1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents a sequence for extracting a 0/1 value from an IPM result:
35 // (((X ^ XORValue) + AddValue) >> Bit)
36 struct IPMConversion {
37   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
38     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
39 
40   int64_t XORValue;
41   int64_t AddValue;
42   unsigned Bit;
43 };
44 
45 // Represents information about a comparison.
46 struct Comparison {
47   Comparison(SDValue Op0In, SDValue Op1In)
48     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
49 
50   // The operands to the comparison.
51   SDValue Op0, Op1;
52 
53   // The opcode that should be used to compare Op0 and Op1.
54   unsigned Opcode;
55 
56   // A SystemZICMP value.  Only used for integer comparisons.
57   unsigned ICmpType;
58 
59   // The mask of CC values that Opcode can produce.
60   unsigned CCValid;
61 
62   // The mask of CC values for which the original condition is true.
63   unsigned CCMask;
64 };
65 } // end anonymous namespace
66 
67 // Classify VT as either 32 or 64 bit.
68 static bool is32Bit(EVT VT) {
69   switch (VT.getSimpleVT().SimpleTy) {
70   case MVT::i32:
71     return true;
72   case MVT::i64:
73     return false;
74   default:
75     llvm_unreachable("Unsupported type");
76   }
77 }
78 
79 // Return a version of MachineOperand that can be safely used before the
80 // final use.
81 static MachineOperand earlyUseOperand(MachineOperand Op) {
82   if (Op.isReg())
83     Op.setIsKill(false);
84   return Op;
85 }
86 
87 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
88                                              const SystemZSubtarget &STI)
89     : TargetLowering(TM), Subtarget(STI) {
90   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
91 
92   // Set up the register classes.
93   if (Subtarget.hasHighWord())
94     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
95   else
96     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
97   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
98   if (Subtarget.hasVector()) {
99     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
100     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
101   } else {
102     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
103     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
104   }
105   if (Subtarget.hasVectorEnhancements1())
106     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
107   else
108     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
109 
110   if (Subtarget.hasVector()) {
111     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
112     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
113     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
114     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
115     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
116     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
117   }
118 
119   // Compute derived properties from the register classes
120   computeRegisterProperties(Subtarget.getRegisterInfo());
121 
122   // Set up special registers.
123   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
124 
125   // TODO: It may be better to default to latency-oriented scheduling, however
126   // LLVM's current latency-oriented scheduler can't handle physreg definitions
127   // such as SystemZ has with CC, so set this to the register-pressure
128   // scheduler, because it can.
129   setSchedulingPreference(Sched::RegPressure);
130 
131   setBooleanContents(ZeroOrOneBooleanContent);
132   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
133 
134   // Instructions are strings of 2-byte aligned 2-byte values.
135   setMinFunctionAlignment(2);
136 
137   // Handle operations that are handled in a similar way for all types.
138   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
139        I <= MVT::LAST_FP_VALUETYPE;
140        ++I) {
141     MVT VT = MVT::SimpleValueType(I);
142     if (isTypeLegal(VT)) {
143       // Lower SET_CC into an IPM-based sequence.
144       setOperationAction(ISD::SETCC, VT, Custom);
145 
146       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
147       setOperationAction(ISD::SELECT, VT, Expand);
148 
149       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
150       setOperationAction(ISD::SELECT_CC, VT, Custom);
151       setOperationAction(ISD::BR_CC,     VT, Custom);
152     }
153   }
154 
155   // Expand jump table branches as address arithmetic followed by an
156   // indirect jump.
157   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
158 
159   // Expand BRCOND into a BR_CC (see above).
160   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
161 
162   // Handle integer types.
163   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
164        I <= MVT::LAST_INTEGER_VALUETYPE;
165        ++I) {
166     MVT VT = MVT::SimpleValueType(I);
167     if (isTypeLegal(VT)) {
168       // Expand individual DIV and REMs into DIVREMs.
169       setOperationAction(ISD::SDIV, VT, Expand);
170       setOperationAction(ISD::UDIV, VT, Expand);
171       setOperationAction(ISD::SREM, VT, Expand);
172       setOperationAction(ISD::UREM, VT, Expand);
173       setOperationAction(ISD::SDIVREM, VT, Custom);
174       setOperationAction(ISD::UDIVREM, VT, Custom);
175 
176       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
177       // stores, putting a serialization instruction after the stores.
178       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
179       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
180 
181       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
182       // available, or if the operand is constant.
183       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
184 
185       // Use POPCNT on z196 and above.
186       if (Subtarget.hasPopulationCount())
187         setOperationAction(ISD::CTPOP, VT, Custom);
188       else
189         setOperationAction(ISD::CTPOP, VT, Expand);
190 
191       // No special instructions for these.
192       setOperationAction(ISD::CTTZ,            VT, Expand);
193       setOperationAction(ISD::ROTR,            VT, Expand);
194 
195       // Use *MUL_LOHI where possible instead of MULH*.
196       setOperationAction(ISD::MULHS, VT, Expand);
197       setOperationAction(ISD::MULHU, VT, Expand);
198       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
199       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
200 
201       // Only z196 and above have native support for conversions to unsigned.
202       // On z10, promoting to i64 doesn't generate an inexact condition for
203       // values that are outside the i32 range but in the i64 range, so use
204       // the default expansion.
205       if (!Subtarget.hasFPExtension())
206         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
207     }
208   }
209 
210   // Type legalization will convert 8- and 16-bit atomic operations into
211   // forms that operate on i32s (but still keeping the original memory VT).
212   // Lower them into full i32 operations.
213   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
214   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
215   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
216   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
217   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
218   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
219   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
220   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
221   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
223   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
224 
225   // Even though i128 is not a legal type, we still need to custom lower
226   // the atomic operations in order to exploit SystemZ instructions.
227   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
228   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
229 
230   // We can use the CC result of compare-and-swap to implement
231   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
232   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
233   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
234   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
235 
236   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
237 
238   // Traps are legal, as we will convert them to "j .+2".
239   setOperationAction(ISD::TRAP, MVT::Other, Legal);
240 
241   // z10 has instructions for signed but not unsigned FP conversion.
242   // Handle unsigned 32-bit types as signed 64-bit types.
243   if (!Subtarget.hasFPExtension()) {
244     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
245     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
246   }
247 
248   // We have native support for a 64-bit CTLZ, via FLOGR.
249   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
250   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
251 
252   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
253   setOperationAction(ISD::OR, MVT::i64, Custom);
254 
255   // FIXME: Can we support these natively?
256   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
257   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
258   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
259 
260   // We have native instructions for i8, i16 and i32 extensions, but not i1.
261   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
262   for (MVT VT : MVT::integer_valuetypes()) {
263     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
264     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
265     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
266   }
267 
268   // Handle the various types of symbolic address.
269   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
270   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
271   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
272   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
273   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
274 
275   // We need to handle dynamic allocations specially because of the
276   // 160-byte area at the bottom of the stack.
277   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
278   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
279 
280   // Use custom expanders so that we can force the function to use
281   // a frame pointer.
282   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
283   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
284 
285   // Handle prefetches with PFD or PFDRL.
286   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
287 
288   for (MVT VT : MVT::vector_valuetypes()) {
289     // Assume by default that all vector operations need to be expanded.
290     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
291       if (getOperationAction(Opcode, VT) == Legal)
292         setOperationAction(Opcode, VT, Expand);
293 
294     // Likewise all truncating stores and extending loads.
295     for (MVT InnerVT : MVT::vector_valuetypes()) {
296       setTruncStoreAction(VT, InnerVT, Expand);
297       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
298       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
299       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
300     }
301 
302     if (isTypeLegal(VT)) {
303       // These operations are legal for anything that can be stored in a
304       // vector register, even if there is no native support for the format
305       // as such.  In particular, we can do these for v4f32 even though there
306       // are no specific instructions for that format.
307       setOperationAction(ISD::LOAD, VT, Legal);
308       setOperationAction(ISD::STORE, VT, Legal);
309       setOperationAction(ISD::VSELECT, VT, Legal);
310       setOperationAction(ISD::BITCAST, VT, Legal);
311       setOperationAction(ISD::UNDEF, VT, Legal);
312 
313       // Likewise, except that we need to replace the nodes with something
314       // more specific.
315       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
316       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
317     }
318   }
319 
320   // Handle integer vector types.
321   for (MVT VT : MVT::integer_vector_valuetypes()) {
322     if (isTypeLegal(VT)) {
323       // These operations have direct equivalents.
324       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
325       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
326       setOperationAction(ISD::ADD, VT, Legal);
327       setOperationAction(ISD::SUB, VT, Legal);
328       if (VT != MVT::v2i64)
329         setOperationAction(ISD::MUL, VT, Legal);
330       setOperationAction(ISD::AND, VT, Legal);
331       setOperationAction(ISD::OR, VT, Legal);
332       setOperationAction(ISD::XOR, VT, Legal);
333       if (Subtarget.hasVectorEnhancements1())
334         setOperationAction(ISD::CTPOP, VT, Legal);
335       else
336         setOperationAction(ISD::CTPOP, VT, Custom);
337       setOperationAction(ISD::CTTZ, VT, Legal);
338       setOperationAction(ISD::CTLZ, VT, Legal);
339 
340       // Convert a GPR scalar to a vector by inserting it into element 0.
341       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
342 
343       // Use a series of unpacks for extensions.
344       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
345       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
346 
347       // Detect shifts by a scalar amount and convert them into
348       // V*_BY_SCALAR.
349       setOperationAction(ISD::SHL, VT, Custom);
350       setOperationAction(ISD::SRA, VT, Custom);
351       setOperationAction(ISD::SRL, VT, Custom);
352 
353       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
354       // converted into ROTL.
355       setOperationAction(ISD::ROTL, VT, Expand);
356       setOperationAction(ISD::ROTR, VT, Expand);
357 
358       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
359       // and inverting the result as necessary.
360       setOperationAction(ISD::SETCC, VT, Custom);
361     }
362   }
363 
364   if (Subtarget.hasVector()) {
365     // There should be no need to check for float types other than v2f64
366     // since <2 x f32> isn't a legal type.
367     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
368     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
369     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
370     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
371     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
372     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
373     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
374     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
375   }
376 
377   // Handle floating-point types.
378   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
379        I <= MVT::LAST_FP_VALUETYPE;
380        ++I) {
381     MVT VT = MVT::SimpleValueType(I);
382     if (isTypeLegal(VT)) {
383       // We can use FI for FRINT.
384       setOperationAction(ISD::FRINT, VT, Legal);
385 
386       // We can use the extended form of FI for other rounding operations.
387       if (Subtarget.hasFPExtension()) {
388         setOperationAction(ISD::FNEARBYINT, VT, Legal);
389         setOperationAction(ISD::FFLOOR, VT, Legal);
390         setOperationAction(ISD::FCEIL, VT, Legal);
391         setOperationAction(ISD::FTRUNC, VT, Legal);
392         setOperationAction(ISD::FROUND, VT, Legal);
393       }
394 
395       // No special instructions for these.
396       setOperationAction(ISD::FSIN, VT, Expand);
397       setOperationAction(ISD::FCOS, VT, Expand);
398       setOperationAction(ISD::FSINCOS, VT, Expand);
399       setOperationAction(ISD::FREM, VT, Expand);
400       setOperationAction(ISD::FPOW, VT, Expand);
401     }
402   }
403 
404   // Handle floating-point vector types.
405   if (Subtarget.hasVector()) {
406     // Scalar-to-vector conversion is just a subreg.
407     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
408     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
409 
410     // Some insertions and extractions can be done directly but others
411     // need to go via integers.
412     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
413     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
414     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
415     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
416 
417     // These operations have direct equivalents.
418     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
419     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
420     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
421     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
422     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
423     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
424     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
425     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
426     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
427     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
428     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
429     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
430     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
431     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
432   }
433 
434   // The vector enhancements facility 1 has instructions for these.
435   if (Subtarget.hasVectorEnhancements1()) {
436     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
437     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
438     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
439     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
440     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
441     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
442     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
443     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
444     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
445     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
446     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
447     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
448     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
449     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
450 
451     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
452     setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
453     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
454     setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
455 
456     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
457     setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
458     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
459     setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
460 
461     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
462     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
463     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
464     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
465 
466     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
467     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
468     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
469     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
470 
471     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
472     setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
473     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
474     setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
475   }
476 
477   // We have fused multiply-addition for f32 and f64 but not f128.
478   setOperationAction(ISD::FMA, MVT::f32,  Legal);
479   setOperationAction(ISD::FMA, MVT::f64,  Legal);
480   if (Subtarget.hasVectorEnhancements1())
481     setOperationAction(ISD::FMA, MVT::f128, Legal);
482   else
483     setOperationAction(ISD::FMA, MVT::f128, Expand);
484 
485   // We don't have a copysign instruction on vector registers.
486   if (Subtarget.hasVectorEnhancements1())
487     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
488 
489   // Needed so that we don't try to implement f128 constant loads using
490   // a load-and-extend of a f80 constant (in cases where the constant
491   // would fit in an f80).
492   for (MVT VT : MVT::fp_valuetypes())
493     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
494 
495   // We don't have extending load instruction on vector registers.
496   if (Subtarget.hasVectorEnhancements1()) {
497     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
498     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
499   }
500 
501   // Floating-point truncation and stores need to be done separately.
502   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
503   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
504   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
505 
506   // We have 64-bit FPR<->GPR moves, but need special handling for
507   // 32-bit forms.
508   if (!Subtarget.hasVector()) {
509     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
510     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
511   }
512 
513   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
514   // structure, but VAEND is a no-op.
515   setOperationAction(ISD::VASTART, MVT::Other, Custom);
516   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
517   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
518 
519   // Codes for which we want to perform some z-specific combinations.
520   setTargetDAGCombine(ISD::SIGN_EXTEND);
521   setTargetDAGCombine(ISD::STORE);
522   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
523   setTargetDAGCombine(ISD::FP_ROUND);
524   setTargetDAGCombine(ISD::BSWAP);
525   setTargetDAGCombine(ISD::SHL);
526   setTargetDAGCombine(ISD::SRA);
527   setTargetDAGCombine(ISD::SRL);
528   setTargetDAGCombine(ISD::ROTL);
529 
530   // Handle intrinsics.
531   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
532   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
533 
534   // We want to use MVC in preference to even a single load/store pair.
535   MaxStoresPerMemcpy = 0;
536   MaxStoresPerMemcpyOptSize = 0;
537 
538   // The main memset sequence is a byte store followed by an MVC.
539   // Two STC or MV..I stores win over that, but the kind of fused stores
540   // generated by target-independent code don't when the byte value is
541   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
542   // than "STC;MVC".  Handle the choice in target-specific code instead.
543   MaxStoresPerMemset = 0;
544   MaxStoresPerMemsetOptSize = 0;
545 }
546 
547 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
548                                               LLVMContext &, EVT VT) const {
549   if (!VT.isVector())
550     return MVT::i32;
551   return VT.changeVectorElementTypeToInteger();
552 }
553 
554 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
555   VT = VT.getScalarType();
556 
557   if (!VT.isSimple())
558     return false;
559 
560   switch (VT.getSimpleVT().SimpleTy) {
561   case MVT::f32:
562   case MVT::f64:
563     return true;
564   case MVT::f128:
565     return Subtarget.hasVectorEnhancements1();
566   default:
567     break;
568   }
569 
570   return false;
571 }
572 
573 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
574   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
575   return Imm.isZero() || Imm.isNegZero();
576 }
577 
578 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
579   // We can use CGFI or CLGFI.
580   return isInt<32>(Imm) || isUInt<32>(Imm);
581 }
582 
583 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
584   // We can use ALGFI or SLGFI.
585   return isUInt<32>(Imm) || isUInt<32>(-Imm);
586 }
587 
588 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
589                                                            unsigned,
590                                                            unsigned,
591                                                            bool *Fast) const {
592   // Unaligned accesses should never be slower than the expanded version.
593   // We check specifically for aligned accesses in the few cases where
594   // they are required.
595   if (Fast)
596     *Fast = true;
597   return true;
598 }
599 
600 // Information about the addressing mode for a memory access.
601 struct AddressingMode {
602   // True if a long displacement is supported.
603   bool LongDisplacement;
604 
605   // True if use of index register is supported.
606   bool IndexReg;
607 
608   AddressingMode(bool LongDispl, bool IdxReg) :
609     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
610 };
611 
612 // Return the desired addressing mode for a Load which has only one use (in
613 // the same block) which is a Store.
614 static AddressingMode getLoadStoreAddrMode(bool HasVector,
615                                           Type *Ty) {
616   // With vector support a Load->Store combination may be combined to either
617   // an MVC or vector operations and it seems to work best to allow the
618   // vector addressing mode.
619   if (HasVector)
620     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
621 
622   // Otherwise only the MVC case is special.
623   bool MVC = Ty->isIntegerTy(8);
624   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
625 }
626 
627 // Return the addressing mode which seems most desirable given an LLVM
628 // Instruction pointer.
629 static AddressingMode
630 supportedAddressingMode(Instruction *I, bool HasVector) {
631   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
632     switch (II->getIntrinsicID()) {
633     default: break;
634     case Intrinsic::memset:
635     case Intrinsic::memmove:
636     case Intrinsic::memcpy:
637       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
638     }
639   }
640 
641   if (isa<LoadInst>(I) && I->hasOneUse()) {
642     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
643     if (SingleUser->getParent() == I->getParent()) {
644       if (isa<ICmpInst>(SingleUser)) {
645         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
646           if (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))
647             // Comparison of memory with 16 bit signed / unsigned immediate
648             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
649       } else if (isa<StoreInst>(SingleUser))
650         // Load->Store
651         return getLoadStoreAddrMode(HasVector, I->getType());
652     }
653   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
654     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
655       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
656         // Load->Store
657         return getLoadStoreAddrMode(HasVector, LoadI->getType());
658   }
659 
660   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
661 
662     // * Use LDE instead of LE/LEY for z13 to avoid partial register
663     //   dependencies (LDE only supports small offsets).
664     // * Utilize the vector registers to hold floating point
665     //   values (vector load / store instructions only support small
666     //   offsets).
667 
668     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
669                          I->getOperand(0)->getType());
670     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
671     bool IsVectorAccess = MemAccessTy->isVectorTy();
672 
673     // A store of an extracted vector element will be combined into a VSTE type
674     // instruction.
675     if (!IsVectorAccess && isa<StoreInst>(I)) {
676       Value *DataOp = I->getOperand(0);
677       if (isa<ExtractElementInst>(DataOp))
678         IsVectorAccess = true;
679     }
680 
681     // A load which gets inserted into a vector element will be combined into a
682     // VLE type instruction.
683     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
684       User *LoadUser = *I->user_begin();
685       if (isa<InsertElementInst>(LoadUser))
686         IsVectorAccess = true;
687     }
688 
689     if (IsFPAccess || IsVectorAccess)
690       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
691   }
692 
693   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
694 }
695 
696 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
697        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
698   // Punt on globals for now, although they can be used in limited
699   // RELATIVE LONG cases.
700   if (AM.BaseGV)
701     return false;
702 
703   // Require a 20-bit signed offset.
704   if (!isInt<20>(AM.BaseOffs))
705     return false;
706 
707   AddressingMode SupportedAM(true, true);
708   if (I != nullptr)
709     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
710 
711   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
712     return false;
713 
714   if (!SupportedAM.IndexReg)
715     // No indexing allowed.
716     return AM.Scale == 0;
717   else
718     // Indexing is OK but no scale factor can be applied.
719     return AM.Scale == 0 || AM.Scale == 1;
720 }
721 
722 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
723   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
724     return false;
725   unsigned FromBits = FromType->getPrimitiveSizeInBits();
726   unsigned ToBits = ToType->getPrimitiveSizeInBits();
727   return FromBits > ToBits;
728 }
729 
730 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
731   if (!FromVT.isInteger() || !ToVT.isInteger())
732     return false;
733   unsigned FromBits = FromVT.getSizeInBits();
734   unsigned ToBits = ToVT.getSizeInBits();
735   return FromBits > ToBits;
736 }
737 
738 //===----------------------------------------------------------------------===//
739 // Inline asm support
740 //===----------------------------------------------------------------------===//
741 
742 TargetLowering::ConstraintType
743 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
744   if (Constraint.size() == 1) {
745     switch (Constraint[0]) {
746     case 'a': // Address register
747     case 'd': // Data register (equivalent to 'r')
748     case 'f': // Floating-point register
749     case 'h': // High-part register
750     case 'r': // General-purpose register
751       return C_RegisterClass;
752 
753     case 'Q': // Memory with base and unsigned 12-bit displacement
754     case 'R': // Likewise, plus an index
755     case 'S': // Memory with base and signed 20-bit displacement
756     case 'T': // Likewise, plus an index
757     case 'm': // Equivalent to 'T'.
758       return C_Memory;
759 
760     case 'I': // Unsigned 8-bit constant
761     case 'J': // Unsigned 12-bit constant
762     case 'K': // Signed 16-bit constant
763     case 'L': // Signed 20-bit displacement (on all targets we support)
764     case 'M': // 0x7fffffff
765       return C_Other;
766 
767     default:
768       break;
769     }
770   }
771   return TargetLowering::getConstraintType(Constraint);
772 }
773 
774 TargetLowering::ConstraintWeight SystemZTargetLowering::
775 getSingleConstraintMatchWeight(AsmOperandInfo &info,
776                                const char *constraint) const {
777   ConstraintWeight weight = CW_Invalid;
778   Value *CallOperandVal = info.CallOperandVal;
779   // If we don't have a value, we can't do a match,
780   // but allow it at the lowest weight.
781   if (!CallOperandVal)
782     return CW_Default;
783   Type *type = CallOperandVal->getType();
784   // Look at the constraint type.
785   switch (*constraint) {
786   default:
787     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
788     break;
789 
790   case 'a': // Address register
791   case 'd': // Data register (equivalent to 'r')
792   case 'h': // High-part register
793   case 'r': // General-purpose register
794     if (CallOperandVal->getType()->isIntegerTy())
795       weight = CW_Register;
796     break;
797 
798   case 'f': // Floating-point register
799     if (type->isFloatingPointTy())
800       weight = CW_Register;
801     break;
802 
803   case 'I': // Unsigned 8-bit constant
804     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
805       if (isUInt<8>(C->getZExtValue()))
806         weight = CW_Constant;
807     break;
808 
809   case 'J': // Unsigned 12-bit constant
810     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
811       if (isUInt<12>(C->getZExtValue()))
812         weight = CW_Constant;
813     break;
814 
815   case 'K': // Signed 16-bit constant
816     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
817       if (isInt<16>(C->getSExtValue()))
818         weight = CW_Constant;
819     break;
820 
821   case 'L': // Signed 20-bit displacement (on all targets we support)
822     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
823       if (isInt<20>(C->getSExtValue()))
824         weight = CW_Constant;
825     break;
826 
827   case 'M': // 0x7fffffff
828     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
829       if (C->getZExtValue() == 0x7fffffff)
830         weight = CW_Constant;
831     break;
832   }
833   return weight;
834 }
835 
836 // Parse a "{tNNN}" register constraint for which the register type "t"
837 // has already been verified.  MC is the class associated with "t" and
838 // Map maps 0-based register numbers to LLVM register numbers.
839 static std::pair<unsigned, const TargetRegisterClass *>
840 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
841                     const unsigned *Map) {
842   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
843   if (isdigit(Constraint[2])) {
844     unsigned Index;
845     bool Failed =
846         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
847     if (!Failed && Index < 16 && Map[Index])
848       return std::make_pair(Map[Index], RC);
849   }
850   return std::make_pair(0U, nullptr);
851 }
852 
853 std::pair<unsigned, const TargetRegisterClass *>
854 SystemZTargetLowering::getRegForInlineAsmConstraint(
855     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
856   if (Constraint.size() == 1) {
857     // GCC Constraint Letters
858     switch (Constraint[0]) {
859     default: break;
860     case 'd': // Data register (equivalent to 'r')
861     case 'r': // General-purpose register
862       if (VT == MVT::i64)
863         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
864       else if (VT == MVT::i128)
865         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
866       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
867 
868     case 'a': // Address register
869       if (VT == MVT::i64)
870         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
871       else if (VT == MVT::i128)
872         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
873       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
874 
875     case 'h': // High-part register (an LLVM extension)
876       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
877 
878     case 'f': // Floating-point register
879       if (VT == MVT::f64)
880         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
881       else if (VT == MVT::f128)
882         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
883       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
884     }
885   }
886   if (Constraint.size() > 0 && Constraint[0] == '{') {
887     // We need to override the default register parsing for GPRs and FPRs
888     // because the interpretation depends on VT.  The internal names of
889     // the registers are also different from the external names
890     // (F0D and F0S instead of F0, etc.).
