SmallVectorImpl<CCValAssign> &ArgLocs,
1497                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1498   // Punt if there are any indirect or stack arguments, or if the call
1499   // needs the callee-saved argument register R6, or if the call uses
1500   // the callee-saved register arguments SwiftSelf and SwiftError.
1501   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1502     CCValAssign &VA = ArgLocs[I];
1503     if (VA.getLocInfo() == CCValAssign::Indirect)
1504       return false;
1505     if (!VA.isRegLoc())
1506       return false;
1507     Register Reg = VA.getLocReg();
1508     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1509       return false;
1510     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1511       return false;
1512   }
1513   return true;
1514 }
1515 
1516 SDValue
1517 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1518                                  SmallVectorImpl<SDValue> &InVals) const {
1519   SelectionDAG &DAG = CLI.DAG;
1520   SDLoc &DL = CLI.DL;
1521   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1522   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1523   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1524   SDValue Chain = CLI.Chain;
1525   SDValue Callee = CLI.Callee;
1526   bool &IsTailCall = CLI.IsTailCall;
1527   CallingConv::ID CallConv = CLI.CallConv;
1528   bool IsVarArg = CLI.IsVarArg;
1529   MachineFunction &MF = DAG.getMachineFunction();
1530   EVT PtrVT = getPointerTy(MF.getDataLayout());
1531 
1532   // Detect unsupported vector argument and return types.
1533   if (Subtarget.hasVector()) {
1534     VerifyVectorTypes(Outs);
1535     VerifyVectorTypes(Ins);
1536   }
1537 
1538   // Analyze the operands of the call, assigning locations to each operand.
1539   SmallVector<CCValAssign, 16> ArgLocs;
1540   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1541   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1542 
1543   // We don't support GuaranteedTailCallOpt, only automatically-detected
1544   // sibling calls.
1545   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1546     IsTailCall = false;
1547 
1548   // Get a count of how many bytes are to be pushed on the stack.
1549   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1550 
1551   // Mark the start of the call.
1552   if (!IsTailCall)
1553     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1554 
1555   // Copy argument values to their designated locations.
1556   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1557   SmallVector<SDValue, 8> MemOpChains;
1558   SDValue StackPtr;
1559   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1560     CCValAssign &VA = ArgLocs[I];
1561     SDValue ArgValue = OutVals[I];
1562 
1563     if (VA.getLocInfo() == CCValAssign::Indirect) {
1564       // Store the argument in a stack slot and pass its address.
1565       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1566       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1567       MemOpChains.push_back(
1568           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1569                        MachinePointerInfo::getFixedStack(MF, FI)));
1570       // If the original argument was split (e.g. i128), we need
1571       // to store all parts of it here (and pass just one address).
1572       unsigned ArgIndex = Outs[I].OrigArgIndex;
1573       assert (Outs[I].PartOffset == 0);
1574       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1575         SDValue PartValue = OutVals[I + 1];
1576         unsigned PartOffset = Outs[I + 1].PartOffset;
1577         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1578                                       DAG.getIntPtrConstant(PartOffset, DL));
1579         MemOpChains.push_back(
1580             DAG.getStore(Chain, DL, PartValue, Address,
1581                          MachinePointerInfo::getFixedStack(MF, FI)));
1582         ++I;
1583       }
1584       ArgValue = SpillSlot;
1585     } else
1586       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1587 
1588     if (VA.isRegLoc())
1589       // Queue up the argument copies and emit them at the end.
1590       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1591     else {
1592       assert(VA.isMemLoc() && "Argument not register or memory");
1593 
1594       // Work out the address of the stack slot.  Unpromoted ints and
1595       // floats are passed as right-justified 8-byte values.
1596       if (!StackPtr.getNode())
1597         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1598       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1599       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1600         Offset += 4;
1601       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1602                                     DAG.getIntPtrConstant(Offset, DL));
1603 
1604       // Emit the store.
1605       MemOpChains.push_back(
1606           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1607     }
1608   }
1609 
1610   // Join the stores, which are independent of one another.
1611   if (!MemOpChains.empty())
1612     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1613 
1614   // Accept direct calls by converting symbolic call addresses to the
1615   // associated Target* opcodes.  Force %r1 to be used for indirect
1616   // tail calls.
1617   SDValue Glue;
1618   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1619     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1620     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1621   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1622     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1623     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1624   } else if (IsTailCall) {
1625     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1626     Glue = Chain.getValue(1);
1627     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1628   }
1629 
1630   // Build a sequence of copy-to-reg nodes, chained and glued together.
1631   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1632     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1633                              RegsToPass[I].second, Glue);
1634     Glue = Chain.getValue(1);
1635   }
1636 
1637   // The first call operand is the chain and the second is the target address.
1638   SmallVector<SDValue, 8> Ops;
1639   Ops.push_back(Chain);
1640   Ops.push_back(Callee);
1641 
1642   // Add argument registers to the end of the list so that they are
1643   // known live into the call.
1644   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1645     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1646                                   RegsToPass[I].second.getValueType()));
1647 
1648   // Add a register mask operand representing the call-preserved registers.
1649   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1650   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1651   assert(Mask && "Missing call preserved mask for calling convention");
1652   Ops.push_back(DAG.getRegisterMask(Mask));
1653 
1654   // Glue the call to the argument copies, if any.
1655   if (Glue.getNode())
1656     Ops.push_back(Glue);
1657 
1658   // Emit the call.
1659   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1660   if (IsTailCall)
1661     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1662   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1663   Glue = Chain.getValue(1);
1664 
1665   // Mark the end of the call, which is glued to the call itself.
1666   Chain = DAG.getCALLSEQ_END(Chain,
1667                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1668                              DAG.getConstant(0, DL, PtrVT, true),
1669                              Glue, DL);
1670   Glue = Chain.getValue(1);
1671 
1672   // Assign locations to each value returned by this call.
1673   SmallVector<CCValAssign, 16> RetLocs;
1674   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1675   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1676 
1677   // Copy all of the result registers out of their specified physreg.
1678   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1679     CCValAssign &VA = RetLocs[I];
1680 
1681     // Copy the value out, gluing the copy to the end of the call sequence.
1682     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1683                                           VA.getLocVT(), Glue);
1684     Chain = RetValue.getValue(1);
1685     Glue = RetValue.getValue(2);
1686 
1687     // Convert the value of the return register into the value that's
1688     // being returned.
1689     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1690   }
1691 
1692   return Chain;
1693 }
1694 
1695 bool SystemZTargetLowering::
1696 CanLowerReturn(CallingConv::ID CallConv,
1697                MachineFunction &MF, bool isVarArg,
1698                const SmallVectorImpl<ISD::OutputArg> &Outs,
1699                LLVMContext &Context) const {
1700   // Detect unsupported vector return types.
1701   if (Subtarget.hasVector())
1702     VerifyVectorTypes(Outs);
1703 
1704   // Special case that we cannot easily detect in RetCC_SystemZ since
1705   // i128 is not a legal type.
1706   for (auto &Out : Outs)
1707     if (Out.ArgVT == MVT::i128)
1708       return false;
1709 
1710   SmallVector<CCValAssign, 16> RetLocs;
1711   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1712   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1713 }
1714 
1715 SDValue
1716 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1717                                    bool IsVarArg,
1718                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1719                                    const SmallVectorImpl<SDValue> &OutVals,
1720                                    const SDLoc &DL, SelectionDAG &DAG) const {
1721   MachineFunction &MF = DAG.getMachineFunction();
1722 
1723   // Detect unsupported vector return types.
1724   if (Subtarget.hasVector())
1725     VerifyVectorTypes(Outs);
1726 
1727   // Assign locations to each returned value.
1728   SmallVector<CCValAssign, 16> RetLocs;
1729   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1730   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1731 
1732   // Quick exit for void returns
1733   if (RetLocs.empty())
1734     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1735 
1736   if (CallConv == CallingConv::GHC)
1737     report_fatal_error("GHC functions return void only");
1738 
1739   // Copy the result values into the output registers.
1740   SDValue Glue;
1741   SmallVector<SDValue, 4> RetOps;
1742   RetOps.push_back(Chain);
1743   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1744     CCValAssign &VA = RetLocs[I];
1745     SDValue RetValue = OutVals[I];
1746 
1747     // Make the return register live on exit.
1748     assert(VA.isRegLoc() && "Can only return in registers!");
1749 
1750     // Promote the value as required.
1751     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1752 
1753     // Chain and glue the copies together.
1754     Register Reg = VA.getLocReg();
1755     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1756     Glue = Chain.getValue(1);
1757     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1758   }
1759 
1760   // Update chain and glue.
1761   RetOps[0] = Chain;
1762   if (Glue.getNode())
1763     RetOps.push_back(Glue);
1764 
1765   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1766 }
1767 
1768 // Return true if Op is an intrinsic node with chain that returns the CC value
1769 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1770 // the mask of valid CC values if so.
1771 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1772                                       unsigned &CCValid) {
1773   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1774   switch (Id) {
1775   case Intrinsic::s390_tbegin:
1776     Opcode = SystemZISD::TBEGIN;
1777     CCValid = SystemZ::CCMASK_TBEGIN;
1778     return true;
1779 
1780   case Intrinsic::s390_tbegin_nofloat:
1781     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1782     CCValid = SystemZ::CCMASK_TBEGIN;
1783     return true;
1784 
1785   case Intrinsic::s390_tend:
1786     Opcode = SystemZISD::TEND;
1787     CCValid = SystemZ::CCMASK_TEND;
1788     return true;
1789 
1790   default:
1791     return false;
1792   }
1793 }
1794 
1795 // Return true if Op is an intrinsic node without chain that returns the
1796 // CC value as its final argument.  Provide the associated SystemZISD
1797 // opcode and the mask of valid CC values if so.
1798 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1799   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1800   switch (Id) {
1801   case Intrinsic::s390_vpkshs:
1802   case Intrinsic::s390_vpksfs:
1803   case Intrinsic::s390_vpksgs:
1804     Opcode = SystemZISD::PACKS_CC;
1805     CCValid = SystemZ::CCMASK_VCMP;
1806     return true;
1807 
1808   case Intrinsic::s390_vpklshs:
1809   case Intrinsic::s390_vpklsfs:
1810   case Intrinsic::s390_vpklsgs:
1811     Opcode = SystemZISD::PACKLS_CC;
1812     CCValid = SystemZ::CCMASK_VCMP;
1813     return true;
1814 
1815   case Intrinsic::s390_vceqbs:
1816   case Intrinsic::s390_vceqhs:
1817   case Intrinsic::s390_vceqfs:
1818   case Intrinsic::s390_vceqgs:
1819     Opcode = SystemZISD::VICMPES;
1820     CCValid = SystemZ::CCMASK_VCMP;
1821     return true;
1822 
1823   case Intrinsic::s390_vchbs:
1824   case Intrinsic::s390_vchhs:
1825   case Intrinsic::s390_vchfs:
1826   case Intrinsic::s390_vchgs:
1827     Opcode = SystemZISD::VICMPHS;
1828     CCValid = SystemZ::CCMASK_VCMP;
1829     return true;
1830 
1831   case Intrinsic::s390_vchlbs:
1832   case Intrinsic::s390_vchlhs:
1833   case Intrinsic::s390_vchlfs:
1834   case Intrinsic::s390_vchlgs:
1835     Opcode = SystemZISD::VICMPHLS;
1836     CCValid = SystemZ::CCMASK_VCMP;
1837     return true;
1838 
1839   case Intrinsic::s390_vtm:
1840     Opcode = SystemZISD::VTM;
1841     CCValid = SystemZ::CCMASK_VCMP;
1842     return true;
1843 
1844   case Intrinsic::s390_vfaebs:
1845   case Intrinsic::s390_vfaehs:
1846   case Intrinsic::s390_vfaefs:
1847     Opcode = SystemZISD::VFAE_CC;
1848     CCValid = SystemZ::CCMASK_ANY;
1849     return true;
1850 
1851   case Intrinsic::s390_vfaezbs:
1852   case Intrinsic::s390_vfaezhs:
1853   case Intrinsic::s390_vfaezfs:
1854     Opcode = SystemZISD::VFAEZ_CC;
1855     CCValid = SystemZ::CCMASK_ANY;
1856     return true;
1857 
1858   case Intrinsic::s390_vfeebs:
1859   case Intrinsic::s390_vfeehs:
1860   case Intrinsic::s390_vfeefs:
1861     Opcode = SystemZISD::VFEE_CC;
1862     CCValid = SystemZ::CCMASK_ANY;
1863     return true;
1864 
1865   case Intrinsic::s390_vfeezbs:
1866   case Intrinsic::s390_vfeezhs:
1867   case Intrinsic::s390_vfeezfs:
1868     Opcode = SystemZISD::VFEEZ_CC;
1869     CCValid = SystemZ::CCMASK_ANY;
1870     return true;
1871 
1872   case Intrinsic::s390_vfenebs:
1873   case Intrinsic::s390_vfenehs:
1874   case Intrinsic::s390_vfenefs:
1875     Opcode = SystemZISD::VFENE_CC;
1876     CCValid = SystemZ::CCMASK_ANY;
1877     return true;
1878 
1879   case Intrinsic::s390_vfenezbs:
1880   case Intrinsic::s390_vfenezhs:
1881   case Intrinsic::s390_vfenezfs:
1882     Opcode = SystemZISD::VFENEZ_CC;
1883     CCValid = SystemZ::CCMASK_ANY;
1884     return true;
1885 
1886   case Intrinsic::s390_vistrbs:
1887   case Intrinsic::s390_vistrhs:
1888   case Intrinsic::s390_vistrfs:
1889     Opcode = SystemZISD::VISTR_CC;
1890     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1891     return true;
1892 
1893   case Intrinsic::s390_vstrcbs:
1894   case Intrinsic::s390_vstrchs:
1895   case Intrinsic::s390_vstrcfs:
1896     Opcode = SystemZISD::VSTRC_CC;
1897     CCValid = SystemZ::CCMASK_ANY;
1898     return true;
1899 
1900   case Intrinsic::s390_vstrczbs:
1901   case Intrinsic::s390_vstrczhs:
1902   case Intrinsic::s390_vstrczfs:
1903     Opcode = SystemZISD::VSTRCZ_CC;
1904     CCValid = SystemZ::CCMASK_ANY;
1905     return true;
1906 
1907   case Intrinsic::s390_vstrsb:
1908   case Intrinsic::s390_vstrsh:
1909   case Intrinsic::s390_vstrsf:
1910     Opcode = SystemZISD::VSTRS_CC;
1911     CCValid = SystemZ::CCMASK_ANY;
1912     return true;
1913 
1914   case Intrinsic::s390_vstrszb:
1915   case Intrinsic::s390_vstrszh:
1916   case Intrinsic::s390_vstrszf:
1917     Opcode = SystemZISD::VSTRSZ_CC;
1918     CCValid = SystemZ::CCMASK_ANY;
1919     return true;
1920 
1921   case Intrinsic::s390_vfcedbs:
1922   case Intrinsic::s390_vfcesbs:
1923     Opcode = SystemZISD::VFCMPES;
1924     CCValid = SystemZ::CCMASK_VCMP;
1925     return true;
1926 
1927   case Intrinsic::s390_vfchdbs:
1928   case Intrinsic::s390_vfchsbs:
1929     Opcode = SystemZISD::VFCMPHS;
1930     CCValid = SystemZ::CCMASK_VCMP;
1931     return true;
1932 
1933   case Intrinsic::s390_vfchedbs:
1934   case Intrinsic::s390_vfchesbs:
1935     Opcode = SystemZISD::VFCMPHES;
1936     CCValid = SystemZ::CCMASK_VCMP;
1937     return true;
1938 
1939   case Intrinsic::s390_vftcidb:
1940   case Intrinsic::s390_vftcisb:
1941     Opcode = SystemZISD::VFTCI;
1942     CCValid = SystemZ::CCMASK_VCMP;
1943     return true;
1944 
1945   case Intrinsic::s390_tdc:
1946     Opcode = SystemZISD::TDC;
1947     CCValid = SystemZ::CCMASK_TDC;
1948     return true;
1949 
1950   default:
1951     return false;
1952   }
1953 }
1954 
1955 // Emit an intrinsic with chain and an explicit CC register result.
1956 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1957                                            unsigned Opcode) {
1958   // Copy all operands except the intrinsic ID.
1959   unsigned NumOps = Op.getNumOperands();
1960   SmallVector<SDValue, 6> Ops;
1961   Ops.reserve(NumOps - 1);
1962   Ops.push_back(Op.getOperand(0));
1963   for (unsigned I = 2; I < NumOps; ++I)
1964     Ops.push_back(Op.getOperand(I));
1965 
1966   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1967   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1968   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1969   SDValue OldChain = SDValue(Op.getNode(), 1);
1970   SDValue NewChain = SDValue(Intr.getNode(), 1);
1971   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1972   return Intr.getNode();
1973 }
1974 
1975 // Emit an intrinsic with an explicit CC register result.
1976 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1977                                    unsigned Opcode) {
1978   // Copy all operands except the intrinsic ID.
1979   unsigned NumOps = Op.getNumOperands();
1980   SmallVector<SDValue, 6> Ops;
1981   Ops.reserve(NumOps - 1);
1982   for (unsigned I = 1; I < NumOps; ++I)
1983     Ops.push_back(Op.getOperand(I));
1984 
1985   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1986   return Intr.getNode();
1987 }
1988 
1989 // CC is a comparison that will be implemented using an integer or
1990 // floating-point comparison.  Return the condition code mask for
1991 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1992 // unsigned comparisons and clear for signed ones.  In the floating-point
1993 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1994 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1995 #define CONV(X) \
1996   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1997   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1998   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1999 
2000   switch (CC) {
2001   default:
2002     llvm_unreachable("Invalid integer condition!");
2003 
2004   CONV(EQ);
2005   CONV(NE);
2006   CONV(GT);
2007   CONV(GE);
2008   CONV(LT);
2009   CONV(LE);
2010 
2011   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2012   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2013   }
2014 #undef CONV
2015 }
2016 
2017 // If C can be converted to a comparison against zero, adjust the operands
2018 // as necessary.
2019 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2020   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2021     return;
2022 
2023   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2024   if (!ConstOp1)
2025     return;
2026 
2027   int64_t Value = ConstOp1->getSExtValue();
2028   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2029       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2030       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2031       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2032     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2033     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2034   }
2035 }
2036 
2037 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2038 // adjust the operands as necessary.
2039 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2040                              Comparison &C) {
2041   // For us to make any changes, it must a comparison between a single-use
2042   // load and a constant.
2043   if (!C.Op0.hasOneUse() ||
2044       C.Op0.getOpcode() != ISD::LOAD ||
2045       C.Op1.getOpcode() != ISD::Constant)
2046     return;
2047 
2048   // We must have an 8- or 16-bit load.
2049   auto *Load = cast<LoadSDNode>(C.Op0);
2050   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
2051   if (NumBits != 8 && NumBits != 16)
2052     return;
2053 
2054   // The load must be an extending one and the constant must be within the
2055   // range of the unextended value.
2056   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2057   uint64_t Value = ConstOp1->getZExtValue();
2058   uint64_t Mask = (1 << NumBits) - 1;
2059   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2060     // Make sure that ConstOp1 is in range of C.Op0.
2061     int64_t SignedValue = ConstOp1->getSExtValue();
2062     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2063       return;
2064     if (C.ICmpType != SystemZICMP::SignedOnly) {
2065       // Unsigned comparison between two sign-extended values is equivalent
2066       // to unsigned comparison between two zero-extended values.
2067       Value &= Mask;
2068     } else if (NumBits == 8) {
2069       // Try to treat the comparison as unsigned, so that we can use CLI.
2070       // Adjust CCMask and Value as necessary.
2071       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2072         // Test whether the high bit of the byte is set.
2073         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2074       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2075         // Test whether the high bit of the byte is clear.
2076         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2077       else
2078         // No instruction exists for this combination.
2079         return;
2080       C.ICmpType = SystemZICMP::UnsignedOnly;
2081     }
2082   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2083     if (Value > Mask)
2084       return;
2085     // If the constant is in range, we can use any comparison.
2086     C.ICmpType = SystemZICMP::Any;
2087   } else
2088     return;
2089 
2090   // Make sure that the first operand is an i32 of the right extension type.
2091   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2092                               ISD::SEXTLOAD :
2093                               ISD::ZEXTLOAD);
2094   if (C.Op0.getValueType() != MVT::i32 ||
2095       Load->getExtensionType() != ExtType) {
2096     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2097                            Load->getBasePtr(), Load->getPointerInfo(),
2098                            Load->getMemoryVT(), Load->getAlignment(),
2099                            Load->getMemOperand()->getFlags());
2100     // Update the chain uses.
2101     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2102   }
2103 
2104   // Make sure that the second operand is an i32 with the right value.
2105   if (C.Op1.getValueType() != MVT::i32 ||
2106       Value != ConstOp1->getZExtValue())
2107     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2108 }
2109 
2110 // Return true if Op is either an unextended load, or a load suitable
2111 // for integer register-memory comparisons of type ICmpType.
2112 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2113   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2114   if (Load) {
2115     // There are no instructions to compare a register with a memory byte.
2116     if (Load->getMemoryVT() == MVT::i8)
2117       return false;
2118     // Otherwise decide on extension type.
2119     switch (Load->getExtensionType()) {
2120     case ISD::NON_EXTLOAD:
2121       return true;
2122     case ISD::SEXTLOAD:
2123       return ICmpType != SystemZICMP::UnsignedOnly;
2124     case ISD::ZEXTLOAD:
2125       return ICmpType != SystemZICMP::SignedOnly;
2126     default:
2127       break;
2128     }
2129   }
2130   return false;
2131 }
2132 
2133 // Return true if it is better to swap the operands of C.
2134 static bool shouldSwapCmpOperands(const Comparison &C) {
2135   // Leave f128 comparisons alone, since they have no memory forms.
2136   if (C.Op0.getValueType() == MVT::f128)
2137     return false;
2138 
2139   // Always keep a floating-point constant second, since comparisons with
2140   // zero can use LOAD TEST and comparisons with other constants make a
2141   // natural memory operand.
2142   if (isa<ConstantFPSDNode>(C.Op1))
2143     return false;
2144 
2145   // Never swap comparisons with zero since there are many ways to optimize
2146   // those later.
2147   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2148   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2149     return false;
2150 
2151   // Also keep natural memory operands second if the loaded value is
2152   // only used here.  Several comparisons have memory forms.
2153   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2154     return false;
2155 
2156   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2157   // In that case we generally prefer the memory to be second.
2158   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2159     // The only exceptions are when the second operand is a constant and
2160     // we can use things like CHHSI.
2161     if (!ConstOp1)
2162       return true;
2163     // The unsigned memory-immediate instructions can handle 16-bit
2164     // unsigned integers.
2165     if (C.ICmpType != SystemZICMP::SignedOnly &&
2166         isUInt<16>(ConstOp1->getZExtValue()))
2167       return false;
2168     // The signed memory-immediate instructions can handle 16-bit
2169     // signed integers.
2170     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2171         isInt<16>(ConstOp1->getSExtValue()))
2172       return false;
2173     return true;
2174   }
2175 
2176   // Try to promote the use of CGFR and CLGFR.
2177   unsigned Opcode0 = C.Op0.getOpcode();
2178   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2179     return true;
2180   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2181     return true;
2182   if (C.ICmpType != SystemZICMP::SignedOnly &&
2183       Opcode0 == ISD::AND &&
2184       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2185       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2186     return true;
2187 
2188   return false;
2189 }
2190 
2191 // Return a version of comparison CC mask CCMask in which the LT and GT
2192 // actions are swapped.
2193 static unsigned reverseCCMask(unsigned CCMask) {
2194   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2195           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2196           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2197           (CCMask & SystemZ::CCMASK_CMP_UO));
2198 }
2199 
2200 // Check whether C tests for equality between X and Y and whether X - Y
2201 // or Y - X is also computed.  In that case it's better to compare the
2202 // result of the subtraction against zero.
2203 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2204                                  Comparison &C) {
2205   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2206       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2207     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2208       SDNode *N = *I;
2209       if (N->getOpcode() == ISD::SUB &&
2210           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2211            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2212         C.Op0 = SDValue(N, 0);
2213         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2214         return;
2215       }
2216     }
2217   }
2218 }
2219 
2220 // Check whether C compares a floating-point value with zero and if that
2221 // floating-point value is also negated.  In this case we can use the
2222 // negation to set CC, so avoiding separate LOAD AND TEST and
2223 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2224 static void adjustForFNeg(Comparison &C) {
2225   // This optimization is invalid for strict comparisons, since FNEG
2226   // does not raise any exceptions.
2227   if (C.Chain)
2228     return;
2229   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2230   if (C1 && C1->isZero()) {
2231     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2232       SDNode *N = *I;
2233       if (N->getOpcode() == ISD::FNEG) {
2234         C.Op0 = SDValue(N, 0);
2235         C.CCMask = reverseCCMask(C.CCMask);
2236         return;
2237       }
2238     }
2239   }
2240 }
2241 
2242 // Check whether C compares (shl X, 32) with 0 and whether X is
2243 // also sign-extended.  In that case it is better to test the result
2244 // of the sign extension using LTGFR.
2245 //
2246 // This case is important because InstCombine transforms a comparison
2247 // with (sext (trunc X)) into a comparison with (shl X, 32).
2248 static void adjustForLTGFR(Comparison &C) {
2249   // Check for a comparison between (shl X, 32) and 0.
2250   if (C.Op0.getOpcode() == ISD::SHL &&
2251       C.Op0.getValueType() == MVT::i64 &&
2252       C.Op1.getOpcode() == ISD::Constant &&
2253       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2254     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2255     if (C1 && C1->getZExtValue() == 32) {
2256       SDValue ShlOp0 = C.Op0.getOperand(0);
2257       // See whether X has any SIGN_EXTEND_INREG uses.
2258       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2259         SDNode *N = *I;
2260         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2261             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2262           C.Op0 = SDValue(N, 0);
2263           return;
2264         }
2265       }
2266     }
2267   }
2268 }
2269 
2270 // If C compares the truncation of an extending load, try to compare
2271 // the untruncated value instead.  This exposes more opportunities to
2272 // reuse CC.
