1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents a sequence for extracting a 0/1 value from an IPM result: 35 // (((X ^ XORValue) + AddValue) >> Bit) 36 struct IPMConversion { 37 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 38 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 39 40 int64_t XORValue; 41 int64_t AddValue; 42 unsigned Bit; 43 }; 44 45 // Represents information about a comparison. 46 struct Comparison { 47 Comparison(SDValue Op0In, SDValue Op1In) 48 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 49 50 // The operands to the comparison. 51 SDValue Op0, Op1; 52 53 // The opcode that should be used to compare Op0 and Op1. 54 unsigned Opcode; 55 56 // A SystemZICMP value. Only used for integer comparisons. 57 unsigned ICmpType; 58 59 // The mask of CC values that Opcode can produce. 60 unsigned CCValid; 61 62 // The mask of CC values for which the original condition is true. 63 unsigned CCMask; 64 }; 65 } // end anonymous namespace 66 67 // Classify VT as either 32 or 64 bit. 68 static bool is32Bit(EVT VT) { 69 switch (VT.getSimpleVT().SimpleTy) { 70 case MVT::i32: 71 return true; 72 case MVT::i64: 73 return false; 74 default: 75 llvm_unreachable("Unsupported type"); 76 } 77 } 78 79 // Return a version of MachineOperand that can be safely used before the 80 // final use. 81 static MachineOperand earlyUseOperand(MachineOperand Op) { 82 if (Op.isReg()) 83 Op.setIsKill(false); 84 return Op; 85 } 86 87 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 88 const SystemZSubtarget &STI) 89 : TargetLowering(TM), Subtarget(STI) { 90 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 91 92 // Set up the register classes. 93 if (Subtarget.hasHighWord()) 94 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 95 else 96 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 97 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 98 if (Subtarget.hasVector()) { 99 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 101 } else { 102 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 103 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 104 } 105 if (Subtarget.hasVectorEnhancements1()) 106 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 107 else 108 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 109 110 if (Subtarget.hasVector()) { 111 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 113 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 114 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 115 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 116 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 117 } 118 119 // Compute derived properties from the register classes 120 computeRegisterProperties(Subtarget.getRegisterInfo()); 121 122 // Set up special registers. 123 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 124 125 // TODO: It may be better to default to latency-oriented scheduling, however 126 // LLVM's current latency-oriented scheduler can't handle physreg definitions 127 // such as SystemZ has with CC, so set this to the register-pressure 128 // scheduler, because it can. 129 setSchedulingPreference(Sched::RegPressure); 130 131 setBooleanContents(ZeroOrOneBooleanContent); 132 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 133 134 // Instructions are strings of 2-byte aligned 2-byte values. 135 setMinFunctionAlignment(2); 136 137 // Handle operations that are handled in a similar way for all types. 138 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 139 I <= MVT::LAST_FP_VALUETYPE; 140 ++I) { 141 MVT VT = MVT::SimpleValueType(I); 142 if (isTypeLegal(VT)) { 143 // Lower SET_CC into an IPM-based sequence. 144 setOperationAction(ISD::SETCC, VT, Custom); 145 146 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 147 setOperationAction(ISD::SELECT, VT, Expand); 148 149 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 150 setOperationAction(ISD::SELECT_CC, VT, Custom); 151 setOperationAction(ISD::BR_CC, VT, Custom); 152 } 153 } 154 155 // Expand jump table branches as address arithmetic followed by an 156 // indirect jump. 157 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 158 159 // Expand BRCOND into a BR_CC (see above). 160 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 161 162 // Handle integer types. 163 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 164 I <= MVT::LAST_INTEGER_VALUETYPE; 165 ++I) { 166 MVT VT = MVT::SimpleValueType(I); 167 if (isTypeLegal(VT)) { 168 // Expand individual DIV and REMs into DIVREMs. 169 setOperationAction(ISD::SDIV, VT, Expand); 170 setOperationAction(ISD::UDIV, VT, Expand); 171 setOperationAction(ISD::SREM, VT, Expand); 172 setOperationAction(ISD::UREM, VT, Expand); 173 setOperationAction(ISD::SDIVREM, VT, Custom); 174 setOperationAction(ISD::UDIVREM, VT, Custom); 175 176 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 177 // stores, putting a serialization instruction after the stores. 178 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 179 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 180 181 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 182 // available, or if the operand is constant. 183 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 184 185 // Use POPCNT on z196 and above. 186 if (Subtarget.hasPopulationCount()) 187 setOperationAction(ISD::CTPOP, VT, Custom); 188 else 189 setOperationAction(ISD::CTPOP, VT, Expand); 190 191 // No special instructions for these. 192 setOperationAction(ISD::CTTZ, VT, Expand); 193 setOperationAction(ISD::ROTR, VT, Expand); 194 195 // Use *MUL_LOHI where possible instead of MULH*. 196 setOperationAction(ISD::MULHS, VT, Expand); 197 setOperationAction(ISD::MULHU, VT, Expand); 198 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 199 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 200 201 // Only z196 and above have native support for conversions to unsigned. 202 // On z10, promoting to i64 doesn't generate an inexact condition for 203 // values that are outside the i32 range but in the i64 range, so use 204 // the default expansion. 205 if (!Subtarget.hasFPExtension()) 206 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 207 } 208 } 209 210 // Type legalization will convert 8- and 16-bit atomic operations into 211 // forms that operate on i32s (but still keeping the original memory VT). 212 // Lower them into full i32 operations. 213 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 221 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 225 226 // Even though i128 is not a legal type, we still need to custom lower 227 // the atomic operations in order to exploit SystemZ instructions. 228 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 229 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 230 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); 231 232 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 233 234 // Traps are legal, as we will convert them to "j .+2". 235 setOperationAction(ISD::TRAP, MVT::Other, Legal); 236 237 // z10 has instructions for signed but not unsigned FP conversion. 238 // Handle unsigned 32-bit types as signed 64-bit types. 239 if (!Subtarget.hasFPExtension()) { 240 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 241 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 242 } 243 244 // We have native support for a 64-bit CTLZ, via FLOGR. 245 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 246 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 247 248 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 249 setOperationAction(ISD::OR, MVT::i64, Custom); 250 251 // FIXME: Can we support these natively? 252 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 253 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 254 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 255 256 // We have native instructions for i8, i16 and i32 extensions, but not i1. 257 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 258 for (MVT VT : MVT::integer_valuetypes()) { 259 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 260 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 261 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 262 } 263 264 // Handle the various types of symbolic address. 265 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 266 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 267 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 268 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 269 setOperationAction(ISD::JumpTable, PtrVT, Custom); 270 271 // We need to handle dynamic allocations specially because of the 272 // 160-byte area at the bottom of the stack. 273 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 274 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 275 276 // Use custom expanders so that we can force the function to use 277 // a frame pointer. 278 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 279 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 280 281 // Handle prefetches with PFD or PFDRL. 282 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 283 284 for (MVT VT : MVT::vector_valuetypes()) { 285 // Assume by default that all vector operations need to be expanded. 286 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 287 if (getOperationAction(Opcode, VT) == Legal) 288 setOperationAction(Opcode, VT, Expand); 289 290 // Likewise all truncating stores and extending loads. 291 for (MVT InnerVT : MVT::vector_valuetypes()) { 292 setTruncStoreAction(VT, InnerVT, Expand); 293 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 294 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 295 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 296 } 297 298 if (isTypeLegal(VT)) { 299 // These operations are legal for anything that can be stored in a 300 // vector register, even if there is no native support for the format 301 // as such. In particular, we can do these for v4f32 even though there 302 // are no specific instructions for that format. 303 setOperationAction(ISD::LOAD, VT, Legal); 304 setOperationAction(ISD::STORE, VT, Legal); 305 setOperationAction(ISD::VSELECT, VT, Legal); 306 setOperationAction(ISD::BITCAST, VT, Legal); 307 setOperationAction(ISD::UNDEF, VT, Legal); 308 309 // Likewise, except that we need to replace the nodes with something 310 // more specific. 311 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 312 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 313 } 314 } 315 316 // Handle integer vector types. 317 for (MVT VT : MVT::integer_vector_valuetypes()) { 318 if (isTypeLegal(VT)) { 319 // These operations have direct equivalents. 320 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 321 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 322 setOperationAction(ISD::ADD, VT, Legal); 323 setOperationAction(ISD::SUB, VT, Legal); 324 if (VT != MVT::v2i64) 325 setOperationAction(ISD::MUL, VT, Legal); 326 setOperationAction(ISD::AND, VT, Legal); 327 setOperationAction(ISD::OR, VT, Legal); 328 setOperationAction(ISD::XOR, VT, Legal); 329 if (Subtarget.hasVectorEnhancements1()) 330 setOperationAction(ISD::CTPOP, VT, Legal); 331 else 332 setOperationAction(ISD::CTPOP, VT, Custom); 333 setOperationAction(ISD::CTTZ, VT, Legal); 334 setOperationAction(ISD::CTLZ, VT, Legal); 335 336 // Convert a GPR scalar to a vector by inserting it into element 0. 337 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 338 339 // Use a series of unpacks for extensions. 340 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 341 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 342 343 // Detect shifts by a scalar amount and convert them into 344 // V*_BY_SCALAR. 345 setOperationAction(ISD::SHL, VT, Custom); 346 setOperationAction(ISD::SRA, VT, Custom); 347 setOperationAction(ISD::SRL, VT, Custom); 348 349 // At present ROTL isn't matched by DAGCombiner. ROTR should be 350 // converted into ROTL. 351 setOperationAction(ISD::ROTL, VT, Expand); 352 setOperationAction(ISD::ROTR, VT, Expand); 353 354 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 355 // and inverting the result as necessary. 356 setOperationAction(ISD::SETCC, VT, Custom); 357 } 358 } 359 360 if (Subtarget.hasVector()) { 361 // There should be no need to check for float types other than v2f64 362 // since <2 x f32> isn't a legal type. 363 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 364 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 365 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 366 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 367 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 368 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 369 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 370 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 371 } 372 373 // Handle floating-point types. 374 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 375 I <= MVT::LAST_FP_VALUETYPE; 376 ++I) { 377 MVT VT = MVT::SimpleValueType(I); 378 if (isTypeLegal(VT)) { 379 // We can use FI for FRINT. 380 setOperationAction(ISD::FRINT, VT, Legal); 381 382 // We can use the extended form of FI for other rounding operations. 383 if (Subtarget.hasFPExtension()) { 384 setOperationAction(ISD::FNEARBYINT, VT, Legal); 385 setOperationAction(ISD::FFLOOR, VT, Legal); 386 setOperationAction(ISD::FCEIL, VT, Legal); 387 setOperationAction(ISD::FTRUNC, VT, Legal); 388 setOperationAction(ISD::FROUND, VT, Legal); 389 } 390 391 // No special instructions for these. 392 setOperationAction(ISD::FSIN, VT, Expand); 393 setOperationAction(ISD::FCOS, VT, Expand); 394 setOperationAction(ISD::FSINCOS, VT, Expand); 395 setOperationAction(ISD::FREM, VT, Expand); 396 setOperationAction(ISD::FPOW, VT, Expand); 397 } 398 } 399 400 // Handle floating-point vector types. 401 if (Subtarget.hasVector()) { 402 // Scalar-to-vector conversion is just a subreg. 403 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 404 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 405 406 // Some insertions and extractions can be done directly but others 407 // need to go via integers. 408 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 409 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 410 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 411 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 412 413 // These operations have direct equivalents. 414 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 415 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 416 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 417 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 418 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 419 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 420 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 421 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 422 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 423 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 424 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 425 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 426 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 427 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 428 } 429 430 // The vector enhancements facility 1 has instructions for these. 431 if (Subtarget.hasVectorEnhancements1()) { 432 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 433 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 434 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 435 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 436 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 437 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 438 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 439 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 440 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 441 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 442 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 443 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 444 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 445 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 446 447 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 448 setOperationAction(ISD::FMAXNAN, MVT::f64, Legal); 449 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 450 setOperationAction(ISD::FMINNAN, MVT::f64, Legal); 451 452 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 453 setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal); 454 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 455 setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal); 456 457 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 458 setOperationAction(ISD::FMAXNAN, MVT::f32, Legal); 459 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 460 setOperationAction(ISD::FMINNAN, MVT::f32, Legal); 461 462 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 463 setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal); 464 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 465 setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal); 466 467 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 468 setOperationAction(ISD::FMAXNAN, MVT::f128, Legal); 469 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 470 setOperationAction(ISD::FMINNAN, MVT::f128, Legal); 471 } 472 473 // We have fused multiply-addition for f32 and f64 but not f128. 474 setOperationAction(ISD::FMA, MVT::f32, Legal); 475 setOperationAction(ISD::FMA, MVT::f64, Legal); 476 if (Subtarget.hasVectorEnhancements1()) 477 setOperationAction(ISD::FMA, MVT::f128, Legal); 478 else 479 setOperationAction(ISD::FMA, MVT::f128, Expand); 480 481 // We don't have a copysign instruction on vector registers. 482 if (Subtarget.hasVectorEnhancements1()) 483 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 484 485 // Needed so that we don't try to implement f128 constant loads using 486 // a load-and-extend of a f80 constant (in cases where the constant 487 // would fit in an f80). 488 for (MVT VT : MVT::fp_valuetypes()) 489 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 490 491 // We don't have extending load instruction on vector registers. 492 if (Subtarget.hasVectorEnhancements1()) { 493 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 494 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 495 } 496 497 // Floating-point truncation and stores need to be done separately. 498 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 499 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 500 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 501 502 // We have 64-bit FPR<->GPR moves, but need special handling for 503 // 32-bit forms. 504 if (!Subtarget.hasVector()) { 505 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 506 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 507 } 508 509 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 510 // structure, but VAEND is a no-op. 511 setOperationAction(ISD::VASTART, MVT::Other, Custom); 512 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 513 setOperationAction(ISD::VAEND, MVT::Other, Expand); 514 515 // Codes for which we want to perform some z-specific combinations. 516 setTargetDAGCombine(ISD::SIGN_EXTEND); 517 setTargetDAGCombine(ISD::STORE); 518 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 519 setTargetDAGCombine(ISD::FP_ROUND); 520 setTargetDAGCombine(ISD::BSWAP); 521 setTargetDAGCombine(ISD::SHL); 522 setTargetDAGCombine(ISD::SRA); 523 setTargetDAGCombine(ISD::SRL); 524 setTargetDAGCombine(ISD::ROTL); 525 526 // Handle intrinsics. 527 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 528 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 529 530 // We want to use MVC in preference to even a single load/store pair. 531 MaxStoresPerMemcpy = 0; 532 MaxStoresPerMemcpyOptSize = 0; 533 534 // The main memset sequence is a byte store followed by an MVC. 535 // Two STC or MV..I stores win over that, but the kind of fused stores 536 // generated by target-independent code don't when the byte value is 537 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 538 // than "STC;MVC". Handle the choice in target-specific code instead. 539 MaxStoresPerMemset = 0; 540 MaxStoresPerMemsetOptSize = 0; 541 } 542 543 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 544 LLVMContext &, EVT VT) const { 545 if (!VT.isVector()) 546 return MVT::i32; 547 return VT.changeVectorElementTypeToInteger(); 548 } 549 550 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 551 VT = VT.getScalarType(); 552 553 if (!VT.isSimple()) 554 return false; 555 556 switch (VT.getSimpleVT().SimpleTy) { 557 case MVT::f32: 558 case MVT::f64: 559 return true; 560 case MVT::f128: 561 return Subtarget.hasVectorEnhancements1(); 562 default: 563 break; 564 } 565 566 return false; 567 } 568 569 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 570 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 571 return Imm.isZero() || Imm.isNegZero(); 572 } 573 574 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 575 // We can use CGFI or CLGFI. 576 return isInt<32>(Imm) || isUInt<32>(Imm); 577 } 578 579 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 580 // We can use ALGFI or SLGFI. 581 return isUInt<32>(Imm) || isUInt<32>(-Imm); 582 } 583 584 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 585 unsigned, 586 unsigned, 587 bool *Fast) const { 588 // Unaligned accesses should never be slower than the expanded version. 589 // We check specifically for aligned accesses in the few cases where 590 // they are required. 591 if (Fast) 592 *Fast = true; 593 return true; 594 } 595 596 // Information about the addressing mode for a memory access. 597 struct AddressingMode { 598 // True if a long displacement is supported. 599 bool LongDisplacement; 600 601 // True if use of index register is supported. 602 bool IndexReg; 603 604 AddressingMode(bool LongDispl, bool IdxReg) : 605 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 606 }; 607 608 // Return the desired addressing mode for a Load which has only one use (in 609 // the same block) which is a Store. 610 static AddressingMode getLoadStoreAddrMode(bool HasVector, 611 Type *Ty) { 612 // With vector support a Load->Store combination may be combined to either 613 // an MVC or vector operations and it seems to work best to allow the 614 // vector addressing mode. 615 if (HasVector) 616 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 617 618 // Otherwise only the MVC case is special. 619 bool MVC = Ty->isIntegerTy(8); 620 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 621 } 622 623 // Return the addressing mode which seems most desirable given an LLVM 624 // Instruction pointer. 625 static AddressingMode 626 supportedAddressingMode(Instruction *I, bool HasVector) { 627 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 628 switch (II->getIntrinsicID()) { 629 default: break; 630 case Intrinsic::memset: 631 case Intrinsic::memmove: 632 case Intrinsic::memcpy: 633 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 634 } 635 } 636 637 if (isa<LoadInst>(I) && I->hasOneUse()) { 638 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin()); 639 if (SingleUser->getParent() == I->getParent()) { 640 if (isa<ICmpInst>(SingleUser)) { 641 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 642 if (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())) 643 // Comparison of memory with 16 bit signed / unsigned immediate 644 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 645 } else if (isa<StoreInst>(SingleUser)) 646 // Load->Store 647 return getLoadStoreAddrMode(HasVector, I->getType()); 648 } 649 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 650 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 651 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 652 // Load->Store 653 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 654 } 655 656 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 657 658 // * Use LDE instead of LE/LEY for z13 to avoid partial register 659 // dependencies (LDE only supports small offsets). 660 // * Utilize the vector registers to hold floating point 661 // values (vector load / store instructions only support small 662 // offsets). 663 664 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 665 I->getOperand(0)->getType()); 666 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 667 bool IsVectorAccess = MemAccessTy->isVectorTy(); 668 669 // A store of an extracted vector element will be combined into a VSTE type 670 // instruction. 671 if (!IsVectorAccess && isa<StoreInst>(I)) { 672 Value *DataOp = I->getOperand(0); 673 if (isa<ExtractElementInst>(DataOp)) 674 IsVectorAccess = true; 675 } 676 677 // A load which gets inserted into a vector element will be combined into a 678 // VLE type instruction. 679 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 680 User *LoadUser = *I->user_begin(); 681 if (isa<InsertElementInst>(LoadUser)) 682 IsVectorAccess = true; 683 } 684 685 if (IsFPAccess || IsVectorAccess) 686 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 687 } 688 689 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 690 } 691 692 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 693 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 694 // Punt on globals for now, although they can be used in limited 695 // RELATIVE LONG cases. 696 if (AM.BaseGV) 697 return false; 698 699 // Require a 20-bit signed offset. 700 if (!isInt<20>(AM.BaseOffs)) 701 return false; 702 703 AddressingMode SupportedAM(true, true); 704 if (I != nullptr) 705 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 706 707 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 708 return false; 709 710 if (!SupportedAM.IndexReg) 711 // No indexing allowed. 712 return AM.Scale == 0; 713 else 714 // Indexing is OK but no scale factor can be applied. 715 return AM.Scale == 0 || AM.Scale == 1; 716 } 717 718 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 719 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 720 return false; 721 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 722 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 723 return FromBits > ToBits; 724 } 725 726 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 727 if (!FromVT.isInteger() || !ToVT.isInteger()) 728 return false; 729 unsigned FromBits = FromVT.getSizeInBits(); 730 unsigned ToBits = ToVT.getSizeInBits(); 731 return FromBits > ToBits; 732 } 733 734 //===----------------------------------------------------------------------===// 735 // Inline asm support 736 //===----------------------------------------------------------------------===// 737 738 TargetLowering::ConstraintType 739 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 740 if (Constraint.size() == 1) { 741 switch (Constraint[0]) { 742 case 'a': // Address register 743 case 'd': // Data register (equivalent to 'r') 744 case 'f': // Floating-point register 745 case 'h': // High-part register 746 case 'r': // General-purpose register 747 return C_RegisterClass; 748 749 case 'Q': // Memory with base and unsigned 12-bit displacement 750 case 'R': // Likewise, plus an index 751 case 'S': // Memory with base and signed 20-bit displacement 752 case 'T': // Likewise, plus an index 753 case 'm': // Equivalent to 'T'. 754 return C_Memory; 755 756 case 'I': // Unsigned 8-bit constant 757 case 'J': // Unsigned 12-bit constant 758 case 'K': // Signed 16-bit constant 759 case 'L': // Signed 20-bit displacement (on all targets we support) 760 case 'M': // 0x7fffffff 761 return C_Other; 762 763 default: 764 break; 765 } 766 } 767 return TargetLowering::getConstraintType(Constraint); 768 } 769 770 TargetLowering::ConstraintWeight SystemZTargetLowering:: 771 getSingleConstraintMatchWeight(AsmOperandInfo &info, 772 const char *constraint) const { 773 ConstraintWeight weight = CW_Invalid; 774 Value *CallOperandVal = info.CallOperandVal; 775 // If we don't have a value, we can't do a match, 776 // but allow it at the lowest weight. 777 if (!CallOperandVal) 778 return CW_Default; 779 Type *type = CallOperandVal->getType(); 780 // Look at the constraint type. 781 switch (*constraint) { 782 default: 783 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 784 break; 785 786 case 'a': // Address register 787 case 'd': // Data register (equivalent to 'r') 788 case 'h': // High-part register 789 case 'r': // General-purpose register 790 if (CallOperandVal->getType()->isIntegerTy()) 791 weight = CW_Register; 792 break; 793 794 case 'f': // Floating-point register 795 if (type->isFloatingPointTy()) 796 weight = CW_Register; 797 break; 798 799 case 'I': // Unsigned 8-bit constant 800 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 801 if (isUInt<8>(C->getZExtValue())) 802 weight = CW_Constant; 803 break; 804 805 case 'J': // Unsigned 12-bit constant 806 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 807 if (isUInt<12>(C->getZExtValue())) 808 weight = CW_Constant; 809 break; 810 811 case 'K': // Signed 16-bit constant 812 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 813 if (isInt<16>(C->getSExtValue())) 814 weight = CW_Constant; 815 break; 816 817 case 'L': // Signed 20-bit displacement (on all targets we support) 818 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 819 if (isInt<20>(C->getSExtValue())) 820 weight = CW_Constant; 821 break; 822 823 case 'M': // 0x7fffffff 824 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 825 if (C->getZExtValue() == 0x7fffffff) 826 weight = CW_Constant; 827 break; 828 } 829 return weight; 830 } 831 832 // Parse a "{tNNN}" register constraint for which the register type "t" 833 // has already been verified. MC is the class associated with "t" and 834 // Map maps 0-based register numbers to LLVM register numbers. 835 static std::pair<unsigned, const TargetRegisterClass *> 836 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 837 const unsigned *Map) { 838 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 839 if (isdigit(Constraint[2])) { 840 unsigned Index; 841 bool Failed = 842 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 843 if (!Failed && Index < 16 && Map[Index]) 844 return std::make_pair(Map[Index], RC); 845 } 846 return std::make_pair(0U, nullptr); 847 } 848 849 std::pair<unsigned, const TargetRegisterClass *> 850 SystemZTargetLowering::getRegForInlineAsmConstraint( 851 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 852 if (Constraint.size() == 1) { 853 // GCC Constraint Letters 854 switch (Constraint[0]) { 855 default: break; 856 case 'd': // Data register (equivalent to 'r') 857 case 'r': // General-purpose register 858 if (VT == MVT::i64) 859 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 860 else if (VT == MVT::i128) 861 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 862 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 863 864 case 'a': // Address register 865 if (VT == MVT::i64) 866 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 867 else if (VT == MVT::i128) 868 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 869 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 870 871 case 'h': // High-part register (an LLVM extension) 872 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 873 874 case 'f': // Floating-point register 875 if (VT == MVT::f64) 876 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 877 else if (VT == MVT::f128) 878 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 879 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 880 } 881 } 882 if (Constraint.size() > 0 && Constraint[0] == '{') { 883 // We need to override the default register parsing for GPRs and FPRs 884 // because the interpretation depends on VT. The internal names of 885 // the registers are also different from the external names 886 // (F0D and F0S instead of F0, etc.). 