1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   // Use custom expanders so that we can force the function to use
322   // a frame pointer.
323   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
324   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
325 
326   // Handle prefetches with PFD or PFDRL.
327   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
328 
329   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
330     // Assume by default that all vector operations need to be expanded.
331     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
332       if (getOperationAction(Opcode, VT) == Legal)
333         setOperationAction(Opcode, VT, Expand);
334 
335     // Likewise all truncating stores and extending loads.
336     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
337       setTruncStoreAction(VT, InnerVT, Expand);
338       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
339       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
340       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
341     }
342 
343     if (isTypeLegal(VT)) {
344       // These operations are legal for anything that can be stored in a
345       // vector register, even if there is no native support for the format
346       // as such.  In particular, we can do these for v4f32 even though there
347       // are no specific instructions for that format.
348       setOperationAction(ISD::LOAD, VT, Legal);
349       setOperationAction(ISD::STORE, VT, Legal);
350       setOperationAction(ISD::VSELECT, VT, Legal);
351       setOperationAction(ISD::BITCAST, VT, Legal);
352       setOperationAction(ISD::UNDEF, VT, Legal);
353 
354       // Likewise, except that we need to replace the nodes with something
355       // more specific.
356       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
357       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
358     }
359   }
360 
361   // Handle integer vector types.
362   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
363     if (isTypeLegal(VT)) {
364       // These operations have direct equivalents.
365       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
366       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
367       setOperationAction(ISD::ADD, VT, Legal);
368       setOperationAction(ISD::SUB, VT, Legal);
369       if (VT != MVT::v2i64)
370         setOperationAction(ISD::MUL, VT, Legal);
371       setOperationAction(ISD::ABS, VT, Legal);
372       setOperationAction(ISD::AND, VT, Legal);
373       setOperationAction(ISD::OR, VT, Legal);
374       setOperationAction(ISD::XOR, VT, Legal);
375       if (Subtarget.hasVectorEnhancements1())
376         setOperationAction(ISD::CTPOP, VT, Legal);
377       else
378         setOperationAction(ISD::CTPOP, VT, Custom);
379       setOperationAction(ISD::CTTZ, VT, Legal);
380       setOperationAction(ISD::CTLZ, VT, Legal);
381 
382       // Convert a GPR scalar to a vector by inserting it into element 0.
383       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
384 
385       // Use a series of unpacks for extensions.
386       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
387       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
388 
389       // Detect shifts by a scalar amount and convert them into
390       // V*_BY_SCALAR.
391       setOperationAction(ISD::SHL, VT, Custom);
392       setOperationAction(ISD::SRA, VT, Custom);
393       setOperationAction(ISD::SRL, VT, Custom);
394 
395       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
396       // converted into ROTL.
397       setOperationAction(ISD::ROTL, VT, Expand);
398       setOperationAction(ISD::ROTR, VT, Expand);
399 
400       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
401       // and inverting the result as necessary.
402       setOperationAction(ISD::SETCC, VT, Custom);
403       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
404       if (Subtarget.hasVectorEnhancements1())
405         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
406     }
407   }
408 
409   if (Subtarget.hasVector()) {
410     // There should be no need to check for float types other than v2f64
411     // since <2 x f32> isn't a legal type.
412     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
415     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
416     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
418     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
419     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
420 
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
427     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
428     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
429   }
430 
431   if (Subtarget.hasVectorEnhancements2()) {
432     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
435     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
436     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
438     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
439     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
440 
441     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
447     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
448     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
449   }
450 
451   // Handle floating-point types.
452   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
453        I <= MVT::LAST_FP_VALUETYPE;
454        ++I) {
455     MVT VT = MVT::SimpleValueType(I);
456     if (isTypeLegal(VT)) {
457       // We can use FI for FRINT.
458       setOperationAction(ISD::FRINT, VT, Legal);
459 
460       // We can use the extended form of FI for other rounding operations.
461       if (Subtarget.hasFPExtension()) {
462         setOperationAction(ISD::FNEARBYINT, VT, Legal);
463         setOperationAction(ISD::FFLOOR, VT, Legal);
464         setOperationAction(ISD::FCEIL, VT, Legal);
465         setOperationAction(ISD::FTRUNC, VT, Legal);
466         setOperationAction(ISD::FROUND, VT, Legal);
467       }
468 
469       // No special instructions for these.
470       setOperationAction(ISD::FSIN, VT, Expand);
471       setOperationAction(ISD::FCOS, VT, Expand);
472       setOperationAction(ISD::FSINCOS, VT, Expand);
473       setOperationAction(ISD::FREM, VT, Expand);
474       setOperationAction(ISD::FPOW, VT, Expand);
475 
476       // Handle constrained floating-point operations.
477       setOperationAction(ISD::STRICT_FADD, VT, Legal);
478       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
479       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
480       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
481       setOperationAction(ISD::STRICT_FMA, VT, Legal);
482       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
483       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
484       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
485       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
486       if (Subtarget.hasFPExtension()) {
487         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
488         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
489         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
490         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
491         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
492       }
493     }
494   }
495 
496   // Handle floating-point vector types.
497   if (Subtarget.hasVector()) {
498     // Scalar-to-vector conversion is just a subreg.
499     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
500     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
501 
502     // Some insertions and extractions can be done directly but others
503     // need to go via integers.
504     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
505     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
506     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
507     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
508 
509     // These operations have direct equivalents.
510     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
511     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
512     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
513     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
514     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
515     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
516     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
517     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
518     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
519     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
520     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
521     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
522     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
523     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
524 
525     // Handle constrained floating-point operations.
526     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
536     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
537     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
538   }
539 
540   // The vector enhancements facility 1 has instructions for these.
541   if (Subtarget.hasVectorEnhancements1()) {
542     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
543     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
544     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
545     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
546     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
547     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
548     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
549     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
550     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
551     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
553     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
554     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
555     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
556 
557     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
558     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
559     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
560     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
561 
562     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
563     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
564     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
565     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
566 
567     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
568     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
569     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
570     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
571 
572     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
573     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
574     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
575     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
576 
577     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
578     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
579     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
580     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
581 
582     // Handle constrained floating-point operations.
583     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
593     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
594     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
595     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
596                      MVT::v4f32, MVT::v2f64 }) {
597       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
598       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
599       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
600       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
601     }
602   }
603 
604   // We only have fused f128 multiply-addition on vector registers.
605   if (!Subtarget.hasVectorEnhancements1()) {
606     setOperationAction(ISD::FMA, MVT::f128, Expand);
607     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
608   }
609 
610   // We don't have a copysign instruction on vector registers.
611   if (Subtarget.hasVectorEnhancements1())
612     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
613 
614   // Needed so that we don't try to implement f128 constant loads using
615   // a load-and-extend of a f80 constant (in cases where the constant
616   // would fit in an f80).
617   for (MVT VT : MVT::fp_valuetypes())
618     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
619 
620   // We don't have extending load instruction on vector registers.
621   if (Subtarget.hasVectorEnhancements1()) {
622     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
623     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
624   }
625 
626   // Floating-point truncation and stores need to be done separately.
627   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
628   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
629   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
630 
631   // We have 64-bit FPR<->GPR moves, but need special handling for
632   // 32-bit forms.
633   if (!Subtarget.hasVector()) {
634     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
635     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
636   }
637 
638   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
639   // structure, but VAEND is a no-op.
640   setOperationAction(ISD::VASTART, MVT::Other, Custom);
641   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
642   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
643 
644   // Codes for which we want to perform some z-specific combinations.
645   setTargetDAGCombine(ISD::ZERO_EXTEND);
646   setTargetDAGCombine(ISD::SIGN_EXTEND);
647   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
648   setTargetDAGCombine(ISD::LOAD);
649   setTargetDAGCombine(ISD::STORE);
650   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
651   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
652   setTargetDAGCombine(ISD::FP_ROUND);
653   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
654   setTargetDAGCombine(ISD::FP_EXTEND);
655   setTargetDAGCombine(ISD::SINT_TO_FP);
656   setTargetDAGCombine(ISD::UINT_TO_FP);
657   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
658   setTargetDAGCombine(ISD::BSWAP);
659   setTargetDAGCombine(ISD::SDIV);
660   setTargetDAGCombine(ISD::UDIV);
661   setTargetDAGCombine(ISD::SREM);
662   setTargetDAGCombine(ISD::UREM);
663   setTargetDAGCombine(ISD::INTRINSIC_VOID);
664   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
665 
666   // Handle intrinsics.
667   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
668   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
669 
670   // We want to use MVC in preference to even a single load/store pair.
671   MaxStoresPerMemcpy = 0;
672   MaxStoresPerMemcpyOptSize = 0;
673 
674   // The main memset sequence is a byte store followed by an MVC.
675   // Two STC or MV..I stores win over that, but the kind of fused stores
676   // generated by target-independent code don't when the byte value is
677   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
678   // than "STC;MVC".  Handle the choice in target-specific code instead.
679   MaxStoresPerMemset = 0;
680   MaxStoresPerMemsetOptSize = 0;
681 
682   // Default to having -disable-strictnode-mutation on
683   IsStrictFPEnabled = true;
684 }
685 
686 bool SystemZTargetLowering::useSoftFloat() const {
687   return Subtarget.hasSoftFloat();
688 }
689 
690 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
691                                               LLVMContext &, EVT VT) const {
692   if (!VT.isVector())
693     return MVT::i32;
694   return VT.changeVectorElementTypeToInteger();
695 }
696 
697 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
698     const MachineFunction &MF, EVT VT) const {
699   VT = VT.getScalarType();
700 
701   if (!VT.isSimple())
702     return false;
703 
704   switch (VT.getSimpleVT().SimpleTy) {
705   case MVT::f32:
706   case MVT::f64:
707     return true;
708   case MVT::f128:
709     return Subtarget.hasVectorEnhancements1();
710   default:
711     break;
712   }
713 
714   return false;
715 }
716 
717 // Return true if the constant can be generated with a vector instruction,
718 // such as VGM, VGMB or VREPI.
719 bool SystemZVectorConstantInfo::isVectorConstantLegal(
720     const SystemZSubtarget &Subtarget) {
721   const SystemZInstrInfo *TII =
722       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
723   if (!Subtarget.hasVector() ||
724       (isFP128 && !Subtarget.hasVectorEnhancements1()))
725     return false;
726 
727   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
728   // preferred way of creating all-zero and all-one vectors so give it
729   // priority over other methods below.
730   unsigned Mask = 0;
731   unsigned I = 0;
732   for (; I < SystemZ::VectorBytes; ++I) {
733     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
734     if (Byte == 0xff)
735       Mask |= 1ULL << I;
736     else if (Byte != 0)
737       break;
738   }
739   if (I == SystemZ::VectorBytes) {
740     Opcode = SystemZISD::BYTE_MASK;
741     OpVals.push_back(Mask);
742     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
743     return true;
744   }
745 
746   if (SplatBitSize > 64)
747     return false;
748 
749   auto tryValue = [&](uint64_t Value) -> bool {
750     // Try VECTOR REPLICATE IMMEDIATE
751     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
752     if (isInt<16>(SignedValue)) {
753       OpVals.push_back(((unsigned) SignedValue));
754       Opcode = SystemZISD::REPLICATE;
755       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
756                                SystemZ::VectorBits / SplatBitSize);
757       return true;
758     }
759     // Try VECTOR GENERATE MASK
760     unsigned Start, End;
761     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
762       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
763       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
764       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
765       OpVals.push_back(Start - (64 - SplatBitSize));
766       OpVals.push_back(End - (64 - SplatBitSize));
767       Opcode = SystemZISD::ROTATE_MASK;
768       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
769                                SystemZ::VectorBits / SplatBitSize);
770       return true;
771     }
772     return false;
773   };
774 
775   // First try assuming that any undefined bits above the highest set bit
776   // and below the lowest set bit are 1s.  This increases the likelihood of
777   // being able to use a sign-extended element value in VECTOR REPLICATE
778   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
779   uint64_t SplatBitsZ = SplatBits.getZExtValue();
780   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
781   uint64_t Lower =
782       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
783   uint64_t Upper =
784       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
785   if (tryValue(SplatBitsZ | Upper | Lower))
786     return true;
787 
788   // Now try assuming that any undefined bits between the first and
789   // last defined set bits are set.  This increases the chances of
790   // using a non-wraparound mask.
791   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
792   return tryValue(SplatBitsZ | Middle);
793 }
794 
795 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
796   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
797   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
798   SplatBits = FPImm.bitcastToAPInt();
799   unsigned Width = SplatBits.getBitWidth();
800   IntBits <<= (SystemZ::VectorBits - Width);
801 
802   // Find the smallest splat.
803   while (Width > 8) {
804     unsigned HalfSize = Width / 2;
805     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
806     APInt LowValue = SplatBits.trunc(HalfSize);
807 
808     // If the two halves do not match, stop here.
809     if (HighValue != LowValue || 8 > HalfSize)
810       break;
811 
812     SplatBits = HighValue;
813     Width = HalfSize;
814   }
815   SplatUndef = 0;
816   SplatBitSize = Width;
817 }
818 
819 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
820   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
821   bool HasAnyUndefs;
822 
823   // Get IntBits by finding the 128 bit splat.
824   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
825                        true);
826 
827   // Get SplatBits by finding the 8 bit or greater splat.
828   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
829                        true);
830 }
831 
832 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
833                                          bool ForCodeSize) const {
834   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
835   if (Imm.isZero() || Imm.isNegZero())
836     return true;
837 
838   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
839 }
840 
841 /// Returns true if stack probing through inline assembly is requested.
842 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
843   // If the function specifically requests inline stack probes, emit them.
844   if (MF.getFunction().hasFnAttribute("probe-stack"))
845     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
846            "inline-asm";
847   return false;
848 }
849 
850 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
851   // We can use CGFI or CLGFI.
852   return isInt<32>(Imm) || isUInt<32>(Imm);
853 }
854 
855 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
856   // We can use ALGFI or SLGFI.
857   return isUInt<32>(Imm) || isUInt<32>(-Imm);
858 }
859 
860 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
861     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
862   // Unaligned accesses should never be slower than the expanded version.
863   // We check specifically for aligned accesses in the few cases where
864   // they are required.
865   if (Fast)
866     *Fast = true;
867   return true;
868 }
869 
870 // Information about the addressing mode for a memory access.
871 struct AddressingMode {
872   // True if a long displacement is supported.
873   bool LongDisplacement;
874 
875   // True if use of index register is supported.
876   bool IndexReg;
877 
878   AddressingMode(bool LongDispl, bool IdxReg) :
879     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
880 };
881 
882 // Return the desired addressing mode for a Load which has only one use (in
883 // the same block) which is a Store.
884 static AddressingMode getLoadStoreAddrMode(bool HasVector,
885                                           Type *Ty) {
886   // With vector support a Load->Store combination may be combined to either
887   // an MVC or vector operations and it seems to work best to allow the
888   // vector addressing mode.
889   if (HasVector)
890     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
891 
892   // Otherwise only the MVC case is special.
893   bool MVC = Ty->isIntegerTy(8);
894   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
895 }
896 
897 // Return the addressing mode which seems most desirable given an LLVM
898 // Instruction pointer.
899 static AddressingMode
900 supportedAddressingMode(Instruction *I, bool HasVector) {
901   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
902     switch (II->getIntrinsicID()) {
903     default: break;
904     case Intrinsic::memset:
905     case Intrinsic::memmove:
906     case Intrinsic::memcpy:
907       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
908     }
909   }
910 
911   if (isa<LoadInst>(I) && I->hasOneUse()) {
912     auto *SingleUser = cast<Instruction>(*I->user_begin());
913     if (SingleUser->getParent() == I->getParent()) {
914       if (isa<ICmpInst>(SingleUser)) {
915         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
916           if (C->getBitWidth() <= 64 &&
917               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
918             // Comparison of memory with 16 bit signed / unsigned immediate
919             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
920       } else if (isa<StoreInst>(SingleUser))
921         // Load->Store
922         return getLoadStoreAddrMode(HasVector, I->getType());
923     }
924   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
925     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
926       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
927         // Load->Store
928         return getLoadStoreAddrMode(HasVector, LoadI->getType());
929   }
930 
931   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
932 
933     // * Use LDE instead of LE/LEY for z13 to avoid partial register
934     //   dependencies (LDE only supports small offsets).
935     // * Utilize the vector registers to hold floating point
936     //   values (vector load / store instructions only support small
937     //   offsets).
938 
939     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
940                          I->getOperand(0)->getType());
941     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
942     bool IsVectorAccess = MemAccessTy->isVectorTy();
943 
944     // A store of an extracted vector element will be combined into a VSTE type
945     // instruction.
946     if (!IsVectorAccess && isa<StoreInst>(I)) {
947       Value *DataOp = I->getOperand(0);
948       if (isa<ExtractElementInst>(DataOp))
949         IsVectorAccess = true;
950     }
951 
952     // A load which gets inserted into a vector element will be combined into a
953     // VLE type instruction.
954     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
955       User *LoadUser = *I->user_begin();
956       if (isa<InsertElementInst>(LoadUser))
957         IsVectorAccess = true;
958     }
959 
960     if (IsFPAccess || IsVectorAccess)
961       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
962   }
963 
964   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
965 }
966 
967 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
968        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
969   // Punt on globals for now, although they can be used in limited
970   // RELATIVE LONG cases.
971   if (AM.BaseGV)
972     return false;
973 
974   // Require a 20-bit signed offset.
975   if (!isInt<20>(AM.BaseOffs))
976     return false;
977 
978   AddressingMode SupportedAM(true, true);
979   if (I != nullptr)
980     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
981 
982   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
983     return false;
984 
985   if (!SupportedAM.IndexReg)
986     // No indexing allowed.
987     return AM.Scale == 0;
988   else
989     // Indexing is OK but no scale factor can be applied.
990     return AM.Scale == 0 || AM.Scale == 1;
991 }
992 
993 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
994   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
995     return false;
996   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
997   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
998   return FromBits > ToBits;
999 }
1000 
1001 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1002   if (!FromVT.isInteger() || !ToVT.isInteger())
1003     return false;
1004   unsigned FromBits = FromVT.getFixedSizeInBits();
1005   unsigned ToBits = ToVT.getFixedSizeInBits();
1006   return FromBits > ToBits;
1007 }
1008 
1009 //===----------------------------------------------------------------------===//
1010 // Inline asm support
1011 //===----------------------------------------------------------------------===//
1012 
1013 TargetLowering::ConstraintType
1014 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1015   if (Constraint.size() == 1) {
1016     switch (Constraint[0]) {
1017     case 'a': // Address register
1018     case 'd': // Data register (equivalent to 'r')
1019     case 'f': // Floating-point register
1020     case 'h': // High-part register
1021     case 'r': // General-purpose register
1022     case 'v': // Vector register
1023       return C_RegisterClass;
1024 
1025     case 'Q': // Memory with base and unsigned 12-bit displacement
1026     case 'R': // Likewise, plus an index
1027     case 'S': // Memory with base and signed 20-bit displacement
1028     case 'T': // Likewise, plus an index
1029     case 'm': // Equivalent to 'T'.
1030       return C_Memory;
1031 
1032     case 'I': // Unsigned 8-bit constant
1033     case 'J': // Unsigned 12-bit constant
1034     case 'K': // Signed 16-bit constant
1035     case 'L': // Signed 20-bit displacement (on all targets we support)
1036     case 'M': // 0x7fffffff
1037       return C_Immediate;
1038 
1039     default:
1040       break;
1041     }
1042   }
1043   return TargetLowering::getConstraintType(Constraint);
1044 }
1045 
1046 TargetLowering::ConstraintWeight SystemZTargetLowering::
1047 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1048                                const char *constraint) const {
1049   ConstraintWeight weight = CW_Invalid;
1050   Value *CallOperandVal = info.CallOperandVal;
1051   // If we don't have a value, we can't do a match,
1052   // but allow it at the lowest weight.
1053   if (!CallOperandVal)
1054     return CW_Default;
1055   Type *type = CallOperandVal->getType();
1056   // Look at the constraint type.
1057   switch (*constraint) {
1058   default:
1059     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1060     break;
1061 
1062   case 'a': // Address register
1063   case 'd': // Data register (equivalent to 'r')
1064   case 'h': // High-part register
1065   case 'r': // General-purpose register
1066     if (CallOperandVal->getType()->isIntegerTy())
1067       weight = CW_Register;
1068     break;
1069 
1070   case 'f': // Floating-point register
1071     if (type->isFloatingPointTy())
1072       weight = CW_Register;
1073     break;
1074 
1075   case 'v': // Vector register
1076     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1077         Subtarget.hasVector())
1078       weight = CW_Register;
1079     break;
1080 
1081   case 'I': // Unsigned 8-bit constant
1082     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1083       if (isUInt<8>(C->getZExtValue()))
1084         weight = CW_Constant;
1085     break;
1086 
1087   case 'J': // Unsigned 12-bit constant
1088     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1089       if (isUInt<12>(C->getZExtValue()))
1090         weight = CW_Constant;
1091     break;
1092 
1093   case 'K': // Signed 16-bit constant
1094     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1095       if (isInt<16>(C->getSExtValue()))
1096         weight = CW_Constant;
1097     break;
1098 
1099   case 'L': // Signed 20-bit displacement (on all targets we support)
1100     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1101       if (isInt<20>(C->getSExtValue()))
1102         weight = CW_Constant;
1103     break;
1104 
1105   case 'M': // 0x7fffffff
1106     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1107       if (C->getZExtValue() == 0x7fffffff)
1108         weight = CW_Constant;
1109     break;
1110   }
1111   return weight;
1112 }
1113 
1114 // Parse a "{tNNN}" register constraint for which the register type "t"
1115 // has already been verified.  MC is the class associated with "t" and
1116 // Map maps 0-based register numbers to LLVM register numbers.
1117 static std::pair<unsigned, const TargetRegisterClass *>
1118 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1119                     const unsigned *Map, unsigned Size) {
1120   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1121   if (isdigit(Constraint[2])) {
1122     unsigned Index;
1123     bool Failed =
1124         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1125     if (!Failed && Index < Size && Map[Index])
1126       return std::make_pair(Map[Index], RC);
1127   }
1128   return std::make_pair(0U, nullptr);
1129 }
1130 
1131 std::pair<unsigned, const TargetRegisterClass *>
1132 SystemZTargetLowering::getRegForInlineAsmConstraint(
1133     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1134   if (Constraint.size() == 1) {
1135     // GCC Constraint Letters
1136     switch (Constraint[0]) {
1137     default: break;
1138     case 'd': // Data register (equivalent to 'r')
1139     case 'r': // General-purpose register
1140       if (VT == MVT::i64)
1141         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1142       else if (VT == MVT::i128)
1143         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1144       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1145 
1146     case 'a': // Address register
1147       if (VT == MVT::i64)
1148         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1149       else if (VT == MVT::i128)
1150         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1151       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1152 
1153     case 'h': // High-part register (an LLVM extension)
1154       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1155 
1156     case 'f': // Floating-point register
1157       if (!useSoftFloat()) {
1158         if (VT == MVT::f64)
1159           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1160         else if (VT == MVT::f128)
1161           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1162         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1163       }
1164       break;
1165     case 'v': // Vector register
1166       if (Subtarget.hasVector()) {
1167         if (VT == MVT::f32)
1168           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1169         if (VT == MVT::f64)
1170           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1171         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1172       }
1173       break;
1174     }
1175   }
1176   if (Constraint.size() > 0 && Constraint[0] == '{') {
1177     // We need to override the default register parsing for GPRs and FPRs
1178     // because the interpretation depends on VT.  The internal names of
1179     // the registers are also different from the external names
1180     // (F0D and F0S instead of F0, etc.).
1181     if (Constraint[1] == 'r') {
1182       if (VT == MVT::i32)
1183         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1184                                    SystemZMC::GR32Regs, 16);
1185       if (VT == MVT::i128)
1186         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1187                                    SystemZMC::GR128Regs, 16);
1188       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1189                                  SystemZMC::GR64Regs, 16);
1190     }
1191     if (Constraint[1] == 'f') {
1192       if (useSoftFloat())
1193         return std::make_pair(
1194             0u, static_cast<const TargetRegisterClass *>(nullptr));
1195       if (VT == MVT::f32)
1196         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1197                                    SystemZMC::FP32Regs, 16);
1198       if (VT == MVT::f128)
1199         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1200                                    SystemZMC::FP128Regs, 16);
1201       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1202                                  SystemZMC::FP64Regs, 16);
1203     }
1204     if (Constraint[1] == 'v') {
1205       if (!Subtarget.hasVector())
1206         return std::make_pair(
1207             0u, static_cast<const TargetRegisterClass *>(nullptr));
1208       if (VT == MVT::f32)
1209         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1210                                    SystemZMC::VR32Regs, 32);
1211       if (VT == MVT::f64)
1212         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1213                                    SystemZMC::VR64Regs, 32);
1214       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1215                                  SystemZMC::VR128Regs, 32);
1216     }
1217   }
1218   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1219 }
1220 
1221 // FIXME? Maybe this could be a TableGen attribute on some registers and
1222 // this table could be generated automatically from RegInfo.
1223 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1224                                                   const MachineFunction &MF) const {
1225 
1226   Register Reg = StringSwitch<Register>(RegName)
1227                    .Case("r15", SystemZ::R15D)
1228                    .Default(0);
1229   if (Reg)
1230     return Reg;
1231   report_fatal_error("Invalid register name global variable");
1232 }
1233 
1234 void SystemZTargetLowering::
1235 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1236                              std::vector<SDValue> &Ops,
1237                              SelectionDAG &DAG) const {
1238   // Only support length 1 constraints for now.
1239   if (Constraint.length() == 1) {
1240     switch (Constraint[0]) {
1241     case 'I': // Unsigned 8-bit constant
1242       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1243         if (isUInt<8>(C->getZExtValue()))
1244           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1245                                               Op.getValueType()));
1246       return;
1247 
1248     case 'J': // Unsigned 12-bit constant
1249       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1250         if (isUInt<12>(C->getZExtValue()))
1251           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1252                                               Op.getValueType()));
1253       return;
1254 
1255     case 'K': // Signed 16-bit constant
1256       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1257         if (isInt<16>(C->getSExtValue()))
1258           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1259                                               Op.getValueType()));
1260       return;
1261 
1262     case 'L': // Signed 20-bit displacement (on all targets we support)
1263       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1264         if (isInt<20>(C->getSExtValue()))
1265           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1266                                               Op.getValueType()));
1267       return;
1268 
1269     case 'M': // 0x7fffffff
1270       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1271         if (C->getZExtValue() == 0x7fffffff)
1272           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1273                                               Op.getValueType()));
1274       return;
1275     }
1276   }
1277   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 // Calling conventions
1282 //===----------------------------------------------------------------------===//
1283 
1284 #include "SystemZGenCallingConv.inc"
1285 
1286 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1287   CallingConv::ID) const {
1288   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1289                                            SystemZ::R14D, 0 };
1290   return ScratchRegs;
1291 }
1292 
1293 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1294                                                      Type *ToType) const {
1295   return isTruncateFree(FromType, ToType);
1296 }
1297 
1298 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1299   return CI->isTailCall();
1300 }
1301 
1302 // We do not yet support 128-bit single-element vector types.  If the user
1303 // attempts to use such types as function argument or return type, prefer
1304 // to error out instead of emitting code violating the ABI.
1305 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1306   if (ArgVT.isVector() && !VT.isVector())
1307     report_fatal_error("Unsupported vector argument or return type");
1308 }
1309 
1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1311   for (unsigned i = 0; i < Ins.size(); ++i)
1312     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1313 }
1314 
1315 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1316   for (unsigned i = 0; i < Outs.size(); ++i)
1317     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1318 }
1319 
1320 // Value is a value that has been passed to us in the location described by VA
1321 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1322 // any loads onto Chain.
1323 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1324                                    CCValAssign &VA, SDValue Chain,
1325                                    SDValue Value) {
1326   // If the argument has been promoted from a smaller type, insert an
1327   // assertion to capture this.
1328   if (VA.getLocInfo() == CCValAssign::SExt)
1329     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1330                         DAG.getValueType(VA.getValVT()));
1331   else if (VA.getLocInfo() == CCValAssign::ZExt)
1332     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1333                         DAG.getValueType(VA.getValVT()));
1334 
1335   if (VA.isExtInLoc())
1336     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1337   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1338     // If this is a short vector argument loaded from the stack,
1339     // extend from i64 to full vector size and then bitcast.
1340     assert(VA.getLocVT() == MVT::i64);
1341     assert(VA.getValVT().isVector());
1342     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1343     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1344   } else
1345     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1346   return Value;
1347 }
1348 
1349 // Value is a value of type VA.getValVT() that we need to copy into
1350 // the location described by VA.  Return a copy of Value converted to
1351 // VA.getValVT().  The caller is responsible for handling indirect values.
1352 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1353                                    CCValAssign &VA, SDValue Value) {
1354   switch (VA.getLocInfo()) {
1355   case CCValAssign::SExt:
1356     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1357   case CCValAssign::ZExt:
1358     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1359   case CCValAssign::AExt:
1360     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1361   case CCValAssign::BCvt: {
1362     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1363     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1364            VA.getValVT() == MVT::f128);
1365     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1366                             ? MVT::v2i64
1367                             : VA.getLocVT();
1368     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1369     // For ELF, this is a short vector argument to be stored to the stack,
1370     // bitcast to v2i64 and then extract first element.
1371     if (BitCastToType == MVT::v2i64)
1372       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1373                          DAG.getConstant(0, DL, MVT::i32));
1374     return Value;
1375   }
1376   case CCValAssign::Full:
1377     return Value;
1378   default:
1379     llvm_unreachable("Unhandled getLocInfo()");
1380   }
1381 }
1382 
1383 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1384   SDLoc DL(In);
1385   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1386                            DAG.getIntPtrConstant(0, DL));
1387   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1388                            DAG.getIntPtrConstant(1, DL));
1389   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1390                                     MVT::Untyped, Hi, Lo);
1391   return SDValue(Pair, 0);
1392 }
1393 
1394 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1395   SDLoc DL(In);
1396   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1397                                           DL, MVT::i64, In);
1398   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1399                                           DL, MVT::i64, In);
1400   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1401 }
1402 
1403 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1404     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1405     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1406   EVT ValueVT = Val.getValueType();
1407   assert((ValueVT != MVT::i128 ||
1408           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1409            (NumParts == 2 && PartVT == MVT::i64))) &&
1410          "Unknown handling of i128 value.");
1411   if (ValueVT == MVT::i128 && NumParts == 1) {
1412     // Inline assembly operand.
1413     Parts[0] = lowerI128ToGR128(DAG, Val);
1414     return true;
1415   }
1416   return false;
1417 }
1418 
1419 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1420     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1421     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1422   assert((ValueVT != MVT::i128 ||
1423           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1424            (NumParts == 2 && PartVT == MVT::i64))) &&
1425          "Unknown handling of i128 value.");
1426   if (ValueVT == MVT::i128 && NumParts == 1)
1427     // Inline assembly operand.
1428     return lowerGR128ToI128(DAG, Parts[0]);
1429   return SDValue();
1430 }
1431 
1432 SDValue SystemZTargetLowering::LowerFormalArguments(
1433     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1434     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1435     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1436   MachineFunction &MF = DAG.getMachineFunction();
1437   MachineFrameInfo &MFI = MF.getFrameInfo();
1438   MachineRegisterInfo &MRI = MF.getRegInfo();
1439   SystemZMachineFunctionInfo *FuncInfo =
1440       MF.getInfo<SystemZMachineFunctionInfo>();
1441   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1442   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1443 
1444   // Detect unsupported vector argument types.
1445   if (Subtarget.hasVector())
1446     VerifyVectorTypes(Ins);
1447 
1448   // Assign locations to all of the incoming arguments.
1449   SmallVector<CCValAssign, 16> ArgLocs;
1450   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1451   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1452 
1453   unsigned NumFixedGPRs = 0;
1454   unsigned NumFixedFPRs = 0;
1455   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1456     SDValue ArgValue;
1457     CCValAssign &VA = ArgLocs[I];
1458     EVT LocVT = VA.getLocVT();
1459     if (VA.isRegLoc()) {
1460       // Arguments passed in registers
1461       const TargetRegisterClass *RC;
1462       switch (LocVT.getSimpleVT().SimpleTy) {
1463       default:
1464         // Integers smaller than i64 should be promoted to i64.