2273 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2274                                Comparison &C) {
2275   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2276       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2277       C.Op1.getOpcode() == ISD::Constant &&
2278       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2279     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2280     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2281       unsigned Type = L->getExtensionType();
2282       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2283           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2284         C.Op0 = C.Op0.getOperand(0);
2285         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2286       }
2287     }
2288   }
2289 }
2290 
2291 // Return true if shift operation N has an in-range constant shift value.
2292 // Store it in ShiftVal if so.
2293 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2294   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2295   if (!Shift)
2296     return false;
2297 
2298   uint64_t Amount = Shift->getZExtValue();
2299   if (Amount >= N.getValueSizeInBits())
2300     return false;
2301 
2302   ShiftVal = Amount;
2303   return true;
2304 }
2305 
2306 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2307 // instruction and whether the CC value is descriptive enough to handle
2308 // a comparison of type Opcode between the AND result and CmpVal.
2309 // CCMask says which comparison result is being tested and BitSize is
2310 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2311 // return the corresponding CC mask, otherwise return 0.
2312 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2313                                      uint64_t Mask, uint64_t CmpVal,
2314                                      unsigned ICmpType) {
2315   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2316 
2317   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2318   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2319       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2320     return 0;
2321 
2322   // Work out the masks for the lowest and highest bits.
2323   unsigned HighShift = 63 - countLeadingZeros(Mask);
2324   uint64_t High = uint64_t(1) << HighShift;
2325   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2326 
2327   // Signed ordered comparisons are effectively unsigned if the sign
2328   // bit is dropped.
2329   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2330 
2331   // Check for equality comparisons with 0, or the equivalent.
2332   if (CmpVal == 0) {
2333     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2334       return SystemZ::CCMASK_TM_ALL_0;
2335     if (CCMask == SystemZ::CCMASK_CMP_NE)
2336       return SystemZ::CCMASK_TM_SOME_1;
2337   }
2338   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2339     if (CCMask == SystemZ::CCMASK_CMP_LT)
2340       return SystemZ::CCMASK_TM_ALL_0;
2341     if (CCMask == SystemZ::CCMASK_CMP_GE)
2342       return SystemZ::CCMASK_TM_SOME_1;
2343   }
2344   if (EffectivelyUnsigned && CmpVal < Low) {
2345     if (CCMask == SystemZ::CCMASK_CMP_LE)
2346       return SystemZ::CCMASK_TM_ALL_0;
2347     if (CCMask == SystemZ::CCMASK_CMP_GT)
2348       return SystemZ::CCMASK_TM_SOME_1;
2349   }
2350 
2351   // Check for equality comparisons with the mask, or the equivalent.
2352   if (CmpVal == Mask) {
2353     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2354       return SystemZ::CCMASK_TM_ALL_1;
2355     if (CCMask == SystemZ::CCMASK_CMP_NE)
2356       return SystemZ::CCMASK_TM_SOME_0;
2357   }
2358   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2359     if (CCMask == SystemZ::CCMASK_CMP_GT)
2360       return SystemZ::CCMASK_TM_ALL_1;
2361     if (CCMask == SystemZ::CCMASK_CMP_LE)
2362       return SystemZ::CCMASK_TM_SOME_0;
2363   }
2364   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2365     if (CCMask == SystemZ::CCMASK_CMP_GE)
2366       return SystemZ::CCMASK_TM_ALL_1;
2367     if (CCMask == SystemZ::CCMASK_CMP_LT)
2368       return SystemZ::CCMASK_TM_SOME_0;
2369   }
2370 
2371   // Check for ordered comparisons with the top bit.
2372   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2373     if (CCMask == SystemZ::CCMASK_CMP_LE)
2374       return SystemZ::CCMASK_TM_MSB_0;
2375     if (CCMask == SystemZ::CCMASK_CMP_GT)
2376       return SystemZ::CCMASK_TM_MSB_1;
2377   }
2378   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2379     if (CCMask == SystemZ::CCMASK_CMP_LT)
2380       return SystemZ::CCMASK_TM_MSB_0;
2381     if (CCMask == SystemZ::CCMASK_CMP_GE)
2382       return SystemZ::CCMASK_TM_MSB_1;
2383   }
2384 
2385   // If there are just two bits, we can do equality checks for Low and High
2386   // as well.
2387   if (Mask == Low + High) {
2388     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2389       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2390     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2391       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2392     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2393       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2394     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2395       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2396   }
2397 
2398   // Looks like we've exhausted our options.
2399   return 0;
2400 }
2401 
2402 // See whether C can be implemented as a TEST UNDER MASK instruction.
2403 // Update the arguments with the TM version if so.
2404 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2405                                    Comparison &C) {
2406   // Check that we have a comparison with a constant.
2407   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2408   if (!ConstOp1)
2409     return;
2410   uint64_t CmpVal = ConstOp1->getZExtValue();
2411 
2412   // Check whether the nonconstant input is an AND with a constant mask.
2413   Comparison NewC(C);
2414   uint64_t MaskVal;
2415   ConstantSDNode *Mask = nullptr;
2416   if (C.Op0.getOpcode() == ISD::AND) {
2417     NewC.Op0 = C.Op0.getOperand(0);
2418     NewC.Op1 = C.Op0.getOperand(1);
2419     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2420     if (!Mask)
2421       return;
2422     MaskVal = Mask->getZExtValue();
2423   } else {
2424     // There is no instruction to compare with a 64-bit immediate
2425     // so use TMHH instead if possible.  We need an unsigned ordered
2426     // comparison with an i64 immediate.
2427     if (NewC.Op0.getValueType() != MVT::i64 ||
2428         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2429         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2430         NewC.ICmpType == SystemZICMP::SignedOnly)
2431       return;
2432     // Convert LE and GT comparisons into LT and GE.
2433     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2434         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2435       if (CmpVal == uint64_t(-1))
2436         return;
2437       CmpVal += 1;
2438       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2439     }
2440     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2441     // be masked off without changing the result.
2442     MaskVal = -(CmpVal & -CmpVal);
2443     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2444   }
2445   if (!MaskVal)
2446     return;
2447 
2448   // Check whether the combination of mask, comparison value and comparison
2449   // type are suitable.
2450   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2451   unsigned NewCCMask, ShiftVal;
2452   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2453       NewC.Op0.getOpcode() == ISD::SHL &&
2454       isSimpleShift(NewC.Op0, ShiftVal) &&
2455       (MaskVal >> ShiftVal != 0) &&
2456       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2457       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2458                                         MaskVal >> ShiftVal,
2459                                         CmpVal >> ShiftVal,
2460                                         SystemZICMP::Any))) {
2461     NewC.Op0 = NewC.Op0.getOperand(0);
2462     MaskVal >>= ShiftVal;
2463   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2464              NewC.Op0.getOpcode() == ISD::SRL &&
2465              isSimpleShift(NewC.Op0, ShiftVal) &&
2466              (MaskVal << ShiftVal != 0) &&
2467              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2468              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2469                                                MaskVal << ShiftVal,
2470                                                CmpVal << ShiftVal,
2471                                                SystemZICMP::UnsignedOnly))) {
2472     NewC.Op0 = NewC.Op0.getOperand(0);
2473     MaskVal <<= ShiftVal;
2474   } else {
2475     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2476                                      NewC.ICmpType);
2477     if (!NewCCMask)
2478       return;
2479   }
2480 
2481   // Go ahead and make the change.
2482   C.Opcode = SystemZISD::TM;
2483   C.Op0 = NewC.Op0;
2484   if (Mask && Mask->getZExtValue() == MaskVal)
2485     C.Op1 = SDValue(Mask, 0);
2486   else
2487     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2488   C.CCValid = SystemZ::CCMASK_TM;
2489   C.CCMask = NewCCMask;
2490 }
2491 
2492 // See whether the comparison argument contains a redundant AND
2493 // and remove it if so.  This sometimes happens due to the generic
2494 // BRCOND expansion.
2495 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2496                                   Comparison &C) {
2497   if (C.Op0.getOpcode() != ISD::AND)
2498     return;
2499   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2500   if (!Mask)
2501     return;
2502   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2503   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2504     return;
2505 
2506   C.Op0 = C.Op0.getOperand(0);
2507 }
2508 
2509 // Return a Comparison that tests the condition-code result of intrinsic
2510 // node Call against constant integer CC using comparison code Cond.
2511 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2512 // and CCValid is the set of possible condition-code results.
2513 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2514                                   SDValue Call, unsigned CCValid, uint64_t CC,
2515                                   ISD::CondCode Cond) {
2516   Comparison C(Call, SDValue(), SDValue());
2517   C.Opcode = Opcode;
2518   C.CCValid = CCValid;
2519   if (Cond == ISD::SETEQ)
2520     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2521     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2522   else if (Cond == ISD::SETNE)
2523     // ...and the inverse of that.
2524     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2525   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2526     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2527     // always true for CC>3.
2528     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2529   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2530     // ...and the inverse of that.
2531     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2532   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2533     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2534     // always true for CC>3.
2535     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2536   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2537     // ...and the inverse of that.
2538     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2539   else
2540     llvm_unreachable("Unexpected integer comparison type");
2541   C.CCMask &= CCValid;
2542   return C;
2543 }
2544 
2545 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2546 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2547                          ISD::CondCode Cond, const SDLoc &DL,
2548                          SDValue Chain = SDValue(),
2549                          bool IsSignaling = false) {
2550   if (CmpOp1.getOpcode() == ISD::Constant) {
2551     assert(!Chain);
2552     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2553     unsigned Opcode, CCValid;
2554     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2555         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2556         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2557       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2558     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2559         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2560         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2561       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2562   }
2563   Comparison C(CmpOp0, CmpOp1, Chain);
2564   C.CCMask = CCMaskForCondCode(Cond);
2565   if (C.Op0.getValueType().isFloatingPoint()) {
2566     C.CCValid = SystemZ::CCMASK_FCMP;
2567     if (!C.Chain)
2568       C.Opcode = SystemZISD::FCMP;
2569     else if (!IsSignaling)
2570       C.Opcode = SystemZISD::STRICT_FCMP;
2571     else
2572       C.Opcode = SystemZISD::STRICT_FCMPS;
2573     adjustForFNeg(C);
2574   } else {
2575     assert(!C.Chain);
2576     C.CCValid = SystemZ::CCMASK_ICMP;
2577     C.Opcode = SystemZISD::ICMP;
2578     // Choose the type of comparison.  Equality and inequality tests can
2579     // use either signed or unsigned comparisons.  The choice also doesn't
2580     // matter if both sign bits are known to be clear.  In those cases we
2581     // want to give the main isel code the freedom to choose whichever
2582     // form fits best.
2583     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2584         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2585         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2586       C.ICmpType = SystemZICMP::Any;
2587     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2588       C.ICmpType = SystemZICMP::UnsignedOnly;
2589     else
2590       C.ICmpType = SystemZICMP::SignedOnly;
2591     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2592     adjustForRedundantAnd(DAG, DL, C);
2593     adjustZeroCmp(DAG, DL, C);
2594     adjustSubwordCmp(DAG, DL, C);
2595     adjustForSubtraction(DAG, DL, C);
2596     adjustForLTGFR(C);
2597     adjustICmpTruncate(DAG, DL, C);
2598   }
2599 
2600   if (shouldSwapCmpOperands(C)) {
2601     std::swap(C.Op0, C.Op1);
2602     C.CCMask = reverseCCMask(C.CCMask);
2603   }
2604 
2605   adjustForTestUnderMask(DAG, DL, C);
2606   return C;
2607 }
2608 
2609 // Emit the comparison instruction described by C.
2610 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2611   if (!C.Op1.getNode()) {
2612     SDNode *Node;
2613     switch (C.Op0.getOpcode()) {
2614     case ISD::INTRINSIC_W_CHAIN:
2615       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2616       return SDValue(Node, 0);
2617     case ISD::INTRINSIC_WO_CHAIN:
2618       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2619       return SDValue(Node, Node->getNumValues() - 1);
2620     default:
2621       llvm_unreachable("Invalid comparison operands");
2622     }
2623   }
2624   if (C.Opcode == SystemZISD::ICMP)
2625     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2626                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2627   if (C.Opcode == SystemZISD::TM) {
2628     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2629                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2630     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2631                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2632   }
2633   if (C.Chain) {
2634     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2635     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2636   }
2637   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2638 }
2639 
2640 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2641 // 64 bits.  Extend is the extension type to use.  Store the high part
2642 // in Hi and the low part in Lo.
2643 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2644                             SDValue Op0, SDValue Op1, SDValue &Hi,
2645                             SDValue &Lo) {
2646   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2647   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2648   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2649   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2650                    DAG.getConstant(32, DL, MVT::i64));
2651   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2652   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2653 }
2654 
2655 // Lower a binary operation that produces two VT results, one in each
2656 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2657 // and Opcode performs the GR128 operation.  Store the even register result
2658 // in Even and the odd register result in Odd.
2659 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2660                              unsigned Opcode, SDValue Op0, SDValue Op1,
2661                              SDValue &Even, SDValue &Odd) {
2662   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2663   bool Is32Bit = is32Bit(VT);
2664   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2665   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2666 }
2667 
2668 // Return an i32 value that is 1 if the CC value produced by CCReg is
2669 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2670 // in CCValid, so other values can be ignored.
2671 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2672                          unsigned CCValid, unsigned CCMask) {
2673   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2674                    DAG.getConstant(0, DL, MVT::i32),
2675                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2676                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2677   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2678 }
2679 
2680 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2681 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2682 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2683 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2684 // floating-point comparisons.
2685 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2686 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2687   switch (CC) {
2688   case ISD::SETOEQ:
2689   case ISD::SETEQ:
2690     switch (Mode) {
2691     case CmpMode::Int:         return SystemZISD::VICMPE;
2692     case CmpMode::FP:          return SystemZISD::VFCMPE;
2693     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2694     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2695     }
2696     llvm_unreachable("Bad mode");
2697 
2698   case ISD::SETOGE:
2699   case ISD::SETGE:
2700     switch (Mode) {
2701     case CmpMode::Int:         return 0;
2702     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2703     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2704     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2705     }
2706     llvm_unreachable("Bad mode");
2707 
2708   case ISD::SETOGT:
2709   case ISD::SETGT:
2710     switch (Mode) {
2711     case CmpMode::Int:         return SystemZISD::VICMPH;
2712     case CmpMode::FP:          return SystemZISD::VFCMPH;
2713     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2714     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2715     }
2716     llvm_unreachable("Bad mode");
2717 
2718   case ISD::SETUGT:
2719     switch (Mode) {
2720     case CmpMode::Int:         return SystemZISD::VICMPHL;
2721     case CmpMode::FP:          return 0;
2722     case CmpMode::StrictFP:    return 0;
2723     case CmpMode::SignalingFP: return 0;
2724     }
2725     llvm_unreachable("Bad mode");
2726 
2727   default:
2728     return 0;
2729   }
2730 }
2731 
2732 // Return the SystemZISD vector comparison operation for CC or its inverse,
2733 // or 0 if neither can be done directly.  Indicate in Invert whether the
2734 // result is for the inverse of CC.  Mode is as above.
2735 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2736                                             bool &Invert) {
2737   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2738     Invert = false;
2739     return Opcode;
2740   }
2741 
2742   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2743   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2744     Invert = true;
2745     return Opcode;
2746   }
2747 
2748   return 0;
2749 }
2750 
2751 // Return a v2f64 that contains the extended form of elements Start and Start+1
2752 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2753 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2754                                   SDValue Op, SDValue Chain) {
2755   int Mask[] = { Start, -1, Start + 1, -1 };
2756   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2757   if (Chain) {
2758     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2759     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2760   }
2761   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2762 }
2763 
2764 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2765 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2766 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2767                                             const SDLoc &DL, EVT VT,
2768                                             SDValue CmpOp0,
2769                                             SDValue CmpOp1,
2770                                             SDValue Chain) const {
2771   // There is no hardware support for v4f32 (unless we have the vector
2772   // enhancements facility 1), so extend the vector into two v2f64s
2773   // and compare those.
2774   if (CmpOp0.getValueType() == MVT::v4f32 &&
2775       !Subtarget.hasVectorEnhancements1()) {
2776     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2777     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2778     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2779     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2780     if (Chain) {
2781       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2782       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2783       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2784       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2785       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2786                             H1.getValue(1), L1.getValue(1),
2787                             HRes.getValue(1), LRes.getValue(1) };
2788       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2789       SDValue Ops[2] = { Res, NewChain };
2790       return DAG.getMergeValues(Ops, DL);
2791     }
2792     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2793     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2794     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2795   }
2796   if (Chain) {
2797     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2798     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2799   }
2800   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2801 }
2802 
2803 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2804 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2805 // floating-point comparison.  If in addition IsSignaling is true, we have
2806 // a strict signaling floating-point comparison.
2807 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2808                                                 const SDLoc &DL, EVT VT,
2809                                                 ISD::CondCode CC,
2810                                                 SDValue CmpOp0,
2811                                                 SDValue CmpOp1,
2812                                                 SDValue Chain,
2813                                                 bool IsSignaling) const {
2814   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2815   assert (!Chain || IsFP);
2816   assert (!IsSignaling || Chain);
2817   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2818                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2819   bool Invert = false;
2820   SDValue Cmp;
2821   switch (CC) {
2822     // Handle tests for order using (or (ogt y x) (oge x y)).
2823   case ISD::SETUO:
2824     Invert = true;
2825     LLVM_FALLTHROUGH;
2826   case ISD::SETO: {
2827     assert(IsFP && "Unexpected integer comparison");
2828     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2829                               DL, VT, CmpOp1, CmpOp0, Chain);
2830     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2831                               DL, VT, CmpOp0, CmpOp1, Chain);
2832     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2833     if (Chain)
2834       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2835                           LT.getValue(1), GE.getValue(1));
2836     break;
2837   }
2838 
2839     // Handle <> tests using (or (ogt y x) (ogt x y)).
2840   case ISD::SETUEQ:
2841     Invert = true;
2842     LLVM_FALLTHROUGH;
2843   case ISD::SETONE: {
2844     assert(IsFP && "Unexpected integer comparison");
2845     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2846                               DL, VT, CmpOp1, CmpOp0, Chain);
2847     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2848                               DL, VT, CmpOp0, CmpOp1, Chain);
2849     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2850     if (Chain)
2851       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2852                           LT.getValue(1), GT.getValue(1));
2853     break;
2854   }
2855 
2856     // Otherwise a single comparison is enough.  It doesn't really
2857     // matter whether we try the inversion or the swap first, since
2858     // there are no cases where both work.
2859   default:
2860     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2861       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2862     else {
2863       CC = ISD::getSetCCSwappedOperands(CC);
2864       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2865         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2866       else
2867         llvm_unreachable("Unhandled comparison");
2868     }
2869     if (Chain)
2870       Chain = Cmp.getValue(1);
2871     break;
2872   }
2873   if (Invert) {
2874     SDValue Mask =
2875       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2876     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2877   }
2878   if (Chain && Chain.getNode() != Cmp.getNode()) {
2879     SDValue Ops[2] = { Cmp, Chain };
2880     Cmp = DAG.getMergeValues(Ops, DL);
2881   }
2882   return Cmp;
2883 }
2884 
2885 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2886                                           SelectionDAG &DAG) const {
2887   SDValue CmpOp0   = Op.getOperand(0);
2888   SDValue CmpOp1   = Op.getOperand(1);
2889   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2890   SDLoc DL(Op);
2891   EVT VT = Op.getValueType();
2892   if (VT.isVector())
2893     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2894 
2895   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2896   SDValue CCReg = emitCmp(DAG, DL, C);
2897   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2898 }
2899 
2900 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2901                                                   SelectionDAG &DAG,
2902                                                   bool IsSignaling) const {
2903   SDValue Chain    = Op.getOperand(0);
2904   SDValue CmpOp0   = Op.getOperand(1);
2905   SDValue CmpOp1   = Op.getOperand(2);
2906   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2907   SDLoc DL(Op);
2908   EVT VT = Op.getNode()->getValueType(0);
2909   if (VT.isVector()) {
2910     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2911                                    Chain, IsSignaling);
2912     return Res.getValue(Op.getResNo());
2913   }
2914 
2915   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2916   SDValue CCReg = emitCmp(DAG, DL, C);
2917   CCReg->setFlags(Op->getFlags());
2918   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2919   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2920   return DAG.getMergeValues(Ops, DL);
2921 }
2922 
2923 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2924   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2925   SDValue CmpOp0   = Op.getOperand(2);
2926   SDValue CmpOp1   = Op.getOperand(3);
2927   SDValue Dest     = Op.getOperand(4);
2928   SDLoc DL(Op);
2929 
2930   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2931   SDValue CCReg = emitCmp(DAG, DL, C);
2932   return DAG.getNode(
2933       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2934       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2935       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2936 }
2937 
2938 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2939 // allowing Pos and Neg to be wider than CmpOp.
2940 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2941   return (Neg.getOpcode() == ISD::SUB &&
2942           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2943           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2944           Neg.getOperand(1) == Pos &&
2945           (Pos == CmpOp ||
2946            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2947             Pos.getOperand(0) == CmpOp)));
2948 }
2949 
2950 // Return the absolute or negative absolute of Op; IsNegative decides which.
2951 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2952                            bool IsNegative) {
2953   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2954   if (IsNegative)
2955     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2956                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2957   return Op;
2958 }
2959 
2960 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2961                                               SelectionDAG &DAG) const {
2962   SDValue CmpOp0   = Op.getOperand(0);
2963   SDValue CmpOp1   = Op.getOperand(1);
2964   SDValue TrueOp   = Op.getOperand(2);
2965   SDValue FalseOp  = Op.getOperand(3);
2966   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2967   SDLoc DL(Op);
2968 
2969   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2970 
2971   // Check for absolute and negative-absolute selections, including those
2972   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2973   // This check supplements the one in DAGCombiner.
2974   if (C.Opcode == SystemZISD::ICMP &&
2975       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2976       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2977       C.Op1.getOpcode() == ISD::Constant &&
2978       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2979     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2980       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2981     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2982       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2983   }
2984 
2985   SDValue CCReg = emitCmp(DAG, DL, C);
2986   SDValue Ops[] = {TrueOp, FalseOp,
2987                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2988                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2989 
2990   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2991 }
2992 
2993 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2994                                                   SelectionDAG &DAG) const {
2995   SDLoc DL(Node);
2996   const GlobalValue *GV = Node->getGlobal();
2997   int64_t Offset = Node->getOffset();
2998   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2999   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3000 
3001   SDValue Result;
3002   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3003     if (isInt<32>(Offset)) {
3004       // Assign anchors at 1<<12 byte boundaries.
3005       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3006       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3007       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3008 
3009       // The offset can be folded into the address if it is aligned to a
3010       // halfword.
3011       Offset -= Anchor;
3012       if (Offset != 0 && (Offset & 1) == 0) {
3013         SDValue Full =
3014           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3015         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3016         Offset = 0;
3017       }
3018     } else {
3019       // Conservatively load a constant offset greater than 32 bits into a
3020       // register below.
3021       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3022       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3023     }
3024   } else {
3025     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3026     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3027     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3028                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3029   }
3030 
3031   // If there was a non-zero offset that we didn't fold, create an explicit
3032   // addition for it.
3033   if (Offset != 0)
3034     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3035                          DAG.getConstant(Offset, DL, PtrVT));
3036 
3037   return Result;
3038 }
3039 
3040 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3041                                                  SelectionDAG &DAG,
3042                                                  unsigned Opcode,
3043                                                  SDValue GOTOffset) const {
3044   SDLoc DL(Node);
3045   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3046   SDValue Chain = DAG.getEntryNode();
3047   SDValue Glue;
3048 
3049   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3050       CallingConv::GHC)
3051     report_fatal_error("In GHC calling convention TLS is not supported");
3052 
3053   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3054   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3055   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3056   Glue = Chain.getValue(1);
3057   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3058   Glue = Chain.getValue(1);
3059 
3060   // The first call operand is the chain and the second is the TLS symbol.
3061   SmallVector<SDValue, 8> Ops;
3062   Ops.push_back(Chain);
3063   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3064                                            Node->getValueType(0),
3065                                            0, 0));
3066 
3067   // Add argument registers to the end of the list so that they are
3068   // known live into the call.
3069   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3070   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3071 
3072   // Add a register mask operand representing the call-preserved registers.
3073   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3074   const uint32_t *Mask =
3075       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3076   assert(Mask && "Missing call preserved mask for calling convention");
3077   Ops.push_back(DAG.getRegisterMask(Mask));
3078 
3079   // Glue the call to the argument copies.
3080   Ops.push_back(Glue);
3081 
3082   // Emit the call.
3083   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3084   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3085   Glue = Chain.getValue(1);
3086 
3087   // Copy the return value from %r2.
3088   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3089 }
3090 
3091 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3092                                                   SelectionDAG &DAG) const {
3093   SDValue Chain = DAG.getEntryNode();
3094   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3095 
3096   // The high part of the thread pointer is in access register 0.
3097   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3098   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3099 
3100   // The low part of the thread pointer is in access register 1.
3101   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3102   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3103 
3104   // Merge them into a single 64-bit address.
3105   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3106                                     DAG.getConstant(32, DL, PtrVT));
3107   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3108 }
3109 
3110 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3111                                                      SelectionDAG &DAG) const {
3112   if (DAG.getTarget().useEmulatedTLS())
3113     return LowerToTLSEmulatedModel(Node, DAG);
3114   SDLoc DL(Node);
3115   const GlobalValue *GV = Node->getGlobal();
3116   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3117   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3118 
3119   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3120       CallingConv::GHC)
3121     report_fatal_error("In GHC calling convention TLS is not supported");
3122 
3123   SDValue TP = lowerThreadPointer(DL, DAG);
3124 
3125   // Get the offset of GA from the thread pointer, based on the TLS model.
3126   SDValue Offset;
3127   switch (model) {
3128     case TLSModel::GeneralDynamic: {
3129       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3130       SystemZConstantPoolValue *CPV =
3131         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3132 
3133       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3134       Offset = DAG.getLoad(
3135           PtrVT, DL, DAG.getEntryNode(), Offset,
3136           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3137 
3138       // Call __tls_get_offset to retrieve the offset.