891     if (Constraint[1] == 'r') {
892       if (VT == MVT::i32)
893         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
894                                    SystemZMC::GR32Regs);
895       if (VT == MVT::i128)
896         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
897                                    SystemZMC::GR128Regs);
898       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
899                                  SystemZMC::GR64Regs);
900     }
901     if (Constraint[1] == 'f') {
902       if (VT == MVT::f32)
903         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
904                                    SystemZMC::FP32Regs);
905       if (VT == MVT::f128)
906         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
907                                    SystemZMC::FP128Regs);
908       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
909                                  SystemZMC::FP64Regs);
910     }
911   }
912   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
913 }
914 
915 void SystemZTargetLowering::
916 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
917                              std::vector<SDValue> &Ops,
918                              SelectionDAG &DAG) const {
919   // Only support length 1 constraints for now.
920   if (Constraint.length() == 1) {
921     switch (Constraint[0]) {
922     case 'I': // Unsigned 8-bit constant
923       if (auto *C = dyn_cast<ConstantSDNode>(Op))
924         if (isUInt<8>(C->getZExtValue()))
925           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
926                                               Op.getValueType()));
927       return;
928 
929     case 'J': // Unsigned 12-bit constant
930       if (auto *C = dyn_cast<ConstantSDNode>(Op))
931         if (isUInt<12>(C->getZExtValue()))
932           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
933                                               Op.getValueType()));
934       return;
935 
936     case 'K': // Signed 16-bit constant
937       if (auto *C = dyn_cast<ConstantSDNode>(Op))
938         if (isInt<16>(C->getSExtValue()))
939           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
940                                               Op.getValueType()));
941       return;
942 
943     case 'L': // Signed 20-bit displacement (on all targets we support)
944       if (auto *C = dyn_cast<ConstantSDNode>(Op))
945         if (isInt<20>(C->getSExtValue()))
946           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
947                                               Op.getValueType()));
948       return;
949 
950     case 'M': // 0x7fffffff
951       if (auto *C = dyn_cast<ConstantSDNode>(Op))
952         if (C->getZExtValue() == 0x7fffffff)
953           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
954                                               Op.getValueType()));
955       return;
956     }
957   }
958   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
959 }
960 
961 //===----------------------------------------------------------------------===//
962 // Calling conventions
963 //===----------------------------------------------------------------------===//
964 
965 #include "SystemZGenCallingConv.inc"
966 
967 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
968                                                      Type *ToType) const {
969   return isTruncateFree(FromType, ToType);
970 }
971 
972 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
973   return CI->isTailCall();
974 }
975 
976 // We do not yet support 128-bit single-element vector types.  If the user
977 // attempts to use such types as function argument or return type, prefer
978 // to error out instead of emitting code violating the ABI.
979 static void VerifyVectorType(MVT VT, EVT ArgVT) {
980   if (ArgVT.isVector() && !VT.isVector())
981     report_fatal_error("Unsupported vector argument or return type");
982 }
983 
984 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
985   for (unsigned i = 0; i < Ins.size(); ++i)
986     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
987 }
988 
989 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
990   for (unsigned i = 0; i < Outs.size(); ++i)
991     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
992 }
993 
994 // Value is a value that has been passed to us in the location described by VA
995 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
996 // any loads onto Chain.
997 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
998                                    CCValAssign &VA, SDValue Chain,
999                                    SDValue Value) {
1000   // If the argument has been promoted from a smaller type, insert an
1001   // assertion to capture this.
1002   if (VA.getLocInfo() == CCValAssign::SExt)
1003     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1004                         DAG.getValueType(VA.getValVT()));
1005   else if (VA.getLocInfo() == CCValAssign::ZExt)
1006     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1007                         DAG.getValueType(VA.getValVT()));
1008 
1009   if (VA.isExtInLoc())
1010     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1011   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1012     // If this is a short vector argument loaded from the stack,
1013     // extend from i64 to full vector size and then bitcast.
1014     assert(VA.getLocVT() == MVT::i64);
1015     assert(VA.getValVT().isVector());
1016     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1017     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1018   } else
1019     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1020   return Value;
1021 }
1022 
1023 // Value is a value of type VA.getValVT() that we need to copy into
1024 // the location described by VA.  Return a copy of Value converted to
1025 // VA.getValVT().  The caller is responsible for handling indirect values.
1026 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1027                                    CCValAssign &VA, SDValue Value) {
1028   switch (VA.getLocInfo()) {
1029   case CCValAssign::SExt:
1030     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1031   case CCValAssign::ZExt:
1032     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1033   case CCValAssign::AExt:
1034     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1035   case CCValAssign::BCvt:
1036     // If this is a short vector argument to be stored to the stack,
1037     // bitcast to v2i64 and then extract first element.
1038     assert(VA.getLocVT() == MVT::i64);
1039     assert(VA.getValVT().isVector());
1040     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1041     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1042                        DAG.getConstant(0, DL, MVT::i32));
1043   case CCValAssign::Full:
1044     return Value;
1045   default:
1046     llvm_unreachable("Unhandled getLocInfo()");
1047   }
1048 }
1049 
1050 SDValue SystemZTargetLowering::LowerFormalArguments(
1051     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1052     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1053     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1054   MachineFunction &MF = DAG.getMachineFunction();
1055   MachineFrameInfo &MFI = MF.getFrameInfo();
1056   MachineRegisterInfo &MRI = MF.getRegInfo();
1057   SystemZMachineFunctionInfo *FuncInfo =
1058       MF.getInfo<SystemZMachineFunctionInfo>();
1059   auto *TFL =
1060       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1061   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1062 
1063   // Detect unsupported vector argument types.
1064   if (Subtarget.hasVector())
1065     VerifyVectorTypes(Ins);
1066 
1067   // Assign locations to all of the incoming arguments.
1068   SmallVector<CCValAssign, 16> ArgLocs;
1069   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1070   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1071 
1072   unsigned NumFixedGPRs = 0;
1073   unsigned NumFixedFPRs = 0;
1074   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1075     SDValue ArgValue;
1076     CCValAssign &VA = ArgLocs[I];
1077     EVT LocVT = VA.getLocVT();
1078     if (VA.isRegLoc()) {
1079       // Arguments passed in registers
1080       const TargetRegisterClass *RC;
1081       switch (LocVT.getSimpleVT().SimpleTy) {
1082       default:
1083         // Integers smaller than i64 should be promoted to i64.
1084         llvm_unreachable("Unexpected argument type");
1085       case MVT::i32:
1086         NumFixedGPRs += 1;
1087         RC = &SystemZ::GR32BitRegClass;
1088         break;
1089       case MVT::i64:
1090         NumFixedGPRs += 1;
1091         RC = &SystemZ::GR64BitRegClass;
1092         break;
1093       case MVT::f32:
1094         NumFixedFPRs += 1;
1095         RC = &SystemZ::FP32BitRegClass;
1096         break;
1097       case MVT::f64:
1098         NumFixedFPRs += 1;
1099         RC = &SystemZ::FP64BitRegClass;
1100         break;
1101       case MVT::v16i8:
1102       case MVT::v8i16:
1103       case MVT::v4i32:
1104       case MVT::v2i64:
1105       case MVT::v4f32:
1106       case MVT::v2f64:
1107         RC = &SystemZ::VR128BitRegClass;
1108         break;
1109       }
1110 
1111       unsigned VReg = MRI.createVirtualRegister(RC);
1112       MRI.addLiveIn(VA.getLocReg(), VReg);
1113       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1114     } else {
1115       assert(VA.isMemLoc() && "Argument not register or memory");
1116 
1117       // Create the frame index object for this incoming parameter.
1118       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1119                                      VA.getLocMemOffset(), true);
1120 
1121       // Create the SelectionDAG nodes corresponding to a load
1122       // from this parameter.  Unpromoted ints and floats are
1123       // passed as right-justified 8-byte values.
1124       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1125       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1126         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1127                           DAG.getIntPtrConstant(4, DL));
1128       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1129                              MachinePointerInfo::getFixedStack(MF, FI));
1130     }
1131 
1132     // Convert the value of the argument register into the value that's
1133     // being passed.
1134     if (VA.getLocInfo() == CCValAssign::Indirect) {
1135       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1136                                    MachinePointerInfo()));
1137       // If the original argument was split (e.g. i128), we need
1138       // to load all parts of it here (using the same address).
1139       unsigned ArgIndex = Ins[I].OrigArgIndex;
1140       assert (Ins[I].PartOffset == 0);
1141       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1142         CCValAssign &PartVA = ArgLocs[I + 1];
1143         unsigned PartOffset = Ins[I + 1].PartOffset;
1144         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1145                                       DAG.getIntPtrConstant(PartOffset, DL));
1146         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1147                                      MachinePointerInfo()));
1148         ++I;
1149       }
1150     } else
1151       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1152   }
1153 
1154   if (IsVarArg) {
1155     // Save the number of non-varargs registers for later use by va_start, etc.
1156     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1157     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1158 
1159     // Likewise the address (in the form of a frame index) of where the
1160     // first stack vararg would be.  The 1-byte size here is arbitrary.
1161     int64_t StackSize = CCInfo.getNextStackOffset();
1162     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1163 
1164     // ...and a similar frame index for the caller-allocated save area
1165     // that will be used to store the incoming registers.
1166     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1167     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1168     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1169 
1170     // Store the FPR varargs in the reserved frame slots.  (We store the
1171     // GPRs as part of the prologue.)
1172     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1173       SDValue MemOps[SystemZ::NumArgFPRs];
1174       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1175         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1176         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1177         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1178         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1179                                      &SystemZ::FP64BitRegClass);
1180         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1181         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1182                                  MachinePointerInfo::getFixedStack(MF, FI));
1183       }
1184       // Join the stores, which are independent of one another.
1185       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1186                           makeArrayRef(&MemOps[NumFixedFPRs],
1187                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1188     }
1189   }
1190 
1191   return Chain;
1192 }
1193 
1194 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1195                               SmallVectorImpl<CCValAssign> &ArgLocs,
1196                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1197   // Punt if there are any indirect or stack arguments, or if the call
1198   // needs the callee-saved argument register R6, or if the call uses
1199   // the callee-saved register arguments SwiftSelf and SwiftError.
1200   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1201     CCValAssign &VA = ArgLocs[I];
1202     if (VA.getLocInfo() == CCValAssign::Indirect)
1203       return false;
1204     if (!VA.isRegLoc())
1205       return false;
1206     unsigned Reg = VA.getLocReg();
1207     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1208       return false;
1209     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1210       return false;
1211   }
1212   return true;
1213 }
1214 
1215 SDValue
1216 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1217                                  SmallVectorImpl<SDValue> &InVals) const {
1218   SelectionDAG &DAG = CLI.DAG;
1219   SDLoc &DL = CLI.DL;
1220   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1221   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1222   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1223   SDValue Chain = CLI.Chain;
1224   SDValue Callee = CLI.Callee;
1225   bool &IsTailCall = CLI.IsTailCall;
1226   CallingConv::ID CallConv = CLI.CallConv;
1227   bool IsVarArg = CLI.IsVarArg;
1228   MachineFunction &MF = DAG.getMachineFunction();
1229   EVT PtrVT = getPointerTy(MF.getDataLayout());
1230 
1231   // Detect unsupported vector argument and return types.
1232   if (Subtarget.hasVector()) {
1233     VerifyVectorTypes(Outs);
1234     VerifyVectorTypes(Ins);
1235   }
1236 
1237   // Analyze the operands of the call, assigning locations to each operand.
1238   SmallVector<CCValAssign, 16> ArgLocs;
1239   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1240   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1241 
1242   // We don't support GuaranteedTailCallOpt, only automatically-detected
1243   // sibling calls.
1244   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1245     IsTailCall = false;
1246 
1247   // Get a count of how many bytes are to be pushed on the stack.
1248   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1249 
1250   // Mark the start of the call.
1251   if (!IsTailCall)
1252     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1253 
1254   // Copy argument values to their designated locations.
1255   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1256   SmallVector<SDValue, 8> MemOpChains;
1257   SDValue StackPtr;
1258   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1259     CCValAssign &VA = ArgLocs[I];
1260     SDValue ArgValue = OutVals[I];
1261 
1262     if (VA.getLocInfo() == CCValAssign::Indirect) {
1263       // Store the argument in a stack slot and pass its address.
1264       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1265       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1266       MemOpChains.push_back(
1267           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1268                        MachinePointerInfo::getFixedStack(MF, FI)));
1269       // If the original argument was split (e.g. i128), we need
1270       // to store all parts of it here (and pass just one address).
1271       unsigned ArgIndex = Outs[I].OrigArgIndex;
1272       assert (Outs[I].PartOffset == 0);
1273       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1274         SDValue PartValue = OutVals[I + 1];
1275         unsigned PartOffset = Outs[I + 1].PartOffset;
1276         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1277                                       DAG.getIntPtrConstant(PartOffset, DL));
1278         MemOpChains.push_back(
1279             DAG.getStore(Chain, DL, PartValue, Address,
1280                          MachinePointerInfo::getFixedStack(MF, FI)));
1281         ++I;
1282       }
1283       ArgValue = SpillSlot;
1284     } else
1285       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1286 
1287     if (VA.isRegLoc())
1288       // Queue up the argument copies and emit them at the end.
1289       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1290     else {
1291       assert(VA.isMemLoc() && "Argument not register or memory");
1292 
1293       // Work out the address of the stack slot.  Unpromoted ints and
1294       // floats are passed as right-justified 8-byte values.
1295       if (!StackPtr.getNode())
1296         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1297       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1298       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1299         Offset += 4;
1300       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1301                                     DAG.getIntPtrConstant(Offset, DL));
1302 
1303       // Emit the store.
1304       MemOpChains.push_back(
1305           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1306     }
1307   }
1308 
1309   // Join the stores, which are independent of one another.
1310   if (!MemOpChains.empty())
1311     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1312 
1313   // Accept direct calls by converting symbolic call addresses to the
1314   // associated Target* opcodes.  Force %r1 to be used for indirect
1315   // tail calls.
1316   SDValue Glue;
1317   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1318     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1319     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1320   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1321     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1322     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1323   } else if (IsTailCall) {
1324     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1325     Glue = Chain.getValue(1);
1326     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1327   }
1328 
1329   // Build a sequence of copy-to-reg nodes, chained and glued together.
1330   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1331     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1332                              RegsToPass[I].second, Glue);
1333     Glue = Chain.getValue(1);
1334   }
1335 
1336   // The first call operand is the chain and the second is the target address.
1337   SmallVector<SDValue, 8> Ops;
1338   Ops.push_back(Chain);
1339   Ops.push_back(Callee);
1340 
1341   // Add argument registers to the end of the list so that they are
1342   // known live into the call.
1343   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1344     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1345                                   RegsToPass[I].second.getValueType()));
1346 
1347   // Add a register mask operand representing the call-preserved registers.
1348   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1349   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1350   assert(Mask && "Missing call preserved mask for calling convention");
1351   Ops.push_back(DAG.getRegisterMask(Mask));
1352 
1353   // Glue the call to the argument copies, if any.
1354   if (Glue.getNode())
1355     Ops.push_back(Glue);
1356 
1357   // Emit the call.
1358   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1359   if (IsTailCall)
1360     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1361   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1362   Glue = Chain.getValue(1);
1363 
1364   // Mark the end of the call, which is glued to the call itself.
1365   Chain = DAG.getCALLSEQ_END(Chain,
1366                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1367                              DAG.getConstant(0, DL, PtrVT, true),
1368                              Glue, DL);
1369   Glue = Chain.getValue(1);
1370 
1371   // Assign locations to each value returned by this call.
1372   SmallVector<CCValAssign, 16> RetLocs;
1373   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1374   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1375 
1376   // Copy all of the result registers out of their specified physreg.
1377   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1378     CCValAssign &VA = RetLocs[I];
1379 
1380     // Copy the value out, gluing the copy to the end of the call sequence.
1381     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1382                                           VA.getLocVT(), Glue);
1383     Chain = RetValue.getValue(1);
1384     Glue = RetValue.getValue(2);
1385 
1386     // Convert the value of the return register into the value that's
1387     // being returned.
1388     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1389   }
1390 
1391   return Chain;
1392 }
1393 
1394 bool SystemZTargetLowering::
1395 CanLowerReturn(CallingConv::ID CallConv,
1396                MachineFunction &MF, bool isVarArg,
1397                const SmallVectorImpl<ISD::OutputArg> &Outs,
1398                LLVMContext &Context) const {
1399   // Detect unsupported vector return types.
1400   if (Subtarget.hasVector())
1401     VerifyVectorTypes(Outs);
1402 
1403   // Special case that we cannot easily detect in RetCC_SystemZ since
1404   // i128 is not a legal type.
1405   for (auto &Out : Outs)
1406     if (Out.ArgVT == MVT::i128)
1407       return false;
1408 
1409   SmallVector<CCValAssign, 16> RetLocs;
1410   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1411   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1412 }
1413 
1414 SDValue
1415 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1416                                    bool IsVarArg,
1417                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1418                                    const SmallVectorImpl<SDValue> &OutVals,
1419                                    const SDLoc &DL, SelectionDAG &DAG) const {
1420   MachineFunction &MF = DAG.getMachineFunction();
1421 
1422   // Detect unsupported vector return types.
1423   if (Subtarget.hasVector())
1424     VerifyVectorTypes(Outs);
1425 
1426   // Assign locations to each returned value.
1427   SmallVector<CCValAssign, 16> RetLocs;
1428   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1429   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1430 
1431   // Quick exit for void returns
1432   if (RetLocs.empty())
1433     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1434 
1435   // Copy the result values into the output registers.
1436   SDValue Glue;
1437   SmallVector<SDValue, 4> RetOps;
1438   RetOps.push_back(Chain);
1439   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1440     CCValAssign &VA = RetLocs[I];
1441     SDValue RetValue = OutVals[I];
1442 
1443     // Make the return register live on exit.
1444     assert(VA.isRegLoc() && "Can only return in registers!");
1445 
1446     // Promote the value as required.
1447     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1448 
1449     // Chain and glue the copies together.
1450     unsigned Reg = VA.getLocReg();
1451     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1452     Glue = Chain.getValue(1);
1453     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1454   }
1455 
1456   // Update chain and glue.
1457   RetOps[0] = Chain;
1458   if (Glue.getNode())
1459     RetOps.push_back(Glue);
1460 
1461   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1462 }
1463 
1464 // Return true if Op is an intrinsic node with chain that returns the CC value
1465 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1466 // the mask of valid CC values if so.
1467 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1468                                       unsigned &CCValid) {
1469   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1470   switch (Id) {
1471   case Intrinsic::s390_tbegin:
1472     Opcode = SystemZISD::TBEGIN;
1473     CCValid = SystemZ::CCMASK_TBEGIN;
1474     return true;
1475 
1476   case Intrinsic::s390_tbegin_nofloat:
1477     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1478     CCValid = SystemZ::CCMASK_TBEGIN;
1479     return true;
1480 
1481   case Intrinsic::s390_tend:
1482     Opcode = SystemZISD::TEND;
1483     CCValid = SystemZ::CCMASK_TEND;
1484     return true;
1485 
1486   default:
1487     return false;
1488   }
1489 }
1490 
1491 // Return true if Op is an intrinsic node without chain that returns the
1492 // CC value as its final argument.  Provide the associated SystemZISD
1493 // opcode and the mask of valid CC values if so.
1494 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1495   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1496   switch (Id) {
1497   case Intrinsic::s390_vpkshs:
1498   case Intrinsic::s390_vpksfs:
1499   case Intrinsic::s390_vpksgs:
1500     Opcode = SystemZISD::PACKS_CC;
1501     CCValid = SystemZ::CCMASK_VCMP;
1502     return true;
1503 
1504   case Intrinsic::s390_vpklshs:
1505   case Intrinsic::s390_vpklsfs:
1506   case Intrinsic::s390_vpklsgs:
1507     Opcode = SystemZISD::PACKLS_CC;
1508     CCValid = SystemZ::CCMASK_VCMP;
1509     return true;
1510 
1511   case Intrinsic::s390_vceqbs:
1512   case Intrinsic::s390_vceqhs:
1513   case Intrinsic::s390_vceqfs:
1514   case Intrinsic::s390_vceqgs:
1515     Opcode = SystemZISD::VICMPES;
1516     CCValid = SystemZ::CCMASK_VCMP;
1517     return true;
1518 
1519   case Intrinsic::s390_vchbs:
1520   case Intrinsic::s390_vchhs:
1521   case Intrinsic::s390_vchfs:
1522   case Intrinsic::s390_vchgs:
1523     Opcode = SystemZISD::VICMPHS;
1524     CCValid = SystemZ::CCMASK_VCMP;
1525     return true;
1526 
1527   case Intrinsic::s390_vchlbs:
1528   case Intrinsic::s390_vchlhs:
1529   case Intrinsic::s390_vchlfs:
1530   case Intrinsic::s390_vchlgs:
1531     Opcode = SystemZISD::VICMPHLS;
1532     CCValid = SystemZ::CCMASK_VCMP;
1533     return true;
1534 
1535   case Intrinsic::s390_vtm:
1536     Opcode = SystemZISD::VTM;
1537     CCValid = SystemZ::CCMASK_VCMP;
1538     return true;
1539 
1540   case Intrinsic::s390_vfaebs:
1541   case Intrinsic::s390_vfaehs:
1542   case Intrinsic::s390_vfaefs:
1543     Opcode = SystemZISD::VFAE_CC;
1544     CCValid = SystemZ::CCMASK_ANY;
1545     return true;
1546 
1547   case Intrinsic::s390_vfaezbs:
1548   case Intrinsic::s390_vfaezhs:
1549   case Intrinsic::s390_vfaezfs:
1550     Opcode = SystemZISD::VFAEZ_CC;
1551     CCValid = SystemZ::CCMASK_ANY;
1552     return true;
1553 
1554   case Intrinsic::s390_vfeebs:
1555   case Intrinsic::s390_vfeehs:
1556   case Intrinsic::s390_vfeefs:
1557     Opcode = SystemZISD::VFEE_CC;
1558     CCValid = SystemZ::CCMASK_ANY;
1559     return true;
1560 
1561   case Intrinsic::s390_vfeezbs:
1562   case Intrinsic::s390_vfeezhs:
1563   case Intrinsic::s390_vfeezfs:
1564     Opcode = SystemZISD::VFEEZ_CC;
1565     CCValid = SystemZ::CCMASK_ANY;
1566     return true;
1567 
1568   case Intrinsic::s390_vfenebs:
1569   case Intrinsic::s390_vfenehs:
1570   case Intrinsic::s390_vfenefs:
1571     Opcode = SystemZISD::VFENE_CC;
1572     CCValid = SystemZ::CCMASK_ANY;
1573     return true;
1574 
1575   case Intrinsic::s390_vfenezbs:
1576   case Intrinsic::s390_vfenezhs:
1577   case Intrinsic::s390_vfenezfs:
1578     Opcode = SystemZISD::VFENEZ_CC;
1579     CCValid = SystemZ::CCMASK_ANY;
1580     return true;
1581 
1582   case Intrinsic::s390_vistrbs:
1583   case Intrinsic::s390_vistrhs:
1584   case Intrinsic::s390_vistrfs:
1585     Opcode = SystemZISD::VISTR_CC;
1586     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1587     return true;
1588 
1589   case Intrinsic::s390_vstrcbs:
1590   case Intrinsic::s390_vstrchs:
1591   case Intrinsic::s390_vstrcfs:
1592     Opcode = SystemZISD::VSTRC_CC;
1593     CCValid = SystemZ::CCMASK_ANY;
1594     return true;
1595 
1596   case Intrinsic::s390_vstrczbs:
1597   case Intrinsic::s390_vstrczhs:
1598   case Intrinsic::s390_vstrczfs:
1599     Opcode = SystemZISD::VSTRCZ_CC;
1600     CCValid = SystemZ::CCMASK_ANY;
1601     return true;
1602 
1603   case Intrinsic::s390_vfcedbs:
1604   case Intrinsic::s390_vfcesbs:
1605     Opcode = SystemZISD::VFCMPES;
1606     CCValid = SystemZ::CCMASK_VCMP;
1607     return true;
1608 
1609   case Intrinsic::s390_vfchdbs:
1610   case Intrinsic::s390_vfchsbs:
1611     Opcode = SystemZISD::VFCMPHS;
1612     CCValid = SystemZ::CCMASK_VCMP;
1613     return true;
1614 
1615   case Intrinsic::s390_vfchedbs:
1616   case Intrinsic::s390_vfchesbs:
1617     Opcode = SystemZISD::VFCMPHES;
1618     CCValid = SystemZ::CCMASK_VCMP;
1619     return true;
1620 
1621   case Intrinsic::s390_vftcidb:
1622   case Intrinsic::s390_vftcisb:
1623     Opcode = SystemZISD::VFTCI;
1624     CCValid = SystemZ::CCMASK_VCMP;
1625     return true;
1626 
1627   case Intrinsic::s390_tdc:
1628     Opcode = SystemZISD::TDC;
1629     CCValid = SystemZ::CCMASK_TDC;
1630     return true;
1631 
1632   default:
1633     return false;
1634   }
1635 }
1636 
1637 // Emit an intrinsic with chain with a glued value instead of its CC result.