1465         llvm_unreachable("Unexpected argument type");
1466       case MVT::i32:
1467         NumFixedGPRs += 1;
1468         RC = &SystemZ::GR32BitRegClass;
1469         break;
1470       case MVT::i64:
1471         NumFixedGPRs += 1;
1472         RC = &SystemZ::GR64BitRegClass;
1473         break;
1474       case MVT::f32:
1475         NumFixedFPRs += 1;
1476         RC = &SystemZ::FP32BitRegClass;
1477         break;
1478       case MVT::f64:
1479         NumFixedFPRs += 1;
1480         RC = &SystemZ::FP64BitRegClass;
1481         break;
1482       case MVT::f128:
1483         NumFixedFPRs += 2;
1484         RC = &SystemZ::FP128BitRegClass;
1485         break;
1486       case MVT::v16i8:
1487       case MVT::v8i16:
1488       case MVT::v4i32:
1489       case MVT::v2i64:
1490       case MVT::v4f32:
1491       case MVT::v2f64:
1492         RC = &SystemZ::VR128BitRegClass;
1493         break;
1494       }
1495 
1496       Register VReg = MRI.createVirtualRegister(RC);
1497       MRI.addLiveIn(VA.getLocReg(), VReg);
1498       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1499     } else {
1500       assert(VA.isMemLoc() && "Argument not register or memory");
1501 
1502       // Create the frame index object for this incoming parameter.
1503       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1504                                      VA.getLocMemOffset(), true);
1505 
1506       // Create the SelectionDAG nodes corresponding to a load
1507       // from this parameter.  Unpromoted ints and floats are
1508       // passed as right-justified 8-byte values.
1509       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1510       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1511         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1512                           DAG.getIntPtrConstant(4, DL));
1513       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1514                              MachinePointerInfo::getFixedStack(MF, FI));
1515     }
1516 
1517     // Convert the value of the argument register into the value that's
1518     // being passed.
1519     if (VA.getLocInfo() == CCValAssign::Indirect) {
1520       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1521                                    MachinePointerInfo()));
1522       // If the original argument was split (e.g. i128), we need
1523       // to load all parts of it here (using the same address).
1524       unsigned ArgIndex = Ins[I].OrigArgIndex;
1525       assert (Ins[I].PartOffset == 0);
1526       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1527         CCValAssign &PartVA = ArgLocs[I + 1];
1528         unsigned PartOffset = Ins[I + 1].PartOffset;
1529         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1530                                       DAG.getIntPtrConstant(PartOffset, DL));
1531         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1532                                      MachinePointerInfo()));
1533         ++I;
1534       }
1535     } else
1536       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1537   }
1538 
1539   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1540   if (IsVarArg && Subtarget.isTargetELF()) {
1541     // Save the number of non-varargs registers for later use by va_start, etc.
1542     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1543     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1544 
1545     // Likewise the address (in the form of a frame index) of where the
1546     // first stack vararg would be.  The 1-byte size here is arbitrary.
1547     int64_t StackSize = CCInfo.getNextStackOffset();
1548     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1549 
1550     // ...and a similar frame index for the caller-allocated save area
1551     // that will be used to store the incoming registers.
1552     int64_t RegSaveOffset =
1553       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1554     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1555     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1556 
1557     // Store the FPR varargs in the reserved frame slots.  (We store the
1558     // GPRs as part of the prologue.)
1559     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1560       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1561       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1562         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1563         int FI =
1564           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1565         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1566         unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1567                                      &SystemZ::FP64BitRegClass);
1568         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1569         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1570                                  MachinePointerInfo::getFixedStack(MF, FI));
1571       }
1572       // Join the stores, which are independent of one another.
1573       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1574                           makeArrayRef(&MemOps[NumFixedFPRs],
1575                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1576     }
1577   }
1578 
1579   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1580   // register (R5)
1581   return Chain;
1582 }
1583 
1584 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1585                               SmallVectorImpl<CCValAssign> &ArgLocs,
1586                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1587   // Punt if there are any indirect or stack arguments, or if the call
1588   // needs the callee-saved argument register R6, or if the call uses
1589   // the callee-saved register arguments SwiftSelf and SwiftError.
1590   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1591     CCValAssign &VA = ArgLocs[I];
1592     if (VA.getLocInfo() == CCValAssign::Indirect)
1593       return false;
1594     if (!VA.isRegLoc())
1595       return false;
1596     Register Reg = VA.getLocReg();
1597     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1598       return false;
1599     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1600       return false;
1601   }
1602   return true;
1603 }
1604 
1605 SDValue
1606 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1607                                  SmallVectorImpl<SDValue> &InVals) const {
1608   SelectionDAG &DAG = CLI.DAG;
1609   SDLoc &DL = CLI.DL;
1610   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1611   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1612   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1613   SDValue Chain = CLI.Chain;
1614   SDValue Callee = CLI.Callee;
1615   bool &IsTailCall = CLI.IsTailCall;
1616   CallingConv::ID CallConv = CLI.CallConv;
1617   bool IsVarArg = CLI.IsVarArg;
1618   MachineFunction &MF = DAG.getMachineFunction();
1619   EVT PtrVT = getPointerTy(MF.getDataLayout());
1620   LLVMContext &Ctx = *DAG.getContext();
1621   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1622 
1623   // FIXME: z/OS support to be added in later.
1624   if (Subtarget.isTargetXPLINK64())
1625     IsTailCall = false;
1626 
1627   // Detect unsupported vector argument and return types.
1628   if (Subtarget.hasVector()) {
1629     VerifyVectorTypes(Outs);
1630     VerifyVectorTypes(Ins);
1631   }
1632 
1633   // Analyze the operands of the call, assigning locations to each operand.
1634   SmallVector<CCValAssign, 16> ArgLocs;
1635   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1636   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1637 
1638   // We don't support GuaranteedTailCallOpt, only automatically-detected
1639   // sibling calls.
1640   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1641     IsTailCall = false;
1642 
1643   // Get a count of how many bytes are to be pushed on the stack.
1644   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1645 
1646   if (Subtarget.isTargetXPLINK64())
1647     // Although the XPLINK specifications for AMODE64 state that minimum size
1648     // of the param area is minimum 32 bytes and no rounding is otherwise
1649     // specified, we round this area in 64 bytes increments to be compatible
1650     // with existing compilers.
1651     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1652 
1653   // Mark the start of the call.
1654   if (!IsTailCall)
1655     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1656 
1657   // Copy argument values to their designated locations.
1658   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1659   SmallVector<SDValue, 8> MemOpChains;
1660   SDValue StackPtr;
1661   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1662     CCValAssign &VA = ArgLocs[I];
1663     SDValue ArgValue = OutVals[I];
1664 
1665     if (VA.getLocInfo() == CCValAssign::Indirect) {
1666       // Store the argument in a stack slot and pass its address.
1667       unsigned ArgIndex = Outs[I].OrigArgIndex;
1668       EVT SlotVT;
1669       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1670         // Allocate the full stack space for a promoted (and split) argument.
1671         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1672         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1673         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1674         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1675         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1676       } else {
1677         SlotVT = Outs[I].ArgVT;
1678       }
1679       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1680       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1681       MemOpChains.push_back(
1682           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1683                        MachinePointerInfo::getFixedStack(MF, FI)));
1684       // If the original argument was split (e.g. i128), we need
1685       // to store all parts of it here (and pass just one address).
1686       assert (Outs[I].PartOffset == 0);
1687       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1688         SDValue PartValue = OutVals[I + 1];
1689         unsigned PartOffset = Outs[I + 1].PartOffset;
1690         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1691                                       DAG.getIntPtrConstant(PartOffset, DL));
1692         MemOpChains.push_back(
1693             DAG.getStore(Chain, DL, PartValue, Address,
1694                          MachinePointerInfo::getFixedStack(MF, FI)));
1695         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1696                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1697         ++I;
1698       }
1699       ArgValue = SpillSlot;
1700     } else
1701       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1702 
1703     if (VA.isRegLoc()) {
1704       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1705       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1706       // and low values.
1707       if (VA.getLocVT() == MVT::i128)
1708         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1709       // Queue up the argument copies and emit them at the end.
1710       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1711     } else {
1712       assert(VA.isMemLoc() && "Argument not register or memory");
1713 
1714       // Work out the address of the stack slot.  Unpromoted ints and
1715       // floats are passed as right-justified 8-byte values.
1716       if (!StackPtr.getNode())
1717         StackPtr = DAG.getCopyFromReg(Chain, DL,
1718                                       Regs->getStackPointerRegister(), PtrVT);
1719       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1720                         VA.getLocMemOffset();
1721       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1722         Offset += 4;
1723       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1724                                     DAG.getIntPtrConstant(Offset, DL));
1725 
1726       // Emit the store.
1727       MemOpChains.push_back(
1728           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1729 
1730       // Although long doubles or vectors are passed through the stack when
1731       // they are vararg (non-fixed arguments), if a long double or vector
1732       // occupies the third and fourth slot of the argument list GPR3 should
1733       // still shadow the third slot of the argument list.
1734       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1735         SDValue ShadowArgValue =
1736             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1737                         DAG.getIntPtrConstant(1, DL));
1738         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1739       }
1740     }
1741   }
1742 
1743   // Join the stores, which are independent of one another.
1744   if (!MemOpChains.empty())
1745     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1746 
1747   // Accept direct calls by converting symbolic call addresses to the
1748   // associated Target* opcodes.  Force %r1 to be used for indirect
1749   // tail calls.
1750   SDValue Glue;
1751   // FIXME: Add support for XPLINK using the ADA register.
1752   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1753     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1754     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1755   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1756     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1757     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1758   } else if (IsTailCall) {
1759     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1760     Glue = Chain.getValue(1);
1761     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1762   }
1763 
1764   // Build a sequence of copy-to-reg nodes, chained and glued together.
1765   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1766     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1767                              RegsToPass[I].second, Glue);
1768     Glue = Chain.getValue(1);
1769   }
1770 
1771   // The first call operand is the chain and the second is the target address.
1772   SmallVector<SDValue, 8> Ops;
1773   Ops.push_back(Chain);
1774   Ops.push_back(Callee);
1775 
1776   // Add argument registers to the end of the list so that they are
1777   // known live into the call.
1778   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1779     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1780                                   RegsToPass[I].second.getValueType()));
1781 
1782   // Add a register mask operand representing the call-preserved registers.
1783   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1784   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1785   assert(Mask && "Missing call preserved mask for calling convention");
1786   Ops.push_back(DAG.getRegisterMask(Mask));
1787 
1788   // Glue the call to the argument copies, if any.
1789   if (Glue.getNode())
1790     Ops.push_back(Glue);
1791 
1792   // Emit the call.
1793   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1794   if (IsTailCall)
1795     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1796   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1797   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1798   Glue = Chain.getValue(1);
1799 
1800   // Mark the end of the call, which is glued to the call itself.
1801   Chain = DAG.getCALLSEQ_END(Chain,
1802                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1803                              DAG.getConstant(0, DL, PtrVT, true),
1804                              Glue, DL);
1805   Glue = Chain.getValue(1);
1806 
1807   // Assign locations to each value returned by this call.
1808   SmallVector<CCValAssign, 16> RetLocs;
1809   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1810   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1811 
1812   // Copy all of the result registers out of their specified physreg.
1813   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1814     CCValAssign &VA = RetLocs[I];
1815 
1816     // Copy the value out, gluing the copy to the end of the call sequence.
1817     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1818                                           VA.getLocVT(), Glue);
1819     Chain = RetValue.getValue(1);
1820     Glue = RetValue.getValue(2);
1821 
1822     // Convert the value of the return register into the value that's
1823     // being returned.
1824     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1825   }
1826 
1827   return Chain;
1828 }
1829 
1830 bool SystemZTargetLowering::
1831 CanLowerReturn(CallingConv::ID CallConv,
1832                MachineFunction &MF, bool isVarArg,
1833                const SmallVectorImpl<ISD::OutputArg> &Outs,
1834                LLVMContext &Context) const {
1835   // Detect unsupported vector return types.
1836   if (Subtarget.hasVector())
1837     VerifyVectorTypes(Outs);
1838 
1839   // Special case that we cannot easily detect in RetCC_SystemZ since
1840   // i128 is not a legal type.
1841   for (auto &Out : Outs)
1842     if (Out.ArgVT == MVT::i128)
1843       return false;
1844 
1845   SmallVector<CCValAssign, 16> RetLocs;
1846   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1847   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1848 }
1849 
1850 SDValue
1851 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1852                                    bool IsVarArg,
1853                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1854                                    const SmallVectorImpl<SDValue> &OutVals,
1855                                    const SDLoc &DL, SelectionDAG &DAG) const {
1856   MachineFunction &MF = DAG.getMachineFunction();
1857 
1858   // Detect unsupported vector return types.
1859   if (Subtarget.hasVector())
1860     VerifyVectorTypes(Outs);
1861 
1862   // Assign locations to each returned value.
1863   SmallVector<CCValAssign, 16> RetLocs;
1864   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1865   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1866 
1867   // Quick exit for void returns
1868   if (RetLocs.empty())
1869     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1870 
1871   if (CallConv == CallingConv::GHC)
1872     report_fatal_error("GHC functions return void only");
1873 
1874   // Copy the result values into the output registers.
1875   SDValue Glue;
1876   SmallVector<SDValue, 4> RetOps;
1877   RetOps.push_back(Chain);
1878   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1879     CCValAssign &VA = RetLocs[I];
1880     SDValue RetValue = OutVals[I];
1881 
1882     // Make the return register live on exit.
1883     assert(VA.isRegLoc() && "Can only return in registers!");
1884 
1885     // Promote the value as required.
1886     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1887 
1888     // Chain and glue the copies together.
1889     Register Reg = VA.getLocReg();
1890     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1891     Glue = Chain.getValue(1);
1892     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1893   }
1894 
1895   // Update chain and glue.
1896   RetOps[0] = Chain;
1897   if (Glue.getNode())
1898     RetOps.push_back(Glue);
1899 
1900   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1901 }
1902 
1903 // Return true if Op is an intrinsic node with chain that returns the CC value
1904 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1905 // the mask of valid CC values if so.
1906 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1907                                       unsigned &CCValid) {
1908   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1909   switch (Id) {
1910   case Intrinsic::s390_tbegin:
1911     Opcode = SystemZISD::TBEGIN;
1912     CCValid = SystemZ::CCMASK_TBEGIN;
1913     return true;
1914 
1915   case Intrinsic::s390_tbegin_nofloat:
1916     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1917     CCValid = SystemZ::CCMASK_TBEGIN;
1918     return true;
1919 
1920   case Intrinsic::s390_tend:
1921     Opcode = SystemZISD::TEND;
1922     CCValid = SystemZ::CCMASK_TEND;
1923     return true;
1924 
1925   default:
1926     return false;
1927   }
1928 }
1929 
1930 // Return true if Op is an intrinsic node without chain that returns the
1931 // CC value as its final argument.  Provide the associated SystemZISD
1932 // opcode and the mask of valid CC values if so.
1933 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1934   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1935   switch (Id) {
1936   case Intrinsic::s390_vpkshs:
1937   case Intrinsic::s390_vpksfs:
1938   case Intrinsic::s390_vpksgs:
1939     Opcode = SystemZISD::PACKS_CC;
1940     CCValid = SystemZ::CCMASK_VCMP;
1941     return true;
1942 
1943   case Intrinsic::s390_vpklshs:
1944   case Intrinsic::s390_vpklsfs:
1945   case Intrinsic::s390_vpklsgs:
1946     Opcode = SystemZISD::PACKLS_CC;
1947     CCValid = SystemZ::CCMASK_VCMP;
1948     return true;
1949 
1950   case Intrinsic::s390_vceqbs:
1951   case Intrinsic::s390_vceqhs:
1952   case Intrinsic::s390_vceqfs:
1953   case Intrinsic::s390_vceqgs:
1954     Opcode = SystemZISD::VICMPES;
1955     CCValid = SystemZ::CCMASK_VCMP;
1956     return true;
1957 
1958   case Intrinsic::s390_vchbs:
1959   case Intrinsic::s390_vchhs:
1960   case Intrinsic::s390_vchfs:
1961   case Intrinsic::s390_vchgs:
1962     Opcode = SystemZISD::VICMPHS;
1963     CCValid = SystemZ::CCMASK_VCMP;
1964     return true;
1965 
1966   case Intrinsic::s390_vchlbs:
1967   case Intrinsic::s390_vchlhs:
1968   case Intrinsic::s390_vchlfs:
1969   case Intrinsic::s390_vchlgs:
1970     Opcode = SystemZISD::VICMPHLS;
1971     CCValid = SystemZ::CCMASK_VCMP;
1972     return true;
1973 
1974   case Intrinsic::s390_vtm:
1975     Opcode = SystemZISD::VTM;
1976     CCValid = SystemZ::CCMASK_VCMP;
1977     return true;
1978 
1979   case Intrinsic::s390_vfaebs:
1980   case Intrinsic::s390_vfaehs:
1981   case Intrinsic::s390_vfaefs:
1982     Opcode = SystemZISD::VFAE_CC;
1983     CCValid = SystemZ::CCMASK_ANY;
1984     return true;
1985 
1986   case Intrinsic::s390_vfaezbs:
1987   case Intrinsic::s390_vfaezhs:
1988   case Intrinsic::s390_vfaezfs:
1989     Opcode = SystemZISD::VFAEZ_CC;
1990     CCValid = SystemZ::CCMASK_ANY;
1991     return true;
1992 
1993   case Intrinsic::s390_vfeebs:
1994   case Intrinsic::s390_vfeehs:
1995   case Intrinsic::s390_vfeefs:
1996     Opcode = SystemZISD::VFEE_CC;
1997     CCValid = SystemZ::CCMASK_ANY;
1998     return true;
1999 
2000   case Intrinsic::s390_vfeezbs:
2001   case Intrinsic::s390_vfeezhs:
2002   case Intrinsic::s390_vfeezfs:
2003     Opcode = SystemZISD::VFEEZ_CC;
2004     CCValid = SystemZ::CCMASK_ANY;
2005     return true;
2006 
2007   case Intrinsic::s390_vfenebs:
2008   case Intrinsic::s390_vfenehs:
2009   case Intrinsic::s390_vfenefs:
2010     Opcode = SystemZISD::VFENE_CC;
2011     CCValid = SystemZ::CCMASK_ANY;
2012     return true;
2013 
2014   case Intrinsic::s390_vfenezbs:
2015   case Intrinsic::s390_vfenezhs:
2016   case Intrinsic::s390_vfenezfs:
2017     Opcode = SystemZISD::VFENEZ_CC;
2018     CCValid = SystemZ::CCMASK_ANY;
2019     return true;
2020 
2021   case Intrinsic::s390_vistrbs:
2022   case Intrinsic::s390_vistrhs:
2023   case Intrinsic::s390_vistrfs:
2024     Opcode = SystemZISD::VISTR_CC;
2025     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2026     return true;
2027 
2028   case Intrinsic::s390_vstrcbs:
2029   case Intrinsic::s390_vstrchs:
2030   case Intrinsic::s390_vstrcfs:
2031     Opcode = SystemZISD::VSTRC_CC;
2032     CCValid = SystemZ::CCMASK_ANY;
2033     return true;
2034 
2035   case Intrinsic::s390_vstrczbs:
2036   case Intrinsic::s390_vstrczhs:
2037   case Intrinsic::s390_vstrczfs:
2038     Opcode = SystemZISD::VSTRCZ_CC;
2039     CCValid = SystemZ::CCMASK_ANY;
2040     return true;
2041 
2042   case Intrinsic::s390_vstrsb:
2043   case Intrinsic::s390_vstrsh:
2044   case Intrinsic::s390_vstrsf:
2045     Opcode = SystemZISD::VSTRS_CC;
2046     CCValid = SystemZ::CCMASK_ANY;
2047     return true;
2048 
2049   case Intrinsic::s390_vstrszb:
2050   case Intrinsic::s390_vstrszh:
2051   case Intrinsic::s390_vstrszf:
2052     Opcode = SystemZISD::VSTRSZ_CC;
2053     CCValid = SystemZ::CCMASK_ANY;
2054     return true;
2055 
2056   case Intrinsic::s390_vfcedbs:
2057   case Intrinsic::s390_vfcesbs:
2058     Opcode = SystemZISD::VFCMPES;
2059     CCValid = SystemZ::CCMASK_VCMP;
2060     return true;
2061 
2062   case Intrinsic::s390_vfchdbs:
2063   case Intrinsic::s390_vfchsbs:
2064     Opcode = SystemZISD::VFCMPHS;
2065     CCValid = SystemZ::CCMASK_VCMP;
2066     return true;
2067 
2068   case Intrinsic::s390_vfchedbs:
2069   case Intrinsic::s390_vfchesbs:
2070     Opcode = SystemZISD::VFCMPHES;
2071     CCValid = SystemZ::CCMASK_VCMP;
2072     return true;
2073 
2074   case Intrinsic::s390_vftcidb:
2075   case Intrinsic::s390_vftcisb:
2076     Opcode = SystemZISD::VFTCI;
2077     CCValid = SystemZ::CCMASK_VCMP;
2078     return true;
2079 
2080   case Intrinsic::s390_tdc:
2081     Opcode = SystemZISD::TDC;
2082     CCValid = SystemZ::CCMASK_TDC;
2083     return true;
2084 
2085   default:
2086     return false;
2087   }
2088 }
2089 
2090 // Emit an intrinsic with chain and an explicit CC register result.
2091 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2092                                            unsigned Opcode) {
2093   // Copy all operands except the intrinsic ID.
2094   unsigned NumOps = Op.getNumOperands();
2095   SmallVector<SDValue, 6> Ops;
2096   Ops.reserve(NumOps - 1);
2097   Ops.push_back(Op.getOperand(0));
2098   for (unsigned I = 2; I < NumOps; ++I)
2099     Ops.push_back(Op.getOperand(I));
2100 
2101   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2102   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2103   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2104   SDValue OldChain = SDValue(Op.getNode(), 1);
2105   SDValue NewChain = SDValue(Intr.getNode(), 1);
2106   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2107   return Intr.getNode();
2108 }
2109 
2110 // Emit an intrinsic with an explicit CC register result.
2111 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2112                                    unsigned Opcode) {
2113   // Copy all operands except the intrinsic ID.
2114   unsigned NumOps = Op.getNumOperands();
2115   SmallVector<SDValue, 6> Ops;
2116   Ops.reserve(NumOps - 1);
2117   for (unsigned I = 1; I < NumOps; ++I)
2118     Ops.push_back(Op.getOperand(I));
2119 
2120   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2121   return Intr.getNode();
2122 }
2123 
2124 // CC is a comparison that will be implemented using an integer or
2125 // floating-point comparison.  Return the condition code mask for
2126 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2127 // unsigned comparisons and clear for signed ones.  In the floating-point
2128 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2129 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2130 #define CONV(X) \
2131   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2132   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2133   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2134 
2135   switch (CC) {
2136   default:
2137     llvm_unreachable("Invalid integer condition!");
2138 
2139   CONV(EQ);
2140   CONV(NE);
2141   CONV(GT);
2142   CONV(GE);
2143   CONV(LT);
2144   CONV(LE);
2145 
2146   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2147   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2148   }
2149 #undef CONV
2150 }
2151 
2152 // If C can be converted to a comparison against zero, adjust the operands
2153 // as necessary.
2154 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2155   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2156     return;
2157 
2158   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2159   if (!ConstOp1)
2160     return;
2161 
2162   int64_t Value = ConstOp1->getSExtValue();
2163   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2164       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2165       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2166       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2167     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2168     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2169   }
2170 }
2171 
2172 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2173 // adjust the operands as necessary.
2174 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2175                              Comparison &C) {
2176   // For us to make any changes, it must a comparison between a single-use
2177   // load and a constant.
2178   if (!C.Op0.hasOneUse() ||
2179       C.Op0.getOpcode() != ISD::LOAD ||
2180       C.Op1.getOpcode() != ISD::Constant)
2181     return;
2182 
2183   // We must have an 8- or 16-bit load.
2184   auto *Load = cast<LoadSDNode>(C.Op0);
2185   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2186   if ((NumBits != 8 && NumBits != 16) ||
2187       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2188     return;
2189 
2190   // The load must be an extending one and the constant must be within the
2191   // range of the unextended value.
2192   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2193   uint64_t Value = ConstOp1->getZExtValue();
2194   uint64_t Mask = (1 << NumBits) - 1;
2195   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2196     // Make sure that ConstOp1 is in range of C.Op0.
2197     int64_t SignedValue = ConstOp1->getSExtValue();
2198     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2199       return;
2200     if (C.ICmpType != SystemZICMP::SignedOnly) {
2201       // Unsigned comparison between two sign-extended values is equivalent
2202       // to unsigned comparison between two zero-extended values.
2203       Value &= Mask;
2204     } else if (NumBits == 8) {
2205       // Try to treat the comparison as unsigned, so that we can use CLI.
2206       // Adjust CCMask and Value as necessary.
2207       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2208         // Test whether the high bit of the byte is set.
2209         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2210       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2211         // Test whether the high bit of the byte is clear.
2212         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2213       else
2214         // No instruction exists for this combination.
2215         return;
2216       C.ICmpType = SystemZICMP::UnsignedOnly;
2217     }
2218   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2219     if (Value > Mask)
2220       return;
2221     // If the constant is in range, we can use any comparison.
2222     C.ICmpType = SystemZICMP::Any;
2223   } else
2224     return;
2225 
2226   // Make sure that the first operand is an i32 of the right extension type.
2227   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2228                               ISD::SEXTLOAD :
2229                               ISD::ZEXTLOAD);
2230   if (C.Op0.getValueType() != MVT::i32 ||
2231       Load->getExtensionType() != ExtType) {
2232     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2233                            Load->getBasePtr(), Load->getPointerInfo(),
2234                            Load->getMemoryVT(), Load->getAlignment(),
2235                            Load->getMemOperand()->getFlags());
2236     // Update the chain uses.
2237     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2238   }
2239 
2240   // Make sure that the second operand is an i32 with the right value.
2241   if (C.Op1.getValueType() != MVT::i32 ||
2242       Value != ConstOp1->getZExtValue())
2243     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2244 }
2245 
2246 // Return true if Op is either an unextended load, or a load suitable
2247 // for integer register-memory comparisons of type ICmpType.
2248 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2249   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2250   if (Load) {
2251     // There are no instructions to compare a register with a memory byte.
2252     if (Load->getMemoryVT() == MVT::i8)
2253       return false;
2254     // Otherwise decide on extension type.
2255     switch (Load->getExtensionType()) {
2256     case ISD::NON_EXTLOAD:
2257       return true;
2258     case ISD::SEXTLOAD:
2259       return ICmpType != SystemZICMP::UnsignedOnly;
2260     case ISD::ZEXTLOAD:
2261       return ICmpType != SystemZICMP::SignedOnly;
2262     default:
2263       break;
2264     }
2265   }
2266   return false;
2267 }
2268 
2269 // Return true if it is better to swap the operands of C.
2270 static bool shouldSwapCmpOperands(const Comparison &C) {
2271   // Leave f128 comparisons alone, since they have no memory forms.
2272   if (C.Op0.getValueType() == MVT::f128)
2273     return false;
2274 
2275   // Always keep a floating-point constant second, since comparisons with
2276   // zero can use LOAD TEST and comparisons with other constants make a
2277   // natural memory operand.
2278   if (isa<ConstantFPSDNode>(C.Op1))
2279     return false;
2280 
2281   // Never swap comparisons with zero since there are many ways to optimize
2282   // those later.
2283   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2284   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2285     return false;
2286 
2287   // Also keep natural memory operands second if the loaded value is
2288   // only used here.  Several comparisons have memory forms.
2289   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2290     return false;
2291 
2292   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2293   // In that case we generally prefer the memory to be second.
2294   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2295     // The only exceptions are when the second operand is a constant and
2296     // we can use things like CHHSI.
2297     if (!ConstOp1)
2298       return true;
2299     // The unsigned memory-immediate instructions can handle 16-bit
2300     // unsigned integers.
2301     if (C.ICmpType != SystemZICMP::SignedOnly &&
2302         isUInt<16>(ConstOp1->getZExtValue()))
2303       return false;
2304     // The signed memory-immediate instructions can handle 16-bit
2305     // signed integers.
2306     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2307         isInt<16>(ConstOp1->getSExtValue()))
2308       return false;
2309     return true;
2310   }
2311 
2312   // Try to promote the use of CGFR and CLGFR.
2313   unsigned Opcode0 = C.Op0.getOpcode();
2314   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2315     return true;
2316   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2317     return true;
2318   if (C.ICmpType != SystemZICMP::SignedOnly &&
2319       Opcode0 == ISD::AND &&
2320       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2321       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2322     return true;
2323 
2324   return false;
2325 }
2326 
2327 // Check whether C tests for equality between X and Y and whether X - Y
2328 // or Y - X is also computed.  In that case it's better to compare the
2329 // result of the subtraction against zero.
2330 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2331                                  Comparison &C) {
2332   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2333       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2334     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2335       SDNode *N = *I;
2336       if (N->getOpcode() == ISD::SUB &&
2337           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2338            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2339         C.Op0 = SDValue(N, 0);
2340         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2341         return;
2342       }
2343     }
2344   }
2345 }
2346 
2347 // Check whether C compares a floating-point value with zero and if that
2348 // floating-point value is also negated.  In this case we can use the
2349 // negation to set CC, so avoiding separate LOAD AND TEST and
2350 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2351 static void adjustForFNeg(Comparison &C) {
2352   // This optimization is invalid for strict comparisons, since FNEG
2353   // does not raise any exceptions.
2354   if (C.Chain)
2355     return;
2356   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2357   if (C1 && C1->isZero()) {
2358     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2359       SDNode *N = *I;
2360       if (N->getOpcode() == ISD::FNEG) {
2361         C.Op0 = SDValue(N, 0);
2362         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2363         return;
2364       }
2365     }
2366   }
2367 }
2368 
2369 // Check whether C compares (shl X, 32) with 0 and whether X is
2370 // also sign-extended.  In that case it is better to test the result
2371 // of the sign extension using LTGFR.
2372 //
2373 // This case is important because InstCombine transforms a comparison
2374 // with (sext (trunc X)) into a comparison with (shl X, 32).
2375 static void adjustForLTGFR(Comparison &C) {
2376   // Check for a comparison between (shl X, 32) and 0.
2377   if (C.Op0.getOpcode() == ISD::SHL &&
2378       C.Op0.getValueType() == MVT::i64 &&
2379       C.Op1.getOpcode() == ISD::Constant &&
2380       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2381     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2382     if (C1 && C1->getZExtValue() == 32) {
2383       SDValue ShlOp0 = C.Op0.getOperand(0);
2384       // See whether X has any SIGN_EXTEND_INREG uses.
2385       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2386         SDNode *N = *I;
2387         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2388             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2389           C.Op0 = SDValue(N, 0);
2390           return;
2391         }
2392       }
2393     }
2394   }
2395 }
2396 
2397 // If C compares the truncation of an extending load, try to compare
2398 // the untruncated value instead.  This exposes more opportunities to
2399 // reuse CC.
2400 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2401                                Comparison &C) {
2402   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2403       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2404       C.Op1.getOpcode() == ISD::Constant &&
2405       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2406     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2407     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2408         C.Op0.getValueSizeInBits().getFixedSize()) {
2409       unsigned Type = L->getExtensionType();
2410       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2411           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2412         C.Op0 = C.Op0.getOperand(0);
2413         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2414       }
2415     }
2416   }
2417 }
2418 
2419 // Return true if shift operation N has an in-range constant shift value.
2420 // Store it in ShiftVal if so.
2421 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2422   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2423   if (!Shift)
2424     return false;
2425 
2426   uint64_t Amount = Shift->getZExtValue();
2427   if (Amount >= N.getValueSizeInBits())
2428     return false;
2429 
2430   ShiftVal = Amount;
2431   return true;
2432 }
2433 
2434 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2435 // instruction and whether the CC value is descriptive enough to handle
2436 // a comparison of type Opcode between the AND result and CmpVal.
2437 // CCMask says which comparison result is being tested and BitSize is
2438 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2439 // return the corresponding CC mask, otherwise return 0.
2440 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2441                                      uint64_t Mask, uint64_t CmpVal,
2442                                      unsigned ICmpType) {
2443   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2444 
2445   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2446   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2447       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2448     return 0;
2449 
2450   // Work out the masks for the lowest and highest bits.
2451   unsigned HighShift = 63 - countLeadingZeros(Mask);
2452   uint64_t High = uint64_t(1) << HighShift;
2453   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2454 
2455   // Signed ordered comparisons are effectively unsigned if the sign
2456   // bit is dropped.
2457   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2458 
2459   // Check for equality comparisons with 0, or the equivalent.