3139       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3140       break;
3141     }
3142 
3143     case TLSModel::LocalDynamic: {
3144       // Load the GOT offset of the module ID.
3145       SystemZConstantPoolValue *CPV =
3146         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3147 
3148       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3149       Offset = DAG.getLoad(
3150           PtrVT, DL, DAG.getEntryNode(), Offset,
3151           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3152 
3153       // Call __tls_get_offset to retrieve the module base offset.
3154       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3155 
3156       // Note: The SystemZLDCleanupPass will remove redundant computations
3157       // of the module base offset.  Count total number of local-dynamic
3158       // accesses to trigger execution of that pass.
3159       SystemZMachineFunctionInfo* MFI =
3160         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3161       MFI->incNumLocalDynamicTLSAccesses();
3162 
3163       // Add the per-symbol offset.
3164       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3165 
3166       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
3167       DTPOffset = DAG.getLoad(
3168           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3169           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3170 
3171       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3172       break;
3173     }
3174 
3175     case TLSModel::InitialExec: {
3176       // Load the offset from the GOT.
3177       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3178                                           SystemZII::MO_INDNTPOFF);
3179       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3180       Offset =
3181           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3182                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3183       break;
3184     }
3185 
3186     case TLSModel::LocalExec: {
3187       // Force the offset into the constant pool and load it from there.
3188       SystemZConstantPoolValue *CPV =
3189         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3190 
3191       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3192       Offset = DAG.getLoad(
3193           PtrVT, DL, DAG.getEntryNode(), Offset,
3194           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3195       break;
3196     }
3197   }
3198 
3199   // Add the base and offset together.
3200   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3201 }
3202 
3203 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3204                                                  SelectionDAG &DAG) const {
3205   SDLoc DL(Node);
3206   const BlockAddress *BA = Node->getBlockAddress();
3207   int64_t Offset = Node->getOffset();
3208   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3209 
3210   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3211   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3212   return Result;
3213 }
3214 
3215 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3216                                               SelectionDAG &DAG) const {
3217   SDLoc DL(JT);
3218   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3219   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3220 
3221   // Use LARL to load the address of the table.
3222   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3223 }
3224 
3225 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3226                                                  SelectionDAG &DAG) const {
3227   SDLoc DL(CP);
3228   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3229 
3230   SDValue Result;
3231   if (CP->isMachineConstantPoolEntry())
3232     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3233                                        CP->getAlignment());
3234   else
3235     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3236                                        CP->getAlignment(), CP->getOffset());
3237 
3238   // Use LARL to load the address of the constant pool entry.
3239   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3240 }
3241 
3242 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3243                                               SelectionDAG &DAG) const {
3244   MachineFunction &MF = DAG.getMachineFunction();
3245   MachineFrameInfo &MFI = MF.getFrameInfo();
3246   MFI.setFrameAddressIsTaken(true);
3247 
3248   SDLoc DL(Op);
3249   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3250   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3251 
3252   // By definition, the frame address is the address of the back chain.
3253   auto *TFL =
3254       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3255   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3256   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3257 
3258   // FIXME The frontend should detect this case.
3259   if (Depth > 0) {
3260     report_fatal_error("Unsupported stack frame traversal count");
3261   }
3262 
3263   return BackChain;
3264 }
3265 
3266 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3267                                                SelectionDAG &DAG) const {
3268   MachineFunction &MF = DAG.getMachineFunction();
3269   MachineFrameInfo &MFI = MF.getFrameInfo();
3270   MFI.setReturnAddressIsTaken(true);
3271 
3272   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3273     return SDValue();
3274 
3275   SDLoc DL(Op);
3276   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3277   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3278 
3279   // FIXME The frontend should detect this case.
3280   if (Depth > 0) {
3281     report_fatal_error("Unsupported stack frame traversal count");
3282   }
3283 
3284   // Return R14D, which has the return address. Mark it an implicit live-in.
3285   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3286   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3287 }
3288 
3289 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3290                                             SelectionDAG &DAG) const {
3291   SDLoc DL(Op);
3292   SDValue In = Op.getOperand(0);
3293   EVT InVT = In.getValueType();
3294   EVT ResVT = Op.getValueType();
3295 
3296   // Convert loads directly.  This is normally done by DAGCombiner,
3297   // but we need this case for bitcasts that are created during lowering
3298   // and which are then lowered themselves.
3299   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3300     if (ISD::isNormalLoad(LoadN)) {
3301       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3302                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3303       // Update the chain uses.
3304       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3305       return NewLoad;
3306     }
3307 
3308   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3309     SDValue In64;
3310     if (Subtarget.hasHighWord()) {
3311       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3312                                        MVT::i64);
3313       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3314                                        MVT::i64, SDValue(U64, 0), In);
3315     } else {
3316       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3317       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3318                          DAG.getConstant(32, DL, MVT::i64));
3319     }
3320     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3321     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3322                                       DL, MVT::f32, Out64);
3323   }
3324   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3325     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3326     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3327                                              MVT::f64, SDValue(U64, 0), In);
3328     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3329     if (Subtarget.hasHighWord())
3330       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3331                                         MVT::i32, Out64);
3332     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3333                                 DAG.getConstant(32, DL, MVT::i64));
3334     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3335   }
3336   llvm_unreachable("Unexpected bitcast combination");
3337 }
3338 
3339 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3340                                             SelectionDAG &DAG) const {
3341   MachineFunction &MF = DAG.getMachineFunction();
3342   SystemZMachineFunctionInfo *FuncInfo =
3343     MF.getInfo<SystemZMachineFunctionInfo>();
3344   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3345 
3346   SDValue Chain   = Op.getOperand(0);
3347   SDValue Addr    = Op.getOperand(1);
3348   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3349   SDLoc DL(Op);
3350 
3351   // The initial values of each field.
3352   const unsigned NumFields = 4;
3353   SDValue Fields[NumFields] = {
3354     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3355     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3356     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3357     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3358   };
3359 
3360   // Store each field into its respective slot.
3361   SDValue MemOps[NumFields];
3362   unsigned Offset = 0;
3363   for (unsigned I = 0; I < NumFields; ++I) {
3364     SDValue FieldAddr = Addr;
3365     if (Offset != 0)
3366       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3367                               DAG.getIntPtrConstant(Offset, DL));
3368     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3369                              MachinePointerInfo(SV, Offset));
3370     Offset += 8;
3371   }
3372   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3373 }
3374 
3375 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3376                                            SelectionDAG &DAG) const {
3377   SDValue Chain      = Op.getOperand(0);
3378   SDValue DstPtr     = Op.getOperand(1);
3379   SDValue SrcPtr     = Op.getOperand(2);
3380   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3381   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3382   SDLoc DL(Op);
3383 
3384   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3385                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3386                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3387                        MachinePointerInfo(SrcSV));
3388 }
3389 
3390 SDValue SystemZTargetLowering::
3391 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3392   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3393   MachineFunction &MF = DAG.getMachineFunction();
3394   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3395   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3396 
3397   SDValue Chain = Op.getOperand(0);
3398   SDValue Size  = Op.getOperand(1);
3399   SDValue Align = Op.getOperand(2);
3400   SDLoc DL(Op);
3401 
3402   // If user has set the no alignment function attribute, ignore
3403   // alloca alignments.
3404   uint64_t AlignVal = (RealignOpt ?
3405                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3406 
3407   uint64_t StackAlign = TFI->getStackAlignment();
3408   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3409   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3410 
3411   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3412   SDValue NeededSpace = Size;
3413 
3414   // Get a reference to the stack pointer.
3415   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3416 
3417   // If we need a backchain, save it now.
3418   SDValue Backchain;
3419   if (StoreBackchain)
3420     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3421 
3422   // Add extra space for alignment if needed.
3423   if (ExtraAlignSpace)
3424     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3425                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3426 
3427   // Get the new stack pointer value.
3428   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3429 
3430   // Copy the new stack pointer back.
3431   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3432 
3433   // The allocated data lives above the 160 bytes allocated for the standard
3434   // frame, plus any outgoing stack arguments.  We don't know how much that
3435   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3436   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3437   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3438 
3439   // Dynamically realign if needed.
3440   if (RequiredAlign > StackAlign) {
3441     Result =
3442       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3443                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3444     Result =
3445       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3446                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3447   }
3448 
3449   if (StoreBackchain)
3450     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3451 
3452   SDValue Ops[2] = { Result, Chain };
3453   return DAG.getMergeValues(Ops, DL);
3454 }
3455 
3456 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3457     SDValue Op, SelectionDAG &DAG) const {
3458   SDLoc DL(Op);
3459 
3460   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3461 }
3462 
3463 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3464                                               SelectionDAG &DAG) const {
3465   EVT VT = Op.getValueType();
3466   SDLoc DL(Op);
3467   SDValue Ops[2];
3468   if (is32Bit(VT))
3469     // Just do a normal 64-bit multiplication and extract the results.
3470     // We define this so that it can be used for constant division.
3471     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3472                     Op.getOperand(1), Ops[1], Ops[0]);
3473   else if (Subtarget.hasMiscellaneousExtensions2())
3474     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3475     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3476     // return the low half first, so the results are in reverse order.
3477     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3478                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3479   else {
3480     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3481     //
3482     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3483     //
3484     // but using the fact that the upper halves are either all zeros
3485     // or all ones:
3486     //
3487     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3488     //
3489     // and grouping the right terms together since they are quicker than the
3490     // multiplication:
3491     //
3492     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3493     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3494     SDValue LL = Op.getOperand(0);
3495     SDValue RL = Op.getOperand(1);
3496     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3497     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3498     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3499     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3500     // return the low half first, so the results are in reverse order.
3501     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3502                      LL, RL, Ops[1], Ops[0]);
3503     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3504     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3505     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3506     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3507   }
3508   return DAG.getMergeValues(Ops, DL);
3509 }
3510 
3511 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3512                                               SelectionDAG &DAG) const {
3513   EVT VT = Op.getValueType();
3514   SDLoc DL(Op);
3515   SDValue Ops[2];
3516   if (is32Bit(VT))
3517     // Just do a normal 64-bit multiplication and extract the results.
3518     // We define this so that it can be used for constant division.
3519     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3520                     Op.getOperand(1), Ops[1], Ops[0]);
3521   else
3522     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3523     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3524     // return the low half first, so the results are in reverse order.
3525     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3526                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3527   return DAG.getMergeValues(Ops, DL);
3528 }
3529 
3530 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3531                                             SelectionDAG &DAG) const {
3532   SDValue Op0 = Op.getOperand(0);
3533   SDValue Op1 = Op.getOperand(1);
3534   EVT VT = Op.getValueType();
3535   SDLoc DL(Op);
3536 
3537   // We use DSGF for 32-bit division.  This means the first operand must
3538   // always be 64-bit, and the second operand should be 32-bit whenever
3539   // that is possible, to improve performance.
3540   if (is32Bit(VT))
3541     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3542   else if (DAG.ComputeNumSignBits(Op1) > 32)
3543     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3544 
3545   // DSG(F) returns the remainder in the even register and the
3546   // quotient in the odd register.
3547   SDValue Ops[2];
3548   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3549   return DAG.getMergeValues(Ops, DL);
3550 }
3551 
3552 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3553                                             SelectionDAG &DAG) const {
3554   EVT VT = Op.getValueType();
3555   SDLoc DL(Op);
3556 
3557   // DL(G) returns the remainder in the even register and the
3558   // quotient in the odd register.
3559   SDValue Ops[2];
3560   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3561                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3562   return DAG.getMergeValues(Ops, DL);
3563 }
3564 
3565 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3566   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3567 
3568   // Get the known-zero masks for each operand.
3569   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3570   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3571                         DAG.computeKnownBits(Ops[1])};
3572 
3573   // See if the upper 32 bits of one operand and the lower 32 bits of the
3574   // other are known zero.  They are the low and high operands respectively.
3575   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3576                        Known[1].Zero.getZExtValue() };
3577   unsigned High, Low;
3578   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3579     High = 1, Low = 0;
3580   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3581     High = 0, Low = 1;
3582   else
3583     return Op;
3584 
3585   SDValue LowOp = Ops[Low];
3586   SDValue HighOp = Ops[High];
3587 
3588   // If the high part is a constant, we're better off using IILH.
3589   if (HighOp.getOpcode() == ISD::Constant)
3590     return Op;
3591 
3592   // If the low part is a constant that is outside the range of LHI,
3593   // then we're better off using IILF.
3594   if (LowOp.getOpcode() == ISD::Constant) {
3595     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3596     if (!isInt<16>(Value))
3597       return Op;
3598   }
3599 
3600   // Check whether the high part is an AND that doesn't change the
3601   // high 32 bits and just masks out low bits.  We can skip it if so.
3602   if (HighOp.getOpcode() == ISD::AND &&
3603       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3604     SDValue HighOp0 = HighOp.getOperand(0);
3605     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3606     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3607       HighOp = HighOp0;
3608   }
3609 
3610   // Take advantage of the fact that all GR32 operations only change the
3611   // low 32 bits by truncating Low to an i32 and inserting it directly
3612   // using a subreg.  The interesting cases are those where the truncation
3613   // can be folded.
3614   SDLoc DL(Op);
3615   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3616   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3617                                    MVT::i64, HighOp, Low32);
3618 }
3619 
3620 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3621 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3622                                           SelectionDAG &DAG) const {
3623   SDNode *N = Op.getNode();
3624   SDValue LHS = N->getOperand(0);
3625   SDValue RHS = N->getOperand(1);
3626   SDLoc DL(N);
3627   unsigned BaseOp = 0;
3628   unsigned CCValid = 0;
3629   unsigned CCMask = 0;
3630 
3631   switch (Op.getOpcode()) {
3632   default: llvm_unreachable("Unknown instruction!");
3633   case ISD::SADDO:
3634     BaseOp = SystemZISD::SADDO;
3635     CCValid = SystemZ::CCMASK_ARITH;
3636     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3637     break;
3638   case ISD::SSUBO:
3639     BaseOp = SystemZISD::SSUBO;
3640     CCValid = SystemZ::CCMASK_ARITH;
3641     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3642     break;
3643   case ISD::UADDO:
3644     BaseOp = SystemZISD::UADDO;
3645     CCValid = SystemZ::CCMASK_LOGICAL;
3646     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3647     break;
3648   case ISD::USUBO:
3649     BaseOp = SystemZISD::USUBO;
3650     CCValid = SystemZ::CCMASK_LOGICAL;
3651     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3652     break;
3653   }
3654 
3655   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3656   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3657 
3658   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3659   if (N->getValueType(1) == MVT::i1)
3660     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3661 
3662   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3663 }
3664 
3665 static bool isAddCarryChain(SDValue Carry) {
3666   while (Carry.getOpcode() == ISD::ADDCARRY)
3667     Carry = Carry.getOperand(2);
3668   return Carry.getOpcode() == ISD::UADDO;
3669 }
3670 
3671 static bool isSubBorrowChain(SDValue Carry) {
3672   while (Carry.getOpcode() == ISD::SUBCARRY)
3673     Carry = Carry.getOperand(2);
3674   return Carry.getOpcode() == ISD::USUBO;
3675 }
3676 
3677 // Lower ADDCARRY/SUBCARRY nodes.
3678 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3679                                                 SelectionDAG &DAG) const {
3680 
3681   SDNode *N = Op.getNode();
3682   MVT VT = N->getSimpleValueType(0);
3683 
3684   // Let legalize expand this if it isn't a legal type yet.
3685   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3686     return SDValue();
3687 
3688   SDValue LHS = N->getOperand(0);
3689   SDValue RHS = N->getOperand(1);
3690   SDValue Carry = Op.getOperand(2);
3691   SDLoc DL(N);
3692   unsigned BaseOp = 0;
3693   unsigned CCValid = 0;
3694   unsigned CCMask = 0;
3695 
3696   switch (Op.getOpcode()) {
3697   default: llvm_unreachable("Unknown instruction!");
3698   case ISD::ADDCARRY:
3699     if (!isAddCarryChain(Carry))
3700       return SDValue();
3701 
3702     BaseOp = SystemZISD::ADDCARRY;
3703     CCValid = SystemZ::CCMASK_LOGICAL;
3704     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3705     break;
3706   case ISD::SUBCARRY:
3707     if (!isSubBorrowChain(Carry))
3708       return SDValue();
3709 
3710     BaseOp = SystemZISD::SUBCARRY;
3711     CCValid = SystemZ::CCMASK_LOGICAL;
3712     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3713     break;
3714   }
3715 
3716   // Set the condition code from the carry flag.
3717   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3718                       DAG.getConstant(CCValid, DL, MVT::i32),
3719                       DAG.getConstant(CCMask, DL, MVT::i32));
3720 
3721   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3722   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3723 
3724   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3725   if (N->getValueType(1) == MVT::i1)
3726     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3727 
3728   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3729 }
3730 
3731 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3732                                           SelectionDAG &DAG) const {
3733   EVT VT = Op.getValueType();
3734   SDLoc DL(Op);
3735   Op = Op.getOperand(0);
3736 
3737   // Handle vector types via VPOPCT.
3738   if (VT.isVector()) {
3739     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3740     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3741     switch (VT.getScalarSizeInBits()) {
3742     case 8:
3743       break;
3744     case 16: {
3745       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3746       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3747       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3748       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3749       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3750       break;
3751     }
3752     case 32: {
3753       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3754                                             DAG.getConstant(0, DL, MVT::i32));
3755       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3756       break;
3757     }
3758     case 64: {
3759       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3760                                             DAG.getConstant(0, DL, MVT::i32));
3761       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3762       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3763       break;
3764     }
3765     default:
3766       llvm_unreachable("Unexpected type");
3767     }
3768     return Op;
3769   }
3770 
3771   // Get the known-zero mask for the operand.
3772   KnownBits Known = DAG.computeKnownBits(Op);
3773   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3774   if (NumSignificantBits == 0)
3775     return DAG.getConstant(0, DL, VT);
3776 
3777   // Skip known-zero high parts of the operand.
3778   int64_t OrigBitSize = VT.getSizeInBits();
3779   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3780   BitSize = std::min(BitSize, OrigBitSize);
3781 
3782   // The POPCNT instruction counts the number of bits in each byte.
3783   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3784   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3785   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3786 
3787   // Add up per-byte counts in a binary tree.  All bits of Op at
3788   // position larger than BitSize remain zero throughout.
3789   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3790     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3791     if (BitSize != OrigBitSize)
3792       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3793                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3794     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3795   }
3796 
3797   // Extract overall result from high byte.
3798   if (BitSize > 8)
3799     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3800                      DAG.getConstant(BitSize - 8, DL, VT));
3801 
3802   return Op;
3803 }
3804 
3805 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3806                                                  SelectionDAG &DAG) const {
3807   SDLoc DL(Op);
3808   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3809     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3810   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3811     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3812 
3813   // The only fence that needs an instruction is a sequentially-consistent
3814   // cross-thread fence.
3815   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3816       FenceSSID == SyncScope::System) {
3817     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3818                                       Op.getOperand(0)),
3819                    0);
3820   }
3821 
3822   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3823   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3824 }
3825 
3826 // Op is an atomic load.  Lower it into a normal volatile load.
3827 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3828                                                 SelectionDAG &DAG) const {
3829   auto *Node = cast<AtomicSDNode>(Op.getNode());
3830   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3831                         Node->getChain(), Node->getBasePtr(),
3832                         Node->getMemoryVT(), Node->getMemOperand());
3833 }
3834 
3835 // Op is an atomic store.  Lower it into a normal volatile store.
3836 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3837                                                  SelectionDAG &DAG) const {
3838   auto *Node = cast<AtomicSDNode>(Op.getNode());
3839   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3840                                     Node->getBasePtr(), Node->getMemoryVT(),
3841                                     Node->getMemOperand());
3842   // We have to enforce sequential consistency by performing a
3843   // serialization operation after the store.
3844   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3845     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3846                                        MVT::Other, Chain), 0);
3847   return Chain;
3848 }
3849 
3850 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3851 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3852 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3853                                                    SelectionDAG &DAG,
3854                                                    unsigned Opcode) const {
3855   auto *Node = cast<AtomicSDNode>(Op.getNode());
3856 
3857   // 32-bit operations need no code outside the main loop.
3858   EVT NarrowVT = Node->getMemoryVT();
3859   EVT WideVT = MVT::i32;
3860   if (NarrowVT == WideVT)
3861     return Op;
3862 
3863   int64_t BitSize = NarrowVT.getSizeInBits();
3864   SDValue ChainIn = Node->getChain();
3865   SDValue Addr = Node->getBasePtr();
3866   SDValue Src2 = Node->getVal();
3867   MachineMemOperand *MMO = Node->getMemOperand();
3868   SDLoc DL(Node);
3869   EVT PtrVT = Addr.getValueType();
3870 
3871   // Convert atomic subtracts of constants into additions.
3872   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3873     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3874       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3875       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3876     }
3877 
3878   // Get the address of the containing word.
3879   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3880                                     DAG.getConstant(-4, DL, PtrVT));
3881 
3882   // Get the number of bits that the word must be rotated left in order
3883   // to bring the field to the top bits of a GR32.
3884   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3885                                  DAG.getConstant(3, DL, PtrVT));
3886   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3887 
3888   // Get the complementing shift amount, for rotating a field in the top
3889   // bits back to its proper position.
3890   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3891                                     DAG.getConstant(0, DL, WideVT), BitShift);
3892 
3893   // Extend the source operand to 32 bits and prepare it for the inner loop.
3894   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3895   // operations require the source to be shifted in advance.  (This shift
3896   // can be folded if the source is constant.)  For AND and NAND, the lower
3897   // bits must be set, while for other opcodes they should be left clear.
3898   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3899     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3900                        DAG.getConstant(32 - BitSize, DL, WideVT));
3901   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3902       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3903     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3904                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3905 
3906   // Construct the ATOMIC_LOADW_* node.
3907   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3908   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3909                     DAG.getConstant(BitSize, DL, WideVT) };
3910   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3911                                              NarrowVT, MMO);
3912 
3913   // Rotate the result of the final CS so that the field is in the lower
3914   // bits of a GR32, then truncate it.
3915   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3916                                     DAG.getConstant(BitSize, DL, WideVT));
3917   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3918 
3919   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3920   return DAG.getMergeValues(RetOps, DL);
3921 }
3922 
3923 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3924 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3925 // operations into additions.
3926 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3927                                                     SelectionDAG &DAG) const {
3928   auto *Node = cast<AtomicSDNode>(Op.getNode());
3929   EVT MemVT = Node->getMemoryVT();
3930   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3931     // A full-width operation.
3932     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3933     SDValue Src2 = Node->getVal();
3934     SDValue NegSrc2;
3935     SDLoc DL(Src2);
3936 
3937     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3938       // Use an addition if the operand is constant and either LAA(G) is
3939       // available or the negative value is in the range of A(G)FHI.
3940       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3941       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3942         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3943     } else if (Subtarget.hasInterlockedAccess1())
3944       // Use LAA(G) if available.
3945       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3946                             Src2);
3947 
3948     if (NegSrc2.getNode())
3949       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3950                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3951                            Node->getMemOperand());
3952 
3953     // Use the node as-is.
3954     return Op;
3955   }
3956 
3957   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3958 }
3959 
3960 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3961 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3962                                                     SelectionDAG &DAG) const {
3963   auto *Node = cast<AtomicSDNode>(Op.getNode());
3964   SDValue ChainIn = Node->getOperand(0);
3965   SDValue Addr = Node->getOperand(1);
3966   SDValue CmpVal = Node->getOperand(2);
3967   SDValue SwapVal = Node->getOperand(3);
3968   MachineMemOperand *MMO = Node->getMemOperand();
3969   SDLoc DL(Node);
3970 
3971   // We have native support for 32-bit and 64-bit compare and swap, but we
3972   // still need to expand extracting the "success" result from the CC.
3973   EVT NarrowVT = Node->getMemoryVT();
3974   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3975   if (NarrowVT == WideVT) {
3976     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3977     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3978     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3979                                                DL, Tys, Ops, NarrowVT, MMO);
3980     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3981                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3982 
3983     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3984     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3985     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3986     return SDValue();
3987   }
3988 
3989   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3990   // via a fullword ATOMIC_CMP_SWAPW operation.
3991   int64_t BitSize = NarrowVT.getSizeInBits();
3992   EVT PtrVT = Addr.getValueType();
3993 
3994   // Get the address of the containing word.
3995   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3996                                     DAG.getConstant(-4, DL, PtrVT));
3997 
3998   // Get the number of bits that the word must be rotated left in order
3999   // to bring the field to the top bits of a GR32.
4000   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4001                                  DAG.getConstant(3, DL, PtrVT));
4002   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4003 
4004   // Get the complementing shift amount, for rotating a field in the top
4005   // bits back to its proper position.
4006   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4007                                     DAG.getConstant(0, DL, WideVT), BitShift);
4008 
4009   // Construct the ATOMIC_CMP_SWAPW node.
4010   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4011   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4012                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4013   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4014                                              VTList, Ops, NarrowVT, MMO);
4015   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4016                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4017 
4018   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4019   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4020   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4021   return SDValue();
4022 }
4023 
4024 MachineMemOperand::Flags
4025 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4026   // Because of how we convert atomic_load and atomic_store to normal loads and
4027   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4028   // since DAGCombine hasn't been updated to account for atomic, but non
4029   // volatile loads.  (See D57601)
4030   if (auto *SI = dyn_cast<StoreInst>(&I))
4031     if (SI->isAtomic())
4032       return MachineMemOperand::MOVolatile;
4033   if (auto *LI = dyn_cast<LoadInst>(&I))
4034     if (LI->isAtomic())
4035       return MachineMemOperand::MOVolatile;
4036   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4037     if (AI->isAtomic())
4038       return MachineMemOperand::MOVolatile;
4039   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4040     if (AI->isAtomic())
4041       return MachineMemOperand::MOVolatile;
4042   return MachineMemOperand::MONone;
4043 }
4044 
4045 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4046                                               SelectionDAG &DAG) const {
4047   MachineFunction &MF = DAG.getMachineFunction();
4048   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4049   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4050     report_fatal_error("Variable-sized stack allocations are not supported "
4051                        "in GHC calling convention");
4052   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4053                             SystemZ::R15D, Op.getValueType());
4054 }
4055 
4056 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4057                                                  SelectionDAG &DAG) const {
4058   MachineFunction &MF = DAG.getMachineFunction();
4059   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4060   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4061 
4062   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4063     report_fatal_error("Variable-sized stack allocations are not supported "
4064                        "in GHC calling convention");
4065 
4066   SDValue Chain = Op.getOperand(0);
4067   SDValue NewSP = Op.getOperand(1);
4068   SDValue Backchain;
4069   SDLoc DL(Op);
4070 
4071   if (StoreBackchain) {
4072     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4073     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4074   }
4075 
4076   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4077 
4078   if (StoreBackchain)
4079     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4080 
4081   return Chain;
4082 }
4083 
4084 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4085                                              SelectionDAG &DAG) const {
4086   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4087   if (!IsData)
4088     // Just preserve the chain.