1638 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1639                                              unsigned Opcode) {
1640   // Copy all operands except the intrinsic ID.
1641   unsigned NumOps = Op.getNumOperands();
1642   SmallVector<SDValue, 6> Ops;
1643   Ops.reserve(NumOps - 1);
1644   Ops.push_back(Op.getOperand(0));
1645   for (unsigned I = 2; I < NumOps; ++I)
1646     Ops.push_back(Op.getOperand(I));
1647 
1648   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1649   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1650   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1651   SDValue OldChain = SDValue(Op.getNode(), 1);
1652   SDValue NewChain = SDValue(Intr.getNode(), 0);
1653   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1654   return Intr;
1655 }
1656 
1657 // Emit an intrinsic with a glued value instead of its CC result.
1658 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1659                                      unsigned Opcode) {
1660   // Copy all operands except the intrinsic ID.
1661   unsigned NumOps = Op.getNumOperands();
1662   SmallVector<SDValue, 6> Ops;
1663   Ops.reserve(NumOps - 1);
1664   for (unsigned I = 1; I < NumOps; ++I)
1665     Ops.push_back(Op.getOperand(I));
1666 
1667   if (Op->getNumValues() == 1)
1668     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1669   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1670   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1671   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1672 }
1673 
1674 // CC is a comparison that will be implemented using an integer or
1675 // floating-point comparison.  Return the condition code mask for
1676 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1677 // unsigned comparisons and clear for signed ones.  In the floating-point
1678 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1679 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1680 #define CONV(X) \
1681   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1682   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1683   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1684 
1685   switch (CC) {
1686   default:
1687     llvm_unreachable("Invalid integer condition!");
1688 
1689   CONV(EQ);
1690   CONV(NE);
1691   CONV(GT);
1692   CONV(GE);
1693   CONV(LT);
1694   CONV(LE);
1695 
1696   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1697   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1698   }
1699 #undef CONV
1700 }
1701 
1702 // Return a sequence for getting a 1 from an IPM result when CC has a
1703 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1704 // The handling of CC values outside CCValid doesn't matter.
1705 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1706   // Deal with cases where the result can be taken directly from a bit
1707   // of the IPM result.
1708   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1709     return IPMConversion(0, 0, SystemZ::IPM_CC);
1710   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1711     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1712 
1713   // Deal with cases where we can add a value to force the sign bit
1714   // to contain the right value.  Putting the bit in 31 means we can
1715   // use SRL rather than RISBG(L), and also makes it easier to get a
1716   // 0/-1 value, so it has priority over the other tests below.
1717   //
1718   // These sequences rely on the fact that the upper two bits of the
1719   // IPM result are zero.
1720   uint64_t TopBit = uint64_t(1) << 31;
1721   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1722     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1723   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1724     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1725   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1726                             | SystemZ::CCMASK_1
1727                             | SystemZ::CCMASK_2)))
1728     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1729   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1730     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1731   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1732                             | SystemZ::CCMASK_2
1733                             | SystemZ::CCMASK_3)))
1734     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1735 
1736   // Next try inverting the value and testing a bit.  0/1 could be
1737   // handled this way too, but we dealt with that case above.
1738   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1739     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1740 
1741   // Handle cases where adding a value forces a non-sign bit to contain
1742   // the right value.
1743   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1744     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1745   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1746     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1747 
1748   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1749   // can be done by inverting the low CC bit and applying one of the
1750   // sign-based extractions above.
1751   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1752     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1753   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1754     return IPMConversion(1 << SystemZ::IPM_CC,
1755                          TopBit - (3 << SystemZ::IPM_CC), 31);
1756   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1757                             | SystemZ::CCMASK_1
1758                             | SystemZ::CCMASK_3)))
1759     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1760   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1761                             | SystemZ::CCMASK_2
1762                             | SystemZ::CCMASK_3)))
1763     return IPMConversion(1 << SystemZ::IPM_CC,
1764                          TopBit - (1 << SystemZ::IPM_CC), 31);
1765 
1766   llvm_unreachable("Unexpected CC combination");
1767 }
1768 
1769 // If C can be converted to a comparison against zero, adjust the operands
1770 // as necessary.
1771 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1772   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1773     return;
1774 
1775   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1776   if (!ConstOp1)
1777     return;
1778 
1779   int64_t Value = ConstOp1->getSExtValue();
1780   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1781       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1782       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1783       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1784     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1785     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1786   }
1787 }
1788 
1789 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1790 // adjust the operands as necessary.
1791 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1792                              Comparison &C) {
1793   // For us to make any changes, it must a comparison between a single-use
1794   // load and a constant.
1795   if (!C.Op0.hasOneUse() ||
1796       C.Op0.getOpcode() != ISD::LOAD ||
1797       C.Op1.getOpcode() != ISD::Constant)
1798     return;
1799 
1800   // We must have an 8- or 16-bit load.
1801   auto *Load = cast<LoadSDNode>(C.Op0);
1802   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1803   if (NumBits != 8 && NumBits != 16)
1804     return;
1805 
1806   // The load must be an extending one and the constant must be within the
1807   // range of the unextended value.
1808   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1809   uint64_t Value = ConstOp1->getZExtValue();
1810   uint64_t Mask = (1 << NumBits) - 1;
1811   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1812     // Make sure that ConstOp1 is in range of C.Op0.
1813     int64_t SignedValue = ConstOp1->getSExtValue();
1814     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1815       return;
1816     if (C.ICmpType != SystemZICMP::SignedOnly) {
1817       // Unsigned comparison between two sign-extended values is equivalent
1818       // to unsigned comparison between two zero-extended values.
1819       Value &= Mask;
1820     } else if (NumBits == 8) {
1821       // Try to treat the comparison as unsigned, so that we can use CLI.
1822       // Adjust CCMask and Value as necessary.
1823       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1824         // Test whether the high bit of the byte is set.
1825         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1826       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1827         // Test whether the high bit of the byte is clear.
1828         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1829       else
1830         // No instruction exists for this combination.
1831         return;
1832       C.ICmpType = SystemZICMP::UnsignedOnly;
1833     }
1834   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1835     if (Value > Mask)
1836       return;
1837     // If the constant is in range, we can use any comparison.
1838     C.ICmpType = SystemZICMP::Any;
1839   } else
1840     return;
1841 
1842   // Make sure that the first operand is an i32 of the right extension type.
1843   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1844                               ISD::SEXTLOAD :
1845                               ISD::ZEXTLOAD);
1846   if (C.Op0.getValueType() != MVT::i32 ||
1847       Load->getExtensionType() != ExtType)
1848     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1849                            Load->getBasePtr(), Load->getPointerInfo(),
1850                            Load->getMemoryVT(), Load->getAlignment(),
1851                            Load->getMemOperand()->getFlags());
1852 
1853   // Make sure that the second operand is an i32 with the right value.
1854   if (C.Op1.getValueType() != MVT::i32 ||
1855       Value != ConstOp1->getZExtValue())
1856     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1857 }
1858 
1859 // Return true if Op is either an unextended load, or a load suitable
1860 // for integer register-memory comparisons of type ICmpType.
1861 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1862   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1863   if (Load) {
1864     // There are no instructions to compare a register with a memory byte.
1865     if (Load->getMemoryVT() == MVT::i8)
1866       return false;
1867     // Otherwise decide on extension type.
1868     switch (Load->getExtensionType()) {
1869     case ISD::NON_EXTLOAD:
1870       return true;
1871     case ISD::SEXTLOAD:
1872       return ICmpType != SystemZICMP::UnsignedOnly;
1873     case ISD::ZEXTLOAD:
1874       return ICmpType != SystemZICMP::SignedOnly;
1875     default:
1876       break;
1877     }
1878   }
1879   return false;
1880 }
1881 
1882 // Return true if it is better to swap the operands of C.
1883 static bool shouldSwapCmpOperands(const Comparison &C) {
1884   // Leave f128 comparisons alone, since they have no memory forms.
1885   if (C.Op0.getValueType() == MVT::f128)
1886     return false;
1887 
1888   // Always keep a floating-point constant second, since comparisons with
1889   // zero can use LOAD TEST and comparisons with other constants make a
1890   // natural memory operand.
1891   if (isa<ConstantFPSDNode>(C.Op1))
1892     return false;
1893 
1894   // Never swap comparisons with zero since there are many ways to optimize
1895   // those later.
1896   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1897   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1898     return false;
1899 
1900   // Also keep natural memory operands second if the loaded value is
1901   // only used here.  Several comparisons have memory forms.
1902   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1903     return false;
1904 
1905   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1906   // In that case we generally prefer the memory to be second.
1907   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1908     // The only exceptions are when the second operand is a constant and
1909     // we can use things like CHHSI.
1910     if (!ConstOp1)
1911       return true;
1912     // The unsigned memory-immediate instructions can handle 16-bit
1913     // unsigned integers.
1914     if (C.ICmpType != SystemZICMP::SignedOnly &&
1915         isUInt<16>(ConstOp1->getZExtValue()))
1916       return false;
1917     // The signed memory-immediate instructions can handle 16-bit
1918     // signed integers.
1919     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1920         isInt<16>(ConstOp1->getSExtValue()))
1921       return false;
1922     return true;
1923   }
1924 
1925   // Try to promote the use of CGFR and CLGFR.
1926   unsigned Opcode0 = C.Op0.getOpcode();
1927   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1928     return true;
1929   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1930     return true;
1931   if (C.ICmpType != SystemZICMP::SignedOnly &&
1932       Opcode0 == ISD::AND &&
1933       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1934       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1935     return true;
1936 
1937   return false;
1938 }
1939 
1940 // Return a version of comparison CC mask CCMask in which the LT and GT
1941 // actions are swapped.
1942 static unsigned reverseCCMask(unsigned CCMask) {
1943   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1944           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1945           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1946           (CCMask & SystemZ::CCMASK_CMP_UO));
1947 }
1948 
1949 // Check whether C tests for equality between X and Y and whether X - Y
1950 // or Y - X is also computed.  In that case it's better to compare the
1951 // result of the subtraction against zero.
1952 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1953                                  Comparison &C) {
1954   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1955       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1956     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1957       SDNode *N = *I;
1958       if (N->getOpcode() == ISD::SUB &&
1959           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1960            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1961         C.Op0 = SDValue(N, 0);
1962         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1963         return;
1964       }
1965     }
1966   }
1967 }
1968 
1969 // Check whether C compares a floating-point value with zero and if that
1970 // floating-point value is also negated.  In this case we can use the
1971 // negation to set CC, so avoiding separate LOAD AND TEST and
1972 // LOAD (NEGATIVE/COMPLEMENT) instructions.
1973 static void adjustForFNeg(Comparison &C) {
1974   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1975   if (C1 && C1->isZero()) {
1976     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1977       SDNode *N = *I;
1978       if (N->getOpcode() == ISD::FNEG) {
1979         C.Op0 = SDValue(N, 0);
1980         C.CCMask = reverseCCMask(C.CCMask);
1981         return;
1982       }
1983     }
1984   }
1985 }
1986 
1987 // Check whether C compares (shl X, 32) with 0 and whether X is
1988 // also sign-extended.  In that case it is better to test the result
1989 // of the sign extension using LTGFR.
1990 //
1991 // This case is important because InstCombine transforms a comparison
1992 // with (sext (trunc X)) into a comparison with (shl X, 32).
1993 static void adjustForLTGFR(Comparison &C) {
1994   // Check for a comparison between (shl X, 32) and 0.
1995   if (C.Op0.getOpcode() == ISD::SHL &&
1996       C.Op0.getValueType() == MVT::i64 &&
1997       C.Op1.getOpcode() == ISD::Constant &&
1998       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1999     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2000     if (C1 && C1->getZExtValue() == 32) {
2001       SDValue ShlOp0 = C.Op0.getOperand(0);
2002       // See whether X has any SIGN_EXTEND_INREG uses.
2003       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2004         SDNode *N = *I;
2005         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2006             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2007           C.Op0 = SDValue(N, 0);
2008           return;
2009         }
2010       }
2011     }
2012   }
2013 }
2014 
2015 // If C compares the truncation of an extending load, try to compare
2016 // the untruncated value instead.  This exposes more opportunities to
2017 // reuse CC.
2018 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2019                                Comparison &C) {
2020   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2021       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2022       C.Op1.getOpcode() == ISD::Constant &&
2023       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2024     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2025     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2026       unsigned Type = L->getExtensionType();
2027       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2028           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2029         C.Op0 = C.Op0.getOperand(0);
2030         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2031       }
2032     }
2033   }
2034 }
2035 
2036 // Return true if shift operation N has an in-range constant shift value.
2037 // Store it in ShiftVal if so.
2038 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2039   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2040   if (!Shift)
2041     return false;
2042 
2043   uint64_t Amount = Shift->getZExtValue();
2044   if (Amount >= N.getValueSizeInBits())
2045     return false;
2046 
2047   ShiftVal = Amount;
2048   return true;
2049 }
2050 
2051 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2052 // instruction and whether the CC value is descriptive enough to handle
2053 // a comparison of type Opcode between the AND result and CmpVal.
2054 // CCMask says which comparison result is being tested and BitSize is
2055 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2056 // return the corresponding CC mask, otherwise return 0.
2057 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2058                                      uint64_t Mask, uint64_t CmpVal,
2059                                      unsigned ICmpType) {
2060   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2061 
2062   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2063   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2064       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2065     return 0;
2066 
2067   // Work out the masks for the lowest and highest bits.
2068   unsigned HighShift = 63 - countLeadingZeros(Mask);
2069   uint64_t High = uint64_t(1) << HighShift;
2070   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2071 
2072   // Signed ordered comparisons are effectively unsigned if the sign
2073   // bit is dropped.
2074   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2075 
2076   // Check for equality comparisons with 0, or the equivalent.
2077   if (CmpVal == 0) {
2078     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2079       return SystemZ::CCMASK_TM_ALL_0;
2080     if (CCMask == SystemZ::CCMASK_CMP_NE)
2081       return SystemZ::CCMASK_TM_SOME_1;
2082   }
2083   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2084     if (CCMask == SystemZ::CCMASK_CMP_LT)
2085       return SystemZ::CCMASK_TM_ALL_0;
2086     if (CCMask == SystemZ::CCMASK_CMP_GE)
2087       return SystemZ::CCMASK_TM_SOME_1;
2088   }
2089   if (EffectivelyUnsigned && CmpVal < Low) {
2090     if (CCMask == SystemZ::CCMASK_CMP_LE)
2091       return SystemZ::CCMASK_TM_ALL_0;
2092     if (CCMask == SystemZ::CCMASK_CMP_GT)
2093       return SystemZ::CCMASK_TM_SOME_1;
2094   }
2095 
2096   // Check for equality comparisons with the mask, or the equivalent.
2097   if (CmpVal == Mask) {
2098     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2099       return SystemZ::CCMASK_TM_ALL_1;
2100     if (CCMask == SystemZ::CCMASK_CMP_NE)
2101       return SystemZ::CCMASK_TM_SOME_0;
2102   }
2103   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2104     if (CCMask == SystemZ::CCMASK_CMP_GT)
2105       return SystemZ::CCMASK_TM_ALL_1;
2106     if (CCMask == SystemZ::CCMASK_CMP_LE)
2107       return SystemZ::CCMASK_TM_SOME_0;
2108   }
2109   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2110     if (CCMask == SystemZ::CCMASK_CMP_GE)
2111       return SystemZ::CCMASK_TM_ALL_1;
2112     if (CCMask == SystemZ::CCMASK_CMP_LT)
2113       return SystemZ::CCMASK_TM_SOME_0;
2114   }
2115 
2116   // Check for ordered comparisons with the top bit.
2117   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2118     if (CCMask == SystemZ::CCMASK_CMP_LE)
2119       return SystemZ::CCMASK_TM_MSB_0;
2120     if (CCMask == SystemZ::CCMASK_CMP_GT)
2121       return SystemZ::CCMASK_TM_MSB_1;
2122   }
2123   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2124     if (CCMask == SystemZ::CCMASK_CMP_LT)
2125       return SystemZ::CCMASK_TM_MSB_0;
2126     if (CCMask == SystemZ::CCMASK_CMP_GE)
2127       return SystemZ::CCMASK_TM_MSB_1;
2128   }
2129 
2130   // If there are just two bits, we can do equality checks for Low and High
2131   // as well.
2132   if (Mask == Low + High) {
2133     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2134       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2135     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2136       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2137     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2138       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2139     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2140       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2141   }
2142 
2143   // Looks like we've exhausted our options.
2144   return 0;
2145 }
2146 
2147 // See whether C can be implemented as a TEST UNDER MASK instruction.
2148 // Update the arguments with the TM version if so.
2149 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2150                                    Comparison &C) {
2151   // Check that we have a comparison with a constant.
2152   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2153   if (!ConstOp1)
2154     return;
2155   uint64_t CmpVal = ConstOp1->getZExtValue();
2156 
2157   // Check whether the nonconstant input is an AND with a constant mask.
2158   Comparison NewC(C);
2159   uint64_t MaskVal;
2160   ConstantSDNode *Mask = nullptr;
2161   if (C.Op0.getOpcode() == ISD::AND) {
2162     NewC.Op0 = C.Op0.getOperand(0);
2163     NewC.Op1 = C.Op0.getOperand(1);
2164     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2165     if (!Mask)
2166       return;
2167     MaskVal = Mask->getZExtValue();
2168   } else {
2169     // There is no instruction to compare with a 64-bit immediate
2170     // so use TMHH instead if possible.  We need an unsigned ordered
2171     // comparison with an i64 immediate.
2172     if (NewC.Op0.getValueType() != MVT::i64 ||
2173         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2174         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2175         NewC.ICmpType == SystemZICMP::SignedOnly)
2176       return;
2177     // Convert LE and GT comparisons into LT and GE.
2178     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2179         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2180       if (CmpVal == uint64_t(-1))
2181         return;
2182       CmpVal += 1;
2183       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2184     }
2185     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2186     // be masked off without changing the result.
2187     MaskVal = -(CmpVal & -CmpVal);
2188     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2189   }
2190   if (!MaskVal)
2191     return;
2192 
2193   // Check whether the combination of mask, comparison value and comparison
2194   // type are suitable.
2195   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2196   unsigned NewCCMask, ShiftVal;
2197   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2198       NewC.Op0.getOpcode() == ISD::SHL &&
2199       isSimpleShift(NewC.Op0, ShiftVal) &&
2200       (MaskVal >> ShiftVal != 0) &&
2201       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2202                                         MaskVal >> ShiftVal,
2203                                         CmpVal >> ShiftVal,
2204                                         SystemZICMP::Any))) {
2205     NewC.Op0 = NewC.Op0.getOperand(0);
2206     MaskVal >>= ShiftVal;
2207   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2208              NewC.Op0.getOpcode() == ISD::SRL &&
2209              isSimpleShift(NewC.Op0, ShiftVal) &&
2210              (MaskVal << ShiftVal != 0) &&
2211              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2212                                                MaskVal << ShiftVal,
2213                                                CmpVal << ShiftVal,
2214                                                SystemZICMP::UnsignedOnly))) {
2215     NewC.Op0 = NewC.Op0.getOperand(0);
2216     MaskVal <<= ShiftVal;
2217   } else {
2218     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2219                                      NewC.ICmpType);
2220     if (!NewCCMask)
2221       return;
2222   }
2223 
2224   // Go ahead and make the change.
2225   C.Opcode = SystemZISD::TM;
2226   C.Op0 = NewC.Op0;
2227   if (Mask && Mask->getZExtValue() == MaskVal)
2228     C.Op1 = SDValue(Mask, 0);
2229   else
2230     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2231   C.CCValid = SystemZ::CCMASK_TM;
2232   C.CCMask = NewCCMask;
2233 }
2234 
2235 // Return a Comparison that tests the condition-code result of intrinsic
2236 // node Call against constant integer CC using comparison code Cond.
2237 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2238 // and CCValid is the set of possible condition-code results.
2239 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2240                                   SDValue Call, unsigned CCValid, uint64_t CC,
2241                                   ISD::CondCode Cond) {
2242   Comparison C(Call, SDValue());
2243   C.Opcode = Opcode;
2244   C.CCValid = CCValid;
2245   if (Cond == ISD::SETEQ)
2246     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2247     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2248   else if (Cond == ISD::SETNE)
2249     // ...and the inverse of that.
2250     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2251   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2252     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2253     // always true for CC>3.
2254     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2255   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2256     // ...and the inverse of that.
2257     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2258   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2259     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2260     // always true for CC>3.
2261     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2262   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2263     // ...and the inverse of that.
2264     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2265   else
2266     llvm_unreachable("Unexpected integer comparison type");
2267   C.CCMask &= CCValid;
2268   return C;
2269 }
2270 
2271 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2272 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2273                          ISD::CondCode Cond, const SDLoc &DL) {
2274   if (CmpOp1.getOpcode() == ISD::Constant) {
2275     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2276     unsigned Opcode, CCValid;
2277     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2278         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2279         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2280       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2281     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2282         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2283         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2284       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2285   }
2286   Comparison C(CmpOp0, CmpOp1);
2287   C.CCMask = CCMaskForCondCode(Cond);
2288   if (C.Op0.getValueType().isFloatingPoint()) {
2289     C.CCValid = SystemZ::CCMASK_FCMP;
2290     C.Opcode = SystemZISD::FCMP;
2291     adjustForFNeg(C);
2292   } else {
2293     C.CCValid = SystemZ::CCMASK_ICMP;
2294     C.Opcode = SystemZISD::ICMP;
2295     // Choose the type of comparison.  Equality and inequality tests can
2296     // use either signed or unsigned comparisons.  The choice also doesn't
2297     // matter if both sign bits are known to be clear.  In those cases we
2298     // want to give the main isel code the freedom to choose whichever
2299     // form fits best.
2300     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2301         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2302         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2303       C.ICmpType = SystemZICMP::Any;
2304     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2305       C.ICmpType = SystemZICMP::UnsignedOnly;
2306     else
2307       C.ICmpType = SystemZICMP::SignedOnly;
2308     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2309     adjustZeroCmp(DAG, DL, C);
2310     adjustSubwordCmp(DAG, DL, C);
2311     adjustForSubtraction(DAG, DL, C);
2312     adjustForLTGFR(C);
2313     adjustICmpTruncate(DAG, DL, C);
2314   }
2315 
2316   if (shouldSwapCmpOperands(C)) {
2317     std::swap(C.Op0, C.Op1);
2318     C.CCMask = reverseCCMask(C.CCMask);
2319   }
2320 
2321   adjustForTestUnderMask(DAG, DL, C);
2322   return C;
2323 }
2324 
2325 // Emit the comparison instruction described by C.
2326 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2327   if (!C.Op1.getNode()) {
2328     SDValue Op;
2329     switch (C.Op0.getOpcode()) {
2330     case ISD::INTRINSIC_W_CHAIN:
2331       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2332       break;
2333     case ISD::INTRINSIC_WO_CHAIN:
2334       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2335       break;
2336     default:
2337       llvm_unreachable("Invalid comparison operands");
2338     }
2339     return SDValue(Op.getNode(), Op->getNumValues() - 1);
2340   }
2341   if (C.Opcode == SystemZISD::ICMP)
2342     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2343                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2344   if (C.Opcode == SystemZISD::TM) {
2345     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2346                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2347     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2348                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2349   }
2350   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2351 }
2352 
2353 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2354 // 64 bits.  Extend is the extension type to use.  Store the high part
2355 // in Hi and the low part in Lo.
2356 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2357                             SDValue Op0, SDValue Op1, SDValue &Hi,
2358                             SDValue &Lo) {
2359   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2360   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2361   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2362   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2363                    DAG.getConstant(32, DL, MVT::i64));
2364   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2365   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2366 }
2367 
2368 // Lower a binary operation that produces two VT results, one in each
2369 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2370 // and Opcode performs the GR128 operation.  Store the even register result
2371 // in Even and the odd register result in Odd.
2372 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2373                              unsigned Opcode, SDValue Op0, SDValue Op1,
2374                              SDValue &Even, SDValue &Odd) {
2375   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2376   bool Is32Bit = is32Bit(VT);
2377   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2378   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2379 }
2380 
2381 // Return an i32 value that is 1 if the CC value produced by Glue is
2382 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2383 // in CCValid, so other values can be ignored.
2384 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2385                          unsigned CCValid, unsigned CCMask) {
2386   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2387   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2388 
2389   if (Conversion.XORValue)
2390     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
2391                          DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
2392 
2393   if (Conversion.AddValue)
2394     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
2395                          DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
2396 
2397   // The SHR/AND sequence should get optimized to an RISBG.