2460   if (CmpVal == 0) {
2461     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2462       return SystemZ::CCMASK_TM_ALL_0;
2463     if (CCMask == SystemZ::CCMASK_CMP_NE)
2464       return SystemZ::CCMASK_TM_SOME_1;
2465   }
2466   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2467     if (CCMask == SystemZ::CCMASK_CMP_LT)
2468       return SystemZ::CCMASK_TM_ALL_0;
2469     if (CCMask == SystemZ::CCMASK_CMP_GE)
2470       return SystemZ::CCMASK_TM_SOME_1;
2471   }
2472   if (EffectivelyUnsigned && CmpVal < Low) {
2473     if (CCMask == SystemZ::CCMASK_CMP_LE)
2474       return SystemZ::CCMASK_TM_ALL_0;
2475     if (CCMask == SystemZ::CCMASK_CMP_GT)
2476       return SystemZ::CCMASK_TM_SOME_1;
2477   }
2478 
2479   // Check for equality comparisons with the mask, or the equivalent.
2480   if (CmpVal == Mask) {
2481     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2482       return SystemZ::CCMASK_TM_ALL_1;
2483     if (CCMask == SystemZ::CCMASK_CMP_NE)
2484       return SystemZ::CCMASK_TM_SOME_0;
2485   }
2486   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2487     if (CCMask == SystemZ::CCMASK_CMP_GT)
2488       return SystemZ::CCMASK_TM_ALL_1;
2489     if (CCMask == SystemZ::CCMASK_CMP_LE)
2490       return SystemZ::CCMASK_TM_SOME_0;
2491   }
2492   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2493     if (CCMask == SystemZ::CCMASK_CMP_GE)
2494       return SystemZ::CCMASK_TM_ALL_1;
2495     if (CCMask == SystemZ::CCMASK_CMP_LT)
2496       return SystemZ::CCMASK_TM_SOME_0;
2497   }
2498 
2499   // Check for ordered comparisons with the top bit.
2500   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2501     if (CCMask == SystemZ::CCMASK_CMP_LE)
2502       return SystemZ::CCMASK_TM_MSB_0;
2503     if (CCMask == SystemZ::CCMASK_CMP_GT)
2504       return SystemZ::CCMASK_TM_MSB_1;
2505   }
2506   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2507     if (CCMask == SystemZ::CCMASK_CMP_LT)
2508       return SystemZ::CCMASK_TM_MSB_0;
2509     if (CCMask == SystemZ::CCMASK_CMP_GE)
2510       return SystemZ::CCMASK_TM_MSB_1;
2511   }
2512 
2513   // If there are just two bits, we can do equality checks for Low and High
2514   // as well.
2515   if (Mask == Low + High) {
2516     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2517       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2518     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2519       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2520     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2521       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2522     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2523       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2524   }
2525 
2526   // Looks like we've exhausted our options.
2527   return 0;
2528 }
2529 
2530 // See whether C can be implemented as a TEST UNDER MASK instruction.
2531 // Update the arguments with the TM version if so.
2532 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2533                                    Comparison &C) {
2534   // Check that we have a comparison with a constant.
2535   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2536   if (!ConstOp1)
2537     return;
2538   uint64_t CmpVal = ConstOp1->getZExtValue();
2539 
2540   // Check whether the nonconstant input is an AND with a constant mask.
2541   Comparison NewC(C);
2542   uint64_t MaskVal;
2543   ConstantSDNode *Mask = nullptr;
2544   if (C.Op0.getOpcode() == ISD::AND) {
2545     NewC.Op0 = C.Op0.getOperand(0);
2546     NewC.Op1 = C.Op0.getOperand(1);
2547     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2548     if (!Mask)
2549       return;
2550     MaskVal = Mask->getZExtValue();
2551   } else {
2552     // There is no instruction to compare with a 64-bit immediate
2553     // so use TMHH instead if possible.  We need an unsigned ordered
2554     // comparison with an i64 immediate.
2555     if (NewC.Op0.getValueType() != MVT::i64 ||
2556         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2557         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2558         NewC.ICmpType == SystemZICMP::SignedOnly)
2559       return;
2560     // Convert LE and GT comparisons into LT and GE.
2561     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2562         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2563       if (CmpVal == uint64_t(-1))
2564         return;
2565       CmpVal += 1;
2566       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2567     }
2568     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2569     // be masked off without changing the result.
2570     MaskVal = -(CmpVal & -CmpVal);
2571     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2572   }
2573   if (!MaskVal)
2574     return;
2575 
2576   // Check whether the combination of mask, comparison value and comparison
2577   // type are suitable.
2578   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2579   unsigned NewCCMask, ShiftVal;
2580   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2581       NewC.Op0.getOpcode() == ISD::SHL &&
2582       isSimpleShift(NewC.Op0, ShiftVal) &&
2583       (MaskVal >> ShiftVal != 0) &&
2584       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2585       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2586                                         MaskVal >> ShiftVal,
2587                                         CmpVal >> ShiftVal,
2588                                         SystemZICMP::Any))) {
2589     NewC.Op0 = NewC.Op0.getOperand(0);
2590     MaskVal >>= ShiftVal;
2591   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2592              NewC.Op0.getOpcode() == ISD::SRL &&
2593              isSimpleShift(NewC.Op0, ShiftVal) &&
2594              (MaskVal << ShiftVal != 0) &&
2595              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2596              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2597                                                MaskVal << ShiftVal,
2598                                                CmpVal << ShiftVal,
2599                                                SystemZICMP::UnsignedOnly))) {
2600     NewC.Op0 = NewC.Op0.getOperand(0);
2601     MaskVal <<= ShiftVal;
2602   } else {
2603     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2604                                      NewC.ICmpType);
2605     if (!NewCCMask)
2606       return;
2607   }
2608 
2609   // Go ahead and make the change.
2610   C.Opcode = SystemZISD::TM;
2611   C.Op0 = NewC.Op0;
2612   if (Mask && Mask->getZExtValue() == MaskVal)
2613     C.Op1 = SDValue(Mask, 0);
2614   else
2615     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2616   C.CCValid = SystemZ::CCMASK_TM;
2617   C.CCMask = NewCCMask;
2618 }
2619 
2620 // See whether the comparison argument contains a redundant AND
2621 // and remove it if so.  This sometimes happens due to the generic
2622 // BRCOND expansion.
2623 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2624                                   Comparison &C) {
2625   if (C.Op0.getOpcode() != ISD::AND)
2626     return;
2627   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2628   if (!Mask)
2629     return;
2630   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2631   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2632     return;
2633 
2634   C.Op0 = C.Op0.getOperand(0);
2635 }
2636 
2637 // Return a Comparison that tests the condition-code result of intrinsic
2638 // node Call against constant integer CC using comparison code Cond.
2639 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2640 // and CCValid is the set of possible condition-code results.
2641 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2642                                   SDValue Call, unsigned CCValid, uint64_t CC,
2643                                   ISD::CondCode Cond) {
2644   Comparison C(Call, SDValue(), SDValue());
2645   C.Opcode = Opcode;
2646   C.CCValid = CCValid;
2647   if (Cond == ISD::SETEQ)
2648     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2649     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2650   else if (Cond == ISD::SETNE)
2651     // ...and the inverse of that.
2652     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2653   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2654     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2655     // always true for CC>3.
2656     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2657   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2658     // ...and the inverse of that.
2659     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2660   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2661     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2662     // always true for CC>3.
2663     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2664   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2665     // ...and the inverse of that.
2666     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2667   else
2668     llvm_unreachable("Unexpected integer comparison type");
2669   C.CCMask &= CCValid;
2670   return C;
2671 }
2672 
2673 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2674 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2675                          ISD::CondCode Cond, const SDLoc &DL,
2676                          SDValue Chain = SDValue(),
2677                          bool IsSignaling = false) {
2678   if (CmpOp1.getOpcode() == ISD::Constant) {
2679     assert(!Chain);
2680     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2681     unsigned Opcode, CCValid;
2682     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2683         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2684         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2685       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2686     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2687         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2688         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2689       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2690   }
2691   Comparison C(CmpOp0, CmpOp1, Chain);
2692   C.CCMask = CCMaskForCondCode(Cond);
2693   if (C.Op0.getValueType().isFloatingPoint()) {
2694     C.CCValid = SystemZ::CCMASK_FCMP;
2695     if (!C.Chain)
2696       C.Opcode = SystemZISD::FCMP;
2697     else if (!IsSignaling)
2698       C.Opcode = SystemZISD::STRICT_FCMP;
2699     else
2700       C.Opcode = SystemZISD::STRICT_FCMPS;
2701     adjustForFNeg(C);
2702   } else {
2703     assert(!C.Chain);
2704     C.CCValid = SystemZ::CCMASK_ICMP;
2705     C.Opcode = SystemZISD::ICMP;
2706     // Choose the type of comparison.  Equality and inequality tests can
2707     // use either signed or unsigned comparisons.  The choice also doesn't
2708     // matter if both sign bits are known to be clear.  In those cases we
2709     // want to give the main isel code the freedom to choose whichever
2710     // form fits best.
2711     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2712         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2713         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2714       C.ICmpType = SystemZICMP::Any;
2715     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2716       C.ICmpType = SystemZICMP::UnsignedOnly;
2717     else
2718       C.ICmpType = SystemZICMP::SignedOnly;
2719     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2720     adjustForRedundantAnd(DAG, DL, C);
2721     adjustZeroCmp(DAG, DL, C);
2722     adjustSubwordCmp(DAG, DL, C);
2723     adjustForSubtraction(DAG, DL, C);
2724     adjustForLTGFR(C);
2725     adjustICmpTruncate(DAG, DL, C);
2726   }
2727 
2728   if (shouldSwapCmpOperands(C)) {
2729     std::swap(C.Op0, C.Op1);
2730     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2731   }
2732 
2733   adjustForTestUnderMask(DAG, DL, C);
2734   return C;
2735 }
2736 
2737 // Emit the comparison instruction described by C.
2738 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2739   if (!C.Op1.getNode()) {
2740     SDNode *Node;
2741     switch (C.Op0.getOpcode()) {
2742     case ISD::INTRINSIC_W_CHAIN:
2743       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2744       return SDValue(Node, 0);
2745     case ISD::INTRINSIC_WO_CHAIN:
2746       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2747       return SDValue(Node, Node->getNumValues() - 1);
2748     default:
2749       llvm_unreachable("Invalid comparison operands");
2750     }
2751   }
2752   if (C.Opcode == SystemZISD::ICMP)
2753     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2754                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2755   if (C.Opcode == SystemZISD::TM) {
2756     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2757                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2758     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2759                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2760   }
2761   if (C.Chain) {
2762     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2763     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2764   }
2765   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2766 }
2767 
2768 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2769 // 64 bits.  Extend is the extension type to use.  Store the high part
2770 // in Hi and the low part in Lo.
2771 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2772                             SDValue Op0, SDValue Op1, SDValue &Hi,
2773                             SDValue &Lo) {
2774   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2775   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2776   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2777   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2778                    DAG.getConstant(32, DL, MVT::i64));
2779   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2780   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2781 }
2782 
2783 // Lower a binary operation that produces two VT results, one in each
2784 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2785 // and Opcode performs the GR128 operation.  Store the even register result
2786 // in Even and the odd register result in Odd.
2787 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2788                              unsigned Opcode, SDValue Op0, SDValue Op1,
2789                              SDValue &Even, SDValue &Odd) {
2790   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2791   bool Is32Bit = is32Bit(VT);
2792   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2793   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2794 }
2795 
2796 // Return an i32 value that is 1 if the CC value produced by CCReg is
2797 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2798 // in CCValid, so other values can be ignored.
2799 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2800                          unsigned CCValid, unsigned CCMask) {
2801   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2802                    DAG.getConstant(0, DL, MVT::i32),
2803                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2804                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2805   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2806 }
2807 
2808 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2809 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2810 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2811 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2812 // floating-point comparisons.
2813 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2814 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2815   switch (CC) {
2816   case ISD::SETOEQ:
2817   case ISD::SETEQ:
2818     switch (Mode) {
2819     case CmpMode::Int:         return SystemZISD::VICMPE;
2820     case CmpMode::FP:          return SystemZISD::VFCMPE;
2821     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2822     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2823     }
2824     llvm_unreachable("Bad mode");
2825 
2826   case ISD::SETOGE:
2827   case ISD::SETGE:
2828     switch (Mode) {
2829     case CmpMode::Int:         return 0;
2830     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2831     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2832     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2833     }
2834     llvm_unreachable("Bad mode");
2835 
2836   case ISD::SETOGT:
2837   case ISD::SETGT:
2838     switch (Mode) {
2839     case CmpMode::Int:         return SystemZISD::VICMPH;
2840     case CmpMode::FP:          return SystemZISD::VFCMPH;
2841     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2842     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2843     }
2844     llvm_unreachable("Bad mode");
2845 
2846   case ISD::SETUGT:
2847     switch (Mode) {
2848     case CmpMode::Int:         return SystemZISD::VICMPHL;
2849     case CmpMode::FP:          return 0;
2850     case CmpMode::StrictFP:    return 0;
2851     case CmpMode::SignalingFP: return 0;
2852     }
2853     llvm_unreachable("Bad mode");
2854 
2855   default:
2856     return 0;
2857   }
2858 }
2859 
2860 // Return the SystemZISD vector comparison operation for CC or its inverse,
2861 // or 0 if neither can be done directly.  Indicate in Invert whether the
2862 // result is for the inverse of CC.  Mode is as above.
2863 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2864                                             bool &Invert) {
2865   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2866     Invert = false;
2867     return Opcode;
2868   }
2869 
2870   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2871   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2872     Invert = true;
2873     return Opcode;
2874   }
2875 
2876   return 0;
2877 }
2878 
2879 // Return a v2f64 that contains the extended form of elements Start and Start+1
2880 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2881 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2882                                   SDValue Op, SDValue Chain) {
2883   int Mask[] = { Start, -1, Start + 1, -1 };
2884   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2885   if (Chain) {
2886     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2887     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2888   }
2889   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2890 }
2891 
2892 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2893 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2894 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2895                                             const SDLoc &DL, EVT VT,
2896                                             SDValue CmpOp0,
2897                                             SDValue CmpOp1,
2898                                             SDValue Chain) const {
2899   // There is no hardware support for v4f32 (unless we have the vector
2900   // enhancements facility 1), so extend the vector into two v2f64s
2901   // and compare those.
2902   if (CmpOp0.getValueType() == MVT::v4f32 &&
2903       !Subtarget.hasVectorEnhancements1()) {
2904     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2905     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2906     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2907     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2908     if (Chain) {
2909       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2910       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2911       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2912       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2913       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2914                             H1.getValue(1), L1.getValue(1),
2915                             HRes.getValue(1), LRes.getValue(1) };
2916       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2917       SDValue Ops[2] = { Res, NewChain };
2918       return DAG.getMergeValues(Ops, DL);
2919     }
2920     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2921     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2922     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2923   }
2924   if (Chain) {
2925     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2926     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2927   }
2928   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2929 }
2930 
2931 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2932 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2933 // floating-point comparison.  If in addition IsSignaling is true, we have
2934 // a strict signaling floating-point comparison.
2935 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2936                                                 const SDLoc &DL, EVT VT,
2937                                                 ISD::CondCode CC,
2938                                                 SDValue CmpOp0,
2939                                                 SDValue CmpOp1,
2940                                                 SDValue Chain,
2941                                                 bool IsSignaling) const {
2942   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2943   assert (!Chain || IsFP);
2944   assert (!IsSignaling || Chain);
2945   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2946                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2947   bool Invert = false;
2948   SDValue Cmp;
2949   switch (CC) {
2950     // Handle tests for order using (or (ogt y x) (oge x y)).
2951   case ISD::SETUO:
2952     Invert = true;
2953     LLVM_FALLTHROUGH;
2954   case ISD::SETO: {
2955     assert(IsFP && "Unexpected integer comparison");
2956     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2957                               DL, VT, CmpOp1, CmpOp0, Chain);
2958     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2959                               DL, VT, CmpOp0, CmpOp1, Chain);
2960     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2961     if (Chain)
2962       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2963                           LT.getValue(1), GE.getValue(1));
2964     break;
2965   }
2966 
2967     // Handle <> tests using (or (ogt y x) (ogt x y)).
2968   case ISD::SETUEQ:
2969     Invert = true;
2970     LLVM_FALLTHROUGH;
2971   case ISD::SETONE: {
2972     assert(IsFP && "Unexpected integer comparison");
2973     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2974                               DL, VT, CmpOp1, CmpOp0, Chain);
2975     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2976                               DL, VT, CmpOp0, CmpOp1, Chain);
2977     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2978     if (Chain)
2979       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2980                           LT.getValue(1), GT.getValue(1));
2981     break;
2982   }
2983 
2984     // Otherwise a single comparison is enough.  It doesn't really
2985     // matter whether we try the inversion or the swap first, since
2986     // there are no cases where both work.
2987   default:
2988     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2989       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2990     else {
2991       CC = ISD::getSetCCSwappedOperands(CC);
2992       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2993         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2994       else
2995         llvm_unreachable("Unhandled comparison");
2996     }
2997     if (Chain)
2998       Chain = Cmp.getValue(1);
2999     break;
3000   }
3001   if (Invert) {
3002     SDValue Mask =
3003       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3004     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3005   }
3006   if (Chain && Chain.getNode() != Cmp.getNode()) {
3007     SDValue Ops[2] = { Cmp, Chain };
3008     Cmp = DAG.getMergeValues(Ops, DL);
3009   }
3010   return Cmp;
3011 }
3012 
3013 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3014                                           SelectionDAG &DAG) const {
3015   SDValue CmpOp0   = Op.getOperand(0);
3016   SDValue CmpOp1   = Op.getOperand(1);
3017   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3018   SDLoc DL(Op);
3019   EVT VT = Op.getValueType();
3020   if (VT.isVector())
3021     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3022 
3023   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3024   SDValue CCReg = emitCmp(DAG, DL, C);
3025   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3026 }
3027 
3028 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3029                                                   SelectionDAG &DAG,
3030                                                   bool IsSignaling) const {
3031   SDValue Chain    = Op.getOperand(0);
3032   SDValue CmpOp0   = Op.getOperand(1);
3033   SDValue CmpOp1   = Op.getOperand(2);
3034   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3035   SDLoc DL(Op);
3036   EVT VT = Op.getNode()->getValueType(0);
3037   if (VT.isVector()) {
3038     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3039                                    Chain, IsSignaling);
3040     return Res.getValue(Op.getResNo());
3041   }
3042 
3043   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3044   SDValue CCReg = emitCmp(DAG, DL, C);
3045   CCReg->setFlags(Op->getFlags());
3046   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3047   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3048   return DAG.getMergeValues(Ops, DL);
3049 }
3050 
3051 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3052   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3053   SDValue CmpOp0   = Op.getOperand(2);
3054   SDValue CmpOp1   = Op.getOperand(3);
3055   SDValue Dest     = Op.getOperand(4);
3056   SDLoc DL(Op);
3057 
3058   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3059   SDValue CCReg = emitCmp(DAG, DL, C);
3060   return DAG.getNode(
3061       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3062       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3063       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3064 }
3065 
3066 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3067 // allowing Pos and Neg to be wider than CmpOp.
3068 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3069   return (Neg.getOpcode() == ISD::SUB &&
3070           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3071           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3072           Neg.getOperand(1) == Pos &&
3073           (Pos == CmpOp ||
3074            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3075             Pos.getOperand(0) == CmpOp)));
3076 }
3077 
3078 // Return the absolute or negative absolute of Op; IsNegative decides which.
3079 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3080                            bool IsNegative) {
3081   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3082   if (IsNegative)
3083     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3084                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3085   return Op;
3086 }
3087 
3088 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3089                                               SelectionDAG &DAG) const {
3090   SDValue CmpOp0   = Op.getOperand(0);
3091   SDValue CmpOp1   = Op.getOperand(1);
3092   SDValue TrueOp   = Op.getOperand(2);
3093   SDValue FalseOp  = Op.getOperand(3);
3094   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3095   SDLoc DL(Op);
3096 
3097   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3098 
3099   // Check for absolute and negative-absolute selections, including those
3100   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3101   // This check supplements the one in DAGCombiner.
3102   if (C.Opcode == SystemZISD::ICMP &&
3103       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3104       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3105       C.Op1.getOpcode() == ISD::Constant &&
3106       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3107     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3108       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3109     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3110       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3111   }
3112 
3113   SDValue CCReg = emitCmp(DAG, DL, C);
3114   SDValue Ops[] = {TrueOp, FalseOp,
3115                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3116                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3117 
3118   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3119 }
3120 
3121 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3122                                                   SelectionDAG &DAG) const {
3123   SDLoc DL(Node);
3124   const GlobalValue *GV = Node->getGlobal();
3125   int64_t Offset = Node->getOffset();
3126   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3127   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3128 
3129   SDValue Result;
3130   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3131     if (isInt<32>(Offset)) {
3132       // Assign anchors at 1<<12 byte boundaries.
3133       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3134       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3135       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3136 
3137       // The offset can be folded into the address if it is aligned to a
3138       // halfword.
3139       Offset -= Anchor;
3140       if (Offset != 0 && (Offset & 1) == 0) {
3141         SDValue Full =
3142           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3143         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3144         Offset = 0;
3145       }
3146     } else {
3147       // Conservatively load a constant offset greater than 32 bits into a
3148       // register below.
3149       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3150       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3151     }
3152   } else {
3153     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3154     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3155     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3156                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3157   }
3158 
3159   // If there was a non-zero offset that we didn't fold, create an explicit
3160   // addition for it.
3161   if (Offset != 0)
3162     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3163                          DAG.getConstant(Offset, DL, PtrVT));
3164 
3165   return Result;
3166 }
3167 
3168 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3169                                                  SelectionDAG &DAG,
3170                                                  unsigned Opcode,
3171                                                  SDValue GOTOffset) const {
3172   SDLoc DL(Node);
3173   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3174   SDValue Chain = DAG.getEntryNode();
3175   SDValue Glue;
3176 
3177   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3178       CallingConv::GHC)
3179     report_fatal_error("In GHC calling convention TLS is not supported");
3180 
3181   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3182   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3183   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3184   Glue = Chain.getValue(1);
3185   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3186   Glue = Chain.getValue(1);
3187 
3188   // The first call operand is the chain and the second is the TLS symbol.
3189   SmallVector<SDValue, 8> Ops;
3190   Ops.push_back(Chain);
3191   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3192                                            Node->getValueType(0),
3193                                            0, 0));
3194 
3195   // Add argument registers to the end of the list so that they are
3196   // known live into the call.
3197   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3198   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3199 
3200   // Add a register mask operand representing the call-preserved registers.
3201   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3202   const uint32_t *Mask =
3203       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3204   assert(Mask && "Missing call preserved mask for calling convention");
3205   Ops.push_back(DAG.getRegisterMask(Mask));
3206 
3207   // Glue the call to the argument copies.
3208   Ops.push_back(Glue);
3209 
3210   // Emit the call.
3211   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3212   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3213   Glue = Chain.getValue(1);
3214 
3215   // Copy the return value from %r2.
3216   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3217 }
3218 
3219 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3220                                                   SelectionDAG &DAG) const {
3221   SDValue Chain = DAG.getEntryNode();
3222   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3223 
3224   // The high part of the thread pointer is in access register 0.
3225   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3226   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3227 
3228   // The low part of the thread pointer is in access register 1.
3229   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3230   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3231 
3232   // Merge them into a single 64-bit address.
3233   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3234                                     DAG.getConstant(32, DL, PtrVT));
3235   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3236 }
3237 
3238 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3239                                                      SelectionDAG &DAG) const {
3240   if (DAG.getTarget().useEmulatedTLS())
3241     return LowerToTLSEmulatedModel(Node, DAG);
3242   SDLoc DL(Node);
3243   const GlobalValue *GV = Node->getGlobal();
3244   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3245   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3246 
3247   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3248       CallingConv::GHC)
3249     report_fatal_error("In GHC calling convention TLS is not supported");
3250 
3251   SDValue TP = lowerThreadPointer(DL, DAG);
3252 
3253   // Get the offset of GA from the thread pointer, based on the TLS model.
3254   SDValue Offset;
3255   switch (model) {
3256     case TLSModel::GeneralDynamic: {
3257       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3258       SystemZConstantPoolValue *CPV =
3259         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3260 
3261       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3262       Offset = DAG.getLoad(
3263           PtrVT, DL, DAG.getEntryNode(), Offset,
3264           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3265 
3266       // Call __tls_get_offset to retrieve the offset.
3267       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3268       break;
3269     }
3270 
3271     case TLSModel::LocalDynamic: {
3272       // Load the GOT offset of the module ID.
3273       SystemZConstantPoolValue *CPV =
3274         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3275 
3276       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3277       Offset = DAG.getLoad(
3278           PtrVT, DL, DAG.getEntryNode(), Offset,
3279           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3280 
3281       // Call __tls_get_offset to retrieve the module base offset.
3282       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3283 
3284       // Note: The SystemZLDCleanupPass will remove redundant computations
3285       // of the module base offset.  Count total number of local-dynamic
3286       // accesses to trigger execution of that pass.
3287       SystemZMachineFunctionInfo* MFI =
3288         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3289       MFI->incNumLocalDynamicTLSAccesses();
3290 
3291       // Add the per-symbol offset.
3292       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3293 
3294       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3295       DTPOffset = DAG.getLoad(
3296           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3297           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3298 
3299       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3300       break;
3301     }
3302 
3303     case TLSModel::InitialExec: {
3304       // Load the offset from the GOT.
3305       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3306                                           SystemZII::MO_INDNTPOFF);
3307       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3308       Offset =
3309           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3310                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3311       break;
3312     }
3313 
3314     case TLSModel::LocalExec: {
3315       // Force the offset into the constant pool and load it from there.
3316       SystemZConstantPoolValue *CPV =
3317         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3318 
3319       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3320       Offset = DAG.getLoad(
3321           PtrVT, DL, DAG.getEntryNode(), Offset,
3322           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3323       break;
3324     }
3325   }
3326 
3327   // Add the base and offset together.
3328   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3329 }
3330 
3331 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3332                                                  SelectionDAG &DAG) const {
3333   SDLoc DL(Node);
3334   const BlockAddress *BA = Node->getBlockAddress();
3335   int64_t Offset = Node->getOffset();
3336   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3337 
3338   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3339   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3340   return Result;
3341 }
3342 
3343 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3344                                               SelectionDAG &DAG) const {
3345   SDLoc DL(JT);
3346   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3347   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3348 
3349   // Use LARL to load the address of the table.
3350   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3351 }
3352 
3353 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3354                                                  SelectionDAG &DAG) const {
3355   SDLoc DL(CP);
3356   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3357 
3358   SDValue Result;
3359   if (CP->isMachineConstantPoolEntry())
3360     Result =
3361         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3362   else
3363     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3364                                        CP->getOffset());
3365 
3366   // Use LARL to load the address of the constant pool entry.
3367   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3368 }
3369 
3370 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3371                                               SelectionDAG &DAG) const {
3372   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3373   MachineFunction &MF = DAG.getMachineFunction();
3374   MachineFrameInfo &MFI = MF.getFrameInfo();
3375   MFI.setFrameAddressIsTaken(true);
3376 
3377   SDLoc DL(Op);
3378   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3379   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3380 
3381   // By definition, the frame address is the address of the back chain.  (In
3382   // the case of packed stack without backchain, return the address where the
3383   // backchain would have been stored. This will either be an unused space or
3384   // contain a saved register).
3385   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3386   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3387 
3388   // FIXME The frontend should detect this case.
3389   if (Depth > 0) {
3390     report_fatal_error("Unsupported stack frame traversal count");
3391   }
3392 
3393   return BackChain;
3394 }
3395 
3396 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3397                                                SelectionDAG &DAG) const {
3398   MachineFunction &MF = DAG.getMachineFunction();
3399   MachineFrameInfo &MFI = MF.getFrameInfo();
3400   MFI.setReturnAddressIsTaken(true);
3401 
3402   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3403     return SDValue();
3404 
3405   SDLoc DL(Op);
3406   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3407   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3408 
3409   // FIXME The frontend should detect this case.
3410   if (Depth > 0) {
3411     report_fatal_error("Unsupported stack frame traversal count");
3412   }
3413 
3414   // Return R14D, which has the return address. Mark it an implicit live-in.
3415   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3416   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3417 }
3418 
3419 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3420                                             SelectionDAG &DAG) const {
3421   SDLoc DL(Op);
3422   SDValue In = Op.getOperand(0);
3423   EVT InVT = In.getValueType();
3424   EVT ResVT = Op.getValueType();
3425 
3426   // Convert loads directly.  This is normally done by DAGCombiner,
3427   // but we need this case for bitcasts that are created during lowering
3428   // and which are then lowered themselves.
3429   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3430     if (ISD::isNormalLoad(LoadN)) {
3431       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3432                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3433       // Update the chain uses.
3434       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3435       return NewLoad;
3436     }
3437 
3438   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3439     SDValue In64;
3440     if (Subtarget.hasHighWord()) {
3441       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3442                                        MVT::i64);
3443       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3444                                        MVT::i64, SDValue(U64, 0), In);
3445     } else {
3446       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3447       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3448                          DAG.getConstant(32, DL, MVT::i64));
3449     }
3450     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3451     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3452                                       DL, MVT::f32, Out64);
3453   }
3454   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3455     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3456     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3457                                              MVT::f64, SDValue(U64, 0), In);
3458     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3459     if (Subtarget.hasHighWord())
3460       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3461                                         MVT::i32, Out64);
3462     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3463                                 DAG.getConstant(32, DL, MVT::i64));
3464     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3465   }
3466   llvm_unreachable("Unexpected bitcast combination");
3467 }
3468 
3469 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3470                                             SelectionDAG &DAG) const {
3471   MachineFunction &MF = DAG.getMachineFunction();
3472   SystemZMachineFunctionInfo *FuncInfo =
3473     MF.getInfo<SystemZMachineFunctionInfo>();
3474   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3475 
3476   SDValue Chain   = Op.getOperand(0);
3477   SDValue Addr    = Op.getOperand(1);
3478   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3479   SDLoc DL(Op);
3480 
3481   // The initial values of each field.
3482   const unsigned NumFields = 4;
3483   SDValue Fields[NumFields] = {
3484     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3485     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3486     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3487     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3488   };
3489 
3490   // Store each field into its respective slot.
3491   SDValue MemOps[NumFields];
3492   unsigned Offset = 0;
3493   for (unsigned I = 0; I < NumFields; ++I) {
3494     SDValue FieldAddr = Addr;
3495     if (Offset != 0)
3496       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3497                               DAG.getIntPtrConstant(Offset, DL));
3498     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3499                              MachinePointerInfo(SV, Offset));
3500     Offset += 8;
3501   }
3502   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3503 }
3504 
3505 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3506                                            SelectionDAG &DAG) const {
3507   SDValue Chain      = Op.getOperand(0);
3508   SDValue DstPtr     = Op.getOperand(1);
3509   SDValue SrcPtr     = Op.getOperand(2);
3510   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3511   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3512   SDLoc DL(Op);
3513 
3514   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3515                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3516                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3517                        MachinePointerInfo(SrcSV));
3518 }
3519 
3520 SDValue SystemZTargetLowering::
3521 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3522   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3523   MachineFunction &MF = DAG.getMachineFunction();
3524   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3525   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3526 
3527   SDValue Chain = Op.getOperand(0);
3528   SDValue Size  = Op.getOperand(1);
3529   SDValue Align = Op.getOperand(2);
3530   SDLoc DL(Op);
3531 
3532   // If user has set the no alignment function attribute, ignore
3533   // alloca alignments.
3534   uint64_t AlignVal =
3535       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3536 
3537   uint64_t StackAlign = TFI->getStackAlignment();
3538   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3539   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3540 
3541   Register SPReg = getStackPointerRegisterToSaveRestore();
3542   SDValue NeededSpace = Size;
3543 
3544   // Get a reference to the stack pointer.
3545   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3546 
3547   // If we need a backchain, save it now.
3548   SDValue Backchain;
3549   if (StoreBackchain)
3550     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3551                             MachinePointerInfo());
3552 
3553   // Add extra space for alignment if needed.
3554   if (ExtraAlignSpace)
3555     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3556                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3557 
3558   // Get the new stack pointer value.
3559   SDValue NewSP;
3560   if (hasInlineStackProbe(MF)) {
3561     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3562                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3563     Chain = NewSP.getValue(1);
3564   }
3565   else {
3566     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3567     // Copy the new stack pointer back.
3568     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3569   }
3570 
3571   // The allocated data lives above the 160 bytes allocated for the standard
3572   // frame, plus any outgoing stack arguments.  We don't know how much that
3573   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3574   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3575   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3576 
3577   // Dynamically realign if needed.