4089     return Op.getOperand(0);
4090 
4091   SDLoc DL(Op);
4092   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4093   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4094   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4095   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4096                    Op.getOperand(1)};
4097   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4098                                  Node->getVTList(), Ops,
4099                                  Node->getMemoryVT(), Node->getMemOperand());
4100 }
4101 
4102 // Convert condition code in CCReg to an i32 value.
4103 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4104   SDLoc DL(CCReg);
4105   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4106   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4107                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4108 }
4109 
4110 SDValue
4111 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4112                                               SelectionDAG &DAG) const {
4113   unsigned Opcode, CCValid;
4114   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4115     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4116     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4117     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4118     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4119     return SDValue();
4120   }
4121 
4122   return SDValue();
4123 }
4124 
4125 SDValue
4126 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4127                                                SelectionDAG &DAG) const {
4128   unsigned Opcode, CCValid;
4129   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4130     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4131     if (Op->getNumValues() == 1)
4132       return getCCResult(DAG, SDValue(Node, 0));
4133     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4134     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4135                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4136   }
4137 
4138   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4139   switch (Id) {
4140   case Intrinsic::thread_pointer:
4141     return lowerThreadPointer(SDLoc(Op), DAG);
4142 
4143   case Intrinsic::s390_vpdi:
4144     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4145                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4146 
4147   case Intrinsic::s390_vperm:
4148     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4149                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4150 
4151   case Intrinsic::s390_vuphb:
4152   case Intrinsic::s390_vuphh:
4153   case Intrinsic::s390_vuphf:
4154     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4155                        Op.getOperand(1));
4156 
4157   case Intrinsic::s390_vuplhb:
4158   case Intrinsic::s390_vuplhh:
4159   case Intrinsic::s390_vuplhf:
4160     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4161                        Op.getOperand(1));
4162 
4163   case Intrinsic::s390_vuplb:
4164   case Intrinsic::s390_vuplhw:
4165   case Intrinsic::s390_vuplf:
4166     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4167                        Op.getOperand(1));
4168 
4169   case Intrinsic::s390_vupllb:
4170   case Intrinsic::s390_vupllh:
4171   case Intrinsic::s390_vupllf:
4172     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4173                        Op.getOperand(1));
4174 
4175   case Intrinsic::s390_vsumb:
4176   case Intrinsic::s390_vsumh:
4177   case Intrinsic::s390_vsumgh:
4178   case Intrinsic::s390_vsumgf:
4179   case Intrinsic::s390_vsumqf:
4180   case Intrinsic::s390_vsumqg:
4181     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4182                        Op.getOperand(1), Op.getOperand(2));
4183   }
4184 
4185   return SDValue();
4186 }
4187 
4188 namespace {
4189 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4190 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4191 // Operand is the constant third operand, otherwise it is the number of
4192 // bytes in each element of the result.
4193 struct Permute {
4194   unsigned Opcode;
4195   unsigned Operand;
4196   unsigned char Bytes[SystemZ::VectorBytes];
4197 };
4198 }
4199 
4200 static const Permute PermuteForms[] = {
4201   // VMRHG
4202   { SystemZISD::MERGE_HIGH, 8,
4203     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4204   // VMRHF
4205   { SystemZISD::MERGE_HIGH, 4,
4206     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4207   // VMRHH
4208   { SystemZISD::MERGE_HIGH, 2,
4209     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4210   // VMRHB
4211   { SystemZISD::MERGE_HIGH, 1,
4212     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4213   // VMRLG
4214   { SystemZISD::MERGE_LOW, 8,
4215     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4216   // VMRLF
4217   { SystemZISD::MERGE_LOW, 4,
4218     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4219   // VMRLH
4220   { SystemZISD::MERGE_LOW, 2,
4221     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4222   // VMRLB
4223   { SystemZISD::MERGE_LOW, 1,
4224     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4225   // VPKG
4226   { SystemZISD::PACK, 4,
4227     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4228   // VPKF
4229   { SystemZISD::PACK, 2,
4230     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4231   // VPKH
4232   { SystemZISD::PACK, 1,
4233     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4234   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4235   { SystemZISD::PERMUTE_DWORDS, 4,
4236     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4237   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4238   { SystemZISD::PERMUTE_DWORDS, 1,
4239     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4240 };
4241 
4242 // Called after matching a vector shuffle against a particular pattern.
4243 // Both the original shuffle and the pattern have two vector operands.
4244 // OpNos[0] is the operand of the original shuffle that should be used for
4245 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4246 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4247 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4248 // for operands 0 and 1 of the pattern.
4249 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4250   if (OpNos[0] < 0) {
4251     if (OpNos[1] < 0)
4252       return false;
4253     OpNo0 = OpNo1 = OpNos[1];
4254   } else if (OpNos[1] < 0) {
4255     OpNo0 = OpNo1 = OpNos[0];
4256   } else {
4257     OpNo0 = OpNos[0];
4258     OpNo1 = OpNos[1];
4259   }
4260   return true;
4261 }
4262 
4263 // Bytes is a VPERM-like permute vector, except that -1 is used for
4264 // undefined bytes.  Return true if the VPERM can be implemented using P.
4265 // When returning true set OpNo0 to the VPERM operand that should be
4266 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4267 //
4268 // For example, if swapping the VPERM operands allows P to match, OpNo0
4269 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4270 // operand, but rewriting it to use two duplicated operands allows it to
4271 // match P, then OpNo0 and OpNo1 will be the same.
4272 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4273                          unsigned &OpNo0, unsigned &OpNo1) {
4274   int OpNos[] = { -1, -1 };
4275   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4276     int Elt = Bytes[I];
4277     if (Elt >= 0) {
4278       // Make sure that the two permute vectors use the same suboperand
4279       // byte number.  Only the operand numbers (the high bits) are
4280       // allowed to differ.
4281       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4282         return false;
4283       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4284       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4285       // Make sure that the operand mappings are consistent with previous
4286       // elements.
4287       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4288         return false;
4289       OpNos[ModelOpNo] = RealOpNo;
4290     }
4291   }
4292   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4293 }
4294 
4295 // As above, but search for a matching permute.
4296 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4297                                    unsigned &OpNo0, unsigned &OpNo1) {
4298   for (auto &P : PermuteForms)
4299     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4300       return &P;
4301   return nullptr;
4302 }
4303 
4304 // Bytes is a VPERM-like permute vector, except that -1 is used for
4305 // undefined bytes.  This permute is an operand of an outer permute.
4306 // See whether redistributing the -1 bytes gives a shuffle that can be
4307 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4308 // that, when applied to the result of P, gives the original permute in Bytes.
4309 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4310                                const Permute &P,
4311                                SmallVectorImpl<int> &Transform) {
4312   unsigned To = 0;
4313   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4314     int Elt = Bytes[From];
4315     if (Elt < 0)
4316       // Byte number From of the result is undefined.
4317       Transform[From] = -1;
4318     else {
4319       while (P.Bytes[To] != Elt) {
4320         To += 1;
4321         if (To == SystemZ::VectorBytes)
4322           return false;
4323       }
4324       Transform[From] = To;
4325     }
4326   }
4327   return true;
4328 }
4329 
4330 // As above, but search for a matching permute.
4331 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4332                                          SmallVectorImpl<int> &Transform) {
4333   for (auto &P : PermuteForms)
4334     if (matchDoublePermute(Bytes, P, Transform))
4335       return &P;
4336   return nullptr;
4337 }
4338 
4339 // Convert the mask of the given shuffle op into a byte-level mask,
4340 // as if it had type vNi8.
4341 static bool getVPermMask(SDValue ShuffleOp,
4342                          SmallVectorImpl<int> &Bytes) {
4343   EVT VT = ShuffleOp.getValueType();
4344   unsigned NumElements = VT.getVectorNumElements();
4345   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4346 
4347   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4348     Bytes.resize(NumElements * BytesPerElement, -1);
4349     for (unsigned I = 0; I < NumElements; ++I) {
4350       int Index = VSN->getMaskElt(I);
4351       if (Index >= 0)
4352         for (unsigned J = 0; J < BytesPerElement; ++J)
4353           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4354     }
4355     return true;
4356   }
4357   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4358       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4359     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4360     Bytes.resize(NumElements * BytesPerElement, -1);
4361     for (unsigned I = 0; I < NumElements; ++I)
4362       for (unsigned J = 0; J < BytesPerElement; ++J)
4363         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4364     return true;
4365   }
4366   return false;
4367 }
4368 
4369 // Bytes is a VPERM-like permute vector, except that -1 is used for
4370 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4371 // the result come from a contiguous sequence of bytes from one input.
4372 // Set Base to the selector for the first byte if so.
4373 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4374                             unsigned BytesPerElement, int &Base) {
4375   Base = -1;
4376   for (unsigned I = 0; I < BytesPerElement; ++I) {
4377     if (Bytes[Start + I] >= 0) {
4378       unsigned Elem = Bytes[Start + I];
4379       if (Base < 0) {
4380         Base = Elem - I;
4381         // Make sure the bytes would come from one input operand.
4382         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4383           return false;
4384       } else if (unsigned(Base) != Elem - I)
4385         return false;
4386     }
4387   }
4388   return true;
4389 }
4390 
4391 // Bytes is a VPERM-like permute vector, except that -1 is used for
4392 // undefined bytes.  Return true if it can be performed using VSLDI.
4393 // When returning true, set StartIndex to the shift amount and OpNo0
4394 // and OpNo1 to the VPERM operands that should be used as the first
4395 // and second shift operand respectively.
4396 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4397                                unsigned &StartIndex, unsigned &OpNo0,
4398                                unsigned &OpNo1) {
4399   int OpNos[] = { -1, -1 };
4400   int Shift = -1;
4401   for (unsigned I = 0; I < 16; ++I) {
4402     int Index = Bytes[I];
4403     if (Index >= 0) {
4404       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4405       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4406       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4407       if (Shift < 0)
4408         Shift = ExpectedShift;
4409       else if (Shift != ExpectedShift)
4410         return false;
4411       // Make sure that the operand mappings are consistent with previous
4412       // elements.
4413       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4414         return false;
4415       OpNos[ModelOpNo] = RealOpNo;
4416     }
4417   }
4418   StartIndex = Shift;
4419   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4420 }
4421 
4422 // Create a node that performs P on operands Op0 and Op1, casting the
4423 // operands to the appropriate type.  The type of the result is determined by P.
4424 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4425                               const Permute &P, SDValue Op0, SDValue Op1) {
4426   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4427   // elements of a PACK are twice as wide as the outputs.
4428   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4429                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4430                       P.Operand);
4431   // Cast both operands to the appropriate type.
4432   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4433                               SystemZ::VectorBytes / InBytes);
4434   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4435   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4436   SDValue Op;
4437   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4438     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4439     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4440   } else if (P.Opcode == SystemZISD::PACK) {
4441     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4442                                  SystemZ::VectorBytes / P.Operand);
4443     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4444   } else {
4445     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4446   }
4447   return Op;
4448 }
4449 
4450 // Bytes is a VPERM-like permute vector, except that -1 is used for
4451 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4452 // VSLDI or VPERM.
4453 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4454                                      SDValue *Ops,
4455                                      const SmallVectorImpl<int> &Bytes) {
4456   for (unsigned I = 0; I < 2; ++I)
4457     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4458 
4459   // First see whether VSLDI can be used.
4460   unsigned StartIndex, OpNo0, OpNo1;
4461   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4462     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4463                        Ops[OpNo1],
4464                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4465 
4466   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4467   SDValue IndexNodes[SystemZ::VectorBytes];
4468   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4469     if (Bytes[I] >= 0)
4470       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4471     else
4472       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4473   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4474   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4475 }
4476 
4477 namespace {
4478 // Describes a general N-operand vector shuffle.
4479 struct GeneralShuffle {
4480   GeneralShuffle(EVT vt) : VT(vt) {}
4481   void addUndef();
4482   bool add(SDValue, unsigned);
4483   SDValue getNode(SelectionDAG &, const SDLoc &);
4484 
4485   // The operands of the shuffle.
4486   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4487 
4488   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4489   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4490   // Bytes[I] / SystemZ::VectorBytes.
4491   SmallVector<int, SystemZ::VectorBytes> Bytes;
4492 
4493   // The type of the shuffle result.
4494   EVT VT;
4495 };
4496 }
4497 
4498 // Add an extra undefined element to the shuffle.
4499 void GeneralShuffle::addUndef() {
4500   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4501   for (unsigned I = 0; I < BytesPerElement; ++I)
4502     Bytes.push_back(-1);
4503 }
4504 
4505 // Add an extra element to the shuffle, taking it from element Elem of Op.
4506 // A null Op indicates a vector input whose value will be calculated later;
4507 // there is at most one such input per shuffle and it always has the same
4508 // type as the result. Aborts and returns false if the source vector elements
4509 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4510 // LLVM they become implicitly extended, but this is rare and not optimized.
4511 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4512   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4513 
4514   // The source vector can have wider elements than the result,
4515   // either through an explicit TRUNCATE or because of type legalization.
4516   // We want the least significant part.
4517   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4518   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4519 
4520   // Return false if the source elements are smaller than their destination
4521   // elements.
4522   if (FromBytesPerElement < BytesPerElement)
4523     return false;
4524 
4525   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4526                    (FromBytesPerElement - BytesPerElement));
4527 
4528   // Look through things like shuffles and bitcasts.
4529   while (Op.getNode()) {
4530     if (Op.getOpcode() == ISD::BITCAST)
4531       Op = Op.getOperand(0);
4532     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4533       // See whether the bytes we need come from a contiguous part of one
4534       // operand.
4535       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4536       if (!getVPermMask(Op, OpBytes))
4537         break;
4538       int NewByte;
4539       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4540         break;
4541       if (NewByte < 0) {
4542         addUndef();
4543         return true;
4544       }
4545       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4546       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4547     } else if (Op.isUndef()) {
4548       addUndef();
4549       return true;
4550     } else
4551       break;
4552   }
4553 
4554   // Make sure that the source of the extraction is in Ops.
4555   unsigned OpNo = 0;
4556   for (; OpNo < Ops.size(); ++OpNo)
4557     if (Ops[OpNo] == Op)
4558       break;
4559   if (OpNo == Ops.size())
4560     Ops.push_back(Op);
4561 
4562   // Add the element to Bytes.
4563   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4564   for (unsigned I = 0; I < BytesPerElement; ++I)
4565     Bytes.push_back(Base + I);
4566 
4567   return true;
4568 }
4569 
4570 // Return SDNodes for the completed shuffle.
4571 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4572   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4573 
4574   if (Ops.size() == 0)
4575     return DAG.getUNDEF(VT);
4576 
4577   // Make sure that there are at least two shuffle operands.
4578   if (Ops.size() == 1)
4579     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4580 
4581   // Create a tree of shuffles, deferring root node until after the loop.
4582   // Try to redistribute the undefined elements of non-root nodes so that
4583   // the non-root shuffles match something like a pack or merge, then adjust
4584   // the parent node's permute vector to compensate for the new order.
4585   // Among other things, this copes with vectors like <2 x i16> that were
4586   // padded with undefined elements during type legalization.
4587   //
4588   // In the best case this redistribution will lead to the whole tree
4589   // using packs and merges.  It should rarely be a loss in other cases.
4590   unsigned Stride = 1;
4591   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4592     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4593       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4594 
4595       // Create a mask for just these two operands.
4596       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4597       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4598         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4599         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4600         if (OpNo == I)
4601           NewBytes[J] = Byte;
4602         else if (OpNo == I + Stride)
4603           NewBytes[J] = SystemZ::VectorBytes + Byte;
4604         else
4605           NewBytes[J] = -1;
4606       }
4607       // See if it would be better to reorganize NewMask to avoid using VPERM.
4608       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4609       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4610         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4611         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4612         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4613           if (NewBytes[J] >= 0) {
4614             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4615                    "Invalid double permute");
4616             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4617           } else
4618             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4619         }
4620       } else {
4621         // Just use NewBytes on the operands.
4622         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4623         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4624           if (NewBytes[J] >= 0)
4625             Bytes[J] = I * SystemZ::VectorBytes + J;
4626       }
4627     }
4628   }
4629 
4630   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4631   if (Stride > 1) {
4632     Ops[1] = Ops[Stride];
4633     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4634       if (Bytes[I] >= int(SystemZ::VectorBytes))
4635         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4636   }
4637 
4638   // Look for an instruction that can do the permute without resorting
4639   // to VPERM.
4640   unsigned OpNo0, OpNo1;
4641   SDValue Op;
4642   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4643     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4644   else
4645     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4646   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4647 }
4648 
4649 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4650 static bool isScalarToVector(SDValue Op) {
4651   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4652     if (!Op.getOperand(I).isUndef())
4653       return false;
4654   return true;
4655 }
4656 
4657 // Return a vector of type VT that contains Value in the first element.
4658 // The other elements don't matter.
4659 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4660                                    SDValue Value) {
4661   // If we have a constant, replicate it to all elements and let the
4662   // BUILD_VECTOR lowering take care of it.
4663   if (Value.getOpcode() == ISD::Constant ||
4664       Value.getOpcode() == ISD::ConstantFP) {
4665     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4666     return DAG.getBuildVector(VT, DL, Ops);
4667   }
4668   if (Value.isUndef())
4669     return DAG.getUNDEF(VT);
4670   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4671 }
4672 
4673 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4674 // element 1.  Used for cases in which replication is cheap.
4675 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4676                                  SDValue Op0, SDValue Op1) {
4677   if (Op0.isUndef()) {
4678     if (Op1.isUndef())
4679       return DAG.getUNDEF(VT);
4680     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4681   }
4682   if (Op1.isUndef())
4683     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4684   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4685                      buildScalarToVector(DAG, DL, VT, Op0),
4686                      buildScalarToVector(DAG, DL, VT, Op1));
4687 }
4688 
4689 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4690 // vector for them.
4691 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4692                           SDValue Op1) {
4693   if (Op0.isUndef() && Op1.isUndef())
4694     return DAG.getUNDEF(MVT::v2i64);
4695   // If one of the two inputs is undefined then replicate the other one,
4696   // in order to avoid using another register unnecessarily.
4697   if (Op0.isUndef())
4698     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4699   else if (Op1.isUndef())
4700     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4701   else {
4702     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4703     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4704   }
4705   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4706 }
4707 
4708 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4709 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4710 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4711 // would benefit from this representation and return it if so.
4712 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4713                                      BuildVectorSDNode *BVN) {
4714   EVT VT = BVN->getValueType(0);
4715   unsigned NumElements = VT.getVectorNumElements();
4716 
4717   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4718   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4719   // need a BUILD_VECTOR, add an additional placeholder operand for that
4720   // BUILD_VECTOR and store its operands in ResidueOps.
4721   GeneralShuffle GS(VT);
4722   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4723   bool FoundOne = false;
4724   for (unsigned I = 0; I < NumElements; ++I) {
4725     SDValue Op = BVN->getOperand(I);
4726     if (Op.getOpcode() == ISD::TRUNCATE)
4727       Op = Op.getOperand(0);
4728     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4729         Op.getOperand(1).getOpcode() == ISD::Constant) {
4730       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4731       if (!GS.add(Op.getOperand(0), Elem))
4732         return SDValue();
4733       FoundOne = true;
4734     } else if (Op.isUndef()) {
4735       GS.addUndef();
4736     } else {
4737       if (!GS.add(SDValue(), ResidueOps.size()))
4738         return SDValue();
4739       ResidueOps.push_back(BVN->getOperand(I));
4740     }
4741   }
4742 
4743   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4744   if (!FoundOne)
4745     return SDValue();
4746 
4747   // Create the BUILD_VECTOR for the remaining elements, if any.
4748   if (!ResidueOps.empty()) {
4749     while (ResidueOps.size() < NumElements)
4750       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4751     for (auto &Op : GS.Ops) {
4752       if (!Op.getNode()) {
4753         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4754         break;
4755       }
4756     }
4757   }
4758   return GS.getNode(DAG, SDLoc(BVN));
4759 }
4760 
4761 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4762   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4763     return true;
4764   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4765     return true;
4766   return false;
4767 }
4768 
4769 // Combine GPR scalar values Elems into a vector of type VT.
4770 SDValue
4771 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4772                                    SmallVectorImpl<SDValue> &Elems) const {
4773   // See whether there is a single replicated value.
4774   SDValue Single;
4775   unsigned int NumElements = Elems.size();
4776   unsigned int Count = 0;
4777   for (auto Elem : Elems) {
4778     if (!Elem.isUndef()) {
4779       if (!Single.getNode())
4780         Single = Elem;
4781       else if (Elem != Single) {
4782         Single = SDValue();
4783         break;
4784       }
4785       Count += 1;
4786     }
4787   }
4788   // There are three cases here:
4789   //
4790   // - if the only defined element is a loaded one, the best sequence
4791   //   is a replicating load.
4792   //
4793   // - otherwise, if the only defined element is an i64 value, we will
4794   //   end up with the same VLVGP sequence regardless of whether we short-cut
4795   //   for replication or fall through to the later code.
4796   //
4797   // - otherwise, if the only defined element is an i32 or smaller value,
4798   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4799   //   This is only a win if the single defined element is used more than once.
4800   //   In other cases we're better off using a single VLVGx.
4801   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4802     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4803 
4804   // If all elements are loads, use VLREP/VLEs (below).
4805   bool AllLoads = true;
4806   for (auto Elem : Elems)
4807     if (!isVectorElementLoad(Elem)) {
4808       AllLoads = false;
4809       break;
4810     }
4811 
4812   // The best way of building a v2i64 from two i64s is to use VLVGP.
4813   if (VT == MVT::v2i64 && !AllLoads)
4814     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4815 
4816   // Use a 64-bit merge high to combine two doubles.
4817   if (VT == MVT::v2f64 && !AllLoads)
4818     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4819 
4820   // Build v4f32 values directly from the FPRs:
4821   //
4822   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4823   //         V              V         VMRHF
4824   //      <ABxx>         <CDxx>
4825   //                V                 VMRHG
4826   //              <ABCD>
4827   if (VT == MVT::v4f32 && !AllLoads) {
4828     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4829     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4830     // Avoid unnecessary undefs by reusing the other operand.
4831     if (Op01.isUndef())
4832       Op01 = Op23;
4833     else if (Op23.isUndef())
4834       Op23 = Op01;
4835     // Merging identical replications is a no-op.
4836     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4837       return Op01;
4838     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4839     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4840     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4841                              DL, MVT::v2i64, Op01, Op23);
4842     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4843   }
4844 
4845   // Collect the constant terms.
4846   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4847   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4848 
4849   unsigned NumConstants = 0;
4850   for (unsigned I = 0; I < NumElements; ++I) {
4851     SDValue Elem = Elems[I];
4852     if (Elem.getOpcode() == ISD::Constant ||
4853         Elem.getOpcode() == ISD::ConstantFP) {
4854       NumConstants += 1;
4855       Constants[I] = Elem;
4856       Done[I] = true;
4857     }
4858   }
4859   // If there was at least one constant, fill in the other elements of
4860   // Constants with undefs to get a full vector constant and use that
4861   // as the starting point.
4862   SDValue Result;
4863   SDValue ReplicatedVal;
4864   if (NumConstants > 0) {
4865     for (unsigned I = 0; I < NumElements; ++I)
4866       if (!Constants[I].getNode())
4867         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4868     Result = DAG.getBuildVector(VT, DL, Constants);
4869   } else {
4870     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4871     // avoid a false dependency on any previous contents of the vector
4872     // register.
4873 
4874     // Use a VLREP if at least one element is a load. Make sure to replicate
4875     // the load with the most elements having its value.
4876     std::map<const SDNode*, unsigned> UseCounts;
4877     SDNode *LoadMaxUses = nullptr;
4878     for (unsigned I = 0; I < NumElements; ++I)
4879       if (isVectorElementLoad(Elems[I])) {
4880         SDNode *Ld = Elems[I].getNode();
4881         UseCounts[Ld]++;
4882         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4883           LoadMaxUses = Ld;
4884       }
4885     if (LoadMaxUses != nullptr) {
4886       ReplicatedVal = SDValue(LoadMaxUses, 0);
4887       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4888     } else {
4889       // Try to use VLVGP.
4890       unsigned I1 = NumElements / 2 - 1;
4891       unsigned I2 = NumElements - 1;
4892       bool Def1 = !Elems[I1].isUndef();
4893       bool Def2 = !Elems[I2].isUndef();
4894       if (Def1 || Def2) {
4895         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4896         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4897         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4898                              joinDwords(DAG, DL, Elem1, Elem2));
4899         Done[I1] = true;
4900         Done[I2] = true;
4901       } else
4902         Result = DAG.getUNDEF(VT);
4903     }
4904   }
4905 
4906   // Use VLVGx to insert the other elements.
4907   for (unsigned I = 0; I < NumElements; ++I)
4908     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4909       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4910                            DAG.getConstant(I, DL, MVT::i32));
4911   return Result;
4912 }
4913 
4914 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4915                                                  SelectionDAG &DAG) const {
4916   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4917   SDLoc DL(Op);
4918   EVT VT = Op.getValueType();
4919 
4920   if (BVN->isConstant()) {
4921     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4922       return Op;
4923 
4924     // Fall back to loading it from memory.
4925     return SDValue();
4926   }
4927 
4928   // See if we should use shuffles to construct the vector from other vectors.