2398   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
2399                        DAG.getConstant(Conversion.Bit, DL, MVT::i32));
2400   if (Conversion.Bit != 31)
2401     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
2402                          DAG.getConstant(1, DL, MVT::i32));
2403   return Result;
2404 }
2405 
2406 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2407 // be done directly.  IsFP is true if CC is for a floating-point rather than
2408 // integer comparison.
2409 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2410   switch (CC) {
2411   case ISD::SETOEQ:
2412   case ISD::SETEQ:
2413     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2414 
2415   case ISD::SETOGE:
2416   case ISD::SETGE:
2417     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2418 
2419   case ISD::SETOGT:
2420   case ISD::SETGT:
2421     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2422 
2423   case ISD::SETUGT:
2424     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2425 
2426   default:
2427     return 0;
2428   }
2429 }
2430 
2431 // Return the SystemZISD vector comparison operation for CC or its inverse,
2432 // or 0 if neither can be done directly.  Indicate in Invert whether the
2433 // result is for the inverse of CC.  IsFP is true if CC is for a
2434 // floating-point rather than integer comparison.
2435 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2436                                             bool &Invert) {
2437   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2438     Invert = false;
2439     return Opcode;
2440   }
2441 
2442   CC = ISD::getSetCCInverse(CC, !IsFP);
2443   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2444     Invert = true;
2445     return Opcode;
2446   }
2447 
2448   return 0;
2449 }
2450 
2451 // Return a v2f64 that contains the extended form of elements Start and Start+1
2452 // of v4f32 value Op.
2453 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2454                                   SDValue Op) {
2455   int Mask[] = { Start, -1, Start + 1, -1 };
2456   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2457   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2458 }
2459 
2460 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2461 // producing a result of type VT.
2462 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2463                                             const SDLoc &DL, EVT VT,
2464                                             SDValue CmpOp0,
2465                                             SDValue CmpOp1) const {
2466   // There is no hardware support for v4f32 (unless we have the vector
2467   // enhancements facility 1), so extend the vector into two v2f64s
2468   // and compare those.
2469   if (CmpOp0.getValueType() == MVT::v4f32 &&
2470       !Subtarget.hasVectorEnhancements1()) {
2471     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2472     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2473     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2474     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2475     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2476     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2477     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2478   }
2479   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2480 }
2481 
2482 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2483 // an integer mask of type VT.
2484 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2485                                                 const SDLoc &DL, EVT VT,
2486                                                 ISD::CondCode CC,
2487                                                 SDValue CmpOp0,
2488                                                 SDValue CmpOp1) const {
2489   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2490   bool Invert = false;
2491   SDValue Cmp;
2492   switch (CC) {
2493     // Handle tests for order using (or (ogt y x) (oge x y)).
2494   case ISD::SETUO:
2495     Invert = true;
2496     LLVM_FALLTHROUGH;
2497   case ISD::SETO: {
2498     assert(IsFP && "Unexpected integer comparison");
2499     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2500     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2501     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2502     break;
2503   }
2504 
2505     // Handle <> tests using (or (ogt y x) (ogt x y)).
2506   case ISD::SETUEQ:
2507     Invert = true;
2508     LLVM_FALLTHROUGH;
2509   case ISD::SETONE: {
2510     assert(IsFP && "Unexpected integer comparison");
2511     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2512     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2513     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2514     break;
2515   }
2516 
2517     // Otherwise a single comparison is enough.  It doesn't really
2518     // matter whether we try the inversion or the swap first, since
2519     // there are no cases where both work.
2520   default:
2521     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2522       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2523     else {
2524       CC = ISD::getSetCCSwappedOperands(CC);
2525       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2526         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2527       else
2528         llvm_unreachable("Unhandled comparison");
2529     }
2530     break;
2531   }
2532   if (Invert) {
2533     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2534                                DAG.getConstant(65535, DL, MVT::i32));
2535     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2536     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2537   }
2538   return Cmp;
2539 }
2540 
2541 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2542                                           SelectionDAG &DAG) const {
2543   SDValue CmpOp0   = Op.getOperand(0);
2544   SDValue CmpOp1   = Op.getOperand(1);
2545   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2546   SDLoc DL(Op);
2547   EVT VT = Op.getValueType();
2548   if (VT.isVector())
2549     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2550 
2551   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2552   SDValue Glue = emitCmp(DAG, DL, C);
2553   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2554 }
2555 
2556 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2557   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2558   SDValue CmpOp0   = Op.getOperand(2);
2559   SDValue CmpOp1   = Op.getOperand(3);
2560   SDValue Dest     = Op.getOperand(4);
2561   SDLoc DL(Op);
2562 
2563   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2564   SDValue Glue = emitCmp(DAG, DL, C);
2565   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2566                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2567                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2568 }
2569 
2570 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2571 // allowing Pos and Neg to be wider than CmpOp.
2572 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2573   return (Neg.getOpcode() == ISD::SUB &&
2574           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2575           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2576           Neg.getOperand(1) == Pos &&
2577           (Pos == CmpOp ||
2578            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2579             Pos.getOperand(0) == CmpOp)));
2580 }
2581 
2582 // Return the absolute or negative absolute of Op; IsNegative decides which.
2583 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2584                            bool IsNegative) {
2585   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2586   if (IsNegative)
2587     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2588                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2589   return Op;
2590 }
2591 
2592 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2593                                               SelectionDAG &DAG) const {
2594   SDValue CmpOp0   = Op.getOperand(0);
2595   SDValue CmpOp1   = Op.getOperand(1);
2596   SDValue TrueOp   = Op.getOperand(2);
2597   SDValue FalseOp  = Op.getOperand(3);
2598   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2599   SDLoc DL(Op);
2600 
2601   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2602 
2603   // Check for absolute and negative-absolute selections, including those
2604   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2605   // This check supplements the one in DAGCombiner.
2606   if (C.Opcode == SystemZISD::ICMP &&
2607       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2608       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2609       C.Op1.getOpcode() == ISD::Constant &&
2610       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2611     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2612       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2613     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2614       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2615   }
2616 
2617   SDValue Glue = emitCmp(DAG, DL, C);
2618 
2619   // Special case for handling -1/0 results.  The shifts we use here
2620   // should get optimized with the IPM conversion sequence.
2621   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2622   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
2623   if (TrueC && FalseC) {
2624     int64_t TrueVal = TrueC->getSExtValue();
2625     int64_t FalseVal = FalseC->getSExtValue();
2626     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2627       // Invert the condition if we want -1 on false.
2628       if (TrueVal == 0)
2629         C.CCMask ^= C.CCValid;
2630       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2631       EVT VT = Op.getValueType();
2632       // Extend the result to VT.  Upper bits are ignored.
2633       if (!is32Bit(VT))
2634         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2635       // Sign-extend from the low bit.
2636       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
2637       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2638       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2639     }
2640   }
2641 
2642   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2643                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2644 
2645   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2646   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
2647 }
2648 
2649 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2650                                                   SelectionDAG &DAG) const {
2651   SDLoc DL(Node);
2652   const GlobalValue *GV = Node->getGlobal();
2653   int64_t Offset = Node->getOffset();
2654   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2655   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2656 
2657   SDValue Result;
2658   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2659     // Assign anchors at 1<<12 byte boundaries.
2660     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2661     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2662     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2663 
2664     // The offset can be folded into the address if it is aligned to a halfword.
2665     Offset -= Anchor;
2666     if (Offset != 0 && (Offset & 1) == 0) {
2667       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2668       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2669       Offset = 0;
2670     }
2671   } else {
2672     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2673     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2674     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2675                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2676   }
2677 
2678   // If there was a non-zero offset that we didn't fold, create an explicit
2679   // addition for it.
2680   if (Offset != 0)
2681     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2682                          DAG.getConstant(Offset, DL, PtrVT));
2683 
2684   return Result;
2685 }
2686 
2687 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2688                                                  SelectionDAG &DAG,
2689                                                  unsigned Opcode,
2690                                                  SDValue GOTOffset) const {
2691   SDLoc DL(Node);
2692   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2693   SDValue Chain = DAG.getEntryNode();
2694   SDValue Glue;
2695 
2696   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2697   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2698   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2699   Glue = Chain.getValue(1);
2700   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2701   Glue = Chain.getValue(1);
2702 
2703   // The first call operand is the chain and the second is the TLS symbol.
2704   SmallVector<SDValue, 8> Ops;
2705   Ops.push_back(Chain);
2706   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2707                                            Node->getValueType(0),
2708                                            0, 0));
2709 
2710   // Add argument registers to the end of the list so that they are
2711   // known live into the call.
2712   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2713   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2714 
2715   // Add a register mask operand representing the call-preserved registers.
2716   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2717   const uint32_t *Mask =
2718       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2719   assert(Mask && "Missing call preserved mask for calling convention");
2720   Ops.push_back(DAG.getRegisterMask(Mask));
2721 
2722   // Glue the call to the argument copies.
2723   Ops.push_back(Glue);
2724 
2725   // Emit the call.
2726   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2727   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2728   Glue = Chain.getValue(1);
2729 
2730   // Copy the return value from %r2.
2731   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2732 }
2733 
2734 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2735                                                   SelectionDAG &DAG) const {
2736   SDValue Chain = DAG.getEntryNode();
2737   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2738 
2739   // The high part of the thread pointer is in access register 0.
2740   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2741   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2742 
2743   // The low part of the thread pointer is in access register 1.
2744   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2745   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2746 
2747   // Merge them into a single 64-bit address.
2748   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2749                                     DAG.getConstant(32, DL, PtrVT));
2750   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2751 }
2752 
2753 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2754                                                      SelectionDAG &DAG) const {
2755   if (DAG.getTarget().Options.EmulatedTLS)
2756     return LowerToTLSEmulatedModel(Node, DAG);
2757   SDLoc DL(Node);
2758   const GlobalValue *GV = Node->getGlobal();
2759   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2760   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2761 
2762   SDValue TP = lowerThreadPointer(DL, DAG);
2763 
2764   // Get the offset of GA from the thread pointer, based on the TLS model.
2765   SDValue Offset;
2766   switch (model) {
2767     case TLSModel::GeneralDynamic: {
2768       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2769       SystemZConstantPoolValue *CPV =
2770         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2771 
2772       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2773       Offset = DAG.getLoad(
2774           PtrVT, DL, DAG.getEntryNode(), Offset,
2775           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2776 
2777       // Call __tls_get_offset to retrieve the offset.
2778       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2779       break;
2780     }
2781 
2782     case TLSModel::LocalDynamic: {
2783       // Load the GOT offset of the module ID.
2784       SystemZConstantPoolValue *CPV =
2785         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2786 
2787       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2788       Offset = DAG.getLoad(
2789           PtrVT, DL, DAG.getEntryNode(), Offset,
2790           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2791 
2792       // Call __tls_get_offset to retrieve the module base offset.
2793       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2794 
2795       // Note: The SystemZLDCleanupPass will remove redundant computations
2796       // of the module base offset.  Count total number of local-dynamic
2797       // accesses to trigger execution of that pass.
2798       SystemZMachineFunctionInfo* MFI =
2799         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2800       MFI->incNumLocalDynamicTLSAccesses();
2801 
2802       // Add the per-symbol offset.
2803       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2804 
2805       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2806       DTPOffset = DAG.getLoad(
2807           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2808           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2809 
2810       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2811       break;
2812     }
2813 
2814     case TLSModel::InitialExec: {
2815       // Load the offset from the GOT.
2816       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2817                                           SystemZII::MO_INDNTPOFF);
2818       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2819       Offset =
2820           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2821                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2822       break;
2823     }
2824 
2825     case TLSModel::LocalExec: {
2826       // Force the offset into the constant pool and load it from there.
2827       SystemZConstantPoolValue *CPV =
2828         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2829 
2830       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2831       Offset = DAG.getLoad(
2832           PtrVT, DL, DAG.getEntryNode(), Offset,
2833           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2834       break;
2835     }
2836   }
2837 
2838   // Add the base and offset together.
2839   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2840 }
2841 
2842 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2843                                                  SelectionDAG &DAG) const {
2844   SDLoc DL(Node);
2845   const BlockAddress *BA = Node->getBlockAddress();
2846   int64_t Offset = Node->getOffset();
2847   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2848 
2849   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2850   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2851   return Result;
2852 }
2853 
2854 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2855                                               SelectionDAG &DAG) const {
2856   SDLoc DL(JT);
2857   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2858   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2859 
2860   // Use LARL to load the address of the table.
2861   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2862 }
2863 
2864 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2865                                                  SelectionDAG &DAG) const {
2866   SDLoc DL(CP);
2867   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2868 
2869   SDValue Result;
2870   if (CP->isMachineConstantPoolEntry())
2871     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2872                                        CP->getAlignment());
2873   else
2874     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2875                                        CP->getAlignment(), CP->getOffset());
2876 
2877   // Use LARL to load the address of the constant pool entry.
2878   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2879 }
2880 
2881 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2882                                               SelectionDAG &DAG) const {
2883   MachineFunction &MF = DAG.getMachineFunction();
2884   MachineFrameInfo &MFI = MF.getFrameInfo();
2885   MFI.setFrameAddressIsTaken(true);
2886 
2887   SDLoc DL(Op);
2888   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2889   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2890 
2891   // If the back chain frame index has not been allocated yet, do so.
2892   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2893   int BackChainIdx = FI->getFramePointerSaveIndex();
2894   if (!BackChainIdx) {
2895     // By definition, the frame address is the address of the back chain.
2896     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2897     FI->setFramePointerSaveIndex(BackChainIdx);
2898   }
2899   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2900 
2901   // FIXME The frontend should detect this case.
2902   if (Depth > 0) {
2903     report_fatal_error("Unsupported stack frame traversal count");
2904   }
2905 
2906   return BackChain;
2907 }
2908 
2909 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2910                                                SelectionDAG &DAG) const {
2911   MachineFunction &MF = DAG.getMachineFunction();
2912   MachineFrameInfo &MFI = MF.getFrameInfo();
2913   MFI.setReturnAddressIsTaken(true);
2914 
2915   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2916     return SDValue();
2917 
2918   SDLoc DL(Op);
2919   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2920   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2921 
2922   // FIXME The frontend should detect this case.
2923   if (Depth > 0) {
2924     report_fatal_error("Unsupported stack frame traversal count");
2925   }
2926 
2927   // Return R14D, which has the return address. Mark it an implicit live-in.
2928   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2929   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2930 }
2931 
2932 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2933                                             SelectionDAG &DAG) const {
2934   SDLoc DL(Op);
2935   SDValue In = Op.getOperand(0);
2936   EVT InVT = In.getValueType();
2937   EVT ResVT = Op.getValueType();
2938 
2939   // Convert loads directly.  This is normally done by DAGCombiner,
2940   // but we need this case for bitcasts that are created during lowering
2941   // and which are then lowered themselves.
2942   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2943     if (ISD::isNormalLoad(LoadN))
2944       return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
2945                          LoadN->getMemOperand());
2946 
2947   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2948     SDValue In64;
2949     if (Subtarget.hasHighWord()) {
2950       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2951                                        MVT::i64);
2952       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2953                                        MVT::i64, SDValue(U64, 0), In);
2954     } else {
2955       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2956       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2957                          DAG.getConstant(32, DL, MVT::i64));
2958     }
2959     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2960     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2961                                       DL, MVT::f32, Out64);
2962   }
2963   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2964     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2965     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2966                                              MVT::f64, SDValue(U64, 0), In);
2967     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2968     if (Subtarget.hasHighWord())
2969       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2970                                         MVT::i32, Out64);
2971     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2972                                 DAG.getConstant(32, DL, MVT::i64));
2973     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2974   }
2975   llvm_unreachable("Unexpected bitcast combination");
2976 }
2977 
2978 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2979                                             SelectionDAG &DAG) const {
2980   MachineFunction &MF = DAG.getMachineFunction();
2981   SystemZMachineFunctionInfo *FuncInfo =
2982     MF.getInfo<SystemZMachineFunctionInfo>();
2983   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2984 
2985   SDValue Chain   = Op.getOperand(0);
2986   SDValue Addr    = Op.getOperand(1);
2987   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2988   SDLoc DL(Op);
2989 
2990   // The initial values of each field.
2991   const unsigned NumFields = 4;
2992   SDValue Fields[NumFields] = {
2993     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2994     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2995     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2996     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2997   };
2998 
2999   // Store each field into its respective slot.
3000   SDValue MemOps[NumFields];
3001   unsigned Offset = 0;
3002   for (unsigned I = 0; I < NumFields; ++I) {
3003     SDValue FieldAddr = Addr;
3004     if (Offset != 0)
3005       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3006                               DAG.getIntPtrConstant(Offset, DL));
3007     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3008                              MachinePointerInfo(SV, Offset));
3009     Offset += 8;
3010   }
3011   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3012 }
3013 
3014 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3015                                            SelectionDAG &DAG) const {
3016   SDValue Chain      = Op.getOperand(0);
3017   SDValue DstPtr     = Op.getOperand(1);
3018   SDValue SrcPtr     = Op.getOperand(2);
3019   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3020   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3021   SDLoc DL(Op);
3022 
3023   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3024                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3025                        /*isTailCall*/false,
3026                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3027 }
3028 
3029 SDValue SystemZTargetLowering::
3030 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3031   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3032   MachineFunction &MF = DAG.getMachineFunction();
3033   bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack");
3034   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
3035 
3036   SDValue Chain = Op.getOperand(0);
3037   SDValue Size  = Op.getOperand(1);
3038   SDValue Align = Op.getOperand(2);
3039   SDLoc DL(Op);
3040 
3041   // If user has set the no alignment function attribute, ignore
3042   // alloca alignments.
3043   uint64_t AlignVal = (RealignOpt ?
3044                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3045 
3046   uint64_t StackAlign = TFI->getStackAlignment();
3047   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3048   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3049 
3050   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3051   SDValue NeededSpace = Size;
3052 
3053   // Get a reference to the stack pointer.
3054   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3055 
3056   // If we need a backchain, save it now.
3057   SDValue Backchain;
3058   if (StoreBackchain)
3059     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3060 
3061   // Add extra space for alignment if needed.
3062   if (ExtraAlignSpace)
3063     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3064                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3065 
3066   // Get the new stack pointer value.
3067   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3068 
3069   // Copy the new stack pointer back.
3070   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3071 
3072   // The allocated data lives above the 160 bytes allocated for the standard
3073   // frame, plus any outgoing stack arguments.  We don't know how much that
3074   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3075   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3076   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3077 
3078   // Dynamically realign if needed.
3079   if (RequiredAlign > StackAlign) {
3080     Result =
3081       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3082                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3083     Result =
3084       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3085                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3086   }
3087 
3088   if (StoreBackchain)
3089     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3090 
3091   SDValue Ops[2] = { Result, Chain };
3092   return DAG.getMergeValues(Ops, DL);
3093 }
3094 
3095 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3096     SDValue Op, SelectionDAG &DAG) const {
3097   SDLoc DL(Op);
3098 
3099   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3100 }
3101 
3102 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3103                                               SelectionDAG &DAG) const {
3104   EVT VT = Op.getValueType();
3105   SDLoc DL(Op);
3106   SDValue Ops[2];
3107   if (is32Bit(VT))
3108     // Just do a normal 64-bit multiplication and extract the results.
3109     // We define this so that it can be used for constant division.
3110     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3111                     Op.getOperand(1), Ops[1], Ops[0]);
3112   else if (Subtarget.hasMiscellaneousExtensions2())
3113     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3114     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3115     // return the low half first, so the results are in reverse order.
3116     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3117                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3118   else {
3119     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3120     //
3121     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3122     //
3123     // but using the fact that the upper halves are either all zeros
3124     // or all ones:
3125     //
3126     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3127     //
3128     // and grouping the right terms together since they are quicker than the
3129     // multiplication:
3130     //
3131     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3132     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3133     SDValue LL = Op.getOperand(0);
3134     SDValue RL = Op.getOperand(1);
3135     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3136     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3137     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3138     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3139     // return the low half first, so the results are in reverse order.
3140     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3141                      LL, RL, Ops[1], Ops[0]);
3142     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3143     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3144     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3145     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3146   }
3147   return DAG.getMergeValues(Ops, DL);
3148 }
3149 
3150 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3151                                               SelectionDAG &DAG) const {
3152   EVT VT = Op.getValueType();
3153   SDLoc DL(Op);
3154   SDValue Ops[2];
3155   if (is32Bit(VT))
3156     // Just do a normal 64-bit multiplication and extract the results.
3157     // We define this so that it can be used for constant division.
3158     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3159                     Op.getOperand(1), Ops[1], Ops[0]);
3160   else
3161     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3162     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3163     // return the low half first, so the results are in reverse order.
3164     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3165                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3166   return DAG.getMergeValues(Ops, DL);
3167 }
3168 
3169 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3170                                             SelectionDAG &DAG) const {
3171   SDValue Op0 = Op.getOperand(0);
3172   SDValue Op1 = Op.getOperand(1);
3173   EVT VT = Op.getValueType();
3174   SDLoc DL(Op);
3175 
3176   // We use DSGF for 32-bit division.  This means the first operand must
3177   // always be 64-bit, and the second operand should be 32-bit whenever
3178   // that is possible, to improve performance.
3179   if (is32Bit(VT))
3180     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3181   else if (DAG.ComputeNumSignBits(Op1) > 32)
3182     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3183 
3184   // DSG(F) returns the remainder in the even register and the
3185   // quotient in the odd register.
3186   SDValue Ops[2];
3187   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3188   return DAG.getMergeValues(Ops, DL);
3189 }
3190 
3191 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3192                                             SelectionDAG &DAG) const {
3193   EVT VT = Op.getValueType();
3194   SDLoc DL(Op);
3195 
3196   // DL(G) returns the remainder in the even register and the
3197   // quotient in the odd register.
3198   SDValue Ops[2];
3199   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3200                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3201   return DAG.getMergeValues(Ops, DL);
3202 }
3203 
3204 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3205   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3206 
3207   // Get the known-zero masks for each operand.
3208   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3209   KnownBits Known[2];
3210   DAG.computeKnownBits(Ops[0], Known[0]);
3211   DAG.computeKnownBits(Ops[1], Known[1]);
3212 
3213   // See if the upper 32 bits of one operand and the lower 32 bits of the
3214   // other are known zero.  They are the low and high operands respectively.
3215   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3216                        Known[1].Zero.getZExtValue() };
3217   unsigned High, Low;
3218   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3219     High = 1, Low = 0;
3220   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3221     High = 0, Low = 1;
3222   else
3223     return Op;
3224 
3225   SDValue LowOp = Ops[Low];
3226   SDValue HighOp = Ops[High];
3227 
3228   // If the high part is a constant, we're better off using IILH.
3229   if (HighOp.getOpcode() == ISD::Constant)
3230     return Op;
3231 
3232   // If the low part is a constant that is outside the range of LHI,
3233   // then we're better off using IILF.
3234   if (LowOp.getOpcode() == ISD::Constant) {
3235     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3236     if (!isInt<16>(Value))
3237       return Op;
3238   }
3239 
3240   // Check whether the high part is an AND that doesn't change the
3241   // high 32 bits and just masks out low bits.  We can skip it if so.
3242   if (HighOp.getOpcode() == ISD::AND &&
3243       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3244     SDValue HighOp0 = HighOp.getOperand(0);
3245     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3246     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3247       HighOp = HighOp0;
3248   }
3249 
3250   // Take advantage of the fact that all GR32 operations only change the
3251   // low 32 bits by truncating Low to an i32 and inserting it directly
3252   // using a subreg.  The interesting cases are those where the truncation
3253   // can be folded.
3254   SDLoc DL(Op);
3255   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3256   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3257                                    MVT::i64, HighOp, Low32);
3258 }
3259 
3260 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3261                                           SelectionDAG &DAG) const {
3262   EVT VT = Op.getValueType();
3263   SDLoc DL(Op);
3264   Op = Op.getOperand(0);
3265 
3266   // Handle vector types via VPOPCT.
3267   if (VT.isVector()) {
3268     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3269     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3270     switch (VT.getScalarSizeInBits()) {
3271     case 8:
3272       break;
3273     case 16: {
3274       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3275       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3276       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3277       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3278       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3279       break;
3280     }
3281     case 32: {
3282       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3283                                 DAG.getConstant(0, DL, MVT::i32));
3284       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3285       break;
3286     }
3287     case 64: {
3288       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3289                                 DAG.getConstant(0, DL, MVT::i32));
3290       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3291       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3292       break;
3293     }
3294     default:
3295       llvm_unreachable("Unexpected type");
3296     }
3297     return Op;
3298   }
3299 
3300   // Get the known-zero mask for the operand.
3301   KnownBits Known;
3302   DAG.computeKnownBits(Op, Known);
3303   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3304   if (NumSignificantBits == 0)
3305     return DAG.getConstant(0, DL, VT);
3306 
3307   // Skip known-zero high parts of the operand.
3308   int64_t OrigBitSize = VT.getSizeInBits();
3309   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3310   BitSize = std::min(BitSize, OrigBitSize);
3311 
3312   // The POPCNT instruction counts the number of bits in each byte.