3578   if (RequiredAlign > StackAlign) {
3579     Result =
3580       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3581                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3582     Result =
3583       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3584                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3585   }
3586 
3587   if (StoreBackchain)
3588     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3589                          MachinePointerInfo());
3590 
3591   SDValue Ops[2] = { Result, Chain };
3592   return DAG.getMergeValues(Ops, DL);
3593 }
3594 
3595 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3596     SDValue Op, SelectionDAG &DAG) const {
3597   SDLoc DL(Op);
3598 
3599   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3600 }
3601 
3602 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3603                                               SelectionDAG &DAG) const {
3604   EVT VT = Op.getValueType();
3605   SDLoc DL(Op);
3606   SDValue Ops[2];
3607   if (is32Bit(VT))
3608     // Just do a normal 64-bit multiplication and extract the results.
3609     // We define this so that it can be used for constant division.
3610     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3611                     Op.getOperand(1), Ops[1], Ops[0]);
3612   else if (Subtarget.hasMiscellaneousExtensions2())
3613     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3614     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3615     // return the low half first, so the results are in reverse order.
3616     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3617                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3618   else {
3619     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3620     //
3621     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3622     //
3623     // but using the fact that the upper halves are either all zeros
3624     // or all ones:
3625     //
3626     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3627     //
3628     // and grouping the right terms together since they are quicker than the
3629     // multiplication:
3630     //
3631     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3632     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3633     SDValue LL = Op.getOperand(0);
3634     SDValue RL = Op.getOperand(1);
3635     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3636     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3637     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3638     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3639     // return the low half first, so the results are in reverse order.
3640     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3641                      LL, RL, Ops[1], Ops[0]);
3642     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3643     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3644     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3645     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3646   }
3647   return DAG.getMergeValues(Ops, DL);
3648 }
3649 
3650 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3651                                               SelectionDAG &DAG) const {
3652   EVT VT = Op.getValueType();
3653   SDLoc DL(Op);
3654   SDValue Ops[2];
3655   if (is32Bit(VT))
3656     // Just do a normal 64-bit multiplication and extract the results.
3657     // We define this so that it can be used for constant division.
3658     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3659                     Op.getOperand(1), Ops[1], Ops[0]);
3660   else
3661     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3662     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3663     // return the low half first, so the results are in reverse order.
3664     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3665                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3666   return DAG.getMergeValues(Ops, DL);
3667 }
3668 
3669 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3670                                             SelectionDAG &DAG) const {
3671   SDValue Op0 = Op.getOperand(0);
3672   SDValue Op1 = Op.getOperand(1);
3673   EVT VT = Op.getValueType();
3674   SDLoc DL(Op);
3675 
3676   // We use DSGF for 32-bit division.  This means the first operand must
3677   // always be 64-bit, and the second operand should be 32-bit whenever
3678   // that is possible, to improve performance.
3679   if (is32Bit(VT))
3680     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3681   else if (DAG.ComputeNumSignBits(Op1) > 32)
3682     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3683 
3684   // DSG(F) returns the remainder in the even register and the
3685   // quotient in the odd register.
3686   SDValue Ops[2];
3687   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3688   return DAG.getMergeValues(Ops, DL);
3689 }
3690 
3691 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3692                                             SelectionDAG &DAG) const {
3693   EVT VT = Op.getValueType();
3694   SDLoc DL(Op);
3695 
3696   // DL(G) returns the remainder in the even register and the
3697   // quotient in the odd register.
3698   SDValue Ops[2];
3699   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3700                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3701   return DAG.getMergeValues(Ops, DL);
3702 }
3703 
3704 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3705   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3706 
3707   // Get the known-zero masks for each operand.
3708   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3709   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3710                         DAG.computeKnownBits(Ops[1])};
3711 
3712   // See if the upper 32 bits of one operand and the lower 32 bits of the
3713   // other are known zero.  They are the low and high operands respectively.
3714   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3715                        Known[1].Zero.getZExtValue() };
3716   unsigned High, Low;
3717   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3718     High = 1, Low = 0;
3719   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3720     High = 0, Low = 1;
3721   else
3722     return Op;
3723 
3724   SDValue LowOp = Ops[Low];
3725   SDValue HighOp = Ops[High];
3726 
3727   // If the high part is a constant, we're better off using IILH.
3728   if (HighOp.getOpcode() == ISD::Constant)
3729     return Op;
3730 
3731   // If the low part is a constant that is outside the range of LHI,
3732   // then we're better off using IILF.
3733   if (LowOp.getOpcode() == ISD::Constant) {
3734     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3735     if (!isInt<16>(Value))
3736       return Op;
3737   }
3738 
3739   // Check whether the high part is an AND that doesn't change the
3740   // high 32 bits and just masks out low bits.  We can skip it if so.
3741   if (HighOp.getOpcode() == ISD::AND &&
3742       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3743     SDValue HighOp0 = HighOp.getOperand(0);
3744     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3745     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3746       HighOp = HighOp0;
3747   }
3748 
3749   // Take advantage of the fact that all GR32 operations only change the
3750   // low 32 bits by truncating Low to an i32 and inserting it directly
3751   // using a subreg.  The interesting cases are those where the truncation
3752   // can be folded.
3753   SDLoc DL(Op);
3754   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3755   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3756                                    MVT::i64, HighOp, Low32);
3757 }
3758 
3759 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3760 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3761                                           SelectionDAG &DAG) const {
3762   SDNode *N = Op.getNode();
3763   SDValue LHS = N->getOperand(0);
3764   SDValue RHS = N->getOperand(1);
3765   SDLoc DL(N);
3766   unsigned BaseOp = 0;
3767   unsigned CCValid = 0;
3768   unsigned CCMask = 0;
3769 
3770   switch (Op.getOpcode()) {
3771   default: llvm_unreachable("Unknown instruction!");
3772   case ISD::SADDO:
3773     BaseOp = SystemZISD::SADDO;
3774     CCValid = SystemZ::CCMASK_ARITH;
3775     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3776     break;
3777   case ISD::SSUBO:
3778     BaseOp = SystemZISD::SSUBO;
3779     CCValid = SystemZ::CCMASK_ARITH;
3780     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3781     break;
3782   case ISD::UADDO:
3783     BaseOp = SystemZISD::UADDO;
3784     CCValid = SystemZ::CCMASK_LOGICAL;
3785     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3786     break;
3787   case ISD::USUBO:
3788     BaseOp = SystemZISD::USUBO;
3789     CCValid = SystemZ::CCMASK_LOGICAL;
3790     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3791     break;
3792   }
3793 
3794   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3795   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3796 
3797   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3798   if (N->getValueType(1) == MVT::i1)
3799     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3800 
3801   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3802 }
3803 
3804 static bool isAddCarryChain(SDValue Carry) {
3805   while (Carry.getOpcode() == ISD::ADDCARRY)
3806     Carry = Carry.getOperand(2);
3807   return Carry.getOpcode() == ISD::UADDO;
3808 }
3809 
3810 static bool isSubBorrowChain(SDValue Carry) {
3811   while (Carry.getOpcode() == ISD::SUBCARRY)
3812     Carry = Carry.getOperand(2);
3813   return Carry.getOpcode() == ISD::USUBO;
3814 }
3815 
3816 // Lower ADDCARRY/SUBCARRY nodes.
3817 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3818                                                 SelectionDAG &DAG) const {
3819 
3820   SDNode *N = Op.getNode();
3821   MVT VT = N->getSimpleValueType(0);
3822 
3823   // Let legalize expand this if it isn't a legal type yet.
3824   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3825     return SDValue();
3826 
3827   SDValue LHS = N->getOperand(0);
3828   SDValue RHS = N->getOperand(1);
3829   SDValue Carry = Op.getOperand(2);
3830   SDLoc DL(N);
3831   unsigned BaseOp = 0;
3832   unsigned CCValid = 0;
3833   unsigned CCMask = 0;
3834 
3835   switch (Op.getOpcode()) {
3836   default: llvm_unreachable("Unknown instruction!");
3837   case ISD::ADDCARRY:
3838     if (!isAddCarryChain(Carry))
3839       return SDValue();
3840 
3841     BaseOp = SystemZISD::ADDCARRY;
3842     CCValid = SystemZ::CCMASK_LOGICAL;
3843     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3844     break;
3845   case ISD::SUBCARRY:
3846     if (!isSubBorrowChain(Carry))
3847       return SDValue();
3848 
3849     BaseOp = SystemZISD::SUBCARRY;
3850     CCValid = SystemZ::CCMASK_LOGICAL;
3851     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3852     break;
3853   }
3854 
3855   // Set the condition code from the carry flag.
3856   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3857                       DAG.getConstant(CCValid, DL, MVT::i32),
3858                       DAG.getConstant(CCMask, DL, MVT::i32));
3859 
3860   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3861   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3862 
3863   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3864   if (N->getValueType(1) == MVT::i1)
3865     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3866 
3867   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3868 }
3869 
3870 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3871                                           SelectionDAG &DAG) const {
3872   EVT VT = Op.getValueType();
3873   SDLoc DL(Op);
3874   Op = Op.getOperand(0);
3875 
3876   // Handle vector types via VPOPCT.
3877   if (VT.isVector()) {
3878     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3879     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3880     switch (VT.getScalarSizeInBits()) {
3881     case 8:
3882       break;
3883     case 16: {
3884       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3885       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3886       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3887       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3888       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3889       break;
3890     }
3891     case 32: {
3892       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3893                                             DAG.getConstant(0, DL, MVT::i32));
3894       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3895       break;
3896     }
3897     case 64: {
3898       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3899                                             DAG.getConstant(0, DL, MVT::i32));
3900       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3901       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3902       break;
3903     }
3904     default:
3905       llvm_unreachable("Unexpected type");
3906     }
3907     return Op;
3908   }
3909 
3910   // Get the known-zero mask for the operand.
3911   KnownBits Known = DAG.computeKnownBits(Op);
3912   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3913   if (NumSignificantBits == 0)
3914     return DAG.getConstant(0, DL, VT);
3915 
3916   // Skip known-zero high parts of the operand.
3917   int64_t OrigBitSize = VT.getSizeInBits();
3918   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3919   BitSize = std::min(BitSize, OrigBitSize);
3920 
3921   // The POPCNT instruction counts the number of bits in each byte.
3922   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3923   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3924   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3925 
3926   // Add up per-byte counts in a binary tree.  All bits of Op at
3927   // position larger than BitSize remain zero throughout.
3928   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3929     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3930     if (BitSize != OrigBitSize)
3931       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3932                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3933     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3934   }
3935 
3936   // Extract overall result from high byte.
3937   if (BitSize > 8)
3938     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3939                      DAG.getConstant(BitSize - 8, DL, VT));
3940 
3941   return Op;
3942 }
3943 
3944 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3945                                                  SelectionDAG &DAG) const {
3946   SDLoc DL(Op);
3947   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3948     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3949   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3950     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3951 
3952   // The only fence that needs an instruction is a sequentially-consistent
3953   // cross-thread fence.
3954   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3955       FenceSSID == SyncScope::System) {
3956     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3957                                       Op.getOperand(0)),
3958                    0);
3959   }
3960 
3961   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3962   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3963 }
3964 
3965 // Op is an atomic load.  Lower it into a normal volatile load.
3966 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3967                                                 SelectionDAG &DAG) const {
3968   auto *Node = cast<AtomicSDNode>(Op.getNode());
3969   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3970                         Node->getChain(), Node->getBasePtr(),
3971                         Node->getMemoryVT(), Node->getMemOperand());
3972 }
3973 
3974 // Op is an atomic store.  Lower it into a normal volatile store.
3975 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3976                                                  SelectionDAG &DAG) const {
3977   auto *Node = cast<AtomicSDNode>(Op.getNode());
3978   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3979                                     Node->getBasePtr(), Node->getMemoryVT(),
3980                                     Node->getMemOperand());
3981   // We have to enforce sequential consistency by performing a
3982   // serialization operation after the store.
3983   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
3984     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3985                                        MVT::Other, Chain), 0);
3986   return Chain;
3987 }
3988 
3989 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3990 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3991 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3992                                                    SelectionDAG &DAG,
3993                                                    unsigned Opcode) const {
3994   auto *Node = cast<AtomicSDNode>(Op.getNode());
3995 
3996   // 32-bit operations need no code outside the main loop.
3997   EVT NarrowVT = Node->getMemoryVT();
3998   EVT WideVT = MVT::i32;
3999   if (NarrowVT == WideVT)
4000     return Op;
4001 
4002   int64_t BitSize = NarrowVT.getSizeInBits();
4003   SDValue ChainIn = Node->getChain();
4004   SDValue Addr = Node->getBasePtr();
4005   SDValue Src2 = Node->getVal();
4006   MachineMemOperand *MMO = Node->getMemOperand();
4007   SDLoc DL(Node);
4008   EVT PtrVT = Addr.getValueType();
4009 
4010   // Convert atomic subtracts of constants into additions.
4011   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4012     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4013       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4014       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4015     }
4016 
4017   // Get the address of the containing word.
4018   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4019                                     DAG.getConstant(-4, DL, PtrVT));
4020 
4021   // Get the number of bits that the word must be rotated left in order
4022   // to bring the field to the top bits of a GR32.
4023   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4024                                  DAG.getConstant(3, DL, PtrVT));
4025   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4026 
4027   // Get the complementing shift amount, for rotating a field in the top
4028   // bits back to its proper position.
4029   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4030                                     DAG.getConstant(0, DL, WideVT), BitShift);
4031 
4032   // Extend the source operand to 32 bits and prepare it for the inner loop.
4033   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4034   // operations require the source to be shifted in advance.  (This shift
4035   // can be folded if the source is constant.)  For AND and NAND, the lower
4036   // bits must be set, while for other opcodes they should be left clear.
4037   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4038     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4039                        DAG.getConstant(32 - BitSize, DL, WideVT));
4040   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4041       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4042     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4043                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4044 
4045   // Construct the ATOMIC_LOADW_* node.
4046   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4047   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4048                     DAG.getConstant(BitSize, DL, WideVT) };
4049   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4050                                              NarrowVT, MMO);
4051 
4052   // Rotate the result of the final CS so that the field is in the lower
4053   // bits of a GR32, then truncate it.
4054   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4055                                     DAG.getConstant(BitSize, DL, WideVT));
4056   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4057 
4058   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4059   return DAG.getMergeValues(RetOps, DL);
4060 }
4061 
4062 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4063 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4064 // operations into additions.
4065 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4066                                                     SelectionDAG &DAG) const {
4067   auto *Node = cast<AtomicSDNode>(Op.getNode());
4068   EVT MemVT = Node->getMemoryVT();
4069   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4070     // A full-width operation.
4071     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4072     SDValue Src2 = Node->getVal();
4073     SDValue NegSrc2;
4074     SDLoc DL(Src2);
4075 
4076     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4077       // Use an addition if the operand is constant and either LAA(G) is
4078       // available or the negative value is in the range of A(G)FHI.
4079       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4080       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4081         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4082     } else if (Subtarget.hasInterlockedAccess1())
4083       // Use LAA(G) if available.
4084       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4085                             Src2);
4086 
4087     if (NegSrc2.getNode())
4088       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4089                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4090                            Node->getMemOperand());
4091 
4092     // Use the node as-is.
4093     return Op;
4094   }
4095 
4096   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4097 }
4098 
4099 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4100 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4101                                                     SelectionDAG &DAG) const {
4102   auto *Node = cast<AtomicSDNode>(Op.getNode());
4103   SDValue ChainIn = Node->getOperand(0);
4104   SDValue Addr = Node->getOperand(1);
4105   SDValue CmpVal = Node->getOperand(2);
4106   SDValue SwapVal = Node->getOperand(3);
4107   MachineMemOperand *MMO = Node->getMemOperand();
4108   SDLoc DL(Node);
4109 
4110   // We have native support for 32-bit and 64-bit compare and swap, but we
4111   // still need to expand extracting the "success" result from the CC.
4112   EVT NarrowVT = Node->getMemoryVT();
4113   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4114   if (NarrowVT == WideVT) {
4115     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4116     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4117     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4118                                                DL, Tys, Ops, NarrowVT, MMO);
4119     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4120                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4121 
4122     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4123     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4124     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4125     return SDValue();
4126   }
4127 
4128   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4129   // via a fullword ATOMIC_CMP_SWAPW operation.
4130   int64_t BitSize = NarrowVT.getSizeInBits();
4131   EVT PtrVT = Addr.getValueType();
4132 
4133   // Get the address of the containing word.
4134   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4135                                     DAG.getConstant(-4, DL, PtrVT));
4136 
4137   // Get the number of bits that the word must be rotated left in order
4138   // to bring the field to the top bits of a GR32.
4139   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4140                                  DAG.getConstant(3, DL, PtrVT));
4141   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4142 
4143   // Get the complementing shift amount, for rotating a field in the top
4144   // bits back to its proper position.
4145   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4146                                     DAG.getConstant(0, DL, WideVT), BitShift);
4147 
4148   // Construct the ATOMIC_CMP_SWAPW node.
4149   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4150   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4151                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4152   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4153                                              VTList, Ops, NarrowVT, MMO);
4154   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4155                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4156 
4157   // emitAtomicCmpSwapW() will zero extend the result (original value).
4158   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4159                                 DAG.getValueType(NarrowVT));
4160   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4161   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4162   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4163   return SDValue();
4164 }
4165 
4166 MachineMemOperand::Flags
4167 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4168   // Because of how we convert atomic_load and atomic_store to normal loads and
4169   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4170   // since DAGCombine hasn't been updated to account for atomic, but non
4171   // volatile loads.  (See D57601)
4172   if (auto *SI = dyn_cast<StoreInst>(&I))
4173     if (SI->isAtomic())
4174       return MachineMemOperand::MOVolatile;
4175   if (auto *LI = dyn_cast<LoadInst>(&I))
4176     if (LI->isAtomic())
4177       return MachineMemOperand::MOVolatile;
4178   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4179     if (AI->isAtomic())
4180       return MachineMemOperand::MOVolatile;
4181   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4182     if (AI->isAtomic())
4183       return MachineMemOperand::MOVolatile;
4184   return MachineMemOperand::MONone;
4185 }
4186 
4187 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4188                                               SelectionDAG &DAG) const {
4189   MachineFunction &MF = DAG.getMachineFunction();
4190   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4191   auto *Regs = Subtarget->getSpecialRegisters();
4192   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4193   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4194     report_fatal_error("Variable-sized stack allocations are not supported "
4195                        "in GHC calling convention");
4196   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4197                             Regs->getStackPointerRegister(), Op.getValueType());
4198 }
4199 
4200 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4201                                                  SelectionDAG &DAG) const {
4202   MachineFunction &MF = DAG.getMachineFunction();
4203   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4204   auto *Regs = Subtarget->getSpecialRegisters();
4205   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4206   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4207 
4208   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4209     report_fatal_error("Variable-sized stack allocations are not supported "
4210                        "in GHC calling convention");
4211 
4212   SDValue Chain = Op.getOperand(0);
4213   SDValue NewSP = Op.getOperand(1);
4214   SDValue Backchain;
4215   SDLoc DL(Op);
4216 
4217   if (StoreBackchain) {
4218     SDValue OldSP = DAG.getCopyFromReg(
4219         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4220     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4221                             MachinePointerInfo());
4222   }
4223 
4224   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4225 
4226   if (StoreBackchain)
4227     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4228                          MachinePointerInfo());
4229 
4230   return Chain;
4231 }
4232 
4233 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4234                                              SelectionDAG &DAG) const {
4235   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4236   if (!IsData)
4237     // Just preserve the chain.
4238     return Op.getOperand(0);
4239 
4240   SDLoc DL(Op);
4241   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4242   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4243   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4244   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4245                    Op.getOperand(1)};
4246   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4247                                  Node->getVTList(), Ops,
4248                                  Node->getMemoryVT(), Node->getMemOperand());
4249 }
4250 
4251 // Convert condition code in CCReg to an i32 value.
4252 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4253   SDLoc DL(CCReg);
4254   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4255   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4256                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4257 }
4258 
4259 SDValue
4260 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4261                                               SelectionDAG &DAG) const {
4262   unsigned Opcode, CCValid;
4263   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4264     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4265     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4266     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4267     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4268     return SDValue();
4269   }
4270 
4271   return SDValue();
4272 }
4273 
4274 SDValue
4275 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4276                                                SelectionDAG &DAG) const {
4277   unsigned Opcode, CCValid;
4278   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4279     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4280     if (Op->getNumValues() == 1)
4281       return getCCResult(DAG, SDValue(Node, 0));
4282     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4283     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4284                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4285   }
4286 
4287   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4288   switch (Id) {
4289   case Intrinsic::thread_pointer:
4290     return lowerThreadPointer(SDLoc(Op), DAG);
4291 
4292   case Intrinsic::s390_vpdi:
4293     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4294                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4295 
4296   case Intrinsic::s390_vperm:
4297     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4298                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4299 
4300   case Intrinsic::s390_vuphb:
4301   case Intrinsic::s390_vuphh:
4302   case Intrinsic::s390_vuphf:
4303     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4304                        Op.getOperand(1));
4305 
4306   case Intrinsic::s390_vuplhb:
4307   case Intrinsic::s390_vuplhh:
4308   case Intrinsic::s390_vuplhf:
4309     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4310                        Op.getOperand(1));
4311 
4312   case Intrinsic::s390_vuplb:
4313   case Intrinsic::s390_vuplhw:
4314   case Intrinsic::s390_vuplf:
4315     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4316                        Op.getOperand(1));
4317 
4318   case Intrinsic::s390_vupllb:
4319   case Intrinsic::s390_vupllh:
4320   case Intrinsic::s390_vupllf:
4321     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4322                        Op.getOperand(1));
4323 
4324   case Intrinsic::s390_vsumb:
4325   case Intrinsic::s390_vsumh:
4326   case Intrinsic::s390_vsumgh:
4327   case Intrinsic::s390_vsumgf:
4328   case Intrinsic::s390_vsumqf:
4329   case Intrinsic::s390_vsumqg:
4330     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4331                        Op.getOperand(1), Op.getOperand(2));
4332   }
4333 
4334   return SDValue();
4335 }
4336 
4337 namespace {
4338 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4339 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4340 // Operand is the constant third operand, otherwise it is the number of
4341 // bytes in each element of the result.
4342 struct Permute {
4343   unsigned Opcode;
4344   unsigned Operand;
4345   unsigned char Bytes[SystemZ::VectorBytes];
4346 };
4347 }
4348 
4349 static const Permute PermuteForms[] = {
4350   // VMRHG
4351   { SystemZISD::MERGE_HIGH, 8,
4352     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4353   // VMRHF
4354   { SystemZISD::MERGE_HIGH, 4,
4355     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4356   // VMRHH
4357   { SystemZISD::MERGE_HIGH, 2,
4358     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4359   // VMRHB
4360   { SystemZISD::MERGE_HIGH, 1,
4361     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4362   // VMRLG
4363   { SystemZISD::MERGE_LOW, 8,
4364     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4365   // VMRLF
4366   { SystemZISD::MERGE_LOW, 4,
4367     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4368   // VMRLH
4369   { SystemZISD::MERGE_LOW, 2,
4370     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4371   // VMRLB
4372   { SystemZISD::MERGE_LOW, 1,
4373     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4374   // VPKG
4375   { SystemZISD::PACK, 4,
4376     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4377   // VPKF
4378   { SystemZISD::PACK, 2,
4379     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4380   // VPKH
4381   { SystemZISD::PACK, 1,
4382     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4383   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4384   { SystemZISD::PERMUTE_DWORDS, 4,
4385     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4386   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4387   { SystemZISD::PERMUTE_DWORDS, 1,
4388     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4389 };
4390 
4391 // Called after matching a vector shuffle against a particular pattern.
4392 // Both the original shuffle and the pattern have two vector operands.
4393 // OpNos[0] is the operand of the original shuffle that should be used for
4394 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4395 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4396 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4397 // for operands 0 and 1 of the pattern.
4398 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4399   if (OpNos[0] < 0) {
4400     if (OpNos[1] < 0)
4401       return false;
4402     OpNo0 = OpNo1 = OpNos[1];
4403   } else if (OpNos[1] < 0) {
4404     OpNo0 = OpNo1 = OpNos[0];
4405   } else {
4406     OpNo0 = OpNos[0];
4407     OpNo1 = OpNos[1];
4408   }
4409   return true;
4410 }
4411 
4412 // Bytes is a VPERM-like permute vector, except that -1 is used for
4413 // undefined bytes.  Return true if the VPERM can be implemented using P.
4414 // When returning true set OpNo0 to the VPERM operand that should be
4415 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4416 //
4417 // For example, if swapping the VPERM operands allows P to match, OpNo0
4418 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4419 // operand, but rewriting it to use two duplicated operands allows it to
4420 // match P, then OpNo0 and OpNo1 will be the same.
4421 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4422                          unsigned &OpNo0, unsigned &OpNo1) {
4423   int OpNos[] = { -1, -1 };
4424   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4425     int Elt = Bytes[I];
4426     if (Elt >= 0) {
4427       // Make sure that the two permute vectors use the same suboperand
4428       // byte number.  Only the operand numbers (the high bits) are
4429       // allowed to differ.
4430       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4431         return false;
4432       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4433       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4434       // Make sure that the operand mappings are consistent with previous
4435       // elements.
4436       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4437         return false;
4438       OpNos[ModelOpNo] = RealOpNo;
4439     }
4440   }
4441   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4442 }
4443 
4444 // As above, but search for a matching permute.
4445 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4446                                    unsigned &OpNo0, unsigned &OpNo1) {
4447   for (auto &P : PermuteForms)
4448     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4449       return &P;
4450   return nullptr;
4451 }
4452 
4453 // Bytes is a VPERM-like permute vector, except that -1 is used for
4454 // undefined bytes.  This permute is an operand of an outer permute.
4455 // See whether redistributing the -1 bytes gives a shuffle that can be
4456 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4457 // that, when applied to the result of P, gives the original permute in Bytes.
4458 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4459                                const Permute &P,
4460                                SmallVectorImpl<int> &Transform) {
4461   unsigned To = 0;
4462   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4463     int Elt = Bytes[From];
4464     if (Elt < 0)
4465       // Byte number From of the result is undefined.
4466       Transform[From] = -1;
4467     else {
4468       while (P.Bytes[To] != Elt) {
4469         To += 1;
4470         if (To == SystemZ::VectorBytes)
4471           return false;
4472       }
4473       Transform[From] = To;
4474     }
4475   }
4476   return true;
4477 }
4478 
4479 // As above, but search for a matching permute.
4480 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4481                                          SmallVectorImpl<int> &Transform) {
4482   for (auto &P : PermuteForms)
4483     if (matchDoublePermute(Bytes, P, Transform))
4484       return &P;
4485   return nullptr;
4486 }
4487 
4488 // Convert the mask of the given shuffle op into a byte-level mask,
4489 // as if it had type vNi8.
4490 static bool getVPermMask(SDValue ShuffleOp,
4491                          SmallVectorImpl<int> &Bytes) {
4492   EVT VT = ShuffleOp.getValueType();
4493   unsigned NumElements = VT.getVectorNumElements();
4494   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4495 
4496   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4497     Bytes.resize(NumElements * BytesPerElement, -1);
4498     for (unsigned I = 0; I < NumElements; ++I) {
4499       int Index = VSN->getMaskElt(I);
4500       if (Index >= 0)
4501         for (unsigned J = 0; J < BytesPerElement; ++J)
4502           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4503     }
4504     return true;
4505   }
4506   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4507       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4508     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4509     Bytes.resize(NumElements * BytesPerElement, -1);
4510     for (unsigned I = 0; I < NumElements; ++I)
4511       for (unsigned J = 0; J < BytesPerElement; ++J)
4512         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4513     return true;
4514   }
4515   return false;
4516 }
4517 
4518 // Bytes is a VPERM-like permute vector, except that -1 is used for
4519 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4520 // the result come from a contiguous sequence of bytes from one input.
4521 // Set Base to the selector for the first byte if so.
4522 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4523                             unsigned BytesPerElement, int &Base) {
4524   Base = -1;
4525   for (unsigned I = 0; I < BytesPerElement; ++I) {
4526     if (Bytes[Start + I] >= 0) {
4527       unsigned Elem = Bytes[Start + I];
4528       if (Base < 0) {
4529         Base = Elem - I;
4530         // Make sure the bytes would come from one input operand.
4531         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4532           return false;
4533       } else if (unsigned(Base) != Elem - I)
4534         return false;
4535     }
4536   }
4537   return true;
4538 }
4539 
4540 // Bytes is a VPERM-like permute vector, except that -1 is used for
4541 // undefined bytes.  Return true if it can be performed using VSLDB.
4542 // When returning true, set StartIndex to the shift amount and OpNo0
4543 // and OpNo1 to the VPERM operands that should be used as the first
4544 // and second shift operand respectively.
4545 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4546                                unsigned &StartIndex, unsigned &OpNo0,
4547                                unsigned &OpNo1) {
4548   int OpNos[] = { -1, -1 };
4549   int Shift = -1;
4550   for (unsigned I = 0; I < 16; ++I) {
4551     int Index = Bytes[I];
4552     if (Index >= 0) {
4553       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4554       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4555       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4556       if (Shift < 0)
4557         Shift = ExpectedShift;
4558       else if (Shift != ExpectedShift)
4559         return false;
4560       // Make sure that the operand mappings are consistent with previous
4561       // elements.
4562       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4563         return false;
4564       OpNos[ModelOpNo] = RealOpNo;
4565     }
4566   }
4567   StartIndex = Shift;
4568   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4569 }
4570 
4571 // Create a node that performs P on operands Op0 and Op1, casting the
4572 // operands to the appropriate type.  The type of the result is determined by P.
4573 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4574                               const Permute &P, SDValue Op0, SDValue Op1) {
4575   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4576   // elements of a PACK are twice as wide as the outputs.
4577   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4578                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4579                       P.Operand);
4580   // Cast both operands to the appropriate type.
4581   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4582                               SystemZ::VectorBytes / InBytes);
4583   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4584   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4585   SDValue Op;
4586   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4587     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4588     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4589   } else if (P.Opcode == SystemZISD::PACK) {
4590     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4591                                  SystemZ::VectorBytes / P.Operand);
4592     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4593   } else {
4594     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4595   }
4596   return Op;
4597 }
4598 
4599 static bool isZeroVector(SDValue N) {
4600   if (N->getOpcode() == ISD::BITCAST)
4601     N = N->getOperand(0);
4602   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4603     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4604       return Op->getZExtValue() == 0;
4605   return ISD::isBuildVectorAllZeros(N.getNode());
4606 }
4607 
4608 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4609 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4610   for (unsigned I = 0; I < Num ; I++)
4611     if (isZeroVector(Ops[I]))
4612       return I;
4613   return UINT32_MAX;
4614 }
4615 
4616 // Bytes is a VPERM-like permute vector, except that -1 is used for
4617 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4618 // VSLDB or VPERM.
4619 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4620                                      SDValue *Ops,
4621                                      const SmallVectorImpl<int> &Bytes) {
4622   for (unsigned I = 0; I < 2; ++I)
4623     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4624 
4625   // First see whether VSLDB can be used.
4626   unsigned StartIndex, OpNo0, OpNo1;
4627   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4628     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4629                        Ops[OpNo1],
4630                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4631 
4632   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4633   // eliminate a zero vector by reusing any zero index in the permute vector.
4634   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4635   if (ZeroVecIdx != UINT32_MAX) {
4636     bool MaskFirst = true;
4637     int ZeroIdx = -1;
4638     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4639       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4640       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4641       if (OpNo == ZeroVecIdx && I == 0) {
4642         // If the first byte is zero, use mask as first operand.
4643         ZeroIdx = 0;
4644         break;
4645       }
4646       if (OpNo != ZeroVecIdx && Byte == 0) {
4647         // If mask contains a zero, use it by placing that vector first.
4648         ZeroIdx = I + SystemZ::VectorBytes;
4649         MaskFirst = false;
4650         break;
4651       }
4652     }
4653     if (ZeroIdx != -1) {
4654       SDValue IndexNodes[SystemZ::VectorBytes];
4655       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4656         if (Bytes[I] >= 0) {
4657           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4658           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4659           if (OpNo == ZeroVecIdx)
4660             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4661           else {
4662             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4663             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4664           }
4665         } else
4666           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4667       }
4668       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4669       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4670       if (MaskFirst)
4671         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4672                            Mask);
4673       else
4674         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4675                            Mask);
4676     }
4677   }
4678 
4679   SDValue IndexNodes[SystemZ::VectorBytes];
4680   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4681     if (Bytes[I] >= 0)
4682       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4683     else
4684       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4685   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4686   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4687                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4688 }
4689 
4690 namespace {
4691 // Describes a general N-operand vector shuffle.
4692 struct GeneralShuffle {
4693   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4694   void addUndef();
4695   bool add(SDValue, unsigned);
4696   SDValue getNode(SelectionDAG &, const SDLoc &);
4697   void tryPrepareForUnpack();
4698   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4699   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4700 
4701   // The operands of the shuffle.