4929   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4930     return Res;
4931 
4932   // Detect SCALAR_TO_VECTOR conversions.
4933   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4934     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4935 
4936   // Otherwise use buildVector to build the vector up from GPRs.
4937   unsigned NumElements = Op.getNumOperands();
4938   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4939   for (unsigned I = 0; I < NumElements; ++I)
4940     Ops[I] = Op.getOperand(I);
4941   return buildVector(DAG, DL, VT, Ops);
4942 }
4943 
4944 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4945                                                    SelectionDAG &DAG) const {
4946   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4947   SDLoc DL(Op);
4948   EVT VT = Op.getValueType();
4949   unsigned NumElements = VT.getVectorNumElements();
4950 
4951   if (VSN->isSplat()) {
4952     SDValue Op0 = Op.getOperand(0);
4953     unsigned Index = VSN->getSplatIndex();
4954     assert(Index < VT.getVectorNumElements() &&
4955            "Splat index should be defined and in first operand");
4956     // See whether the value we're splatting is directly available as a scalar.
4957     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4958         Op0.getOpcode() == ISD::BUILD_VECTOR)
4959       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4960     // Otherwise keep it as a vector-to-vector operation.
4961     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4962                        DAG.getTargetConstant(Index, DL, MVT::i32));
4963   }
4964 
4965   GeneralShuffle GS(VT);
4966   for (unsigned I = 0; I < NumElements; ++I) {
4967     int Elt = VSN->getMaskElt(I);
4968     if (Elt < 0)
4969       GS.addUndef();
4970     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4971                      unsigned(Elt) % NumElements))
4972       return SDValue();
4973   }
4974   return GS.getNode(DAG, SDLoc(VSN));
4975 }
4976 
4977 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4978                                                      SelectionDAG &DAG) const {
4979   SDLoc DL(Op);
4980   // Just insert the scalar into element 0 of an undefined vector.
4981   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4982                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4983                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4984 }
4985 
4986 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4987                                                       SelectionDAG &DAG) const {
4988   // Handle insertions of floating-point values.
4989   SDLoc DL(Op);
4990   SDValue Op0 = Op.getOperand(0);
4991   SDValue Op1 = Op.getOperand(1);
4992   SDValue Op2 = Op.getOperand(2);
4993   EVT VT = Op.getValueType();
4994 
4995   // Insertions into constant indices of a v2f64 can be done using VPDI.
4996   // However, if the inserted value is a bitcast or a constant then it's
4997   // better to use GPRs, as below.
4998   if (VT == MVT::v2f64 &&
4999       Op1.getOpcode() != ISD::BITCAST &&
5000       Op1.getOpcode() != ISD::ConstantFP &&
5001       Op2.getOpcode() == ISD::Constant) {
5002     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5003     unsigned Mask = VT.getVectorNumElements() - 1;
5004     if (Index <= Mask)
5005       return Op;
5006   }
5007 
5008   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5009   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5010   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5011   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5012                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5013                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5014   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5015 }
5016 
5017 SDValue
5018 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5019                                                SelectionDAG &DAG) const {
5020   // Handle extractions of floating-point values.
5021   SDLoc DL(Op);
5022   SDValue Op0 = Op.getOperand(0);
5023   SDValue Op1 = Op.getOperand(1);
5024   EVT VT = Op.getValueType();
5025   EVT VecVT = Op0.getValueType();
5026 
5027   // Extractions of constant indices can be done directly.
5028   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5029     uint64_t Index = CIndexN->getZExtValue();
5030     unsigned Mask = VecVT.getVectorNumElements() - 1;
5031     if (Index <= Mask)
5032       return Op;
5033   }
5034 
5035   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5036   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5037   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5038   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5039                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5040   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5041 }
5042 
5043 SDValue
5044 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
5045                                               unsigned UnpackHigh) const {
5046   SDValue PackedOp = Op.getOperand(0);
5047   EVT OutVT = Op.getValueType();
5048   EVT InVT = PackedOp.getValueType();
5049   unsigned ToBits = OutVT.getScalarSizeInBits();
5050   unsigned FromBits = InVT.getScalarSizeInBits();
5051   do {
5052     FromBits *= 2;
5053     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5054                                  SystemZ::VectorBits / FromBits);
5055     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
5056   } while (FromBits != ToBits);
5057   return PackedOp;
5058 }
5059 
5060 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5061                                           unsigned ByScalar) const {
5062   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5063   SDValue Op0 = Op.getOperand(0);
5064   SDValue Op1 = Op.getOperand(1);
5065   SDLoc DL(Op);
5066   EVT VT = Op.getValueType();
5067   unsigned ElemBitSize = VT.getScalarSizeInBits();
5068 
5069   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5070   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5071     APInt SplatBits, SplatUndef;
5072     unsigned SplatBitSize;
5073     bool HasAnyUndefs;
5074     // Check for constant splats.  Use ElemBitSize as the minimum element
5075     // width and reject splats that need wider elements.
5076     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5077                              ElemBitSize, true) &&
5078         SplatBitSize == ElemBitSize) {
5079       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5080                                       DL, MVT::i32);
5081       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5082     }
5083     // Check for variable splats.
5084     BitVector UndefElements;
5085     SDValue Splat = BVN->getSplatValue(&UndefElements);
5086     if (Splat) {
5087       // Since i32 is the smallest legal type, we either need a no-op
5088       // or a truncation.
5089       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5090       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5091     }
5092   }
5093 
5094   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5095   // and the shift amount is directly available in a GPR.
5096   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5097     if (VSN->isSplat()) {
5098       SDValue VSNOp0 = VSN->getOperand(0);
5099       unsigned Index = VSN->getSplatIndex();
5100       assert(Index < VT.getVectorNumElements() &&
5101              "Splat index should be defined and in first operand");
5102       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5103           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5104         // Since i32 is the smallest legal type, we either need a no-op
5105         // or a truncation.
5106         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5107                                     VSNOp0.getOperand(Index));
5108         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5109       }
5110     }
5111   }
5112 
5113   // Otherwise just treat the current form as legal.
5114   return Op;
5115 }
5116 
5117 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5118                                               SelectionDAG &DAG) const {
5119   switch (Op.getOpcode()) {
5120   case ISD::FRAMEADDR:
5121     return lowerFRAMEADDR(Op, DAG);
5122   case ISD::RETURNADDR:
5123     return lowerRETURNADDR(Op, DAG);
5124   case ISD::BR_CC:
5125     return lowerBR_CC(Op, DAG);
5126   case ISD::SELECT_CC:
5127     return lowerSELECT_CC(Op, DAG);
5128   case ISD::SETCC:
5129     return lowerSETCC(Op, DAG);
5130   case ISD::STRICT_FSETCC:
5131     return lowerSTRICT_FSETCC(Op, DAG, false);
5132   case ISD::STRICT_FSETCCS:
5133     return lowerSTRICT_FSETCC(Op, DAG, true);
5134   case ISD::GlobalAddress:
5135     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5136   case ISD::GlobalTLSAddress:
5137     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5138   case ISD::BlockAddress:
5139     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5140   case ISD::JumpTable:
5141     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5142   case ISD::ConstantPool:
5143     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5144   case ISD::BITCAST:
5145     return lowerBITCAST(Op, DAG);
5146   case ISD::VASTART:
5147     return lowerVASTART(Op, DAG);
5148   case ISD::VACOPY:
5149     return lowerVACOPY(Op, DAG);
5150   case ISD::DYNAMIC_STACKALLOC:
5151     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5152   case ISD::GET_DYNAMIC_AREA_OFFSET:
5153     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5154   case ISD::SMUL_LOHI:
5155     return lowerSMUL_LOHI(Op, DAG);
5156   case ISD::UMUL_LOHI:
5157     return lowerUMUL_LOHI(Op, DAG);
5158   case ISD::SDIVREM:
5159     return lowerSDIVREM(Op, DAG);
5160   case ISD::UDIVREM:
5161     return lowerUDIVREM(Op, DAG);
5162   case ISD::SADDO:
5163   case ISD::SSUBO:
5164   case ISD::UADDO:
5165   case ISD::USUBO:
5166     return lowerXALUO(Op, DAG);
5167   case ISD::ADDCARRY:
5168   case ISD::SUBCARRY:
5169     return lowerADDSUBCARRY(Op, DAG);
5170   case ISD::OR:
5171     return lowerOR(Op, DAG);
5172   case ISD::CTPOP:
5173     return lowerCTPOP(Op, DAG);
5174   case ISD::ATOMIC_FENCE:
5175     return lowerATOMIC_FENCE(Op, DAG);
5176   case ISD::ATOMIC_SWAP:
5177     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5178   case ISD::ATOMIC_STORE:
5179     return lowerATOMIC_STORE(Op, DAG);
5180   case ISD::ATOMIC_LOAD:
5181     return lowerATOMIC_LOAD(Op, DAG);
5182   case ISD::ATOMIC_LOAD_ADD:
5183     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5184   case ISD::ATOMIC_LOAD_SUB:
5185     return lowerATOMIC_LOAD_SUB(Op, DAG);
5186   case ISD::ATOMIC_LOAD_AND:
5187     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5188   case ISD::ATOMIC_LOAD_OR:
5189     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5190   case ISD::ATOMIC_LOAD_XOR:
5191     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5192   case ISD::ATOMIC_LOAD_NAND:
5193     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5194   case ISD::ATOMIC_LOAD_MIN:
5195     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5196   case ISD::ATOMIC_LOAD_MAX:
5197     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5198   case ISD::ATOMIC_LOAD_UMIN:
5199     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5200   case ISD::ATOMIC_LOAD_UMAX:
5201     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5202   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5203     return lowerATOMIC_CMP_SWAP(Op, DAG);
5204   case ISD::STACKSAVE:
5205     return lowerSTACKSAVE(Op, DAG);
5206   case ISD::STACKRESTORE:
5207     return lowerSTACKRESTORE(Op, DAG);
5208   case ISD::PREFETCH:
5209     return lowerPREFETCH(Op, DAG);
5210   case ISD::INTRINSIC_W_CHAIN:
5211     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5212   case ISD::INTRINSIC_WO_CHAIN:
5213     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5214   case ISD::BUILD_VECTOR:
5215     return lowerBUILD_VECTOR(Op, DAG);
5216   case ISD::VECTOR_SHUFFLE:
5217     return lowerVECTOR_SHUFFLE(Op, DAG);
5218   case ISD::SCALAR_TO_VECTOR:
5219     return lowerSCALAR_TO_VECTOR(Op, DAG);
5220   case ISD::INSERT_VECTOR_ELT:
5221     return lowerINSERT_VECTOR_ELT(Op, DAG);
5222   case ISD::EXTRACT_VECTOR_ELT:
5223     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5224   case ISD::SIGN_EXTEND_VECTOR_INREG:
5225     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5226   case ISD::ZERO_EXTEND_VECTOR_INREG:
5227     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5228   case ISD::SHL:
5229     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5230   case ISD::SRL:
5231     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5232   case ISD::SRA:
5233     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5234   default:
5235     llvm_unreachable("Unexpected node to lower");
5236   }
5237 }
5238 
5239 // Lower operations with invalid operand or result types (currently used
5240 // only for 128-bit integer types).
5241 
5242 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5243   SDLoc DL(In);
5244   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5245                            DAG.getIntPtrConstant(0, DL));
5246   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5247                            DAG.getIntPtrConstant(1, DL));
5248   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5249                                     MVT::Untyped, Hi, Lo);
5250   return SDValue(Pair, 0);
5251 }
5252 
5253 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5254   SDLoc DL(In);
5255   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5256                                           DL, MVT::i64, In);
5257   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5258                                           DL, MVT::i64, In);
5259   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5260 }
5261 
5262 void
5263 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5264                                              SmallVectorImpl<SDValue> &Results,
5265                                              SelectionDAG &DAG) const {
5266   switch (N->getOpcode()) {
5267   case ISD::ATOMIC_LOAD: {
5268     SDLoc DL(N);
5269     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5270     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5271     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5272     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5273                                           DL, Tys, Ops, MVT::i128, MMO);
5274     Results.push_back(lowerGR128ToI128(DAG, Res));
5275     Results.push_back(Res.getValue(1));
5276     break;
5277   }
5278   case ISD::ATOMIC_STORE: {
5279     SDLoc DL(N);
5280     SDVTList Tys = DAG.getVTList(MVT::Other);
5281     SDValue Ops[] = { N->getOperand(0),
5282                       lowerI128ToGR128(DAG, N->getOperand(2)),
5283                       N->getOperand(1) };
5284     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5285     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5286                                           DL, Tys, Ops, MVT::i128, MMO);
5287     // We have to enforce sequential consistency by performing a
5288     // serialization operation after the store.
5289     if (cast<AtomicSDNode>(N)->getOrdering() ==
5290         AtomicOrdering::SequentiallyConsistent)
5291       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5292                                        MVT::Other, Res), 0);
5293     Results.push_back(Res);
5294     break;
5295   }
5296   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5297     SDLoc DL(N);
5298     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5299     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5300                       lowerI128ToGR128(DAG, N->getOperand(2)),
5301                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5302     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5303     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5304                                           DL, Tys, Ops, MVT::i128, MMO);
5305     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5306                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5307     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5308     Results.push_back(lowerGR128ToI128(DAG, Res));
5309     Results.push_back(Success);
5310     Results.push_back(Res.getValue(2));
5311     break;
5312   }
5313   default:
5314     llvm_unreachable("Unexpected node to lower");
5315   }
5316 }
5317 
5318 void
5319 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5320                                           SmallVectorImpl<SDValue> &Results,
5321                                           SelectionDAG &DAG) const {
5322   return LowerOperationWrapper(N, Results, DAG);
5323 }
5324 
5325 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5326 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5327   switch ((SystemZISD::NodeType)Opcode) {
5328     case SystemZISD::FIRST_NUMBER: break;
5329     OPCODE(RET_FLAG);
5330     OPCODE(CALL);
5331     OPCODE(SIBCALL);
5332     OPCODE(TLS_GDCALL);
5333     OPCODE(TLS_LDCALL);
5334     OPCODE(PCREL_WRAPPER);
5335     OPCODE(PCREL_OFFSET);
5336     OPCODE(IABS);
5337     OPCODE(ICMP);
5338     OPCODE(FCMP);
5339     OPCODE(STRICT_FCMP);
5340     OPCODE(STRICT_FCMPS);
5341     OPCODE(TM);
5342     OPCODE(BR_CCMASK);
5343     OPCODE(SELECT_CCMASK);
5344     OPCODE(ADJDYNALLOC);
5345     OPCODE(POPCNT);
5346     OPCODE(SMUL_LOHI);
5347     OPCODE(UMUL_LOHI);
5348     OPCODE(SDIVREM);
5349     OPCODE(UDIVREM);
5350     OPCODE(SADDO);
5351     OPCODE(SSUBO);
5352     OPCODE(UADDO);
5353     OPCODE(USUBO);
5354     OPCODE(ADDCARRY);
5355     OPCODE(SUBCARRY);
5356     OPCODE(GET_CCMASK);
5357     OPCODE(MVC);
5358     OPCODE(MVC_LOOP);
5359     OPCODE(NC);
5360     OPCODE(NC_LOOP);
5361     OPCODE(OC);
5362     OPCODE(OC_LOOP);
5363     OPCODE(XC);
5364     OPCODE(XC_LOOP);
5365     OPCODE(CLC);
5366     OPCODE(CLC_LOOP);
5367     OPCODE(STPCPY);
5368     OPCODE(STRCMP);
5369     OPCODE(SEARCH_STRING);
5370     OPCODE(IPM);
5371     OPCODE(MEMBARRIER);
5372     OPCODE(TBEGIN);
5373     OPCODE(TBEGIN_NOFLOAT);
5374     OPCODE(TEND);
5375     OPCODE(BYTE_MASK);
5376     OPCODE(ROTATE_MASK);
5377     OPCODE(REPLICATE);
5378     OPCODE(JOIN_DWORDS);
5379     OPCODE(SPLAT);
5380     OPCODE(MERGE_HIGH);
5381     OPCODE(MERGE_LOW);
5382     OPCODE(SHL_DOUBLE);
5383     OPCODE(PERMUTE_DWORDS);
5384     OPCODE(PERMUTE);
5385     OPCODE(PACK);
5386     OPCODE(PACKS_CC);
5387     OPCODE(PACKLS_CC);
5388     OPCODE(UNPACK_HIGH);
5389     OPCODE(UNPACKL_HIGH);
5390     OPCODE(UNPACK_LOW);
5391     OPCODE(UNPACKL_LOW);
5392     OPCODE(VSHL_BY_SCALAR);
5393     OPCODE(VSRL_BY_SCALAR);
5394     OPCODE(VSRA_BY_SCALAR);
5395     OPCODE(VSUM);
5396     OPCODE(VICMPE);
5397     OPCODE(VICMPH);
5398     OPCODE(VICMPHL);
5399     OPCODE(VICMPES);
5400     OPCODE(VICMPHS);
5401     OPCODE(VICMPHLS);
5402     OPCODE(VFCMPE);
5403     OPCODE(STRICT_VFCMPE);
5404     OPCODE(STRICT_VFCMPES);
5405     OPCODE(VFCMPH);
5406     OPCODE(STRICT_VFCMPH);
5407     OPCODE(STRICT_VFCMPHS);
5408     OPCODE(VFCMPHE);
5409     OPCODE(STRICT_VFCMPHE);
5410     OPCODE(STRICT_VFCMPHES);
5411     OPCODE(VFCMPES);
5412     OPCODE(VFCMPHS);
5413     OPCODE(VFCMPHES);
5414     OPCODE(VFTCI);
5415     OPCODE(VEXTEND);
5416     OPCODE(STRICT_VEXTEND);
5417     OPCODE(VROUND);
5418     OPCODE(STRICT_VROUND);
5419     OPCODE(VTM);
5420     OPCODE(VFAE_CC);
5421     OPCODE(VFAEZ_CC);
5422     OPCODE(VFEE_CC);
5423     OPCODE(VFEEZ_CC);
5424     OPCODE(VFENE_CC);
5425     OPCODE(VFENEZ_CC);
5426     OPCODE(VISTR_CC);
5427     OPCODE(VSTRC_CC);
5428     OPCODE(VSTRCZ_CC);
5429     OPCODE(VSTRS_CC);
5430     OPCODE(VSTRSZ_CC);
5431     OPCODE(TDC);
5432     OPCODE(ATOMIC_SWAPW);
5433     OPCODE(ATOMIC_LOADW_ADD);
5434     OPCODE(ATOMIC_LOADW_SUB);
5435     OPCODE(ATOMIC_LOADW_AND);
5436     OPCODE(ATOMIC_LOADW_OR);
5437     OPCODE(ATOMIC_LOADW_XOR);
5438     OPCODE(ATOMIC_LOADW_NAND);
5439     OPCODE(ATOMIC_LOADW_MIN);
5440     OPCODE(ATOMIC_LOADW_MAX);
5441     OPCODE(ATOMIC_LOADW_UMIN);
5442     OPCODE(ATOMIC_LOADW_UMAX);
5443     OPCODE(ATOMIC_CMP_SWAPW);
5444     OPCODE(ATOMIC_CMP_SWAP);
5445     OPCODE(ATOMIC_LOAD_128);
5446     OPCODE(ATOMIC_STORE_128);
5447     OPCODE(ATOMIC_CMP_SWAP_128);
5448     OPCODE(LRV);
5449     OPCODE(STRV);
5450     OPCODE(VLER);
5451     OPCODE(VSTER);
5452     OPCODE(PREFETCH);
5453   }
5454   return nullptr;
5455 #undef OPCODE
5456 }
5457 
5458 // Return true if VT is a vector whose elements are a whole number of bytes
5459 // in width. Also check for presence of vector support.
5460 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5461   if (!Subtarget.hasVector())
5462     return false;
5463 
5464   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5465 }
5466 
5467 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5468 // producing a result of type ResVT.  Op is a possibly bitcast version
5469 // of the input vector and Index is the index (based on type VecVT) that
5470 // should be extracted.  Return the new extraction if a simplification
5471 // was possible or if Force is true.
5472 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5473                                               EVT VecVT, SDValue Op,
5474                                               unsigned Index,
5475                                               DAGCombinerInfo &DCI,
5476                                               bool Force) const {
5477   SelectionDAG &DAG = DCI.DAG;
5478 
5479   // The number of bytes being extracted.
5480   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5481 
5482   for (;;) {
5483     unsigned Opcode = Op.getOpcode();
5484     if (Opcode == ISD::BITCAST)
5485       // Look through bitcasts.
5486       Op = Op.getOperand(0);
5487     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5488              canTreatAsByteVector(Op.getValueType())) {
5489       // Get a VPERM-like permute mask and see whether the bytes covered
5490       // by the extracted element are a contiguous sequence from one
5491       // source operand.
5492       SmallVector<int, SystemZ::VectorBytes> Bytes;
5493       if (!getVPermMask(Op, Bytes))
5494         break;
5495       int First;
5496       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5497                            BytesPerElement, First))
5498         break;
5499       if (First < 0)
5500         return DAG.getUNDEF(ResVT);
5501       // Make sure the contiguous sequence starts at a multiple of the
5502       // original element size.
5503       unsigned Byte = unsigned(First) % Bytes.size();
5504       if (Byte % BytesPerElement != 0)
5505         break;
5506       // We can get the extracted value directly from an input.
5507       Index = Byte / BytesPerElement;
5508       Op = Op.getOperand(unsigned(First) / Bytes.size());
5509       Force = true;
5510     } else if (Opcode == ISD::BUILD_VECTOR &&
5511                canTreatAsByteVector(Op.getValueType())) {
5512       // We can only optimize this case if the BUILD_VECTOR elements are
5513       // at least as wide as the extracted value.
5514       EVT OpVT = Op.getValueType();
5515       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5516       if (OpBytesPerElement < BytesPerElement)
5517         break;
5518       // Make sure that the least-significant bit of the extracted value
5519       // is the least significant bit of an input.
5520       unsigned End = (Index + 1) * BytesPerElement;
5521       if (End % OpBytesPerElement != 0)
5522         break;
5523       // We're extracting the low part of one operand of the BUILD_VECTOR.
5524       Op = Op.getOperand(End / OpBytesPerElement - 1);
5525       if (!Op.getValueType().isInteger()) {
5526         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5527         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5528         DCI.AddToWorklist(Op.getNode());
5529       }
5530       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5531       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5532       if (VT != ResVT) {
5533         DCI.AddToWorklist(Op.getNode());
5534         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5535       }
5536       return Op;
5537     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5538                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5539                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5540                canTreatAsByteVector(Op.getValueType()) &&
5541                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5542       // Make sure that only the unextended bits are significant.
5543       EVT ExtVT = Op.getValueType();
5544       EVT OpVT = Op.getOperand(0).getValueType();
5545       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5546       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5547       unsigned Byte = Index * BytesPerElement;
5548       unsigned SubByte = Byte % ExtBytesPerElement;
5549       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5550       if (SubByte < MinSubByte ||
5551           SubByte + BytesPerElement > ExtBytesPerElement)
5552         break;
5553       // Get the byte offset of the unextended element
5554       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5555       // ...then add the byte offset relative to that element.
5556       Byte += SubByte - MinSubByte;
5557       if (Byte % BytesPerElement != 0)
5558         break;
5559       Op = Op.getOperand(0);
5560       Index = Byte / BytesPerElement;
5561       Force = true;
5562     } else
5563       break;
5564   }
5565   if (Force) {
5566     if (Op.getValueType() != VecVT) {
5567       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5568       DCI.AddToWorklist(Op.getNode());
5569     }
5570     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5571                        DAG.getConstant(Index, DL, MVT::i32));
5572   }
5573   return SDValue();
5574 }
5575 
5576 // Optimize vector operations in scalar value Op on the basis that Op
5577 // is truncated to TruncVT.
5578 SDValue SystemZTargetLowering::combineTruncateExtract(
5579     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5580   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5581   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5582   // of type TruncVT.
5583   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5584       TruncVT.getSizeInBits() % 8 == 0) {
5585     SDValue Vec = Op.getOperand(0);
5586     EVT VecVT = Vec.getValueType();
5587     if (canTreatAsByteVector(VecVT)) {
5588       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5589         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5590         unsigned TruncBytes = TruncVT.getStoreSize();
5591         if (BytesPerElement % TruncBytes == 0) {
5592           // Calculate the value of Y' in the above description.  We are
5593           // splitting the original elements into Scale equal-sized pieces
5594           // and for truncation purposes want the last (least-significant)
5595           // of these pieces for IndexN.  This is easiest to do by calculating
5596           // the start index of the following element and then subtracting 1.
5597           unsigned Scale = BytesPerElement / TruncBytes;
5598           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5599 
5600           // Defer the creation of the bitcast from X to combineExtract,
5601           // which might be able to optimize the extraction.
5602           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5603                                    VecVT.getStoreSize() / TruncBytes);
5604           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5605           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5606         }
5607       }
5608     }
5609   }
5610   return SDValue();
5611 }
5612 
5613 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5614     SDNode *N, DAGCombinerInfo &DCI) const {
5615   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5616   SelectionDAG &DAG = DCI.DAG;
5617   SDValue N0 = N->getOperand(0);
5618   EVT VT = N->getValueType(0);
5619   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5620     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5621     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5622     if (TrueOp && FalseOp) {
5623       SDLoc DL(N0);
5624       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5625                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5626                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5627       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5628       // If N0 has multiple uses, change other uses as well.
5629       if (!N0.hasOneUse()) {
5630         SDValue TruncSelect =
5631           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5632         DCI.CombineTo(N0.getNode(), TruncSelect);
5633       }
5634       return NewSelect;
5635     }
5636   }
5637   return SDValue();
5638 }
5639 
5640 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5641     SDNode *N, DAGCombinerInfo &DCI) const {
5642   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5643   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5644   // into (select_cc LHS, RHS, -1, 0, COND)
5645   SelectionDAG &DAG = DCI.DAG;
5646   SDValue N0 = N->getOperand(0);
5647   EVT VT = N->getValueType(0);
5648   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5649   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5650     N0 = N0.getOperand(0);
5651   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5652     SDLoc DL(N0);
5653     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5654                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5655                       N0.getOperand(2) };
5656     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5657   }
5658   return SDValue();
5659 }
5660 
5661 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5662     SDNode *N, DAGCombinerInfo &DCI) const {
5663   // Convert (sext (ashr (shl X, C1), C2)) to
5664   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5665   // cheap as narrower ones.