887 if (Constraint[1] == 'r') { 888 if (VT == MVT::i32) 889 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 890 SystemZMC::GR32Regs); 891 if (VT == MVT::i128) 892 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 893 SystemZMC::GR128Regs); 894 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 895 SystemZMC::GR64Regs); 896 } 897 if (Constraint[1] == 'f') { 898 if (VT == MVT::f32) 899 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 900 SystemZMC::FP32Regs); 901 if (VT == MVT::f128) 902 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 903 SystemZMC::FP128Regs); 904 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 905 SystemZMC::FP64Regs); 906 } 907 } 908 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 909 } 910 911 void SystemZTargetLowering:: 912 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 913 std::vector<SDValue> &Ops, 914 SelectionDAG &DAG) const { 915 // Only support length 1 constraints for now. 916 if (Constraint.length() == 1) { 917 switch (Constraint[0]) { 918 case 'I': // Unsigned 8-bit constant 919 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 920 if (isUInt<8>(C->getZExtValue())) 921 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 922 Op.getValueType())); 923 return; 924 925 case 'J': // Unsigned 12-bit constant 926 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 927 if (isUInt<12>(C->getZExtValue())) 928 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 929 Op.getValueType())); 930 return; 931 932 case 'K': // Signed 16-bit constant 933 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 934 if (isInt<16>(C->getSExtValue())) 935 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 936 Op.getValueType())); 937 return; 938 939 case 'L': // Signed 20-bit displacement (on all targets we support) 940 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 941 if (isInt<20>(C->getSExtValue())) 942 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 943 Op.getValueType())); 944 return; 945 946 case 'M': // 0x7fffffff 947 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 948 if (C->getZExtValue() == 0x7fffffff) 949 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 950 Op.getValueType())); 951 return; 952 } 953 } 954 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 955 } 956 957 //===----------------------------------------------------------------------===// 958 // Calling conventions 959 //===----------------------------------------------------------------------===// 960 961 #include "SystemZGenCallingConv.inc" 962 963 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 964 Type *ToType) const { 965 return isTruncateFree(FromType, ToType); 966 } 967 968 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 969 return CI->isTailCall(); 970 } 971 972 // We do not yet support 128-bit single-element vector types. If the user 973 // attempts to use such types as function argument or return type, prefer 974 // to error out instead of emitting code violating the ABI. 975 static void VerifyVectorType(MVT VT, EVT ArgVT) { 976 if (ArgVT.isVector() && !VT.isVector()) 977 report_fatal_error("Unsupported vector argument or return type"); 978 } 979 980 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 981 for (unsigned i = 0; i < Ins.size(); ++i) 982 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 983 } 984 985 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 986 for (unsigned i = 0; i < Outs.size(); ++i) 987 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 988 } 989 990 // Value is a value that has been passed to us in the location described by VA 991 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 992 // any loads onto Chain. 993 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 994 CCValAssign &VA, SDValue Chain, 995 SDValue Value) { 996 // If the argument has been promoted from a smaller type, insert an 997 // assertion to capture this. 998 if (VA.getLocInfo() == CCValAssign::SExt) 999 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1000 DAG.getValueType(VA.getValVT())); 1001 else if (VA.getLocInfo() == CCValAssign::ZExt) 1002 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1003 DAG.getValueType(VA.getValVT())); 1004 1005 if (VA.isExtInLoc()) 1006 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1007 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1008 // If this is a short vector argument loaded from the stack, 1009 // extend from i64 to full vector size and then bitcast. 1010 assert(VA.getLocVT() == MVT::i64); 1011 assert(VA.getValVT().isVector()); 1012 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1013 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1014 } else 1015 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1016 return Value; 1017 } 1018 1019 // Value is a value of type VA.getValVT() that we need to copy into 1020 // the location described by VA. Return a copy of Value converted to 1021 // VA.getValVT(). The caller is responsible for handling indirect values. 1022 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1023 CCValAssign &VA, SDValue Value) { 1024 switch (VA.getLocInfo()) { 1025 case CCValAssign::SExt: 1026 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1027 case CCValAssign::ZExt: 1028 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1029 case CCValAssign::AExt: 1030 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1031 case CCValAssign::BCvt: 1032 // If this is a short vector argument to be stored to the stack, 1033 // bitcast to v2i64 and then extract first element. 1034 assert(VA.getLocVT() == MVT::i64); 1035 assert(VA.getValVT().isVector()); 1036 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1037 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1038 DAG.getConstant(0, DL, MVT::i32)); 1039 case CCValAssign::Full: 1040 return Value; 1041 default: 1042 llvm_unreachable("Unhandled getLocInfo()"); 1043 } 1044 } 1045 1046 SDValue SystemZTargetLowering::LowerFormalArguments( 1047 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1048 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1049 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1050 MachineFunction &MF = DAG.getMachineFunction(); 1051 MachineFrameInfo &MFI = MF.getFrameInfo(); 1052 MachineRegisterInfo &MRI = MF.getRegInfo(); 1053 SystemZMachineFunctionInfo *FuncInfo = 1054 MF.getInfo<SystemZMachineFunctionInfo>(); 1055 auto *TFL = 1056 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1057 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1058 1059 // Detect unsupported vector argument types. 1060 if (Subtarget.hasVector()) 1061 VerifyVectorTypes(Ins); 1062 1063 // Assign locations to all of the incoming arguments. 1064 SmallVector<CCValAssign, 16> ArgLocs; 1065 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1066 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1067 1068 unsigned NumFixedGPRs = 0; 1069 unsigned NumFixedFPRs = 0; 1070 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1071 SDValue ArgValue; 1072 CCValAssign &VA = ArgLocs[I]; 1073 EVT LocVT = VA.getLocVT(); 1074 if (VA.isRegLoc()) { 1075 // Arguments passed in registers 1076 const TargetRegisterClass *RC; 1077 switch (LocVT.getSimpleVT().SimpleTy) { 1078 default: 1079 // Integers smaller than i64 should be promoted to i64. 1080 llvm_unreachable("Unexpected argument type"); 1081 case MVT::i32: 1082 NumFixedGPRs += 1; 1083 RC = &SystemZ::GR32BitRegClass; 1084 break; 1085 case MVT::i64: 1086 NumFixedGPRs += 1; 1087 RC = &SystemZ::GR64BitRegClass; 1088 break; 1089 case MVT::f32: 1090 NumFixedFPRs += 1; 1091 RC = &SystemZ::FP32BitRegClass; 1092 break; 1093 case MVT::f64: 1094 NumFixedFPRs += 1; 1095 RC = &SystemZ::FP64BitRegClass; 1096 break; 1097 case MVT::v16i8: 1098 case MVT::v8i16: 1099 case MVT::v4i32: 1100 case MVT::v2i64: 1101 case MVT::v4f32: 1102 case MVT::v2f64: 1103 RC = &SystemZ::VR128BitRegClass; 1104 break; 1105 } 1106 1107 unsigned VReg = MRI.createVirtualRegister(RC); 1108 MRI.addLiveIn(VA.getLocReg(), VReg); 1109 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1110 } else { 1111 assert(VA.isMemLoc() && "Argument not register or memory"); 1112 1113 // Create the frame index object for this incoming parameter. 1114 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1115 VA.getLocMemOffset(), true); 1116 1117 // Create the SelectionDAG nodes corresponding to a load 1118 // from this parameter. Unpromoted ints and floats are 1119 // passed as right-justified 8-byte values. 1120 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1121 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1122 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1123 DAG.getIntPtrConstant(4, DL)); 1124 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1125 MachinePointerInfo::getFixedStack(MF, FI)); 1126 } 1127 1128 // Convert the value of the argument register into the value that's 1129 // being passed. 1130 if (VA.getLocInfo() == CCValAssign::Indirect) { 1131 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1132 MachinePointerInfo())); 1133 // If the original argument was split (e.g. i128), we need 1134 // to load all parts of it here (using the same address). 1135 unsigned ArgIndex = Ins[I].OrigArgIndex; 1136 assert (Ins[I].PartOffset == 0); 1137 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1138 CCValAssign &PartVA = ArgLocs[I + 1]; 1139 unsigned PartOffset = Ins[I + 1].PartOffset; 1140 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1141 DAG.getIntPtrConstant(PartOffset, DL)); 1142 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1143 MachinePointerInfo())); 1144 ++I; 1145 } 1146 } else 1147 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1148 } 1149 1150 if (IsVarArg) { 1151 // Save the number of non-varargs registers for later use by va_start, etc. 1152 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1153 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1154 1155 // Likewise the address (in the form of a frame index) of where the 1156 // first stack vararg would be. The 1-byte size here is arbitrary. 1157 int64_t StackSize = CCInfo.getNextStackOffset(); 1158 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1159 1160 // ...and a similar frame index for the caller-allocated save area 1161 // that will be used to store the incoming registers. 1162 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1163 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1164 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1165 1166 // Store the FPR varargs in the reserved frame slots. (We store the 1167 // GPRs as part of the prologue.) 1168 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1169 SDValue MemOps[SystemZ::NumArgFPRs]; 1170 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1171 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1172 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1173 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1174 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1175 &SystemZ::FP64BitRegClass); 1176 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1177 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1178 MachinePointerInfo::getFixedStack(MF, FI)); 1179 } 1180 // Join the stores, which are independent of one another. 1181 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1182 makeArrayRef(&MemOps[NumFixedFPRs], 1183 SystemZ::NumArgFPRs-NumFixedFPRs)); 1184 } 1185 } 1186 1187 return Chain; 1188 } 1189 1190 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1191 SmallVectorImpl<CCValAssign> &ArgLocs, 1192 SmallVectorImpl<ISD::OutputArg> &Outs) { 1193 // Punt if there are any indirect or stack arguments, or if the call 1194 // needs the callee-saved argument register R6, or if the call uses 1195 // the callee-saved register arguments SwiftSelf and SwiftError. 1196 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1197 CCValAssign &VA = ArgLocs[I]; 1198 if (VA.getLocInfo() == CCValAssign::Indirect) 1199 return false; 1200 if (!VA.isRegLoc()) 1201 return false; 1202 unsigned Reg = VA.getLocReg(); 1203 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1204 return false; 1205 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1206 return false; 1207 } 1208 return true; 1209 } 1210 1211 SDValue 1212 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1213 SmallVectorImpl<SDValue> &InVals) const { 1214 SelectionDAG &DAG = CLI.DAG; 1215 SDLoc &DL = CLI.DL; 1216 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1217 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1218 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1219 SDValue Chain = CLI.Chain; 1220 SDValue Callee = CLI.Callee; 1221 bool &IsTailCall = CLI.IsTailCall; 1222 CallingConv::ID CallConv = CLI.CallConv; 1223 bool IsVarArg = CLI.IsVarArg; 1224 MachineFunction &MF = DAG.getMachineFunction(); 1225 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1226 1227 // Detect unsupported vector argument and return types. 1228 if (Subtarget.hasVector()) { 1229 VerifyVectorTypes(Outs); 1230 VerifyVectorTypes(Ins); 1231 } 1232 1233 // Analyze the operands of the call, assigning locations to each operand. 1234 SmallVector<CCValAssign, 16> ArgLocs; 1235 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1236 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1237 1238 // We don't support GuaranteedTailCallOpt, only automatically-detected 1239 // sibling calls. 1240 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1241 IsTailCall = false; 1242 1243 // Get a count of how many bytes are to be pushed on the stack. 1244 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1245 1246 // Mark the start of the call. 1247 if (!IsTailCall) 1248 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1249 1250 // Copy argument values to their designated locations. 1251 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1252 SmallVector<SDValue, 8> MemOpChains; 1253 SDValue StackPtr; 1254 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1255 CCValAssign &VA = ArgLocs[I]; 1256 SDValue ArgValue = OutVals[I]; 1257 1258 if (VA.getLocInfo() == CCValAssign::Indirect) { 1259 // Store the argument in a stack slot and pass its address. 1260 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1261 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1262 MemOpChains.push_back( 1263 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1264 MachinePointerInfo::getFixedStack(MF, FI))); 1265 // If the original argument was split (e.g. i128), we need 1266 // to store all parts of it here (and pass just one address). 1267 unsigned ArgIndex = Outs[I].OrigArgIndex; 1268 assert (Outs[I].PartOffset == 0); 1269 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1270 SDValue PartValue = OutVals[I + 1]; 1271 unsigned PartOffset = Outs[I + 1].PartOffset; 1272 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1273 DAG.getIntPtrConstant(PartOffset, DL)); 1274 MemOpChains.push_back( 1275 DAG.getStore(Chain, DL, PartValue, Address, 1276 MachinePointerInfo::getFixedStack(MF, FI))); 1277 ++I; 1278 } 1279 ArgValue = SpillSlot; 1280 } else 1281 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1282 1283 if (VA.isRegLoc()) 1284 // Queue up the argument copies and emit them at the end. 1285 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1286 else { 1287 assert(VA.isMemLoc() && "Argument not register or memory"); 1288 1289 // Work out the address of the stack slot. Unpromoted ints and 1290 // floats are passed as right-justified 8-byte values. 1291 if (!StackPtr.getNode()) 1292 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1293 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1294 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1295 Offset += 4; 1296 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1297 DAG.getIntPtrConstant(Offset, DL)); 1298 1299 // Emit the store. 1300 MemOpChains.push_back( 1301 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1302 } 1303 } 1304 1305 // Join the stores, which are independent of one another. 1306 if (!MemOpChains.empty()) 1307 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1308 1309 // Accept direct calls by converting symbolic call addresses to the 1310 // associated Target* opcodes. Force %r1 to be used for indirect 1311 // tail calls. 1312 SDValue Glue; 1313 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1314 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1315 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1316 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1317 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1318 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1319 } else if (IsTailCall) { 1320 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1321 Glue = Chain.getValue(1); 1322 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1323 } 1324 1325 // Build a sequence of copy-to-reg nodes, chained and glued together. 1326 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1327 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1328 RegsToPass[I].second, Glue); 1329 Glue = Chain.getValue(1); 1330 } 1331 1332 // The first call operand is the chain and the second is the target address. 1333 SmallVector<SDValue, 8> Ops; 1334 Ops.push_back(Chain); 1335 Ops.push_back(Callee); 1336 1337 // Add argument registers to the end of the list so that they are 1338 // known live into the call. 1339 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1340 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1341 RegsToPass[I].second.getValueType())); 1342 1343 // Add a register mask operand representing the call-preserved registers. 1344 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1345 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1346 assert(Mask && "Missing call preserved mask for calling convention"); 1347 Ops.push_back(DAG.getRegisterMask(Mask)); 1348 1349 // Glue the call to the argument copies, if any. 1350 if (Glue.getNode()) 1351 Ops.push_back(Glue); 1352 1353 // Emit the call. 1354 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1355 if (IsTailCall) 1356 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1357 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1358 Glue = Chain.getValue(1); 1359 1360 // Mark the end of the call, which is glued to the call itself. 1361 Chain = DAG.getCALLSEQ_END(Chain, 1362 DAG.getConstant(NumBytes, DL, PtrVT, true), 1363 DAG.getConstant(0, DL, PtrVT, true), 1364 Glue, DL); 1365 Glue = Chain.getValue(1); 1366 1367 // Assign locations to each value returned by this call. 1368 SmallVector<CCValAssign, 16> RetLocs; 1369 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1370 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1371 1372 // Copy all of the result registers out of their specified physreg. 1373 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1374 CCValAssign &VA = RetLocs[I]; 1375 1376 // Copy the value out, gluing the copy to the end of the call sequence. 1377 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1378 VA.getLocVT(), Glue); 1379 Chain = RetValue.getValue(1); 1380 Glue = RetValue.getValue(2); 1381 1382 // Convert the value of the return register into the value that's 1383 // being returned. 1384 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1385 } 1386 1387 return Chain; 1388 } 1389 1390 bool SystemZTargetLowering:: 1391 CanLowerReturn(CallingConv::ID CallConv, 1392 MachineFunction &MF, bool isVarArg, 1393 const SmallVectorImpl<ISD::OutputArg> &Outs, 1394 LLVMContext &Context) const { 1395 // Detect unsupported vector return types. 1396 if (Subtarget.hasVector()) 1397 VerifyVectorTypes(Outs); 1398 1399 // Special case that we cannot easily detect in RetCC_SystemZ since 1400 // i128 is not a legal type. 1401 for (auto &Out : Outs) 1402 if (Out.ArgVT == MVT::i128) 1403 return false; 1404 1405 SmallVector<CCValAssign, 16> RetLocs; 1406 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1407 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1408 } 1409 1410 SDValue 1411 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1412 bool IsVarArg, 1413 const SmallVectorImpl<ISD::OutputArg> &Outs, 1414 const SmallVectorImpl<SDValue> &OutVals, 1415 const SDLoc &DL, SelectionDAG &DAG) const { 1416 MachineFunction &MF = DAG.getMachineFunction(); 1417 1418 // Detect unsupported vector return types. 1419 if (Subtarget.hasVector()) 1420 VerifyVectorTypes(Outs); 1421 1422 // Assign locations to each returned value. 1423 SmallVector<CCValAssign, 16> RetLocs; 1424 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1425 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1426 1427 // Quick exit for void returns 1428 if (RetLocs.empty()) 1429 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1430 1431 // Copy the result values into the output registers. 1432 SDValue Glue; 1433 SmallVector<SDValue, 4> RetOps; 1434 RetOps.push_back(Chain); 1435 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1436 CCValAssign &VA = RetLocs[I]; 1437 SDValue RetValue = OutVals[I]; 1438 1439 // Make the return register live on exit. 1440 assert(VA.isRegLoc() && "Can only return in registers!"); 1441 1442 // Promote the value as required. 1443 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1444 1445 // Chain and glue the copies together. 1446 unsigned Reg = VA.getLocReg(); 1447 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1448 Glue = Chain.getValue(1); 1449 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1450 } 1451 1452 // Update chain and glue. 1453 RetOps[0] = Chain; 1454 if (Glue.getNode()) 1455 RetOps.push_back(Glue); 1456 1457 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1458 } 1459 1460 // Return true if Op is an intrinsic node with chain that returns the CC value 1461 // as its only (other) argument. Provide the associated SystemZISD opcode and 1462 // the mask of valid CC values if so. 1463 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1464 unsigned &CCValid) { 1465 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1466 switch (Id) { 1467 case Intrinsic::s390_tbegin: 1468 Opcode = SystemZISD::TBEGIN; 1469 CCValid = SystemZ::CCMASK_TBEGIN; 1470 return true; 1471 1472 case Intrinsic::s390_tbegin_nofloat: 1473 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1474 CCValid = SystemZ::CCMASK_TBEGIN; 1475 return true; 1476 1477 case Intrinsic::s390_tend: 1478 Opcode = SystemZISD::TEND; 1479 CCValid = SystemZ::CCMASK_TEND; 1480 return true; 1481 1482 default: 1483 return false; 1484 } 1485 } 1486 1487 // Return true if Op is an intrinsic node without chain that returns the 1488 // CC value as its final argument. Provide the associated SystemZISD 1489 // opcode and the mask of valid CC values if so. 1490 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1491 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1492 switch (Id) { 1493 case Intrinsic::s390_vpkshs: 1494 case Intrinsic::s390_vpksfs: 1495 case Intrinsic::s390_vpksgs: 1496 Opcode = SystemZISD::PACKS_CC; 1497 CCValid = SystemZ::CCMASK_VCMP; 1498 return true; 1499 1500 case Intrinsic::s390_vpklshs: 1501 case Intrinsic::s390_vpklsfs: 1502 case Intrinsic::s390_vpklsgs: 1503 Opcode = SystemZISD::PACKLS_CC; 1504 CCValid = SystemZ::CCMASK_VCMP; 1505 return true; 1506 1507 case Intrinsic::s390_vceqbs: 1508 case Intrinsic::s390_vceqhs: 1509 case Intrinsic::s390_vceqfs: 1510 case Intrinsic::s390_vceqgs: 1511 Opcode = SystemZISD::VICMPES; 1512 CCValid = SystemZ::CCMASK_VCMP; 1513 return true; 1514 1515 case Intrinsic::s390_vchbs: 1516 case Intrinsic::s390_vchhs: 1517 case Intrinsic::s390_vchfs: 1518 case Intrinsic::s390_vchgs: 1519 Opcode = SystemZISD::VICMPHS; 1520 CCValid = SystemZ::CCMASK_VCMP; 1521 return true; 1522 1523 case Intrinsic::s390_vchlbs: 1524 case Intrinsic::s390_vchlhs: 1525 case Intrinsic::s390_vchlfs: 1526 case Intrinsic::s390_vchlgs: 1527 Opcode = SystemZISD::VICMPHLS; 1528 CCValid = SystemZ::CCMASK_VCMP; 1529 return true; 1530 1531 case Intrinsic::s390_vtm: 1532 Opcode = SystemZISD::VTM; 1533 CCValid = SystemZ::CCMASK_VCMP; 1534 return true; 1535 1536 case Intrinsic::s390_vfaebs: 1537 case Intrinsic::s390_vfaehs: 1538 case Intrinsic::s390_vfaefs: 1539 Opcode = SystemZISD::VFAE_CC; 1540 CCValid = SystemZ::CCMASK_ANY; 1541 return true; 1542 1543 case Intrinsic::s390_vfaezbs: 1544 case Intrinsic::s390_vfaezhs: 1545 case Intrinsic::s390_vfaezfs: 1546 Opcode = SystemZISD::VFAEZ_CC; 1547 CCValid = SystemZ::CCMASK_ANY; 1548 return true; 1549 1550 case Intrinsic::s390_vfeebs: 1551 case Intrinsic::s390_vfeehs: 1552 case Intrinsic::s390_vfeefs: 1553 Opcode = SystemZISD::VFEE_CC; 1554 CCValid = SystemZ::CCMASK_ANY; 1555 return true; 1556 1557 case Intrinsic::s390_vfeezbs: 1558 case Intrinsic::s390_vfeezhs: 1559 case Intrinsic::s390_vfeezfs: 1560 Opcode = SystemZISD::VFEEZ_CC; 1561 CCValid = SystemZ::CCMASK_ANY; 1562 return true; 1563 1564 case Intrinsic::s390_vfenebs: 1565 case Intrinsic::s390_vfenehs: 1566 case Intrinsic::s390_vfenefs: 1567 Opcode = SystemZISD::VFENE_CC; 1568 CCValid = SystemZ::CCMASK_ANY; 1569 return true; 1570 1571 case Intrinsic::s390_vfenezbs: 1572 case Intrinsic::s390_vfenezhs: 1573 case Intrinsic::s390_vfenezfs: 1574 Opcode = SystemZISD::VFENEZ_CC; 1575 CCValid = SystemZ::CCMASK_ANY; 1576 return true; 1577 1578 case Intrinsic::s390_vistrbs: 1579 case Intrinsic::s390_vistrhs: 1580 case Intrinsic::s390_vistrfs: 1581 Opcode = SystemZISD::VISTR_CC; 1582 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1583 return true; 1584 1585 case Intrinsic::s390_vstrcbs: 1586 case Intrinsic::s390_vstrchs: 1587 case Intrinsic::s390_vstrcfs: 1588 Opcode = SystemZISD::VSTRC_CC; 1589 CCValid = SystemZ::CCMASK_ANY; 1590 return true; 1591 1592 case Intrinsic::s390_vstrczbs: 1593 case Intrinsic::s390_vstrczhs: 1594 case Intrinsic::s390_vstrczfs: 1595 Opcode = SystemZISD::VSTRCZ_CC; 1596 CCValid = SystemZ::CCMASK_ANY; 1597 return true; 1598 1599 case Intrinsic::s390_vfcedbs: 1600 case Intrinsic::s390_vfcesbs: 1601 Opcode = SystemZISD::VFCMPES; 1602 CCValid = SystemZ::CCMASK_VCMP; 1603 return true; 1604 1605 case Intrinsic::s390_vfchdbs: 1606 case Intrinsic::s390_vfchsbs: 1607 Opcode = SystemZISD::VFCMPHS; 1608 CCValid = SystemZ::CCMASK_VCMP; 1609 return true; 1610 1611 case Intrinsic::s390_vfchedbs: 1612 case Intrinsic::s390_vfchesbs: 1613 Opcode = SystemZISD::VFCMPHES; 1614 CCValid = SystemZ::CCMASK_VCMP; 1615 return true; 1616 1617 case Intrinsic::s390_vftcidb: 1618 case Intrinsic::s390_vftcisb: 1619 Opcode = SystemZISD::VFTCI; 1620 CCValid = SystemZ::CCMASK_VCMP; 1621 return true; 1622 1623 case Intrinsic::s390_tdc: 1624 Opcode = SystemZISD::TDC; 1625 CCValid = SystemZ::CCMASK_TDC; 1626 return true; 1627 1628 default: 1629 return false; 1630 } 1631 } 1632 1633 // Emit an intrinsic with chain with a glued value instead of its CC result. 1634 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1635 unsigned Opcode) { 1636 // Copy all operands except the intrinsic ID. 1637 unsigned NumOps = Op.getNumOperands(); 1638 SmallVector<SDValue, 6> Ops; 1639 Ops.reserve(NumOps - 1); 1640 Ops.push_back(Op.getOperand(0)); 1641 for (unsigned I = 2; I < NumOps; ++I) 1642 Ops.push_back(Op.getOperand(I)); 1643 1644 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1645 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1646 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1647 SDValue OldChain = SDValue(Op.getNode(), 1); 1648 SDValue NewChain = SDValue(Intr.getNode(), 0); 1649 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1650 return Intr; 1651 } 1652 1653 // Emit an intrinsic with a glued value instead of its CC result. 1654 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1655 unsigned Opcode) { 1656 // Copy all operands except the intrinsic ID. 1657 unsigned NumOps = Op.getNumOperands(); 1658 SmallVector<SDValue, 6> Ops; 1659 Ops.reserve(NumOps - 1); 1660 for (unsigned I = 1; I < NumOps; ++I) 1661 Ops.push_back(Op.getOperand(I)); 1662 1663 if (Op->getNumValues() == 1) 1664 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1665 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1666 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1667 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1668 } 1669 1670 // CC is a comparison that will be implemented using an integer or 1671 // floating-point comparison. Return the condition code mask for 1672 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1673 // unsigned comparisons and clear for signed ones. In the floating-point 1674 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1675 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1676 #define CONV(X) \ 1677 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1678 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1679 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1680 1681 switch (CC) { 1682 default: 1683 llvm_unreachable("Invalid integer condition!"); 1684 1685 CONV(EQ); 1686 CONV(NE); 1687 CONV(GT); 1688 CONV(GE); 1689 CONV(LT); 1690 CONV(LE); 1691 1692 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1693 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1694 } 1695 #undef CONV 1696 } 1697 1698 // Return a sequence for getting a 1 from an IPM result when CC has a 1699 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1700 // The handling of CC values outside CCValid doesn't matter. 1701 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1702 // Deal with cases where the result can be taken directly from a bit 1703 // of the IPM result. 1704 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1705 return IPMConversion(0, 0, SystemZ::IPM_CC); 1706 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1707 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1708 1709 // Deal with cases where we can add a value to force the sign bit 1710 // to contain the right value. Putting the bit in 31 means we can 1711 // use SRL rather than RISBG(L), and also makes it easier to get a 1712 // 0/-1 value, so it has priority over the other tests below. 1713 // 1714 // These sequences rely on the fact that the upper two bits of the 1715 // IPM result are zero. 1716 uint64_t TopBit = uint64_t(1) << 31; 1717 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1718 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1719 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1720 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1721 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1722 | SystemZ::CCMASK_1 1723 | SystemZ::CCMASK_2))) 1724 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1725 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1726 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1727 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1728 | SystemZ::CCMASK_2 1729 | SystemZ::CCMASK_3))) 1730 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1731 1732 // Next try inverting the value and testing a bit. 0/1 could be 1733 // handled this way too, but we dealt with that case above. 