4702   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4703 
4704   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4705   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4706   // Bytes[I] / SystemZ::VectorBytes.
4707   SmallVector<int, SystemZ::VectorBytes> Bytes;
4708 
4709   // The type of the shuffle result.
4710   EVT VT;
4711 
4712   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4713   unsigned UnpackFromEltSize;
4714 };
4715 }
4716 
4717 // Add an extra undefined element to the shuffle.
4718 void GeneralShuffle::addUndef() {
4719   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4720   for (unsigned I = 0; I < BytesPerElement; ++I)
4721     Bytes.push_back(-1);
4722 }
4723 
4724 // Add an extra element to the shuffle, taking it from element Elem of Op.
4725 // A null Op indicates a vector input whose value will be calculated later;
4726 // there is at most one such input per shuffle and it always has the same
4727 // type as the result. Aborts and returns false if the source vector elements
4728 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4729 // LLVM they become implicitly extended, but this is rare and not optimized.
4730 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4731   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4732 
4733   // The source vector can have wider elements than the result,
4734   // either through an explicit TRUNCATE or because of type legalization.
4735   // We want the least significant part.
4736   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4737   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4738 
4739   // Return false if the source elements are smaller than their destination
4740   // elements.
4741   if (FromBytesPerElement < BytesPerElement)
4742     return false;
4743 
4744   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4745                    (FromBytesPerElement - BytesPerElement));
4746 
4747   // Look through things like shuffles and bitcasts.
4748   while (Op.getNode()) {
4749     if (Op.getOpcode() == ISD::BITCAST)
4750       Op = Op.getOperand(0);
4751     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4752       // See whether the bytes we need come from a contiguous part of one
4753       // operand.
4754       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4755       if (!getVPermMask(Op, OpBytes))
4756         break;
4757       int NewByte;
4758       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4759         break;
4760       if (NewByte < 0) {
4761         addUndef();
4762         return true;
4763       }
4764       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4765       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4766     } else if (Op.isUndef()) {
4767       addUndef();
4768       return true;
4769     } else
4770       break;
4771   }
4772 
4773   // Make sure that the source of the extraction is in Ops.
4774   unsigned OpNo = 0;
4775   for (; OpNo < Ops.size(); ++OpNo)
4776     if (Ops[OpNo] == Op)
4777       break;
4778   if (OpNo == Ops.size())
4779     Ops.push_back(Op);
4780 
4781   // Add the element to Bytes.
4782   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4783   for (unsigned I = 0; I < BytesPerElement; ++I)
4784     Bytes.push_back(Base + I);
4785 
4786   return true;
4787 }
4788 
4789 // Return SDNodes for the completed shuffle.
4790 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4791   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4792 
4793   if (Ops.size() == 0)
4794     return DAG.getUNDEF(VT);
4795 
4796   // Use a single unpack if possible as the last operation.
4797   tryPrepareForUnpack();
4798 
4799   // Make sure that there are at least two shuffle operands.
4800   if (Ops.size() == 1)
4801     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4802 
4803   // Create a tree of shuffles, deferring root node until after the loop.
4804   // Try to redistribute the undefined elements of non-root nodes so that
4805   // the non-root shuffles match something like a pack or merge, then adjust
4806   // the parent node's permute vector to compensate for the new order.
4807   // Among other things, this copes with vectors like <2 x i16> that were
4808   // padded with undefined elements during type legalization.
4809   //
4810   // In the best case this redistribution will lead to the whole tree
4811   // using packs and merges.  It should rarely be a loss in other cases.
4812   unsigned Stride = 1;
4813   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4814     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4815       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4816 
4817       // Create a mask for just these two operands.
4818       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4819       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4820         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4821         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4822         if (OpNo == I)
4823           NewBytes[J] = Byte;
4824         else if (OpNo == I + Stride)
4825           NewBytes[J] = SystemZ::VectorBytes + Byte;
4826         else
4827           NewBytes[J] = -1;
4828       }
4829       // See if it would be better to reorganize NewMask to avoid using VPERM.
4830       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4831       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4832         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4833         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4834         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4835           if (NewBytes[J] >= 0) {
4836             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4837                    "Invalid double permute");
4838             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4839           } else
4840             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4841         }
4842       } else {
4843         // Just use NewBytes on the operands.
4844         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4845         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4846           if (NewBytes[J] >= 0)
4847             Bytes[J] = I * SystemZ::VectorBytes + J;
4848       }
4849     }
4850   }
4851 
4852   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4853   if (Stride > 1) {
4854     Ops[1] = Ops[Stride];
4855     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4856       if (Bytes[I] >= int(SystemZ::VectorBytes))
4857         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4858   }
4859 
4860   // Look for an instruction that can do the permute without resorting
4861   // to VPERM.
4862   unsigned OpNo0, OpNo1;
4863   SDValue Op;
4864   if (unpackWasPrepared() && Ops[1].isUndef())
4865     Op = Ops[0];
4866   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4867     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4868   else
4869     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4870 
4871   Op = insertUnpackIfPrepared(DAG, DL, Op);
4872 
4873   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4874 }
4875 
4876 #ifndef NDEBUG
4877 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4878   dbgs() << Msg.c_str() << " { ";
4879   for (unsigned i = 0; i < Bytes.size(); i++)
4880     dbgs() << Bytes[i] << " ";
4881   dbgs() << "}\n";
4882 }
4883 #endif
4884 
4885 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4886 // after all else by removing the zero vector and the effect of the unpack on
4887 // Bytes.
4888 void GeneralShuffle::tryPrepareForUnpack() {
4889   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4890   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4891     return;
4892 
4893   // Only do this if removing the zero vector reduces the depth, otherwise
4894   // the critical path will increase with the final unpack.
4895   if (Ops.size() > 2 &&
4896       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4897     return;
4898 
4899   // Find an unpack that would allow removing the zero vector from Ops.
4900   UnpackFromEltSize = 1;
4901   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4902     bool MatchUnpack = true;
4903     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4904     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4905       unsigned ToEltSize = UnpackFromEltSize * 2;
4906       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4907       if (!IsZextByte)
4908         SrcBytes.push_back(Bytes[Elt]);
4909       if (Bytes[Elt] != -1) {
4910         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4911         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4912           MatchUnpack = false;
4913           break;
4914         }
4915       }
4916     }
4917     if (MatchUnpack) {
4918       if (Ops.size() == 2) {
4919         // Don't use unpack if a single source operand needs rearrangement.
4920         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4921           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4922             UnpackFromEltSize = UINT_MAX;
4923             return;
4924           }
4925       }
4926       break;
4927     }
4928   }
4929   if (UnpackFromEltSize > 4)
4930     return;
4931 
4932   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4933              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4934              << ".\n";
4935              dumpBytes(Bytes, "Original Bytes vector:"););
4936 
4937   // Apply the unpack in reverse to the Bytes array.
4938   unsigned B = 0;
4939   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4940     Elt += UnpackFromEltSize;
4941     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4942       Bytes[B] = Bytes[Elt];
4943   }
4944   while (B < SystemZ::VectorBytes)
4945     Bytes[B++] = -1;
4946 
4947   // Remove the zero vector from Ops
4948   Ops.erase(&Ops[ZeroVecOpNo]);
4949   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4950     if (Bytes[I] >= 0) {
4951       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4952       if (OpNo > ZeroVecOpNo)
4953         Bytes[I] -= SystemZ::VectorBytes;
4954     }
4955 
4956   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4957              dbgs() << "\n";);
4958 }
4959 
4960 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4961                                                const SDLoc &DL,
4962                                                SDValue Op) {
4963   if (!unpackWasPrepared())
4964     return Op;
4965   unsigned InBits = UnpackFromEltSize * 8;
4966   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4967                                 SystemZ::VectorBits / InBits);
4968   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4969   unsigned OutBits = InBits * 2;
4970   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4971                                SystemZ::VectorBits / OutBits);
4972   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4973 }
4974 
4975 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4976 static bool isScalarToVector(SDValue Op) {
4977   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4978     if (!Op.getOperand(I).isUndef())
4979       return false;
4980   return true;
4981 }
4982 
4983 // Return a vector of type VT that contains Value in the first element.
4984 // The other elements don't matter.
4985 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4986                                    SDValue Value) {
4987   // If we have a constant, replicate it to all elements and let the
4988   // BUILD_VECTOR lowering take care of it.
4989   if (Value.getOpcode() == ISD::Constant ||
4990       Value.getOpcode() == ISD::ConstantFP) {
4991     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4992     return DAG.getBuildVector(VT, DL, Ops);
4993   }
4994   if (Value.isUndef())
4995     return DAG.getUNDEF(VT);
4996   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4997 }
4998 
4999 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5000 // element 1.  Used for cases in which replication is cheap.
5001 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5002                                  SDValue Op0, SDValue Op1) {
5003   if (Op0.isUndef()) {
5004     if (Op1.isUndef())
5005       return DAG.getUNDEF(VT);
5006     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5007   }
5008   if (Op1.isUndef())
5009     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5010   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5011                      buildScalarToVector(DAG, DL, VT, Op0),
5012                      buildScalarToVector(DAG, DL, VT, Op1));
5013 }
5014 
5015 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5016 // vector for them.
5017 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5018                           SDValue Op1) {
5019   if (Op0.isUndef() && Op1.isUndef())
5020     return DAG.getUNDEF(MVT::v2i64);
5021   // If one of the two inputs is undefined then replicate the other one,
5022   // in order to avoid using another register unnecessarily.
5023   if (Op0.isUndef())
5024     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5025   else if (Op1.isUndef())
5026     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5027   else {
5028     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5029     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5030   }
5031   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5032 }
5033 
5034 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5035 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5036 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5037 // would benefit from this representation and return it if so.
5038 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5039                                      BuildVectorSDNode *BVN) {
5040   EVT VT = BVN->getValueType(0);
5041   unsigned NumElements = VT.getVectorNumElements();
5042 
5043   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5044   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5045   // need a BUILD_VECTOR, add an additional placeholder operand for that
5046   // BUILD_VECTOR and store its operands in ResidueOps.
5047   GeneralShuffle GS(VT);
5048   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5049   bool FoundOne = false;
5050   for (unsigned I = 0; I < NumElements; ++I) {
5051     SDValue Op = BVN->getOperand(I);
5052     if (Op.getOpcode() == ISD::TRUNCATE)
5053       Op = Op.getOperand(0);
5054     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5055         Op.getOperand(1).getOpcode() == ISD::Constant) {
5056       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5057       if (!GS.add(Op.getOperand(0), Elem))
5058         return SDValue();
5059       FoundOne = true;
5060     } else if (Op.isUndef()) {
5061       GS.addUndef();
5062     } else {
5063       if (!GS.add(SDValue(), ResidueOps.size()))
5064         return SDValue();
5065       ResidueOps.push_back(BVN->getOperand(I));
5066     }
5067   }
5068 
5069   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5070   if (!FoundOne)
5071     return SDValue();
5072 
5073   // Create the BUILD_VECTOR for the remaining elements, if any.
5074   if (!ResidueOps.empty()) {
5075     while (ResidueOps.size() < NumElements)
5076       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5077     for (auto &Op : GS.Ops) {
5078       if (!Op.getNode()) {
5079         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5080         break;
5081       }
5082     }
5083   }
5084   return GS.getNode(DAG, SDLoc(BVN));
5085 }
5086 
5087 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5088   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5089     return true;
5090   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5091     return true;
5092   return false;
5093 }
5094 
5095 // Combine GPR scalar values Elems into a vector of type VT.
5096 SDValue
5097 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5098                                    SmallVectorImpl<SDValue> &Elems) const {
5099   // See whether there is a single replicated value.
5100   SDValue Single;
5101   unsigned int NumElements = Elems.size();
5102   unsigned int Count = 0;
5103   for (auto Elem : Elems) {
5104     if (!Elem.isUndef()) {
5105       if (!Single.getNode())
5106         Single = Elem;
5107       else if (Elem != Single) {
5108         Single = SDValue();
5109         break;
5110       }
5111       Count += 1;
5112     }
5113   }
5114   // There are three cases here:
5115   //
5116   // - if the only defined element is a loaded one, the best sequence
5117   //   is a replicating load.
5118   //
5119   // - otherwise, if the only defined element is an i64 value, we will
5120   //   end up with the same VLVGP sequence regardless of whether we short-cut
5121   //   for replication or fall through to the later code.
5122   //
5123   // - otherwise, if the only defined element is an i32 or smaller value,
5124   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5125   //   This is only a win if the single defined element is used more than once.
5126   //   In other cases we're better off using a single VLVGx.
5127   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5128     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5129 
5130   // If all elements are loads, use VLREP/VLEs (below).
5131   bool AllLoads = true;
5132   for (auto Elem : Elems)
5133     if (!isVectorElementLoad(Elem)) {
5134       AllLoads = false;
5135       break;
5136     }
5137 
5138   // The best way of building a v2i64 from two i64s is to use VLVGP.
5139   if (VT == MVT::v2i64 && !AllLoads)
5140     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5141 
5142   // Use a 64-bit merge high to combine two doubles.
5143   if (VT == MVT::v2f64 && !AllLoads)
5144     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5145 
5146   // Build v4f32 values directly from the FPRs:
5147   //
5148   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5149   //         V              V         VMRHF
5150   //      <ABxx>         <CDxx>
5151   //                V                 VMRHG
5152   //              <ABCD>
5153   if (VT == MVT::v4f32 && !AllLoads) {
5154     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5155     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5156     // Avoid unnecessary undefs by reusing the other operand.
5157     if (Op01.isUndef())
5158       Op01 = Op23;
5159     else if (Op23.isUndef())
5160       Op23 = Op01;
5161     // Merging identical replications is a no-op.
5162     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5163       return Op01;
5164     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5165     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5166     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5167                              DL, MVT::v2i64, Op01, Op23);
5168     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5169   }
5170 
5171   // Collect the constant terms.
5172   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5173   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5174 
5175   unsigned NumConstants = 0;
5176   for (unsigned I = 0; I < NumElements; ++I) {
5177     SDValue Elem = Elems[I];
5178     if (Elem.getOpcode() == ISD::Constant ||
5179         Elem.getOpcode() == ISD::ConstantFP) {
5180       NumConstants += 1;
5181       Constants[I] = Elem;
5182       Done[I] = true;
5183     }
5184   }
5185   // If there was at least one constant, fill in the other elements of
5186   // Constants with undefs to get a full vector constant and use that
5187   // as the starting point.
5188   SDValue Result;
5189   SDValue ReplicatedVal;
5190   if (NumConstants > 0) {
5191     for (unsigned I = 0; I < NumElements; ++I)
5192       if (!Constants[I].getNode())
5193         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5194     Result = DAG.getBuildVector(VT, DL, Constants);
5195   } else {
5196     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5197     // avoid a false dependency on any previous contents of the vector
5198     // register.
5199 
5200     // Use a VLREP if at least one element is a load. Make sure to replicate
5201     // the load with the most elements having its value.
5202     std::map<const SDNode*, unsigned> UseCounts;
5203     SDNode *LoadMaxUses = nullptr;
5204     for (unsigned I = 0; I < NumElements; ++I)
5205       if (isVectorElementLoad(Elems[I])) {
5206         SDNode *Ld = Elems[I].getNode();
5207         UseCounts[Ld]++;
5208         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5209           LoadMaxUses = Ld;
5210       }
5211     if (LoadMaxUses != nullptr) {
5212       ReplicatedVal = SDValue(LoadMaxUses, 0);
5213       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5214     } else {
5215       // Try to use VLVGP.
5216       unsigned I1 = NumElements / 2 - 1;
5217       unsigned I2 = NumElements - 1;
5218       bool Def1 = !Elems[I1].isUndef();
5219       bool Def2 = !Elems[I2].isUndef();
5220       if (Def1 || Def2) {
5221         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5222         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5223         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5224                              joinDwords(DAG, DL, Elem1, Elem2));
5225         Done[I1] = true;
5226         Done[I2] = true;
5227       } else
5228         Result = DAG.getUNDEF(VT);
5229     }
5230   }
5231 
5232   // Use VLVGx to insert the other elements.
5233   for (unsigned I = 0; I < NumElements; ++I)
5234     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5235       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5236                            DAG.getConstant(I, DL, MVT::i32));
5237   return Result;
5238 }
5239 
5240 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5241                                                  SelectionDAG &DAG) const {
5242   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5243   SDLoc DL(Op);
5244   EVT VT = Op.getValueType();
5245 
5246   if (BVN->isConstant()) {
5247     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5248       return Op;
5249 
5250     // Fall back to loading it from memory.
5251     return SDValue();
5252   }
5253 
5254   // See if we should use shuffles to construct the vector from other vectors.
5255   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5256     return Res;
5257 
5258   // Detect SCALAR_TO_VECTOR conversions.
5259   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5260     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5261 
5262   // Otherwise use buildVector to build the vector up from GPRs.
5263   unsigned NumElements = Op.getNumOperands();
5264   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5265   for (unsigned I = 0; I < NumElements; ++I)
5266     Ops[I] = Op.getOperand(I);
5267   return buildVector(DAG, DL, VT, Ops);
5268 }
5269 
5270 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5271                                                    SelectionDAG &DAG) const {
5272   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5273   SDLoc DL(Op);
5274   EVT VT = Op.getValueType();
5275   unsigned NumElements = VT.getVectorNumElements();
5276 
5277   if (VSN->isSplat()) {
5278     SDValue Op0 = Op.getOperand(0);
5279     unsigned Index = VSN->getSplatIndex();
5280     assert(Index < VT.getVectorNumElements() &&
5281            "Splat index should be defined and in first operand");
5282     // See whether the value we're splatting is directly available as a scalar.
5283     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5284         Op0.getOpcode() == ISD::BUILD_VECTOR)
5285       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5286     // Otherwise keep it as a vector-to-vector operation.
5287     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5288                        DAG.getTargetConstant(Index, DL, MVT::i32));
5289   }
5290 
5291   GeneralShuffle GS(VT);
5292   for (unsigned I = 0; I < NumElements; ++I) {
5293     int Elt = VSN->getMaskElt(I);
5294     if (Elt < 0)
5295       GS.addUndef();
5296     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5297                      unsigned(Elt) % NumElements))
5298       return SDValue();
5299   }
5300   return GS.getNode(DAG, SDLoc(VSN));
5301 }
5302 
5303 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5304                                                      SelectionDAG &DAG) const {
5305   SDLoc DL(Op);
5306   // Just insert the scalar into element 0 of an undefined vector.
5307   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5308                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5309                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5310 }
5311 
5312 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5313                                                       SelectionDAG &DAG) const {
5314   // Handle insertions of floating-point values.
5315   SDLoc DL(Op);
5316   SDValue Op0 = Op.getOperand(0);
5317   SDValue Op1 = Op.getOperand(1);
5318   SDValue Op2 = Op.getOperand(2);
5319   EVT VT = Op.getValueType();
5320 
5321   // Insertions into constant indices of a v2f64 can be done using VPDI.
5322   // However, if the inserted value is a bitcast or a constant then it's
5323   // better to use GPRs, as below.
5324   if (VT == MVT::v2f64 &&
5325       Op1.getOpcode() != ISD::BITCAST &&
5326       Op1.getOpcode() != ISD::ConstantFP &&
5327       Op2.getOpcode() == ISD::Constant) {
5328     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5329     unsigned Mask = VT.getVectorNumElements() - 1;
5330     if (Index <= Mask)
5331       return Op;
5332   }
5333 
5334   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5335   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5336   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5337   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5338                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5339                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5340   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5341 }
5342 
5343 SDValue
5344 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5345                                                SelectionDAG &DAG) const {
5346   // Handle extractions of floating-point values.
5347   SDLoc DL(Op);
5348   SDValue Op0 = Op.getOperand(0);
5349   SDValue Op1 = Op.getOperand(1);
5350   EVT VT = Op.getValueType();
5351   EVT VecVT = Op0.getValueType();
5352 
5353   // Extractions of constant indices can be done directly.
5354   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5355     uint64_t Index = CIndexN->getZExtValue();
5356     unsigned Mask = VecVT.getVectorNumElements() - 1;
5357     if (Index <= Mask)
5358       return Op;
5359   }
5360 
5361   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5362   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5363   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5364   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5365                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5366   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5367 }
5368 
5369 SDValue SystemZTargetLowering::
5370 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5371   SDValue PackedOp = Op.getOperand(0);
5372   EVT OutVT = Op.getValueType();
5373   EVT InVT = PackedOp.getValueType();
5374   unsigned ToBits = OutVT.getScalarSizeInBits();
5375   unsigned FromBits = InVT.getScalarSizeInBits();
5376   do {
5377     FromBits *= 2;
5378     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5379                                  SystemZ::VectorBits / FromBits);
5380     PackedOp =
5381       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5382   } while (FromBits != ToBits);
5383   return PackedOp;
5384 }
5385 
5386 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5387 SDValue SystemZTargetLowering::
5388 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5389   SDValue PackedOp = Op.getOperand(0);
5390   SDLoc DL(Op);
5391   EVT OutVT = Op.getValueType();
5392   EVT InVT = PackedOp.getValueType();
5393   unsigned InNumElts = InVT.getVectorNumElements();
5394   unsigned OutNumElts = OutVT.getVectorNumElements();
5395   unsigned NumInPerOut = InNumElts / OutNumElts;
5396 
5397   SDValue ZeroVec =
5398     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5399 
5400   SmallVector<int, 16> Mask(InNumElts);
5401   unsigned ZeroVecElt = InNumElts;
5402   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5403     unsigned MaskElt = PackedElt * NumInPerOut;
5404     unsigned End = MaskElt + NumInPerOut - 1;
5405     for (; MaskElt < End; MaskElt++)
5406       Mask[MaskElt] = ZeroVecElt++;
5407     Mask[MaskElt] = PackedElt;
5408   }
5409   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5410   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5411 }
5412 
5413 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5414                                           unsigned ByScalar) const {
5415   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5416   SDValue Op0 = Op.getOperand(0);
5417   SDValue Op1 = Op.getOperand(1);
5418   SDLoc DL(Op);
5419   EVT VT = Op.getValueType();
5420   unsigned ElemBitSize = VT.getScalarSizeInBits();
5421 
5422   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5423   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5424     APInt SplatBits, SplatUndef;
5425     unsigned SplatBitSize;
5426     bool HasAnyUndefs;
5427     // Check for constant splats.  Use ElemBitSize as the minimum element
5428     // width and reject splats that need wider elements.
5429     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5430                              ElemBitSize, true) &&
5431         SplatBitSize == ElemBitSize) {
5432       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5433                                       DL, MVT::i32);
5434       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5435     }
5436     // Check for variable splats.
5437     BitVector UndefElements;
5438     SDValue Splat = BVN->getSplatValue(&UndefElements);
5439     if (Splat) {
5440       // Since i32 is the smallest legal type, we either need a no-op
5441       // or a truncation.
5442       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5443       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5444     }
5445   }
5446 
5447   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5448   // and the shift amount is directly available in a GPR.
5449   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5450     if (VSN->isSplat()) {
5451       SDValue VSNOp0 = VSN->getOperand(0);
5452       unsigned Index = VSN->getSplatIndex();
5453       assert(Index < VT.getVectorNumElements() &&
5454              "Splat index should be defined and in first operand");
5455       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5456           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5457         // Since i32 is the smallest legal type, we either need a no-op
5458         // or a truncation.
5459         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5460                                     VSNOp0.getOperand(Index));
5461         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5462       }
5463     }
5464   }
5465 
5466   // Otherwise just treat the current form as legal.
5467   return Op;
5468 }
5469 
5470 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5471                                               SelectionDAG &DAG) const {
5472   switch (Op.getOpcode()) {
5473   case ISD::FRAMEADDR:
5474     return lowerFRAMEADDR(Op, DAG);
5475   case ISD::RETURNADDR:
5476     return lowerRETURNADDR(Op, DAG);
5477   case ISD::BR_CC:
5478     return lowerBR_CC(Op, DAG);
5479   case ISD::SELECT_CC:
5480     return lowerSELECT_CC(Op, DAG);
5481   case ISD::SETCC:
5482     return lowerSETCC(Op, DAG);
5483   case ISD::STRICT_FSETCC:
5484     return lowerSTRICT_FSETCC(Op, DAG, false);
5485   case ISD::STRICT_FSETCCS:
5486     return lowerSTRICT_FSETCC(Op, DAG, true);
5487   case ISD::GlobalAddress:
5488     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5489   case ISD::GlobalTLSAddress:
5490     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5491   case ISD::BlockAddress:
5492     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5493   case ISD::JumpTable:
5494     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5495   case ISD::ConstantPool:
5496     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5497   case ISD::BITCAST:
5498     return lowerBITCAST(Op, DAG);
5499   case ISD::VASTART:
5500     return lowerVASTART(Op, DAG);
5501   case ISD::VACOPY:
5502     return lowerVACOPY(Op, DAG);
5503   case ISD::DYNAMIC_STACKALLOC:
5504     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5505   case ISD::GET_DYNAMIC_AREA_OFFSET:
5506     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5507   case ISD::SMUL_LOHI:
5508     return lowerSMUL_LOHI(Op, DAG);
5509   case ISD::UMUL_LOHI:
5510     return lowerUMUL_LOHI(Op, DAG);
5511   case ISD::SDIVREM:
5512     return lowerSDIVREM(Op, DAG);
5513   case ISD::UDIVREM:
5514     return lowerUDIVREM(Op, DAG);
5515   case ISD::SADDO:
5516   case ISD::SSUBO:
5517   case ISD::UADDO:
5518   case ISD::USUBO:
5519     return lowerXALUO(Op, DAG);
5520   case ISD::ADDCARRY:
5521   case ISD::SUBCARRY:
5522     return lowerADDSUBCARRY(Op, DAG);
5523   case ISD::OR:
5524     return lowerOR(Op, DAG);
5525   case ISD::CTPOP:
5526     return lowerCTPOP(Op, DAG);
5527   case ISD::ATOMIC_FENCE:
5528     return lowerATOMIC_FENCE(Op, DAG);
5529   case ISD::ATOMIC_SWAP:
5530     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5531   case ISD::ATOMIC_STORE:
5532     return lowerATOMIC_STORE(Op, DAG);
5533   case ISD::ATOMIC_LOAD:
5534     return lowerATOMIC_LOAD(Op, DAG);
5535   case ISD::ATOMIC_LOAD_ADD:
5536     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5537   case ISD::ATOMIC_LOAD_SUB:
5538     return lowerATOMIC_LOAD_SUB(Op, DAG);
5539   case ISD::ATOMIC_LOAD_AND:
5540     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5541   case ISD::ATOMIC_LOAD_OR:
5542     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5543   case ISD::ATOMIC_LOAD_XOR:
5544     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5545   case ISD::ATOMIC_LOAD_NAND:
5546     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5547   case ISD::ATOMIC_LOAD_MIN:
5548     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5549   case ISD::ATOMIC_LOAD_MAX:
5550     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5551   case ISD::ATOMIC_LOAD_UMIN:
5552     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5553   case ISD::ATOMIC_LOAD_UMAX:
5554     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5555   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5556     return lowerATOMIC_CMP_SWAP(Op, DAG);
5557   case ISD::STACKSAVE:
5558     return lowerSTACKSAVE(Op, DAG);
5559   case ISD::STACKRESTORE:
5560     return lowerSTACKRESTORE(Op, DAG);
5561   case ISD::PREFETCH:
5562     return lowerPREFETCH(Op, DAG);
5563   case ISD::INTRINSIC_W_CHAIN:
5564     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5565   case ISD::INTRINSIC_WO_CHAIN:
5566     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5567   case ISD::BUILD_VECTOR:
5568     return lowerBUILD_VECTOR(Op, DAG);
5569   case ISD::VECTOR_SHUFFLE:
5570     return lowerVECTOR_SHUFFLE(Op, DAG);
5571   case ISD::SCALAR_TO_VECTOR:
5572     return lowerSCALAR_TO_VECTOR(Op, DAG);
5573   case ISD::INSERT_VECTOR_ELT:
5574     return lowerINSERT_VECTOR_ELT(Op, DAG);
5575   case ISD::EXTRACT_VECTOR_ELT:
5576     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5577   case ISD::SIGN_EXTEND_VECTOR_INREG:
5578     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5579   case ISD::ZERO_EXTEND_VECTOR_INREG:
5580     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5581   case ISD::SHL:
5582     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5583   case ISD::SRL:
5584     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5585   case ISD::SRA:
5586     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5587   default:
5588     llvm_unreachable("Unexpected node to lower");
5589   }
5590 }
5591 
5592 // Lower operations with invalid operand or result types (currently used
5593 // only for 128-bit integer types).
5594 void
5595 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5596                                              SmallVectorImpl<SDValue> &Results,
5597                                              SelectionDAG &DAG) const {
5598   switch (N->getOpcode()) {
5599   case ISD::ATOMIC_LOAD: {
5600     SDLoc DL(N);
5601     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5602     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5603     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5604     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5605                                           DL, Tys, Ops, MVT::i128, MMO);
5606     Results.push_back(lowerGR128ToI128(DAG, Res));
5607     Results.push_back(Res.getValue(1));
5608     break;
5609   }
5610   case ISD::ATOMIC_STORE: {
5611     SDLoc DL(N);
5612     SDVTList Tys = DAG.getVTList(MVT::Other);
5613     SDValue Ops[] = { N->getOperand(0),
5614                       lowerI128ToGR128(DAG, N->getOperand(2)),
5615                       N->getOperand(1) };
5616     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5617     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5618                                           DL, Tys, Ops, MVT::i128, MMO);
5619     // We have to enforce sequential consistency by performing a
5620     // serialization operation after the store.