3313   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3314   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3315   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3316 
3317   // Add up per-byte counts in a binary tree.  All bits of Op at
3318   // position larger than BitSize remain zero throughout.
3319   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3320     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3321     if (BitSize != OrigBitSize)
3322       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3323                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3324     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3325   }
3326 
3327   // Extract overall result from high byte.
3328   if (BitSize > 8)
3329     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3330                      DAG.getConstant(BitSize - 8, DL, VT));
3331 
3332   return Op;
3333 }
3334 
3335 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3336                                                  SelectionDAG &DAG) const {
3337   SDLoc DL(Op);
3338   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3339     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3340   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3341     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3342 
3343   // The only fence that needs an instruction is a sequentially-consistent
3344   // cross-thread fence.
3345   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3346       FenceSSID == SyncScope::System) {
3347     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3348                                       Op.getOperand(0)),
3349                    0);
3350   }
3351 
3352   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3353   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3354 }
3355 
3356 // Op is an atomic load.  Lower it into a normal volatile load.
3357 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3358                                                 SelectionDAG &DAG) const {
3359   auto *Node = cast<AtomicSDNode>(Op.getNode());
3360   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3361                         Node->getChain(), Node->getBasePtr(),
3362                         Node->getMemoryVT(), Node->getMemOperand());
3363 }
3364 
3365 // Op is an atomic store.  Lower it into a normal volatile store.
3366 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3367                                                  SelectionDAG &DAG) const {
3368   auto *Node = cast<AtomicSDNode>(Op.getNode());
3369   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3370                                     Node->getBasePtr(), Node->getMemoryVT(),
3371                                     Node->getMemOperand());
3372   // We have to enforce sequential consistency by performing a
3373   // serialization operation after the store.
3374   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3375     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3376                                        MVT::Other, Chain), 0);
3377   return Chain;
3378 }
3379 
3380 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3381 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3382 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3383                                                    SelectionDAG &DAG,
3384                                                    unsigned Opcode) const {
3385   auto *Node = cast<AtomicSDNode>(Op.getNode());
3386 
3387   // 32-bit operations need no code outside the main loop.
3388   EVT NarrowVT = Node->getMemoryVT();
3389   EVT WideVT = MVT::i32;
3390   if (NarrowVT == WideVT)
3391     return Op;
3392 
3393   int64_t BitSize = NarrowVT.getSizeInBits();
3394   SDValue ChainIn = Node->getChain();
3395   SDValue Addr = Node->getBasePtr();
3396   SDValue Src2 = Node->getVal();
3397   MachineMemOperand *MMO = Node->getMemOperand();
3398   SDLoc DL(Node);
3399   EVT PtrVT = Addr.getValueType();
3400 
3401   // Convert atomic subtracts of constants into additions.
3402   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3403     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3404       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3405       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3406     }
3407 
3408   // Get the address of the containing word.
3409   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3410                                     DAG.getConstant(-4, DL, PtrVT));
3411 
3412   // Get the number of bits that the word must be rotated left in order
3413   // to bring the field to the top bits of a GR32.
3414   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3415                                  DAG.getConstant(3, DL, PtrVT));
3416   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3417 
3418   // Get the complementing shift amount, for rotating a field in the top
3419   // bits back to its proper position.
3420   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3421                                     DAG.getConstant(0, DL, WideVT), BitShift);
3422 
3423   // Extend the source operand to 32 bits and prepare it for the inner loop.
3424   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3425   // operations require the source to be shifted in advance.  (This shift
3426   // can be folded if the source is constant.)  For AND and NAND, the lower
3427   // bits must be set, while for other opcodes they should be left clear.
3428   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3429     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3430                        DAG.getConstant(32 - BitSize, DL, WideVT));
3431   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3432       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3433     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3434                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3435 
3436   // Construct the ATOMIC_LOADW_* node.
3437   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3438   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3439                     DAG.getConstant(BitSize, DL, WideVT) };
3440   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3441                                              NarrowVT, MMO);
3442 
3443   // Rotate the result of the final CS so that the field is in the lower
3444   // bits of a GR32, then truncate it.
3445   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3446                                     DAG.getConstant(BitSize, DL, WideVT));
3447   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3448 
3449   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3450   return DAG.getMergeValues(RetOps, DL);
3451 }
3452 
3453 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3454 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3455 // operations into additions.
3456 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3457                                                     SelectionDAG &DAG) const {
3458   auto *Node = cast<AtomicSDNode>(Op.getNode());
3459   EVT MemVT = Node->getMemoryVT();
3460   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3461     // A full-width operation.
3462     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3463     SDValue Src2 = Node->getVal();
3464     SDValue NegSrc2;
3465     SDLoc DL(Src2);
3466 
3467     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3468       // Use an addition if the operand is constant and either LAA(G) is
3469       // available or the negative value is in the range of A(G)FHI.
3470       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3471       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3472         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3473     } else if (Subtarget.hasInterlockedAccess1())
3474       // Use LAA(G) if available.
3475       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3476                             Src2);
3477 
3478     if (NegSrc2.getNode())
3479       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3480                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3481                            Node->getMemOperand());
3482 
3483     // Use the node as-is.
3484     return Op;
3485   }
3486 
3487   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3488 }
3489 
3490 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3491 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3492                                                     SelectionDAG &DAG) const {
3493   auto *Node = cast<AtomicSDNode>(Op.getNode());
3494   SDValue ChainIn = Node->getOperand(0);
3495   SDValue Addr = Node->getOperand(1);
3496   SDValue CmpVal = Node->getOperand(2);
3497   SDValue SwapVal = Node->getOperand(3);
3498   MachineMemOperand *MMO = Node->getMemOperand();
3499   SDLoc DL(Node);
3500 
3501   // We have native support for 32-bit and 64-bit compare and swap, but we
3502   // still need to expand extracting the "success" result from the CC.
3503   EVT NarrowVT = Node->getMemoryVT();
3504   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3505   if (NarrowVT == WideVT) {
3506     SDVTList Tys = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3507     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3508     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3509                                                DL, Tys, Ops, NarrowVT, MMO);
3510     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3511                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3512 
3513     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3514     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3515     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3516     return SDValue();
3517   }
3518 
3519   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3520   // via a fullword ATOMIC_CMP_SWAPW operation.
3521   int64_t BitSize = NarrowVT.getSizeInBits();
3522   EVT PtrVT = Addr.getValueType();
3523 
3524   // Get the address of the containing word.
3525   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3526                                     DAG.getConstant(-4, DL, PtrVT));
3527 
3528   // Get the number of bits that the word must be rotated left in order
3529   // to bring the field to the top bits of a GR32.
3530   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3531                                  DAG.getConstant(3, DL, PtrVT));
3532   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3533 
3534   // Get the complementing shift amount, for rotating a field in the top
3535   // bits back to its proper position.
3536   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3537                                     DAG.getConstant(0, DL, WideVT), BitShift);
3538 
3539   // Construct the ATOMIC_CMP_SWAPW node.
3540   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3541   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3542                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3543   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3544                                              VTList, Ops, NarrowVT, MMO);
3545   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3546                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3547 
3548   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3549   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3550   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3551   return SDValue();
3552 }
3553 
3554 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3555                                               SelectionDAG &DAG) const {
3556   MachineFunction &MF = DAG.getMachineFunction();
3557   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3558   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3559                             SystemZ::R15D, Op.getValueType());
3560 }
3561 
3562 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3563                                                  SelectionDAG &DAG) const {
3564   MachineFunction &MF = DAG.getMachineFunction();
3565   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3566   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
3567 
3568   SDValue Chain = Op.getOperand(0);
3569   SDValue NewSP = Op.getOperand(1);
3570   SDValue Backchain;
3571   SDLoc DL(Op);
3572 
3573   if (StoreBackchain) {
3574     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3575     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3576   }
3577 
3578   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3579 
3580   if (StoreBackchain)
3581     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3582 
3583   return Chain;
3584 }
3585 
3586 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3587                                              SelectionDAG &DAG) const {
3588   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3589   if (!IsData)
3590     // Just preserve the chain.
3591     return Op.getOperand(0);
3592 
3593   SDLoc DL(Op);
3594   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3595   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3596   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3597   SDValue Ops[] = {
3598     Op.getOperand(0),
3599     DAG.getConstant(Code, DL, MVT::i32),
3600     Op.getOperand(1)
3601   };
3602   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3603                                  Node->getVTList(), Ops,
3604                                  Node->getMemoryVT(), Node->getMemOperand());
3605 }
3606 
3607 // Return an i32 that contains the value of CC immediately after After,
3608 // whose final operand must be MVT::Glue.
3609 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3610   SDLoc DL(After);
3611   SDValue Glue = SDValue(After, After->getNumValues() - 1);
3612   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3613   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3614                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3615 }
3616 
3617 SDValue
3618 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3619                                               SelectionDAG &DAG) const {
3620   unsigned Opcode, CCValid;
3621   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3622     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3623     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3624     SDValue CC = getCCResult(DAG, Glued.getNode());
3625     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3626     return SDValue();
3627   }
3628 
3629   return SDValue();
3630 }
3631 
3632 SDValue
3633 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3634                                                SelectionDAG &DAG) const {
3635   unsigned Opcode, CCValid;
3636   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3637     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3638     SDValue CC = getCCResult(DAG, Glued.getNode());
3639     if (Op->getNumValues() == 1)
3640       return CC;
3641     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3642     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3643                        CC);
3644   }
3645 
3646   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3647   switch (Id) {
3648   case Intrinsic::thread_pointer:
3649     return lowerThreadPointer(SDLoc(Op), DAG);
3650 
3651   case Intrinsic::s390_vpdi:
3652     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3653                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3654 
3655   case Intrinsic::s390_vperm:
3656     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3657                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3658 
3659   case Intrinsic::s390_vuphb:
3660   case Intrinsic::s390_vuphh:
3661   case Intrinsic::s390_vuphf:
3662     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3663                        Op.getOperand(1));
3664 
3665   case Intrinsic::s390_vuplhb:
3666   case Intrinsic::s390_vuplhh:
3667   case Intrinsic::s390_vuplhf:
3668     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3669                        Op.getOperand(1));
3670 
3671   case Intrinsic::s390_vuplb:
3672   case Intrinsic::s390_vuplhw:
3673   case Intrinsic::s390_vuplf:
3674     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3675                        Op.getOperand(1));
3676 
3677   case Intrinsic::s390_vupllb:
3678   case Intrinsic::s390_vupllh:
3679   case Intrinsic::s390_vupllf:
3680     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3681                        Op.getOperand(1));
3682 
3683   case Intrinsic::s390_vsumb:
3684   case Intrinsic::s390_vsumh:
3685   case Intrinsic::s390_vsumgh:
3686   case Intrinsic::s390_vsumgf:
3687   case Intrinsic::s390_vsumqf:
3688   case Intrinsic::s390_vsumqg:
3689     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3690                        Op.getOperand(1), Op.getOperand(2));
3691   }
3692 
3693   return SDValue();
3694 }
3695 
3696 namespace {
3697 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3698 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3699 // Operand is the constant third operand, otherwise it is the number of
3700 // bytes in each element of the result.
3701 struct Permute {
3702   unsigned Opcode;
3703   unsigned Operand;
3704   unsigned char Bytes[SystemZ::VectorBytes];
3705 };
3706 }
3707 
3708 static const Permute PermuteForms[] = {
3709   // VMRHG
3710   { SystemZISD::MERGE_HIGH, 8,
3711     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3712   // VMRHF
3713   { SystemZISD::MERGE_HIGH, 4,
3714     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3715   // VMRHH
3716   { SystemZISD::MERGE_HIGH, 2,
3717     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3718   // VMRHB
3719   { SystemZISD::MERGE_HIGH, 1,
3720     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3721   // VMRLG
3722   { SystemZISD::MERGE_LOW, 8,
3723     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3724   // VMRLF
3725   { SystemZISD::MERGE_LOW, 4,
3726     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3727   // VMRLH
3728   { SystemZISD::MERGE_LOW, 2,
3729     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3730   // VMRLB
3731   { SystemZISD::MERGE_LOW, 1,
3732     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3733   // VPKG
3734   { SystemZISD::PACK, 4,
3735     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3736   // VPKF
3737   { SystemZISD::PACK, 2,
3738     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3739   // VPKH
3740   { SystemZISD::PACK, 1,
3741     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3742   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3743   { SystemZISD::PERMUTE_DWORDS, 4,
3744     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3745   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3746   { SystemZISD::PERMUTE_DWORDS, 1,
3747     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3748 };
3749 
3750 // Called after matching a vector shuffle against a particular pattern.
3751 // Both the original shuffle and the pattern have two vector operands.
3752 // OpNos[0] is the operand of the original shuffle that should be used for
3753 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3754 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3755 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3756 // for operands 0 and 1 of the pattern.
3757 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3758   if (OpNos[0] < 0) {
3759     if (OpNos[1] < 0)
3760       return false;
3761     OpNo0 = OpNo1 = OpNos[1];
3762   } else if (OpNos[1] < 0) {
3763     OpNo0 = OpNo1 = OpNos[0];
3764   } else {
3765     OpNo0 = OpNos[0];
3766     OpNo1 = OpNos[1];
3767   }
3768   return true;
3769 }
3770 
3771 // Bytes is a VPERM-like permute vector, except that -1 is used for
3772 // undefined bytes.  Return true if the VPERM can be implemented using P.
3773 // When returning true set OpNo0 to the VPERM operand that should be
3774 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3775 //
3776 // For example, if swapping the VPERM operands allows P to match, OpNo0
3777 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3778 // operand, but rewriting it to use two duplicated operands allows it to
3779 // match P, then OpNo0 and OpNo1 will be the same.
3780 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3781                          unsigned &OpNo0, unsigned &OpNo1) {
3782   int OpNos[] = { -1, -1 };
3783   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3784     int Elt = Bytes[I];
3785     if (Elt >= 0) {
3786       // Make sure that the two permute vectors use the same suboperand
3787       // byte number.  Only the operand numbers (the high bits) are
3788       // allowed to differ.
3789       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3790         return false;
3791       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3792       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3793       // Make sure that the operand mappings are consistent with previous
3794       // elements.
3795       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3796         return false;
3797       OpNos[ModelOpNo] = RealOpNo;
3798     }
3799   }
3800   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3801 }
3802 
3803 // As above, but search for a matching permute.
3804 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3805                                    unsigned &OpNo0, unsigned &OpNo1) {
3806   for (auto &P : PermuteForms)
3807     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3808       return &P;
3809   return nullptr;
3810 }
3811 
3812 // Bytes is a VPERM-like permute vector, except that -1 is used for
3813 // undefined bytes.  This permute is an operand of an outer permute.
3814 // See whether redistributing the -1 bytes gives a shuffle that can be
3815 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3816 // that, when applied to the result of P, gives the original permute in Bytes.
3817 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3818                                const Permute &P,
3819                                SmallVectorImpl<int> &Transform) {
3820   unsigned To = 0;
3821   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3822     int Elt = Bytes[From];
3823     if (Elt < 0)
3824       // Byte number From of the result is undefined.
3825       Transform[From] = -1;
3826     else {
3827       while (P.Bytes[To] != Elt) {
3828         To += 1;
3829         if (To == SystemZ::VectorBytes)
3830           return false;
3831       }
3832       Transform[From] = To;
3833     }
3834   }
3835   return true;
3836 }
3837 
3838 // As above, but search for a matching permute.
3839 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3840                                          SmallVectorImpl<int> &Transform) {
3841   for (auto &P : PermuteForms)
3842     if (matchDoublePermute(Bytes, P, Transform))
3843       return &P;
3844   return nullptr;
3845 }
3846 
3847 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3848 // as if it had type vNi8.
3849 static void getVPermMask(ShuffleVectorSDNode *VSN,
3850                          SmallVectorImpl<int> &Bytes) {
3851   EVT VT = VSN->getValueType(0);
3852   unsigned NumElements = VT.getVectorNumElements();
3853   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3854   Bytes.resize(NumElements * BytesPerElement, -1);
3855   for (unsigned I = 0; I < NumElements; ++I) {
3856     int Index = VSN->getMaskElt(I);
3857     if (Index >= 0)
3858       for (unsigned J = 0; J < BytesPerElement; ++J)
3859         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3860   }
3861 }
3862 
3863 // Bytes is a VPERM-like permute vector, except that -1 is used for
3864 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3865 // the result come from a contiguous sequence of bytes from one input.
3866 // Set Base to the selector for the first byte if so.
3867 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3868                             unsigned BytesPerElement, int &Base) {
3869   Base = -1;
3870   for (unsigned I = 0; I < BytesPerElement; ++I) {
3871     if (Bytes[Start + I] >= 0) {
3872       unsigned Elem = Bytes[Start + I];
3873       if (Base < 0) {
3874         Base = Elem - I;
3875         // Make sure the bytes would come from one input operand.
3876         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3877           return false;
3878       } else if (unsigned(Base) != Elem - I)
3879         return false;
3880     }
3881   }
3882   return true;
3883 }
3884 
3885 // Bytes is a VPERM-like permute vector, except that -1 is used for
3886 // undefined bytes.  Return true if it can be performed using VSLDI.
3887 // When returning true, set StartIndex to the shift amount and OpNo0
3888 // and OpNo1 to the VPERM operands that should be used as the first
3889 // and second shift operand respectively.
3890 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3891                                unsigned &StartIndex, unsigned &OpNo0,
3892                                unsigned &OpNo1) {
3893   int OpNos[] = { -1, -1 };
3894   int Shift = -1;
3895   for (unsigned I = 0; I < 16; ++I) {
3896     int Index = Bytes[I];
3897     if (Index >= 0) {
3898       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3899       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3900       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3901       if (Shift < 0)
3902         Shift = ExpectedShift;
3903       else if (Shift != ExpectedShift)
3904         return false;
3905       // Make sure that the operand mappings are consistent with previous
3906       // elements.
3907       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3908         return false;
3909       OpNos[ModelOpNo] = RealOpNo;
3910     }
3911   }
3912   StartIndex = Shift;
3913   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3914 }
3915 
3916 // Create a node that performs P on operands Op0 and Op1, casting the
3917 // operands to the appropriate type.  The type of the result is determined by P.
3918 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3919                               const Permute &P, SDValue Op0, SDValue Op1) {
3920   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3921   // elements of a PACK are twice as wide as the outputs.
3922   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3923                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3924                       P.Operand);
3925   // Cast both operands to the appropriate type.
3926   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3927                               SystemZ::VectorBytes / InBytes);
3928   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3929   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3930   SDValue Op;
3931   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3932     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3933     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3934   } else if (P.Opcode == SystemZISD::PACK) {
3935     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3936                                  SystemZ::VectorBytes / P.Operand);
3937     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3938   } else {
3939     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3940   }
3941   return Op;
3942 }
3943 
3944 // Bytes is a VPERM-like permute vector, except that -1 is used for
3945 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3946 // VSLDI or VPERM.
3947 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3948                                      SDValue *Ops,
3949                                      const SmallVectorImpl<int> &Bytes) {
3950   for (unsigned I = 0; I < 2; ++I)
3951     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3952 
3953   // First see whether VSLDI can be used.
3954   unsigned StartIndex, OpNo0, OpNo1;
3955   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3956     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3957                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3958 
3959   // Fall back on VPERM.  Construct an SDNode for the permute vector.
3960   SDValue IndexNodes[SystemZ::VectorBytes];
3961   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3962     if (Bytes[I] >= 0)
3963       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3964     else
3965       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3966   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3967   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3968 }
3969 
3970 namespace {
3971 // Describes a general N-operand vector shuffle.
3972 struct GeneralShuffle {
3973   GeneralShuffle(EVT vt) : VT(vt) {}
3974   void addUndef();
3975   bool add(SDValue, unsigned);
3976   SDValue getNode(SelectionDAG &, const SDLoc &);
3977 
3978   // The operands of the shuffle.
3979   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3980 
3981   // Index I is -1 if byte I of the result is undefined.  Otherwise the
3982   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3983   // Bytes[I] / SystemZ::VectorBytes.
3984   SmallVector<int, SystemZ::VectorBytes> Bytes;
3985 
3986   // The type of the shuffle result.
3987   EVT VT;
3988 };
3989 }
3990 
3991 // Add an extra undefined element to the shuffle.
3992 void GeneralShuffle::addUndef() {
3993   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3994   for (unsigned I = 0; I < BytesPerElement; ++I)
3995     Bytes.push_back(-1);
3996 }
3997 
3998 // Add an extra element to the shuffle, taking it from element Elem of Op.
3999 // A null Op indicates a vector input whose value will be calculated later;
4000 // there is at most one such input per shuffle and it always has the same
4001 // type as the result. Aborts and returns false if the source vector elements
4002 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4003 // LLVM they become implicitly extended, but this is rare and not optimized.
4004 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4005   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4006 
4007   // The source vector can have wider elements than the result,
4008   // either through an explicit TRUNCATE or because of type legalization.
4009   // We want the least significant part.
4010   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4011   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4012 
4013   // Return false if the source elements are smaller than their destination
4014   // elements.
4015   if (FromBytesPerElement < BytesPerElement)
4016     return false;
4017 
4018   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4019                    (FromBytesPerElement - BytesPerElement));
4020 
4021   // Look through things like shuffles and bitcasts.
4022   while (Op.getNode()) {
4023     if (Op.getOpcode() == ISD::BITCAST)
4024       Op = Op.getOperand(0);
4025     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4026       // See whether the bytes we need come from a contiguous part of one
4027       // operand.
4028       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4029       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
4030       int NewByte;
4031       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4032         break;
4033       if (NewByte < 0) {
4034         addUndef();
4035         return true;
4036       }
4037       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4038       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4039     } else if (Op.isUndef()) {
4040       addUndef();
4041       return true;
4042     } else
4043       break;
4044   }
4045 
4046   // Make sure that the source of the extraction is in Ops.
4047   unsigned OpNo = 0;
4048   for (; OpNo < Ops.size(); ++OpNo)
4049     if (Ops[OpNo] == Op)
4050       break;
4051   if (OpNo == Ops.size())
4052     Ops.push_back(Op);
4053 
4054   // Add the element to Bytes.
4055   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4056   for (unsigned I = 0; I < BytesPerElement; ++I)
4057     Bytes.push_back(Base + I);
4058 
4059   return true;
4060 }
4061 
4062 // Return SDNodes for the completed shuffle.
4063 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4064   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4065 
4066   if (Ops.size() == 0)
4067     return DAG.getUNDEF(VT);
4068 
4069   // Make sure that there are at least two shuffle operands.
4070   if (Ops.size() == 1)
4071     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4072 
4073   // Create a tree of shuffles, deferring root node until after the loop.
4074   // Try to redistribute the undefined elements of non-root nodes so that
4075   // the non-root shuffles match something like a pack or merge, then adjust
4076   // the parent node's permute vector to compensate for the new order.
4077   // Among other things, this copes with vectors like <2 x i16> that were
4078   // padded with undefined elements during type legalization.
4079   //
4080   // In the best case this redistribution will lead to the whole tree
4081   // using packs and merges.  It should rarely be a loss in other cases.
4082   unsigned Stride = 1;
4083   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4084     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4085       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4086 
4087       // Create a mask for just these two operands.
4088       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4089       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4090         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4091         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4092         if (OpNo == I)
4093           NewBytes[J] = Byte;
4094         else if (OpNo == I + Stride)
4095           NewBytes[J] = SystemZ::VectorBytes + Byte;
4096         else
4097           NewBytes[J] = -1;
4098       }
4099       // See if it would be better to reorganize NewMask to avoid using VPERM.
4100       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4101       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4102         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4103         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4104         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4105           if (NewBytes[J] >= 0) {
4106             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4107                    "Invalid double permute");
4108             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4109           } else
4110             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4111         }
4112       } else {
4113         // Just use NewBytes on the operands.
4114         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4115         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4116           if (NewBytes[J] >= 0)
4117             Bytes[J] = I * SystemZ::VectorBytes + J;
4118       }
4119     }
4120   }
4121 
4122   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4123   if (Stride > 1) {
4124     Ops[1] = Ops[Stride];
4125     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4126       if (Bytes[I] >= int(SystemZ::VectorBytes))
4127         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4128   }
4129 
4130   // Look for an instruction that can do the permute without resorting
4131   // to VPERM.
4132   unsigned OpNo0, OpNo1;
4133   SDValue Op;
4134   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4135     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4136   else
4137     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4138   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4139 }
4140 
4141 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4142 static bool isScalarToVector(SDValue Op) {
4143   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4144     if (!Op.getOperand(I).isUndef())
4145       return false;
4146   return true;
4147 }
4148 
4149 // Return a vector of type VT that contains Value in the first element.
4150 // The other elements don't matter.
4151 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4152                                    SDValue Value) {
4153   // If we have a constant, replicate it to all elements and let the
4154   // BUILD_VECTOR lowering take care of it.