1734 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1735 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1736 1737 // Handle cases where adding a value forces a non-sign bit to contain 1738 // the right value. 1739 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1740 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1741 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1742 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1743 1744 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1745 // can be done by inverting the low CC bit and applying one of the 1746 // sign-based extractions above. 1747 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1748 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1749 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1750 return IPMConversion(1 << SystemZ::IPM_CC, 1751 TopBit - (3 << SystemZ::IPM_CC), 31); 1752 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1753 | SystemZ::CCMASK_1 1754 | SystemZ::CCMASK_3))) 1755 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1756 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1757 | SystemZ::CCMASK_2 1758 | SystemZ::CCMASK_3))) 1759 return IPMConversion(1 << SystemZ::IPM_CC, 1760 TopBit - (1 << SystemZ::IPM_CC), 31); 1761 1762 llvm_unreachable("Unexpected CC combination"); 1763 } 1764 1765 // If C can be converted to a comparison against zero, adjust the operands 1766 // as necessary. 1767 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1768 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1769 return; 1770 1771 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1772 if (!ConstOp1) 1773 return; 1774 1775 int64_t Value = ConstOp1->getSExtValue(); 1776 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1777 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1778 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1779 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1780 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1781 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1782 } 1783 } 1784 1785 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1786 // adjust the operands as necessary. 1787 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1788 Comparison &C) { 1789 // For us to make any changes, it must a comparison between a single-use 1790 // load and a constant. 1791 if (!C.Op0.hasOneUse() || 1792 C.Op0.getOpcode() != ISD::LOAD || 1793 C.Op1.getOpcode() != ISD::Constant) 1794 return; 1795 1796 // We must have an 8- or 16-bit load. 1797 auto *Load = cast<LoadSDNode>(C.Op0); 1798 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1799 if (NumBits != 8 && NumBits != 16) 1800 return; 1801 1802 // The load must be an extending one and the constant must be within the 1803 // range of the unextended value. 1804 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1805 uint64_t Value = ConstOp1->getZExtValue(); 1806 uint64_t Mask = (1 << NumBits) - 1; 1807 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1808 // Make sure that ConstOp1 is in range of C.Op0. 1809 int64_t SignedValue = ConstOp1->getSExtValue(); 1810 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1811 return; 1812 if (C.ICmpType != SystemZICMP::SignedOnly) { 1813 // Unsigned comparison between two sign-extended values is equivalent 1814 // to unsigned comparison between two zero-extended values. 1815 Value &= Mask; 1816 } else if (NumBits == 8) { 1817 // Try to treat the comparison as unsigned, so that we can use CLI. 1818 // Adjust CCMask and Value as necessary. 1819 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1820 // Test whether the high bit of the byte is set. 1821 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1822 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1823 // Test whether the high bit of the byte is clear. 1824 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1825 else 1826 // No instruction exists for this combination. 1827 return; 1828 C.ICmpType = SystemZICMP::UnsignedOnly; 1829 } 1830 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1831 if (Value > Mask) 1832 return; 1833 // If the constant is in range, we can use any comparison. 1834 C.ICmpType = SystemZICMP::Any; 1835 } else 1836 return; 1837 1838 // Make sure that the first operand is an i32 of the right extension type. 1839 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1840 ISD::SEXTLOAD : 1841 ISD::ZEXTLOAD); 1842 if (C.Op0.getValueType() != MVT::i32 || 1843 Load->getExtensionType() != ExtType) 1844 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1845 Load->getBasePtr(), Load->getPointerInfo(), 1846 Load->getMemoryVT(), Load->getAlignment(), 1847 Load->getMemOperand()->getFlags()); 1848 1849 // Make sure that the second operand is an i32 with the right value. 1850 if (C.Op1.getValueType() != MVT::i32 || 1851 Value != ConstOp1->getZExtValue()) 1852 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1853 } 1854 1855 // Return true if Op is either an unextended load, or a load suitable 1856 // for integer register-memory comparisons of type ICmpType. 1857 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1858 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1859 if (Load) { 1860 // There are no instructions to compare a register with a memory byte. 1861 if (Load->getMemoryVT() == MVT::i8) 1862 return false; 1863 // Otherwise decide on extension type. 1864 switch (Load->getExtensionType()) { 1865 case ISD::NON_EXTLOAD: 1866 return true; 1867 case ISD::SEXTLOAD: 1868 return ICmpType != SystemZICMP::UnsignedOnly; 1869 case ISD::ZEXTLOAD: 1870 return ICmpType != SystemZICMP::SignedOnly; 1871 default: 1872 break; 1873 } 1874 } 1875 return false; 1876 } 1877 1878 // Return true if it is better to swap the operands of C. 1879 static bool shouldSwapCmpOperands(const Comparison &C) { 1880 // Leave f128 comparisons alone, since they have no memory forms. 1881 if (C.Op0.getValueType() == MVT::f128) 1882 return false; 1883 1884 // Always keep a floating-point constant second, since comparisons with 1885 // zero can use LOAD TEST and comparisons with other constants make a 1886 // natural memory operand. 1887 if (isa<ConstantFPSDNode>(C.Op1)) 1888 return false; 1889 1890 // Never swap comparisons with zero since there are many ways to optimize 1891 // those later. 1892 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1893 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1894 return false; 1895 1896 // Also keep natural memory operands second if the loaded value is 1897 // only used here. Several comparisons have memory forms. 1898 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1899 return false; 1900 1901 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1902 // In that case we generally prefer the memory to be second. 1903 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1904 // The only exceptions are when the second operand is a constant and 1905 // we can use things like CHHSI. 1906 if (!ConstOp1) 1907 return true; 1908 // The unsigned memory-immediate instructions can handle 16-bit 1909 // unsigned integers. 1910 if (C.ICmpType != SystemZICMP::SignedOnly && 1911 isUInt<16>(ConstOp1->getZExtValue())) 1912 return false; 1913 // The signed memory-immediate instructions can handle 16-bit 1914 // signed integers. 1915 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1916 isInt<16>(ConstOp1->getSExtValue())) 1917 return false; 1918 return true; 1919 } 1920 1921 // Try to promote the use of CGFR and CLGFR. 1922 unsigned Opcode0 = C.Op0.getOpcode(); 1923 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1924 return true; 1925 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1926 return true; 1927 if (C.ICmpType != SystemZICMP::SignedOnly && 1928 Opcode0 == ISD::AND && 1929 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1930 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1931 return true; 1932 1933 return false; 1934 } 1935 1936 // Return a version of comparison CC mask CCMask in which the LT and GT 1937 // actions are swapped. 1938 static unsigned reverseCCMask(unsigned CCMask) { 1939 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1940 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1941 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1942 (CCMask & SystemZ::CCMASK_CMP_UO)); 1943 } 1944 1945 // Check whether C tests for equality between X and Y and whether X - Y 1946 // or Y - X is also computed. In that case it's better to compare the 1947 // result of the subtraction against zero. 1948 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1949 Comparison &C) { 1950 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1951 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1952 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1953 SDNode *N = *I; 1954 if (N->getOpcode() == ISD::SUB && 1955 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1956 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1957 C.Op0 = SDValue(N, 0); 1958 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1959 return; 1960 } 1961 } 1962 } 1963 } 1964 1965 // Check whether C compares a floating-point value with zero and if that 1966 // floating-point value is also negated. In this case we can use the 1967 // negation to set CC, so avoiding separate LOAD AND TEST and 1968 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1969 static void adjustForFNeg(Comparison &C) { 1970 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1971 if (C1 && C1->isZero()) { 1972 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1973 SDNode *N = *I; 1974 if (N->getOpcode() == ISD::FNEG) { 1975 C.Op0 = SDValue(N, 0); 1976 C.CCMask = reverseCCMask(C.CCMask); 1977 return; 1978 } 1979 } 1980 } 1981 } 1982 1983 // Check whether C compares (shl X, 32) with 0 and whether X is 1984 // also sign-extended. In that case it is better to test the result 1985 // of the sign extension using LTGFR. 1986 // 1987 // This case is important because InstCombine transforms a comparison 1988 // with (sext (trunc X)) into a comparison with (shl X, 32). 1989 static void adjustForLTGFR(Comparison &C) { 1990 // Check for a comparison between (shl X, 32) and 0. 1991 if (C.Op0.getOpcode() == ISD::SHL && 1992 C.Op0.getValueType() == MVT::i64 && 1993 C.Op1.getOpcode() == ISD::Constant && 1994 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1995 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1996 if (C1 && C1->getZExtValue() == 32) { 1997 SDValue ShlOp0 = C.Op0.getOperand(0); 1998 // See whether X has any SIGN_EXTEND_INREG uses. 1999 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2000 SDNode *N = *I; 2001 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2002 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2003 C.Op0 = SDValue(N, 0); 2004 return; 2005 } 2006 } 2007 } 2008 } 2009 } 2010 2011 // If C compares the truncation of an extending load, try to compare 2012 // the untruncated value instead. This exposes more opportunities to 2013 // reuse CC. 2014 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2015 Comparison &C) { 2016 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2017 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2018 C.Op1.getOpcode() == ISD::Constant && 2019 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2020 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2021 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2022 unsigned Type = L->getExtensionType(); 2023 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2024 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2025 C.Op0 = C.Op0.getOperand(0); 2026 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2027 } 2028 } 2029 } 2030 } 2031 2032 // Return true if shift operation N has an in-range constant shift value. 2033 // Store it in ShiftVal if so. 2034 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2035 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2036 if (!Shift) 2037 return false; 2038 2039 uint64_t Amount = Shift->getZExtValue(); 2040 if (Amount >= N.getValueSizeInBits()) 2041 return false; 2042 2043 ShiftVal = Amount; 2044 return true; 2045 } 2046 2047 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2048 // instruction and whether the CC value is descriptive enough to handle 2049 // a comparison of type Opcode between the AND result and CmpVal. 2050 // CCMask says which comparison result is being tested and BitSize is 2051 // the number of bits in the operands. If TEST UNDER MASK can be used, 2052 // return the corresponding CC mask, otherwise return 0. 2053 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2054 uint64_t Mask, uint64_t CmpVal, 2055 unsigned ICmpType) { 2056 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2057 2058 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2059 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2060 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2061 return 0; 2062 2063 // Work out the masks for the lowest and highest bits. 2064 unsigned HighShift = 63 - countLeadingZeros(Mask); 2065 uint64_t High = uint64_t(1) << HighShift; 2066 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2067 2068 // Signed ordered comparisons are effectively unsigned if the sign 2069 // bit is dropped. 2070 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2071 2072 // Check for equality comparisons with 0, or the equivalent. 2073 if (CmpVal == 0) { 2074 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2075 return SystemZ::CCMASK_TM_ALL_0; 2076 if (CCMask == SystemZ::CCMASK_CMP_NE) 2077 return SystemZ::CCMASK_TM_SOME_1; 2078 } 2079 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2080 if (CCMask == SystemZ::CCMASK_CMP_LT) 2081 return SystemZ::CCMASK_TM_ALL_0; 2082 if (CCMask == SystemZ::CCMASK_CMP_GE) 2083 return SystemZ::CCMASK_TM_SOME_1; 2084 } 2085 if (EffectivelyUnsigned && CmpVal < Low) { 2086 if (CCMask == SystemZ::CCMASK_CMP_LE) 2087 return SystemZ::CCMASK_TM_ALL_0; 2088 if (CCMask == SystemZ::CCMASK_CMP_GT) 2089 return SystemZ::CCMASK_TM_SOME_1; 2090 } 2091 2092 // Check for equality comparisons with the mask, or the equivalent. 2093 if (CmpVal == Mask) { 2094 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2095 return SystemZ::CCMASK_TM_ALL_1; 2096 if (CCMask == SystemZ::CCMASK_CMP_NE) 2097 return SystemZ::CCMASK_TM_SOME_0; 2098 } 2099 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2100 if (CCMask == SystemZ::CCMASK_CMP_GT) 2101 return SystemZ::CCMASK_TM_ALL_1; 2102 if (CCMask == SystemZ::CCMASK_CMP_LE) 2103 return SystemZ::CCMASK_TM_SOME_0; 2104 } 2105 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2106 if (CCMask == SystemZ::CCMASK_CMP_GE) 2107 return SystemZ::CCMASK_TM_ALL_1; 2108 if (CCMask == SystemZ::CCMASK_CMP_LT) 2109 return SystemZ::CCMASK_TM_SOME_0; 2110 } 2111 2112 // Check for ordered comparisons with the top bit. 2113 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2114 if (CCMask == SystemZ::CCMASK_CMP_LE) 2115 return SystemZ::CCMASK_TM_MSB_0; 2116 if (CCMask == SystemZ::CCMASK_CMP_GT) 2117 return SystemZ::CCMASK_TM_MSB_1; 2118 } 2119 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2120 if (CCMask == SystemZ::CCMASK_CMP_LT) 2121 return SystemZ::CCMASK_TM_MSB_0; 2122 if (CCMask == SystemZ::CCMASK_CMP_GE) 2123 return SystemZ::CCMASK_TM_MSB_1; 2124 } 2125 2126 // If there are just two bits, we can do equality checks for Low and High 2127 // as well. 2128 if (Mask == Low + High) { 2129 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2130 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2131 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2132 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2133 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2134 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2135 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2136 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2137 } 2138 2139 // Looks like we've exhausted our options. 2140 return 0; 2141 } 2142 2143 // See whether C can be implemented as a TEST UNDER MASK instruction. 2144 // Update the arguments with the TM version if so. 2145 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2146 Comparison &C) { 2147 // Check that we have a comparison with a constant. 2148 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2149 if (!ConstOp1) 2150 return; 2151 uint64_t CmpVal = ConstOp1->getZExtValue(); 2152 2153 // Check whether the nonconstant input is an AND with a constant mask. 2154 Comparison NewC(C); 2155 uint64_t MaskVal; 2156 ConstantSDNode *Mask = nullptr; 2157 if (C.Op0.getOpcode() == ISD::AND) { 2158 NewC.Op0 = C.Op0.getOperand(0); 2159 NewC.Op1 = C.Op0.getOperand(1); 2160 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2161 if (!Mask) 2162 return; 2163 MaskVal = Mask->getZExtValue(); 2164 } else { 2165 // There is no instruction to compare with a 64-bit immediate 2166 // so use TMHH instead if possible. We need an unsigned ordered 2167 // comparison with an i64 immediate. 2168 if (NewC.Op0.getValueType() != MVT::i64 || 2169 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2170 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2171 NewC.ICmpType == SystemZICMP::SignedOnly) 2172 return; 2173 // Convert LE and GT comparisons into LT and GE. 2174 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2175 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2176 if (CmpVal == uint64_t(-1)) 2177 return; 2178 CmpVal += 1; 2179 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2180 } 2181 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2182 // be masked off without changing the result. 2183 MaskVal = -(CmpVal & -CmpVal); 2184 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2185 } 2186 if (!MaskVal) 2187 return; 2188 2189 // Check whether the combination of mask, comparison value and comparison 2190 // type are suitable. 2191 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2192 unsigned NewCCMask, ShiftVal; 2193 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2194 NewC.Op0.getOpcode() == ISD::SHL && 2195 isSimpleShift(NewC.Op0, ShiftVal) && 2196 (MaskVal >> ShiftVal != 0) && 2197 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2198 MaskVal >> ShiftVal, 2199 CmpVal >> ShiftVal, 2200 SystemZICMP::Any))) { 2201 NewC.Op0 = NewC.Op0.getOperand(0); 2202 MaskVal >>= ShiftVal; 2203 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2204 NewC.Op0.getOpcode() == ISD::SRL && 2205 isSimpleShift(NewC.Op0, ShiftVal) && 2206 (MaskVal << ShiftVal != 0) && 2207 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2208 MaskVal << ShiftVal, 2209 CmpVal << ShiftVal, 2210 SystemZICMP::UnsignedOnly))) { 2211 NewC.Op0 = NewC.Op0.getOperand(0); 2212 MaskVal <<= ShiftVal; 2213 } else { 2214 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2215 NewC.ICmpType); 2216 if (!NewCCMask) 2217 return; 2218 } 2219 2220 // Go ahead and make the change. 2221 C.Opcode = SystemZISD::TM; 2222 C.Op0 = NewC.Op0; 2223 if (Mask && Mask->getZExtValue() == MaskVal) 2224 C.Op1 = SDValue(Mask, 0); 2225 else 2226 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2227 C.CCValid = SystemZ::CCMASK_TM; 2228 C.CCMask = NewCCMask; 2229 } 2230 2231 // Return a Comparison that tests the condition-code result of intrinsic 2232 // node Call against constant integer CC using comparison code Cond. 2233 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2234 // and CCValid is the set of possible condition-code results. 2235 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2236 SDValue Call, unsigned CCValid, uint64_t CC, 2237 ISD::CondCode Cond) { 2238 Comparison C(Call, SDValue()); 2239 C.Opcode = Opcode; 2240 C.CCValid = CCValid; 2241 if (Cond == ISD::SETEQ) 2242 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2243 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2244 else if (Cond == ISD::SETNE) 2245 // ...and the inverse of that. 2246 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2247 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2248 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2249 // always true for CC>3. 2250 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2251 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2252 // ...and the inverse of that. 2253 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2254 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2255 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2256 // always true for CC>3. 2257 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2258 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2259 // ...and the inverse of that. 2260 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2261 else 2262 llvm_unreachable("Unexpected integer comparison type"); 2263 C.CCMask &= CCValid; 2264 return C; 2265 } 2266 2267 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2268 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2269 ISD::CondCode Cond, const SDLoc &DL) { 2270 if (CmpOp1.getOpcode() == ISD::Constant) { 2271 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2272 unsigned Opcode, CCValid; 2273 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2274 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2275 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2276 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2277 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2278 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2279 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2280 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2281 } 2282 Comparison C(CmpOp0, CmpOp1); 2283 C.CCMask = CCMaskForCondCode(Cond); 2284 if (C.Op0.getValueType().isFloatingPoint()) { 2285 C.CCValid = SystemZ::CCMASK_FCMP; 2286 C.Opcode = SystemZISD::FCMP; 2287 adjustForFNeg(C); 2288 } else { 2289 C.CCValid = SystemZ::CCMASK_ICMP; 2290 C.Opcode = SystemZISD::ICMP; 2291 // Choose the type of comparison. Equality and inequality tests can 2292 // use either signed or unsigned comparisons. The choice also doesn't 2293 // matter if both sign bits are known to be clear. In those cases we 2294 // want to give the main isel code the freedom to choose whichever 2295 // form fits best. 2296 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2297 C.CCMask == SystemZ::CCMASK_CMP_NE || 2298 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2299 C.ICmpType = SystemZICMP::Any; 2300 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2301 C.ICmpType = SystemZICMP::UnsignedOnly; 2302 else 2303 C.ICmpType = SystemZICMP::SignedOnly; 2304 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2305 adjustZeroCmp(DAG, DL, C); 2306 adjustSubwordCmp(DAG, DL, C); 2307 adjustForSubtraction(DAG, DL, C); 2308 adjustForLTGFR(C); 2309 adjustICmpTruncate(DAG, DL, C); 2310 } 2311 2312 if (shouldSwapCmpOperands(C)) { 2313 std::swap(C.Op0, C.Op1); 2314 C.CCMask = reverseCCMask(C.CCMask); 2315 } 2316 2317 adjustForTestUnderMask(DAG, DL, C); 2318 return C; 2319 } 2320 2321 // Emit the comparison instruction described by C. 2322 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2323 if (!C.Op1.getNode()) { 2324 SDValue Op; 2325 switch (C.Op0.getOpcode()) { 2326 case ISD::INTRINSIC_W_CHAIN: 2327 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2328 break; 2329 case ISD::INTRINSIC_WO_CHAIN: 2330 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2331 break; 2332 default: 2333 llvm_unreachable("Invalid comparison operands"); 2334 } 2335 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2336 } 2337 if (C.Opcode == SystemZISD::ICMP) 2338 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2339 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2340 if (C.Opcode == SystemZISD::TM) { 2341 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2342 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2343 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2344 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2345 } 2346 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2347 } 2348 2349 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2350 // 64 bits. Extend is the extension type to use. Store the high part 2351 // in Hi and the low part in Lo. 2352 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2353 SDValue Op0, SDValue Op1, SDValue &Hi, 2354 SDValue &Lo) { 2355 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2356 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2357 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2358 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2359 DAG.getConstant(32, DL, MVT::i64)); 2360 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2361 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2362 } 2363 2364 // Lower a binary operation that produces two VT results, one in each 2365 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2366 // and Opcode performs the GR128 operation. Store the even register result 2367 // in Even and the odd register result in Odd. 2368 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2369 unsigned Opcode, SDValue Op0, SDValue Op1, 2370 SDValue &Even, SDValue &Odd) { 2371 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2372 bool Is32Bit = is32Bit(VT); 2373 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2374 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2375 } 2376 2377 // Return an i32 value that is 1 if the CC value produced by Glue is 2378 // in the mask CCMask and 0 otherwise. CC is known to have a value 2379 // in CCValid, so other values can be ignored. 2380 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue, 2381 unsigned CCValid, unsigned CCMask) { 2382 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2383 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2384 2385 if (Conversion.XORValue) 2386 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2387 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2388 2389 if (Conversion.AddValue) 2390 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2391 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2392 2393 // The SHR/AND sequence should get optimized to an RISBG. 2394 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2395 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2396 if (Conversion.Bit != 31) 2397 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2398 DAG.getConstant(1, DL, MVT::i32)); 2399 return Result; 2400 } 2401 2402 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2403 // be done directly. IsFP is true if CC is for a floating-point rather than 2404 // integer comparison. 2405 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2406 switch (CC) { 2407 case ISD::SETOEQ: 2408 case ISD::SETEQ: 2409 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2410 2411 case ISD::SETOGE: 2412 case ISD::SETGE: 2413 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2414 2415 case ISD::SETOGT: 2416 case ISD::SETGT: 2417 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2418 2419 case ISD::SETUGT: 2420 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2421 2422 default: 2423 return 0; 2424 } 2425 } 2426 2427 // Return the SystemZISD vector comparison operation for CC or its inverse, 2428 // or 0 if neither can be done directly. Indicate in Invert whether the 2429 // result is for the inverse of CC. IsFP is true if CC is for a 2430 // floating-point rather than integer comparison. 2431 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2432 bool &Invert) { 2433 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2434 Invert = false; 2435 return Opcode; 2436 } 2437 2438 CC = ISD::getSetCCInverse(CC, !IsFP); 2439 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2440 Invert = true; 2441 return Opcode; 2442 } 2443 2444 return 0; 2445 } 2446 2447 // Return a v2f64 that contains the extended form of elements Start and Start+1 2448 // of v4f32 value Op. 2449 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2450 SDValue Op) { 2451 int Mask[] = { Start, -1, Start + 1, -1 }; 2452 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2453 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2454 } 2455 2456 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2457 // producing a result of type VT. 2458 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2459 const SDLoc &DL, EVT VT, 2460 SDValue CmpOp0, 2461 SDValue CmpOp1) const { 2462 // There is no hardware support for v4f32 (unless we have the vector 2463 // enhancements facility 1), so extend the vector into two v2f64s 2464 // and compare those. 2465 if (CmpOp0.getValueType() == MVT::v4f32 && 2466 !Subtarget.hasVectorEnhancements1()) { 2467 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2468 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2469 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2470 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2471 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2472 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2473 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2474 } 2475 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2476 } 2477 2478 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2479 // an integer mask of type VT. 2480 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2481 const SDLoc &DL, EVT VT, 2482 ISD::CondCode CC, 2483 SDValue CmpOp0, 2484 SDValue CmpOp1) const { 2485 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2486 bool Invert = false; 2487 SDValue Cmp; 2488 switch (CC) { 2489 // Handle tests for order using (or (ogt y x) (oge x y)). 2490 case ISD::SETUO: 2491 Invert = true; 2492 LLVM_FALLTHROUGH; 2493 case ISD::SETO: { 2494 assert(IsFP && "Unexpected integer comparison"); 2495 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2496 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2497 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2498 break; 2499 } 2500 2501 // Handle <> tests using (or (ogt y x) (ogt x y)). 