5621     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5622         AtomicOrdering::SequentiallyConsistent)
5623       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5624                                        MVT::Other, Res), 0);
5625     Results.push_back(Res);
5626     break;
5627   }
5628   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5629     SDLoc DL(N);
5630     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5631     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5632                       lowerI128ToGR128(DAG, N->getOperand(2)),
5633                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5634     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5635     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5636                                           DL, Tys, Ops, MVT::i128, MMO);
5637     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5638                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5639     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5640     Results.push_back(lowerGR128ToI128(DAG, Res));
5641     Results.push_back(Success);
5642     Results.push_back(Res.getValue(2));
5643     break;
5644   }
5645   case ISD::BITCAST: {
5646     SDValue Src = N->getOperand(0);
5647     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5648         !useSoftFloat()) {
5649       SDLoc DL(N);
5650       SDValue Lo, Hi;
5651       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5652         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5653         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5654                          DAG.getConstant(1, DL, MVT::i32));
5655         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5656                          DAG.getConstant(0, DL, MVT::i32));
5657       } else {
5658         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5659                "Unrecognized register class for f128.");
5660         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5661                                                   DL, MVT::f64, Src);
5662         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5663                                                   DL, MVT::f64, Src);
5664         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5665         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5666       }
5667       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5668     }
5669     break;
5670   }
5671   default:
5672     llvm_unreachable("Unexpected node to lower");
5673   }
5674 }
5675 
5676 void
5677 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5678                                           SmallVectorImpl<SDValue> &Results,
5679                                           SelectionDAG &DAG) const {
5680   return LowerOperationWrapper(N, Results, DAG);
5681 }
5682 
5683 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5684 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5685   switch ((SystemZISD::NodeType)Opcode) {
5686     case SystemZISD::FIRST_NUMBER: break;
5687     OPCODE(RET_FLAG);
5688     OPCODE(CALL);
5689     OPCODE(SIBCALL);
5690     OPCODE(TLS_GDCALL);
5691     OPCODE(TLS_LDCALL);
5692     OPCODE(PCREL_WRAPPER);
5693     OPCODE(PCREL_OFFSET);
5694     OPCODE(ICMP);
5695     OPCODE(FCMP);
5696     OPCODE(STRICT_FCMP);
5697     OPCODE(STRICT_FCMPS);
5698     OPCODE(TM);
5699     OPCODE(BR_CCMASK);
5700     OPCODE(SELECT_CCMASK);
5701     OPCODE(ADJDYNALLOC);
5702     OPCODE(PROBED_ALLOCA);
5703     OPCODE(POPCNT);
5704     OPCODE(SMUL_LOHI);
5705     OPCODE(UMUL_LOHI);
5706     OPCODE(SDIVREM);
5707     OPCODE(UDIVREM);
5708     OPCODE(SADDO);
5709     OPCODE(SSUBO);
5710     OPCODE(UADDO);
5711     OPCODE(USUBO);
5712     OPCODE(ADDCARRY);
5713     OPCODE(SUBCARRY);
5714     OPCODE(GET_CCMASK);
5715     OPCODE(MVC);
5716     OPCODE(NC);
5717     OPCODE(OC);
5718     OPCODE(XC);
5719     OPCODE(CLC);
5720     OPCODE(STPCPY);
5721     OPCODE(STRCMP);
5722     OPCODE(SEARCH_STRING);
5723     OPCODE(IPM);
5724     OPCODE(MEMBARRIER);
5725     OPCODE(TBEGIN);
5726     OPCODE(TBEGIN_NOFLOAT);
5727     OPCODE(TEND);
5728     OPCODE(BYTE_MASK);
5729     OPCODE(ROTATE_MASK);
5730     OPCODE(REPLICATE);
5731     OPCODE(JOIN_DWORDS);
5732     OPCODE(SPLAT);
5733     OPCODE(MERGE_HIGH);
5734     OPCODE(MERGE_LOW);
5735     OPCODE(SHL_DOUBLE);
5736     OPCODE(PERMUTE_DWORDS);
5737     OPCODE(PERMUTE);
5738     OPCODE(PACK);
5739     OPCODE(PACKS_CC);
5740     OPCODE(PACKLS_CC);
5741     OPCODE(UNPACK_HIGH);
5742     OPCODE(UNPACKL_HIGH);
5743     OPCODE(UNPACK_LOW);
5744     OPCODE(UNPACKL_LOW);
5745     OPCODE(VSHL_BY_SCALAR);
5746     OPCODE(VSRL_BY_SCALAR);
5747     OPCODE(VSRA_BY_SCALAR);
5748     OPCODE(VSUM);
5749     OPCODE(VICMPE);
5750     OPCODE(VICMPH);
5751     OPCODE(VICMPHL);
5752     OPCODE(VICMPES);
5753     OPCODE(VICMPHS);
5754     OPCODE(VICMPHLS);
5755     OPCODE(VFCMPE);
5756     OPCODE(STRICT_VFCMPE);
5757     OPCODE(STRICT_VFCMPES);
5758     OPCODE(VFCMPH);
5759     OPCODE(STRICT_VFCMPH);
5760     OPCODE(STRICT_VFCMPHS);
5761     OPCODE(VFCMPHE);
5762     OPCODE(STRICT_VFCMPHE);
5763     OPCODE(STRICT_VFCMPHES);
5764     OPCODE(VFCMPES);
5765     OPCODE(VFCMPHS);
5766     OPCODE(VFCMPHES);
5767     OPCODE(VFTCI);
5768     OPCODE(VEXTEND);
5769     OPCODE(STRICT_VEXTEND);
5770     OPCODE(VROUND);
5771     OPCODE(STRICT_VROUND);
5772     OPCODE(VTM);
5773     OPCODE(VFAE_CC);
5774     OPCODE(VFAEZ_CC);
5775     OPCODE(VFEE_CC);
5776     OPCODE(VFEEZ_CC);
5777     OPCODE(VFENE_CC);
5778     OPCODE(VFENEZ_CC);
5779     OPCODE(VISTR_CC);
5780     OPCODE(VSTRC_CC);
5781     OPCODE(VSTRCZ_CC);
5782     OPCODE(VSTRS_CC);
5783     OPCODE(VSTRSZ_CC);
5784     OPCODE(TDC);
5785     OPCODE(ATOMIC_SWAPW);
5786     OPCODE(ATOMIC_LOADW_ADD);
5787     OPCODE(ATOMIC_LOADW_SUB);
5788     OPCODE(ATOMIC_LOADW_AND);
5789     OPCODE(ATOMIC_LOADW_OR);
5790     OPCODE(ATOMIC_LOADW_XOR);
5791     OPCODE(ATOMIC_LOADW_NAND);
5792     OPCODE(ATOMIC_LOADW_MIN);
5793     OPCODE(ATOMIC_LOADW_MAX);
5794     OPCODE(ATOMIC_LOADW_UMIN);
5795     OPCODE(ATOMIC_LOADW_UMAX);
5796     OPCODE(ATOMIC_CMP_SWAPW);
5797     OPCODE(ATOMIC_CMP_SWAP);
5798     OPCODE(ATOMIC_LOAD_128);
5799     OPCODE(ATOMIC_STORE_128);
5800     OPCODE(ATOMIC_CMP_SWAP_128);
5801     OPCODE(LRV);
5802     OPCODE(STRV);
5803     OPCODE(VLER);
5804     OPCODE(VSTER);
5805     OPCODE(PREFETCH);
5806   }
5807   return nullptr;
5808 #undef OPCODE
5809 }
5810 
5811 // Return true if VT is a vector whose elements are a whole number of bytes
5812 // in width. Also check for presence of vector support.
5813 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5814   if (!Subtarget.hasVector())
5815     return false;
5816 
5817   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5818 }
5819 
5820 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5821 // producing a result of type ResVT.  Op is a possibly bitcast version
5822 // of the input vector and Index is the index (based on type VecVT) that
5823 // should be extracted.  Return the new extraction if a simplification
5824 // was possible or if Force is true.
5825 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5826                                               EVT VecVT, SDValue Op,
5827                                               unsigned Index,
5828                                               DAGCombinerInfo &DCI,
5829                                               bool Force) const {
5830   SelectionDAG &DAG = DCI.DAG;
5831 
5832   // The number of bytes being extracted.
5833   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5834 
5835   for (;;) {
5836     unsigned Opcode = Op.getOpcode();
5837     if (Opcode == ISD::BITCAST)
5838       // Look through bitcasts.
5839       Op = Op.getOperand(0);
5840     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5841              canTreatAsByteVector(Op.getValueType())) {
5842       // Get a VPERM-like permute mask and see whether the bytes covered
5843       // by the extracted element are a contiguous sequence from one
5844       // source operand.
5845       SmallVector<int, SystemZ::VectorBytes> Bytes;
5846       if (!getVPermMask(Op, Bytes))
5847         break;
5848       int First;
5849       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5850                            BytesPerElement, First))
5851         break;
5852       if (First < 0)
5853         return DAG.getUNDEF(ResVT);
5854       // Make sure the contiguous sequence starts at a multiple of the
5855       // original element size.
5856       unsigned Byte = unsigned(First) % Bytes.size();
5857       if (Byte % BytesPerElement != 0)
5858         break;
5859       // We can get the extracted value directly from an input.
5860       Index = Byte / BytesPerElement;
5861       Op = Op.getOperand(unsigned(First) / Bytes.size());
5862       Force = true;
5863     } else if (Opcode == ISD::BUILD_VECTOR &&
5864                canTreatAsByteVector(Op.getValueType())) {
5865       // We can only optimize this case if the BUILD_VECTOR elements are
5866       // at least as wide as the extracted value.
5867       EVT OpVT = Op.getValueType();
5868       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5869       if (OpBytesPerElement < BytesPerElement)
5870         break;
5871       // Make sure that the least-significant bit of the extracted value
5872       // is the least significant bit of an input.
5873       unsigned End = (Index + 1) * BytesPerElement;
5874       if (End % OpBytesPerElement != 0)
5875         break;
5876       // We're extracting the low part of one operand of the BUILD_VECTOR.
5877       Op = Op.getOperand(End / OpBytesPerElement - 1);
5878       if (!Op.getValueType().isInteger()) {
5879         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5880         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5881         DCI.AddToWorklist(Op.getNode());
5882       }
5883       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5884       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5885       if (VT != ResVT) {
5886         DCI.AddToWorklist(Op.getNode());
5887         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5888       }
5889       return Op;
5890     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5891                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5892                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5893                canTreatAsByteVector(Op.getValueType()) &&
5894                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5895       // Make sure that only the unextended bits are significant.
5896       EVT ExtVT = Op.getValueType();
5897       EVT OpVT = Op.getOperand(0).getValueType();
5898       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5899       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5900       unsigned Byte = Index * BytesPerElement;
5901       unsigned SubByte = Byte % ExtBytesPerElement;
5902       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5903       if (SubByte < MinSubByte ||
5904           SubByte + BytesPerElement > ExtBytesPerElement)
5905         break;
5906       // Get the byte offset of the unextended element
5907       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5908       // ...then add the byte offset relative to that element.
5909       Byte += SubByte - MinSubByte;
5910       if (Byte % BytesPerElement != 0)
5911         break;
5912       Op = Op.getOperand(0);
5913       Index = Byte / BytesPerElement;
5914       Force = true;
5915     } else
5916       break;
5917   }
5918   if (Force) {
5919     if (Op.getValueType() != VecVT) {
5920       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5921       DCI.AddToWorklist(Op.getNode());
5922     }
5923     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5924                        DAG.getConstant(Index, DL, MVT::i32));
5925   }
5926   return SDValue();
5927 }
5928 
5929 // Optimize vector operations in scalar value Op on the basis that Op
5930 // is truncated to TruncVT.
5931 SDValue SystemZTargetLowering::combineTruncateExtract(
5932     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5933   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5934   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5935   // of type TruncVT.
5936   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5937       TruncVT.getSizeInBits() % 8 == 0) {
5938     SDValue Vec = Op.getOperand(0);
5939     EVT VecVT = Vec.getValueType();
5940     if (canTreatAsByteVector(VecVT)) {
5941       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5942         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5943         unsigned TruncBytes = TruncVT.getStoreSize();
5944         if (BytesPerElement % TruncBytes == 0) {
5945           // Calculate the value of Y' in the above description.  We are
5946           // splitting the original elements into Scale equal-sized pieces
5947           // and for truncation purposes want the last (least-significant)
5948           // of these pieces for IndexN.  This is easiest to do by calculating
5949           // the start index of the following element and then subtracting 1.
5950           unsigned Scale = BytesPerElement / TruncBytes;
5951           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5952 
5953           // Defer the creation of the bitcast from X to combineExtract,
5954           // which might be able to optimize the extraction.
5955           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5956                                    VecVT.getStoreSize() / TruncBytes);
5957           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5958           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5959         }
5960       }
5961     }
5962   }
5963   return SDValue();
5964 }
5965 
5966 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5967     SDNode *N, DAGCombinerInfo &DCI) const {
5968   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5969   SelectionDAG &DAG = DCI.DAG;
5970   SDValue N0 = N->getOperand(0);
5971   EVT VT = N->getValueType(0);
5972   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5973     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5974     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5975     if (TrueOp && FalseOp) {
5976       SDLoc DL(N0);
5977       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5978                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5979                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5980       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5981       // If N0 has multiple uses, change other uses as well.
5982       if (!N0.hasOneUse()) {
5983         SDValue TruncSelect =
5984           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5985         DCI.CombineTo(N0.getNode(), TruncSelect);
5986       }
5987       return NewSelect;
5988     }
5989   }
5990   return SDValue();
5991 }
5992 
5993 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5994     SDNode *N, DAGCombinerInfo &DCI) const {
5995   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5996   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5997   // into (select_cc LHS, RHS, -1, 0, COND)
5998   SelectionDAG &DAG = DCI.DAG;
5999   SDValue N0 = N->getOperand(0);
6000   EVT VT = N->getValueType(0);
6001   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6002   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6003     N0 = N0.getOperand(0);
6004   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6005     SDLoc DL(N0);
6006     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6007                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6008                       N0.getOperand(2) };
6009     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6010   }
6011   return SDValue();
6012 }
6013 
6014 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6015     SDNode *N, DAGCombinerInfo &DCI) const {
6016   // Convert (sext (ashr (shl X, C1), C2)) to
6017   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6018   // cheap as narrower ones.
6019   SelectionDAG &DAG = DCI.DAG;
6020   SDValue N0 = N->getOperand(0);
6021   EVT VT = N->getValueType(0);
6022   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6023     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6024     SDValue Inner = N0.getOperand(0);
6025     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6026       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6027         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6028         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6029         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6030         EVT ShiftVT = N0.getOperand(1).getValueType();
6031         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6032                                   Inner.getOperand(0));
6033         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6034                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6035                                                   ShiftVT));
6036         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6037                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6038       }
6039     }
6040   }
6041   return SDValue();
6042 }
6043 
6044 SDValue SystemZTargetLowering::combineMERGE(
6045     SDNode *N, DAGCombinerInfo &DCI) const {
6046   SelectionDAG &DAG = DCI.DAG;
6047   unsigned Opcode = N->getOpcode();
6048   SDValue Op0 = N->getOperand(0);
6049   SDValue Op1 = N->getOperand(1);
6050   if (Op0.getOpcode() == ISD::BITCAST)
6051     Op0 = Op0.getOperand(0);
6052   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6053     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6054     // for v4f32.
6055     if (Op1 == N->getOperand(0))
6056       return Op1;
6057     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6058     EVT VT = Op1.getValueType();
6059     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6060     if (ElemBytes <= 4) {
6061       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6062                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6063       EVT InVT = VT.changeVectorElementTypeToInteger();
6064       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6065                                    SystemZ::VectorBytes / ElemBytes / 2);
6066       if (VT != InVT) {
6067         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6068         DCI.AddToWorklist(Op1.getNode());
6069       }
6070       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6071       DCI.AddToWorklist(Op.getNode());
6072       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6073     }
6074   }
6075   return SDValue();
6076 }
6077 
6078 SDValue SystemZTargetLowering::combineLOAD(
6079     SDNode *N, DAGCombinerInfo &DCI) const {
6080   SelectionDAG &DAG = DCI.DAG;
6081   EVT LdVT = N->getValueType(0);
6082   if (LdVT.isVector() || LdVT.isInteger())
6083     return SDValue();
6084   // Transform a scalar load that is REPLICATEd as well as having other
6085   // use(s) to the form where the other use(s) use the first element of the
6086   // REPLICATE instead of the load. Otherwise instruction selection will not
6087   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6088   // point loads.
6089 
6090   SDValue Replicate;
6091   SmallVector<SDNode*, 8> OtherUses;
6092   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6093        UI != UE; ++UI) {
6094     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6095       if (Replicate)
6096         return SDValue(); // Should never happen
6097       Replicate = SDValue(*UI, 0);
6098     }
6099     else if (UI.getUse().getResNo() == 0)
6100       OtherUses.push_back(*UI);
6101   }
6102   if (!Replicate || OtherUses.empty())
6103     return SDValue();
6104 
6105   SDLoc DL(N);
6106   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6107                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6108   // Update uses of the loaded Value while preserving old chains.
6109   for (SDNode *U : OtherUses) {
6110     SmallVector<SDValue, 8> Ops;
6111     for (SDValue Op : U->ops())
6112       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6113     DAG.UpdateNodeOperands(U, Ops);
6114   }
6115   return SDValue(N, 0);
6116 }
6117 
6118 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6119   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6120     return true;
6121   if (Subtarget.hasVectorEnhancements2())
6122     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6123       return true;
6124   return false;
6125 }
6126 
6127 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6128   if (!VT.isVector() || !VT.isSimple() ||
6129       VT.getSizeInBits() != 128 ||
6130       VT.getScalarSizeInBits() % 8 != 0)
6131     return false;
6132 
6133   unsigned NumElts = VT.getVectorNumElements();
6134   for (unsigned i = 0; i < NumElts; ++i) {
6135     if (M[i] < 0) continue; // ignore UNDEF indices
6136     if ((unsigned) M[i] != NumElts - 1 - i)
6137       return false;
6138   }
6139 
6140   return true;
6141 }
6142 
6143 SDValue SystemZTargetLowering::combineSTORE(
6144     SDNode *N, DAGCombinerInfo &DCI) const {
6145   SelectionDAG &DAG = DCI.DAG;
6146   auto *SN = cast<StoreSDNode>(N);
6147   auto &Op1 = N->getOperand(1);
6148   EVT MemVT = SN->getMemoryVT();
6149   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6150   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6151   // If X has wider elements then convert it to:
6152   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6153   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6154     if (SDValue Value =
6155             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6156       DCI.AddToWorklist(Value.getNode());
6157 
6158       // Rewrite the store with the new form of stored value.
6159       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6160                                SN->getBasePtr(), SN->getMemoryVT(),
6161                                SN->getMemOperand());
6162     }
6163   }
6164   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6165   if (!SN->isTruncatingStore() &&
6166       Op1.getOpcode() == ISD::BSWAP &&
6167       Op1.getNode()->hasOneUse() &&
6168       canLoadStoreByteSwapped(Op1.getValueType())) {
6169 
6170       SDValue BSwapOp = Op1.getOperand(0);
6171 
6172       if (BSwapOp.getValueType() == MVT::i16)
6173         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6174 
6175       SDValue Ops[] = {
6176         N->getOperand(0), BSwapOp, N->getOperand(2)
6177       };
6178 
6179       return
6180         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6181                                 Ops, MemVT, SN->getMemOperand());
6182     }
6183   // Combine STORE (element-swap) into VSTER
6184   if (!SN->isTruncatingStore() &&
6185       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6186       Op1.getNode()->hasOneUse() &&
6187       Subtarget.hasVectorEnhancements2()) {
6188     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6189     ArrayRef<int> ShuffleMask = SVN->getMask();
6190     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6191       SDValue Ops[] = {
6192         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6193       };
6194 
6195       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6196                                      DAG.getVTList(MVT::Other),
6197                                      Ops, MemVT, SN->getMemOperand());
6198     }
6199   }
6200 
6201   return SDValue();
6202 }
6203 
6204 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6205     SDNode *N, DAGCombinerInfo &DCI) const {
6206   SelectionDAG &DAG = DCI.DAG;
6207   // Combine element-swap (LOAD) into VLER
6208   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6209       N->getOperand(0).hasOneUse() &&
6210       Subtarget.hasVectorEnhancements2()) {
6211     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6212     ArrayRef<int> ShuffleMask = SVN->getMask();
6213     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6214       SDValue Load = N->getOperand(0);
6215       LoadSDNode *LD = cast<LoadSDNode>(Load);
6216 
6217       // Create the element-swapping load.
6218       SDValue Ops[] = {
6219         LD->getChain(),    // Chain
6220         LD->getBasePtr()   // Ptr
6221       };
6222       SDValue ESLoad =
6223         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6224                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6225                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6226 
6227       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6228       // by the load dead.
6229       DCI.CombineTo(N, ESLoad);
6230 
6231       // Next, combine the load away, we give it a bogus result value but a real
6232       // chain result.  The result value is dead because the shuffle is dead.
6233       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6234 
6235       // Return N so it doesn't get rechecked!
6236       return SDValue(N, 0);
6237     }
6238   }
6239 
6240   return SDValue();
6241 }
6242 
6243 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6244     SDNode *N, DAGCombinerInfo &DCI) const {
6245   SelectionDAG &DAG = DCI.DAG;
6246 
6247   if (!Subtarget.hasVector())
6248     return SDValue();
6249 
6250   // Look through bitcasts that retain the number of vector elements.
6251   SDValue Op = N->getOperand(0);
6252   if (Op.getOpcode() == ISD::BITCAST &&
6253       Op.getValueType().isVector() &&
6254       Op.getOperand(0).getValueType().isVector() &&
6255       Op.getValueType().getVectorNumElements() ==
6256       Op.getOperand(0).getValueType().getVectorNumElements())
6257     Op = Op.getOperand(0);
6258 
6259   // Pull BSWAP out of a vector extraction.
6260   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6261     EVT VecVT = Op.getValueType();
6262     EVT EltVT = VecVT.getVectorElementType();
6263     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6264                      Op.getOperand(0), N->getOperand(1));
6265     DCI.AddToWorklist(Op.getNode());
6266     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6267     if (EltVT != N->getValueType(0)) {
6268       DCI.AddToWorklist(Op.getNode());
6269       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6270     }
6271     return Op;
6272   }
6273 
6274   // Try to simplify a vector extraction.
6275   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6276     SDValue Op0 = N->getOperand(0);
6277     EVT VecVT = Op0.getValueType();
6278     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6279                           IndexN->getZExtValue(), DCI, false);
6280   }
6281   return SDValue();
6282 }
6283 
6284 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6285     SDNode *N, DAGCombinerInfo &DCI) const {
6286   SelectionDAG &DAG = DCI.DAG;
6287   // (join_dwords X, X) == (replicate X)
6288   if (N->getOperand(0) == N->getOperand(1))
6289     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6290                        N->getOperand(0));
6291   return SDValue();
6292 }
6293 
6294 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6295   SDValue Chain1 = N1->getOperand(0);
6296   SDValue Chain2 = N2->getOperand(0);
6297 
6298   // Trivial case: both nodes take the same chain.
6299   if (Chain1 == Chain2)
6300     return Chain1;
6301 
6302   // FIXME - we could handle more complex cases via TokenFactor,
6303   // assuming we can verify that this would not create a cycle.
6304   return SDValue();
6305 }
6306 
6307 SDValue SystemZTargetLowering::combineFP_ROUND(
6308     SDNode *N, DAGCombinerInfo &DCI) const {
6309 
6310   if (!Subtarget.hasVector())
6311     return SDValue();
6312 
6313   // (fpround (extract_vector_elt X 0))
6314   // (fpround (extract_vector_elt X 1)) ->
6315   // (extract_vector_elt (VROUND X) 0)
6316   // (extract_vector_elt (VROUND X) 2)
6317   //
6318   // This is a special case since the target doesn't really support v2f32s.
6319   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6320   SelectionDAG &DAG = DCI.DAG;
6321   SDValue Op0 = N->getOperand(OpNo);
6322   if (N->getValueType(0) == MVT::f32 &&
6323       Op0.hasOneUse() &&
6324       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6325       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6326       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6327       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6328     SDValue Vec = Op0.getOperand(0);
6329     for (auto *U : Vec->uses()) {
6330       if (U != Op0.getNode() &&
6331           U->hasOneUse() &&
6332           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6333           U->getOperand(0) == Vec &&
6334           U->getOperand(1).getOpcode() == ISD::Constant &&
6335           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6336         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6337         if (OtherRound.getOpcode() == N->getOpcode() &&
6338             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6339             OtherRound.getValueType() == MVT::f32) {
6340           SDValue VRound, Chain;
6341           if (N->isStrictFPOpcode()) {
6342             Chain = MergeInputChains(N, OtherRound.getNode());
6343             if (!Chain)
6344               continue;
6345             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6346                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6347             Chain = VRound.getValue(1);
6348           } else
6349             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6350                                  MVT::v4f32, Vec);
6351           DCI.AddToWorklist(VRound.getNode());
6352           SDValue Extract1 =
6353             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6354                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6355           DCI.AddToWorklist(Extract1.getNode());
6356           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6357           if (Chain)
6358             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6359           SDValue Extract0 =
6360             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6361                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6362           if (Chain)
6363             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6364                                N->getVTList(), Extract0, Chain);
6365           return Extract0;
6366         }
6367       }
6368     }
6369   }
6370   return SDValue();
6371 }
6372 
6373 SDValue SystemZTargetLowering::combineFP_EXTEND(
6374     SDNode *N, DAGCombinerInfo &DCI) const {
6375 
6376   if (!Subtarget.hasVector())
6377     return SDValue();
6378 
6379   // (fpextend (extract_vector_elt X 0))
6380   // (fpextend (extract_vector_elt X 2)) ->
6381   // (extract_vector_elt (VEXTEND X) 0)
6382   // (extract_vector_elt (VEXTEND X) 1)
6383   //
6384   // This is a special case since the target doesn't really support v2f32s.
6385   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6386   SelectionDAG &DAG = DCI.DAG;
6387   SDValue Op0 = N->getOperand(OpNo);
6388   if (N->getValueType(0) == MVT::f64 &&
6389       Op0.hasOneUse() &&
6390       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6391       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6392       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6393       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6394     SDValue Vec = Op0.getOperand(0);
6395     for (auto *U : Vec->uses()) {
6396       if (U != Op0.getNode() &&
6397           U->hasOneUse() &&
6398           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6399           U->getOperand(0) == Vec &&
6400           U->getOperand(1).getOpcode() == ISD::Constant &&
6401           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6402         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6403         if (OtherExtend.getOpcode() == N->getOpcode() &&
6404             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6405             OtherExtend.getValueType() == MVT::f64) {
6406           SDValue VExtend, Chain;
6407           if (N->isStrictFPOpcode()) {
6408             Chain = MergeInputChains(N, OtherExtend.getNode());
6409             if (!Chain)
6410               continue;
6411             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6412                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6413             Chain = VExtend.getValue(1);
6414           } else
6415             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6416                                   MVT::v2f64, Vec);
6417           DCI.AddToWorklist(VExtend.getNode());
6418           SDValue Extract1 =
6419             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6420                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6421           DCI.AddToWorklist(Extract1.getNode());
6422           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6423           if (Chain)
6424             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6425           SDValue Extract0 =
6426             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6427                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6428           if (Chain)
6429             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6430                                N->getVTList(), Extract0, Chain);
6431           return Extract0;
6432         }
6433       }
6434     }
6435   }
6436   return SDValue();
6437 }
6438 
6439 SDValue SystemZTargetLowering::combineINT_TO_FP(
6440     SDNode *N, DAGCombinerInfo &DCI) const {
6441   if (DCI.Level != BeforeLegalizeTypes)
6442     return SDValue();
6443   unsigned Opcode = N->getOpcode();
6444   EVT OutVT = N->getValueType(0);
6445   SelectionDAG &DAG = DCI.DAG;
6446   SDValue Op = N->getOperand(0);
6447   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6448   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6449 
6450   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6451   // v2f64 = uint_to_fp v2i16
6452   // =>
6453   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6454   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6455     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6456                                  OutVT.getVectorNumElements());
6457     unsigned ExtOpcode =
6458       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6459     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6460     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6461   }
6462   return SDValue();
6463 }
6464 
6465 SDValue SystemZTargetLowering::combineBSWAP(
6466     SDNode *N, DAGCombinerInfo &DCI) const {
6467   SelectionDAG &DAG = DCI.DAG;
6468   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6469   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6470       N->getOperand(0).hasOneUse() &&
6471       canLoadStoreByteSwapped(N->getValueType(0))) {
6472       SDValue Load = N->getOperand(0);
6473       LoadSDNode *LD = cast<LoadSDNode>(Load);
6474 
6475       // Create the byte-swapping load.
6476       SDValue Ops[] = {
6477         LD->getChain(),    // Chain
6478         LD->getBasePtr()   // Ptr
6479       };
6480       EVT LoadVT = N->getValueType(0);
6481       if (LoadVT == MVT::i16)
6482         LoadVT = MVT::i32;
6483       SDValue BSLoad =
6484         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6485                                 DAG.getVTList(LoadVT, MVT::Other),
6486                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6487 
6488       // If this is an i16 load, insert the truncate.
6489       SDValue ResVal = BSLoad;
6490       if (N->getValueType(0) == MVT::i16)
6491         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6492 
6493       // First, combine the bswap away.  This makes the value produced by the
6494       // load dead.
6495       DCI.CombineTo(N, ResVal);
6496 
6497       // Next, combine the load away, we give it a bogus result value but a real
6498       // chain result.  The result value is dead because the bswap is dead.
6499       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6500 
6501       // Return N so it doesn't get rechecked!
6502       return SDValue(N, 0);
6503     }
6504 
6505   // Look through bitcasts that retain the number of vector elements.
6506   SDValue Op = N->getOperand(0);
6507   if (Op.getOpcode() == ISD::BITCAST &&
6508       Op.getValueType().isVector() &&
6509       Op.getOperand(0).getValueType().isVector() &&
6510       Op.getValueType().getVectorNumElements() ==
6511       Op.getOperand(0).getValueType().getVectorNumElements())
6512     Op = Op.getOperand(0);
6513 
6514   // Push BSWAP into a vector insertion if at least one side then simplifies.
6515   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6516     SDValue Vec = Op.getOperand(0);
6517     SDValue Elt = Op.getOperand(1);
6518     SDValue Idx = Op.getOperand(2);
6519 
6520     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6521         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6522         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6523         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6524         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6525          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6526       EVT VecVT = N->getValueType(0);
6527       EVT EltVT = N->getValueType(0).getVectorElementType();
6528       if (VecVT != Vec.getValueType()) {
6529         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6530         DCI.AddToWorklist(Vec.getNode());
6531       }
6532       if (EltVT != Elt.getValueType()) {
6533         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6534         DCI.AddToWorklist(Elt.getNode());
6535       }
6536       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6537       DCI.AddToWorklist(Vec.getNode());
6538       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6539       DCI.AddToWorklist(Elt.getNode());
6540       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6541                          Vec, Elt, Idx);
6542     }
6543   }
6544 
6545   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6546   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6547   if (SV && Op.hasOneUse()) {
6548     SDValue Op0 = Op.getOperand(0);
6549     SDValue Op1 = Op.getOperand(1);
6550 
6551     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6552         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6553         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6554         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6555       EVT VecVT = N->getValueType(0);
6556       if (VecVT != Op0.getValueType()) {
6557         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6558         DCI.AddToWorklist(Op0.getNode());
6559       }
6560       if (VecVT != Op1.getValueType()) {
6561         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6562         DCI.AddToWorklist(Op1.getNode());
6563       }
6564       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6565       DCI.AddToWorklist(Op0.getNode());
6566       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6567       DCI.AddToWorklist(Op1.getNode());
6568       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6569     }
6570   }
6571 
6572   return SDValue();
6573 }
6574 
6575 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6576   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6577   // set by the CCReg instruction using the CCValid / CCMask masks,
6578   // If the CCReg instruction is itself a ICMP testing the condition
6579   // code set by some other instruction, see whether we can directly
6580   // use that condition code.
6581 
6582   // Verify that we have an ICMP against some constant.
6583   if (CCValid != SystemZ::CCMASK_ICMP)
6584     return false;
6585   auto *ICmp = CCReg.getNode();
6586   if (ICmp->getOpcode() != SystemZISD::ICMP)
6587     return false;
6588   auto *CompareLHS = ICmp->getOperand(0).getNode();
6589   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6590   if (!CompareRHS)
6591     return false;
6592 
6593   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6594   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6595     // Verify that we have an appropriate mask for a EQ or NE comparison.
6596     bool Invert = false;
6597     if (CCMask == SystemZ::CCMASK_CMP_NE)
6598       Invert = !Invert;
6599     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6600       return false;
6601 
6602     // Verify that the ICMP compares against one of select values.
6603     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6604     if (!TrueVal)
6605       return false;
6606     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6607     if (!FalseVal)
6608       return false;
6609     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6610       Invert = !Invert;
6611     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6612       return false;
6613 
6614     // Compute the effective CC mask for the new branch or select.
6615     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6616     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6617     if (!NewCCValid || !NewCCMask)
6618       return false;
6619     CCValid = NewCCValid->getZExtValue();
6620     CCMask = NewCCMask->getZExtValue();
6621     if (Invert)
6622       CCMask ^= CCValid;
6623 
6624     // Return the updated CCReg link.
6625     CCReg = CompareLHS->getOperand(4);
6626     return true;
6627   }
6628 
6629   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6630   if (CompareLHS->getOpcode() == ISD::SRA) {
6631     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6632     if (!SRACount || SRACount->getZExtValue() != 30)
6633       return false;
6634     auto *SHL = CompareLHS->getOperand(0).getNode();
6635     if (SHL->getOpcode() != ISD::SHL)
6636       return false;
6637     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6638     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6639       return false;
6640     auto *IPM = SHL->getOperand(0).getNode();
6641     if (IPM->getOpcode() != SystemZISD::IPM)
6642       return false;
6643 
6644     // Avoid introducing CC spills (because SRA would clobber CC).
6645     if (!CompareLHS->hasOneUse())
6646       return false;
6647     // Verify that the ICMP compares against zero.
6648     if (CompareRHS->getZExtValue() != 0)
6649       return false;
6650 
6651     // Compute the effective CC mask for the new branch or select.
6652     CCMask = SystemZ::reverseCCMask(CCMask);
6653 
6654     // Return the updated CCReg link.