4155   if (Value.getOpcode() == ISD::Constant ||
4156       Value.getOpcode() == ISD::ConstantFP) {
4157     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4158     return DAG.getBuildVector(VT, DL, Ops);
4159   }
4160   if (Value.isUndef())
4161     return DAG.getUNDEF(VT);
4162   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4163 }
4164 
4165 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4166 // element 1.  Used for cases in which replication is cheap.
4167 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4168                                  SDValue Op0, SDValue Op1) {
4169   if (Op0.isUndef()) {
4170     if (Op1.isUndef())
4171       return DAG.getUNDEF(VT);
4172     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4173   }
4174   if (Op1.isUndef())
4175     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4176   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4177                      buildScalarToVector(DAG, DL, VT, Op0),
4178                      buildScalarToVector(DAG, DL, VT, Op1));
4179 }
4180 
4181 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4182 // vector for them.
4183 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4184                           SDValue Op1) {
4185   if (Op0.isUndef() && Op1.isUndef())
4186     return DAG.getUNDEF(MVT::v2i64);
4187   // If one of the two inputs is undefined then replicate the other one,
4188   // in order to avoid using another register unnecessarily.
4189   if (Op0.isUndef())
4190     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4191   else if (Op1.isUndef())
4192     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4193   else {
4194     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4195     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4196   }
4197   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4198 }
4199 
4200 // Try to represent constant BUILD_VECTOR node BVN using a
4201 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4202 // on success.
4203 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4204   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4205   unsigned BytesPerElement = ElemVT.getStoreSize();
4206   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4207     SDValue Op = BVN->getOperand(I);
4208     if (!Op.isUndef()) {
4209       uint64_t Value;
4210       if (Op.getOpcode() == ISD::Constant)
4211         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4212       else if (Op.getOpcode() == ISD::ConstantFP)
4213         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4214                  .getZExtValue());
4215       else
4216         return false;
4217       for (unsigned J = 0; J < BytesPerElement; ++J) {
4218         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4219         if (Byte == 0xff)
4220           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4221         else if (Byte != 0)
4222           return false;
4223       }
4224     }
4225   }
4226   return true;
4227 }
4228 
4229 // Try to load a vector constant in which BitsPerElement-bit value Value
4230 // is replicated to fill the vector.  VT is the type of the resulting
4231 // constant, which may have elements of a different size from BitsPerElement.
4232 // Return the SDValue of the constant on success, otherwise return
4233 // an empty value.
4234 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4235                                        const SystemZInstrInfo *TII,
4236                                        const SDLoc &DL, EVT VT, uint64_t Value,
4237                                        unsigned BitsPerElement) {
4238   // Signed 16-bit values can be replicated using VREPI.
4239   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4240   if (isInt<16>(SignedValue)) {
4241     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4242                                  SystemZ::VectorBits / BitsPerElement);
4243     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4244                              DAG.getConstant(SignedValue, DL, MVT::i32));
4245     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4246   }
4247   // See whether rotating the constant left some N places gives a value that
4248   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4249   // If so we can use VGM.
4250   unsigned Start, End;
4251   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4252     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4253     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4254     // bit numbers for an BitsPerElement value, so that 0 denotes
4255     // 1 << (BitsPerElement-1).
4256     Start -= 64 - BitsPerElement;
4257     End -= 64 - BitsPerElement;
4258     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4259                                  SystemZ::VectorBits / BitsPerElement);
4260     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4261                              DAG.getConstant(Start, DL, MVT::i32),
4262                              DAG.getConstant(End, DL, MVT::i32));
4263     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4264   }
4265   return SDValue();
4266 }
4267 
4268 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4269 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4270 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4271 // would benefit from this representation and return it if so.
4272 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4273                                      BuildVectorSDNode *BVN) {
4274   EVT VT = BVN->getValueType(0);
4275   unsigned NumElements = VT.getVectorNumElements();
4276 
4277   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4278   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4279   // need a BUILD_VECTOR, add an additional placeholder operand for that
4280   // BUILD_VECTOR and store its operands in ResidueOps.
4281   GeneralShuffle GS(VT);
4282   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4283   bool FoundOne = false;
4284   for (unsigned I = 0; I < NumElements; ++I) {
4285     SDValue Op = BVN->getOperand(I);
4286     if (Op.getOpcode() == ISD::TRUNCATE)
4287       Op = Op.getOperand(0);
4288     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4289         Op.getOperand(1).getOpcode() == ISD::Constant) {
4290       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4291       if (!GS.add(Op.getOperand(0), Elem))
4292         return SDValue();
4293       FoundOne = true;
4294     } else if (Op.isUndef()) {
4295       GS.addUndef();
4296     } else {
4297       if (!GS.add(SDValue(), ResidueOps.size()))
4298         return SDValue();
4299       ResidueOps.push_back(BVN->getOperand(I));
4300     }
4301   }
4302 
4303   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4304   if (!FoundOne)
4305     return SDValue();
4306 
4307   // Create the BUILD_VECTOR for the remaining elements, if any.
4308   if (!ResidueOps.empty()) {
4309     while (ResidueOps.size() < NumElements)
4310       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4311     for (auto &Op : GS.Ops) {
4312       if (!Op.getNode()) {
4313         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4314         break;
4315       }
4316     }
4317   }
4318   return GS.getNode(DAG, SDLoc(BVN));
4319 }
4320 
4321 // Combine GPR scalar values Elems into a vector of type VT.
4322 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4323                            SmallVectorImpl<SDValue> &Elems) {
4324   // See whether there is a single replicated value.
4325   SDValue Single;
4326   unsigned int NumElements = Elems.size();
4327   unsigned int Count = 0;
4328   for (auto Elem : Elems) {
4329     if (!Elem.isUndef()) {
4330       if (!Single.getNode())
4331         Single = Elem;
4332       else if (Elem != Single) {
4333         Single = SDValue();
4334         break;
4335       }
4336       Count += 1;
4337     }
4338   }
4339   // There are three cases here:
4340   //
4341   // - if the only defined element is a loaded one, the best sequence
4342   //   is a replicating load.
4343   //
4344   // - otherwise, if the only defined element is an i64 value, we will
4345   //   end up with the same VLVGP sequence regardless of whether we short-cut
4346   //   for replication or fall through to the later code.
4347   //
4348   // - otherwise, if the only defined element is an i32 or smaller value,
4349   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4350   //   This is only a win if the single defined element is used more than once.
4351   //   In other cases we're better off using a single VLVGx.
4352   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4353     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4354 
4355   // If all elements are loads, use VLREP/VLEs (below).
4356   bool AllLoads = true;
4357   for (auto Elem : Elems)
4358     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4359       AllLoads = false;
4360       break;
4361     }
4362 
4363   // The best way of building a v2i64 from two i64s is to use VLVGP.
4364   if (VT == MVT::v2i64 && !AllLoads)
4365     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4366 
4367   // Use a 64-bit merge high to combine two doubles.
4368   if (VT == MVT::v2f64 && !AllLoads)
4369     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4370 
4371   // Build v4f32 values directly from the FPRs:
4372   //
4373   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4374   //         V              V         VMRHF
4375   //      <ABxx>         <CDxx>
4376   //                V                 VMRHG
4377   //              <ABCD>
4378   if (VT == MVT::v4f32 && !AllLoads) {
4379     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4380     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4381     // Avoid unnecessary undefs by reusing the other operand.
4382     if (Op01.isUndef())
4383       Op01 = Op23;
4384     else if (Op23.isUndef())
4385       Op23 = Op01;
4386     // Merging identical replications is a no-op.
4387     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4388       return Op01;
4389     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4390     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4391     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4392                              DL, MVT::v2i64, Op01, Op23);
4393     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4394   }
4395 
4396   // Collect the constant terms.
4397   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4398   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4399 
4400   unsigned NumConstants = 0;
4401   for (unsigned I = 0; I < NumElements; ++I) {
4402     SDValue Elem = Elems[I];
4403     if (Elem.getOpcode() == ISD::Constant ||
4404         Elem.getOpcode() == ISD::ConstantFP) {
4405       NumConstants += 1;
4406       Constants[I] = Elem;
4407       Done[I] = true;
4408     }
4409   }
4410   // If there was at least one constant, fill in the other elements of
4411   // Constants with undefs to get a full vector constant and use that
4412   // as the starting point.
4413   SDValue Result;
4414   if (NumConstants > 0) {
4415     for (unsigned I = 0; I < NumElements; ++I)
4416       if (!Constants[I].getNode())
4417         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4418     Result = DAG.getBuildVector(VT, DL, Constants);
4419   } else {
4420     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4421     // avoid a false dependency on any previous contents of the vector
4422     // register.
4423 
4424     // Use a VLREP if at least one element is a load.
4425     unsigned LoadElIdx = UINT_MAX;
4426     for (unsigned I = 0; I < NumElements; ++I)
4427       if (Elems[I].getOpcode() == ISD::LOAD &&
4428           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4429         LoadElIdx = I;
4430         break;
4431       }
4432     if (LoadElIdx != UINT_MAX) {
4433       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]);
4434       Done[LoadElIdx] = true;
4435     } else {
4436       // Try to use VLVGP.
4437       unsigned I1 = NumElements / 2 - 1;
4438       unsigned I2 = NumElements - 1;
4439       bool Def1 = !Elems[I1].isUndef();
4440       bool Def2 = !Elems[I2].isUndef();
4441       if (Def1 || Def2) {
4442         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4443         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4444         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4445                              joinDwords(DAG, DL, Elem1, Elem2));
4446         Done[I1] = true;
4447         Done[I2] = true;
4448       } else
4449         Result = DAG.getUNDEF(VT);
4450     }
4451   }
4452 
4453   // Use VLVGx to insert the other elements.
4454   for (unsigned I = 0; I < NumElements; ++I)
4455     if (!Done[I] && !Elems[I].isUndef())
4456       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4457                            DAG.getConstant(I, DL, MVT::i32));
4458   return Result;
4459 }
4460 
4461 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4462                                                  SelectionDAG &DAG) const {
4463   const SystemZInstrInfo *TII =
4464     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4465   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4466   SDLoc DL(Op);
4467   EVT VT = Op.getValueType();
4468 
4469   if (BVN->isConstant()) {
4470     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4471     // preferred way of creating all-zero and all-one vectors so give it
4472     // priority over other methods below.
4473     uint64_t Mask = 0;
4474     if (tryBuildVectorByteMask(BVN, Mask)) {
4475       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4476                                DAG.getConstant(Mask, DL, MVT::i32));
4477       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4478     }
4479 
4480     // Try using some form of replication.
4481     APInt SplatBits, SplatUndef;
4482     unsigned SplatBitSize;
4483     bool HasAnyUndefs;
4484     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4485                              8, true) &&
4486         SplatBitSize <= 64) {
4487       // First try assuming that any undefined bits above the highest set bit
4488       // and below the lowest set bit are 1s.  This increases the likelihood of
4489       // being able to use a sign-extended element value in VECTOR REPLICATE
4490       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4491       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4492       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4493       uint64_t Lower = (SplatUndefZ
4494                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4495       uint64_t Upper = (SplatUndefZ
4496                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4497       uint64_t Value = SplatBitsZ | Upper | Lower;
4498       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4499                                            SplatBitSize);
4500       if (Op.getNode())
4501         return Op;
4502 
4503       // Now try assuming that any undefined bits between the first and
4504       // last defined set bits are set.  This increases the chances of
4505       // using a non-wraparound mask.
4506       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4507       Value = SplatBitsZ | Middle;
4508       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4509       if (Op.getNode())
4510         return Op;
4511     }
4512 
4513     // Fall back to loading it from memory.
4514     return SDValue();
4515   }
4516 
4517   // See if we should use shuffles to construct the vector from other vectors.
4518   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4519     return Res;
4520 
4521   // Detect SCALAR_TO_VECTOR conversions.
4522   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4523     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4524 
4525   // Otherwise use buildVector to build the vector up from GPRs.
4526   unsigned NumElements = Op.getNumOperands();
4527   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4528   for (unsigned I = 0; I < NumElements; ++I)
4529     Ops[I] = Op.getOperand(I);
4530   return buildVector(DAG, DL, VT, Ops);
4531 }
4532 
4533 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4534                                                    SelectionDAG &DAG) const {
4535   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4536   SDLoc DL(Op);
4537   EVT VT = Op.getValueType();
4538   unsigned NumElements = VT.getVectorNumElements();
4539 
4540   if (VSN->isSplat()) {
4541     SDValue Op0 = Op.getOperand(0);
4542     unsigned Index = VSN->getSplatIndex();
4543     assert(Index < VT.getVectorNumElements() &&
4544            "Splat index should be defined and in first operand");
4545     // See whether the value we're splatting is directly available as a scalar.
4546     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4547         Op0.getOpcode() == ISD::BUILD_VECTOR)
4548       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4549     // Otherwise keep it as a vector-to-vector operation.
4550     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4551                        DAG.getConstant(Index, DL, MVT::i32));
4552   }
4553 
4554   GeneralShuffle GS(VT);
4555   for (unsigned I = 0; I < NumElements; ++I) {
4556     int Elt = VSN->getMaskElt(I);
4557     if (Elt < 0)
4558       GS.addUndef();
4559     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4560                      unsigned(Elt) % NumElements))
4561       return SDValue();
4562   }
4563   return GS.getNode(DAG, SDLoc(VSN));
4564 }
4565 
4566 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4567                                                      SelectionDAG &DAG) const {
4568   SDLoc DL(Op);
4569   // Just insert the scalar into element 0 of an undefined vector.
4570   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4571                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4572                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4573 }
4574 
4575 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4576                                                       SelectionDAG &DAG) const {
4577   // Handle insertions of floating-point values.
4578   SDLoc DL(Op);
4579   SDValue Op0 = Op.getOperand(0);
4580   SDValue Op1 = Op.getOperand(1);
4581   SDValue Op2 = Op.getOperand(2);
4582   EVT VT = Op.getValueType();
4583 
4584   // Insertions into constant indices of a v2f64 can be done using VPDI.
4585   // However, if the inserted value is a bitcast or a constant then it's
4586   // better to use GPRs, as below.
4587   if (VT == MVT::v2f64 &&
4588       Op1.getOpcode() != ISD::BITCAST &&
4589       Op1.getOpcode() != ISD::ConstantFP &&
4590       Op2.getOpcode() == ISD::Constant) {
4591     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4592     unsigned Mask = VT.getVectorNumElements() - 1;
4593     if (Index <= Mask)
4594       return Op;
4595   }
4596 
4597   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4598   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4599   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4600   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4601                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4602                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4603   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4604 }
4605 
4606 SDValue
4607 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4608                                                SelectionDAG &DAG) const {
4609   // Handle extractions of floating-point values.
4610   SDLoc DL(Op);
4611   SDValue Op0 = Op.getOperand(0);
4612   SDValue Op1 = Op.getOperand(1);
4613   EVT VT = Op.getValueType();
4614   EVT VecVT = Op0.getValueType();
4615 
4616   // Extractions of constant indices can be done directly.
4617   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4618     uint64_t Index = CIndexN->getZExtValue();
4619     unsigned Mask = VecVT.getVectorNumElements() - 1;
4620     if (Index <= Mask)
4621       return Op;
4622   }
4623 
4624   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4625   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4626   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4627   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4628                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4629   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4630 }
4631 
4632 SDValue
4633 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4634                                               unsigned UnpackHigh) const {
4635   SDValue PackedOp = Op.getOperand(0);
4636   EVT OutVT = Op.getValueType();
4637   EVT InVT = PackedOp.getValueType();
4638   unsigned ToBits = OutVT.getScalarSizeInBits();
4639   unsigned FromBits = InVT.getScalarSizeInBits();
4640   do {
4641     FromBits *= 2;
4642     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4643                                  SystemZ::VectorBits / FromBits);
4644     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4645   } while (FromBits != ToBits);
4646   return PackedOp;
4647 }
4648 
4649 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4650                                           unsigned ByScalar) const {
4651   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4652   SDValue Op0 = Op.getOperand(0);
4653   SDValue Op1 = Op.getOperand(1);
4654   SDLoc DL(Op);
4655   EVT VT = Op.getValueType();
4656   unsigned ElemBitSize = VT.getScalarSizeInBits();
4657 
4658   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4659   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4660     APInt SplatBits, SplatUndef;
4661     unsigned SplatBitSize;
4662     bool HasAnyUndefs;
4663     // Check for constant splats.  Use ElemBitSize as the minimum element
4664     // width and reject splats that need wider elements.
4665     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4666                              ElemBitSize, true) &&
4667         SplatBitSize == ElemBitSize) {
4668       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4669                                       DL, MVT::i32);
4670       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4671     }
4672     // Check for variable splats.
4673     BitVector UndefElements;
4674     SDValue Splat = BVN->getSplatValue(&UndefElements);
4675     if (Splat) {
4676       // Since i32 is the smallest legal type, we either need a no-op
4677       // or a truncation.
4678       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4679       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4680     }
4681   }
4682 
4683   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4684   // and the shift amount is directly available in a GPR.
4685   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4686     if (VSN->isSplat()) {
4687       SDValue VSNOp0 = VSN->getOperand(0);
4688       unsigned Index = VSN->getSplatIndex();
4689       assert(Index < VT.getVectorNumElements() &&
4690              "Splat index should be defined and in first operand");
4691       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4692           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4693         // Since i32 is the smallest legal type, we either need a no-op
4694         // or a truncation.
4695         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4696                                     VSNOp0.getOperand(Index));
4697         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4698       }
4699     }
4700   }
4701 
4702   // Otherwise just treat the current form as legal.
4703   return Op;
4704 }
4705 
4706 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4707                                               SelectionDAG &DAG) const {
4708   switch (Op.getOpcode()) {
4709   case ISD::FRAMEADDR:
4710     return lowerFRAMEADDR(Op, DAG);
4711   case ISD::RETURNADDR:
4712     return lowerRETURNADDR(Op, DAG);
4713   case ISD::BR_CC:
4714     return lowerBR_CC(Op, DAG);
4715   case ISD::SELECT_CC:
4716     return lowerSELECT_CC(Op, DAG);
4717   case ISD::SETCC:
4718     return lowerSETCC(Op, DAG);
4719   case ISD::GlobalAddress:
4720     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4721   case ISD::GlobalTLSAddress:
4722     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4723   case ISD::BlockAddress:
4724     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4725   case ISD::JumpTable:
4726     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4727   case ISD::ConstantPool:
4728     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4729   case ISD::BITCAST:
4730     return lowerBITCAST(Op, DAG);
4731   case ISD::VASTART:
4732     return lowerVASTART(Op, DAG);
4733   case ISD::VACOPY:
4734     return lowerVACOPY(Op, DAG);
4735   case ISD::DYNAMIC_STACKALLOC:
4736     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4737   case ISD::GET_DYNAMIC_AREA_OFFSET:
4738     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4739   case ISD::SMUL_LOHI:
4740     return lowerSMUL_LOHI(Op, DAG);
4741   case ISD::UMUL_LOHI:
4742     return lowerUMUL_LOHI(Op, DAG);
4743   case ISD::SDIVREM:
4744     return lowerSDIVREM(Op, DAG);
4745   case ISD::UDIVREM:
4746     return lowerUDIVREM(Op, DAG);
4747   case ISD::OR:
4748     return lowerOR(Op, DAG);
4749   case ISD::CTPOP:
4750     return lowerCTPOP(Op, DAG);
4751   case ISD::ATOMIC_FENCE:
4752     return lowerATOMIC_FENCE(Op, DAG);
4753   case ISD::ATOMIC_SWAP:
4754     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4755   case ISD::ATOMIC_STORE:
4756     return lowerATOMIC_STORE(Op, DAG);
4757   case ISD::ATOMIC_LOAD:
4758     return lowerATOMIC_LOAD(Op, DAG);
4759   case ISD::ATOMIC_LOAD_ADD:
4760     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4761   case ISD::ATOMIC_LOAD_SUB:
4762     return lowerATOMIC_LOAD_SUB(Op, DAG);
4763   case ISD::ATOMIC_LOAD_AND:
4764     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4765   case ISD::ATOMIC_LOAD_OR:
4766     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4767   case ISD::ATOMIC_LOAD_XOR:
4768     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4769   case ISD::ATOMIC_LOAD_NAND:
4770     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4771   case ISD::ATOMIC_LOAD_MIN:
4772     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4773   case ISD::ATOMIC_LOAD_MAX:
4774     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4775   case ISD::ATOMIC_LOAD_UMIN:
4776     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4777   case ISD::ATOMIC_LOAD_UMAX:
4778     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4779   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4780     return lowerATOMIC_CMP_SWAP(Op, DAG);
4781   case ISD::STACKSAVE:
4782     return lowerSTACKSAVE(Op, DAG);
4783   case ISD::STACKRESTORE:
4784     return lowerSTACKRESTORE(Op, DAG);
4785   case ISD::PREFETCH:
4786     return lowerPREFETCH(Op, DAG);
4787   case ISD::INTRINSIC_W_CHAIN:
4788     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4789   case ISD::INTRINSIC_WO_CHAIN:
4790     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4791   case ISD::BUILD_VECTOR:
4792     return lowerBUILD_VECTOR(Op, DAG);
4793   case ISD::VECTOR_SHUFFLE:
4794     return lowerVECTOR_SHUFFLE(Op, DAG);
4795   case ISD::SCALAR_TO_VECTOR:
4796     return lowerSCALAR_TO_VECTOR(Op, DAG);
4797   case ISD::INSERT_VECTOR_ELT:
4798     return lowerINSERT_VECTOR_ELT(Op, DAG);
4799   case ISD::EXTRACT_VECTOR_ELT:
4800     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4801   case ISD::SIGN_EXTEND_VECTOR_INREG:
4802     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4803   case ISD::ZERO_EXTEND_VECTOR_INREG:
4804     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4805   case ISD::SHL:
4806     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4807   case ISD::SRL:
4808     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4809   case ISD::SRA:
4810     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4811   default:
4812     llvm_unreachable("Unexpected node to lower");
4813   }
4814 }
4815 
4816 // Lower operations with invalid operand or result types (currently used
4817 // only for 128-bit integer types).
4818 
4819 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4820   SDLoc DL(In);
4821   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4822                            DAG.getIntPtrConstant(0, DL));
4823   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4824                            DAG.getIntPtrConstant(1, DL));
4825   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4826                                     MVT::Untyped, Hi, Lo);
4827   return SDValue(Pair, 0);
4828 }
4829 
4830 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4831   SDLoc DL(In);
4832   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4833                                           DL, MVT::i64, In);
4834   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4835                                           DL, MVT::i64, In);
4836   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4837 }
4838 
4839 void
4840 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4841                                              SmallVectorImpl<SDValue> &Results,
4842                                              SelectionDAG &DAG) const {
4843   switch (N->getOpcode()) {
4844   case ISD::ATOMIC_LOAD: {
4845     SDLoc DL(N);
4846     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4847     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4848     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4849     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4850                                           DL, Tys, Ops, MVT::i128, MMO);
4851     Results.push_back(lowerGR128ToI128(DAG, Res));
4852     Results.push_back(Res.getValue(1));
4853     break;
4854   }
4855   case ISD::ATOMIC_STORE: {
4856     SDLoc DL(N);
4857     SDVTList Tys = DAG.getVTList(MVT::Other);
4858     SDValue Ops[] = { N->getOperand(0),
4859                       lowerI128ToGR128(DAG, N->getOperand(2)),
4860                       N->getOperand(1) };
4861     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4862     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4863                                           DL, Tys, Ops, MVT::i128, MMO);
4864     // We have to enforce sequential consistency by performing a
4865     // serialization operation after the store.