2502 case ISD::SETUEQ: 2503 Invert = true; 2504 LLVM_FALLTHROUGH; 2505 case ISD::SETONE: { 2506 assert(IsFP && "Unexpected integer comparison"); 2507 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2508 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2509 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2510 break; 2511 } 2512 2513 // Otherwise a single comparison is enough. It doesn't really 2514 // matter whether we try the inversion or the swap first, since 2515 // there are no cases where both work. 2516 default: 2517 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2518 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2519 else { 2520 CC = ISD::getSetCCSwappedOperands(CC); 2521 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2522 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2523 else 2524 llvm_unreachable("Unhandled comparison"); 2525 } 2526 break; 2527 } 2528 if (Invert) { 2529 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2530 DAG.getConstant(65535, DL, MVT::i32)); 2531 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2532 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2533 } 2534 return Cmp; 2535 } 2536 2537 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2538 SelectionDAG &DAG) const { 2539 SDValue CmpOp0 = Op.getOperand(0); 2540 SDValue CmpOp1 = Op.getOperand(1); 2541 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2542 SDLoc DL(Op); 2543 EVT VT = Op.getValueType(); 2544 if (VT.isVector()) 2545 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2546 2547 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2548 SDValue Glue = emitCmp(DAG, DL, C); 2549 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2550 } 2551 2552 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2553 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2554 SDValue CmpOp0 = Op.getOperand(2); 2555 SDValue CmpOp1 = Op.getOperand(3); 2556 SDValue Dest = Op.getOperand(4); 2557 SDLoc DL(Op); 2558 2559 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2560 SDValue Glue = emitCmp(DAG, DL, C); 2561 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2562 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2563 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2564 } 2565 2566 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2567 // allowing Pos and Neg to be wider than CmpOp. 2568 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2569 return (Neg.getOpcode() == ISD::SUB && 2570 Neg.getOperand(0).getOpcode() == ISD::Constant && 2571 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2572 Neg.getOperand(1) == Pos && 2573 (Pos == CmpOp || 2574 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2575 Pos.getOperand(0) == CmpOp))); 2576 } 2577 2578 // Return the absolute or negative absolute of Op; IsNegative decides which. 2579 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2580 bool IsNegative) { 2581 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2582 if (IsNegative) 2583 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2584 DAG.getConstant(0, DL, Op.getValueType()), Op); 2585 return Op; 2586 } 2587 2588 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2589 SelectionDAG &DAG) const { 2590 SDValue CmpOp0 = Op.getOperand(0); 2591 SDValue CmpOp1 = Op.getOperand(1); 2592 SDValue TrueOp = Op.getOperand(2); 2593 SDValue FalseOp = Op.getOperand(3); 2594 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2595 SDLoc DL(Op); 2596 2597 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2598 2599 // Check for absolute and negative-absolute selections, including those 2600 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2601 // This check supplements the one in DAGCombiner. 2602 if (C.Opcode == SystemZISD::ICMP && 2603 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2604 C.CCMask != SystemZ::CCMASK_CMP_NE && 2605 C.Op1.getOpcode() == ISD::Constant && 2606 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2607 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2608 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2609 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2610 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2611 } 2612 2613 SDValue Glue = emitCmp(DAG, DL, C); 2614 2615 // Special case for handling -1/0 results. The shifts we use here 2616 // should get optimized with the IPM conversion sequence. 2617 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2618 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2619 if (TrueC && FalseC) { 2620 int64_t TrueVal = TrueC->getSExtValue(); 2621 int64_t FalseVal = FalseC->getSExtValue(); 2622 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2623 // Invert the condition if we want -1 on false. 2624 if (TrueVal == 0) 2625 C.CCMask ^= C.CCValid; 2626 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2627 EVT VT = Op.getValueType(); 2628 // Extend the result to VT. Upper bits are ignored. 2629 if (!is32Bit(VT)) 2630 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2631 // Sign-extend from the low bit. 2632 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2633 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2634 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2635 } 2636 } 2637 2638 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2639 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2640 2641 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2642 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2643 } 2644 2645 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2646 SelectionDAG &DAG) const { 2647 SDLoc DL(Node); 2648 const GlobalValue *GV = Node->getGlobal(); 2649 int64_t Offset = Node->getOffset(); 2650 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2651 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2652 2653 SDValue Result; 2654 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2655 // Assign anchors at 1<<12 byte boundaries. 2656 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2657 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2658 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2659 2660 // The offset can be folded into the address if it is aligned to a halfword. 2661 Offset -= Anchor; 2662 if (Offset != 0 && (Offset & 1) == 0) { 2663 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2664 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2665 Offset = 0; 2666 } 2667 } else { 2668 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2669 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2670 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2671 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2672 } 2673 2674 // If there was a non-zero offset that we didn't fold, create an explicit 2675 // addition for it. 2676 if (Offset != 0) 2677 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2678 DAG.getConstant(Offset, DL, PtrVT)); 2679 2680 return Result; 2681 } 2682 2683 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2684 SelectionDAG &DAG, 2685 unsigned Opcode, 2686 SDValue GOTOffset) const { 2687 SDLoc DL(Node); 2688 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2689 SDValue Chain = DAG.getEntryNode(); 2690 SDValue Glue; 2691 2692 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2693 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2694 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2695 Glue = Chain.getValue(1); 2696 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2697 Glue = Chain.getValue(1); 2698 2699 // The first call operand is the chain and the second is the TLS symbol. 2700 SmallVector<SDValue, 8> Ops; 2701 Ops.push_back(Chain); 2702 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2703 Node->getValueType(0), 2704 0, 0)); 2705 2706 // Add argument registers to the end of the list so that they are 2707 // known live into the call. 2708 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2709 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2710 2711 // Add a register mask operand representing the call-preserved registers. 2712 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2713 const uint32_t *Mask = 2714 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2715 assert(Mask && "Missing call preserved mask for calling convention"); 2716 Ops.push_back(DAG.getRegisterMask(Mask)); 2717 2718 // Glue the call to the argument copies. 2719 Ops.push_back(Glue); 2720 2721 // Emit the call. 2722 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2723 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2724 Glue = Chain.getValue(1); 2725 2726 // Copy the return value from %r2. 2727 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2728 } 2729 2730 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2731 SelectionDAG &DAG) const { 2732 SDValue Chain = DAG.getEntryNode(); 2733 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2734 2735 // The high part of the thread pointer is in access register 0. 2736 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2737 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2738 2739 // The low part of the thread pointer is in access register 1. 2740 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2741 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2742 2743 // Merge them into a single 64-bit address. 2744 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2745 DAG.getConstant(32, DL, PtrVT)); 2746 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2747 } 2748 2749 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2750 SelectionDAG &DAG) const { 2751 if (DAG.getTarget().Options.EmulatedTLS) 2752 return LowerToTLSEmulatedModel(Node, DAG); 2753 SDLoc DL(Node); 2754 const GlobalValue *GV = Node->getGlobal(); 2755 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2756 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2757 2758 SDValue TP = lowerThreadPointer(DL, DAG); 2759 2760 // Get the offset of GA from the thread pointer, based on the TLS model. 2761 SDValue Offset; 2762 switch (model) { 2763 case TLSModel::GeneralDynamic: { 2764 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2765 SystemZConstantPoolValue *CPV = 2766 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2767 2768 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2769 Offset = DAG.getLoad( 2770 PtrVT, DL, DAG.getEntryNode(), Offset, 2771 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2772 2773 // Call __tls_get_offset to retrieve the offset. 2774 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2775 break; 2776 } 2777 2778 case TLSModel::LocalDynamic: { 2779 // Load the GOT offset of the module ID. 2780 SystemZConstantPoolValue *CPV = 2781 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2782 2783 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2784 Offset = DAG.getLoad( 2785 PtrVT, DL, DAG.getEntryNode(), Offset, 2786 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2787 2788 // Call __tls_get_offset to retrieve the module base offset. 2789 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2790 2791 // Note: The SystemZLDCleanupPass will remove redundant computations 2792 // of the module base offset. Count total number of local-dynamic 2793 // accesses to trigger execution of that pass. 2794 SystemZMachineFunctionInfo* MFI = 2795 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2796 MFI->incNumLocalDynamicTLSAccesses(); 2797 2798 // Add the per-symbol offset. 2799 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2800 2801 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2802 DTPOffset = DAG.getLoad( 2803 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2804 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2805 2806 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2807 break; 2808 } 2809 2810 case TLSModel::InitialExec: { 2811 // Load the offset from the GOT. 2812 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2813 SystemZII::MO_INDNTPOFF); 2814 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2815 Offset = 2816 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2817 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2818 break; 2819 } 2820 2821 case TLSModel::LocalExec: { 2822 // Force the offset into the constant pool and load it from there. 2823 SystemZConstantPoolValue *CPV = 2824 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2825 2826 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2827 Offset = DAG.getLoad( 2828 PtrVT, DL, DAG.getEntryNode(), Offset, 2829 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2830 break; 2831 } 2832 } 2833 2834 // Add the base and offset together. 2835 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2836 } 2837 2838 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2839 SelectionDAG &DAG) const { 2840 SDLoc DL(Node); 2841 const BlockAddress *BA = Node->getBlockAddress(); 2842 int64_t Offset = Node->getOffset(); 2843 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2844 2845 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2846 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2847 return Result; 2848 } 2849 2850 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2851 SelectionDAG &DAG) const { 2852 SDLoc DL(JT); 2853 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2854 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2855 2856 // Use LARL to load the address of the table. 2857 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2858 } 2859 2860 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2861 SelectionDAG &DAG) const { 2862 SDLoc DL(CP); 2863 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2864 2865 SDValue Result; 2866 if (CP->isMachineConstantPoolEntry()) 2867 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2868 CP->getAlignment()); 2869 else 2870 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2871 CP->getAlignment(), CP->getOffset()); 2872 2873 // Use LARL to load the address of the constant pool entry. 2874 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2875 } 2876 2877 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2878 SelectionDAG &DAG) const { 2879 MachineFunction &MF = DAG.getMachineFunction(); 2880 MachineFrameInfo &MFI = MF.getFrameInfo(); 2881 MFI.setFrameAddressIsTaken(true); 2882 2883 SDLoc DL(Op); 2884 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2885 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2886 2887 // If the back chain frame index has not been allocated yet, do so. 2888 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2889 int BackChainIdx = FI->getFramePointerSaveIndex(); 2890 if (!BackChainIdx) { 2891 // By definition, the frame address is the address of the back chain. 2892 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2893 FI->setFramePointerSaveIndex(BackChainIdx); 2894 } 2895 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2896 2897 // FIXME The frontend should detect this case. 2898 if (Depth > 0) { 2899 report_fatal_error("Unsupported stack frame traversal count"); 2900 } 2901 2902 return BackChain; 2903 } 2904 2905 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2906 SelectionDAG &DAG) const { 2907 MachineFunction &MF = DAG.getMachineFunction(); 2908 MachineFrameInfo &MFI = MF.getFrameInfo(); 2909 MFI.setReturnAddressIsTaken(true); 2910 2911 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2912 return SDValue(); 2913 2914 SDLoc DL(Op); 2915 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2916 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2917 2918 // FIXME The frontend should detect this case. 2919 if (Depth > 0) { 2920 report_fatal_error("Unsupported stack frame traversal count"); 2921 } 2922 2923 // Return R14D, which has the return address. Mark it an implicit live-in. 2924 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2925 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2926 } 2927 2928 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2929 SelectionDAG &DAG) const { 2930 SDLoc DL(Op); 2931 SDValue In = Op.getOperand(0); 2932 EVT InVT = In.getValueType(); 2933 EVT ResVT = Op.getValueType(); 2934 2935 // Convert loads directly. This is normally done by DAGCombiner, 2936 // but we need this case for bitcasts that are created during lowering 2937 // and which are then lowered themselves. 2938 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2939 if (ISD::isNormalLoad(LoadN)) 2940 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2941 LoadN->getMemOperand()); 2942 2943 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2944 SDValue In64; 2945 if (Subtarget.hasHighWord()) { 2946 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2947 MVT::i64); 2948 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2949 MVT::i64, SDValue(U64, 0), In); 2950 } else { 2951 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2952 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2953 DAG.getConstant(32, DL, MVT::i64)); 2954 } 2955 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2956 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2957 DL, MVT::f32, Out64); 2958 } 2959 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2960 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2961 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2962 MVT::f64, SDValue(U64, 0), In); 2963 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2964 if (Subtarget.hasHighWord()) 2965 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2966 MVT::i32, Out64); 2967 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2968 DAG.getConstant(32, DL, MVT::i64)); 2969 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2970 } 2971 llvm_unreachable("Unexpected bitcast combination"); 2972 } 2973 2974 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2975 SelectionDAG &DAG) const { 2976 MachineFunction &MF = DAG.getMachineFunction(); 2977 SystemZMachineFunctionInfo *FuncInfo = 2978 MF.getInfo<SystemZMachineFunctionInfo>(); 2979 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2980 2981 SDValue Chain = Op.getOperand(0); 2982 SDValue Addr = Op.getOperand(1); 2983 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2984 SDLoc DL(Op); 2985 2986 // The initial values of each field. 2987 const unsigned NumFields = 4; 2988 SDValue Fields[NumFields] = { 2989 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2990 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2991 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2992 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2993 }; 2994 2995 // Store each field into its respective slot. 2996 SDValue MemOps[NumFields]; 2997 unsigned Offset = 0; 2998 for (unsigned I = 0; I < NumFields; ++I) { 2999 SDValue FieldAddr = Addr; 3000 if (Offset != 0) 3001 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3002 DAG.getIntPtrConstant(Offset, DL)); 3003 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3004 MachinePointerInfo(SV, Offset)); 3005 Offset += 8; 3006 } 3007 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3008 } 3009 3010 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3011 SelectionDAG &DAG) const { 3012 SDValue Chain = Op.getOperand(0); 3013 SDValue DstPtr = Op.getOperand(1); 3014 SDValue SrcPtr = Op.getOperand(2); 3015 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3016 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3017 SDLoc DL(Op); 3018 3019 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3020 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3021 /*isTailCall*/false, 3022 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3023 } 3024 3025 SDValue SystemZTargetLowering:: 3026 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3027 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3028 MachineFunction &MF = DAG.getMachineFunction(); 3029 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack"); 3030 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3031 3032 SDValue Chain = Op.getOperand(0); 3033 SDValue Size = Op.getOperand(1); 3034 SDValue Align = Op.getOperand(2); 3035 SDLoc DL(Op); 3036 3037 // If user has set the no alignment function attribute, ignore 3038 // alloca alignments. 3039 uint64_t AlignVal = (RealignOpt ? 3040 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3041 3042 uint64_t StackAlign = TFI->getStackAlignment(); 3043 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3044 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3045 3046 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3047 SDValue NeededSpace = Size; 3048 3049 // Get a reference to the stack pointer. 3050 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3051 3052 // If we need a backchain, save it now. 3053 SDValue Backchain; 3054 if (StoreBackchain) 3055 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3056 3057 // Add extra space for alignment if needed. 3058 if (ExtraAlignSpace) 3059 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3060 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3061 3062 // Get the new stack pointer value. 3063 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3064 3065 // Copy the new stack pointer back. 3066 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3067 3068 // The allocated data lives above the 160 bytes allocated for the standard 3069 // frame, plus any outgoing stack arguments. We don't know how much that 3070 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3071 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3072 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3073 3074 // Dynamically realign if needed. 3075 if (RequiredAlign > StackAlign) { 3076 Result = 3077 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3078 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3079 Result = 3080 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3081 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3082 } 3083 3084 if (StoreBackchain) 3085 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3086 3087 SDValue Ops[2] = { Result, Chain }; 3088 return DAG.getMergeValues(Ops, DL); 3089 } 3090 3091 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3092 SDValue Op, SelectionDAG &DAG) const { 3093 SDLoc DL(Op); 3094 3095 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3096 } 3097 3098 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3099 SelectionDAG &DAG) const { 3100 EVT VT = Op.getValueType(); 3101 SDLoc DL(Op); 3102 SDValue Ops[2]; 3103 if (is32Bit(VT)) 3104 // Just do a normal 64-bit multiplication and extract the results. 3105 // We define this so that it can be used for constant division. 3106 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3107 Op.getOperand(1), Ops[1], Ops[0]); 3108 else if (Subtarget.hasMiscellaneousExtensions2()) 3109 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3110 // the high result in the even register. ISD::SMUL_LOHI is defined to 3111 // return the low half first, so the results are in reverse order. 3112 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3113 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3114 else { 3115 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3116 // 3117 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3118 // 3119 // but using the fact that the upper halves are either all zeros 3120 // or all ones: 3121 // 3122 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3123 // 3124 // and grouping the right terms together since they are quicker than the 3125 // multiplication: 3126 // 3127 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3128 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3129 SDValue LL = Op.getOperand(0); 3130 SDValue RL = Op.getOperand(1); 3131 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3132 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3133 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3134 // the high result in the even register. ISD::SMUL_LOHI is defined to 3135 // return the low half first, so the results are in reverse order. 3136 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3137 LL, RL, Ops[1], Ops[0]); 3138 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3139 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3140 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3141 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3142 } 3143 return DAG.getMergeValues(Ops, DL); 3144 } 3145 3146 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3147 SelectionDAG &DAG) const { 3148 EVT VT = Op.getValueType(); 3149 SDLoc DL(Op); 3150 SDValue Ops[2]; 3151 if (is32Bit(VT)) 3152 // Just do a normal 64-bit multiplication and extract the results. 3153 // We define this so that it can be used for constant division. 3154 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3155 Op.getOperand(1), Ops[1], Ops[0]); 3156 else 3157 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3158 // the high result in the even register. ISD::UMUL_LOHI is defined to 3159 // return the low half first, so the results are in reverse order. 3160 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3161 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3162 return DAG.getMergeValues(Ops, DL); 3163 } 3164 3165 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3166 SelectionDAG &DAG) const { 3167 SDValue Op0 = Op.getOperand(0); 3168 SDValue Op1 = Op.getOperand(1); 3169 EVT VT = Op.getValueType(); 3170 SDLoc DL(Op); 3171 3172 // We use DSGF for 32-bit division. This means the first operand must 3173 // always be 64-bit, and the second operand should be 32-bit whenever 3174 // that is possible, to improve performance. 3175 if (is32Bit(VT)) 3176 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3177 else if (DAG.ComputeNumSignBits(Op1) > 32) 3178 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3179 3180 // DSG(F) returns the remainder in the even register and the 3181 // quotient in the odd register. 3182 SDValue Ops[2]; 3183 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3184 return DAG.getMergeValues(Ops, DL); 3185 } 3186 3187 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3188 SelectionDAG &DAG) const { 3189 EVT VT = Op.getValueType(); 3190 SDLoc DL(Op); 3191 3192 // DL(G) returns the remainder in the even register and the 3193 // quotient in the odd register. 3194 SDValue Ops[2]; 3195 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3196 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3197 return DAG.getMergeValues(Ops, DL); 3198 } 3199 3200 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3201 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3202 3203 // Get the known-zero masks for each operand. 3204 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3205 KnownBits Known[2]; 3206 DAG.computeKnownBits(Ops[0], Known[0]); 3207 DAG.computeKnownBits(Ops[1], Known[1]); 3208 3209 // See if the upper 32 bits of one operand and the lower 32 bits of the 3210 // other are known zero. They are the low and high operands respectively. 3211 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3212 Known[1].Zero.getZExtValue() }; 3213 unsigned High, Low; 3214 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3215 High = 1, Low = 0; 3216 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3217 High = 0, Low = 1; 3218 else 3219 return Op; 3220 3221 SDValue LowOp = Ops[Low]; 3222 SDValue HighOp = Ops[High]; 3223 3224 // If the high part is a constant, we're better off using IILH. 3225 if (HighOp.getOpcode() == ISD::Constant) 3226 return Op; 3227 3228 // If the low part is a constant that is outside the range of LHI, 3229 // then we're better off using IILF. 3230 if (LowOp.getOpcode() == ISD::Constant) { 3231 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3232 if (!isInt<16>(Value)) 3233 return Op; 3234 } 3235 3236 // Check whether the high part is an AND that doesn't change the 3237 // high 32 bits and just masks out low bits. We can skip it if so. 3238 if (HighOp.getOpcode() == ISD::AND && 3239 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3240 SDValue HighOp0 = HighOp.getOperand(0); 3241 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3242 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3243 HighOp = HighOp0; 3244 } 3245 3246 // Take advantage of the fact that all GR32 operations only change the 3247 // low 32 bits by truncating Low to an i32 and inserting it directly 3248 // using a subreg. The interesting cases are those where the truncation 3249 // can be folded. 3250 SDLoc DL(Op); 3251 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3252 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3253 MVT::i64, HighOp, Low32); 3254 } 3255 3256 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3257 SelectionDAG &DAG) const { 3258 EVT VT = Op.getValueType(); 3259 SDLoc DL(Op); 3260 Op = Op.getOperand(0); 3261 3262 // Handle vector types via VPOPCT. 3263 if (VT.isVector()) { 3264 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3265 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3266 switch (VT.getScalarSizeInBits()) { 3267 case 8: 3268 break; 3269 case 16: { 3270 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3271 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3272 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3273 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3274 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3275 break; 3276 } 3277 case 32: { 3278 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3279 DAG.getConstant(0, DL, MVT::i32)); 3280 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3281 break; 3282 } 3283 case 64: { 3284 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3285 DAG.getConstant(0, DL, MVT::i32)); 3286 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3287 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3288 break; 3289 } 3290 default: 3291 llvm_unreachable("Unexpected type"); 3292 } 3293 return Op; 3294 } 3295 3296 // Get the known-zero mask for the operand. 3297 KnownBits Known; 3298 DAG.computeKnownBits(Op, Known); 3299 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3300 if (NumSignificantBits == 0) 3301 return DAG.getConstant(0, DL, VT); 3302 3303 // Skip known-zero high parts of the operand. 3304 int64_t OrigBitSize = VT.getSizeInBits(); 3305 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3306 BitSize = std::min(BitSize, OrigBitSize); 3307 3308 // The POPCNT instruction counts the number of bits in each byte. 3309 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3310 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3311 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3312 3313 // Add up per-byte counts in a binary tree. All bits of Op at 3314 // position larger than BitSize remain zero throughout. 3315 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3316 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3317 if (BitSize != OrigBitSize) 3318 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3319 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3320 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3321 } 3322 3323 // Extract overall result from high byte. 3324 if (BitSize > 8) 3325 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3326 DAG.getConstant(BitSize - 8, DL, VT)); 3327 3328 return Op; 3329 } 3330 3331 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3332 SelectionDAG &DAG) const { 3333 SDLoc DL(Op); 3334 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3335 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3336 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3337 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3338 3339 // The only fence that needs an instruction is a sequentially-consistent 3340 // cross-thread fence. 