6655     CCReg = IPM->getOperand(0);
6656     return true;
6657   }
6658 
6659   return false;
6660 }
6661 
6662 SDValue SystemZTargetLowering::combineBR_CCMASK(
6663     SDNode *N, DAGCombinerInfo &DCI) const {
6664   SelectionDAG &DAG = DCI.DAG;
6665 
6666   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6667   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6668   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6669   if (!CCValid || !CCMask)
6670     return SDValue();
6671 
6672   int CCValidVal = CCValid->getZExtValue();
6673   int CCMaskVal = CCMask->getZExtValue();
6674   SDValue Chain = N->getOperand(0);
6675   SDValue CCReg = N->getOperand(4);
6676 
6677   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6678     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6679                        Chain,
6680                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6681                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6682                        N->getOperand(3), CCReg);
6683   return SDValue();
6684 }
6685 
6686 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6687     SDNode *N, DAGCombinerInfo &DCI) const {
6688   SelectionDAG &DAG = DCI.DAG;
6689 
6690   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6691   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6692   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6693   if (!CCValid || !CCMask)
6694     return SDValue();
6695 
6696   int CCValidVal = CCValid->getZExtValue();
6697   int CCMaskVal = CCMask->getZExtValue();
6698   SDValue CCReg = N->getOperand(4);
6699 
6700   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6701     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6702                        N->getOperand(0), N->getOperand(1),
6703                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6704                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6705                        CCReg);
6706   return SDValue();
6707 }
6708 
6709 
6710 SDValue SystemZTargetLowering::combineGET_CCMASK(
6711     SDNode *N, DAGCombinerInfo &DCI) const {
6712 
6713   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6714   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6715   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6716   if (!CCValid || !CCMask)
6717     return SDValue();
6718   int CCValidVal = CCValid->getZExtValue();
6719   int CCMaskVal = CCMask->getZExtValue();
6720 
6721   SDValue Select = N->getOperand(0);
6722   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6723     return SDValue();
6724 
6725   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6726   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6727   if (!SelectCCValid || !SelectCCMask)
6728     return SDValue();
6729   int SelectCCValidVal = SelectCCValid->getZExtValue();
6730   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6731 
6732   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6733   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6734   if (!TrueVal || !FalseVal)
6735     return SDValue();
6736   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6737     ;
6738   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6739     SelectCCMaskVal ^= SelectCCValidVal;
6740   else
6741     return SDValue();
6742 
6743   if (SelectCCValidVal & ~CCValidVal)
6744     return SDValue();
6745   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6746     return SDValue();
6747 
6748   return Select->getOperand(4);
6749 }
6750 
6751 SDValue SystemZTargetLowering::combineIntDIVREM(
6752     SDNode *N, DAGCombinerInfo &DCI) const {
6753   SelectionDAG &DAG = DCI.DAG;
6754   EVT VT = N->getValueType(0);
6755   // In the case where the divisor is a vector of constants a cheaper
6756   // sequence of instructions can replace the divide. BuildSDIV is called to
6757   // do this during DAG combining, but it only succeeds when it can build a
6758   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6759   // since it is not Legal but Custom it can only happen before
6760   // legalization. Therefore we must scalarize this early before Combine
6761   // 1. For widened vectors, this is already the result of type legalization.
6762   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6763       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6764     return DAG.UnrollVectorOp(N);
6765   return SDValue();
6766 }
6767 
6768 SDValue SystemZTargetLowering::combineINTRINSIC(
6769     SDNode *N, DAGCombinerInfo &DCI) const {
6770   SelectionDAG &DAG = DCI.DAG;
6771 
6772   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6773   switch (Id) {
6774   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6775   // or larger is simply a vector load.
6776   case Intrinsic::s390_vll:
6777   case Intrinsic::s390_vlrl:
6778     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6779       if (C->getZExtValue() >= 15)
6780         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6781                            N->getOperand(3), MachinePointerInfo());
6782     break;
6783   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6784   case Intrinsic::s390_vstl:
6785   case Intrinsic::s390_vstrl:
6786     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6787       if (C->getZExtValue() >= 15)
6788         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6789                             N->getOperand(4), MachinePointerInfo());
6790     break;
6791   }
6792 
6793   return SDValue();
6794 }
6795 
6796 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6797   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6798     return N->getOperand(0);
6799   return N;
6800 }
6801 
6802 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6803                                                  DAGCombinerInfo &DCI) const {
6804   switch(N->getOpcode()) {
6805   default: break;
6806   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6807   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6808   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6809   case SystemZISD::MERGE_HIGH:
6810   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6811   case ISD::LOAD:               return combineLOAD(N, DCI);
6812   case ISD::STORE:              return combineSTORE(N, DCI);
6813   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6814   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6815   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6816   case ISD::STRICT_FP_ROUND:
6817   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6818   case ISD::STRICT_FP_EXTEND:
6819   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6820   case ISD::SINT_TO_FP:
6821   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6822   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6823   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6824   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6825   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6826   case ISD::SDIV:
6827   case ISD::UDIV:
6828   case ISD::SREM:
6829   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6830   case ISD::INTRINSIC_W_CHAIN:
6831   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6832   }
6833 
6834   return SDValue();
6835 }
6836 
6837 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6838 // are for Op.
6839 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6840                                     unsigned OpNo) {
6841   EVT VT = Op.getValueType();
6842   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6843   APInt SrcDemE;
6844   unsigned Opcode = Op.getOpcode();
6845   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6846     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6847     switch (Id) {
6848     case Intrinsic::s390_vpksh:   // PACKS
6849     case Intrinsic::s390_vpksf:
6850     case Intrinsic::s390_vpksg:
6851     case Intrinsic::s390_vpkshs:  // PACKS_CC
6852     case Intrinsic::s390_vpksfs:
6853     case Intrinsic::s390_vpksgs:
6854     case Intrinsic::s390_vpklsh:  // PACKLS
6855     case Intrinsic::s390_vpklsf:
6856     case Intrinsic::s390_vpklsg:
6857     case Intrinsic::s390_vpklshs: // PACKLS_CC
6858     case Intrinsic::s390_vpklsfs:
6859     case Intrinsic::s390_vpklsgs:
6860       // VECTOR PACK truncates the elements of two source vectors into one.
6861       SrcDemE = DemandedElts;
6862       if (OpNo == 2)
6863         SrcDemE.lshrInPlace(NumElts / 2);
6864       SrcDemE = SrcDemE.trunc(NumElts / 2);
6865       break;
6866       // VECTOR UNPACK extends half the elements of the source vector.
6867     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6868     case Intrinsic::s390_vuphh:
6869     case Intrinsic::s390_vuphf:
6870     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6871     case Intrinsic::s390_vuplhh:
6872     case Intrinsic::s390_vuplhf:
6873       SrcDemE = APInt(NumElts * 2, 0);
6874       SrcDemE.insertBits(DemandedElts, 0);
6875       break;
6876     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6877     case Intrinsic::s390_vuplhw:
6878     case Intrinsic::s390_vuplf:
6879     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6880     case Intrinsic::s390_vupllh:
6881     case Intrinsic::s390_vupllf:
6882       SrcDemE = APInt(NumElts * 2, 0);
6883       SrcDemE.insertBits(DemandedElts, NumElts);
6884       break;
6885     case Intrinsic::s390_vpdi: {
6886       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6887       SrcDemE = APInt(NumElts, 0);
6888       if (!DemandedElts[OpNo - 1])
6889         break;
6890       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6891       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6892       // Demand input element 0 or 1, given by the mask bit value.
6893       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6894       break;
6895     }
6896     case Intrinsic::s390_vsldb: {
6897       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6898       assert(VT == MVT::v16i8 && "Unexpected type.");
6899       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6900       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6901       unsigned NumSrc0Els = 16 - FirstIdx;
6902       SrcDemE = APInt(NumElts, 0);
6903       if (OpNo == 1) {
6904         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6905         SrcDemE.insertBits(DemEls, FirstIdx);
6906       } else {
6907         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6908         SrcDemE.insertBits(DemEls, 0);
6909       }
6910       break;
6911     }
6912     case Intrinsic::s390_vperm:
6913       SrcDemE = APInt(NumElts, 1);
6914       break;
6915     default:
6916       llvm_unreachable("Unhandled intrinsic.");
6917       break;
6918     }
6919   } else {
6920     switch (Opcode) {
6921     case SystemZISD::JOIN_DWORDS:
6922       // Scalar operand.
6923       SrcDemE = APInt(1, 1);
6924       break;
6925     case SystemZISD::SELECT_CCMASK:
6926       SrcDemE = DemandedElts;
6927       break;
6928     default:
6929       llvm_unreachable("Unhandled opcode.");
6930       break;
6931     }
6932   }
6933   return SrcDemE;
6934 }
6935 
6936 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6937                                   const APInt &DemandedElts,
6938                                   const SelectionDAG &DAG, unsigned Depth,
6939                                   unsigned OpNo) {
6940   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6941   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6942   KnownBits LHSKnown =
6943       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6944   KnownBits RHSKnown =
6945       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6946   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6947 }
6948 
6949 void
6950 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6951                                                      KnownBits &Known,
6952                                                      const APInt &DemandedElts,
6953                                                      const SelectionDAG &DAG,
6954                                                      unsigned Depth) const {
6955   Known.resetAll();
6956 
6957   // Intrinsic CC result is returned in the two low bits.
6958   unsigned tmp0, tmp1; // not used
6959   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6960     Known.Zero.setBitsFrom(2);
6961     return;
6962   }
6963   EVT VT = Op.getValueType();
6964   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6965     return;
6966   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6967           "KnownBits does not match VT in bitwidth");
6968   assert ((!VT.isVector() ||
6969            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6970           "DemandedElts does not match VT number of elements");
6971   unsigned BitWidth = Known.getBitWidth();
6972   unsigned Opcode = Op.getOpcode();
6973   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6974     bool IsLogical = false;
6975     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6976     switch (Id) {
6977     case Intrinsic::s390_vpksh:   // PACKS
6978     case Intrinsic::s390_vpksf:
6979     case Intrinsic::s390_vpksg:
6980     case Intrinsic::s390_vpkshs:  // PACKS_CC
6981     case Intrinsic::s390_vpksfs:
6982     case Intrinsic::s390_vpksgs:
6983     case Intrinsic::s390_vpklsh:  // PACKLS
6984     case Intrinsic::s390_vpklsf:
6985     case Intrinsic::s390_vpklsg:
6986     case Intrinsic::s390_vpklshs: // PACKLS_CC
6987     case Intrinsic::s390_vpklsfs:
6988     case Intrinsic::s390_vpklsgs:
6989     case Intrinsic::s390_vpdi:
6990     case Intrinsic::s390_vsldb:
6991     case Intrinsic::s390_vperm:
6992       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6993       break;
6994     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6995     case Intrinsic::s390_vuplhh:
6996     case Intrinsic::s390_vuplhf:
6997     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6998     case Intrinsic::s390_vupllh:
6999     case Intrinsic::s390_vupllf:
7000       IsLogical = true;
7001       LLVM_FALLTHROUGH;
7002     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7003     case Intrinsic::s390_vuphh:
7004     case Intrinsic::s390_vuphf:
7005     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7006     case Intrinsic::s390_vuplhw:
7007     case Intrinsic::s390_vuplf: {
7008       SDValue SrcOp = Op.getOperand(1);
7009       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7010       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7011       if (IsLogical) {
7012         Known = Known.zext(BitWidth);
7013       } else
7014         Known = Known.sext(BitWidth);
7015       break;
7016     }
7017     default:
7018       break;
7019     }
7020   } else {
7021     switch (Opcode) {
7022     case SystemZISD::JOIN_DWORDS:
7023     case SystemZISD::SELECT_CCMASK:
7024       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7025       break;
7026     case SystemZISD::REPLICATE: {
7027       SDValue SrcOp = Op.getOperand(0);
7028       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7029       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7030         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7031       break;
7032     }
7033     default:
7034       break;
7035     }
7036   }
7037 
7038   // Known has the width of the source operand(s). Adjust if needed to match
7039   // the passed bitwidth.
7040   if (Known.getBitWidth() != BitWidth)
7041     Known = Known.anyextOrTrunc(BitWidth);
7042 }
7043 
7044 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7045                                         const SelectionDAG &DAG, unsigned Depth,
7046                                         unsigned OpNo) {
7047   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7048   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7049   if (LHS == 1) return 1; // Early out.
7050   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7051   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7052   if (RHS == 1) return 1; // Early out.
7053   unsigned Common = std::min(LHS, RHS);
7054   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7055   EVT VT = Op.getValueType();
7056   unsigned VTBits = VT.getScalarSizeInBits();
7057   if (SrcBitWidth > VTBits) { // PACK
7058     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7059     if (Common > SrcExtraBits)
7060       return (Common - SrcExtraBits);
7061     return 1;
7062   }
7063   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7064   return Common;
7065 }
7066 
7067 unsigned
7068 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7069     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7070     unsigned Depth) const {
7071   if (Op.getResNo() != 0)
7072     return 1;
7073   unsigned Opcode = Op.getOpcode();
7074   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7075     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7076     switch (Id) {
7077     case Intrinsic::s390_vpksh:   // PACKS
7078     case Intrinsic::s390_vpksf:
7079     case Intrinsic::s390_vpksg:
7080     case Intrinsic::s390_vpkshs:  // PACKS_CC
7081     case Intrinsic::s390_vpksfs:
7082     case Intrinsic::s390_vpksgs:
7083     case Intrinsic::s390_vpklsh:  // PACKLS
7084     case Intrinsic::s390_vpklsf:
7085     case Intrinsic::s390_vpklsg:
7086     case Intrinsic::s390_vpklshs: // PACKLS_CC
7087     case Intrinsic::s390_vpklsfs:
7088     case Intrinsic::s390_vpklsgs:
7089     case Intrinsic::s390_vpdi:
7090     case Intrinsic::s390_vsldb:
7091     case Intrinsic::s390_vperm:
7092       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7093     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7094     case Intrinsic::s390_vuphh:
7095     case Intrinsic::s390_vuphf:
7096     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7097     case Intrinsic::s390_vuplhw:
7098     case Intrinsic::s390_vuplf: {
7099       SDValue PackedOp = Op.getOperand(1);
7100       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7101       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7102       EVT VT = Op.getValueType();
7103       unsigned VTBits = VT.getScalarSizeInBits();
7104       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7105       return Tmp;
7106     }
7107     default:
7108       break;
7109     }
7110   } else {
7111     switch (Opcode) {
7112     case SystemZISD::SELECT_CCMASK:
7113       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7114     default:
7115       break;
7116     }
7117   }
7118 
7119   return 1;
7120 }
7121 
7122 unsigned
7123 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7124   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7125   unsigned StackAlign = TFI->getStackAlignment();
7126   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7127          "Unexpected stack alignment");
7128   // The default stack probe size is 4096 if the function has no
7129   // stack-probe-size attribute.
7130   unsigned StackProbeSize = 4096;
7131   const Function &Fn = MF.getFunction();
7132   if (Fn.hasFnAttribute("stack-probe-size"))
7133     Fn.getFnAttribute("stack-probe-size")
7134         .getValueAsString()
7135         .getAsInteger(0, StackProbeSize);
7136   // Round down to the stack alignment.
7137   StackProbeSize &= ~(StackAlign - 1);
7138   return StackProbeSize ? StackProbeSize : StackAlign;
7139 }
7140 
7141 //===----------------------------------------------------------------------===//
7142 // Custom insertion
7143 //===----------------------------------------------------------------------===//
7144 
7145 // Force base value Base into a register before MI.  Return the register.
7146 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7147                          const SystemZInstrInfo *TII) {
7148   MachineBasicBlock *MBB = MI.getParent();
7149   MachineFunction &MF = *MBB->getParent();
7150   MachineRegisterInfo &MRI = MF.getRegInfo();
7151 
7152   if (Base.isReg()) {
7153     // Copy Base into a new virtual register to help register coalescing in
7154     // cases with multiple uses.
7155     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7156     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7157       .add(Base);
7158     return Reg;
7159   }
7160 
7161   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7162   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7163       .add(Base)
7164       .addImm(0)
7165       .addReg(0);
7166   return Reg;
7167 }
7168 
7169 // The CC operand of MI might be missing a kill marker because there
7170 // were multiple uses of CC, and ISel didn't know which to mark.
7171 // Figure out whether MI should have had a kill marker.
7172 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7173   // Scan forward through BB for a use/def of CC.
7174   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7175   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7176     const MachineInstr& mi = *miI;
7177     if (mi.readsRegister(SystemZ::CC))
7178       return false;
7179     if (mi.definesRegister(SystemZ::CC))
7180       break; // Should have kill-flag - update below.
7181   }
7182 
7183   // If we hit the end of the block, check whether CC is live into a
7184   // successor.
7185   if (miI == MBB->end()) {
7186     for (const MachineBasicBlock *Succ : MBB->successors())
7187       if (Succ->isLiveIn(SystemZ::CC))
7188         return false;
7189   }
7190 
7191   return true;
7192 }
7193 
7194 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7195 // together with other Select pseudo-opcodes into a single basic-block with
7196 // a conditional jump around it.
7197 static bool isSelectPseudo(MachineInstr &MI) {
7198   switch (MI.getOpcode()) {
7199   case SystemZ::Select32:
7200   case SystemZ::Select64:
7201   case SystemZ::SelectF32:
7202   case SystemZ::SelectF64:
7203   case SystemZ::SelectF128:
7204   case SystemZ::SelectVR32:
7205   case SystemZ::SelectVR64:
7206   case SystemZ::SelectVR128:
7207     return true;
7208 
7209   default:
7210     return false;
7211   }
7212 }
7213 
7214 // Helper function, which inserts PHI functions into SinkMBB:
7215 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7216 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7217 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7218                                  MachineBasicBlock *TrueMBB,
7219                                  MachineBasicBlock *FalseMBB,
7220                                  MachineBasicBlock *SinkMBB) {
7221   MachineFunction *MF = TrueMBB->getParent();
7222   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7223 
7224   MachineInstr *FirstMI = Selects.front();
7225   unsigned CCValid = FirstMI->getOperand(3).getImm();
7226   unsigned CCMask = FirstMI->getOperand(4).getImm();
7227 
7228   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7229 
7230   // As we are creating the PHIs, we have to be careful if there is more than
7231   // one.  Later Selects may reference the results of earlier Selects, but later
7232   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7233   // That also means that PHI construction must work forward from earlier to
7234   // later, and that the code must maintain a mapping from earlier PHI's
7235   // destination registers, and the registers that went into the PHI.
7236   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7237 
7238   for (auto MI : Selects) {
7239     Register DestReg = MI->getOperand(0).getReg();
7240     Register TrueReg = MI->getOperand(1).getReg();
7241     Register FalseReg = MI->getOperand(2).getReg();
7242 
7243     // If this Select we are generating is the opposite condition from
7244     // the jump we generated, then we have to swap the operands for the
7245     // PHI that is going to be generated.
7246     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7247       std::swap(TrueReg, FalseReg);
7248 
7249     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7250       TrueReg = RegRewriteTable[TrueReg].first;
7251 
7252     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7253       FalseReg = RegRewriteTable[FalseReg].second;
7254 
7255     DebugLoc DL = MI->getDebugLoc();
7256     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7257       .addReg(TrueReg).addMBB(TrueMBB)
7258       .addReg(FalseReg).addMBB(FalseMBB);
7259 
7260     // Add this PHI to the rewrite table.
7261     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7262   }
7263 
7264   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7265 }
7266 
7267 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7268 MachineBasicBlock *
7269 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7270                                   MachineBasicBlock *MBB) const {
7271   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7272   const SystemZInstrInfo *TII =
7273       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7274 
7275   unsigned CCValid = MI.getOperand(3).getImm();
7276   unsigned CCMask = MI.getOperand(4).getImm();
7277 
7278   // If we have a sequence of Select* pseudo instructions using the
7279   // same condition code value, we want to expand all of them into
7280   // a single pair of basic blocks using the same condition.
7281   SmallVector<MachineInstr*, 8> Selects;
7282   SmallVector<MachineInstr*, 8> DbgValues;
7283   Selects.push_back(&MI);
7284   unsigned Count = 0;
7285   for (MachineBasicBlock::iterator NextMIIt =
7286          std::next(MachineBasicBlock::iterator(MI));
7287        NextMIIt != MBB->end(); ++NextMIIt) {
7288     if (isSelectPseudo(*NextMIIt)) {
7289       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7290              "Bad CCValid operands since CC was not redefined.");
7291       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7292           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7293         Selects.push_back(&*NextMIIt);
7294         continue;
7295       }
7296       break;
7297     }
7298     if (NextMIIt->definesRegister(SystemZ::CC) ||
7299         NextMIIt->usesCustomInsertionHook())
7300       break;
7301     bool User = false;
7302     for (auto SelMI : Selects)
7303       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7304         User = true;
7305         break;
7306       }
7307     if (NextMIIt->isDebugInstr()) {
7308       if (User) {
7309         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7310         DbgValues.push_back(&*NextMIIt);
7311       }
7312     }
7313     else if (User || ++Count > 20)
7314       break;
7315   }
7316 
7317   MachineInstr *LastMI = Selects.back();
7318   bool CCKilled =
7319       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7320   MachineBasicBlock *StartMBB = MBB;
7321   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7322   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7323 
7324   // Unless CC was killed in the last Select instruction, mark it as
7325   // live-in to both FalseMBB and JoinMBB.
7326   if (!CCKilled) {
7327     FalseMBB->addLiveIn(SystemZ::CC);
7328     JoinMBB->addLiveIn(SystemZ::CC);
7329   }
7330 
7331   //  StartMBB:
7332   //   BRC CCMask, JoinMBB
7333   //   # fallthrough to FalseMBB
7334   MBB = StartMBB;
7335   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7336     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7337   MBB->addSuccessor(JoinMBB);
7338   MBB->addSuccessor(FalseMBB);
7339 
7340   //  FalseMBB:
7341   //   # fallthrough to JoinMBB
7342   MBB = FalseMBB;
7343   MBB->addSuccessor(JoinMBB);
7344 
7345   //  JoinMBB:
7346   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7347   //  ...
7348   MBB = JoinMBB;
7349   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7350   for (auto SelMI : Selects)
7351     SelMI->eraseFromParent();
7352 
7353   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7354   for (auto DbgMI : DbgValues)
7355     MBB->splice(InsertPos, StartMBB, DbgMI);
7356 
7357   return JoinMBB;
7358 }
7359 
7360 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7361 // StoreOpcode is the store to use and Invert says whether the store should
7362 // happen when the condition is false rather than true.  If a STORE ON
7363 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7364 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7365                                                         MachineBasicBlock *MBB,
7366                                                         unsigned StoreOpcode,
7367                                                         unsigned STOCOpcode,
7368                                                         bool Invert) const {
7369   const SystemZInstrInfo *TII =
7370       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7371 
7372   Register SrcReg = MI.getOperand(0).getReg();
7373   MachineOperand Base = MI.getOperand(1);
7374   int64_t Disp = MI.getOperand(2).getImm();
7375   Register IndexReg = MI.getOperand(3).getReg();
7376   unsigned CCValid = MI.getOperand(4).getImm();
7377   unsigned CCMask = MI.getOperand(5).getImm();
7378   DebugLoc DL = MI.getDebugLoc();
7379 
7380   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7381 
7382   // ISel pattern matching also adds a load memory operand of the same
7383   // address, so take special care to find the storing memory operand.
7384   MachineMemOperand *MMO = nullptr;
7385   for (auto *I : MI.memoperands())
7386     if (I->isStore()) {
7387       MMO = I;
7388       break;
7389     }
7390 
7391   // Use STOCOpcode if possible.  We could use different store patterns in
7392   // order to avoid matching the index register, but the performance trade-offs
7393   // might be more complicated in that case.
7394   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7395     if (Invert)
7396       CCMask ^= CCValid;
7397 
7398     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7399       .addReg(SrcReg)
7400       .add(Base)
7401       .addImm(Disp)
7402       .addImm(CCValid)
7403       .addImm(CCMask)
7404       .addMemOperand(MMO);
7405 
7406     MI.eraseFromParent();
7407     return MBB;
7408   }
7409 
7410   // Get the condition needed to branch around the store.
7411   if (!Invert)
7412     CCMask ^= CCValid;
7413 
7414   MachineBasicBlock *StartMBB = MBB;
7415   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7416   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7417 
7418   // Unless CC was killed in the CondStore instruction, mark it as
7419   // live-in to both FalseMBB and JoinMBB.
7420   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7421     FalseMBB->addLiveIn(SystemZ::CC);
7422     JoinMBB->addLiveIn(SystemZ::CC);
7423   }
7424 
7425   //  StartMBB:
7426   //   BRC CCMask, JoinMBB
7427   //   # fallthrough to FalseMBB
7428   MBB = StartMBB;
7429   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7430     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7431   MBB->addSuccessor(JoinMBB);
7432   MBB->addSuccessor(FalseMBB);
7433 
7434   //  FalseMBB:
7435   //   store %SrcReg, %Disp(%Index,%Base)
7436   //   # fallthrough to JoinMBB
7437   MBB = FalseMBB;
7438   BuildMI(MBB, DL, TII->get(StoreOpcode))
7439       .addReg(SrcReg)
7440       .add(Base)
7441       .addImm(Disp)
7442       .addReg(IndexReg)
7443       .addMemOperand(MMO);
7444   MBB->addSuccessor(JoinMBB);
7445 
7446   MI.eraseFromParent();
7447   return JoinMBB;
7448 }
7449 
7450 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7451 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7452 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7453 // BitSize is the width of the field in bits, or 0 if this is a partword
7454 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7455 // is one of the operands.  Invert says whether the field should be
7456 // inverted after performing BinOpcode (e.g. for NAND).
7457 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7458     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7459     unsigned BitSize, bool Invert) const {
7460   MachineFunction &MF = *MBB->getParent();
7461   const SystemZInstrInfo *TII =
7462       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7463   MachineRegisterInfo &MRI = MF.getRegInfo();
7464   bool IsSubWord = (BitSize < 32);
7465 
7466   // Extract the operands.  Base can be a register or a frame index.
7467   // Src2 can be a register or immediate.
7468   Register Dest = MI.getOperand(0).getReg();
7469   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7470   int64_t Disp = MI.getOperand(2).getImm();
7471   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7472   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7473   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7474   DebugLoc DL = MI.getDebugLoc();
7475   if (IsSubWord)
7476     BitSize = MI.getOperand(6).getImm();
7477 
7478   // Subword operations use 32-bit registers.
7479   const TargetRegisterClass *RC = (BitSize <= 32 ?
7480                                    &SystemZ::GR32BitRegClass :
7481                                    &SystemZ::GR64BitRegClass);
7482   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7483   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7484 
7485   // Get the right opcodes for the displacement.
7486   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7487   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7488   assert(LOpcode && CSOpcode && "Displacement out of range");
7489 
7490   // Create virtual registers for temporary results.
7491   Register OrigVal       = MRI.createVirtualRegister(RC);
7492   Register OldVal        = MRI.createVirtualRegister(RC);
7493   Register NewVal        = (BinOpcode || IsSubWord ?
7494                             MRI.createVirtualRegister(RC) : Src2.getReg());
7495   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7496   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7497 
7498   // Insert a basic block for the main loop.
7499   MachineBasicBlock *StartMBB = MBB;
7500   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7501   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7502 
7503   //  StartMBB:
7504   //   ...
7505   //   %OrigVal = L Disp(%Base)
7506   //   # fall through to LoopMBB
7507   MBB = StartMBB;
7508   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7509   MBB->addSuccessor(LoopMBB);
7510 
7511   //  LoopMBB:
7512   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7513   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7514   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7515   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7516   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7517   //   JNE LoopMBB
7518   //   # fall through to DoneMBB
7519   MBB = LoopMBB;
7520   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7521     .addReg(OrigVal).addMBB(StartMBB)
7522     .addReg(Dest).addMBB(LoopMBB);
7523   if (IsSubWord)
7524     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7525       .addReg(OldVal).addReg(BitShift).addImm(0);
7526   if (Invert) {
7527     // Perform the operation normally and then invert every bit of the field.
7528     Register Tmp = MRI.createVirtualRegister(RC);
7529     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7530     if (BitSize <= 32)
7531       // XILF with the upper BitSize bits set.
7532       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7533         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7534     else {
7535       // Use LCGR and add -1 to the result, which is more compact than
7536       // an XILF, XILH pair.
7537       Register Tmp2 = MRI.createVirtualRegister(RC);
7538       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7539       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7540         .addReg(Tmp2).addImm(-1);
7541     }
7542   } else if (BinOpcode)
7543     // A simply binary operation.
7544     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7545         .addReg(RotatedOldVal)
7546         .add(Src2);
7547   else if (IsSubWord)
7548     // Use RISBG to rotate Src2 into position and use it to replace the
7549     // field in RotatedOldVal.
7550     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7551       .addReg(RotatedOldVal).addReg(Src2.getReg())
7552       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7553   if (IsSubWord)
7554     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7555       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7556   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7557       .addReg(OldVal)
7558       .addReg(NewVal)
7559       .add(Base)
7560       .addImm(Disp);
7561   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7562     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7563   MBB->addSuccessor(LoopMBB);
7564   MBB->addSuccessor(DoneMBB);
7565 
7566   MI.eraseFromParent();
7567   return DoneMBB;
7568 }
7569 
7570 // Implement EmitInstrWithCustomInserter for pseudo
7571 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7572 // instruction that should be used to compare the current field with the
7573 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7574 // for when the current field should be kept.  BitSize is the width of
7575 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7576 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7577     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7578     unsigned KeepOldMask, unsigned BitSize) const {
7579   MachineFunction &MF = *MBB->getParent();
7580   const SystemZInstrInfo *TII =
7581       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7582   MachineRegisterInfo &MRI = MF.getRegInfo();
7583   bool IsSubWord = (BitSize < 32);
7584 
7585   // Extract the operands.  Base can be a register or a frame index.
7586   Register Dest = MI.getOperand(0).getReg();
7587   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7588   int64_t Disp = MI.getOperand(2).getImm();
7589   Register Src2 = MI.getOperand(3).getReg();
7590   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7591   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7592   DebugLoc DL = MI.getDebugLoc();
7593   if (IsSubWord)
7594     BitSize = MI.getOperand(6).getImm();
7595 
7596   // Subword operations use 32-bit registers.
7597   const TargetRegisterClass *RC = (BitSize <= 32 ?
7598                                    &SystemZ::GR32BitRegClass :
7599                                    &SystemZ::GR64BitRegClass);
7600   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7601   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7602 
7603   // Get the right opcodes for the displacement.
7604   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7605   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7606   assert(LOpcode && CSOpcode && "Displacement out of range");
7607 
7608   // Create virtual registers for temporary results.
7609   Register OrigVal       = MRI.createVirtualRegister(RC);
7610   Register OldVal        = MRI.createVirtualRegister(RC);
7611   Register NewVal        = MRI.createVirtualRegister(RC);
7612   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7613   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7614   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7615 
7616   // Insert 3 basic blocks for the loop.
7617   MachineBasicBlock *StartMBB  = MBB;
7618   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7619   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7620   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7621   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7622 
7623   //  StartMBB:
7624   //   ...
7625   //   %OrigVal     = L Disp(%Base)
7626   //   # fall through to LoopMBB
7627   MBB = StartMBB;
7628   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7629   MBB->addSuccessor(LoopMBB);
7630 
7631   //  LoopMBB:
7632   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7633   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7634   //   CompareOpcode %RotatedOldVal, %Src2
7635   //   BRC KeepOldMask, UpdateMBB
7636   MBB = LoopMBB;
7637   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7638     .addReg(OrigVal).addMBB(StartMBB)
7639     .addReg(Dest).addMBB(UpdateMBB);
7640   if (IsSubWord)
7641     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7642       .addReg(OldVal).addReg(BitShift).addImm(0);
7643   BuildMI(MBB, DL, TII->get(CompareOpcode))
7644     .addReg(RotatedOldVal).addReg(Src2);
7645   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7646     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7647   MBB->addSuccessor(UpdateMBB);
7648   MBB->addSuccessor(UseAltMBB);
7649 
7650   //  UseAltMBB:
7651   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7652   //   # fall through to UpdateMBB
7653   MBB = UseAltMBB;
7654   if (IsSubWord)
7655     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7656       .addReg(RotatedOldVal).addReg(Src2)
7657       .addImm(32).addImm(31 + BitSize).addImm(0);
7658   MBB->addSuccessor(UpdateMBB);
7659 
7660   //  UpdateMBB:
7661   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7662   //                        [ %RotatedAltVal, UseAltMBB ]
7663   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7664   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7665   //   JNE LoopMBB
7666   //   # fall through to DoneMBB
7667   MBB = UpdateMBB;
7668   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7669     .addReg(RotatedOldVal).addMBB(LoopMBB)
7670     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7671   if (IsSubWord)
7672     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7673       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7674   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7675       .addReg(OldVal)
7676       .addReg(NewVal)
7677       .add(Base)
7678       .addImm(Disp);
7679   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7680     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7681   MBB->addSuccessor(LoopMBB);
7682   MBB->addSuccessor(DoneMBB);
7683 
7684   MI.eraseFromParent();
7685   return DoneMBB;
7686 }
7687 
7688 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7689 // instruction MI.
7690 MachineBasicBlock *
7691 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7692                                           MachineBasicBlock *MBB) const {
7693   MachineFunction &MF = *MBB->getParent();
7694   const SystemZInstrInfo *TII =
7695       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7696   MachineRegisterInfo &MRI = MF.getRegInfo();
7697 
7698   // Extract the operands.  Base can be a register or a frame index.
7699   Register Dest = MI.getOperand(0).getReg();
7700   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7701   int64_t Disp = MI.getOperand(2).getImm();
7702   Register CmpVal = MI.getOperand(3).getReg();
7703   Register OrigSwapVal = MI.getOperand(4).getReg();
7704   Register BitShift = MI.getOperand(5).getReg();
7705   Register NegBitShift = MI.getOperand(6).getReg();
7706   int64_t BitSize = MI.getOperand(7).getImm();
7707   DebugLoc DL = MI.getDebugLoc();
7708 
7709   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7710 
7711   // Get the right opcodes for the displacement and zero-extension.