5666   SelectionDAG &DAG = DCI.DAG;
5667   SDValue N0 = N->getOperand(0);
5668   EVT VT = N->getValueType(0);
5669   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5670     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5671     SDValue Inner = N0.getOperand(0);
5672     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5673       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5674         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5675         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5676         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5677         EVT ShiftVT = N0.getOperand(1).getValueType();
5678         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5679                                   Inner.getOperand(0));
5680         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5681                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5682                                                   ShiftVT));
5683         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5684                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5685       }
5686     }
5687   }
5688   return SDValue();
5689 }
5690 
5691 SDValue SystemZTargetLowering::combineMERGE(
5692     SDNode *N, DAGCombinerInfo &DCI) const {
5693   SelectionDAG &DAG = DCI.DAG;
5694   unsigned Opcode = N->getOpcode();
5695   SDValue Op0 = N->getOperand(0);
5696   SDValue Op1 = N->getOperand(1);
5697   if (Op0.getOpcode() == ISD::BITCAST)
5698     Op0 = Op0.getOperand(0);
5699   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5700     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5701     // for v4f32.
5702     if (Op1 == N->getOperand(0))
5703       return Op1;
5704     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5705     EVT VT = Op1.getValueType();
5706     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5707     if (ElemBytes <= 4) {
5708       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5709                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5710       EVT InVT = VT.changeVectorElementTypeToInteger();
5711       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5712                                    SystemZ::VectorBytes / ElemBytes / 2);
5713       if (VT != InVT) {
5714         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5715         DCI.AddToWorklist(Op1.getNode());
5716       }
5717       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5718       DCI.AddToWorklist(Op.getNode());
5719       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5720     }
5721   }
5722   return SDValue();
5723 }
5724 
5725 SDValue SystemZTargetLowering::combineLOAD(
5726     SDNode *N, DAGCombinerInfo &DCI) const {
5727   SelectionDAG &DAG = DCI.DAG;
5728   EVT LdVT = N->getValueType(0);
5729   if (LdVT.isVector() || LdVT.isInteger())
5730     return SDValue();
5731   // Transform a scalar load that is REPLICATEd as well as having other
5732   // use(s) to the form where the other use(s) use the first element of the
5733   // REPLICATE instead of the load. Otherwise instruction selection will not
5734   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5735   // point loads.
5736 
5737   SDValue Replicate;
5738   SmallVector<SDNode*, 8> OtherUses;
5739   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5740        UI != UE; ++UI) {
5741     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5742       if (Replicate)
5743         return SDValue(); // Should never happen
5744       Replicate = SDValue(*UI, 0);
5745     }
5746     else if (UI.getUse().getResNo() == 0)
5747       OtherUses.push_back(*UI);
5748   }
5749   if (!Replicate || OtherUses.empty())
5750     return SDValue();
5751 
5752   SDLoc DL(N);
5753   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5754                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5755   // Update uses of the loaded Value while preserving old chains.
5756   for (SDNode *U : OtherUses) {
5757     SmallVector<SDValue, 8> Ops;
5758     for (SDValue Op : U->ops())
5759       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5760     DAG.UpdateNodeOperands(U, Ops);
5761   }
5762   return SDValue(N, 0);
5763 }
5764 
5765 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5766   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5767     return true;
5768   if (Subtarget.hasVectorEnhancements2())
5769     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5770       return true;
5771   return false;
5772 }
5773 
5774 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5775   if (!VT.isVector() || !VT.isSimple() ||
5776       VT.getSizeInBits() != 128 ||
5777       VT.getScalarSizeInBits() % 8 != 0)
5778     return false;
5779 
5780   unsigned NumElts = VT.getVectorNumElements();
5781   for (unsigned i = 0; i < NumElts; ++i) {
5782     if (M[i] < 0) continue; // ignore UNDEF indices
5783     if ((unsigned) M[i] != NumElts - 1 - i)
5784       return false;
5785   }
5786 
5787   return true;
5788 }
5789 
5790 SDValue SystemZTargetLowering::combineSTORE(
5791     SDNode *N, DAGCombinerInfo &DCI) const {
5792   SelectionDAG &DAG = DCI.DAG;
5793   auto *SN = cast<StoreSDNode>(N);
5794   auto &Op1 = N->getOperand(1);
5795   EVT MemVT = SN->getMemoryVT();
5796   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5797   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5798   // If X has wider elements then convert it to:
5799   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5800   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5801     if (SDValue Value =
5802             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5803       DCI.AddToWorklist(Value.getNode());
5804 
5805       // Rewrite the store with the new form of stored value.
5806       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5807                                SN->getBasePtr(), SN->getMemoryVT(),
5808                                SN->getMemOperand());
5809     }
5810   }
5811   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5812   if (!SN->isTruncatingStore() &&
5813       Op1.getOpcode() == ISD::BSWAP &&
5814       Op1.getNode()->hasOneUse() &&
5815       canLoadStoreByteSwapped(Op1.getValueType())) {
5816 
5817       SDValue BSwapOp = Op1.getOperand(0);
5818 
5819       if (BSwapOp.getValueType() == MVT::i16)
5820         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5821 
5822       SDValue Ops[] = {
5823         N->getOperand(0), BSwapOp, N->getOperand(2)
5824       };
5825 
5826       return
5827         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5828                                 Ops, MemVT, SN->getMemOperand());
5829     }
5830   // Combine STORE (element-swap) into VSTER
5831   if (!SN->isTruncatingStore() &&
5832       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5833       Op1.getNode()->hasOneUse() &&
5834       Subtarget.hasVectorEnhancements2()) {
5835     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5836     ArrayRef<int> ShuffleMask = SVN->getMask();
5837     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5838       SDValue Ops[] = {
5839         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5840       };
5841 
5842       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5843                                      DAG.getVTList(MVT::Other),
5844                                      Ops, MemVT, SN->getMemOperand());
5845     }
5846   }
5847 
5848   return SDValue();
5849 }
5850 
5851 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5852     SDNode *N, DAGCombinerInfo &DCI) const {
5853   SelectionDAG &DAG = DCI.DAG;
5854   // Combine element-swap (LOAD) into VLER
5855   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5856       N->getOperand(0).hasOneUse() &&
5857       Subtarget.hasVectorEnhancements2()) {
5858     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5859     ArrayRef<int> ShuffleMask = SVN->getMask();
5860     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5861       SDValue Load = N->getOperand(0);
5862       LoadSDNode *LD = cast<LoadSDNode>(Load);
5863 
5864       // Create the element-swapping load.
5865       SDValue Ops[] = {
5866         LD->getChain(),    // Chain
5867         LD->getBasePtr()   // Ptr
5868       };
5869       SDValue ESLoad =
5870         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5871                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
5872                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5873 
5874       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5875       // by the load dead.
5876       DCI.CombineTo(N, ESLoad);
5877 
5878       // Next, combine the load away, we give it a bogus result value but a real
5879       // chain result.  The result value is dead because the shuffle is dead.
5880       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5881 
5882       // Return N so it doesn't get rechecked!
5883       return SDValue(N, 0);
5884     }
5885   }
5886 
5887   return SDValue();
5888 }
5889 
5890 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5891     SDNode *N, DAGCombinerInfo &DCI) const {
5892   SelectionDAG &DAG = DCI.DAG;
5893 
5894   if (!Subtarget.hasVector())
5895     return SDValue();
5896 
5897   // Look through bitcasts that retain the number of vector elements.
5898   SDValue Op = N->getOperand(0);
5899   if (Op.getOpcode() == ISD::BITCAST &&
5900       Op.getValueType().isVector() &&
5901       Op.getOperand(0).getValueType().isVector() &&
5902       Op.getValueType().getVectorNumElements() ==
5903       Op.getOperand(0).getValueType().getVectorNumElements())
5904     Op = Op.getOperand(0);
5905 
5906   // Pull BSWAP out of a vector extraction.
5907   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5908     EVT VecVT = Op.getValueType();
5909     EVT EltVT = VecVT.getVectorElementType();
5910     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5911                      Op.getOperand(0), N->getOperand(1));
5912     DCI.AddToWorklist(Op.getNode());
5913     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5914     if (EltVT != N->getValueType(0)) {
5915       DCI.AddToWorklist(Op.getNode());
5916       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5917     }
5918     return Op;
5919   }
5920 
5921   // Try to simplify a vector extraction.
5922   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5923     SDValue Op0 = N->getOperand(0);
5924     EVT VecVT = Op0.getValueType();
5925     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5926                           IndexN->getZExtValue(), DCI, false);
5927   }
5928   return SDValue();
5929 }
5930 
5931 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5932     SDNode *N, DAGCombinerInfo &DCI) const {
5933   SelectionDAG &DAG = DCI.DAG;
5934   // (join_dwords X, X) == (replicate X)
5935   if (N->getOperand(0) == N->getOperand(1))
5936     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5937                        N->getOperand(0));
5938   return SDValue();
5939 }
5940 
5941 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
5942   SDValue Chain1 = N1->getOperand(0);
5943   SDValue Chain2 = N2->getOperand(0);
5944 
5945   // Trivial case: both nodes take the same chain.
5946   if (Chain1 == Chain2)
5947     return Chain1;
5948 
5949   // FIXME - we could handle more complex cases via TokenFactor,
5950   // assuming we can verify that this would not create a cycle.
5951   return SDValue();
5952 }
5953 
5954 SDValue SystemZTargetLowering::combineFP_ROUND(
5955     SDNode *N, DAGCombinerInfo &DCI) const {
5956 
5957   if (!Subtarget.hasVector())
5958     return SDValue();
5959 
5960   // (fpround (extract_vector_elt X 0))
5961   // (fpround (extract_vector_elt X 1)) ->
5962   // (extract_vector_elt (VROUND X) 0)
5963   // (extract_vector_elt (VROUND X) 2)
5964   //
5965   // This is a special case since the target doesn't really support v2f32s.
5966   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
5967   SelectionDAG &DAG = DCI.DAG;
5968   SDValue Op0 = N->getOperand(OpNo);
5969   if (N->getValueType(0) == MVT::f32 &&
5970       Op0.hasOneUse() &&
5971       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5972       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5973       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5974       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5975     SDValue Vec = Op0.getOperand(0);
5976     for (auto *U : Vec->uses()) {
5977       if (U != Op0.getNode() &&
5978           U->hasOneUse() &&
5979           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5980           U->getOperand(0) == Vec &&
5981           U->getOperand(1).getOpcode() == ISD::Constant &&
5982           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5983         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5984         if (OtherRound.getOpcode() == N->getOpcode() &&
5985             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
5986             OtherRound.getValueType() == MVT::f32) {
5987           SDValue VRound, Chain;
5988           if (N->isStrictFPOpcode()) {
5989             Chain = MergeInputChains(N, OtherRound.getNode());
5990             if (!Chain)
5991               continue;
5992             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
5993                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
5994             Chain = VRound.getValue(1);
5995           } else
5996             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5997                                  MVT::v4f32, Vec);
5998           DCI.AddToWorklist(VRound.getNode());
5999           SDValue Extract1 =
6000             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6001                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6002           DCI.AddToWorklist(Extract1.getNode());
6003           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6004           if (Chain)
6005             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6006           SDValue Extract0 =
6007             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6008                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6009           if (Chain)
6010             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6011                                N->getVTList(), Extract0, Chain);
6012           return Extract0;
6013         }
6014       }
6015     }
6016   }
6017   return SDValue();
6018 }
6019 
6020 SDValue SystemZTargetLowering::combineFP_EXTEND(
6021     SDNode *N, DAGCombinerInfo &DCI) const {
6022 
6023   if (!Subtarget.hasVector())
6024     return SDValue();
6025 
6026   // (fpextend (extract_vector_elt X 0))
6027   // (fpextend (extract_vector_elt X 2)) ->
6028   // (extract_vector_elt (VEXTEND X) 0)
6029   // (extract_vector_elt (VEXTEND X) 1)
6030   //
6031   // This is a special case since the target doesn't really support v2f32s.
6032   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6033   SelectionDAG &DAG = DCI.DAG;
6034   SDValue Op0 = N->getOperand(OpNo);
6035   if (N->getValueType(0) == MVT::f64 &&
6036       Op0.hasOneUse() &&
6037       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6038       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6039       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6040       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6041     SDValue Vec = Op0.getOperand(0);
6042     for (auto *U : Vec->uses()) {
6043       if (U != Op0.getNode() &&
6044           U->hasOneUse() &&
6045           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6046           U->getOperand(0) == Vec &&
6047           U->getOperand(1).getOpcode() == ISD::Constant &&
6048           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6049         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6050         if (OtherExtend.getOpcode() == N->getOpcode() &&
6051             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6052             OtherExtend.getValueType() == MVT::f64) {
6053           SDValue VExtend, Chain;
6054           if (N->isStrictFPOpcode()) {
6055             Chain = MergeInputChains(N, OtherExtend.getNode());
6056             if (!Chain)
6057               continue;
6058             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6059                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6060             Chain = VExtend.getValue(1);
6061           } else
6062             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6063                                   MVT::v2f64, Vec);
6064           DCI.AddToWorklist(VExtend.getNode());
6065           SDValue Extract1 =
6066             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6067                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6068           DCI.AddToWorklist(Extract1.getNode());
6069           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6070           if (Chain)
6071             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6072           SDValue Extract0 =
6073             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6074                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6075           if (Chain)
6076             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6077                                N->getVTList(), Extract0, Chain);
6078           return Extract0;
6079         }
6080       }
6081     }
6082   }
6083   return SDValue();
6084 }
6085 
6086 SDValue SystemZTargetLowering::combineBSWAP(
6087     SDNode *N, DAGCombinerInfo &DCI) const {
6088   SelectionDAG &DAG = DCI.DAG;
6089   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6090   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6091       N->getOperand(0).hasOneUse() &&
6092       canLoadStoreByteSwapped(N->getValueType(0))) {
6093       SDValue Load = N->getOperand(0);
6094       LoadSDNode *LD = cast<LoadSDNode>(Load);
6095 
6096       // Create the byte-swapping load.
6097       SDValue Ops[] = {
6098         LD->getChain(),    // Chain
6099         LD->getBasePtr()   // Ptr
6100       };
6101       EVT LoadVT = N->getValueType(0);
6102       if (LoadVT == MVT::i16)
6103         LoadVT = MVT::i32;
6104       SDValue BSLoad =
6105         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6106                                 DAG.getVTList(LoadVT, MVT::Other),
6107                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6108 
6109       // If this is an i16 load, insert the truncate.
6110       SDValue ResVal = BSLoad;
6111       if (N->getValueType(0) == MVT::i16)
6112         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6113 
6114       // First, combine the bswap away.  This makes the value produced by the
6115       // load dead.
6116       DCI.CombineTo(N, ResVal);
6117 
6118       // Next, combine the load away, we give it a bogus result value but a real
6119       // chain result.  The result value is dead because the bswap is dead.
6120       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6121 
6122       // Return N so it doesn't get rechecked!
6123       return SDValue(N, 0);
6124     }
6125 
6126   // Look through bitcasts that retain the number of vector elements.
6127   SDValue Op = N->getOperand(0);
6128   if (Op.getOpcode() == ISD::BITCAST &&
6129       Op.getValueType().isVector() &&
6130       Op.getOperand(0).getValueType().isVector() &&
6131       Op.getValueType().getVectorNumElements() ==
6132       Op.getOperand(0).getValueType().getVectorNumElements())
6133     Op = Op.getOperand(0);
6134 
6135   // Push BSWAP into a vector insertion if at least one side then simplifies.
6136   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6137     SDValue Vec = Op.getOperand(0);
6138     SDValue Elt = Op.getOperand(1);
6139     SDValue Idx = Op.getOperand(2);
6140 
6141     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6142         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6143         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6144         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6145         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6146          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6147       EVT VecVT = N->getValueType(0);
6148       EVT EltVT = N->getValueType(0).getVectorElementType();
6149       if (VecVT != Vec.getValueType()) {
6150         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6151         DCI.AddToWorklist(Vec.getNode());
6152       }
6153       if (EltVT != Elt.getValueType()) {
6154         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6155         DCI.AddToWorklist(Elt.getNode());
6156       }
6157       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6158       DCI.AddToWorklist(Vec.getNode());
6159       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6160       DCI.AddToWorklist(Elt.getNode());
6161       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6162                          Vec, Elt, Idx);
6163     }
6164   }
6165 
6166   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6167   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6168   if (SV && Op.hasOneUse()) {
6169     SDValue Op0 = Op.getOperand(0);
6170     SDValue Op1 = Op.getOperand(1);
6171 
6172     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6173         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6174         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6175         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6176       EVT VecVT = N->getValueType(0);
6177       if (VecVT != Op0.getValueType()) {
6178         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6179         DCI.AddToWorklist(Op0.getNode());
6180       }
6181       if (VecVT != Op1.getValueType()) {
6182         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6183         DCI.AddToWorklist(Op1.getNode());
6184       }
6185       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6186       DCI.AddToWorklist(Op0.getNode());
6187       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6188       DCI.AddToWorklist(Op1.getNode());
6189       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6190     }
6191   }
6192 
6193   return SDValue();
6194 }
6195 
6196 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6197   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6198   // set by the CCReg instruction using the CCValid / CCMask masks,
6199   // If the CCReg instruction is itself a ICMP testing the condition
6200   // code set by some other instruction, see whether we can directly
6201   // use that condition code.
6202 
6203   // Verify that we have an ICMP against some constant.
6204   if (CCValid != SystemZ::CCMASK_ICMP)
6205     return false;
6206   auto *ICmp = CCReg.getNode();
6207   if (ICmp->getOpcode() != SystemZISD::ICMP)
6208     return false;
6209   auto *CompareLHS = ICmp->getOperand(0).getNode();
6210   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6211   if (!CompareRHS)
6212     return false;
6213 
6214   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6215   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6216     // Verify that we have an appropriate mask for a EQ or NE comparison.
6217     bool Invert = false;
6218     if (CCMask == SystemZ::CCMASK_CMP_NE)
6219       Invert = !Invert;
6220     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6221       return false;
6222 
6223     // Verify that the ICMP compares against one of select values.
6224     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6225     if (!TrueVal)
6226       return false;
6227     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6228     if (!FalseVal)
6229       return false;
6230     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6231       Invert = !Invert;
6232     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6233       return false;
6234 
6235     // Compute the effective CC mask for the new branch or select.
6236     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6237     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6238     if (!NewCCValid || !NewCCMask)
6239       return false;
6240     CCValid = NewCCValid->getZExtValue();
6241     CCMask = NewCCMask->getZExtValue();
6242     if (Invert)
6243       CCMask ^= CCValid;
6244 
6245     // Return the updated CCReg link.
6246     CCReg = CompareLHS->getOperand(4);
6247     return true;
6248   }
6249 
6250   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6251   if (CompareLHS->getOpcode() == ISD::SRA) {
6252     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6253     if (!SRACount || SRACount->getZExtValue() != 30)
6254       return false;
6255     auto *SHL = CompareLHS->getOperand(0).getNode();
6256     if (SHL->getOpcode() != ISD::SHL)
6257       return false;
6258     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6259     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6260       return false;
6261     auto *IPM = SHL->getOperand(0).getNode();
6262     if (IPM->getOpcode() != SystemZISD::IPM)
6263       return false;
6264 
6265     // Avoid introducing CC spills (because SRA would clobber CC).
6266     if (!CompareLHS->hasOneUse())
6267       return false;
6268     // Verify that the ICMP compares against zero.
6269     if (CompareRHS->getZExtValue() != 0)
6270       return false;
6271 
6272     // Compute the effective CC mask for the new branch or select.
6273     switch (CCMask) {
6274     case SystemZ::CCMASK_CMP_EQ: break;
6275     case SystemZ::CCMASK_CMP_NE: break;
6276     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6277     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6278     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6279     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6280     default: return false;
6281     }
6282 
6283     // Return the updated CCReg link.
6284     CCReg = IPM->getOperand(0);
6285     return true;
6286   }
6287 
6288   return false;
6289 }
6290 
6291 SDValue SystemZTargetLowering::combineBR_CCMASK(
6292     SDNode *N, DAGCombinerInfo &DCI) const {
6293   SelectionDAG &DAG = DCI.DAG;
6294 
6295   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6296   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6297   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6298   if (!CCValid || !CCMask)
6299     return SDValue();
6300 
6301   int CCValidVal = CCValid->getZExtValue();
6302   int CCMaskVal = CCMask->getZExtValue();
6303   SDValue Chain = N->getOperand(0);
6304   SDValue CCReg = N->getOperand(4);
6305 
6306   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6307     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6308                        Chain,
6309                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6310                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6311                        N->getOperand(3), CCReg);
6312   return SDValue();
6313 }
6314 
6315 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6316     SDNode *N, DAGCombinerInfo &DCI) const {
6317   SelectionDAG &DAG = DCI.DAG;
6318 
6319   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6320   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6321   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6322   if (!CCValid || !CCMask)
6323     return SDValue();
6324 
6325   int CCValidVal = CCValid->getZExtValue();
6326   int CCMaskVal = CCMask->getZExtValue();
6327   SDValue CCReg = N->getOperand(4);
6328 
6329   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6330     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6331                        N->getOperand(0), N->getOperand(1),
6332                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6333                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6334                        CCReg);
6335   return SDValue();
6336 }
6337 
6338 
6339 SDValue SystemZTargetLowering::combineGET_CCMASK(
6340     SDNode *N, DAGCombinerInfo &DCI) const {
6341 
6342   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6343   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6344   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6345   if (!CCValid || !CCMask)
6346     return SDValue();
6347   int CCValidVal = CCValid->getZExtValue();
6348   int CCMaskVal = CCMask->getZExtValue();
6349 
6350   SDValue Select = N->getOperand(0);
6351   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6352     return SDValue();
6353 
6354   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6355   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6356   if (!SelectCCValid || !SelectCCMask)
6357     return SDValue();
6358   int SelectCCValidVal = SelectCCValid->getZExtValue();
6359   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6360 
6361   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6362   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6363   if (!TrueVal || !FalseVal)
6364     return SDValue();
6365   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6366     ;
6367   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6368     SelectCCMaskVal ^= SelectCCValidVal;
6369   else
6370     return SDValue();
6371 
6372   if (SelectCCValidVal & ~CCValidVal)
6373     return SDValue();
6374   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6375     return SDValue();
6376 
6377   return Select->getOperand(4);
6378 }
6379 
6380 SDValue SystemZTargetLowering::combineIntDIVREM(
6381     SDNode *N, DAGCombinerInfo &DCI) const {
6382   SelectionDAG &DAG = DCI.DAG;
6383   EVT VT = N->getValueType(0);
6384   // In the case where the divisor is a vector of constants a cheaper
6385   // sequence of instructions can replace the divide. BuildSDIV is called to
6386   // do this during DAG combining, but it only succeeds when it can build a
6387   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6388   // since it is not Legal but Custom it can only happen before
6389   // legalization. Therefore we must scalarize this early before Combine
6390   // 1. For widened vectors, this is already the result of type legalization.
6391   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6392       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6393     return DAG.UnrollVectorOp(N);
6394   return SDValue();
6395 }
6396 
6397 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6398   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6399     return N->getOperand(0);
6400   return N;
6401 }
6402 
6403 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6404                                                  DAGCombinerInfo &DCI) const {
6405   switch(N->getOpcode()) {
6406   default: break;
6407   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6408   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6409   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6410   case SystemZISD::MERGE_HIGH:
6411   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6412   case ISD::LOAD:               return combineLOAD(N, DCI);
6413   case ISD::STORE:              return combineSTORE(N, DCI);
6414   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6415   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6416   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6417   case ISD::STRICT_FP_ROUND:
6418   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6419   case ISD::STRICT_FP_EXTEND:
6420   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6421   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6422   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6423   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6424   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6425   case ISD::SDIV:
6426   case ISD::UDIV:
6427   case ISD::SREM:
6428   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6429   }
6430 
6431   return SDValue();
6432 }
6433 
6434 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6435 // are for Op.
6436 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6437                                     unsigned OpNo) {
6438   EVT VT = Op.getValueType();
6439   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6440   APInt SrcDemE;
6441   unsigned Opcode = Op.getOpcode();
6442   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6443     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6444     switch (Id) {
6445     case Intrinsic::s390_vpksh:   // PACKS
6446     case Intrinsic::s390_vpksf:
6447     case Intrinsic::s390_vpksg:
6448     case Intrinsic::s390_vpkshs:  // PACKS_CC
6449     case Intrinsic::s390_vpksfs:
6450     case Intrinsic::s390_vpksgs:
6451     case Intrinsic::s390_vpklsh:  // PACKLS
6452     case Intrinsic::s390_vpklsf:
6453     case Intrinsic::s390_vpklsg:
6454     case Intrinsic::s390_vpklshs: // PACKLS_CC
6455     case Intrinsic::s390_vpklsfs:
6456     case Intrinsic::s390_vpklsgs:
6457       // VECTOR PACK truncates the elements of two source vectors into one.
6458       SrcDemE = DemandedElts;
6459       if (OpNo == 2)
6460         SrcDemE.lshrInPlace(NumElts / 2);
6461       SrcDemE = SrcDemE.trunc(NumElts / 2);
6462       break;
6463       // VECTOR UNPACK extends half the elements of the source vector.
6464     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6465     case Intrinsic::s390_vuphh:
6466     case Intrinsic::s390_vuphf:
6467     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6468     case Intrinsic::s390_vuplhh:
6469     case Intrinsic::s390_vuplhf:
6470       SrcDemE = APInt(NumElts * 2, 0);
6471       SrcDemE.insertBits(DemandedElts, 0);
6472       break;
6473     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6474     case Intrinsic::s390_vuplhw:
6475     case Intrinsic::s390_vuplf:
6476     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6477     case Intrinsic::s390_vupllh:
6478     case Intrinsic::s390_vupllf:
6479       SrcDemE = APInt(NumElts * 2, 0);
6480       SrcDemE.insertBits(DemandedElts, NumElts);
6481       break;
6482     case Intrinsic::s390_vpdi: {
6483       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6484       SrcDemE = APInt(NumElts, 0);
6485       if (!DemandedElts[OpNo - 1])
6486         break;
6487       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6488       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6489       // Demand input element 0 or 1, given by the mask bit value.