3341 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3342 FenceSSID == SyncScope::System) { 3343 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3344 Op.getOperand(0)), 3345 0); 3346 } 3347 3348 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3349 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3350 } 3351 3352 // Op is an atomic load. Lower it into a normal volatile load. 3353 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3354 SelectionDAG &DAG) const { 3355 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3356 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3357 Node->getChain(), Node->getBasePtr(), 3358 Node->getMemoryVT(), Node->getMemOperand()); 3359 } 3360 3361 // Op is an atomic store. Lower it into a normal volatile store. 3362 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3363 SelectionDAG &DAG) const { 3364 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3365 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3366 Node->getBasePtr(), Node->getMemoryVT(), 3367 Node->getMemOperand()); 3368 // We have to enforce sequential consistency by performing a 3369 // serialization operation after the store. 3370 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3371 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3372 MVT::Other, Chain), 0); 3373 return Chain; 3374 } 3375 3376 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3377 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3378 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3379 SelectionDAG &DAG, 3380 unsigned Opcode) const { 3381 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3382 3383 // 32-bit operations need no code outside the main loop. 3384 EVT NarrowVT = Node->getMemoryVT(); 3385 EVT WideVT = MVT::i32; 3386 if (NarrowVT == WideVT) 3387 return Op; 3388 3389 int64_t BitSize = NarrowVT.getSizeInBits(); 3390 SDValue ChainIn = Node->getChain(); 3391 SDValue Addr = Node->getBasePtr(); 3392 SDValue Src2 = Node->getVal(); 3393 MachineMemOperand *MMO = Node->getMemOperand(); 3394 SDLoc DL(Node); 3395 EVT PtrVT = Addr.getValueType(); 3396 3397 // Convert atomic subtracts of constants into additions. 3398 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3399 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3400 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3401 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3402 } 3403 3404 // Get the address of the containing word. 3405 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3406 DAG.getConstant(-4, DL, PtrVT)); 3407 3408 // Get the number of bits that the word must be rotated left in order 3409 // to bring the field to the top bits of a GR32. 3410 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3411 DAG.getConstant(3, DL, PtrVT)); 3412 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3413 3414 // Get the complementing shift amount, for rotating a field in the top 3415 // bits back to its proper position. 3416 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3417 DAG.getConstant(0, DL, WideVT), BitShift); 3418 3419 // Extend the source operand to 32 bits and prepare it for the inner loop. 3420 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3421 // operations require the source to be shifted in advance. (This shift 3422 // can be folded if the source is constant.) For AND and NAND, the lower 3423 // bits must be set, while for other opcodes they should be left clear. 3424 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3425 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3426 DAG.getConstant(32 - BitSize, DL, WideVT)); 3427 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3428 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3429 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3430 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3431 3432 // Construct the ATOMIC_LOADW_* node. 3433 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3434 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3435 DAG.getConstant(BitSize, DL, WideVT) }; 3436 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3437 NarrowVT, MMO); 3438 3439 // Rotate the result of the final CS so that the field is in the lower 3440 // bits of a GR32, then truncate it. 3441 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3442 DAG.getConstant(BitSize, DL, WideVT)); 3443 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3444 3445 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3446 return DAG.getMergeValues(RetOps, DL); 3447 } 3448 3449 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3450 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3451 // operations into additions. 3452 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3453 SelectionDAG &DAG) const { 3454 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3455 EVT MemVT = Node->getMemoryVT(); 3456 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3457 // A full-width operation. 3458 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3459 SDValue Src2 = Node->getVal(); 3460 SDValue NegSrc2; 3461 SDLoc DL(Src2); 3462 3463 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3464 // Use an addition if the operand is constant and either LAA(G) is 3465 // available or the negative value is in the range of A(G)FHI. 3466 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3467 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3468 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3469 } else if (Subtarget.hasInterlockedAccess1()) 3470 // Use LAA(G) if available. 3471 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3472 Src2); 3473 3474 if (NegSrc2.getNode()) 3475 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3476 Node->getChain(), Node->getBasePtr(), NegSrc2, 3477 Node->getMemOperand()); 3478 3479 // Use the node as-is. 3480 return Op; 3481 } 3482 3483 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3484 } 3485 3486 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3487 // into a fullword ATOMIC_CMP_SWAPW operation. 3488 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3489 SelectionDAG &DAG) const { 3490 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3491 3492 // We have native support for 32-bit compare and swap. 3493 EVT NarrowVT = Node->getMemoryVT(); 3494 EVT WideVT = MVT::i32; 3495 if (NarrowVT == WideVT) 3496 return Op; 3497 3498 int64_t BitSize = NarrowVT.getSizeInBits(); 3499 SDValue ChainIn = Node->getOperand(0); 3500 SDValue Addr = Node->getOperand(1); 3501 SDValue CmpVal = Node->getOperand(2); 3502 SDValue SwapVal = Node->getOperand(3); 3503 MachineMemOperand *MMO = Node->getMemOperand(); 3504 SDLoc DL(Node); 3505 EVT PtrVT = Addr.getValueType(); 3506 3507 // Get the address of the containing word. 3508 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3509 DAG.getConstant(-4, DL, PtrVT)); 3510 3511 // Get the number of bits that the word must be rotated left in order 3512 // to bring the field to the top bits of a GR32. 3513 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3514 DAG.getConstant(3, DL, PtrVT)); 3515 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3516 3517 // Get the complementing shift amount, for rotating a field in the top 3518 // bits back to its proper position. 3519 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3520 DAG.getConstant(0, DL, WideVT), BitShift); 3521 3522 // Construct the ATOMIC_CMP_SWAPW node. 3523 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3524 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3525 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3526 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3527 VTList, Ops, NarrowVT, MMO); 3528 return AtomicOp; 3529 } 3530 3531 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3532 SelectionDAG &DAG) const { 3533 MachineFunction &MF = DAG.getMachineFunction(); 3534 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3535 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3536 SystemZ::R15D, Op.getValueType()); 3537 } 3538 3539 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3540 SelectionDAG &DAG) const { 3541 MachineFunction &MF = DAG.getMachineFunction(); 3542 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3543 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3544 3545 SDValue Chain = Op.getOperand(0); 3546 SDValue NewSP = Op.getOperand(1); 3547 SDValue Backchain; 3548 SDLoc DL(Op); 3549 3550 if (StoreBackchain) { 3551 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3552 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3553 } 3554 3555 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3556 3557 if (StoreBackchain) 3558 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3559 3560 return Chain; 3561 } 3562 3563 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3564 SelectionDAG &DAG) const { 3565 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3566 if (!IsData) 3567 // Just preserve the chain. 3568 return Op.getOperand(0); 3569 3570 SDLoc DL(Op); 3571 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3572 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3573 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3574 SDValue Ops[] = { 3575 Op.getOperand(0), 3576 DAG.getConstant(Code, DL, MVT::i32), 3577 Op.getOperand(1) 3578 }; 3579 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3580 Node->getVTList(), Ops, 3581 Node->getMemoryVT(), Node->getMemOperand()); 3582 } 3583 3584 // Return an i32 that contains the value of CC immediately after After, 3585 // whose final operand must be MVT::Glue. 3586 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3587 SDLoc DL(After); 3588 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3589 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3590 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3591 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3592 } 3593 3594 SDValue 3595 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3596 SelectionDAG &DAG) const { 3597 unsigned Opcode, CCValid; 3598 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3599 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3600 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3601 SDValue CC = getCCResult(DAG, Glued.getNode()); 3602 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3603 return SDValue(); 3604 } 3605 3606 return SDValue(); 3607 } 3608 3609 SDValue 3610 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3611 SelectionDAG &DAG) const { 3612 unsigned Opcode, CCValid; 3613 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3614 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3615 SDValue CC = getCCResult(DAG, Glued.getNode()); 3616 if (Op->getNumValues() == 1) 3617 return CC; 3618 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3619 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3620 CC); 3621 } 3622 3623 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3624 switch (Id) { 3625 case Intrinsic::thread_pointer: 3626 return lowerThreadPointer(SDLoc(Op), DAG); 3627 3628 case Intrinsic::s390_vpdi: 3629 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3630 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3631 3632 case Intrinsic::s390_vperm: 3633 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3634 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3635 3636 case Intrinsic::s390_vuphb: 3637 case Intrinsic::s390_vuphh: 3638 case Intrinsic::s390_vuphf: 3639 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3640 Op.getOperand(1)); 3641 3642 case Intrinsic::s390_vuplhb: 3643 case Intrinsic::s390_vuplhh: 3644 case Intrinsic::s390_vuplhf: 3645 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3646 Op.getOperand(1)); 3647 3648 case Intrinsic::s390_vuplb: 3649 case Intrinsic::s390_vuplhw: 3650 case Intrinsic::s390_vuplf: 3651 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3652 Op.getOperand(1)); 3653 3654 case Intrinsic::s390_vupllb: 3655 case Intrinsic::s390_vupllh: 3656 case Intrinsic::s390_vupllf: 3657 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3658 Op.getOperand(1)); 3659 3660 case Intrinsic::s390_vsumb: 3661 case Intrinsic::s390_vsumh: 3662 case Intrinsic::s390_vsumgh: 3663 case Intrinsic::s390_vsumgf: 3664 case Intrinsic::s390_vsumqf: 3665 case Intrinsic::s390_vsumqg: 3666 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3667 Op.getOperand(1), Op.getOperand(2)); 3668 } 3669 3670 return SDValue(); 3671 } 3672 3673 namespace { 3674 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3675 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3676 // Operand is the constant third operand, otherwise it is the number of 3677 // bytes in each element of the result. 3678 struct Permute { 3679 unsigned Opcode; 3680 unsigned Operand; 3681 unsigned char Bytes[SystemZ::VectorBytes]; 3682 }; 3683 } 3684 3685 static const Permute PermuteForms[] = { 3686 // VMRHG 3687 { SystemZISD::MERGE_HIGH, 8, 3688 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3689 // VMRHF 3690 { SystemZISD::MERGE_HIGH, 4, 3691 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3692 // VMRHH 3693 { SystemZISD::MERGE_HIGH, 2, 3694 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3695 // VMRHB 3696 { SystemZISD::MERGE_HIGH, 1, 3697 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3698 // VMRLG 3699 { SystemZISD::MERGE_LOW, 8, 3700 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3701 // VMRLF 3702 { SystemZISD::MERGE_LOW, 4, 3703 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3704 // VMRLH 3705 { SystemZISD::MERGE_LOW, 2, 3706 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3707 // VMRLB 3708 { SystemZISD::MERGE_LOW, 1, 3709 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3710 // VPKG 3711 { SystemZISD::PACK, 4, 3712 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3713 // VPKF 3714 { SystemZISD::PACK, 2, 3715 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3716 // VPKH 3717 { SystemZISD::PACK, 1, 3718 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3719 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3720 { SystemZISD::PERMUTE_DWORDS, 4, 3721 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3722 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3723 { SystemZISD::PERMUTE_DWORDS, 1, 3724 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3725 }; 3726 3727 // Called after matching a vector shuffle against a particular pattern. 3728 // Both the original shuffle and the pattern have two vector operands. 3729 // OpNos[0] is the operand of the original shuffle that should be used for 3730 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3731 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3732 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3733 // for operands 0 and 1 of the pattern. 3734 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3735 if (OpNos[0] < 0) { 3736 if (OpNos[1] < 0) 3737 return false; 3738 OpNo0 = OpNo1 = OpNos[1]; 3739 } else if (OpNos[1] < 0) { 3740 OpNo0 = OpNo1 = OpNos[0]; 3741 } else { 3742 OpNo0 = OpNos[0]; 3743 OpNo1 = OpNos[1]; 3744 } 3745 return true; 3746 } 3747 3748 // Bytes is a VPERM-like permute vector, except that -1 is used for 3749 // undefined bytes. Return true if the VPERM can be implemented using P. 3750 // When returning true set OpNo0 to the VPERM operand that should be 3751 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3752 // 3753 // For example, if swapping the VPERM operands allows P to match, OpNo0 3754 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3755 // operand, but rewriting it to use two duplicated operands allows it to 3756 // match P, then OpNo0 and OpNo1 will be the same. 3757 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3758 unsigned &OpNo0, unsigned &OpNo1) { 3759 int OpNos[] = { -1, -1 }; 3760 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3761 int Elt = Bytes[I]; 3762 if (Elt >= 0) { 3763 // Make sure that the two permute vectors use the same suboperand 3764 // byte number. Only the operand numbers (the high bits) are 3765 // allowed to differ. 3766 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3767 return false; 3768 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3769 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3770 // Make sure that the operand mappings are consistent with previous 3771 // elements. 3772 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3773 return false; 3774 OpNos[ModelOpNo] = RealOpNo; 3775 } 3776 } 3777 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3778 } 3779 3780 // As above, but search for a matching permute. 3781 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3782 unsigned &OpNo0, unsigned &OpNo1) { 3783 for (auto &P : PermuteForms) 3784 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3785 return &P; 3786 return nullptr; 3787 } 3788 3789 // Bytes is a VPERM-like permute vector, except that -1 is used for 3790 // undefined bytes. This permute is an operand of an outer permute. 3791 // See whether redistributing the -1 bytes gives a shuffle that can be 3792 // implemented using P. If so, set Transform to a VPERM-like permute vector 3793 // that, when applied to the result of P, gives the original permute in Bytes. 3794 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3795 const Permute &P, 3796 SmallVectorImpl<int> &Transform) { 3797 unsigned To = 0; 3798 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3799 int Elt = Bytes[From]; 3800 if (Elt < 0) 3801 // Byte number From of the result is undefined. 3802 Transform[From] = -1; 3803 else { 3804 while (P.Bytes[To] != Elt) { 3805 To += 1; 3806 if (To == SystemZ::VectorBytes) 3807 return false; 3808 } 3809 Transform[From] = To; 3810 } 3811 } 3812 return true; 3813 } 3814 3815 // As above, but search for a matching permute. 3816 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3817 SmallVectorImpl<int> &Transform) { 3818 for (auto &P : PermuteForms) 3819 if (matchDoublePermute(Bytes, P, Transform)) 3820 return &P; 3821 return nullptr; 3822 } 3823 3824 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3825 // as if it had type vNi8. 3826 static void getVPermMask(ShuffleVectorSDNode *VSN, 3827 SmallVectorImpl<int> &Bytes) { 3828 EVT VT = VSN->getValueType(0); 3829 unsigned NumElements = VT.getVectorNumElements(); 3830 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3831 Bytes.resize(NumElements * BytesPerElement, -1); 3832 for (unsigned I = 0; I < NumElements; ++I) { 3833 int Index = VSN->getMaskElt(I); 3834 if (Index >= 0) 3835 for (unsigned J = 0; J < BytesPerElement; ++J) 3836 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3837 } 3838 } 3839 3840 // Bytes is a VPERM-like permute vector, except that -1 is used for 3841 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3842 // the result come from a contiguous sequence of bytes from one input. 3843 // Set Base to the selector for the first byte if so. 3844 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3845 unsigned BytesPerElement, int &Base) { 3846 Base = -1; 3847 for (unsigned I = 0; I < BytesPerElement; ++I) { 3848 if (Bytes[Start + I] >= 0) { 3849 unsigned Elem = Bytes[Start + I]; 3850 if (Base < 0) { 3851 Base = Elem - I; 3852 // Make sure the bytes would come from one input operand. 3853 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3854 return false; 3855 } else if (unsigned(Base) != Elem - I) 3856 return false; 3857 } 3858 } 3859 return true; 3860 } 3861 3862 // Bytes is a VPERM-like permute vector, except that -1 is used for 3863 // undefined bytes. Return true if it can be performed using VSLDI. 3864 // When returning true, set StartIndex to the shift amount and OpNo0 3865 // and OpNo1 to the VPERM operands that should be used as the first 3866 // and second shift operand respectively. 3867 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3868 unsigned &StartIndex, unsigned &OpNo0, 3869 unsigned &OpNo1) { 3870 int OpNos[] = { -1, -1 }; 3871 int Shift = -1; 3872 for (unsigned I = 0; I < 16; ++I) { 3873 int Index = Bytes[I]; 3874 if (Index >= 0) { 3875 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3876 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3877 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3878 if (Shift < 0) 3879 Shift = ExpectedShift; 3880 else if (Shift != ExpectedShift) 3881 return false; 3882 // Make sure that the operand mappings are consistent with previous 3883 // elements. 3884 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3885 return false; 3886 OpNos[ModelOpNo] = RealOpNo; 3887 } 3888 } 3889 StartIndex = Shift; 3890 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3891 } 3892 3893 // Create a node that performs P on operands Op0 and Op1, casting the 3894 // operands to the appropriate type. The type of the result is determined by P. 3895 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3896 const Permute &P, SDValue Op0, SDValue Op1) { 3897 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3898 // elements of a PACK are twice as wide as the outputs. 3899 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3900 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3901 P.Operand); 3902 // Cast both operands to the appropriate type. 3903 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3904 SystemZ::VectorBytes / InBytes); 3905 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3906 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3907 SDValue Op; 3908 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3909 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3910 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3911 } else if (P.Opcode == SystemZISD::PACK) { 3912 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3913 SystemZ::VectorBytes / P.Operand); 3914 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3915 } else { 3916 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3917 } 3918 return Op; 3919 } 3920 3921 // Bytes is a VPERM-like permute vector, except that -1 is used for 3922 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3923 // VSLDI or VPERM. 3924 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3925 SDValue *Ops, 3926 const SmallVectorImpl<int> &Bytes) { 3927 for (unsigned I = 0; I < 2; ++I) 3928 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3929 3930 // First see whether VSLDI can be used. 3931 unsigned StartIndex, OpNo0, OpNo1; 3932 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3933 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3934 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3935 3936 // Fall back on VPERM. Construct an SDNode for the permute vector. 3937 SDValue IndexNodes[SystemZ::VectorBytes]; 3938 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3939 if (Bytes[I] >= 0) 3940 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3941 else 3942 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3943 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3944 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3945 } 3946 3947 namespace { 3948 // Describes a general N-operand vector shuffle. 3949 struct GeneralShuffle { 3950 GeneralShuffle(EVT vt) : VT(vt) {} 3951 void addUndef(); 3952 bool add(SDValue, unsigned); 3953 SDValue getNode(SelectionDAG &, const SDLoc &); 3954 3955 // The operands of the shuffle. 3956 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3957 3958 // Index I is -1 if byte I of the result is undefined. Otherwise the 3959 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3960 // Bytes[I] / SystemZ::VectorBytes. 3961 SmallVector<int, SystemZ::VectorBytes> Bytes; 3962 3963 // The type of the shuffle result. 3964 EVT VT; 3965 }; 3966 } 3967 3968 // Add an extra undefined element to the shuffle. 3969 void GeneralShuffle::addUndef() { 3970 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3971 for (unsigned I = 0; I < BytesPerElement; ++I) 3972 Bytes.push_back(-1); 3973 } 3974 3975 // Add an extra element to the shuffle, taking it from element Elem of Op. 3976 // A null Op indicates a vector input whose value will be calculated later; 3977 // there is at most one such input per shuffle and it always has the same 3978 // type as the result. Aborts and returns false if the source vector elements 3979 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 3980 // LLVM they become implicitly extended, but this is rare and not optimized. 3981 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 3982 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3983 3984 // The source vector can have wider elements than the result, 3985 // either through an explicit TRUNCATE or because of type legalization. 3986 // We want the least significant part. 3987 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3988 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3989 3990 // Return false if the source elements are smaller than their destination 3991 // elements. 3992 if (FromBytesPerElement < BytesPerElement) 3993 return false; 3994 3995 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3996 (FromBytesPerElement - BytesPerElement)); 3997 3998 // Look through things like shuffles and bitcasts. 3999 while (Op.getNode()) { 4000 if (Op.getOpcode() == ISD::BITCAST) 4001 Op = Op.getOperand(0); 4002 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4003 // See whether the bytes we need come from a contiguous part of one 4004 // operand. 4005 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4006 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 4007 int NewByte; 4008 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4009 break; 4010 if (NewByte < 0) { 4011 addUndef(); 4012 return true; 4013 } 4014 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4015 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4016 } else if (Op.isUndef()) { 4017 addUndef(); 4018 return true; 4019 } else 4020 break; 4021 } 4022 4023 // Make sure that the source of the extraction is in Ops. 4024 unsigned OpNo = 0; 4025 for (; OpNo < Ops.size(); ++OpNo) 4026 if (Ops[OpNo] == Op) 4027 break; 4028 if (OpNo == Ops.size()) 4029 Ops.push_back(Op); 4030 4031 // Add the element to Bytes. 4032 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4033 for (unsigned I = 0; I < BytesPerElement; ++I) 4034 Bytes.push_back(Base + I); 4035 4036 return true; 4037 } 4038 4039 // Return SDNodes for the completed shuffle. 4040 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4041 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4042 4043 if (Ops.size() == 0) 4044 return DAG.getUNDEF(VT); 4045 4046 // Make sure that there are at least two shuffle operands. 4047 if (Ops.size() == 1) 4048 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4049 4050 // Create a tree of shuffles, deferring root node until after the loop. 4051 // Try to redistribute the undefined elements of non-root nodes so that 4052 // the non-root shuffles match something like a pack or merge, then adjust 4053 // the parent node's permute vector to compensate for the new order. 4054 // Among other things, this copes with vectors like <2 x i16> that were 4055 // padded with undefined elements during type legalization. 4056 // 4057 // In the best case this redistribution will lead to the whole tree 4058 // using packs and merges. It should rarely be a loss in other cases. 4059 unsigned Stride = 1; 4060 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4061 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4062 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4063 4064 // Create a mask for just these two operands. 4065 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4066 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4067 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4068 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4069 if (OpNo == I) 4070 NewBytes[J] = Byte; 4071 else if (OpNo == I + Stride) 4072 NewBytes[J] = SystemZ::VectorBytes + Byte; 4073 else 4074 NewBytes[J] = -1; 4075 } 4076 // See if it would be better to reorganize NewMask to avoid using VPERM. 4077 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4078 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4079 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4080 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4081 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4082 if (NewBytes[J] >= 0) { 4083 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4084 "Invalid double permute"); 4085 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4086 } else 4087 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4088 } 4089 } else { 4090 // Just use NewBytes on the operands. 4091 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4092 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4093 if (NewBytes[J] >= 0) 4094 Bytes[J] = I * SystemZ::VectorBytes + J; 4095 } 4096 } 4097 } 4098 4099 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4100 if (Stride > 1) { 4101 Ops[1] = Ops[Stride]; 4102 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4103 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4104 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4105 } 4106 4107 // Look for an instruction that can do the permute without resorting 4108 // to VPERM. 4109 unsigned OpNo0, OpNo1; 4110 SDValue Op; 4111 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4112 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4113 else 4114 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4115 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4116 } 4117 4118 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4119 static bool isScalarToVector(SDValue Op) { 4120 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4121 if (!Op.getOperand(I).isUndef()) 4122 return false; 4123 return true; 4124 } 4125 4126 // Return a vector of type VT that contains Value in the first element. 4127 // The other elements don't matter. 4128 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4129 SDValue Value) { 4130 // If we have a constant, replicate it to all elements and let the 4131 // BUILD_VECTOR lowering take care of it. 4132 if (Value.getOpcode() == ISD::Constant || 4133 Value.getOpcode() == ISD::ConstantFP) { 4134 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4135 return DAG.getBuildVector(VT, DL, Ops); 4136 } 4137 if (Value.isUndef()) 4138 return DAG.getUNDEF(VT); 4139 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4140 } 4141 4142 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4143 // element 1. Used for cases in which replication is cheap. 4144 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4145 SDValue Op0, SDValue Op1) { 4146 if (Op0.isUndef()) { 4147 if (Op1.isUndef()) 4148 return DAG.getUNDEF(VT); 4149 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4150 } 4151 if (Op1.isUndef()) 4152 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4153 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4154 buildScalarToVector(DAG, DL, VT, Op0), 4155 buildScalarToVector(DAG, DL, VT, Op1)); 4156 } 4157 4158 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4159 // vector for them. 4160 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4161 SDValue Op1) { 4162 if (Op0.isUndef() && Op1.isUndef()) 4163 return DAG.getUNDEF(MVT::v2i64); 4164 // If one of the two inputs is undefined then replicate the other one, 4165 // in order to avoid using another register unnecessarily. 