7712   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7713   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7714   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7715   assert(LOpcode && CSOpcode && "Displacement out of range");
7716 
7717   // Create virtual registers for temporary results.
7718   Register OrigOldVal = MRI.createVirtualRegister(RC);
7719   Register OldVal = MRI.createVirtualRegister(RC);
7720   Register SwapVal = MRI.createVirtualRegister(RC);
7721   Register StoreVal = MRI.createVirtualRegister(RC);
7722   Register OldValRot = MRI.createVirtualRegister(RC);
7723   Register RetryOldVal = MRI.createVirtualRegister(RC);
7724   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7725 
7726   // Insert 2 basic blocks for the loop.
7727   MachineBasicBlock *StartMBB = MBB;
7728   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7729   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7730   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7731 
7732   //  StartMBB:
7733   //   ...
7734   //   %OrigOldVal     = L Disp(%Base)
7735   //   # fall through to LoopMBB
7736   MBB = StartMBB;
7737   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7738       .add(Base)
7739       .addImm(Disp)
7740       .addReg(0);
7741   MBB->addSuccessor(LoopMBB);
7742 
7743   //  LoopMBB:
7744   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7745   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7746   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
7747   //                      ^^ The low BitSize bits contain the field
7748   //                         of interest.
7749   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7750   //                      ^^ Replace the upper 32-BitSize bits of the
7751   //                         swap value with those that we loaded and rotated.
7752   //   %Dest = LL[CH] %OldValRot
7753   //   CR %Dest, %CmpVal
7754   //   JNE DoneMBB
7755   //   # Fall through to SetMBB
7756   MBB = LoopMBB;
7757   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7758     .addReg(OrigOldVal).addMBB(StartMBB)
7759     .addReg(RetryOldVal).addMBB(SetMBB);
7760   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7761     .addReg(OrigSwapVal).addMBB(StartMBB)
7762     .addReg(RetrySwapVal).addMBB(SetMBB);
7763   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7764     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7765   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7766     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7767   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7768     .addReg(OldValRot);
7769   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7770     .addReg(Dest).addReg(CmpVal);
7771   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7772     .addImm(SystemZ::CCMASK_ICMP)
7773     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7774   MBB->addSuccessor(DoneMBB);
7775   MBB->addSuccessor(SetMBB);
7776 
7777   //  SetMBB:
7778   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7779   //                      ^^ Rotate the new field to its proper position.
7780   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
7781   //   JNE LoopMBB
7782   //   # fall through to ExitMBB
7783   MBB = SetMBB;
7784   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7785     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7786   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7787       .addReg(OldVal)
7788       .addReg(StoreVal)
7789       .add(Base)
7790       .addImm(Disp);
7791   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7792     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7793   MBB->addSuccessor(LoopMBB);
7794   MBB->addSuccessor(DoneMBB);
7795 
7796   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7797   // to the block after the loop.  At this point, CC may have been defined
7798   // either by the CR in LoopMBB or by the CS in SetMBB.
7799   if (!MI.registerDefIsDead(SystemZ::CC))
7800     DoneMBB->addLiveIn(SystemZ::CC);
7801 
7802   MI.eraseFromParent();
7803   return DoneMBB;
7804 }
7805 
7806 // Emit a move from two GR64s to a GR128.
7807 MachineBasicBlock *
7808 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7809                                    MachineBasicBlock *MBB) const {
7810   MachineFunction &MF = *MBB->getParent();
7811   const SystemZInstrInfo *TII =
7812       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7813   MachineRegisterInfo &MRI = MF.getRegInfo();
7814   DebugLoc DL = MI.getDebugLoc();
7815 
7816   Register Dest = MI.getOperand(0).getReg();
7817   Register Hi = MI.getOperand(1).getReg();
7818   Register Lo = MI.getOperand(2).getReg();
7819   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7820   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7821 
7822   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7823   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7824     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7825   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7826     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7827 
7828   MI.eraseFromParent();
7829   return MBB;
7830 }
7831 
7832 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7833 // if the high register of the GR128 value must be cleared or false if
7834 // it's "don't care".
7835 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7836                                                      MachineBasicBlock *MBB,
7837                                                      bool ClearEven) const {
7838   MachineFunction &MF = *MBB->getParent();
7839   const SystemZInstrInfo *TII =
7840       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7841   MachineRegisterInfo &MRI = MF.getRegInfo();
7842   DebugLoc DL = MI.getDebugLoc();
7843 
7844   Register Dest = MI.getOperand(0).getReg();
7845   Register Src = MI.getOperand(1).getReg();
7846   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7847 
7848   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7849   if (ClearEven) {
7850     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7851     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7852 
7853     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7854       .addImm(0);
7855     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7856       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7857     In128 = NewIn128;
7858   }
7859   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7860     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7861 
7862   MI.eraseFromParent();
7863   return MBB;
7864 }
7865 
7866 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7867     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7868   MachineFunction &MF = *MBB->getParent();
7869   const SystemZInstrInfo *TII =
7870       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7871   MachineRegisterInfo &MRI = MF.getRegInfo();
7872   DebugLoc DL = MI.getDebugLoc();
7873 
7874   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7875   uint64_t DestDisp = MI.getOperand(1).getImm();
7876   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7877   uint64_t SrcDisp = MI.getOperand(3).getImm();
7878   MachineOperand &LengthMO = MI.getOperand(4);
7879   bool IsImmForm = LengthMO.isImm();
7880   bool IsRegForm = !IsImmForm;
7881 
7882   bool NeedsLoop = false;
7883   uint64_t ImmLength = 0;
7884   Register LenMinus1Reg = SystemZ::NoRegister;
7885   if (IsImmForm) {
7886     ImmLength = LengthMO.getImm();
7887     ImmLength++; // Add back the '1' subtracted originally.
7888     if (ImmLength == 0) {
7889       MI.eraseFromParent();
7890       return MBB;
7891     }
7892     if (Opcode == SystemZ::CLC) {
7893       if (ImmLength > 3 * 256)
7894         // A two-CLC sequence is a clear win over a loop, not least because
7895         // it needs only one branch.  A three-CLC sequence needs the same
7896         // number of branches as a loop (i.e. 2), but is shorter.  That
7897         // brings us to lengths greater than 768 bytes.  It seems relatively
7898         // likely that a difference will be found within the first 768 bytes,
7899         // so we just optimize for the smallest number of branch
7900         // instructions, in order to avoid polluting the prediction buffer
7901         // too much.
7902         NeedsLoop = true;
7903     } else if (ImmLength > 6 * 256)
7904       // The heuristic we use is to prefer loops for anything that would
7905       // require 7 or more MVCs.  With these kinds of sizes there isn't much
7906       // to choose between straight-line code and looping code, since the
7907       // time will be dominated by the MVCs themselves.
7908       NeedsLoop = true;
7909   } else {
7910     NeedsLoop = true;
7911     LenMinus1Reg = LengthMO.getReg();
7912   }
7913 
7914   // When generating more than one CLC, all but the last will need to
7915   // branch to the end when a difference is found.
7916   MachineBasicBlock *EndMBB =
7917       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
7918            ? SystemZ::splitBlockAfter(MI, MBB)
7919            : nullptr);
7920 
7921   if (NeedsLoop) {
7922     Register StartCountReg =
7923       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7924     if (IsImmForm) {
7925       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
7926       ImmLength &= 255;
7927     } else {
7928       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
7929         .addReg(LenMinus1Reg)
7930         .addReg(0)
7931         .addImm(8);
7932     }
7933 
7934     auto loadZeroAddress = [&]() -> MachineOperand {
7935       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7936       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
7937       return MachineOperand::CreateReg(Reg, false);
7938     };
7939     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7940     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
7941       DestBase = loadZeroAddress();
7942     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
7943       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
7944 
7945     MachineBasicBlock *StartMBB = nullptr;
7946     MachineBasicBlock *LoopMBB = nullptr;
7947     MachineBasicBlock *NextMBB = nullptr;
7948     MachineBasicBlock *DoneMBB = nullptr;
7949     MachineBasicBlock *AllDoneMBB = nullptr;
7950 
7951     Register StartSrcReg = forceReg(MI, SrcBase, TII);
7952     Register StartDestReg =
7953         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
7954 
7955     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7956     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7957     Register ThisDestReg =
7958         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
7959     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7960     Register NextDestReg =
7961         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
7962     RC = &SystemZ::GR64BitRegClass;
7963     Register ThisCountReg = MRI.createVirtualRegister(RC);
7964     Register NextCountReg = MRI.createVirtualRegister(RC);
7965 
7966     if (IsRegForm) {
7967       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7968       StartMBB = SystemZ::emitBlockAfter(MBB);
7969       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7970       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7971       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
7972 
7973       //  MBB:
7974       //   # Jump to AllDoneMBB if LenMinus1Reg is -1, or fall thru to StartMBB.
7975       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7976         .addReg(LenMinus1Reg).addImm(-1);
7977       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7978         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7979         .addMBB(AllDoneMBB);
7980       MBB->addSuccessor(AllDoneMBB);
7981       MBB->addSuccessor(StartMBB);
7982 
7983       // StartMBB:
7984       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
7985       MBB = StartMBB;
7986       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7987         .addReg(StartCountReg).addImm(0);
7988       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7989         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7990         .addMBB(DoneMBB);
7991       MBB->addSuccessor(DoneMBB);
7992       MBB->addSuccessor(LoopMBB);
7993     }
7994     else {
7995       StartMBB = MBB;
7996       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7997       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7998       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7999 
8000       //  StartMBB:
8001       //   # fall through to LoopMBB
8002       MBB->addSuccessor(LoopMBB);
8003 
8004       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8005       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8006       if (EndMBB && !ImmLength)
8007         // If the loop handled the whole CLC range, DoneMBB will be empty with
8008         // CC live-through into EndMBB, so add it as live-in.
8009         DoneMBB->addLiveIn(SystemZ::CC);
8010     }
8011 
8012     //  LoopMBB:
8013     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8014     //                      [ %NextDestReg, NextMBB ]
8015     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8016     //                     [ %NextSrcReg, NextMBB ]
8017     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8018     //                       [ %NextCountReg, NextMBB ]
8019     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8020     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8021     //   ( JLH EndMBB )
8022     //
8023     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8024     MBB = LoopMBB;
8025     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8026       .addReg(StartDestReg).addMBB(StartMBB)
8027       .addReg(NextDestReg).addMBB(NextMBB);
8028     if (!HaveSingleBase)
8029       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8030         .addReg(StartSrcReg).addMBB(StartMBB)
8031         .addReg(NextSrcReg).addMBB(NextMBB);
8032     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8033       .addReg(StartCountReg).addMBB(StartMBB)
8034       .addReg(NextCountReg).addMBB(NextMBB);
8035     if (Opcode == SystemZ::MVC)
8036       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8037         .addImm(SystemZ::PFD_WRITE)
8038         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
8039     BuildMI(MBB, DL, TII->get(Opcode))
8040       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
8041       .addReg(ThisSrcReg).addImm(SrcDisp);
8042     if (EndMBB) {
8043       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8044         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8045         .addMBB(EndMBB);
8046       MBB->addSuccessor(EndMBB);
8047       MBB->addSuccessor(NextMBB);
8048     }
8049 
8050     // NextMBB:
8051     //   %NextDestReg = LA 256(%ThisDestReg)
8052     //   %NextSrcReg = LA 256(%ThisSrcReg)
8053     //   %NextCountReg = AGHI %ThisCountReg, -1
8054     //   CGHI %NextCountReg, 0
8055     //   JLH LoopMBB
8056     //   # fall through to DoneMBB
8057     //
8058     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8059     MBB = NextMBB;
8060     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8061       .addReg(ThisDestReg).addImm(256).addReg(0);
8062     if (!HaveSingleBase)
8063       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8064         .addReg(ThisSrcReg).addImm(256).addReg(0);
8065     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8066       .addReg(ThisCountReg).addImm(-1);
8067     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8068       .addReg(NextCountReg).addImm(0);
8069     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8070       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8071       .addMBB(LoopMBB);
8072     MBB->addSuccessor(LoopMBB);
8073     MBB->addSuccessor(DoneMBB);
8074 
8075     MBB = DoneMBB;
8076     if (IsRegForm) {
8077       // DoneMBB:
8078       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8079       // # Use EXecute Relative Long for the remainder of the bytes. The target
8080       //   instruction of the EXRL will have a length field of 1 since 0 is an
8081       //   illegal value. The number of bytes processed becomes (%LenMinus1Reg &
8082       //   0xff) + 1.
8083       // # Fall through to AllDoneMBB.
8084       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8085       Register RemDestReg = HaveSingleBase ? RemSrcReg
8086         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8087       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8088         .addReg(StartDestReg).addMBB(StartMBB)
8089         .addReg(NextDestReg).addMBB(NextMBB);
8090       if (!HaveSingleBase)
8091         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8092           .addReg(StartSrcReg).addMBB(StartMBB)
8093           .addReg(NextSrcReg).addMBB(NextMBB);
8094       MachineInstrBuilder EXRL_MIB =
8095         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8096           .addImm(Opcode)
8097           .addReg(LenMinus1Reg)
8098           .addReg(RemDestReg).addImm(DestDisp)
8099           .addReg(RemSrcReg).addImm(SrcDisp);
8100       MBB->addSuccessor(AllDoneMBB);
8101       MBB = AllDoneMBB;
8102       if (EndMBB) {
8103         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8104         MBB->addLiveIn(SystemZ::CC);
8105       }
8106     }
8107   }
8108 
8109   // Handle any remaining bytes with straight-line code.
8110   while (ImmLength > 0) {
8111     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8112     // The previous iteration might have created out-of-range displacements.
8113     // Apply them using LAY if so.
8114     if (!isUInt<12>(DestDisp)) {
8115       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8116       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
8117           .add(DestBase)
8118           .addImm(DestDisp)
8119           .addReg(0);
8120       DestBase = MachineOperand::CreateReg(Reg, false);
8121       DestDisp = 0;
8122     }
8123     if (!isUInt<12>(SrcDisp)) {
8124       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8125       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
8126           .add(SrcBase)
8127           .addImm(SrcDisp)
8128           .addReg(0);
8129       SrcBase = MachineOperand::CreateReg(Reg, false);
8130       SrcDisp = 0;
8131     }
8132     BuildMI(*MBB, MI, DL, TII->get(Opcode))
8133         .add(DestBase)
8134         .addImm(DestDisp)
8135         .addImm(ThisLength)
8136         .add(SrcBase)
8137         .addImm(SrcDisp)
8138         .setMemRefs(MI.memoperands());
8139     DestDisp += ThisLength;
8140     SrcDisp += ThisLength;
8141     ImmLength -= ThisLength;
8142     // If there's another CLC to go, branch to the end if a difference
8143     // was found.
8144     if (EndMBB && ImmLength > 0) {
8145       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8146       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8147         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8148         .addMBB(EndMBB);
8149       MBB->addSuccessor(EndMBB);
8150       MBB->addSuccessor(NextMBB);
8151       MBB = NextMBB;
8152     }
8153   }
8154   if (EndMBB) {
8155     MBB->addSuccessor(EndMBB);
8156     MBB = EndMBB;
8157     MBB->addLiveIn(SystemZ::CC);
8158   }
8159 
8160   MI.eraseFromParent();
8161   return MBB;
8162 }
8163 
8164 // Decompose string pseudo-instruction MI into a loop that continually performs
8165 // Opcode until CC != 3.
8166 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8167     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8168   MachineFunction &MF = *MBB->getParent();
8169   const SystemZInstrInfo *TII =
8170       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8171   MachineRegisterInfo &MRI = MF.getRegInfo();
8172   DebugLoc DL = MI.getDebugLoc();
8173 
8174   uint64_t End1Reg = MI.getOperand(0).getReg();
8175   uint64_t Start1Reg = MI.getOperand(1).getReg();
8176   uint64_t Start2Reg = MI.getOperand(2).getReg();
8177   uint64_t CharReg = MI.getOperand(3).getReg();
8178 
8179   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8180   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8181   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8182   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8183 
8184   MachineBasicBlock *StartMBB = MBB;
8185   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8186   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8187 
8188   //  StartMBB:
8189   //   # fall through to LoopMBB
8190   MBB->addSuccessor(LoopMBB);
8191 
8192   //  LoopMBB:
8193   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8194   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8195   //   R0L = %CharReg
8196   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8197   //   JO LoopMBB
8198   //   # fall through to DoneMBB
8199   //
8200   // The load of R0L can be hoisted by post-RA LICM.
8201   MBB = LoopMBB;
8202 
8203   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8204     .addReg(Start1Reg).addMBB(StartMBB)
8205     .addReg(End1Reg).addMBB(LoopMBB);
8206   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8207     .addReg(Start2Reg).addMBB(StartMBB)
8208     .addReg(End2Reg).addMBB(LoopMBB);
8209   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8210   BuildMI(MBB, DL, TII->get(Opcode))
8211     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8212     .addReg(This1Reg).addReg(This2Reg);
8213   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8214     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8215   MBB->addSuccessor(LoopMBB);
8216   MBB->addSuccessor(DoneMBB);
8217 
8218   DoneMBB->addLiveIn(SystemZ::CC);
8219 
8220   MI.eraseFromParent();
8221   return DoneMBB;
8222 }
8223 
8224 // Update TBEGIN instruction with final opcode and register clobbers.
8225 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8226     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8227     bool NoFloat) const {
8228   MachineFunction &MF = *MBB->getParent();
8229   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8230   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8231 
8232   // Update opcode.
8233   MI.setDesc(TII->get(Opcode));
8234 
8235   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8236   // Make sure to add the corresponding GRSM bits if they are missing.
8237   uint64_t Control = MI.getOperand(2).getImm();
8238   static const unsigned GPRControlBit[16] = {
8239     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8240     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8241   };
8242   Control |= GPRControlBit[15];
8243   if (TFI->hasFP(MF))
8244     Control |= GPRControlBit[11];
8245   MI.getOperand(2).setImm(Control);
8246 
8247   // Add GPR clobbers.
8248   for (int I = 0; I < 16; I++) {
8249     if ((Control & GPRControlBit[I]) == 0) {
8250       unsigned Reg = SystemZMC::GR64Regs[I];
8251       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8252     }
8253   }
8254 
8255   // Add FPR/VR clobbers.
8256   if (!NoFloat && (Control & 4) != 0) {
8257     if (Subtarget.hasVector()) {
8258       for (int I = 0; I < 32; I++) {
8259         unsigned Reg = SystemZMC::VR128Regs[I];
8260         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8261       }
8262     } else {
8263       for (int I = 0; I < 16; I++) {
8264         unsigned Reg = SystemZMC::FP64Regs[I];
8265         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8266       }
8267     }
8268   }
8269 
8270   return MBB;
8271 }
8272 
8273 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8274     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8275   MachineFunction &MF = *MBB->getParent();
8276   MachineRegisterInfo *MRI = &MF.getRegInfo();
8277   const SystemZInstrInfo *TII =
8278       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8279   DebugLoc DL = MI.getDebugLoc();
8280 
8281   Register SrcReg = MI.getOperand(0).getReg();
8282 
8283   // Create new virtual register of the same class as source.
8284   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8285   Register DstReg = MRI->createVirtualRegister(RC);
8286 
8287   // Replace pseudo with a normal load-and-test that models the def as
8288   // well.
8289   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8290     .addReg(SrcReg)
8291     .setMIFlags(MI.getFlags());
8292   MI.eraseFromParent();
8293 
8294   return MBB;
8295 }
8296 
8297 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8298     MachineInstr &MI, MachineBasicBlock *MBB) const {
8299   MachineFunction &MF = *MBB->getParent();
8300   MachineRegisterInfo *MRI = &MF.getRegInfo();
8301   const SystemZInstrInfo *TII =
8302       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8303   DebugLoc DL = MI.getDebugLoc();
8304   const unsigned ProbeSize = getStackProbeSize(MF);
8305   Register DstReg = MI.getOperand(0).getReg();
8306   Register SizeReg = MI.getOperand(2).getReg();
8307 
8308   MachineBasicBlock *StartMBB = MBB;
8309   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8310   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8311   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8312   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8313   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8314 
8315   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8316     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8317 
8318   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8319   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8320 
8321   //  LoopTestMBB
8322   //  BRC TailTestMBB
8323   //  # fallthrough to LoopBodyMBB
8324   StartMBB->addSuccessor(LoopTestMBB);
8325   MBB = LoopTestMBB;
8326   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8327     .addReg(SizeReg)
8328     .addMBB(StartMBB)
8329     .addReg(IncReg)
8330     .addMBB(LoopBodyMBB);
8331   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8332     .addReg(PHIReg)
8333     .addImm(ProbeSize);
8334   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8335     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8336     .addMBB(TailTestMBB);
8337   MBB->addSuccessor(LoopBodyMBB);
8338   MBB->addSuccessor(TailTestMBB);
8339 
8340   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8341   //  J LoopTestMBB
8342   MBB = LoopBodyMBB;
8343   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8344     .addReg(PHIReg)
8345     .addImm(ProbeSize);
8346   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8347     .addReg(SystemZ::R15D)
8348     .addImm(ProbeSize);
8349   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8350     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8351     .setMemRefs(VolLdMMO);
8352   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8353   MBB->addSuccessor(LoopTestMBB);
8354 
8355   //  TailTestMBB
8356   //  BRC DoneMBB
8357   //  # fallthrough to TailMBB
8358   MBB = TailTestMBB;
8359   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8360     .addReg(PHIReg)
8361     .addImm(0);
8362   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8363     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8364     .addMBB(DoneMBB);
8365   MBB->addSuccessor(TailMBB);
8366   MBB->addSuccessor(DoneMBB);
8367 
8368   //  TailMBB
8369   //  # fallthrough to DoneMBB
8370   MBB = TailMBB;
8371   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8372     .addReg(SystemZ::R15D)
8373     .addReg(PHIReg);
8374   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8375     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8376     .setMemRefs(VolLdMMO);
8377   MBB->addSuccessor(DoneMBB);
8378 
8379   //  DoneMBB
8380   MBB = DoneMBB;
8381   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8382     .addReg(SystemZ::R15D);
8383 
8384   MI.eraseFromParent();
8385   return DoneMBB;
8386 }
8387 
8388 SDValue SystemZTargetLowering::
8389 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8390   MachineFunction &MF = DAG.getMachineFunction();
8391   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8392   SDLoc DL(SP);
8393   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8394                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8395 }
8396 
8397 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8398     MachineInstr &MI, MachineBasicBlock *MBB) const {
8399   switch (MI.getOpcode()) {
8400   case SystemZ::Select32:
8401   case SystemZ::Select64:
8402   case SystemZ::SelectF32:
8403   case SystemZ::SelectF64:
8404   case SystemZ::SelectF128:
8405   case SystemZ::SelectVR32:
8406   case SystemZ::SelectVR64:
8407   case SystemZ::SelectVR128:
8408     return emitSelect(MI, MBB);
8409 
8410   case SystemZ::CondStore8Mux:
8411     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8412   case SystemZ::CondStore8MuxInv:
8413     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8414   case SystemZ::CondStore16Mux:
8415     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8416   case SystemZ::CondStore16MuxInv:
8417     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8418   case SystemZ::CondStore32Mux:
8419     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8420   case SystemZ::CondStore32MuxInv:
8421     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8422   case SystemZ::CondStore8:
8423     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8424   case SystemZ::CondStore8Inv:
8425     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8426   case SystemZ::CondStore16:
8427     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8428   case SystemZ::CondStore16Inv:
8429     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8430   case SystemZ::CondStore32:
8431     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8432   case SystemZ::CondStore32Inv:
8433     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8434   case SystemZ::CondStore64:
8435     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8436   case SystemZ::CondStore64Inv:
8437     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8438   case SystemZ::CondStoreF32:
8439     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8440   case SystemZ::CondStoreF32Inv:
8441     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8442   case SystemZ::CondStoreF64:
8443     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8444   case SystemZ::CondStoreF64Inv:
8445     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8446 
8447   case SystemZ::PAIR128:
8448     return emitPair128(MI, MBB);
8449   case SystemZ::AEXT128:
8450     return emitExt128(MI, MBB, false);
8451   case SystemZ::ZEXT128:
8452     return emitExt128(MI, MBB, true);
8453 
8454   case SystemZ::ATOMIC_SWAPW:
8455     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8456   case SystemZ::ATOMIC_SWAP_32:
8457     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8458   case SystemZ::ATOMIC_SWAP_64:
8459     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8460 
8461   case SystemZ::ATOMIC_LOADW_AR:
8462     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8463   case SystemZ::ATOMIC_LOADW_AFI:
8464     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8465   case SystemZ::ATOMIC_LOAD_AR:
8466     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8467   case SystemZ::ATOMIC_LOAD_AHI:
8468     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8469   case SystemZ::ATOMIC_LOAD_AFI:
8470     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8471   case SystemZ::ATOMIC_LOAD_AGR:
8472     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8473   case SystemZ::ATOMIC_LOAD_AGHI:
8474     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8475   case SystemZ::ATOMIC_LOAD_AGFI:
8476     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8477 
8478   case SystemZ::ATOMIC_LOADW_SR:
8479     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8480   case SystemZ::ATOMIC_LOAD_SR:
8481     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8482   case SystemZ::ATOMIC_LOAD_SGR:
8483     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8484 
8485   case SystemZ::ATOMIC_LOADW_NR:
8486     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8487   case SystemZ::ATOMIC_LOADW_NILH:
8488     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8489   case SystemZ::ATOMIC_LOAD_NR:
8490     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8491   case SystemZ::ATOMIC_LOAD_NILL:
8492     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8493   case SystemZ::ATOMIC_LOAD_NILH:
8494     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8495   case SystemZ::ATOMIC_LOAD_NILF:
8496     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8497   case SystemZ::ATOMIC_LOAD_NGR:
8498     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8499   case SystemZ::ATOMIC_LOAD_NILL64:
8500     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8501   case SystemZ::ATOMIC_LOAD_NILH64:
8502     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8503   case SystemZ::ATOMIC_LOAD_NIHL64:
8504     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8505   case SystemZ::ATOMIC_LOAD_NIHH64:
8506     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8507   case SystemZ::ATOMIC_LOAD_NILF64:
8508     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8509   case SystemZ::ATOMIC_LOAD_NIHF64:
8510     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8511 
8512   case SystemZ::ATOMIC_LOADW_OR:
8513     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8514   case SystemZ::ATOMIC_LOADW_OILH:
8515     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8516   case SystemZ::ATOMIC_LOAD_OR:
8517     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8518   case SystemZ::ATOMIC_LOAD_OILL:
8519     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8520   case SystemZ::ATOMIC_LOAD_OILH:
8521     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8522   case SystemZ::ATOMIC_LOAD_OILF:
8523     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8524   case SystemZ::ATOMIC_LOAD_OGR:
8525     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8526   case SystemZ::ATOMIC_LOAD_OILL64:
8527     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8528   case SystemZ::ATOMIC_LOAD_OILH64:
8529     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8530   case SystemZ::ATOMIC_LOAD_OIHL64:
8531     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8532   case SystemZ::ATOMIC_LOAD_OIHH64:
8533     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8534   case SystemZ::ATOMIC_LOAD_OILF64:
8535     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8536   case SystemZ::ATOMIC_LOAD_OIHF64:
8537     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8538 
8539   case SystemZ::ATOMIC_LOADW_XR:
8540     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8541   case SystemZ::ATOMIC_LOADW_XILF:
8542     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8543   case SystemZ::ATOMIC_LOAD_XR:
8544     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8545   case SystemZ::ATOMIC_LOAD_XILF:
8546     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8547   case SystemZ::ATOMIC_LOAD_XGR:
8548     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8549   case SystemZ::ATOMIC_LOAD_XILF64:
8550     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8551   case SystemZ::ATOMIC_LOAD_XIHF64:
8552     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8553 
8554   case SystemZ::ATOMIC_LOADW_NRi:
8555     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8556   case SystemZ::ATOMIC_LOADW_NILHi:
8557     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8558   case SystemZ::ATOMIC_LOAD_NRi:
8559     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8560   case SystemZ::ATOMIC_LOAD_NILLi:
8561     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8562   case SystemZ::ATOMIC_LOAD_NILHi:
8563     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8564   case SystemZ::ATOMIC_LOAD_NILFi:
8565     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8566   case SystemZ::ATOMIC_LOAD_NGRi:
8567     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8568   case SystemZ::ATOMIC_LOAD_NILL64i:
8569     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8570   case SystemZ::ATOMIC_LOAD_NILH64i:
8571     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8572   case SystemZ::ATOMIC_LOAD_NIHL64i:
8573     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8574   case SystemZ::ATOMIC_LOAD_NIHH64i:
8575     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8576   case SystemZ::ATOMIC_LOAD_NILF64i:
8577     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8578   case SystemZ::ATOMIC_LOAD_NIHF64i:
8579     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8580 
8581   case SystemZ::ATOMIC_LOADW_MIN:
8582     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8583                                 SystemZ::CCMASK_CMP_LE, 0);
8584   case SystemZ::ATOMIC_LOAD_MIN_32:
8585     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8586                                 SystemZ::CCMASK_CMP_LE, 32);
8587   case SystemZ::ATOMIC_LOAD_MIN_64:
8588     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8589                                 SystemZ::CCMASK_CMP_LE, 64);
8590 
8591   case SystemZ::ATOMIC_LOADW_MAX:
8592     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8593                                 SystemZ::CCMASK_CMP_GE, 0);
8594   case SystemZ::ATOMIC_LOAD_MAX_32:
8595     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8596                                 SystemZ::CCMASK_CMP_GE, 32);
8597   case SystemZ::ATOMIC_LOAD_MAX_64:
8598     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8599                                 SystemZ::CCMASK_CMP_GE, 64);
8600 
8601   case SystemZ::ATOMIC_LOADW_UMIN:
8602     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8603                                 SystemZ::CCMASK_CMP_LE, 0);
8604   case SystemZ::ATOMIC_LOAD_UMIN_32:
8605     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8606                                 SystemZ::CCMASK_CMP_LE, 32);
8607   case SystemZ::ATOMIC_LOAD_UMIN_64:
8608     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8609                                 SystemZ::CCMASK_CMP_LE, 64);
8610 
8611   case SystemZ::ATOMIC_LOADW_UMAX:
8612     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8613                                 SystemZ::CCMASK_CMP_GE, 0);
8614   case SystemZ::ATOMIC_LOAD_UMAX_32:
8615     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8616                                 SystemZ::CCMASK_CMP_GE, 32);
8617   case SystemZ::ATOMIC_LOAD_UMAX_64:
8618     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8619                                 SystemZ::CCMASK_CMP_GE, 64);
8620 
8621   case SystemZ::ATOMIC_CMP_SWAPW:
8622     return emitAtomicCmpSwapW(MI, MBB);
8623   case SystemZ::MVCImm:
8624   case SystemZ::MVCReg:
8625     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8626   case SystemZ::NCImm:
8627     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8628   case SystemZ::OCImm:
8629     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8630   case SystemZ::XCImm:
8631   case SystemZ::XCReg:
8632     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8633   case SystemZ::CLCImm:
8634   case SystemZ::CLCReg:
8635     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8636   case SystemZ::CLSTLoop:
8637     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8638   case SystemZ::MVSTLoop:
8639     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8640   case SystemZ::SRSTLoop:
8641     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8642   case SystemZ::TBEGIN:
8643     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8644   case SystemZ::TBEGIN_nofloat:
8645     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8646   case SystemZ::TBEGINC:
8647     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8648   case SystemZ::LTEBRCompare_VecPseudo:
8649     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8650   case SystemZ::LTDBRCompare_VecPseudo:
8651     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8652   case SystemZ::LTXBRCompare_VecPseudo:
8653     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8654 
8655   case SystemZ::PROBED_ALLOCA:
8656     return emitProbedAlloca(MI, MBB);
8657 
8658   case TargetOpcode::STACKMAP:
8659   case TargetOpcode::PATCHPOINT:
8660     return emitPatchPoint(MI, MBB);
8661 
8662   default:
8663     llvm_unreachable("Unexpected instr type to insert");
8664   }
8665 }
8666 
8667 // This is only used by the isel schedulers, and is needed only to prevent
8668 // compiler from crashing when list-ilp is used.
8669 const TargetRegisterClass *
8670 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8671   if (VT == MVT::Untyped)
8672     return &SystemZ::ADDR128BitRegClass;
8673   return TargetLowering::getRepRegClassFor(VT);
8674 }
8675