6490       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6491       break;
6492     }
6493     case Intrinsic::s390_vsldb: {
6494       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6495       assert(VT == MVT::v16i8 && "Unexpected type.");
6496       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6497       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6498       unsigned NumSrc0Els = 16 - FirstIdx;
6499       SrcDemE = APInt(NumElts, 0);
6500       if (OpNo == 1) {
6501         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6502         SrcDemE.insertBits(DemEls, FirstIdx);
6503       } else {
6504         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6505         SrcDemE.insertBits(DemEls, 0);
6506       }
6507       break;
6508     }
6509     case Intrinsic::s390_vperm:
6510       SrcDemE = APInt(NumElts, 1);
6511       break;
6512     default:
6513       llvm_unreachable("Unhandled intrinsic.");
6514       break;
6515     }
6516   } else {
6517     switch (Opcode) {
6518     case SystemZISD::JOIN_DWORDS:
6519       // Scalar operand.
6520       SrcDemE = APInt(1, 1);
6521       break;
6522     case SystemZISD::SELECT_CCMASK:
6523       SrcDemE = DemandedElts;
6524       break;
6525     default:
6526       llvm_unreachable("Unhandled opcode.");
6527       break;
6528     }
6529   }
6530   return SrcDemE;
6531 }
6532 
6533 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6534                                   const APInt &DemandedElts,
6535                                   const SelectionDAG &DAG, unsigned Depth,
6536                                   unsigned OpNo) {
6537   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6538   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6539   KnownBits LHSKnown =
6540       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6541   KnownBits RHSKnown =
6542       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6543   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6544   Known.One = LHSKnown.One & RHSKnown.One;
6545 }
6546 
6547 void
6548 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6549                                                      KnownBits &Known,
6550                                                      const APInt &DemandedElts,
6551                                                      const SelectionDAG &DAG,
6552                                                      unsigned Depth) const {
6553   Known.resetAll();
6554 
6555   // Intrinsic CC result is returned in the two low bits.
6556   unsigned tmp0, tmp1; // not used
6557   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6558     Known.Zero.setBitsFrom(2);
6559     return;
6560   }
6561   EVT VT = Op.getValueType();
6562   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6563     return;
6564   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6565           "KnownBits does not match VT in bitwidth");
6566   assert ((!VT.isVector() ||
6567            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6568           "DemandedElts does not match VT number of elements");
6569   unsigned BitWidth = Known.getBitWidth();
6570   unsigned Opcode = Op.getOpcode();
6571   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6572     bool IsLogical = false;
6573     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6574     switch (Id) {
6575     case Intrinsic::s390_vpksh:   // PACKS
6576     case Intrinsic::s390_vpksf:
6577     case Intrinsic::s390_vpksg:
6578     case Intrinsic::s390_vpkshs:  // PACKS_CC
6579     case Intrinsic::s390_vpksfs:
6580     case Intrinsic::s390_vpksgs:
6581     case Intrinsic::s390_vpklsh:  // PACKLS
6582     case Intrinsic::s390_vpklsf:
6583     case Intrinsic::s390_vpklsg:
6584     case Intrinsic::s390_vpklshs: // PACKLS_CC
6585     case Intrinsic::s390_vpklsfs:
6586     case Intrinsic::s390_vpklsgs:
6587     case Intrinsic::s390_vpdi:
6588     case Intrinsic::s390_vsldb:
6589     case Intrinsic::s390_vperm:
6590       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6591       break;
6592     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6593     case Intrinsic::s390_vuplhh:
6594     case Intrinsic::s390_vuplhf:
6595     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6596     case Intrinsic::s390_vupllh:
6597     case Intrinsic::s390_vupllf:
6598       IsLogical = true;
6599       LLVM_FALLTHROUGH;
6600     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6601     case Intrinsic::s390_vuphh:
6602     case Intrinsic::s390_vuphf:
6603     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6604     case Intrinsic::s390_vuplhw:
6605     case Intrinsic::s390_vuplf: {
6606       SDValue SrcOp = Op.getOperand(1);
6607       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6608       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6609       if (IsLogical) {
6610         Known = Known.zext(BitWidth);
6611       } else
6612         Known = Known.sext(BitWidth);
6613       break;
6614     }
6615     default:
6616       break;
6617     }
6618   } else {
6619     switch (Opcode) {
6620     case SystemZISD::JOIN_DWORDS:
6621     case SystemZISD::SELECT_CCMASK:
6622       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6623       break;
6624     case SystemZISD::REPLICATE: {
6625       SDValue SrcOp = Op.getOperand(0);
6626       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6627       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6628         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6629       break;
6630     }
6631     default:
6632       break;
6633     }
6634   }
6635 
6636   // Known has the width of the source operand(s). Adjust if needed to match
6637   // the passed bitwidth.
6638   if (Known.getBitWidth() != BitWidth)
6639     Known = Known.anyextOrTrunc(BitWidth);
6640 }
6641 
6642 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6643                                         const SelectionDAG &DAG, unsigned Depth,
6644                                         unsigned OpNo) {
6645   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6646   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6647   if (LHS == 1) return 1; // Early out.
6648   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6649   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6650   if (RHS == 1) return 1; // Early out.
6651   unsigned Common = std::min(LHS, RHS);
6652   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6653   EVT VT = Op.getValueType();
6654   unsigned VTBits = VT.getScalarSizeInBits();
6655   if (SrcBitWidth > VTBits) { // PACK
6656     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6657     if (Common > SrcExtraBits)
6658       return (Common - SrcExtraBits);
6659     return 1;
6660   }
6661   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6662   return Common;
6663 }
6664 
6665 unsigned
6666 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6667     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6668     unsigned Depth) const {
6669   if (Op.getResNo() != 0)
6670     return 1;
6671   unsigned Opcode = Op.getOpcode();
6672   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6673     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6674     switch (Id) {
6675     case Intrinsic::s390_vpksh:   // PACKS
6676     case Intrinsic::s390_vpksf:
6677     case Intrinsic::s390_vpksg:
6678     case Intrinsic::s390_vpkshs:  // PACKS_CC
6679     case Intrinsic::s390_vpksfs:
6680     case Intrinsic::s390_vpksgs:
6681     case Intrinsic::s390_vpklsh:  // PACKLS
6682     case Intrinsic::s390_vpklsf:
6683     case Intrinsic::s390_vpklsg:
6684     case Intrinsic::s390_vpklshs: // PACKLS_CC
6685     case Intrinsic::s390_vpklsfs:
6686     case Intrinsic::s390_vpklsgs:
6687     case Intrinsic::s390_vpdi:
6688     case Intrinsic::s390_vsldb:
6689     case Intrinsic::s390_vperm:
6690       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6691     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6692     case Intrinsic::s390_vuphh:
6693     case Intrinsic::s390_vuphf:
6694     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6695     case Intrinsic::s390_vuplhw:
6696     case Intrinsic::s390_vuplf: {
6697       SDValue PackedOp = Op.getOperand(1);
6698       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6699       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6700       EVT VT = Op.getValueType();
6701       unsigned VTBits = VT.getScalarSizeInBits();
6702       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6703       return Tmp;
6704     }
6705     default:
6706       break;
6707     }
6708   } else {
6709     switch (Opcode) {
6710     case SystemZISD::SELECT_CCMASK:
6711       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6712     default:
6713       break;
6714     }
6715   }
6716 
6717   return 1;
6718 }
6719 
6720 //===----------------------------------------------------------------------===//
6721 // Custom insertion
6722 //===----------------------------------------------------------------------===//
6723 
6724 // Create a new basic block after MBB.
6725 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6726   MachineFunction &MF = *MBB->getParent();
6727   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6728   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6729   return NewMBB;
6730 }
6731 
6732 // Split MBB after MI and return the new block (the one that contains
6733 // instructions after MI).
6734 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6735                                           MachineBasicBlock *MBB) {
6736   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6737   NewMBB->splice(NewMBB->begin(), MBB,
6738                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6739   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6740   return NewMBB;
6741 }
6742 
6743 // Split MBB before MI and return the new block (the one that contains MI).
6744 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6745                                            MachineBasicBlock *MBB) {
6746   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6747   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6748   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6749   return NewMBB;
6750 }
6751 
6752 // Force base value Base into a register before MI.  Return the register.
6753 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6754                          const SystemZInstrInfo *TII) {
6755   if (Base.isReg())
6756     return Base.getReg();
6757 
6758   MachineBasicBlock *MBB = MI.getParent();
6759   MachineFunction &MF = *MBB->getParent();
6760   MachineRegisterInfo &MRI = MF.getRegInfo();
6761 
6762   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6763   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6764       .add(Base)
6765       .addImm(0)
6766       .addReg(0);
6767   return Reg;
6768 }
6769 
6770 // The CC operand of MI might be missing a kill marker because there
6771 // were multiple uses of CC, and ISel didn't know which to mark.
6772 // Figure out whether MI should have had a kill marker.
6773 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6774   // Scan forward through BB for a use/def of CC.
6775   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6776   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6777     const MachineInstr& mi = *miI;
6778     if (mi.readsRegister(SystemZ::CC))
6779       return false;
6780     if (mi.definesRegister(SystemZ::CC))
6781       break; // Should have kill-flag - update below.
6782   }
6783 
6784   // If we hit the end of the block, check whether CC is live into a
6785   // successor.
6786   if (miI == MBB->end()) {
6787     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6788       if ((*SI)->isLiveIn(SystemZ::CC))
6789         return false;
6790   }
6791 
6792   return true;
6793 }
6794 
6795 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6796 // together with other Select pseudo-opcodes into a single basic-block with
6797 // a conditional jump around it.
6798 static bool isSelectPseudo(MachineInstr &MI) {
6799   switch (MI.getOpcode()) {
6800   case SystemZ::Select32:
6801   case SystemZ::Select64:
6802   case SystemZ::SelectF32:
6803   case SystemZ::SelectF64:
6804   case SystemZ::SelectF128:
6805   case SystemZ::SelectVR32:
6806   case SystemZ::SelectVR64:
6807   case SystemZ::SelectVR128:
6808     return true;
6809 
6810   default:
6811     return false;
6812   }
6813 }
6814 
6815 // Helper function, which inserts PHI functions into SinkMBB:
6816 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6817 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
6818 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
6819                                  MachineBasicBlock *TrueMBB,
6820                                  MachineBasicBlock *FalseMBB,
6821                                  MachineBasicBlock *SinkMBB) {
6822   MachineFunction *MF = TrueMBB->getParent();
6823   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6824 
6825   MachineInstr *FirstMI = Selects.front();
6826   unsigned CCValid = FirstMI->getOperand(3).getImm();
6827   unsigned CCMask = FirstMI->getOperand(4).getImm();
6828 
6829   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6830 
6831   // As we are creating the PHIs, we have to be careful if there is more than
6832   // one.  Later Selects may reference the results of earlier Selects, but later
6833   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6834   // That also means that PHI construction must work forward from earlier to
6835   // later, and that the code must maintain a mapping from earlier PHI's
6836   // destination registers, and the registers that went into the PHI.
6837   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6838 
6839   for (auto MI : Selects) {
6840     Register DestReg = MI->getOperand(0).getReg();
6841     Register TrueReg = MI->getOperand(1).getReg();
6842     Register FalseReg = MI->getOperand(2).getReg();
6843 
6844     // If this Select we are generating is the opposite condition from
6845     // the jump we generated, then we have to swap the operands for the
6846     // PHI that is going to be generated.
6847     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
6848       std::swap(TrueReg, FalseReg);
6849 
6850     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6851       TrueReg = RegRewriteTable[TrueReg].first;
6852 
6853     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6854       FalseReg = RegRewriteTable[FalseReg].second;
6855 
6856     DebugLoc DL = MI->getDebugLoc();
6857     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6858       .addReg(TrueReg).addMBB(TrueMBB)
6859       .addReg(FalseReg).addMBB(FalseMBB);
6860 
6861     // Add this PHI to the rewrite table.
6862     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6863   }
6864 
6865   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6866 }
6867 
6868 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6869 MachineBasicBlock *
6870 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6871                                   MachineBasicBlock *MBB) const {
6872   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
6873   const SystemZInstrInfo *TII =
6874       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6875 
6876   unsigned CCValid = MI.getOperand(3).getImm();
6877   unsigned CCMask = MI.getOperand(4).getImm();
6878 
6879   // If we have a sequence of Select* pseudo instructions using the
6880   // same condition code value, we want to expand all of them into
6881   // a single pair of basic blocks using the same condition.
6882   SmallVector<MachineInstr*, 8> Selects;
6883   SmallVector<MachineInstr*, 8> DbgValues;
6884   Selects.push_back(&MI);
6885   unsigned Count = 0;
6886   for (MachineBasicBlock::iterator NextMIIt =
6887          std::next(MachineBasicBlock::iterator(MI));
6888        NextMIIt != MBB->end(); ++NextMIIt) {
6889     if (isSelectPseudo(*NextMIIt)) {
6890       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
6891              "Bad CCValid operands since CC was not redefined.");
6892       if (NextMIIt->getOperand(4).getImm() == CCMask ||
6893           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
6894         Selects.push_back(&*NextMIIt);
6895         continue;
6896       }
6897       break;
6898     }
6899     if (NextMIIt->definesRegister(SystemZ::CC) ||
6900         NextMIIt->usesCustomInsertionHook())
6901       break;
6902     bool User = false;
6903     for (auto SelMI : Selects)
6904       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
6905         User = true;
6906         break;
6907       }
6908     if (NextMIIt->isDebugInstr()) {
6909       if (User) {
6910         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
6911         DbgValues.push_back(&*NextMIIt);
6912       }
6913     }
6914     else if (User || ++Count > 20)
6915       break;
6916   }
6917 
6918   MachineInstr *LastMI = Selects.back();
6919   bool CCKilled =
6920       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
6921   MachineBasicBlock *StartMBB = MBB;
6922   MachineBasicBlock *JoinMBB  = splitBlockAfter(LastMI, MBB);
6923   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6924 
6925   // Unless CC was killed in the last Select instruction, mark it as
6926   // live-in to both FalseMBB and JoinMBB.
6927   if (!CCKilled) {
6928     FalseMBB->addLiveIn(SystemZ::CC);
6929     JoinMBB->addLiveIn(SystemZ::CC);
6930   }
6931 
6932   //  StartMBB:
6933   //   BRC CCMask, JoinMBB
6934   //   # fallthrough to FalseMBB
6935   MBB = StartMBB;
6936   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
6937     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6938   MBB->addSuccessor(JoinMBB);
6939   MBB->addSuccessor(FalseMBB);
6940 
6941   //  FalseMBB:
6942   //   # fallthrough to JoinMBB
6943   MBB = FalseMBB;
6944   MBB->addSuccessor(JoinMBB);
6945 
6946   //  JoinMBB:
6947   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6948   //  ...
6949   MBB = JoinMBB;
6950   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
6951   for (auto SelMI : Selects)
6952     SelMI->eraseFromParent();
6953 
6954   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
6955   for (auto DbgMI : DbgValues)
6956     MBB->splice(InsertPos, StartMBB, DbgMI);
6957 
6958   return JoinMBB;
6959 }
6960 
6961 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6962 // StoreOpcode is the store to use and Invert says whether the store should
6963 // happen when the condition is false rather than true.  If a STORE ON
6964 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6965 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6966                                                         MachineBasicBlock *MBB,
6967                                                         unsigned StoreOpcode,
6968                                                         unsigned STOCOpcode,
6969                                                         bool Invert) const {
6970   const SystemZInstrInfo *TII =
6971       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6972 
6973   Register SrcReg = MI.getOperand(0).getReg();
6974   MachineOperand Base = MI.getOperand(1);
6975   int64_t Disp = MI.getOperand(2).getImm();
6976   Register IndexReg = MI.getOperand(3).getReg();
6977   unsigned CCValid = MI.getOperand(4).getImm();
6978   unsigned CCMask = MI.getOperand(5).getImm();
6979   DebugLoc DL = MI.getDebugLoc();
6980 
6981   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6982 
6983   // Use STOCOpcode if possible.  We could use different store patterns in
6984   // order to avoid matching the index register, but the performance trade-offs
6985   // might be more complicated in that case.
6986   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6987     if (Invert)
6988       CCMask ^= CCValid;
6989 
6990     // ISel pattern matching also adds a load memory operand of the same
6991     // address, so take special care to find the storing memory operand.
6992     MachineMemOperand *MMO = nullptr;
6993     for (auto *I : MI.memoperands())
6994       if (I->isStore()) {
6995           MMO = I;
6996           break;
6997         }
6998 
6999     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7000       .addReg(SrcReg)
7001       .add(Base)
7002       .addImm(Disp)
7003       .addImm(CCValid)
7004       .addImm(CCMask)
7005       .addMemOperand(MMO);
7006 
7007     MI.eraseFromParent();
7008     return MBB;
7009   }
7010 
7011   // Get the condition needed to branch around the store.
7012   if (!Invert)
7013     CCMask ^= CCValid;
7014 
7015   MachineBasicBlock *StartMBB = MBB;
7016   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
7017   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
7018 
7019   // Unless CC was killed in the CondStore instruction, mark it as
7020   // live-in to both FalseMBB and JoinMBB.
7021   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7022     FalseMBB->addLiveIn(SystemZ::CC);
7023     JoinMBB->addLiveIn(SystemZ::CC);
7024   }
7025 
7026   //  StartMBB:
7027   //   BRC CCMask, JoinMBB
7028   //   # fallthrough to FalseMBB
7029   MBB = StartMBB;
7030   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7031     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7032   MBB->addSuccessor(JoinMBB);
7033   MBB->addSuccessor(FalseMBB);
7034 
7035   //  FalseMBB:
7036   //   store %SrcReg, %Disp(%Index,%Base)
7037   //   # fallthrough to JoinMBB
7038   MBB = FalseMBB;
7039   BuildMI(MBB, DL, TII->get(StoreOpcode))
7040       .addReg(SrcReg)
7041       .add(Base)
7042       .addImm(Disp)
7043       .addReg(IndexReg);
7044   MBB->addSuccessor(JoinMBB);
7045 
7046   MI.eraseFromParent();
7047   return JoinMBB;
7048 }
7049 
7050 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7051 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7052 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7053 // BitSize is the width of the field in bits, or 0 if this is a partword
7054 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7055 // is one of the operands.  Invert says whether the field should be
7056 // inverted after performing BinOpcode (e.g. for NAND).
7057 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7058     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7059     unsigned BitSize, bool Invert) const {
7060   MachineFunction &MF = *MBB->getParent();
7061   const SystemZInstrInfo *TII =
7062       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7063   MachineRegisterInfo &MRI = MF.getRegInfo();
7064   bool IsSubWord = (BitSize < 32);
7065 
7066   // Extract the operands.  Base can be a register or a frame index.
7067   // Src2 can be a register or immediate.
7068   Register Dest = MI.getOperand(0).getReg();
7069   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7070   int64_t Disp = MI.getOperand(2).getImm();
7071   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7072   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7073   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7074   DebugLoc DL = MI.getDebugLoc();
7075   if (IsSubWord)
7076     BitSize = MI.getOperand(6).getImm();
7077 
7078   // Subword operations use 32-bit registers.
7079   const TargetRegisterClass *RC = (BitSize <= 32 ?
7080                                    &SystemZ::GR32BitRegClass :
7081                                    &SystemZ::GR64BitRegClass);
7082   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7083   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7084 
7085   // Get the right opcodes for the displacement.
7086   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7087   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7088   assert(LOpcode && CSOpcode && "Displacement out of range");
7089 
7090   // Create virtual registers for temporary results.
7091   Register OrigVal       = MRI.createVirtualRegister(RC);
7092   Register OldVal        = MRI.createVirtualRegister(RC);
7093   Register NewVal        = (BinOpcode || IsSubWord ?
7094                             MRI.createVirtualRegister(RC) : Src2.getReg());
7095   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7096   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7097 
7098   // Insert a basic block for the main loop.
7099   MachineBasicBlock *StartMBB = MBB;
7100   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7101   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7102 
7103   //  StartMBB:
7104   //   ...
7105   //   %OrigVal = L Disp(%Base)
7106   //   # fall through to LoopMMB
7107   MBB = StartMBB;
7108   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7109   MBB->addSuccessor(LoopMBB);
7110 
7111   //  LoopMBB:
7112   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7113   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7114   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7115   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7116   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7117   //   JNE LoopMBB
7118   //   # fall through to DoneMMB
7119   MBB = LoopMBB;
7120   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7121     .addReg(OrigVal).addMBB(StartMBB)
7122     .addReg(Dest).addMBB(LoopMBB);
7123   if (IsSubWord)
7124     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7125       .addReg(OldVal).addReg(BitShift).addImm(0);
7126   if (Invert) {
7127     // Perform the operation normally and then invert every bit of the field.
7128     Register Tmp = MRI.createVirtualRegister(RC);
7129     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7130     if (BitSize <= 32)
7131       // XILF with the upper BitSize bits set.
7132       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7133         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7134     else {
7135       // Use LCGR and add -1 to the result, which is more compact than
7136       // an XILF, XILH pair.
7137       Register Tmp2 = MRI.createVirtualRegister(RC);
7138       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7139       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7140         .addReg(Tmp2).addImm(-1);
7141     }
7142   } else if (BinOpcode)
7143     // A simply binary operation.
7144     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7145         .addReg(RotatedOldVal)
7146         .add(Src2);
7147   else if (IsSubWord)
7148     // Use RISBG to rotate Src2 into position and use it to replace the
7149     // field in RotatedOldVal.
7150     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7151       .addReg(RotatedOldVal).addReg(Src2.getReg())
7152       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7153   if (IsSubWord)
7154     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7155       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7156   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7157       .addReg(OldVal)
7158       .addReg(NewVal)
7159       .add(Base)
7160       .addImm(Disp);
7161   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7162     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7163   MBB->addSuccessor(LoopMBB);
7164   MBB->addSuccessor(DoneMBB);
7165 
7166   MI.eraseFromParent();
7167   return DoneMBB;
7168 }
7169 
7170 // Implement EmitInstrWithCustomInserter for pseudo
7171 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7172 // instruction that should be used to compare the current field with the
7173 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7174 // for when the current field should be kept.  BitSize is the width of
7175 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7176 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7177     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7178     unsigned KeepOldMask, unsigned BitSize) const {
7179   MachineFunction &MF = *MBB->getParent();
7180   const SystemZInstrInfo *TII =
7181       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7182   MachineRegisterInfo &MRI = MF.getRegInfo();
7183   bool IsSubWord = (BitSize < 32);
7184 
7185   // Extract the operands.  Base can be a register or a frame index.
7186   Register Dest = MI.getOperand(0).getReg();
7187   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7188   int64_t Disp = MI.getOperand(2).getImm();
7189   Register Src2 = MI.getOperand(3).getReg();
7190   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7191   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7192   DebugLoc DL = MI.getDebugLoc();
7193   if (IsSubWord)
7194     BitSize = MI.getOperand(6).getImm();
7195 
7196   // Subword operations use 32-bit registers.
7197   const TargetRegisterClass *RC = (BitSize <= 32 ?
7198                                    &SystemZ::GR32BitRegClass :
7199                                    &SystemZ::GR64BitRegClass);
7200   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7201   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7202 
7203   // Get the right opcodes for the displacement.
7204   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7205   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7206   assert(LOpcode && CSOpcode && "Displacement out of range");
7207 
7208   // Create virtual registers for temporary results.
7209   Register OrigVal       = MRI.createVirtualRegister(RC);
7210   Register OldVal        = MRI.createVirtualRegister(RC);
7211   Register NewVal        = MRI.createVirtualRegister(RC);
7212   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7213   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7214   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7215 
7216   // Insert 3 basic blocks for the loop.
7217   MachineBasicBlock *StartMBB  = MBB;
7218   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
7219   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
7220   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
7221   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
7222 
7223   //  StartMBB:
7224   //   ...
7225   //   %OrigVal     = L Disp(%Base)
7226   //   # fall through to LoopMMB
7227   MBB = StartMBB;
7228   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7229   MBB->addSuccessor(LoopMBB);
7230 
7231   //  LoopMBB:
7232   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7233   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7234   //   CompareOpcode %RotatedOldVal, %Src2
7235   //   BRC KeepOldMask, UpdateMBB
7236   MBB = LoopMBB;
7237   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7238     .addReg(OrigVal).addMBB(StartMBB)
7239     .addReg(Dest).addMBB(UpdateMBB);
7240   if (IsSubWord)
7241     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7242       .addReg(OldVal).addReg(BitShift).addImm(0);
7243   BuildMI(MBB, DL, TII->get(CompareOpcode))
7244     .addReg(RotatedOldVal).addReg(Src2);
7245   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7246     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7247   MBB->addSuccessor(UpdateMBB);
7248   MBB->addSuccessor(UseAltMBB);
7249 
7250   //  UseAltMBB:
7251   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7252   //   # fall through to UpdateMMB
7253   MBB = UseAltMBB;
7254   if (IsSubWord)
7255     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7256       .addReg(RotatedOldVal).addReg(Src2)
7257       .addImm(32).addImm(31 + BitSize).addImm(0);
7258   MBB->addSuccessor(UpdateMBB);
7259 
7260   //  UpdateMBB:
7261   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7262   //                        [ %RotatedAltVal, UseAltMBB ]
7263   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7264   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7265   //   JNE LoopMBB
7266   //   # fall through to DoneMMB
7267   MBB = UpdateMBB;
7268   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7269     .addReg(RotatedOldVal).addMBB(LoopMBB)
7270     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7271   if (IsSubWord)
7272     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7273       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7274   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7275       .addReg(OldVal)
7276       .addReg(NewVal)
7277       .add(Base)
7278       .addImm(Disp);
7279   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7280     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7281   MBB->addSuccessor(LoopMBB);
7282   MBB->addSuccessor(DoneMBB);
7283 
7284   MI.eraseFromParent();
7285   return DoneMBB;
7286 }
7287 
7288 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7289 // instruction MI.