4166 if (Op0.isUndef()) 4167 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4168 else if (Op1.isUndef()) 4169 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4170 else { 4171 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4172 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4173 } 4174 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4175 } 4176 4177 // Try to represent constant BUILD_VECTOR node BVN using a 4178 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4179 // on success. 4180 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4181 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4182 unsigned BytesPerElement = ElemVT.getStoreSize(); 4183 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4184 SDValue Op = BVN->getOperand(I); 4185 if (!Op.isUndef()) { 4186 uint64_t Value; 4187 if (Op.getOpcode() == ISD::Constant) 4188 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 4189 else if (Op.getOpcode() == ISD::ConstantFP) 4190 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4191 .getZExtValue()); 4192 else 4193 return false; 4194 for (unsigned J = 0; J < BytesPerElement; ++J) { 4195 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4196 if (Byte == 0xff) 4197 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4198 else if (Byte != 0) 4199 return false; 4200 } 4201 } 4202 } 4203 return true; 4204 } 4205 4206 // Try to load a vector constant in which BitsPerElement-bit value Value 4207 // is replicated to fill the vector. VT is the type of the resulting 4208 // constant, which may have elements of a different size from BitsPerElement. 4209 // Return the SDValue of the constant on success, otherwise return 4210 // an empty value. 4211 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4212 const SystemZInstrInfo *TII, 4213 const SDLoc &DL, EVT VT, uint64_t Value, 4214 unsigned BitsPerElement) { 4215 // Signed 16-bit values can be replicated using VREPI. 4216 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4217 if (isInt<16>(SignedValue)) { 4218 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4219 SystemZ::VectorBits / BitsPerElement); 4220 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 4221 DAG.getConstant(SignedValue, DL, MVT::i32)); 4222 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4223 } 4224 // See whether rotating the constant left some N places gives a value that 4225 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4226 // If so we can use VGM. 4227 unsigned Start, End; 4228 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4229 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4230 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4231 // bit numbers for an BitsPerElement value, so that 0 denotes 4232 // 1 << (BitsPerElement-1). 4233 Start -= 64 - BitsPerElement; 4234 End -= 64 - BitsPerElement; 4235 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4236 SystemZ::VectorBits / BitsPerElement); 4237 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4238 DAG.getConstant(Start, DL, MVT::i32), 4239 DAG.getConstant(End, DL, MVT::i32)); 4240 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4241 } 4242 return SDValue(); 4243 } 4244 4245 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4246 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4247 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4248 // would benefit from this representation and return it if so. 4249 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4250 BuildVectorSDNode *BVN) { 4251 EVT VT = BVN->getValueType(0); 4252 unsigned NumElements = VT.getVectorNumElements(); 4253 4254 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4255 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4256 // need a BUILD_VECTOR, add an additional placeholder operand for that 4257 // BUILD_VECTOR and store its operands in ResidueOps. 4258 GeneralShuffle GS(VT); 4259 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4260 bool FoundOne = false; 4261 for (unsigned I = 0; I < NumElements; ++I) { 4262 SDValue Op = BVN->getOperand(I); 4263 if (Op.getOpcode() == ISD::TRUNCATE) 4264 Op = Op.getOperand(0); 4265 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4266 Op.getOperand(1).getOpcode() == ISD::Constant) { 4267 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4268 if (!GS.add(Op.getOperand(0), Elem)) 4269 return SDValue(); 4270 FoundOne = true; 4271 } else if (Op.isUndef()) { 4272 GS.addUndef(); 4273 } else { 4274 if (!GS.add(SDValue(), ResidueOps.size())) 4275 return SDValue(); 4276 ResidueOps.push_back(BVN->getOperand(I)); 4277 } 4278 } 4279 4280 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4281 if (!FoundOne) 4282 return SDValue(); 4283 4284 // Create the BUILD_VECTOR for the remaining elements, if any. 4285 if (!ResidueOps.empty()) { 4286 while (ResidueOps.size() < NumElements) 4287 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4288 for (auto &Op : GS.Ops) { 4289 if (!Op.getNode()) { 4290 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4291 break; 4292 } 4293 } 4294 } 4295 return GS.getNode(DAG, SDLoc(BVN)); 4296 } 4297 4298 // Combine GPR scalar values Elems into a vector of type VT. 4299 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4300 SmallVectorImpl<SDValue> &Elems) { 4301 // See whether there is a single replicated value. 4302 SDValue Single; 4303 unsigned int NumElements = Elems.size(); 4304 unsigned int Count = 0; 4305 for (auto Elem : Elems) { 4306 if (!Elem.isUndef()) { 4307 if (!Single.getNode()) 4308 Single = Elem; 4309 else if (Elem != Single) { 4310 Single = SDValue(); 4311 break; 4312 } 4313 Count += 1; 4314 } 4315 } 4316 // There are three cases here: 4317 // 4318 // - if the only defined element is a loaded one, the best sequence 4319 // is a replicating load. 4320 // 4321 // - otherwise, if the only defined element is an i64 value, we will 4322 // end up with the same VLVGP sequence regardless of whether we short-cut 4323 // for replication or fall through to the later code. 4324 // 4325 // - otherwise, if the only defined element is an i32 or smaller value, 4326 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4327 // This is only a win if the single defined element is used more than once. 4328 // In other cases we're better off using a single VLVGx. 4329 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4330 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4331 4332 // If all elements are loads, use VLREP/VLEs (below). 4333 bool AllLoads = true; 4334 for (auto Elem : Elems) 4335 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) { 4336 AllLoads = false; 4337 break; 4338 } 4339 4340 // The best way of building a v2i64 from two i64s is to use VLVGP. 4341 if (VT == MVT::v2i64 && !AllLoads) 4342 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4343 4344 // Use a 64-bit merge high to combine two doubles. 4345 if (VT == MVT::v2f64 && !AllLoads) 4346 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4347 4348 // Build v4f32 values directly from the FPRs: 4349 // 4350 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4351 // V V VMRHF 4352 // <ABxx> <CDxx> 4353 // V VMRHG 4354 // <ABCD> 4355 if (VT == MVT::v4f32 && !AllLoads) { 4356 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4357 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4358 // Avoid unnecessary undefs by reusing the other operand. 4359 if (Op01.isUndef()) 4360 Op01 = Op23; 4361 else if (Op23.isUndef()) 4362 Op23 = Op01; 4363 // Merging identical replications is a no-op. 4364 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4365 return Op01; 4366 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4367 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4368 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4369 DL, MVT::v2i64, Op01, Op23); 4370 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4371 } 4372 4373 // Collect the constant terms. 4374 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4375 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4376 4377 unsigned NumConstants = 0; 4378 for (unsigned I = 0; I < NumElements; ++I) { 4379 SDValue Elem = Elems[I]; 4380 if (Elem.getOpcode() == ISD::Constant || 4381 Elem.getOpcode() == ISD::ConstantFP) { 4382 NumConstants += 1; 4383 Constants[I] = Elem; 4384 Done[I] = true; 4385 } 4386 } 4387 // If there was at least one constant, fill in the other elements of 4388 // Constants with undefs to get a full vector constant and use that 4389 // as the starting point. 4390 SDValue Result; 4391 if (NumConstants > 0) { 4392 for (unsigned I = 0; I < NumElements; ++I) 4393 if (!Constants[I].getNode()) 4394 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4395 Result = DAG.getBuildVector(VT, DL, Constants); 4396 } else { 4397 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4398 // avoid a false dependency on any previous contents of the vector 4399 // register. 4400 4401 // Use a VLREP if at least one element is a load. 4402 unsigned LoadElIdx = UINT_MAX; 4403 for (unsigned I = 0; I < NumElements; ++I) 4404 if (Elems[I].getOpcode() == ISD::LOAD && 4405 cast<LoadSDNode>(Elems[I])->isUnindexed()) { 4406 LoadElIdx = I; 4407 break; 4408 } 4409 if (LoadElIdx != UINT_MAX) { 4410 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]); 4411 Done[LoadElIdx] = true; 4412 } else { 4413 // Try to use VLVGP. 4414 unsigned I1 = NumElements / 2 - 1; 4415 unsigned I2 = NumElements - 1; 4416 bool Def1 = !Elems[I1].isUndef(); 4417 bool Def2 = !Elems[I2].isUndef(); 4418 if (Def1 || Def2) { 4419 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4420 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4421 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4422 joinDwords(DAG, DL, Elem1, Elem2)); 4423 Done[I1] = true; 4424 Done[I2] = true; 4425 } else 4426 Result = DAG.getUNDEF(VT); 4427 } 4428 } 4429 4430 // Use VLVGx to insert the other elements. 4431 for (unsigned I = 0; I < NumElements; ++I) 4432 if (!Done[I] && !Elems[I].isUndef()) 4433 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4434 DAG.getConstant(I, DL, MVT::i32)); 4435 return Result; 4436 } 4437 4438 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4439 SelectionDAG &DAG) const { 4440 const SystemZInstrInfo *TII = 4441 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4442 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4443 SDLoc DL(Op); 4444 EVT VT = Op.getValueType(); 4445 4446 if (BVN->isConstant()) { 4447 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4448 // preferred way of creating all-zero and all-one vectors so give it 4449 // priority over other methods below. 4450 uint64_t Mask = 0; 4451 if (tryBuildVectorByteMask(BVN, Mask)) { 4452 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4453 DAG.getConstant(Mask, DL, MVT::i32)); 4454 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4455 } 4456 4457 // Try using some form of replication. 4458 APInt SplatBits, SplatUndef; 4459 unsigned SplatBitSize; 4460 bool HasAnyUndefs; 4461 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4462 8, true) && 4463 SplatBitSize <= 64) { 4464 // First try assuming that any undefined bits above the highest set bit 4465 // and below the lowest set bit are 1s. This increases the likelihood of 4466 // being able to use a sign-extended element value in VECTOR REPLICATE 4467 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4468 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4469 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4470 uint64_t Lower = (SplatUndefZ 4471 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4472 uint64_t Upper = (SplatUndefZ 4473 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4474 uint64_t Value = SplatBitsZ | Upper | Lower; 4475 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4476 SplatBitSize); 4477 if (Op.getNode()) 4478 return Op; 4479 4480 // Now try assuming that any undefined bits between the first and 4481 // last defined set bits are set. This increases the chances of 4482 // using a non-wraparound mask. 4483 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4484 Value = SplatBitsZ | Middle; 4485 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4486 if (Op.getNode()) 4487 return Op; 4488 } 4489 4490 // Fall back to loading it from memory. 4491 return SDValue(); 4492 } 4493 4494 // See if we should use shuffles to construct the vector from other vectors. 4495 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4496 return Res; 4497 4498 // Detect SCALAR_TO_VECTOR conversions. 4499 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4500 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4501 4502 // Otherwise use buildVector to build the vector up from GPRs. 4503 unsigned NumElements = Op.getNumOperands(); 4504 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4505 for (unsigned I = 0; I < NumElements; ++I) 4506 Ops[I] = Op.getOperand(I); 4507 return buildVector(DAG, DL, VT, Ops); 4508 } 4509 4510 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4511 SelectionDAG &DAG) const { 4512 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4513 SDLoc DL(Op); 4514 EVT VT = Op.getValueType(); 4515 unsigned NumElements = VT.getVectorNumElements(); 4516 4517 if (VSN->isSplat()) { 4518 SDValue Op0 = Op.getOperand(0); 4519 unsigned Index = VSN->getSplatIndex(); 4520 assert(Index < VT.getVectorNumElements() && 4521 "Splat index should be defined and in first operand"); 4522 // See whether the value we're splatting is directly available as a scalar. 4523 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4524 Op0.getOpcode() == ISD::BUILD_VECTOR) 4525 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4526 // Otherwise keep it as a vector-to-vector operation. 4527 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4528 DAG.getConstant(Index, DL, MVT::i32)); 4529 } 4530 4531 GeneralShuffle GS(VT); 4532 for (unsigned I = 0; I < NumElements; ++I) { 4533 int Elt = VSN->getMaskElt(I); 4534 if (Elt < 0) 4535 GS.addUndef(); 4536 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4537 unsigned(Elt) % NumElements)) 4538 return SDValue(); 4539 } 4540 return GS.getNode(DAG, SDLoc(VSN)); 4541 } 4542 4543 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4544 SelectionDAG &DAG) const { 4545 SDLoc DL(Op); 4546 // Just insert the scalar into element 0 of an undefined vector. 4547 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4548 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4549 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4550 } 4551 4552 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4553 SelectionDAG &DAG) const { 4554 // Handle insertions of floating-point values. 4555 SDLoc DL(Op); 4556 SDValue Op0 = Op.getOperand(0); 4557 SDValue Op1 = Op.getOperand(1); 4558 SDValue Op2 = Op.getOperand(2); 4559 EVT VT = Op.getValueType(); 4560 4561 // Insertions into constant indices of a v2f64 can be done using VPDI. 4562 // However, if the inserted value is a bitcast or a constant then it's 4563 // better to use GPRs, as below. 4564 if (VT == MVT::v2f64 && 4565 Op1.getOpcode() != ISD::BITCAST && 4566 Op1.getOpcode() != ISD::ConstantFP && 4567 Op2.getOpcode() == ISD::Constant) { 4568 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4569 unsigned Mask = VT.getVectorNumElements() - 1; 4570 if (Index <= Mask) 4571 return Op; 4572 } 4573 4574 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4575 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4576 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4577 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4578 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4579 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4580 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4581 } 4582 4583 SDValue 4584 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4585 SelectionDAG &DAG) const { 4586 // Handle extractions of floating-point values. 4587 SDLoc DL(Op); 4588 SDValue Op0 = Op.getOperand(0); 4589 SDValue Op1 = Op.getOperand(1); 4590 EVT VT = Op.getValueType(); 4591 EVT VecVT = Op0.getValueType(); 4592 4593 // Extractions of constant indices can be done directly. 4594 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4595 uint64_t Index = CIndexN->getZExtValue(); 4596 unsigned Mask = VecVT.getVectorNumElements() - 1; 4597 if (Index <= Mask) 4598 return Op; 4599 } 4600 4601 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4602 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4603 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4604 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4605 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4606 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4607 } 4608 4609 SDValue 4610 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4611 unsigned UnpackHigh) const { 4612 SDValue PackedOp = Op.getOperand(0); 4613 EVT OutVT = Op.getValueType(); 4614 EVT InVT = PackedOp.getValueType(); 4615 unsigned ToBits = OutVT.getScalarSizeInBits(); 4616 unsigned FromBits = InVT.getScalarSizeInBits(); 4617 do { 4618 FromBits *= 2; 4619 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4620 SystemZ::VectorBits / FromBits); 4621 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4622 } while (FromBits != ToBits); 4623 return PackedOp; 4624 } 4625 4626 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4627 unsigned ByScalar) const { 4628 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4629 SDValue Op0 = Op.getOperand(0); 4630 SDValue Op1 = Op.getOperand(1); 4631 SDLoc DL(Op); 4632 EVT VT = Op.getValueType(); 4633 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4634 4635 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4636 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4637 APInt SplatBits, SplatUndef; 4638 unsigned SplatBitSize; 4639 bool HasAnyUndefs; 4640 // Check for constant splats. Use ElemBitSize as the minimum element 4641 // width and reject splats that need wider elements. 4642 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4643 ElemBitSize, true) && 4644 SplatBitSize == ElemBitSize) { 4645 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4646 DL, MVT::i32); 4647 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4648 } 4649 // Check for variable splats. 4650 BitVector UndefElements; 4651 SDValue Splat = BVN->getSplatValue(&UndefElements); 4652 if (Splat) { 4653 // Since i32 is the smallest legal type, we either need a no-op 4654 // or a truncation. 4655 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4656 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4657 } 4658 } 4659 4660 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4661 // and the shift amount is directly available in a GPR. 4662 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4663 if (VSN->isSplat()) { 4664 SDValue VSNOp0 = VSN->getOperand(0); 4665 unsigned Index = VSN->getSplatIndex(); 4666 assert(Index < VT.getVectorNumElements() && 4667 "Splat index should be defined and in first operand"); 4668 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4669 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4670 // Since i32 is the smallest legal type, we either need a no-op 4671 // or a truncation. 4672 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4673 VSNOp0.getOperand(Index)); 4674 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4675 } 4676 } 4677 } 4678 4679 // Otherwise just treat the current form as legal. 4680 return Op; 4681 } 4682 4683 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4684 SelectionDAG &DAG) const { 4685 switch (Op.getOpcode()) { 4686 case ISD::FRAMEADDR: 4687 return lowerFRAMEADDR(Op, DAG); 4688 case ISD::RETURNADDR: 4689 return lowerRETURNADDR(Op, DAG); 4690 case ISD::BR_CC: 4691 return lowerBR_CC(Op, DAG); 4692 case ISD::SELECT_CC: 4693 return lowerSELECT_CC(Op, DAG); 4694 case ISD::SETCC: 4695 return lowerSETCC(Op, DAG); 4696 case ISD::GlobalAddress: 4697 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4698 case ISD::GlobalTLSAddress: 4699 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4700 case ISD::BlockAddress: 4701 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4702 case ISD::JumpTable: 4703 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4704 case ISD::ConstantPool: 4705 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4706 case ISD::BITCAST: 4707 return lowerBITCAST(Op, DAG); 4708 case ISD::VASTART: 4709 return lowerVASTART(Op, DAG); 4710 case ISD::VACOPY: 4711 return lowerVACOPY(Op, DAG); 4712 case ISD::DYNAMIC_STACKALLOC: 4713 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4714 case ISD::GET_DYNAMIC_AREA_OFFSET: 4715 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4716 case ISD::SMUL_LOHI: 4717 return lowerSMUL_LOHI(Op, DAG); 4718 case ISD::UMUL_LOHI: 4719 return lowerUMUL_LOHI(Op, DAG); 4720 case ISD::SDIVREM: 4721 return lowerSDIVREM(Op, DAG); 4722 case ISD::UDIVREM: 4723 return lowerUDIVREM(Op, DAG); 4724 case ISD::OR: 4725 return lowerOR(Op, DAG); 4726 case ISD::CTPOP: 4727 return lowerCTPOP(Op, DAG); 4728 case ISD::ATOMIC_FENCE: 4729 return lowerATOMIC_FENCE(Op, DAG); 4730 case ISD::ATOMIC_SWAP: 4731 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4732 case ISD::ATOMIC_STORE: 4733 return lowerATOMIC_STORE(Op, DAG); 4734 case ISD::ATOMIC_LOAD: 4735 return lowerATOMIC_LOAD(Op, DAG); 4736 case ISD::ATOMIC_LOAD_ADD: 4737 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4738 case ISD::ATOMIC_LOAD_SUB: 4739 return lowerATOMIC_LOAD_SUB(Op, DAG); 4740 case ISD::ATOMIC_LOAD_AND: 4741 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4742 case ISD::ATOMIC_LOAD_OR: 4743 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4744 case ISD::ATOMIC_LOAD_XOR: 4745 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4746 case ISD::ATOMIC_LOAD_NAND: 4747 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4748 case ISD::ATOMIC_LOAD_MIN: 4749 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4750 case ISD::ATOMIC_LOAD_MAX: 4751 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4752 case ISD::ATOMIC_LOAD_UMIN: 4753 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4754 case ISD::ATOMIC_LOAD_UMAX: 4755 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4756 case ISD::ATOMIC_CMP_SWAP: 4757 return lowerATOMIC_CMP_SWAP(Op, DAG); 4758 case ISD::STACKSAVE: 4759 return lowerSTACKSAVE(Op, DAG); 4760 case ISD::STACKRESTORE: 4761 return lowerSTACKRESTORE(Op, DAG); 4762 case ISD::PREFETCH: 4763 return lowerPREFETCH(Op, DAG); 4764 case ISD::INTRINSIC_W_CHAIN: 4765 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4766 case ISD::INTRINSIC_WO_CHAIN: 4767 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4768 case ISD::BUILD_VECTOR: 4769 return lowerBUILD_VECTOR(Op, DAG); 4770 case ISD::VECTOR_SHUFFLE: 4771 return lowerVECTOR_SHUFFLE(Op, DAG); 4772 case ISD::SCALAR_TO_VECTOR: 4773 return lowerSCALAR_TO_VECTOR(Op, DAG); 4774 case ISD::INSERT_VECTOR_ELT: 4775 return lowerINSERT_VECTOR_ELT(Op, DAG); 4776 case ISD::EXTRACT_VECTOR_ELT: 4777 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4778 case ISD::SIGN_EXTEND_VECTOR_INREG: 4779 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4780 case ISD::ZERO_EXTEND_VECTOR_INREG: 4781 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4782 case ISD::SHL: 4783 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4784 case ISD::SRL: 4785 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4786 case ISD::SRA: 4787 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4788 default: 4789 llvm_unreachable("Unexpected node to lower"); 4790 } 4791 } 4792 4793 // Lower operations with invalid operand or result types (currently used 4794 // only for 128-bit integer types). 4795 4796 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 4797 SDLoc DL(In); 4798 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4799 DAG.getIntPtrConstant(0, DL)); 4800 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4801 DAG.getIntPtrConstant(1, DL)); 4802 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 4803 MVT::Untyped, Hi, Lo); 4804 return SDValue(Pair, 0); 4805 } 4806 4807 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 4808 SDLoc DL(In); 4809 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 4810 DL, MVT::i64, In); 4811 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 4812 DL, MVT::i64, In); 4813 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 4814 } 4815 4816 void 4817 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 4818 SmallVectorImpl<SDValue> &Results, 4819 SelectionDAG &DAG) const { 4820 switch (N->getOpcode()) { 4821 case ISD::ATOMIC_LOAD: { 4822 SDLoc DL(N); 4823 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4824 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 4825 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4826 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 4827 DL, Tys, Ops, MVT::i128, MMO); 4828 Results.push_back(lowerGR128ToI128(DAG, Res)); 4829 Results.push_back(Res.getValue(1)); 4830 break; 4831 } 4832 case ISD::ATOMIC_STORE: { 4833 SDLoc DL(N); 4834 SDVTList Tys = DAG.getVTList(MVT::Other); 4835 SDValue Ops[] = { N->getOperand(0), 4836 lowerI128ToGR128(DAG, N->getOperand(2)), 4837 N->getOperand(1) }; 4838 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4839 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 4840 DL, Tys, Ops, MVT::i128, MMO); 4841 // We have to enforce sequential consistency by performing a 4842 // serialization operation after the store. 4843 if (cast<AtomicSDNode>(N)->getOrdering() == 4844 AtomicOrdering::SequentiallyConsistent) 4845 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 4846 MVT::Other, Res), 0); 4847 Results.push_back(Res); 4848 break; 4849 } 4850 case ISD::ATOMIC_CMP_SWAP: { 4851 SDLoc DL(N); 4852 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4853 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 4854 lowerI128ToGR128(DAG, N->getOperand(2)), 4855 lowerI128ToGR128(DAG, N->getOperand(3)) }; 4856 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4857 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 4858 DL, Tys, Ops, MVT::i128, MMO); 4859 Results.push_back(lowerGR128ToI128(DAG, Res)); 4860 Results.push_back(Res.getValue(1)); 4861 break; 4862 } 4863 default: 4864 llvm_unreachable("Unexpected node to lower"); 4865 } 4866 } 4867 4868 void 4869 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 4870 SmallVectorImpl<SDValue> &Results, 4871 SelectionDAG &DAG) const { 4872 return LowerOperationWrapper(N, Results, DAG); 4873 } 4874 4875 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4876 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4877 switch ((SystemZISD::NodeType)Opcode) { 4878 case SystemZISD::FIRST_NUMBER: break; 4879 OPCODE(RET_FLAG); 4880 OPCODE(CALL); 4881 OPCODE(SIBCALL); 4882 OPCODE(TLS_GDCALL); 4883 OPCODE(TLS_LDCALL); 4884 OPCODE(PCREL_WRAPPER); 4885 OPCODE(PCREL_OFFSET); 4886 OPCODE(IABS); 4887 OPCODE(ICMP); 4888 OPCODE(FCMP); 4889 OPCODE(TM); 4890 OPCODE(BR_CCMASK); 4891 OPCODE(SELECT_CCMASK); 4892 OPCODE(ADJDYNALLOC); 4893 OPCODE(POPCNT); 4894 OPCODE(SMUL_LOHI); 4895 OPCODE(UMUL_LOHI); 4896 OPCODE(SDIVREM); 4897 OPCODE(UDIVREM); 4898 OPCODE(MVC); 4899 OPCODE(MVC_LOOP); 4900 OPCODE(NC); 4901 OPCODE(NC_LOOP); 4902 OPCODE(OC); 4903 OPCODE(OC_LOOP); 4904 OPCODE(XC); 4905 OPCODE(XC_LOOP); 4906 OPCODE(CLC); 4907 OPCODE(CLC_LOOP); 4908 OPCODE(STPCPY); 4909 OPCODE(STRCMP); 4910 OPCODE(SEARCH_STRING); 4911 OPCODE(IPM); 4912 OPCODE(MEMBARRIER); 4913 OPCODE(TBEGIN); 4914 OPCODE(TBEGIN_NOFLOAT); 4915 OPCODE(TEND); 4916 OPCODE(BYTE_MASK); 4917 OPCODE(ROTATE_MASK); 4918 OPCODE(REPLICATE); 4919 OPCODE(JOIN_DWORDS); 4920 OPCODE(SPLAT); 4921 OPCODE(MERGE_HIGH); 4922 OPCODE(MERGE_LOW); 4923 OPCODE(SHL_DOUBLE); 4924 OPCODE(PERMUTE_DWORDS); 4925 OPCODE(PERMUTE); 4926 OPCODE(PACK); 4927 OPCODE(PACKS_CC); 4928 OPCODE(PACKLS_CC); 4929 OPCODE(UNPACK_HIGH); 4930 OPCODE(UNPACKL_HIGH); 4931 OPCODE(UNPACK_LOW); 4932 OPCODE(UNPACKL_LOW); 4933 OPCODE(VSHL_BY_SCALAR); 4934 OPCODE(VSRL_BY_SCALAR); 4935 OPCODE(VSRA_BY_SCALAR); 4936 OPCODE(VSUM); 4937 OPCODE(VICMPE); 4938 OPCODE(VICMPH); 4939 OPCODE(VICMPHL); 4940 OPCODE(VICMPES); 4941 OPCODE(VICMPHS); 4942 OPCODE(VICMPHLS); 4943 OPCODE(VFCMPE); 4944 OPCODE(VFCMPH); 4945 OPCODE(VFCMPHE); 4946 OPCODE(VFCMPES); 4947 OPCODE(VFCMPHS); 4948 OPCODE(VFCMPHES); 4949 OPCODE(VFTCI); 4950 OPCODE(VEXTEND); 4951 OPCODE(VROUND); 4952 OPCODE(VTM); 4953 OPCODE(VFAE_CC); 4954 OPCODE(VFAEZ_CC); 4955 OPCODE(VFEE_CC); 4956 OPCODE(VFEEZ_CC); 4957 OPCODE(VFENE_CC); 4958 OPCODE(VFENEZ_CC); 4959 OPCODE(VISTR_CC); 4960 OPCODE(VSTRC_CC); 4961 OPCODE(VSTRCZ_CC); 4962 OPCODE(TDC); 4963 OPCODE(ATOMIC_SWAPW); 4964 OPCODE(ATOMIC_LOADW_ADD); 4965 OPCODE(ATOMIC_LOADW_SUB); 4966 OPCODE(ATOMIC_LOADW_AND); 4967 OPCODE(ATOMIC_LOADW_OR); 4968 OPCODE(ATOMIC_LOADW_XOR); 4969 OPCODE(ATOMIC_LOADW_NAND); 4970 OPCODE(ATOMIC_LOADW_MIN); 4971 OPCODE(ATOMIC_LOADW_MAX); 4972 OPCODE(ATOMIC_LOADW_UMIN); 4973 OPCODE(ATOMIC_LOADW_UMAX); 4974 OPCODE(ATOMIC_CMP_SWAPW); 4975 OPCODE(ATOMIC_LOAD_128); 4976 OPCODE(ATOMIC_STORE_128); 4977 OPCODE(ATOMIC_CMP_SWAP_128); 4978 OPCODE(LRV); 4979 OPCODE(STRV); 4980 OPCODE(PREFETCH); 4981 } 4982 return nullptr; 4983 #undef OPCODE 4984 } 4985 4986 // Return true if VT is a vector whose elements are a whole number of bytes 4987 // in width. Also check for presence of vector support. 4988 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 4989 if (!Subtarget.hasVector()) 4990 return false; 4991 4992 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 4993 } 4994 4995 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4996 // producing a result of type ResVT. Op is a possibly bitcast version 4997 // of the input vector and Index is the index (based on type VecVT) that 4998 // should be extracted. Return the new extraction if a simplification 4999 // was possible or if Force is true. 5000 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5001 EVT VecVT, SDValue Op, 5002 unsigned Index, 5003 DAGCombinerInfo &DCI, 5004 bool Force) const { 5005 SelectionDAG &DAG = DCI.DAG; 5006 5007 // The number of bytes being extracted. 5008 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5009 5010 for (;;) { 5011 unsigned Opcode = Op.getOpcode(); 5012 if (Opcode == ISD::BITCAST) 5013 // Look through bitcasts. 5014 Op = Op.getOperand(0); 5015 else if (Opcode == ISD::VECTOR_SHUFFLE && 5016 canTreatAsByteVector(Op.getValueType())) { 5017 // Get a VPERM-like permute mask and see whether the bytes covered 5018 // by the extracted element are a contiguous sequence from one 5019 // source operand. 5020 SmallVector<int, SystemZ::VectorBytes> Bytes; 5021 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 5022 int First; 5023 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5024 BytesPerElement, First)) 5025 break; 5026 if (First < 0) 5027 return DAG.getUNDEF(ResVT); 5028 // Make sure the contiguous sequence starts at a multiple of the 5029 // original element size. 5030 unsigned Byte = unsigned(First) % Bytes.size(); 5031 if (Byte % BytesPerElement != 0) 5032 break; 5033 // We can get the extracted value directly from an input. 5034 Index = Byte / BytesPerElement; 5035 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5036 Force = true; 5037 } else if (Opcode == ISD::BUILD_VECTOR && 5038 canTreatAsByteVector(Op.getValueType())) { 5039 // We can only optimize this case if the BUILD_VECTOR elements are 5040 // at least as wide as the extracted value. 