4866     if (cast<AtomicSDNode>(N)->getOrdering() ==
4867         AtomicOrdering::SequentiallyConsistent)
4868       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4869                                        MVT::Other, Res), 0);
4870     Results.push_back(Res);
4871     break;
4872   }
4873   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4874     SDLoc DL(N);
4875     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other, MVT::Glue);
4876     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4877                       lowerI128ToGR128(DAG, N->getOperand(2)),
4878                       lowerI128ToGR128(DAG, N->getOperand(3)) };
4879     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4880     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4881                                           DL, Tys, Ops, MVT::i128, MMO);
4882     SDValue Success = emitSETCC(DAG, DL, Res.getValue(2),
4883                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4884     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4885     Results.push_back(lowerGR128ToI128(DAG, Res));
4886     Results.push_back(Success);
4887     Results.push_back(Res.getValue(1));
4888     break;
4889   }
4890   default:
4891     llvm_unreachable("Unexpected node to lower");
4892   }
4893 }
4894 
4895 void
4896 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4897                                           SmallVectorImpl<SDValue> &Results,
4898                                           SelectionDAG &DAG) const {
4899   return LowerOperationWrapper(N, Results, DAG);
4900 }
4901 
4902 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4903 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4904   switch ((SystemZISD::NodeType)Opcode) {
4905     case SystemZISD::FIRST_NUMBER: break;
4906     OPCODE(RET_FLAG);
4907     OPCODE(CALL);
4908     OPCODE(SIBCALL);
4909     OPCODE(TLS_GDCALL);
4910     OPCODE(TLS_LDCALL);
4911     OPCODE(PCREL_WRAPPER);
4912     OPCODE(PCREL_OFFSET);
4913     OPCODE(IABS);
4914     OPCODE(ICMP);
4915     OPCODE(FCMP);
4916     OPCODE(TM);
4917     OPCODE(BR_CCMASK);
4918     OPCODE(SELECT_CCMASK);
4919     OPCODE(ADJDYNALLOC);
4920     OPCODE(POPCNT);
4921     OPCODE(SMUL_LOHI);
4922     OPCODE(UMUL_LOHI);
4923     OPCODE(SDIVREM);
4924     OPCODE(UDIVREM);
4925     OPCODE(MVC);
4926     OPCODE(MVC_LOOP);
4927     OPCODE(NC);
4928     OPCODE(NC_LOOP);
4929     OPCODE(OC);
4930     OPCODE(OC_LOOP);
4931     OPCODE(XC);
4932     OPCODE(XC_LOOP);
4933     OPCODE(CLC);
4934     OPCODE(CLC_LOOP);
4935     OPCODE(STPCPY);
4936     OPCODE(STRCMP);
4937     OPCODE(SEARCH_STRING);
4938     OPCODE(IPM);
4939     OPCODE(MEMBARRIER);
4940     OPCODE(TBEGIN);
4941     OPCODE(TBEGIN_NOFLOAT);
4942     OPCODE(TEND);
4943     OPCODE(BYTE_MASK);
4944     OPCODE(ROTATE_MASK);
4945     OPCODE(REPLICATE);
4946     OPCODE(JOIN_DWORDS);
4947     OPCODE(SPLAT);
4948     OPCODE(MERGE_HIGH);
4949     OPCODE(MERGE_LOW);
4950     OPCODE(SHL_DOUBLE);
4951     OPCODE(PERMUTE_DWORDS);
4952     OPCODE(PERMUTE);
4953     OPCODE(PACK);
4954     OPCODE(PACKS_CC);
4955     OPCODE(PACKLS_CC);
4956     OPCODE(UNPACK_HIGH);
4957     OPCODE(UNPACKL_HIGH);
4958     OPCODE(UNPACK_LOW);
4959     OPCODE(UNPACKL_LOW);
4960     OPCODE(VSHL_BY_SCALAR);
4961     OPCODE(VSRL_BY_SCALAR);
4962     OPCODE(VSRA_BY_SCALAR);
4963     OPCODE(VSUM);
4964     OPCODE(VICMPE);
4965     OPCODE(VICMPH);
4966     OPCODE(VICMPHL);
4967     OPCODE(VICMPES);
4968     OPCODE(VICMPHS);
4969     OPCODE(VICMPHLS);
4970     OPCODE(VFCMPE);
4971     OPCODE(VFCMPH);
4972     OPCODE(VFCMPHE);
4973     OPCODE(VFCMPES);
4974     OPCODE(VFCMPHS);
4975     OPCODE(VFCMPHES);
4976     OPCODE(VFTCI);
4977     OPCODE(VEXTEND);
4978     OPCODE(VROUND);
4979     OPCODE(VTM);
4980     OPCODE(VFAE_CC);
4981     OPCODE(VFAEZ_CC);
4982     OPCODE(VFEE_CC);
4983     OPCODE(VFEEZ_CC);
4984     OPCODE(VFENE_CC);
4985     OPCODE(VFENEZ_CC);
4986     OPCODE(VISTR_CC);
4987     OPCODE(VSTRC_CC);
4988     OPCODE(VSTRCZ_CC);
4989     OPCODE(TDC);
4990     OPCODE(ATOMIC_SWAPW);
4991     OPCODE(ATOMIC_LOADW_ADD);
4992     OPCODE(ATOMIC_LOADW_SUB);
4993     OPCODE(ATOMIC_LOADW_AND);
4994     OPCODE(ATOMIC_LOADW_OR);
4995     OPCODE(ATOMIC_LOADW_XOR);
4996     OPCODE(ATOMIC_LOADW_NAND);
4997     OPCODE(ATOMIC_LOADW_MIN);
4998     OPCODE(ATOMIC_LOADW_MAX);
4999     OPCODE(ATOMIC_LOADW_UMIN);
5000     OPCODE(ATOMIC_LOADW_UMAX);
5001     OPCODE(ATOMIC_CMP_SWAPW);
5002     OPCODE(ATOMIC_CMP_SWAP);
5003     OPCODE(ATOMIC_LOAD_128);
5004     OPCODE(ATOMIC_STORE_128);
5005     OPCODE(ATOMIC_CMP_SWAP_128);
5006     OPCODE(LRV);
5007     OPCODE(STRV);
5008     OPCODE(PREFETCH);
5009   }
5010   return nullptr;
5011 #undef OPCODE
5012 }
5013 
5014 // Return true if VT is a vector whose elements are a whole number of bytes
5015 // in width. Also check for presence of vector support.
5016 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5017   if (!Subtarget.hasVector())
5018     return false;
5019 
5020   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5021 }
5022 
5023 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5024 // producing a result of type ResVT.  Op is a possibly bitcast version
5025 // of the input vector and Index is the index (based on type VecVT) that
5026 // should be extracted.  Return the new extraction if a simplification
5027 // was possible or if Force is true.
5028 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5029                                               EVT VecVT, SDValue Op,
5030                                               unsigned Index,
5031                                               DAGCombinerInfo &DCI,
5032                                               bool Force) const {
5033   SelectionDAG &DAG = DCI.DAG;
5034 
5035   // The number of bytes being extracted.
5036   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5037 
5038   for (;;) {
5039     unsigned Opcode = Op.getOpcode();
5040     if (Opcode == ISD::BITCAST)
5041       // Look through bitcasts.
5042       Op = Op.getOperand(0);
5043     else if (Opcode == ISD::VECTOR_SHUFFLE &&
5044              canTreatAsByteVector(Op.getValueType())) {
5045       // Get a VPERM-like permute mask and see whether the bytes covered
5046       // by the extracted element are a contiguous sequence from one
5047       // source operand.
5048       SmallVector<int, SystemZ::VectorBytes> Bytes;
5049       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
5050       int First;
5051       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5052                            BytesPerElement, First))
5053         break;
5054       if (First < 0)
5055         return DAG.getUNDEF(ResVT);
5056       // Make sure the contiguous sequence starts at a multiple of the
5057       // original element size.
5058       unsigned Byte = unsigned(First) % Bytes.size();
5059       if (Byte % BytesPerElement != 0)
5060         break;
5061       // We can get the extracted value directly from an input.
5062       Index = Byte / BytesPerElement;
5063       Op = Op.getOperand(unsigned(First) / Bytes.size());
5064       Force = true;
5065     } else if (Opcode == ISD::BUILD_VECTOR &&
5066                canTreatAsByteVector(Op.getValueType())) {
5067       // We can only optimize this case if the BUILD_VECTOR elements are
5068       // at least as wide as the extracted value.
5069       EVT OpVT = Op.getValueType();
5070       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5071       if (OpBytesPerElement < BytesPerElement)
5072         break;
5073       // Make sure that the least-significant bit of the extracted value
5074       // is the least significant bit of an input.
5075       unsigned End = (Index + 1) * BytesPerElement;
5076       if (End % OpBytesPerElement != 0)
5077         break;
5078       // We're extracting the low part of one operand of the BUILD_VECTOR.
5079       Op = Op.getOperand(End / OpBytesPerElement - 1);
5080       if (!Op.getValueType().isInteger()) {
5081         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5082         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5083         DCI.AddToWorklist(Op.getNode());
5084       }
5085       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5086       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5087       if (VT != ResVT) {
5088         DCI.AddToWorklist(Op.getNode());
5089         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5090       }
5091       return Op;
5092     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5093                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5094                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5095                canTreatAsByteVector(Op.getValueType()) &&
5096                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5097       // Make sure that only the unextended bits are significant.
5098       EVT ExtVT = Op.getValueType();
5099       EVT OpVT = Op.getOperand(0).getValueType();
5100       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5101       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5102       unsigned Byte = Index * BytesPerElement;
5103       unsigned SubByte = Byte % ExtBytesPerElement;
5104       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5105       if (SubByte < MinSubByte ||
5106           SubByte + BytesPerElement > ExtBytesPerElement)
5107         break;
5108       // Get the byte offset of the unextended element
5109       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5110       // ...then add the byte offset relative to that element.
5111       Byte += SubByte - MinSubByte;
5112       if (Byte % BytesPerElement != 0)
5113         break;
5114       Op = Op.getOperand(0);
5115       Index = Byte / BytesPerElement;
5116       Force = true;
5117     } else
5118       break;
5119   }
5120   if (Force) {
5121     if (Op.getValueType() != VecVT) {
5122       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5123       DCI.AddToWorklist(Op.getNode());
5124     }
5125     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5126                        DAG.getConstant(Index, DL, MVT::i32));
5127   }
5128   return SDValue();
5129 }
5130 
5131 // Optimize vector operations in scalar value Op on the basis that Op
5132 // is truncated to TruncVT.
5133 SDValue SystemZTargetLowering::combineTruncateExtract(
5134     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5135   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5136   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5137   // of type TruncVT.
5138   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5139       TruncVT.getSizeInBits() % 8 == 0) {
5140     SDValue Vec = Op.getOperand(0);
5141     EVT VecVT = Vec.getValueType();
5142     if (canTreatAsByteVector(VecVT)) {
5143       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5144         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5145         unsigned TruncBytes = TruncVT.getStoreSize();
5146         if (BytesPerElement % TruncBytes == 0) {
5147           // Calculate the value of Y' in the above description.  We are
5148           // splitting the original elements into Scale equal-sized pieces
5149           // and for truncation purposes want the last (least-significant)
5150           // of these pieces for IndexN.  This is easiest to do by calculating
5151           // the start index of the following element and then subtracting 1.
5152           unsigned Scale = BytesPerElement / TruncBytes;
5153           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5154 
5155           // Defer the creation of the bitcast from X to combineExtract,
5156           // which might be able to optimize the extraction.
5157           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5158                                    VecVT.getStoreSize() / TruncBytes);
5159           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5160           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5161         }
5162       }
5163     }
5164   }
5165   return SDValue();
5166 }
5167 
5168 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5169     SDNode *N, DAGCombinerInfo &DCI) const {
5170   // Convert (sext (ashr (shl X, C1), C2)) to
5171   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5172   // cheap as narrower ones.
5173   SelectionDAG &DAG = DCI.DAG;
5174   SDValue N0 = N->getOperand(0);
5175   EVT VT = N->getValueType(0);
5176   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5177     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5178     SDValue Inner = N0.getOperand(0);
5179     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5180       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5181         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5182         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5183         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5184         EVT ShiftVT = N0.getOperand(1).getValueType();
5185         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5186                                   Inner.getOperand(0));
5187         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5188                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5189                                                   ShiftVT));
5190         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5191                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5192       }
5193     }
5194   }
5195   return SDValue();
5196 }
5197 
5198 SDValue SystemZTargetLowering::combineMERGE(
5199     SDNode *N, DAGCombinerInfo &DCI) const {
5200   SelectionDAG &DAG = DCI.DAG;
5201   unsigned Opcode = N->getOpcode();
5202   SDValue Op0 = N->getOperand(0);
5203   SDValue Op1 = N->getOperand(1);
5204   if (Op0.getOpcode() == ISD::BITCAST)
5205     Op0 = Op0.getOperand(0);
5206   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5207       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5208     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5209     // for v4f32.
5210     if (Op1 == N->getOperand(0))
5211       return Op1;
5212     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5213     EVT VT = Op1.getValueType();
5214     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5215     if (ElemBytes <= 4) {
5216       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5217                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5218       EVT InVT = VT.changeVectorElementTypeToInteger();
5219       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5220                                    SystemZ::VectorBytes / ElemBytes / 2);
5221       if (VT != InVT) {
5222         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5223         DCI.AddToWorklist(Op1.getNode());
5224       }
5225       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5226       DCI.AddToWorklist(Op.getNode());
5227       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5228     }
5229   }
5230   return SDValue();
5231 }
5232 
5233 SDValue SystemZTargetLowering::combineSTORE(
5234     SDNode *N, DAGCombinerInfo &DCI) const {
5235   SelectionDAG &DAG = DCI.DAG;
5236   auto *SN = cast<StoreSDNode>(N);
5237   auto &Op1 = N->getOperand(1);
5238   EVT MemVT = SN->getMemoryVT();
5239   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5240   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5241   // If X has wider elements then convert it to:
5242   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5243   if (MemVT.isInteger()) {
5244     if (SDValue Value =
5245             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5246       DCI.AddToWorklist(Value.getNode());
5247 
5248       // Rewrite the store with the new form of stored value.
5249       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5250                                SN->getBasePtr(), SN->getMemoryVT(),
5251                                SN->getMemOperand());
5252     }
5253   }
5254   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5255   // See comment in combineBSWAP about volatile accesses.
5256   if (!SN->isTruncatingStore() &&
5257       !SN->isVolatile() &&
5258       Op1.getOpcode() == ISD::BSWAP &&
5259       Op1.getNode()->hasOneUse() &&
5260       (Op1.getValueType() == MVT::i16 ||
5261        Op1.getValueType() == MVT::i32 ||
5262        Op1.getValueType() == MVT::i64)) {
5263 
5264       SDValue BSwapOp = Op1.getOperand(0);
5265 
5266       if (BSwapOp.getValueType() == MVT::i16)
5267         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5268 
5269       SDValue Ops[] = {
5270         N->getOperand(0), BSwapOp, N->getOperand(2),
5271         DAG.getValueType(Op1.getValueType())
5272       };
5273 
5274       return
5275         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5276                                 Ops, MemVT, SN->getMemOperand());
5277     }
5278   return SDValue();
5279 }
5280 
5281 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5282     SDNode *N, DAGCombinerInfo &DCI) const {
5283 
5284   if (!Subtarget.hasVector())
5285     return SDValue();
5286 
5287   // Try to simplify a vector extraction.
5288   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5289     SDValue Op0 = N->getOperand(0);
5290     EVT VecVT = Op0.getValueType();
5291     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5292                           IndexN->getZExtValue(), DCI, false);
5293   }
5294   return SDValue();
5295 }
5296 
5297 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5298     SDNode *N, DAGCombinerInfo &DCI) const {
5299   SelectionDAG &DAG = DCI.DAG;
5300   // (join_dwords X, X) == (replicate X)
5301   if (N->getOperand(0) == N->getOperand(1))
5302     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5303                        N->getOperand(0));
5304   return SDValue();
5305 }
5306 
5307 SDValue SystemZTargetLowering::combineFP_ROUND(
5308     SDNode *N, DAGCombinerInfo &DCI) const {
5309   // (fpround (extract_vector_elt X 0))
5310   // (fpround (extract_vector_elt X 1)) ->
5311   // (extract_vector_elt (VROUND X) 0)
5312   // (extract_vector_elt (VROUND X) 1)
5313   //
5314   // This is a special case since the target doesn't really support v2f32s.
5315   SelectionDAG &DAG = DCI.DAG;
5316   SDValue Op0 = N->getOperand(0);
5317   if (N->getValueType(0) == MVT::f32 &&
5318       Op0.hasOneUse() &&
5319       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5320       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5321       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5322       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5323     SDValue Vec = Op0.getOperand(0);
5324     for (auto *U : Vec->uses()) {
5325       if (U != Op0.getNode() &&
5326           U->hasOneUse() &&
5327           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5328           U->getOperand(0) == Vec &&
5329           U->getOperand(1).getOpcode() == ISD::Constant &&
5330           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5331         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5332         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5333             OtherRound.getOperand(0) == SDValue(U, 0) &&
5334             OtherRound.getValueType() == MVT::f32) {
5335           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5336                                        MVT::v4f32, Vec);
5337           DCI.AddToWorklist(VRound.getNode());
5338           SDValue Extract1 =
5339             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5340                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5341           DCI.AddToWorklist(Extract1.getNode());
5342           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5343           SDValue Extract0 =
5344             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5345                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5346           return Extract0;
5347         }
5348       }
5349     }
5350   }
5351   return SDValue();
5352 }
5353 
5354 SDValue SystemZTargetLowering::combineBSWAP(
5355     SDNode *N, DAGCombinerInfo &DCI) const {
5356   SelectionDAG &DAG = DCI.DAG;
5357   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5358   // These loads are allowed to access memory multiple times, and so we must check
5359   // that the loads are not volatile before performing the combine.
5360   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5361       N->getOperand(0).hasOneUse() &&
5362       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5363        N->getValueType(0) == MVT::i64) &&
5364        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
5365       SDValue Load = N->getOperand(0);
5366       LoadSDNode *LD = cast<LoadSDNode>(Load);
5367 
5368       // Create the byte-swapping load.
5369       SDValue Ops[] = {
5370         LD->getChain(),    // Chain
5371         LD->getBasePtr(),  // Ptr
5372         DAG.getValueType(N->getValueType(0)) // VT
5373       };
5374       SDValue BSLoad =
5375         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5376                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5377                                               MVT::i64 : MVT::i32, MVT::Other),
5378                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5379 
5380       // If this is an i16 load, insert the truncate.
5381       SDValue ResVal = BSLoad;
5382       if (N->getValueType(0) == MVT::i16)
5383         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5384 
5385       // First, combine the bswap away.  This makes the value produced by the
5386       // load dead.
5387       DCI.CombineTo(N, ResVal);
5388 
5389       // Next, combine the load away, we give it a bogus result value but a real
5390       // chain result.  The result value is dead because the bswap is dead.
5391       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5392 
5393       // Return N so it doesn't get rechecked!
5394       return SDValue(N, 0);
5395     }
5396   return SDValue();
5397 }
5398 
5399 SDValue SystemZTargetLowering::combineSHIFTROT(
5400     SDNode *N, DAGCombinerInfo &DCI) const {
5401 
5402   SelectionDAG &DAG = DCI.DAG;
5403 
5404   // Shift/rotate instructions only use the last 6 bits of the second operand
5405   // register. If the second operand is the result of an AND with an immediate
5406   // value that has its last 6 bits set, we can safely remove the AND operation.
5407   //
5408   // If the AND operation doesn't have the last 6 bits set, we can't remove it
5409   // entirely, but we can still truncate it to a 16-bit value. This prevents
5410   // us from ending up with a NILL with a signed operand, which will cause the
5411   // instruction printer to abort.
5412   SDValue N1 = N->getOperand(1);
5413   if (N1.getOpcode() == ISD::AND) {
5414     SDValue AndMaskOp = N1->getOperand(1);
5415     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
5416 
5417     // The AND mask is constant
5418     if (AndMask) {
5419       auto AmtVal = AndMask->getZExtValue();
5420 
5421       // Bottom 6 bits are set
5422       if ((AmtVal & 0x3f) == 0x3f) {
5423         SDValue AndOp = N1->getOperand(0);
5424 
5425         // This is the only use, so remove the node
5426         if (N1.hasOneUse()) {
5427           // Combine the AND away
5428           DCI.CombineTo(N1.getNode(), AndOp);
5429 
5430           // Return N so it isn't rechecked
5431           return SDValue(N, 0);
5432 
5433         // The node will be reused, so create a new node for this one use
5434         } else {
5435           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5436                                         N->getValueType(0), N->getOperand(0),
5437                                         AndOp);
5438           DCI.AddToWorklist(Replace.getNode());
5439 
5440           return Replace;
5441         }
5442 
5443       // We can't remove the AND, but we can use NILL here (normally we would
5444       // use NILF). Only keep the last 16 bits of the mask. The actual
5445       // transformation will be handled by .td definitions.
5446       } else if (AmtVal >> 16 != 0) {
5447         SDValue AndOp = N1->getOperand(0);
5448 
5449         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
5450                                        SDLoc(AndMaskOp),
5451                                        AndMaskOp.getValueType());
5452 
5453         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
5454                                   AndOp, NewMask);
5455 
5456         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5457                                       N->getValueType(0), N->getOperand(0),
5458                                       NewAnd);
5459         DCI.AddToWorklist(Replace.getNode());
5460 
5461         return Replace;
5462       }
5463     }
5464   }
5465 
5466   return SDValue();
5467 }
5468 
5469 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5470                                                  DAGCombinerInfo &DCI) const {
5471   switch(N->getOpcode()) {
5472   default: break;
5473   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5474   case SystemZISD::MERGE_HIGH:
5475   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5476   case ISD::STORE:              return combineSTORE(N, DCI);
5477   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5478   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5479   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5480   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5481   case ISD::SHL:
5482   case ISD::SRA:
5483   case ISD::SRL:
5484   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5485   }
5486 
5487   return SDValue();
5488 }
5489 
5490 //===----------------------------------------------------------------------===//
5491 // Custom insertion
5492 //===----------------------------------------------------------------------===//
5493 
5494 // Create a new basic block after MBB.
5495 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5496   MachineFunction &MF = *MBB->getParent();
5497   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5498   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5499   return NewMBB;
5500 }
5501 
5502 // Split MBB after MI and return the new block (the one that contains
5503 // instructions after MI).
5504 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5505                                           MachineBasicBlock *MBB) {
5506   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5507   NewMBB->splice(NewMBB->begin(), MBB,
5508                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5509   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5510   return NewMBB;
5511 }
5512 
5513 // Split MBB before MI and return the new block (the one that contains MI).
5514 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5515                                            MachineBasicBlock *MBB) {
5516   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5517   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5518   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5519   return NewMBB;
5520 }
5521 
5522 // Force base value Base into a register before MI.  Return the register.
5523 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5524                          const SystemZInstrInfo *TII) {
5525   if (Base.isReg())
5526     return Base.getReg();
5527 
5528   MachineBasicBlock *MBB = MI.getParent();
5529   MachineFunction &MF = *MBB->getParent();
5530   MachineRegisterInfo &MRI = MF.getRegInfo();
5531 
5532   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5533   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5534       .add(Base)
5535       .addImm(0)
5536       .addReg(0);
5537   return Reg;
5538 }
5539 
5540 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5541 MachineBasicBlock *
5542 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5543                                   MachineBasicBlock *MBB,
5544                                   unsigned LOCROpcode) const {
5545   const SystemZInstrInfo *TII =
5546       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5547 
5548   unsigned DestReg = MI.getOperand(0).getReg();
5549   unsigned TrueReg = MI.getOperand(1).getReg();
5550   unsigned FalseReg = MI.getOperand(2).getReg();
5551   unsigned CCValid = MI.getOperand(3).getImm();
5552   unsigned CCMask = MI.getOperand(4).getImm();
5553   DebugLoc DL = MI.getDebugLoc();
5554 
5555   // Use LOCROpcode if possible.
5556   if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) {
5557     BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg)
5558       .addReg(FalseReg).addReg(TrueReg)
5559       .addImm(CCValid).addImm(CCMask);
5560     MI.eraseFromParent();
5561     return MBB;
5562   }
5563 
5564   MachineBasicBlock *StartMBB = MBB;
5565   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5566   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5567 
5568   //  StartMBB:
5569   //   BRC CCMask, JoinMBB
5570   //   # fallthrough to FalseMBB
5571   MBB = StartMBB;
5572   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5573     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5574   MBB->addSuccessor(JoinMBB);
5575   MBB->addSuccessor(FalseMBB);
5576 
5577   //  FalseMBB:
5578   //   # fallthrough to JoinMBB
5579   MBB = FalseMBB;
5580   MBB->addSuccessor(JoinMBB);
5581 
5582   //  JoinMBB:
5583   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5584   //  ...
5585   MBB = JoinMBB;
5586   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5587     .addReg(TrueReg).addMBB(StartMBB)
5588     .addReg(FalseReg).addMBB(FalseMBB);
5589 
5590   MI.eraseFromParent();
5591   return JoinMBB;
5592 }
5593 
5594 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5595 // StoreOpcode is the store to use and Invert says whether the store should
5596 // happen when the condition is false rather than true.  If a STORE ON
5597 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
5598 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5599                                                         MachineBasicBlock *MBB,
5600                                                         unsigned StoreOpcode,
5601                                                         unsigned STOCOpcode,
5602                                                         bool Invert) const {
5603   const SystemZInstrInfo *TII =
5604       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5605 
5606   unsigned SrcReg = MI.getOperand(0).getReg();
5607   MachineOperand Base = MI.getOperand(1);
5608   int64_t Disp = MI.getOperand(2).getImm();
5609   unsigned IndexReg = MI.getOperand(3).getReg();
5610   unsigned CCValid = MI.getOperand(4).getImm();
5611   unsigned CCMask = MI.getOperand(5).getImm();
5612   DebugLoc DL = MI.getDebugLoc();
5613 
5614   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5615 
5616   // Use STOCOpcode if possible.  We could use different store patterns in
5617   // order to avoid matching the index register, but the performance trade-offs
5618   // might be more complicated in that case.