7290 MachineBasicBlock *
7291 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7292                                           MachineBasicBlock *MBB) const {
7293 
7294   MachineFunction &MF = *MBB->getParent();
7295   const SystemZInstrInfo *TII =
7296       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7297   MachineRegisterInfo &MRI = MF.getRegInfo();
7298 
7299   // Extract the operands.  Base can be a register or a frame index.
7300   Register Dest = MI.getOperand(0).getReg();
7301   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7302   int64_t Disp = MI.getOperand(2).getImm();
7303   Register OrigCmpVal = MI.getOperand(3).getReg();
7304   Register OrigSwapVal = MI.getOperand(4).getReg();
7305   Register BitShift = MI.getOperand(5).getReg();
7306   Register NegBitShift = MI.getOperand(6).getReg();
7307   int64_t BitSize = MI.getOperand(7).getImm();
7308   DebugLoc DL = MI.getDebugLoc();
7309 
7310   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7311 
7312   // Get the right opcodes for the displacement.
7313   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7314   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7315   assert(LOpcode && CSOpcode && "Displacement out of range");
7316 
7317   // Create virtual registers for temporary results.
7318   Register OrigOldVal = MRI.createVirtualRegister(RC);
7319   Register OldVal = MRI.createVirtualRegister(RC);
7320   Register CmpVal = MRI.createVirtualRegister(RC);
7321   Register SwapVal = MRI.createVirtualRegister(RC);
7322   Register StoreVal = MRI.createVirtualRegister(RC);
7323   Register RetryOldVal = MRI.createVirtualRegister(RC);
7324   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7325   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7326 
7327   // Insert 2 basic blocks for the loop.
7328   MachineBasicBlock *StartMBB = MBB;
7329   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7330   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7331   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
7332 
7333   //  StartMBB:
7334   //   ...
7335   //   %OrigOldVal     = L Disp(%Base)
7336   //   # fall through to LoopMMB
7337   MBB = StartMBB;
7338   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7339       .add(Base)
7340       .addImm(Disp)
7341       .addReg(0);
7342   MBB->addSuccessor(LoopMBB);
7343 
7344   //  LoopMBB:
7345   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7346   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7347   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7348   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7349   //                      ^^ The low BitSize bits contain the field
7350   //                         of interest.
7351   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7352   //                      ^^ Replace the upper 32-BitSize bits of the
7353   //                         comparison value with those that we loaded,
7354   //                         so that we can use a full word comparison.
7355   //   CR %Dest, %RetryCmpVal
7356   //   JNE DoneMBB
7357   //   # Fall through to SetMBB
7358   MBB = LoopMBB;
7359   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7360     .addReg(OrigOldVal).addMBB(StartMBB)
7361     .addReg(RetryOldVal).addMBB(SetMBB);
7362   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7363     .addReg(OrigCmpVal).addMBB(StartMBB)
7364     .addReg(RetryCmpVal).addMBB(SetMBB);
7365   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7366     .addReg(OrigSwapVal).addMBB(StartMBB)
7367     .addReg(RetrySwapVal).addMBB(SetMBB);
7368   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7369     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7370   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7371     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7372   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7373     .addReg(Dest).addReg(RetryCmpVal);
7374   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7375     .addImm(SystemZ::CCMASK_ICMP)
7376     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7377   MBB->addSuccessor(DoneMBB);
7378   MBB->addSuccessor(SetMBB);
7379 
7380   //  SetMBB:
7381   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7382   //                      ^^ Replace the upper 32-BitSize bits of the new
7383   //                         value with those that we loaded.
7384   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7385   //                      ^^ Rotate the new field to its proper position.
7386   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7387   //   JNE LoopMBB
7388   //   # fall through to ExitMMB
7389   MBB = SetMBB;
7390   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7391     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7392   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7393     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7394   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7395       .addReg(OldVal)
7396       .addReg(StoreVal)
7397       .add(Base)
7398       .addImm(Disp);
7399   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7400     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7401   MBB->addSuccessor(LoopMBB);
7402   MBB->addSuccessor(DoneMBB);
7403 
7404   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7405   // to the block after the loop.  At this point, CC may have been defined
7406   // either by the CR in LoopMBB or by the CS in SetMBB.
7407   if (!MI.registerDefIsDead(SystemZ::CC))
7408     DoneMBB->addLiveIn(SystemZ::CC);
7409 
7410   MI.eraseFromParent();
7411   return DoneMBB;
7412 }
7413 
7414 // Emit a move from two GR64s to a GR128.
7415 MachineBasicBlock *
7416 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7417                                    MachineBasicBlock *MBB) const {
7418   MachineFunction &MF = *MBB->getParent();
7419   const SystemZInstrInfo *TII =
7420       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7421   MachineRegisterInfo &MRI = MF.getRegInfo();
7422   DebugLoc DL = MI.getDebugLoc();
7423 
7424   Register Dest = MI.getOperand(0).getReg();
7425   Register Hi = MI.getOperand(1).getReg();
7426   Register Lo = MI.getOperand(2).getReg();
7427   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7428   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7429 
7430   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7431   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7432     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7433   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7434     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7435 
7436   MI.eraseFromParent();
7437   return MBB;
7438 }
7439 
7440 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7441 // if the high register of the GR128 value must be cleared or false if
7442 // it's "don't care".
7443 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7444                                                      MachineBasicBlock *MBB,
7445                                                      bool ClearEven) const {
7446   MachineFunction &MF = *MBB->getParent();
7447   const SystemZInstrInfo *TII =
7448       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7449   MachineRegisterInfo &MRI = MF.getRegInfo();
7450   DebugLoc DL = MI.getDebugLoc();
7451 
7452   Register Dest = MI.getOperand(0).getReg();
7453   Register Src = MI.getOperand(1).getReg();
7454   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7455 
7456   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7457   if (ClearEven) {
7458     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7459     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7460 
7461     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7462       .addImm(0);
7463     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7464       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7465     In128 = NewIn128;
7466   }
7467   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7468     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7469 
7470   MI.eraseFromParent();
7471   return MBB;
7472 }
7473 
7474 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7475     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7476   MachineFunction &MF = *MBB->getParent();
7477   const SystemZInstrInfo *TII =
7478       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7479   MachineRegisterInfo &MRI = MF.getRegInfo();
7480   DebugLoc DL = MI.getDebugLoc();
7481 
7482   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7483   uint64_t DestDisp = MI.getOperand(1).getImm();
7484   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7485   uint64_t SrcDisp = MI.getOperand(3).getImm();
7486   uint64_t Length = MI.getOperand(4).getImm();
7487 
7488   // When generating more than one CLC, all but the last will need to
7489   // branch to the end when a difference is found.
7490   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7491                                splitBlockAfter(MI, MBB) : nullptr);
7492 
7493   // Check for the loop form, in which operand 5 is the trip count.
7494   if (MI.getNumExplicitOperands() > 5) {
7495     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7496 
7497     Register StartCountReg = MI.getOperand(5).getReg();
7498     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7499     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7500                               forceReg(MI, DestBase, TII));
7501 
7502     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7503     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7504     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7505                             MRI.createVirtualRegister(RC));
7506     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7507     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7508                             MRI.createVirtualRegister(RC));
7509 
7510     RC = &SystemZ::GR64BitRegClass;
7511     Register ThisCountReg = MRI.createVirtualRegister(RC);
7512     Register NextCountReg = MRI.createVirtualRegister(RC);
7513 
7514     MachineBasicBlock *StartMBB = MBB;
7515     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7516     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7517     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7518 
7519     //  StartMBB:
7520     //   # fall through to LoopMMB
7521     MBB->addSuccessor(LoopMBB);
7522 
7523     //  LoopMBB:
7524     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7525     //                      [ %NextDestReg, NextMBB ]
7526     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7527     //                     [ %NextSrcReg, NextMBB ]
7528     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7529     //                       [ %NextCountReg, NextMBB ]
7530     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7531     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7532     //   ( JLH EndMBB )
7533     //
7534     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7535     MBB = LoopMBB;
7536 
7537     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7538       .addReg(StartDestReg).addMBB(StartMBB)
7539       .addReg(NextDestReg).addMBB(NextMBB);
7540     if (!HaveSingleBase)
7541       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7542         .addReg(StartSrcReg).addMBB(StartMBB)
7543         .addReg(NextSrcReg).addMBB(NextMBB);
7544     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7545       .addReg(StartCountReg).addMBB(StartMBB)
7546       .addReg(NextCountReg).addMBB(NextMBB);
7547     if (Opcode == SystemZ::MVC)
7548       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7549         .addImm(SystemZ::PFD_WRITE)
7550         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7551     BuildMI(MBB, DL, TII->get(Opcode))
7552       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7553       .addReg(ThisSrcReg).addImm(SrcDisp);
7554     if (EndMBB) {
7555       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7556         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7557         .addMBB(EndMBB);
7558       MBB->addSuccessor(EndMBB);
7559       MBB->addSuccessor(NextMBB);
7560     }
7561 
7562     // NextMBB:
7563     //   %NextDestReg = LA 256(%ThisDestReg)
7564     //   %NextSrcReg = LA 256(%ThisSrcReg)
7565     //   %NextCountReg = AGHI %ThisCountReg, -1
7566     //   CGHI %NextCountReg, 0
7567     //   JLH LoopMBB
7568     //   # fall through to DoneMMB
7569     //
7570     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7571     MBB = NextMBB;
7572 
7573     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7574       .addReg(ThisDestReg).addImm(256).addReg(0);
7575     if (!HaveSingleBase)
7576       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7577         .addReg(ThisSrcReg).addImm(256).addReg(0);
7578     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7579       .addReg(ThisCountReg).addImm(-1);
7580     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7581       .addReg(NextCountReg).addImm(0);
7582     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7583       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7584       .addMBB(LoopMBB);
7585     MBB->addSuccessor(LoopMBB);
7586     MBB->addSuccessor(DoneMBB);
7587 
7588     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7589     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7590     Length &= 255;
7591     if (EndMBB && !Length)
7592       // If the loop handled the whole CLC range, DoneMBB will be empty with
7593       // CC live-through into EndMBB, so add it as live-in.
7594       DoneMBB->addLiveIn(SystemZ::CC);
7595     MBB = DoneMBB;
7596   }
7597   // Handle any remaining bytes with straight-line code.
7598   while (Length > 0) {
7599     uint64_t ThisLength = std::min(Length, uint64_t(256));
7600     // The previous iteration might have created out-of-range displacements.
7601     // Apply them using LAY if so.
7602     if (!isUInt<12>(DestDisp)) {
7603       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7604       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7605           .add(DestBase)
7606           .addImm(DestDisp)
7607           .addReg(0);
7608       DestBase = MachineOperand::CreateReg(Reg, false);
7609       DestDisp = 0;
7610     }
7611     if (!isUInt<12>(SrcDisp)) {
7612       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7613       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7614           .add(SrcBase)
7615           .addImm(SrcDisp)
7616           .addReg(0);
7617       SrcBase = MachineOperand::CreateReg(Reg, false);
7618       SrcDisp = 0;
7619     }
7620     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7621         .add(DestBase)
7622         .addImm(DestDisp)
7623         .addImm(ThisLength)
7624         .add(SrcBase)
7625         .addImm(SrcDisp)
7626         .setMemRefs(MI.memoperands());
7627     DestDisp += ThisLength;
7628     SrcDisp += ThisLength;
7629     Length -= ThisLength;
7630     // If there's another CLC to go, branch to the end if a difference
7631     // was found.
7632     if (EndMBB && Length > 0) {
7633       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7634       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7635         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7636         .addMBB(EndMBB);
7637       MBB->addSuccessor(EndMBB);
7638       MBB->addSuccessor(NextMBB);
7639       MBB = NextMBB;
7640     }
7641   }
7642   if (EndMBB) {
7643     MBB->addSuccessor(EndMBB);
7644     MBB = EndMBB;
7645     MBB->addLiveIn(SystemZ::CC);
7646   }
7647 
7648   MI.eraseFromParent();
7649   return MBB;
7650 }
7651 
7652 // Decompose string pseudo-instruction MI into a loop that continually performs
7653 // Opcode until CC != 3.
7654 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7655     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7656   MachineFunction &MF = *MBB->getParent();
7657   const SystemZInstrInfo *TII =
7658       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7659   MachineRegisterInfo &MRI = MF.getRegInfo();
7660   DebugLoc DL = MI.getDebugLoc();
7661 
7662   uint64_t End1Reg = MI.getOperand(0).getReg();
7663   uint64_t Start1Reg = MI.getOperand(1).getReg();
7664   uint64_t Start2Reg = MI.getOperand(2).getReg();
7665   uint64_t CharReg = MI.getOperand(3).getReg();
7666 
7667   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7668   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7669   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7670   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7671 
7672   MachineBasicBlock *StartMBB = MBB;
7673   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7674   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7675 
7676   //  StartMBB:
7677   //   # fall through to LoopMMB
7678   MBB->addSuccessor(LoopMBB);
7679 
7680   //  LoopMBB:
7681   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7682   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7683   //   R0L = %CharReg
7684   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7685   //   JO LoopMBB
7686   //   # fall through to DoneMMB
7687   //
7688   // The load of R0L can be hoisted by post-RA LICM.
7689   MBB = LoopMBB;
7690 
7691   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7692     .addReg(Start1Reg).addMBB(StartMBB)
7693     .addReg(End1Reg).addMBB(LoopMBB);
7694   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7695     .addReg(Start2Reg).addMBB(StartMBB)
7696     .addReg(End2Reg).addMBB(LoopMBB);
7697   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7698   BuildMI(MBB, DL, TII->get(Opcode))
7699     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7700     .addReg(This1Reg).addReg(This2Reg);
7701   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7702     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7703   MBB->addSuccessor(LoopMBB);
7704   MBB->addSuccessor(DoneMBB);
7705 
7706   DoneMBB->addLiveIn(SystemZ::CC);
7707 
7708   MI.eraseFromParent();
7709   return DoneMBB;
7710 }
7711 
7712 // Update TBEGIN instruction with final opcode and register clobbers.
7713 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7714     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7715     bool NoFloat) const {
7716   MachineFunction &MF = *MBB->getParent();
7717   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7718   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7719 
7720   // Update opcode.
7721   MI.setDesc(TII->get(Opcode));
7722 
7723   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7724   // Make sure to add the corresponding GRSM bits if they are missing.
7725   uint64_t Control = MI.getOperand(2).getImm();
7726   static const unsigned GPRControlBit[16] = {
7727     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7728     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7729   };
7730   Control |= GPRControlBit[15];
7731   if (TFI->hasFP(MF))
7732     Control |= GPRControlBit[11];
7733   MI.getOperand(2).setImm(Control);
7734 
7735   // Add GPR clobbers.
7736   for (int I = 0; I < 16; I++) {
7737     if ((Control & GPRControlBit[I]) == 0) {
7738       unsigned Reg = SystemZMC::GR64Regs[I];
7739       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7740     }
7741   }
7742 
7743   // Add FPR/VR clobbers.
7744   if (!NoFloat && (Control & 4) != 0) {
7745     if (Subtarget.hasVector()) {
7746       for (int I = 0; I < 32; I++) {
7747         unsigned Reg = SystemZMC::VR128Regs[I];
7748         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7749       }
7750     } else {
7751       for (int I = 0; I < 16; I++) {
7752         unsigned Reg = SystemZMC::FP64Regs[I];
7753         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7754       }
7755     }
7756   }
7757 
7758   return MBB;
7759 }
7760 
7761 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7762     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7763   MachineFunction &MF = *MBB->getParent();
7764   MachineRegisterInfo *MRI = &MF.getRegInfo();
7765   const SystemZInstrInfo *TII =
7766       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7767   DebugLoc DL = MI.getDebugLoc();
7768 
7769   Register SrcReg = MI.getOperand(0).getReg();
7770 
7771   // Create new virtual register of the same class as source.
7772   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7773   Register DstReg = MRI->createVirtualRegister(RC);
7774 
7775   // Replace pseudo with a normal load-and-test that models the def as
7776   // well.
7777   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7778     .addReg(SrcReg)
7779     .setMIFlags(MI.getFlags());
7780   MI.eraseFromParent();
7781 
7782   return MBB;
7783 }
7784 
7785 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7786     MachineInstr &MI, MachineBasicBlock *MBB) const {
7787   switch (MI.getOpcode()) {
7788   case SystemZ::Select32:
7789   case SystemZ::Select64:
7790   case SystemZ::SelectF32:
7791   case SystemZ::SelectF64:
7792   case SystemZ::SelectF128:
7793   case SystemZ::SelectVR32:
7794   case SystemZ::SelectVR64:
7795   case SystemZ::SelectVR128:
7796     return emitSelect(MI, MBB);
7797 
7798   case SystemZ::CondStore8Mux:
7799     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7800   case SystemZ::CondStore8MuxInv:
7801     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7802   case SystemZ::CondStore16Mux:
7803     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7804   case SystemZ::CondStore16MuxInv:
7805     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7806   case SystemZ::CondStore32Mux:
7807     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7808   case SystemZ::CondStore32MuxInv:
7809     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7810   case SystemZ::CondStore8:
7811     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7812   case SystemZ::CondStore8Inv:
7813     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7814   case SystemZ::CondStore16:
7815     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7816   case SystemZ::CondStore16Inv:
7817     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7818   case SystemZ::CondStore32:
7819     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7820   case SystemZ::CondStore32Inv:
7821     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7822   case SystemZ::CondStore64:
7823     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7824   case SystemZ::CondStore64Inv:
7825     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7826   case SystemZ::CondStoreF32:
7827     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7828   case SystemZ::CondStoreF32Inv:
7829     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7830   case SystemZ::CondStoreF64:
7831     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7832   case SystemZ::CondStoreF64Inv:
7833     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7834 
7835   case SystemZ::PAIR128:
7836     return emitPair128(MI, MBB);
7837   case SystemZ::AEXT128:
7838     return emitExt128(MI, MBB, false);
7839   case SystemZ::ZEXT128:
7840     return emitExt128(MI, MBB, true);
7841 
7842   case SystemZ::ATOMIC_SWAPW:
7843     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7844   case SystemZ::ATOMIC_SWAP_32:
7845     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7846   case SystemZ::ATOMIC_SWAP_64:
7847     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7848 
7849   case SystemZ::ATOMIC_LOADW_AR:
7850     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7851   case SystemZ::ATOMIC_LOADW_AFI:
7852     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7853   case SystemZ::ATOMIC_LOAD_AR:
7854     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7855   case SystemZ::ATOMIC_LOAD_AHI:
7856     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7857   case SystemZ::ATOMIC_LOAD_AFI:
7858     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7859   case SystemZ::ATOMIC_LOAD_AGR:
7860     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7861   case SystemZ::ATOMIC_LOAD_AGHI:
7862     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7863   case SystemZ::ATOMIC_LOAD_AGFI:
7864     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7865 
7866   case SystemZ::ATOMIC_LOADW_SR:
7867     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7868   case SystemZ::ATOMIC_LOAD_SR:
7869     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7870   case SystemZ::ATOMIC_LOAD_SGR:
7871     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7872 
7873   case SystemZ::ATOMIC_LOADW_NR:
7874     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7875   case SystemZ::ATOMIC_LOADW_NILH:
7876     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7877   case SystemZ::ATOMIC_LOAD_NR:
7878     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7879   case SystemZ::ATOMIC_LOAD_NILL:
7880     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7881   case SystemZ::ATOMIC_LOAD_NILH:
7882     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7883   case SystemZ::ATOMIC_LOAD_NILF:
7884     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7885   case SystemZ::ATOMIC_LOAD_NGR:
7886     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7887   case SystemZ::ATOMIC_LOAD_NILL64:
7888     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7889   case SystemZ::ATOMIC_LOAD_NILH64:
7890     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7891   case SystemZ::ATOMIC_LOAD_NIHL64:
7892     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7893   case SystemZ::ATOMIC_LOAD_NIHH64:
7894     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7895   case SystemZ::ATOMIC_LOAD_NILF64:
7896     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7897   case SystemZ::ATOMIC_LOAD_NIHF64:
7898     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7899 
7900   case SystemZ::ATOMIC_LOADW_OR:
7901     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7902   case SystemZ::ATOMIC_LOADW_OILH:
7903     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7904   case SystemZ::ATOMIC_LOAD_OR:
7905     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7906   case SystemZ::ATOMIC_LOAD_OILL:
7907     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7908   case SystemZ::ATOMIC_LOAD_OILH:
7909     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7910   case SystemZ::ATOMIC_LOAD_OILF:
7911     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7912   case SystemZ::ATOMIC_LOAD_OGR:
7913     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7914   case SystemZ::ATOMIC_LOAD_OILL64:
7915     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7916   case SystemZ::ATOMIC_LOAD_OILH64:
7917     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7918   case SystemZ::ATOMIC_LOAD_OIHL64:
7919     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7920   case SystemZ::ATOMIC_LOAD_OIHH64:
7921     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7922   case SystemZ::ATOMIC_LOAD_OILF64:
7923     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7924   case SystemZ::ATOMIC_LOAD_OIHF64:
7925     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7926 
7927   case SystemZ::ATOMIC_LOADW_XR:
7928     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7929   case SystemZ::ATOMIC_LOADW_XILF:
7930     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7931   case SystemZ::ATOMIC_LOAD_XR:
7932     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7933   case SystemZ::ATOMIC_LOAD_XILF:
7934     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7935   case SystemZ::ATOMIC_LOAD_XGR:
7936     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7937   case SystemZ::ATOMIC_LOAD_XILF64:
7938     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7939   case SystemZ::ATOMIC_LOAD_XIHF64:
7940     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7941 
7942   case SystemZ::ATOMIC_LOADW_NRi:
7943     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7944   case SystemZ::ATOMIC_LOADW_NILHi:
7945     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7946   case SystemZ::ATOMIC_LOAD_NRi:
7947     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7948   case SystemZ::ATOMIC_LOAD_NILLi:
7949     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7950   case SystemZ::ATOMIC_LOAD_NILHi:
7951     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7952   case SystemZ::ATOMIC_LOAD_NILFi:
7953     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7954   case SystemZ::ATOMIC_LOAD_NGRi:
7955     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7956   case SystemZ::ATOMIC_LOAD_NILL64i:
7957     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7958   case SystemZ::ATOMIC_LOAD_NILH64i:
7959     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7960   case SystemZ::ATOMIC_LOAD_NIHL64i:
7961     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7962   case SystemZ::ATOMIC_LOAD_NIHH64i:
7963     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7964   case SystemZ::ATOMIC_LOAD_NILF64i:
7965     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7966   case SystemZ::ATOMIC_LOAD_NIHF64i:
7967     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7968 
7969   case SystemZ::ATOMIC_LOADW_MIN:
7970     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7971                                 SystemZ::CCMASK_CMP_LE, 0);
7972   case SystemZ::ATOMIC_LOAD_MIN_32:
7973     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7974                                 SystemZ::CCMASK_CMP_LE, 32);
7975   case SystemZ::ATOMIC_LOAD_MIN_64:
7976     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7977                                 SystemZ::CCMASK_CMP_LE, 64);
7978 
7979   case SystemZ::ATOMIC_LOADW_MAX:
7980     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7981                                 SystemZ::CCMASK_CMP_GE, 0);
7982   case SystemZ::ATOMIC_LOAD_MAX_32:
7983     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7984                                 SystemZ::CCMASK_CMP_GE, 32);
7985   case SystemZ::ATOMIC_LOAD_MAX_64:
7986     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7987                                 SystemZ::CCMASK_CMP_GE, 64);
7988 
7989   case SystemZ::ATOMIC_LOADW_UMIN:
7990     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7991                                 SystemZ::CCMASK_CMP_LE, 0);
7992   case SystemZ::ATOMIC_LOAD_UMIN_32:
7993     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7994                                 SystemZ::CCMASK_CMP_LE, 32);
7995   case SystemZ::ATOMIC_LOAD_UMIN_64:
7996     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7997                                 SystemZ::CCMASK_CMP_LE, 64);
7998 
7999   case SystemZ::ATOMIC_LOADW_UMAX:
8000     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8001                                 SystemZ::CCMASK_CMP_GE, 0);
8002   case SystemZ::ATOMIC_LOAD_UMAX_32:
8003     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8004                                 SystemZ::CCMASK_CMP_GE, 32);
8005   case SystemZ::ATOMIC_LOAD_UMAX_64:
8006     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8007                                 SystemZ::CCMASK_CMP_GE, 64);
8008 
8009   case SystemZ::ATOMIC_CMP_SWAPW:
8010     return emitAtomicCmpSwapW(MI, MBB);
8011   case SystemZ::MVCSequence:
8012   case SystemZ::MVCLoop:
8013     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8014   case SystemZ::NCSequence:
8015   case SystemZ::NCLoop:
8016     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8017   case SystemZ::OCSequence:
8018   case SystemZ::OCLoop:
8019     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8020   case SystemZ::XCSequence:
8021   case SystemZ::XCLoop:
8022     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8023   case SystemZ::CLCSequence:
8024   case SystemZ::CLCLoop:
8025     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8026   case SystemZ::CLSTLoop:
8027     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8028   case SystemZ::MVSTLoop:
8029     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8030   case SystemZ::SRSTLoop:
8031     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8032   case SystemZ::TBEGIN:
8033     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8034   case SystemZ::TBEGIN_nofloat:
8035     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8036   case SystemZ::TBEGINC:
8037     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8038   case SystemZ::LTEBRCompare_VecPseudo:
8039     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8040   case SystemZ::LTDBRCompare_VecPseudo:
8041     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8042   case SystemZ::LTXBRCompare_VecPseudo:
8043     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8044 
8045   case TargetOpcode::STACKMAP:
8046   case TargetOpcode::PATCHPOINT:
8047     return emitPatchPoint(MI, MBB);
8048 
8049   default:
8050     llvm_unreachable("Unexpected instr type to insert");
8051   }
8052 }
8053 
8054 // This is only used by the isel schedulers, and is needed only to prevent
8055 // compiler from crashing when list-ilp is used.
8056 const TargetRegisterClass *
8057 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8058   if (VT == MVT::Untyped)
8059     return &SystemZ::ADDR128BitRegClass;
8060   return TargetLowering::getRepRegClassFor(VT);
8061 }
8062