5041 EVT OpVT = Op.getValueType(); 5042 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5043 if (OpBytesPerElement < BytesPerElement) 5044 break; 5045 // Make sure that the least-significant bit of the extracted value 5046 // is the least significant bit of an input. 5047 unsigned End = (Index + 1) * BytesPerElement; 5048 if (End % OpBytesPerElement != 0) 5049 break; 5050 // We're extracting the low part of one operand of the BUILD_VECTOR. 5051 Op = Op.getOperand(End / OpBytesPerElement - 1); 5052 if (!Op.getValueType().isInteger()) { 5053 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5054 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5055 DCI.AddToWorklist(Op.getNode()); 5056 } 5057 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5058 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5059 if (VT != ResVT) { 5060 DCI.AddToWorklist(Op.getNode()); 5061 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5062 } 5063 return Op; 5064 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5065 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5066 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5067 canTreatAsByteVector(Op.getValueType()) && 5068 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5069 // Make sure that only the unextended bits are significant. 5070 EVT ExtVT = Op.getValueType(); 5071 EVT OpVT = Op.getOperand(0).getValueType(); 5072 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5073 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5074 unsigned Byte = Index * BytesPerElement; 5075 unsigned SubByte = Byte % ExtBytesPerElement; 5076 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5077 if (SubByte < MinSubByte || 5078 SubByte + BytesPerElement > ExtBytesPerElement) 5079 break; 5080 // Get the byte offset of the unextended element 5081 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5082 // ...then add the byte offset relative to that element. 5083 Byte += SubByte - MinSubByte; 5084 if (Byte % BytesPerElement != 0) 5085 break; 5086 Op = Op.getOperand(0); 5087 Index = Byte / BytesPerElement; 5088 Force = true; 5089 } else 5090 break; 5091 } 5092 if (Force) { 5093 if (Op.getValueType() != VecVT) { 5094 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5095 DCI.AddToWorklist(Op.getNode()); 5096 } 5097 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5098 DAG.getConstant(Index, DL, MVT::i32)); 5099 } 5100 return SDValue(); 5101 } 5102 5103 // Optimize vector operations in scalar value Op on the basis that Op 5104 // is truncated to TruncVT. 5105 SDValue SystemZTargetLowering::combineTruncateExtract( 5106 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5107 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5108 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5109 // of type TruncVT. 5110 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5111 TruncVT.getSizeInBits() % 8 == 0) { 5112 SDValue Vec = Op.getOperand(0); 5113 EVT VecVT = Vec.getValueType(); 5114 if (canTreatAsByteVector(VecVT)) { 5115 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5116 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5117 unsigned TruncBytes = TruncVT.getStoreSize(); 5118 if (BytesPerElement % TruncBytes == 0) { 5119 // Calculate the value of Y' in the above description. We are 5120 // splitting the original elements into Scale equal-sized pieces 5121 // and for truncation purposes want the last (least-significant) 5122 // of these pieces for IndexN. This is easiest to do by calculating 5123 // the start index of the following element and then subtracting 1. 5124 unsigned Scale = BytesPerElement / TruncBytes; 5125 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5126 5127 // Defer the creation of the bitcast from X to combineExtract, 5128 // which might be able to optimize the extraction. 5129 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5130 VecVT.getStoreSize() / TruncBytes); 5131 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5132 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5133 } 5134 } 5135 } 5136 } 5137 return SDValue(); 5138 } 5139 5140 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5141 SDNode *N, DAGCombinerInfo &DCI) const { 5142 // Convert (sext (ashr (shl X, C1), C2)) to 5143 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5144 // cheap as narrower ones. 5145 SelectionDAG &DAG = DCI.DAG; 5146 SDValue N0 = N->getOperand(0); 5147 EVT VT = N->getValueType(0); 5148 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5149 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5150 SDValue Inner = N0.getOperand(0); 5151 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5152 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5153 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5154 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5155 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5156 EVT ShiftVT = N0.getOperand(1).getValueType(); 5157 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5158 Inner.getOperand(0)); 5159 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5160 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5161 ShiftVT)); 5162 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5163 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5164 } 5165 } 5166 } 5167 return SDValue(); 5168 } 5169 5170 SDValue SystemZTargetLowering::combineMERGE( 5171 SDNode *N, DAGCombinerInfo &DCI) const { 5172 SelectionDAG &DAG = DCI.DAG; 5173 unsigned Opcode = N->getOpcode(); 5174 SDValue Op0 = N->getOperand(0); 5175 SDValue Op1 = N->getOperand(1); 5176 if (Op0.getOpcode() == ISD::BITCAST) 5177 Op0 = Op0.getOperand(0); 5178 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 5179 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 5180 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5181 // for v4f32. 5182 if (Op1 == N->getOperand(0)) 5183 return Op1; 5184 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5185 EVT VT = Op1.getValueType(); 5186 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5187 if (ElemBytes <= 4) { 5188 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5189 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5190 EVT InVT = VT.changeVectorElementTypeToInteger(); 5191 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5192 SystemZ::VectorBytes / ElemBytes / 2); 5193 if (VT != InVT) { 5194 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5195 DCI.AddToWorklist(Op1.getNode()); 5196 } 5197 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5198 DCI.AddToWorklist(Op.getNode()); 5199 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5200 } 5201 } 5202 return SDValue(); 5203 } 5204 5205 SDValue SystemZTargetLowering::combineSTORE( 5206 SDNode *N, DAGCombinerInfo &DCI) const { 5207 SelectionDAG &DAG = DCI.DAG; 5208 auto *SN = cast<StoreSDNode>(N); 5209 auto &Op1 = N->getOperand(1); 5210 EVT MemVT = SN->getMemoryVT(); 5211 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5212 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5213 // If X has wider elements then convert it to: 5214 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5215 if (MemVT.isInteger()) { 5216 if (SDValue Value = 5217 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5218 DCI.AddToWorklist(Value.getNode()); 5219 5220 // Rewrite the store with the new form of stored value. 5221 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5222 SN->getBasePtr(), SN->getMemoryVT(), 5223 SN->getMemOperand()); 5224 } 5225 } 5226 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5227 // See comment in combineBSWAP about volatile accesses. 5228 if (!SN->isVolatile() && 5229 Op1.getOpcode() == ISD::BSWAP && 5230 Op1.getNode()->hasOneUse() && 5231 (Op1.getValueType() == MVT::i16 || 5232 Op1.getValueType() == MVT::i32 || 5233 Op1.getValueType() == MVT::i64)) { 5234 5235 SDValue BSwapOp = Op1.getOperand(0); 5236 5237 if (BSwapOp.getValueType() == MVT::i16) 5238 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5239 5240 SDValue Ops[] = { 5241 N->getOperand(0), BSwapOp, N->getOperand(2), 5242 DAG.getValueType(Op1.getValueType()) 5243 }; 5244 5245 return 5246 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5247 Ops, MemVT, SN->getMemOperand()); 5248 } 5249 return SDValue(); 5250 } 5251 5252 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5253 SDNode *N, DAGCombinerInfo &DCI) const { 5254 5255 if (!Subtarget.hasVector()) 5256 return SDValue(); 5257 5258 // Try to simplify a vector extraction. 5259 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5260 SDValue Op0 = N->getOperand(0); 5261 EVT VecVT = Op0.getValueType(); 5262 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5263 IndexN->getZExtValue(), DCI, false); 5264 } 5265 return SDValue(); 5266 } 5267 5268 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5269 SDNode *N, DAGCombinerInfo &DCI) const { 5270 SelectionDAG &DAG = DCI.DAG; 5271 // (join_dwords X, X) == (replicate X) 5272 if (N->getOperand(0) == N->getOperand(1)) 5273 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5274 N->getOperand(0)); 5275 return SDValue(); 5276 } 5277 5278 SDValue SystemZTargetLowering::combineFP_ROUND( 5279 SDNode *N, DAGCombinerInfo &DCI) const { 5280 // (fpround (extract_vector_elt X 0)) 5281 // (fpround (extract_vector_elt X 1)) -> 5282 // (extract_vector_elt (VROUND X) 0) 5283 // (extract_vector_elt (VROUND X) 1) 5284 // 5285 // This is a special case since the target doesn't really support v2f32s. 5286 SelectionDAG &DAG = DCI.DAG; 5287 SDValue Op0 = N->getOperand(0); 5288 if (N->getValueType(0) == MVT::f32 && 5289 Op0.hasOneUse() && 5290 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5291 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5292 Op0.getOperand(1).getOpcode() == ISD::Constant && 5293 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5294 SDValue Vec = Op0.getOperand(0); 5295 for (auto *U : Vec->uses()) { 5296 if (U != Op0.getNode() && 5297 U->hasOneUse() && 5298 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5299 U->getOperand(0) == Vec && 5300 U->getOperand(1).getOpcode() == ISD::Constant && 5301 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5302 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5303 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5304 OtherRound.getOperand(0) == SDValue(U, 0) && 5305 OtherRound.getValueType() == MVT::f32) { 5306 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5307 MVT::v4f32, Vec); 5308 DCI.AddToWorklist(VRound.getNode()); 5309 SDValue Extract1 = 5310 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5311 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5312 DCI.AddToWorklist(Extract1.getNode()); 5313 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5314 SDValue Extract0 = 5315 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5316 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5317 return Extract0; 5318 } 5319 } 5320 } 5321 } 5322 return SDValue(); 5323 } 5324 5325 SDValue SystemZTargetLowering::combineBSWAP( 5326 SDNode *N, DAGCombinerInfo &DCI) const { 5327 SelectionDAG &DAG = DCI.DAG; 5328 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5329 // These loads are allowed to access memory multiple times, and so we must check 5330 // that the loads are not volatile before performing the combine. 5331 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5332 N->getOperand(0).hasOneUse() && 5333 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5334 N->getValueType(0) == MVT::i64) && 5335 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) { 5336 SDValue Load = N->getOperand(0); 5337 LoadSDNode *LD = cast<LoadSDNode>(Load); 5338 5339 // Create the byte-swapping load. 5340 SDValue Ops[] = { 5341 LD->getChain(), // Chain 5342 LD->getBasePtr(), // Ptr 5343 DAG.getValueType(N->getValueType(0)) // VT 5344 }; 5345 SDValue BSLoad = 5346 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5347 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5348 MVT::i64 : MVT::i32, MVT::Other), 5349 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5350 5351 // If this is an i16 load, insert the truncate. 5352 SDValue ResVal = BSLoad; 5353 if (N->getValueType(0) == MVT::i16) 5354 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5355 5356 // First, combine the bswap away. This makes the value produced by the 5357 // load dead. 5358 DCI.CombineTo(N, ResVal); 5359 5360 // Next, combine the load away, we give it a bogus result value but a real 5361 // chain result. The result value is dead because the bswap is dead. 5362 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5363 5364 // Return N so it doesn't get rechecked! 5365 return SDValue(N, 0); 5366 } 5367 return SDValue(); 5368 } 5369 5370 SDValue SystemZTargetLowering::combineSHIFTROT( 5371 SDNode *N, DAGCombinerInfo &DCI) const { 5372 5373 SelectionDAG &DAG = DCI.DAG; 5374 5375 // Shift/rotate instructions only use the last 6 bits of the second operand 5376 // register. If the second operand is the result of an AND with an immediate 5377 // value that has its last 6 bits set, we can safely remove the AND operation. 5378 // 5379 // If the AND operation doesn't have the last 6 bits set, we can't remove it 5380 // entirely, but we can still truncate it to a 16-bit value. This prevents 5381 // us from ending up with a NILL with a signed operand, which will cause the 5382 // instruction printer to abort. 5383 SDValue N1 = N->getOperand(1); 5384 if (N1.getOpcode() == ISD::AND) { 5385 SDValue AndMaskOp = N1->getOperand(1); 5386 auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp); 5387 5388 // The AND mask is constant 5389 if (AndMask) { 5390 auto AmtVal = AndMask->getZExtValue(); 5391 5392 // Bottom 6 bits are set 5393 if ((AmtVal & 0x3f) == 0x3f) { 5394 SDValue AndOp = N1->getOperand(0); 5395 5396 // This is the only use, so remove the node 5397 if (N1.hasOneUse()) { 5398 // Combine the AND away 5399 DCI.CombineTo(N1.getNode(), AndOp); 5400 5401 // Return N so it isn't rechecked 5402 return SDValue(N, 0); 5403 5404 // The node will be reused, so create a new node for this one use 5405 } else { 5406 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5407 N->getValueType(0), N->getOperand(0), 5408 AndOp); 5409 DCI.AddToWorklist(Replace.getNode()); 5410 5411 return Replace; 5412 } 5413 5414 // We can't remove the AND, but we can use NILL here (normally we would 5415 // use NILF). Only keep the last 16 bits of the mask. The actual 5416 // transformation will be handled by .td definitions. 5417 } else if (AmtVal >> 16 != 0) { 5418 SDValue AndOp = N1->getOperand(0); 5419 5420 auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff, 5421 SDLoc(AndMaskOp), 5422 AndMaskOp.getValueType()); 5423 5424 auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(), 5425 AndOp, NewMask); 5426 5427 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5428 N->getValueType(0), N->getOperand(0), 5429 NewAnd); 5430 DCI.AddToWorklist(Replace.getNode()); 5431 5432 return Replace; 5433 } 5434 } 5435 } 5436 5437 return SDValue(); 5438 } 5439 5440 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5441 DAGCombinerInfo &DCI) const { 5442 switch(N->getOpcode()) { 5443 default: break; 5444 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5445 case SystemZISD::MERGE_HIGH: 5446 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5447 case ISD::STORE: return combineSTORE(N, DCI); 5448 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5449 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5450 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5451 case ISD::BSWAP: return combineBSWAP(N, DCI); 5452 case ISD::SHL: 5453 case ISD::SRA: 5454 case ISD::SRL: 5455 case ISD::ROTL: return combineSHIFTROT(N, DCI); 5456 } 5457 5458 return SDValue(); 5459 } 5460 5461 //===----------------------------------------------------------------------===// 5462 // Custom insertion 5463 //===----------------------------------------------------------------------===// 5464 5465 // Create a new basic block after MBB. 5466 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5467 MachineFunction &MF = *MBB->getParent(); 5468 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5469 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5470 return NewMBB; 5471 } 5472 5473 // Split MBB after MI and return the new block (the one that contains 5474 // instructions after MI). 5475 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 5476 MachineBasicBlock *MBB) { 5477 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5478 NewMBB->splice(NewMBB->begin(), MBB, 5479 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5480 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5481 return NewMBB; 5482 } 5483 5484 // Split MBB before MI and return the new block (the one that contains MI). 5485 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 5486 MachineBasicBlock *MBB) { 5487 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5488 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 5489 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5490 return NewMBB; 5491 } 5492 5493 // Force base value Base into a register before MI. Return the register. 5494 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 5495 const SystemZInstrInfo *TII) { 5496 if (Base.isReg()) 5497 return Base.getReg(); 5498 5499 MachineBasicBlock *MBB = MI.getParent(); 5500 MachineFunction &MF = *MBB->getParent(); 5501 MachineRegisterInfo &MRI = MF.getRegInfo(); 5502 5503 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5504 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 5505 .add(Base) 5506 .addImm(0) 5507 .addReg(0); 5508 return Reg; 5509 } 5510 5511 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 5512 MachineBasicBlock * 5513 SystemZTargetLowering::emitSelect(MachineInstr &MI, 5514 MachineBasicBlock *MBB, 5515 unsigned LOCROpcode) const { 5516 const SystemZInstrInfo *TII = 5517 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5518 5519 unsigned DestReg = MI.getOperand(0).getReg(); 5520 unsigned TrueReg = MI.getOperand(1).getReg(); 5521 unsigned FalseReg = MI.getOperand(2).getReg(); 5522 unsigned CCValid = MI.getOperand(3).getImm(); 5523 unsigned CCMask = MI.getOperand(4).getImm(); 5524 DebugLoc DL = MI.getDebugLoc(); 5525 5526 // Use LOCROpcode if possible. 5527 if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) { 5528 BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg) 5529 .addReg(FalseReg).addReg(TrueReg) 5530 .addImm(CCValid).addImm(CCMask); 5531 MI.eraseFromParent(); 5532 return MBB; 5533 } 5534 5535 MachineBasicBlock *StartMBB = MBB; 5536 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5537 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5538 5539 // StartMBB: 5540 // BRC CCMask, JoinMBB 5541 // # fallthrough to FalseMBB 5542 MBB = StartMBB; 5543 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5544 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5545 MBB->addSuccessor(JoinMBB); 5546 MBB->addSuccessor(FalseMBB); 5547 5548 // FalseMBB: 5549 // # fallthrough to JoinMBB 5550 MBB = FalseMBB; 5551 MBB->addSuccessor(JoinMBB); 5552 5553 // JoinMBB: 5554 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5555 // ... 5556 MBB = JoinMBB; 5557 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5558 .addReg(TrueReg).addMBB(StartMBB) 5559 .addReg(FalseReg).addMBB(FalseMBB); 5560 5561 MI.eraseFromParent(); 5562 return JoinMBB; 5563 } 5564 5565 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5566 // StoreOpcode is the store to use and Invert says whether the store should 5567 // happen when the condition is false rather than true. If a STORE ON 5568 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5569 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 5570 MachineBasicBlock *MBB, 5571 unsigned StoreOpcode, 5572 unsigned STOCOpcode, 5573 bool Invert) const { 5574 const SystemZInstrInfo *TII = 5575 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5576 5577 unsigned SrcReg = MI.getOperand(0).getReg(); 5578 MachineOperand Base = MI.getOperand(1); 5579 int64_t Disp = MI.getOperand(2).getImm(); 5580 unsigned IndexReg = MI.getOperand(3).getReg(); 5581 unsigned CCValid = MI.getOperand(4).getImm(); 5582 unsigned CCMask = MI.getOperand(5).getImm(); 5583 DebugLoc DL = MI.getDebugLoc(); 5584 5585 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5586 5587 // Use STOCOpcode if possible. We could use different store patterns in 5588 // order to avoid matching the index register, but the performance trade-offs 5589 // might be more complicated in that case. 5590 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5591 if (Invert) 5592 CCMask ^= CCValid; 5593 5594 // ISel pattern matching also adds a load memory operand of the same 5595 // address, so take special care to find the storing memory operand. 5596 MachineMemOperand *MMO = nullptr; 5597 for (auto *I : MI.memoperands()) 5598 if (I->isStore()) { 5599 MMO = I; 5600 break; 5601 } 5602 5603 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5604 .addReg(SrcReg) 5605 .add(Base) 5606 .addImm(Disp) 5607 .addImm(CCValid) 5608 .addImm(CCMask) 5609 .addMemOperand(MMO); 5610 5611 MI.eraseFromParent(); 5612 return MBB; 5613 } 5614 5615 // Get the condition needed to branch around the store. 5616 if (!Invert) 5617 CCMask ^= CCValid; 5618 5619 MachineBasicBlock *StartMBB = MBB; 5620 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5621 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5622 5623 // StartMBB: 5624 // BRC CCMask, JoinMBB 5625 // # fallthrough to FalseMBB 5626 MBB = StartMBB; 5627 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5628 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5629 MBB->addSuccessor(JoinMBB); 5630 MBB->addSuccessor(FalseMBB); 5631 5632 // FalseMBB: 5633 // store %SrcReg, %Disp(%Index,%Base) 5634 // # fallthrough to JoinMBB 5635 MBB = FalseMBB; 5636 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5637 .addReg(SrcReg) 5638 .add(Base) 5639 .addImm(Disp) 5640 .addReg(IndexReg); 5641 MBB->addSuccessor(JoinMBB); 5642 5643 MI.eraseFromParent(); 5644 return JoinMBB; 5645 } 5646 5647 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5648 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5649 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5650 // BitSize is the width of the field in bits, or 0 if this is a partword 5651 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5652 // is one of the operands. Invert says whether the field should be 5653 // inverted after performing BinOpcode (e.g. for NAND). 5654 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 5655 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 5656 unsigned BitSize, bool Invert) const { 5657 MachineFunction &MF = *MBB->getParent(); 5658 const SystemZInstrInfo *TII = 5659 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5660 MachineRegisterInfo &MRI = MF.getRegInfo(); 5661 bool IsSubWord = (BitSize < 32); 5662 5663 // Extract the operands. Base can be a register or a frame index. 5664 // Src2 can be a register or immediate. 5665 unsigned Dest = MI.getOperand(0).getReg(); 5666 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5667 int64_t Disp = MI.getOperand(2).getImm(); 5668 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 5669 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5670 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5671 DebugLoc DL = MI.getDebugLoc(); 5672 if (IsSubWord) 5673 BitSize = MI.getOperand(6).getImm(); 5674 5675 // Subword operations use 32-bit registers. 5676 const TargetRegisterClass *RC = (BitSize <= 32 ? 5677 &SystemZ::GR32BitRegClass : 5678 &SystemZ::GR64BitRegClass); 5679 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5680 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5681 5682 // Get the right opcodes for the displacement. 5683 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5684 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5685 assert(LOpcode && CSOpcode && "Displacement out of range"); 5686 5687 // Create virtual registers for temporary results. 5688 unsigned OrigVal = MRI.createVirtualRegister(RC); 5689 unsigned OldVal = MRI.createVirtualRegister(RC); 5690 unsigned NewVal = (BinOpcode || IsSubWord ? 5691 MRI.createVirtualRegister(RC) : Src2.getReg()); 5692 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5693 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5694 5695 // Insert a basic block for the main loop. 5696 MachineBasicBlock *StartMBB = MBB; 5697 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5698 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5699 5700 // StartMBB: 5701 // ... 5702 // %OrigVal = L Disp(%Base) 5703 // # fall through to LoopMMB 5704 MBB = StartMBB; 5705 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5706 MBB->addSuccessor(LoopMBB); 5707 5708 // LoopMBB: 5709 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5710 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5711 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5712 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5713 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5714 // JNE LoopMBB 5715 // # fall through to DoneMMB 5716 MBB = LoopMBB; 5717 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5718 .addReg(OrigVal).addMBB(StartMBB) 5719 .addReg(Dest).addMBB(LoopMBB); 5720 if (IsSubWord) 5721 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5722 .addReg(OldVal).addReg(BitShift).addImm(0); 5723 if (Invert) { 5724 // Perform the operation normally and then invert every bit of the field. 5725 unsigned Tmp = MRI.createVirtualRegister(RC); 5726 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 5727 if (BitSize <= 32) 5728 // XILF with the upper BitSize bits set. 5729 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5730 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5731 else { 5732 // Use LCGR and add -1 to the result, which is more compact than 5733 // an XILF, XILH pair. 5734 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5735 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5736 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5737 .addReg(Tmp2).addImm(-1); 5738 } 5739 } else if (BinOpcode) 5740 // A simply binary operation. 5741 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5742 .addReg(RotatedOldVal) 5743 .add(Src2); 5744 else if (IsSubWord) 5745 // Use RISBG to rotate Src2 into position and use it to replace the 5746 // field in RotatedOldVal. 5747 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5748 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5749 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5750 if (IsSubWord) 5751 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5752 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5753 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5754 .addReg(OldVal) 5755 .addReg(NewVal) 5756 .add(Base) 5757 .addImm(Disp); 5758 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5759 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5760 MBB->addSuccessor(LoopMBB); 5761 MBB->addSuccessor(DoneMBB); 5762 5763 MI.eraseFromParent(); 5764 return DoneMBB; 5765 } 5766 5767 // Implement EmitInstrWithCustomInserter for pseudo 5768 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5769 // instruction that should be used to compare the current field with the 5770 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5771 // for when the current field should be kept. BitSize is the width of 5772 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5773 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 5774 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 5775 unsigned KeepOldMask, unsigned BitSize) const { 5776 MachineFunction &MF = *MBB->getParent(); 5777 const SystemZInstrInfo *TII = 5778 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5779 MachineRegisterInfo &MRI = MF.getRegInfo(); 5780 bool IsSubWord = (BitSize < 32); 5781 5782 // Extract the operands. Base can be a register or a frame index. 5783 unsigned Dest = MI.getOperand(0).getReg(); 5784 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5785 int64_t Disp = MI.getOperand(2).getImm(); 5786 unsigned Src2 = MI.getOperand(3).getReg(); 5787 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5788 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5789 DebugLoc DL = MI.getDebugLoc(); 5790 if (IsSubWord) 5791 BitSize = MI.getOperand(6).getImm(); 5792 5793 // Subword operations use 32-bit registers. 5794 const TargetRegisterClass *RC = (BitSize <= 32 ? 5795 &SystemZ::GR32BitRegClass : 5796 &SystemZ::GR64BitRegClass); 5797 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5798 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5799 5800 // Get the right opcodes for the displacement. 5801 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5802 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5803 assert(LOpcode && CSOpcode && "Displacement out of range"); 5804 5805 // Create virtual registers for temporary results. 5806 unsigned OrigVal = MRI.createVirtualRegister(RC); 5807 unsigned OldVal = MRI.createVirtualRegister(RC); 5808 unsigned NewVal = MRI.createVirtualRegister(RC); 5809 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5810 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5811 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5812 5813 // Insert 3 basic blocks for the loop. 5814 MachineBasicBlock *StartMBB = MBB; 5815 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5816 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5817 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5818 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5819 5820 // StartMBB: 5821 // ... 5822 // %OrigVal = L Disp(%Base) 5823 // # fall through to LoopMMB 5824 MBB = StartMBB; 5825 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5826 MBB->addSuccessor(LoopMBB); 5827 5828 // LoopMBB: 5829 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5830 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5831 // CompareOpcode %RotatedOldVal, %Src2 5832 // BRC KeepOldMask, UpdateMBB 5833 MBB = LoopMBB; 5834 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5835 .addReg(OrigVal).addMBB(StartMBB) 5836 .addReg(Dest).addMBB(UpdateMBB); 5837 if (IsSubWord) 5838 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5839 .addReg(OldVal).addReg(BitShift).addImm(0); 5840 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5841 .addReg(RotatedOldVal).addReg(Src2); 5842 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5843 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5844 MBB->addSuccessor(UpdateMBB); 5845 MBB->addSuccessor(UseAltMBB); 5846 5847 // UseAltMBB: 5848 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5849 // # fall through to UpdateMMB 5850 MBB = UseAltMBB; 5851 if (IsSubWord) 5852 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5853 .addReg(RotatedOldVal).addReg(Src2) 5854 .addImm(32).addImm(31 + BitSize).addImm(0); 5855 MBB->addSuccessor(UpdateMBB); 5856 5857 // UpdateMBB: 5858 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5859 // [ %RotatedAltVal, UseAltMBB ] 5860 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5861 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5862 // JNE LoopMBB 5863 // # fall through to DoneMMB 5864 MBB = UpdateMBB; 5865 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5866 .addReg(RotatedOldVal).addMBB(LoopMBB) 5867 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5868 if (IsSubWord) 5869 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5870 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5871 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5872 .addReg(OldVal) 5873 .addReg(NewVal) 5874 .add(Base) 5875 .addImm(Disp); 5876 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5877 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5878 MBB->addSuccessor(LoopMBB); 5879 MBB->addSuccessor(DoneMBB); 5880 5881 MI.eraseFromParent(); 5882 return DoneMBB; 5883 } 5884 5885 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5886 // instruction MI. 5887 MachineBasicBlock * 5888 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 5889 MachineBasicBlock *MBB) const { 5890 5891 MachineFunction &MF = *MBB->getParent(); 5892 const SystemZInstrInfo *TII = 5893 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5894 MachineRegisterInfo &MRI = MF.getRegInfo(); 5895 5896 // Extract the operands. Base can be a register or a frame index. 5897 unsigned Dest = MI.getOperand(0).getReg(); 5898 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5899 int64_t Disp = MI.getOperand(2).getImm(); 5900 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 5901 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 5902 unsigned BitShift = MI.getOperand(5).getReg(); 5903 unsigned NegBitShift = MI.getOperand(6).getReg(); 5904 int64_t BitSize = MI.getOperand(7).getImm(); 5905 DebugLoc DL = MI.getDebugLoc(); 5906 5907 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5908 5909 // Get the right opcodes for the displacement. 5910 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5911 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5912 assert(LOpcode && CSOpcode && "Displacement out of range"); 5913 5914 // Create virtual registers for temporary results. 5915 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5916 unsigned OldVal = MRI.createVirtualRegister(RC); 5917 unsigned CmpVal = MRI.createVirtualRegister(RC); 5918 unsigned SwapVal = MRI.createVirtualRegister(RC); 5919 unsigned StoreVal = MRI.createVirtualRegister(RC); 5920 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5921 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5922 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5923 5924 // Insert 2 basic blocks for the loop. 5925 MachineBasicBlock *StartMBB = MBB; 5926 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5927 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5928 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5929 5930 // StartMBB: 5931 // ... 5932 // %OrigOldVal = L Disp(%Base) 5933 // # fall through to LoopMMB 5934 MBB = StartMBB; 5935 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5936 .add(Base) 5937 .addImm(Disp) 5938 .addReg(0); 5939 MBB->addSuccessor(LoopMBB); 5940 5941 // LoopMBB: 5942 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5943 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5944 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5945 // %Dest = RLL %OldVal, BitSize(%BitShift) 5946 // ^^ The low BitSize bits contain the field 5947 // of interest. 5948 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5949 // ^^ Replace the upper 32-BitSize bits of the 5950 // comparison value with those that we loaded, 5951 // so that we can use a full word comparison. 5952 // CR %Dest, %RetryCmpVal 5953 // JNE DoneMBB 5954 // # Fall through to SetMBB 5955 MBB = LoopMBB; 5956 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5957 .addReg(OrigOldVal).addMBB(StartMBB) 5958 .addReg(RetryOldVal).addMBB(SetMBB); 5959 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5960 .addReg(OrigCmpVal).addMBB(StartMBB) 5961 .addReg(RetryCmpVal).addMBB(SetMBB); 5962 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5963 .addReg(OrigSwapVal).addMBB(StartMBB) 5964 .addReg(RetrySwapVal).addMBB(SetMBB); 5965 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5966 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5967 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5968 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5969 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5970 .addReg(Dest).addReg(RetryCmpVal); 5971 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5972 .addImm(SystemZ::CCMASK_ICMP) 5973 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5974 MBB->addSuccessor(DoneMBB); 5975 MBB->addSuccessor(SetMBB); 5976 5977 // SetMBB: 5978 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5979 // ^^ Replace the upper 32-BitSize bits of the new 5980 // value with those that we loaded. 5981 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5982 // ^^ Rotate the new field to its proper position. 5983 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5984 // JNE LoopMBB 5985 // # fall through to ExitMMB 5986 MBB = SetMBB; 5987 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5988 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5989 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5990 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5991 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5992 .addReg(OldVal) 5993 .addReg(StoreVal) 5994 .add(Base) 5995 .addImm(Disp); 5996 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5997 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5998 MBB->addSuccessor(LoopMBB); 5999 MBB->addSuccessor(DoneMBB); 6000 6001 MI.eraseFromParent(); 6002 return DoneMBB; 6003 } 6004 6005 // Emit a move from two GR64s to a GR128. 6006 MachineBasicBlock * 6007 SystemZTargetLowering::emitPair128(MachineInstr &MI, 6008 MachineBasicBlock *MBB) const { 6009 MachineFunction &MF = *MBB->getParent(); 6010 const SystemZInstrInfo *TII = 6011 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6012 MachineRegisterInfo &MRI = MF.getRegInfo(); 6013 DebugLoc DL = MI.getDebugLoc(); 6014 6015 unsigned Dest = MI.getOperand(0).getReg(); 6016 unsigned Hi = MI.getOperand(1).getReg(); 6017 unsigned Lo = MI.getOperand(2).getReg(); 6018 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6019 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6020 6021 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 6022 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 6023 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 6024 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6025 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 6026 6027 MI.eraseFromParent(); 6028 return MBB; 6029 } 6030 6031 // Emit an extension from a GR64 to a GR128. ClearEven is true 6032 // if the high register of the GR128 value must be cleared or false if 6033 // it's "don't care". 6034 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 6035 MachineBasicBlock *MBB, 6036 bool ClearEven) const { 6037 MachineFunction &MF = *MBB->getParent(); 6038 const SystemZInstrInfo *TII = 6039 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6040 MachineRegisterInfo &MRI = MF.getRegInfo(); 6041 DebugLoc DL = MI.getDebugLoc(); 6042 6043 unsigned Dest = MI.getOperand(0).getReg(); 6044 unsigned Src = MI.getOperand(1).getReg(); 6045 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6046 6047 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 6048 if (ClearEven) { 6049 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6050 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 6051 6052 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 6053 .addImm(0); 6054 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 6055 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 6056 In128 = NewIn128; 6057 } 6058 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6059 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 6060 6061 MI.eraseFromParent(); 6062 return MBB; 6063 } 6064 6065 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 6066 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6067 MachineFunction &MF = *MBB->getParent(); 6068 const SystemZInstrInfo *TII = 6069 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6070 MachineRegisterInfo &MRI = MF.getRegInfo(); 6071 DebugLoc DL = MI.getDebugLoc(); 6072 6073 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 6074 uint64_t DestDisp = MI.getOperand(1).getImm(); 6075 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 6076 uint64_t SrcDisp = MI.getOperand(3).getImm(); 6077 uint64_t Length = MI.getOperand(4).getImm(); 6078 6079 // When generating more than one CLC, all but the last will need to 6080 // branch to the end when a difference is found. 6081 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 6082 splitBlockAfter(MI, MBB) : nullptr); 6083 6084 // Check for the loop form, in which operand 5 is the trip count. 6085 if (MI.getNumExplicitOperands() > 5) { 6086 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 6087 6088 uint64_t StartCountReg = MI.getOperand(5).getReg(); 6089 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 6090 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 6091 forceReg(MI, DestBase, TII)); 6092 6093 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 6094 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 6095 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 6096 MRI.createVirtualRegister(RC)); 6097 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 6098 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 6099 MRI.createVirtualRegister(RC)); 6100 6101 RC = &SystemZ::GR64BitRegClass; 6102 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 6103 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 6104 6105 MachineBasicBlock *StartMBB = MBB; 6106 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6107 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6108 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 6109 6110 // StartMBB: 6111 // # fall through to LoopMMB 6112 MBB->addSuccessor(LoopMBB); 6113 6114 // LoopMBB: 6115 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 6116 // [ %NextDestReg, NextMBB ] 6117 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 6118 // [ %NextSrcReg, NextMBB ] 6119 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 6120 // [ %NextCountReg, NextMBB ] 6121 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 6122 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 6123 // ( JLH EndMBB ) 6124 // 6125 // The prefetch is used only for MVC. The JLH is used only for CLC. 6126 MBB = LoopMBB; 6127 6128 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 6129 .addReg(StartDestReg).addMBB(StartMBB) 6130 .addReg(NextDestReg).addMBB(NextMBB); 6131 if (!HaveSingleBase) 6132 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 6133 .addReg(StartSrcReg).addMBB(StartMBB) 6134 .addReg(NextSrcReg).addMBB(NextMBB); 6135 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 6136 .addReg(StartCountReg).addMBB(StartMBB) 6137 .addReg(NextCountReg).addMBB(NextMBB); 6138 if (Opcode == SystemZ::MVC) 6139 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 6140 .addImm(SystemZ::PFD_WRITE) 6141 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 6142 BuildMI(MBB, DL, TII->get(Opcode)) 6143 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 6144 .addReg(ThisSrcReg).addImm(SrcDisp); 6145 if (EndMBB) { 6146 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6147 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6148 .addMBB(EndMBB); 6149 MBB->addSuccessor(EndMBB); 6150 MBB->addSuccessor(NextMBB); 6151 } 6152 6153 // NextMBB: 6154 // %NextDestReg = LA 256(%ThisDestReg) 6155 // %NextSrcReg = LA 256(%ThisSrcReg) 6156 // %NextCountReg = AGHI %ThisCountReg, -1 6157 // CGHI %NextCountReg, 0 6158 // JLH LoopMBB 6159 // # fall through to DoneMMB 6160 // 6161 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 6162 MBB = NextMBB; 6163 6164 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 6165 .addReg(ThisDestReg).addImm(256).addReg(0); 6166 if (!HaveSingleBase) 6167 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 6168 .addReg(ThisSrcReg).addImm(256).addReg(0); 6169 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 6170 .addReg(ThisCountReg).addImm(-1); 6171 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 6172 .addReg(NextCountReg).addImm(0); 6173 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6174 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6175 .addMBB(LoopMBB); 6176 MBB->addSuccessor(LoopMBB); 6177 MBB->addSuccessor(DoneMBB); 6178 6179 DestBase = MachineOperand::CreateReg(NextDestReg, false); 6180 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 6181 Length &= 255; 6182 MBB = DoneMBB; 6183 } 6184 // Handle any remaining bytes with straight-line code. 6185 while (Length > 0) { 6186 uint64_t ThisLength = std::min(Length, uint64_t(256)); 6187 // The previous iteration might have created out-of-range displacements. 6188 // Apply them using LAY if so. 6189 if (!isUInt<12>(DestDisp)) { 6190 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6191 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6192 .add(DestBase) 6193 .addImm(DestDisp) 6194 .addReg(0); 6195 DestBase = MachineOperand::CreateReg(Reg, false); 6196 DestDisp = 0; 6197 } 6198 if (!isUInt<12>(SrcDisp)) { 6199 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6200 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6201 .add(SrcBase) 6202 .addImm(SrcDisp) 6203 .addReg(0); 6204 SrcBase = MachineOperand::CreateReg(Reg, false); 6205 SrcDisp = 0; 6206 } 6207 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 6208 .add(DestBase) 6209 .addImm(DestDisp) 6210 .addImm(ThisLength) 6211 .add(SrcBase) 6212 .addImm(SrcDisp) 6213 ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 6214 DestDisp += ThisLength; 6215 SrcDisp += ThisLength; 6216 Length -= ThisLength; 6217 // If there's another CLC to go, branch to the end if a difference 6218 // was found. 6219 if (EndMBB && Length > 0) { 6220 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 6221 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6222 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6223 .addMBB(EndMBB); 6224 MBB->addSuccessor(EndMBB); 6225 MBB->addSuccessor(NextMBB); 6226 MBB = NextMBB; 6227 } 6228 } 6229 if (EndMBB) { 6230 MBB->addSuccessor(EndMBB); 6231 MBB = EndMBB; 6232 MBB->addLiveIn(SystemZ::CC); 6233 } 6234 6235 MI.eraseFromParent(); 6236 return MBB; 6237 } 6238 6239 // Decompose string pseudo-instruction MI into a loop that continually performs 6240 // Opcode until CC != 3. 6241 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 6242 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6243 MachineFunction &MF = *MBB->getParent(); 6244 const SystemZInstrInfo *TII = 6245 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6246 MachineRegisterInfo &MRI = MF.getRegInfo(); 6247 DebugLoc DL = MI.getDebugLoc(); 6248 6249 uint64_t End1Reg = MI.getOperand(0).getReg(); 6250 uint64_t Start1Reg = MI.getOperand(1).getReg(); 6251 uint64_t Start2Reg = MI.getOperand(2).getReg(); 6252 uint64_t CharReg = MI.getOperand(3).getReg(); 6253 6254 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 6255 uint64_t This1Reg = MRI.createVirtualRegister(RC); 6256 uint64_t This2Reg = MRI.createVirtualRegister(RC); 6257 uint64_t End2Reg = MRI.createVirtualRegister(RC); 6258 6259 MachineBasicBlock *StartMBB = MBB; 6260 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6261 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6262 6263 // StartMBB: 6264 // # fall through to LoopMMB 6265 MBB->addSuccessor(LoopMBB); 6266 6267 // LoopMBB: 6268 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 6269 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 6270 // R0L = %CharReg 6271 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 6272 // JO LoopMBB 6273 // # fall through to DoneMMB 6274 // 6275 // The load of R0L can be hoisted by post-RA LICM. 6276 MBB = LoopMBB; 6277 6278 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 6279 .addReg(Start1Reg).addMBB(StartMBB) 6280 .addReg(End1Reg).addMBB(LoopMBB); 6281 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 6282 .addReg(Start2Reg).addMBB(StartMBB) 6283 .addReg(End2Reg).addMBB(LoopMBB); 6284 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 6285 BuildMI(MBB, DL, TII->get(Opcode)) 6286 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 6287 .addReg(This1Reg).addReg(This2Reg); 6288 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6289 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 6290 MBB->addSuccessor(LoopMBB); 6291 MBB->addSuccessor(DoneMBB); 6292 6293 DoneMBB->addLiveIn(SystemZ::CC); 6294 6295 MI.eraseFromParent(); 6296 return DoneMBB; 6297 } 6298 6299 // Update TBEGIN instruction with final opcode and register clobbers. 6300 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 6301 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 6302 bool NoFloat) const { 6303 MachineFunction &MF = *MBB->getParent(); 6304 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6305 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 6306 6307 // Update opcode. 6308 MI.setDesc(TII->get(Opcode)); 6309 6310 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 6311 // Make sure to add the corresponding GRSM bits if they are missing. 6312 uint64_t Control = MI.getOperand(2).getImm(); 6313 static const unsigned GPRControlBit[16] = { 6314 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 6315 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 6316 }; 6317 Control |= GPRControlBit[15]; 6318 if (TFI->hasFP(MF)) 6319 Control |= GPRControlBit[11]; 6320 MI.getOperand(2).setImm(Control); 6321 6322 // Add GPR clobbers. 6323 for (int I = 0; I < 16; I++) { 6324 if ((Control & GPRControlBit[I]) == 0) { 6325 unsigned Reg = SystemZMC::GR64Regs[I]; 6326 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6327 } 6328 } 6329 6330 // Add FPR/VR clobbers. 6331 if (!NoFloat && (Control & 4) != 0) { 6332 if (Subtarget.hasVector()) { 6333 for (int I = 0; I < 32; I++) { 6334 unsigned Reg = SystemZMC::VR128Regs[I]; 6335 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6336 } 6337 } else { 6338 for (int I = 0; I < 16; I++) { 6339 unsigned Reg = SystemZMC::FP64Regs[I]; 6340 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6341 } 6342 } 6343 } 6344 6345 return MBB; 6346 } 6347 6348 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 6349 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6350 MachineFunction &MF = *MBB->getParent(); 6351 MachineRegisterInfo *MRI = &MF.getRegInfo(); 6352 const SystemZInstrInfo *TII = 6353 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6354 DebugLoc DL = MI.getDebugLoc(); 6355 6356 unsigned SrcReg = MI.getOperand(0).getReg(); 6357 6358 // Create new virtual register of the same class as source. 6359 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 6360 unsigned DstReg = MRI->createVirtualRegister(RC); 6361 6362 // Replace pseudo with a normal load-and-test that models the def as 6363 // well. 6364 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 6365 .addReg(SrcReg); 6366 MI.eraseFromParent(); 6367 6368 return MBB; 6369 } 6370 6371 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 6372 MachineInstr &MI, MachineBasicBlock *MBB) const { 6373 switch (MI.getOpcode()) { 6374 case SystemZ::Select32Mux: 6375 return emitSelect(MI, MBB, 6376 Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0); 6377 case SystemZ::Select32: 6378 return emitSelect(MI, MBB, SystemZ::LOCR); 6379 case SystemZ::Select64: 6380 return emitSelect(MI, MBB, SystemZ::LOCGR); 6381 case SystemZ::SelectF32: 6382 case SystemZ::SelectF64: 6383 case SystemZ::SelectF128: 6384 case SystemZ::SelectVR128: 6385 return emitSelect(MI, MBB, 0); 6386 6387 case SystemZ::CondStore8Mux: 6388 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 6389 case SystemZ::CondStore8MuxInv: 6390 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 6391 case SystemZ::CondStore16Mux: 6392 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 6393 case SystemZ::CondStore16MuxInv: 6394 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 6395 case SystemZ::CondStore32Mux: 6396 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 6397 case SystemZ::CondStore32MuxInv: 6398 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 6399 case SystemZ::CondStore8: 6400 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 6401 case SystemZ::CondStore8Inv: 6402 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 6403 case SystemZ::CondStore16: 6404 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 6405 case SystemZ::CondStore16Inv: 6406 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 6407 case SystemZ::CondStore32: 6408 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 6409 case SystemZ::CondStore32Inv: 6410 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 6411 case SystemZ::CondStore64: 6412 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 6413 case SystemZ::CondStore64Inv: 6414 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 6415 case SystemZ::CondStoreF32: 6416 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 6417 case SystemZ::CondStoreF32Inv: 6418 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 6419 case SystemZ::CondStoreF64: 6420 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 6421 case SystemZ::CondStoreF64Inv: 6422 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 6423 6424 case SystemZ::PAIR128: 6425 return emitPair128(MI, MBB); 6426 case SystemZ::AEXT128: 6427 return emitExt128(MI, MBB, false); 6428 case SystemZ::ZEXT128: 6429 return emitExt128(MI, MBB, true); 6430 6431 case SystemZ::ATOMIC_SWAPW: 6432 return emitAtomicLoadBinary(MI, MBB, 0, 0); 6433 case SystemZ::ATOMIC_SWAP_32: 6434 return emitAtomicLoadBinary(MI, MBB, 0, 32); 6435 case SystemZ::ATOMIC_SWAP_64: 6436 return emitAtomicLoadBinary(MI, MBB, 0, 64); 6437 6438 case SystemZ::ATOMIC_LOADW_AR: 6439 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 6440 case SystemZ::ATOMIC_LOADW_AFI: 6441 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 6442 case SystemZ::ATOMIC_LOAD_AR: 6443 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 6444 case SystemZ::ATOMIC_LOAD_AHI: 6445 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 6446 case SystemZ::ATOMIC_LOAD_AFI: 6447 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 6448 case SystemZ::ATOMIC_LOAD_AGR: 6449 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 6450 case SystemZ::ATOMIC_LOAD_AGHI: 6451 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 6452 case SystemZ::ATOMIC_LOAD_AGFI: 6453 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 6454 6455 case SystemZ::ATOMIC_LOADW_SR: 6456 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 6457 case SystemZ::ATOMIC_LOAD_SR: 6458 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 6459 case SystemZ::ATOMIC_LOAD_SGR: 6460 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 6461 6462 case SystemZ::ATOMIC_LOADW_NR: 6463 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 6464 case SystemZ::ATOMIC_LOADW_NILH: 6465 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 6466 case SystemZ::ATOMIC_LOAD_NR: 6467 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 6468 case SystemZ::ATOMIC_LOAD_NILL: 6469 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 6470 case SystemZ::ATOMIC_LOAD_NILH: 6471 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 6472 case SystemZ::ATOMIC_LOAD_NILF: 6473 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 6474 case SystemZ::ATOMIC_LOAD_NGR: 6475 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 6476 case SystemZ::ATOMIC_LOAD_NILL64: 6477 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 6478 case SystemZ::ATOMIC_LOAD_NILH64: 6479 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 6480 case SystemZ::ATOMIC_LOAD_NIHL64: 6481 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 6482 case SystemZ::ATOMIC_LOAD_NIHH64: 6483 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 6484 case SystemZ::ATOMIC_LOAD_NILF64: 6485 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 6486 case SystemZ::ATOMIC_LOAD_NIHF64: 6487 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 6488 6489 case SystemZ::ATOMIC_LOADW_OR: 6490 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 6491 case SystemZ::ATOMIC_LOADW_OILH: 6492 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 6493 case SystemZ::ATOMIC_LOAD_OR: 6494 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 6495 case SystemZ::ATOMIC_LOAD_OILL: 6496 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 6497 case SystemZ::ATOMIC_LOAD_OILH: 6498 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 6499 case SystemZ::ATOMIC_LOAD_OILF: 6500 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 6501 case SystemZ::ATOMIC_LOAD_OGR: 6502 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 6503 case SystemZ::ATOMIC_LOAD_OILL64: 6504 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 6505 case SystemZ::ATOMIC_LOAD_OILH64: 6506 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 6507 case SystemZ::ATOMIC_LOAD_OIHL64: 6508 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 6509 case SystemZ::ATOMIC_LOAD_OIHH64: 6510 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 6511 case SystemZ::ATOMIC_LOAD_OILF64: 6512 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 6513 case SystemZ::ATOMIC_LOAD_OIHF64: 6514 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 6515 6516 case SystemZ::ATOMIC_LOADW_XR: 6517 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 6518 case SystemZ::ATOMIC_LOADW_XILF: 6519 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 6520 case SystemZ::ATOMIC_LOAD_XR: 6521 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 6522 case SystemZ::ATOMIC_LOAD_XILF: 6523 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 6524 case SystemZ::ATOMIC_LOAD_XGR: 6525 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 6526 case SystemZ::ATOMIC_LOAD_XILF64: 6527 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 6528 case SystemZ::ATOMIC_LOAD_XIHF64: 6529 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 6530 6531 case SystemZ::ATOMIC_LOADW_NRi: 6532 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 6533 case SystemZ::ATOMIC_LOADW_NILHi: 6534 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 6535 case SystemZ::ATOMIC_LOAD_NRi: 6536 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 6537 case SystemZ::ATOMIC_LOAD_NILLi: 6538 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 6539 case SystemZ::ATOMIC_LOAD_NILHi: 6540 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 6541 case SystemZ::ATOMIC_LOAD_NILFi: 6542 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 6543 case SystemZ::ATOMIC_LOAD_NGRi: 6544 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 6545 case SystemZ::ATOMIC_LOAD_NILL64i: 6546 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 6547 case SystemZ::ATOMIC_LOAD_NILH64i: 6548 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 6549 case SystemZ::ATOMIC_LOAD_NIHL64i: 6550 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 6551 case SystemZ::ATOMIC_LOAD_NIHH64i: 6552 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 6553 case SystemZ::ATOMIC_LOAD_NILF64i: 6554 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 6555 case SystemZ::ATOMIC_LOAD_NIHF64i: 6556 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 6557 6558 case SystemZ::ATOMIC_LOADW_MIN: 6559 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6560 SystemZ::CCMASK_CMP_LE, 0); 6561 case SystemZ::ATOMIC_LOAD_MIN_32: 6562 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6563 SystemZ::CCMASK_CMP_LE, 32); 6564 case SystemZ::ATOMIC_LOAD_MIN_64: 6565 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6566 SystemZ::CCMASK_CMP_LE, 64); 6567 6568 case SystemZ::ATOMIC_LOADW_MAX: 6569 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6570 SystemZ::CCMASK_CMP_GE, 0); 6571 case SystemZ::ATOMIC_LOAD_MAX_32: 6572 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6573 SystemZ::CCMASK_CMP_GE, 32); 6574 case SystemZ::ATOMIC_LOAD_MAX_64: 6575 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6576 SystemZ::CCMASK_CMP_GE, 64); 6577 6578 case SystemZ::ATOMIC_LOADW_UMIN: 6579 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6580 SystemZ::CCMASK_CMP_LE, 0); 6581 case SystemZ::ATOMIC_LOAD_UMIN_32: 6582 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6583 SystemZ::CCMASK_CMP_LE, 32); 6584 case SystemZ::ATOMIC_LOAD_UMIN_64: 6585 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6586 SystemZ::CCMASK_CMP_LE, 64); 6587 6588 case SystemZ::ATOMIC_LOADW_UMAX: 6589 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6590 SystemZ::CCMASK_CMP_GE, 0); 6591 case SystemZ::ATOMIC_LOAD_UMAX_32: 6592 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6593 SystemZ::CCMASK_CMP_GE, 32); 6594 case SystemZ::ATOMIC_LOAD_UMAX_64: 6595 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6596 SystemZ::CCMASK_CMP_GE, 64); 6597 6598 case SystemZ::ATOMIC_CMP_SWAPW: 6599 return emitAtomicCmpSwapW(MI, MBB); 6600 case SystemZ::MVCSequence: 6601 case SystemZ::MVCLoop: 6602 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6603 case SystemZ::NCSequence: 6604 case SystemZ::NCLoop: 6605 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6606 case SystemZ::OCSequence: 6607 case SystemZ::OCLoop: 6608 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6609 case SystemZ::XCSequence: 6610 case SystemZ::XCLoop: 6611 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6612 case SystemZ::CLCSequence: 6613 case SystemZ::CLCLoop: 6614 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6615 case SystemZ::CLSTLoop: 6616 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6617 case SystemZ::MVSTLoop: 6618 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6619 case SystemZ::SRSTLoop: 6620 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6621 case SystemZ::TBEGIN: 6622 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6623 case SystemZ::TBEGIN_nofloat: 6624 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6625 case SystemZ::TBEGINC: 6626 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6627 case SystemZ::LTEBRCompare_VecPseudo: 6628 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6629 case SystemZ::LTDBRCompare_VecPseudo: 6630 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6631 case SystemZ::LTXBRCompare_VecPseudo: 6632 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6633 6634 default: 6635 llvm_unreachable("Unexpected instr type to insert"); 6636 } 6637 } 6638 6639 // This is only used by the isel schedulers, and is needed only to prevent 6640 // compiler from crashing when list-ilp is used. 6641 const TargetRegisterClass * 6642 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 6643 if (VT == MVT::Untyped) 6644 return &SystemZ::ADDR128BitRegClass; 6645 return TargetLowering::getRepRegClassFor(VT); 6646 } 6647