5619   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
5620     if (Invert)
5621       CCMask ^= CCValid;
5622 
5623     // ISel pattern matching also adds a load memory operand of the same
5624     // address, so take special care to find the storing memory operand.
5625     MachineMemOperand *MMO = nullptr;
5626     for (auto *I : MI.memoperands())
5627       if (I->isStore()) {
5628           MMO = I;
5629           break;
5630         }
5631 
5632     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
5633       .addReg(SrcReg)
5634       .add(Base)
5635       .addImm(Disp)
5636       .addImm(CCValid)
5637       .addImm(CCMask)
5638       .addMemOperand(MMO);
5639 
5640     MI.eraseFromParent();
5641     return MBB;
5642   }
5643 
5644   // Get the condition needed to branch around the store.
5645   if (!Invert)
5646     CCMask ^= CCValid;
5647 
5648   MachineBasicBlock *StartMBB = MBB;
5649   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5650   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5651 
5652   //  StartMBB:
5653   //   BRC CCMask, JoinMBB
5654   //   # fallthrough to FalseMBB
5655   MBB = StartMBB;
5656   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5657     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5658   MBB->addSuccessor(JoinMBB);
5659   MBB->addSuccessor(FalseMBB);
5660 
5661   //  FalseMBB:
5662   //   store %SrcReg, %Disp(%Index,%Base)
5663   //   # fallthrough to JoinMBB
5664   MBB = FalseMBB;
5665   BuildMI(MBB, DL, TII->get(StoreOpcode))
5666       .addReg(SrcReg)
5667       .add(Base)
5668       .addImm(Disp)
5669       .addReg(IndexReg);
5670   MBB->addSuccessor(JoinMBB);
5671 
5672   MI.eraseFromParent();
5673   return JoinMBB;
5674 }
5675 
5676 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5677 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
5678 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5679 // BitSize is the width of the field in bits, or 0 if this is a partword
5680 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5681 // is one of the operands.  Invert says whether the field should be
5682 // inverted after performing BinOpcode (e.g. for NAND).
5683 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5684     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5685     unsigned BitSize, bool Invert) const {
5686   MachineFunction &MF = *MBB->getParent();
5687   const SystemZInstrInfo *TII =
5688       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5689   MachineRegisterInfo &MRI = MF.getRegInfo();
5690   bool IsSubWord = (BitSize < 32);
5691 
5692   // Extract the operands.  Base can be a register or a frame index.
5693   // Src2 can be a register or immediate.
5694   unsigned Dest = MI.getOperand(0).getReg();
5695   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5696   int64_t Disp = MI.getOperand(2).getImm();
5697   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5698   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5699   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5700   DebugLoc DL = MI.getDebugLoc();
5701   if (IsSubWord)
5702     BitSize = MI.getOperand(6).getImm();
5703 
5704   // Subword operations use 32-bit registers.
5705   const TargetRegisterClass *RC = (BitSize <= 32 ?
5706                                    &SystemZ::GR32BitRegClass :
5707                                    &SystemZ::GR64BitRegClass);
5708   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5709   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5710 
5711   // Get the right opcodes for the displacement.
5712   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5713   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5714   assert(LOpcode && CSOpcode && "Displacement out of range");
5715 
5716   // Create virtual registers for temporary results.
5717   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5718   unsigned OldVal        = MRI.createVirtualRegister(RC);
5719   unsigned NewVal        = (BinOpcode || IsSubWord ?
5720                             MRI.createVirtualRegister(RC) : Src2.getReg());
5721   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5722   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5723 
5724   // Insert a basic block for the main loop.
5725   MachineBasicBlock *StartMBB = MBB;
5726   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5727   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5728 
5729   //  StartMBB:
5730   //   ...
5731   //   %OrigVal = L Disp(%Base)
5732   //   # fall through to LoopMMB
5733   MBB = StartMBB;
5734   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
5735   MBB->addSuccessor(LoopMBB);
5736 
5737   //  LoopMBB:
5738   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5739   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5740   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
5741   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5742   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5743   //   JNE LoopMBB
5744   //   # fall through to DoneMMB
5745   MBB = LoopMBB;
5746   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5747     .addReg(OrigVal).addMBB(StartMBB)
5748     .addReg(Dest).addMBB(LoopMBB);
5749   if (IsSubWord)
5750     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5751       .addReg(OldVal).addReg(BitShift).addImm(0);
5752   if (Invert) {
5753     // Perform the operation normally and then invert every bit of the field.
5754     unsigned Tmp = MRI.createVirtualRegister(RC);
5755     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
5756     if (BitSize <= 32)
5757       // XILF with the upper BitSize bits set.
5758       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5759         .addReg(Tmp).addImm(-1U << (32 - BitSize));
5760     else {
5761       // Use LCGR and add -1 to the result, which is more compact than
5762       // an XILF, XILH pair.
5763       unsigned Tmp2 = MRI.createVirtualRegister(RC);
5764       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5765       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5766         .addReg(Tmp2).addImm(-1);
5767     }
5768   } else if (BinOpcode)
5769     // A simply binary operation.
5770     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5771         .addReg(RotatedOldVal)
5772         .add(Src2);
5773   else if (IsSubWord)
5774     // Use RISBG to rotate Src2 into position and use it to replace the
5775     // field in RotatedOldVal.
5776     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5777       .addReg(RotatedOldVal).addReg(Src2.getReg())
5778       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5779   if (IsSubWord)
5780     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5781       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5782   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5783       .addReg(OldVal)
5784       .addReg(NewVal)
5785       .add(Base)
5786       .addImm(Disp);
5787   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5788     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5789   MBB->addSuccessor(LoopMBB);
5790   MBB->addSuccessor(DoneMBB);
5791 
5792   MI.eraseFromParent();
5793   return DoneMBB;
5794 }
5795 
5796 // Implement EmitInstrWithCustomInserter for pseudo
5797 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
5798 // instruction that should be used to compare the current field with the
5799 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
5800 // for when the current field should be kept.  BitSize is the width of
5801 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
5802 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5803     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5804     unsigned KeepOldMask, unsigned BitSize) const {
5805   MachineFunction &MF = *MBB->getParent();
5806   const SystemZInstrInfo *TII =
5807       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5808   MachineRegisterInfo &MRI = MF.getRegInfo();
5809   bool IsSubWord = (BitSize < 32);
5810 
5811   // Extract the operands.  Base can be a register or a frame index.
5812   unsigned Dest = MI.getOperand(0).getReg();
5813   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5814   int64_t Disp = MI.getOperand(2).getImm();
5815   unsigned Src2 = MI.getOperand(3).getReg();
5816   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5817   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5818   DebugLoc DL = MI.getDebugLoc();
5819   if (IsSubWord)
5820     BitSize = MI.getOperand(6).getImm();
5821 
5822   // Subword operations use 32-bit registers.
5823   const TargetRegisterClass *RC = (BitSize <= 32 ?
5824                                    &SystemZ::GR32BitRegClass :
5825                                    &SystemZ::GR64BitRegClass);
5826   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5827   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5828 
5829   // Get the right opcodes for the displacement.
5830   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5831   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5832   assert(LOpcode && CSOpcode && "Displacement out of range");
5833 
5834   // Create virtual registers for temporary results.
5835   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5836   unsigned OldVal        = MRI.createVirtualRegister(RC);
5837   unsigned NewVal        = MRI.createVirtualRegister(RC);
5838   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5839   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5840   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5841 
5842   // Insert 3 basic blocks for the loop.
5843   MachineBasicBlock *StartMBB  = MBB;
5844   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
5845   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
5846   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5847   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5848 
5849   //  StartMBB:
5850   //   ...
5851   //   %OrigVal     = L Disp(%Base)
5852   //   # fall through to LoopMMB
5853   MBB = StartMBB;
5854   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
5855   MBB->addSuccessor(LoopMBB);
5856 
5857   //  LoopMBB:
5858   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5859   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5860   //   CompareOpcode %RotatedOldVal, %Src2
5861   //   BRC KeepOldMask, UpdateMBB
5862   MBB = LoopMBB;
5863   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5864     .addReg(OrigVal).addMBB(StartMBB)
5865     .addReg(Dest).addMBB(UpdateMBB);
5866   if (IsSubWord)
5867     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5868       .addReg(OldVal).addReg(BitShift).addImm(0);
5869   BuildMI(MBB, DL, TII->get(CompareOpcode))
5870     .addReg(RotatedOldVal).addReg(Src2);
5871   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5872     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5873   MBB->addSuccessor(UpdateMBB);
5874   MBB->addSuccessor(UseAltMBB);
5875 
5876   //  UseAltMBB:
5877   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5878   //   # fall through to UpdateMMB
5879   MBB = UseAltMBB;
5880   if (IsSubWord)
5881     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5882       .addReg(RotatedOldVal).addReg(Src2)
5883       .addImm(32).addImm(31 + BitSize).addImm(0);
5884   MBB->addSuccessor(UpdateMBB);
5885 
5886   //  UpdateMBB:
5887   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5888   //                        [ %RotatedAltVal, UseAltMBB ]
5889   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5890   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5891   //   JNE LoopMBB
5892   //   # fall through to DoneMMB
5893   MBB = UpdateMBB;
5894   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5895     .addReg(RotatedOldVal).addMBB(LoopMBB)
5896     .addReg(RotatedAltVal).addMBB(UseAltMBB);
5897   if (IsSubWord)
5898     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5899       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5900   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5901       .addReg(OldVal)
5902       .addReg(NewVal)
5903       .add(Base)
5904       .addImm(Disp);
5905   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5906     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5907   MBB->addSuccessor(LoopMBB);
5908   MBB->addSuccessor(DoneMBB);
5909 
5910   MI.eraseFromParent();
5911   return DoneMBB;
5912 }
5913 
5914 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5915 // instruction MI.
5916 MachineBasicBlock *
5917 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
5918                                           MachineBasicBlock *MBB) const {
5919 
5920   MachineFunction &MF = *MBB->getParent();
5921   const SystemZInstrInfo *TII =
5922       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5923   MachineRegisterInfo &MRI = MF.getRegInfo();
5924 
5925   // Extract the operands.  Base can be a register or a frame index.
5926   unsigned Dest = MI.getOperand(0).getReg();
5927   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5928   int64_t Disp = MI.getOperand(2).getImm();
5929   unsigned OrigCmpVal = MI.getOperand(3).getReg();
5930   unsigned OrigSwapVal = MI.getOperand(4).getReg();
5931   unsigned BitShift = MI.getOperand(5).getReg();
5932   unsigned NegBitShift = MI.getOperand(6).getReg();
5933   int64_t BitSize = MI.getOperand(7).getImm();
5934   DebugLoc DL = MI.getDebugLoc();
5935 
5936   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5937 
5938   // Get the right opcodes for the displacement.
5939   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
5940   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5941   assert(LOpcode && CSOpcode && "Displacement out of range");
5942 
5943   // Create virtual registers for temporary results.
5944   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
5945   unsigned OldVal       = MRI.createVirtualRegister(RC);
5946   unsigned CmpVal       = MRI.createVirtualRegister(RC);
5947   unsigned SwapVal      = MRI.createVirtualRegister(RC);
5948   unsigned StoreVal     = MRI.createVirtualRegister(RC);
5949   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
5950   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
5951   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5952 
5953   // Insert 2 basic blocks for the loop.
5954   MachineBasicBlock *StartMBB = MBB;
5955   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5956   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5957   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
5958 
5959   //  StartMBB:
5960   //   ...
5961   //   %OrigOldVal     = L Disp(%Base)
5962   //   # fall through to LoopMMB
5963   MBB = StartMBB;
5964   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5965       .add(Base)
5966       .addImm(Disp)
5967       .addReg(0);
5968   MBB->addSuccessor(LoopMBB);
5969 
5970   //  LoopMBB:
5971   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5972   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5973   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5974   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
5975   //                      ^^ The low BitSize bits contain the field
5976   //                         of interest.
5977   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5978   //                      ^^ Replace the upper 32-BitSize bits of the
5979   //                         comparison value with those that we loaded,
5980   //                         so that we can use a full word comparison.
5981   //   CR %Dest, %RetryCmpVal
5982   //   JNE DoneMBB
5983   //   # Fall through to SetMBB
5984   MBB = LoopMBB;
5985   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5986     .addReg(OrigOldVal).addMBB(StartMBB)
5987     .addReg(RetryOldVal).addMBB(SetMBB);
5988   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5989     .addReg(OrigCmpVal).addMBB(StartMBB)
5990     .addReg(RetryCmpVal).addMBB(SetMBB);
5991   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
5992     .addReg(OrigSwapVal).addMBB(StartMBB)
5993     .addReg(RetrySwapVal).addMBB(SetMBB);
5994   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
5995     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
5996   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
5997     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5998   BuildMI(MBB, DL, TII->get(SystemZ::CR))
5999     .addReg(Dest).addReg(RetryCmpVal);
6000   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6001     .addImm(SystemZ::CCMASK_ICMP)
6002     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6003   MBB->addSuccessor(DoneMBB);
6004   MBB->addSuccessor(SetMBB);
6005 
6006   //  SetMBB:
6007   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6008   //                      ^^ Replace the upper 32-BitSize bits of the new
6009   //                         value with those that we loaded.
6010   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6011   //                      ^^ Rotate the new field to its proper position.
6012   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6013   //   JNE LoopMBB
6014   //   # fall through to ExitMMB
6015   MBB = SetMBB;
6016   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6017     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6018   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6019     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6020   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6021       .addReg(OldVal)
6022       .addReg(StoreVal)
6023       .add(Base)
6024       .addImm(Disp);
6025   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6026     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6027   MBB->addSuccessor(LoopMBB);
6028   MBB->addSuccessor(DoneMBB);
6029 
6030   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6031   // to the block after the loop.  At this point, CC may have been defined
6032   // either by the CR in LoopMBB or by the CS in SetMBB.
6033   if (!MI.registerDefIsDead(SystemZ::CC))
6034     DoneMBB->addLiveIn(SystemZ::CC);
6035 
6036   MI.eraseFromParent();
6037   return DoneMBB;
6038 }
6039 
6040 // Emit a move from two GR64s to a GR128.
6041 MachineBasicBlock *
6042 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6043                                    MachineBasicBlock *MBB) const {
6044   MachineFunction &MF = *MBB->getParent();
6045   const SystemZInstrInfo *TII =
6046       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6047   MachineRegisterInfo &MRI = MF.getRegInfo();
6048   DebugLoc DL = MI.getDebugLoc();
6049 
6050   unsigned Dest = MI.getOperand(0).getReg();
6051   unsigned Hi = MI.getOperand(1).getReg();
6052   unsigned Lo = MI.getOperand(2).getReg();
6053   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6054   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6055 
6056   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6057   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6058     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6059   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6060     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6061 
6062   MI.eraseFromParent();
6063   return MBB;
6064 }
6065 
6066 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6067 // if the high register of the GR128 value must be cleared or false if
6068 // it's "don't care".
6069 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6070                                                      MachineBasicBlock *MBB,
6071                                                      bool ClearEven) const {
6072   MachineFunction &MF = *MBB->getParent();
6073   const SystemZInstrInfo *TII =
6074       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6075   MachineRegisterInfo &MRI = MF.getRegInfo();
6076   DebugLoc DL = MI.getDebugLoc();
6077 
6078   unsigned Dest = MI.getOperand(0).getReg();
6079   unsigned Src = MI.getOperand(1).getReg();
6080   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6081 
6082   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6083   if (ClearEven) {
6084     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6085     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6086 
6087     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6088       .addImm(0);
6089     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6090       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6091     In128 = NewIn128;
6092   }
6093   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6094     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6095 
6096   MI.eraseFromParent();
6097   return MBB;
6098 }
6099 
6100 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6101     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6102   MachineFunction &MF = *MBB->getParent();
6103   const SystemZInstrInfo *TII =
6104       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6105   MachineRegisterInfo &MRI = MF.getRegInfo();
6106   DebugLoc DL = MI.getDebugLoc();
6107 
6108   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6109   uint64_t DestDisp = MI.getOperand(1).getImm();
6110   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6111   uint64_t SrcDisp = MI.getOperand(3).getImm();
6112   uint64_t Length = MI.getOperand(4).getImm();
6113 
6114   // When generating more than one CLC, all but the last will need to
6115   // branch to the end when a difference is found.
6116   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6117                                splitBlockAfter(MI, MBB) : nullptr);
6118 
6119   // Check for the loop form, in which operand 5 is the trip count.
6120   if (MI.getNumExplicitOperands() > 5) {
6121     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6122 
6123     uint64_t StartCountReg = MI.getOperand(5).getReg();
6124     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
6125     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
6126                               forceReg(MI, DestBase, TII));
6127 
6128     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6129     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
6130     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6131                             MRI.createVirtualRegister(RC));
6132     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
6133     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6134                             MRI.createVirtualRegister(RC));
6135 
6136     RC = &SystemZ::GR64BitRegClass;
6137     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6138     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6139 
6140     MachineBasicBlock *StartMBB = MBB;
6141     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6142     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6143     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6144 
6145     //  StartMBB:
6146     //   # fall through to LoopMMB
6147     MBB->addSuccessor(LoopMBB);
6148 
6149     //  LoopMBB:
6150     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6151     //                      [ %NextDestReg, NextMBB ]
6152     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6153     //                     [ %NextSrcReg, NextMBB ]
6154     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6155     //                       [ %NextCountReg, NextMBB ]
6156     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
6157     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6158     //   ( JLH EndMBB )
6159     //
6160     // The prefetch is used only for MVC.  The JLH is used only for CLC.
6161     MBB = LoopMBB;
6162 
6163     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6164       .addReg(StartDestReg).addMBB(StartMBB)
6165       .addReg(NextDestReg).addMBB(NextMBB);
6166     if (!HaveSingleBase)
6167       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6168         .addReg(StartSrcReg).addMBB(StartMBB)
6169         .addReg(NextSrcReg).addMBB(NextMBB);
6170     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6171       .addReg(StartCountReg).addMBB(StartMBB)
6172       .addReg(NextCountReg).addMBB(NextMBB);
6173     if (Opcode == SystemZ::MVC)
6174       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6175         .addImm(SystemZ::PFD_WRITE)
6176         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6177     BuildMI(MBB, DL, TII->get(Opcode))
6178       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6179       .addReg(ThisSrcReg).addImm(SrcDisp);
6180     if (EndMBB) {
6181       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6182         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6183         .addMBB(EndMBB);
6184       MBB->addSuccessor(EndMBB);
6185       MBB->addSuccessor(NextMBB);
6186     }
6187 
6188     // NextMBB:
6189     //   %NextDestReg = LA 256(%ThisDestReg)
6190     //   %NextSrcReg = LA 256(%ThisSrcReg)
6191     //   %NextCountReg = AGHI %ThisCountReg, -1
6192     //   CGHI %NextCountReg, 0
6193     //   JLH LoopMBB
6194     //   # fall through to DoneMMB
6195     //
6196     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6197     MBB = NextMBB;
6198 
6199     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6200       .addReg(ThisDestReg).addImm(256).addReg(0);
6201     if (!HaveSingleBase)
6202       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6203         .addReg(ThisSrcReg).addImm(256).addReg(0);
6204     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6205       .addReg(ThisCountReg).addImm(-1);
6206     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6207       .addReg(NextCountReg).addImm(0);
6208     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6209       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6210       .addMBB(LoopMBB);
6211     MBB->addSuccessor(LoopMBB);
6212     MBB->addSuccessor(DoneMBB);
6213 
6214     DestBase = MachineOperand::CreateReg(NextDestReg, false);
6215     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6216     Length &= 255;
6217     MBB = DoneMBB;
6218   }
6219   // Handle any remaining bytes with straight-line code.
6220   while (Length > 0) {
6221     uint64_t ThisLength = std::min(Length, uint64_t(256));
6222     // The previous iteration might have created out-of-range displacements.
6223     // Apply them using LAY if so.
6224     if (!isUInt<12>(DestDisp)) {
6225       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6226       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6227           .add(DestBase)
6228           .addImm(DestDisp)
6229           .addReg(0);
6230       DestBase = MachineOperand::CreateReg(Reg, false);
6231       DestDisp = 0;
6232     }
6233     if (!isUInt<12>(SrcDisp)) {
6234       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6235       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6236           .add(SrcBase)
6237           .addImm(SrcDisp)
6238           .addReg(0);
6239       SrcBase = MachineOperand::CreateReg(Reg, false);
6240       SrcDisp = 0;
6241     }
6242     BuildMI(*MBB, MI, DL, TII->get(Opcode))
6243         .add(DestBase)
6244         .addImm(DestDisp)
6245         .addImm(ThisLength)
6246         .add(SrcBase)
6247         .addImm(SrcDisp)
6248         ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
6249     DestDisp += ThisLength;
6250     SrcDisp += ThisLength;
6251     Length -= ThisLength;
6252     // If there's another CLC to go, branch to the end if a difference
6253     // was found.
6254     if (EndMBB && Length > 0) {
6255       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6256       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6257         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6258         .addMBB(EndMBB);
6259       MBB->addSuccessor(EndMBB);
6260       MBB->addSuccessor(NextMBB);
6261       MBB = NextMBB;
6262     }
6263   }
6264   if (EndMBB) {
6265     MBB->addSuccessor(EndMBB);
6266     MBB = EndMBB;
6267     MBB->addLiveIn(SystemZ::CC);
6268   }
6269 
6270   MI.eraseFromParent();
6271   return MBB;
6272 }
6273 
6274 // Decompose string pseudo-instruction MI into a loop that continually performs
6275 // Opcode until CC != 3.
6276 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
6277     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6278   MachineFunction &MF = *MBB->getParent();
6279   const SystemZInstrInfo *TII =
6280       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6281   MachineRegisterInfo &MRI = MF.getRegInfo();
6282   DebugLoc DL = MI.getDebugLoc();
6283 
6284   uint64_t End1Reg = MI.getOperand(0).getReg();
6285   uint64_t Start1Reg = MI.getOperand(1).getReg();
6286   uint64_t Start2Reg = MI.getOperand(2).getReg();
6287   uint64_t CharReg = MI.getOperand(3).getReg();
6288 
6289   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
6290   uint64_t This1Reg = MRI.createVirtualRegister(RC);
6291   uint64_t This2Reg = MRI.createVirtualRegister(RC);
6292   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
6293 
6294   MachineBasicBlock *StartMBB = MBB;
6295   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6296   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6297 
6298   //  StartMBB:
6299   //   # fall through to LoopMMB
6300   MBB->addSuccessor(LoopMBB);
6301 
6302   //  LoopMBB:
6303   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
6304   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
6305   //   R0L = %CharReg
6306   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
6307   //   JO LoopMBB
6308   //   # fall through to DoneMMB
6309   //
6310   // The load of R0L can be hoisted by post-RA LICM.
6311   MBB = LoopMBB;
6312 
6313   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
6314     .addReg(Start1Reg).addMBB(StartMBB)
6315     .addReg(End1Reg).addMBB(LoopMBB);
6316   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
6317     .addReg(Start2Reg).addMBB(StartMBB)
6318     .addReg(End2Reg).addMBB(LoopMBB);
6319   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
6320   BuildMI(MBB, DL, TII->get(Opcode))
6321     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
6322     .addReg(This1Reg).addReg(This2Reg);
6323   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6324     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
6325   MBB->addSuccessor(LoopMBB);
6326   MBB->addSuccessor(DoneMBB);
6327 
6328   DoneMBB->addLiveIn(SystemZ::CC);
6329 
6330   MI.eraseFromParent();
6331   return DoneMBB;
6332 }
6333 
6334 // Update TBEGIN instruction with final opcode and register clobbers.
6335 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
6336     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
6337     bool NoFloat) const {
6338   MachineFunction &MF = *MBB->getParent();
6339   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6340   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
6341 
6342   // Update opcode.
6343   MI.setDesc(TII->get(Opcode));
6344 
6345   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
6346   // Make sure to add the corresponding GRSM bits if they are missing.
6347   uint64_t Control = MI.getOperand(2).getImm();
6348   static const unsigned GPRControlBit[16] = {
6349     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
6350     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
6351   };
6352   Control |= GPRControlBit[15];
6353   if (TFI->hasFP(MF))
6354     Control |= GPRControlBit[11];
6355   MI.getOperand(2).setImm(Control);
6356 
6357   // Add GPR clobbers.
6358   for (int I = 0; I < 16; I++) {
6359     if ((Control & GPRControlBit[I]) == 0) {
6360       unsigned Reg = SystemZMC::GR64Regs[I];
6361       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6362     }
6363   }
6364 
6365   // Add FPR/VR clobbers.
6366   if (!NoFloat && (Control & 4) != 0) {
6367     if (Subtarget.hasVector()) {
6368       for (int I = 0; I < 32; I++) {
6369         unsigned Reg = SystemZMC::VR128Regs[I];
6370         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6371       }
6372     } else {
6373       for (int I = 0; I < 16; I++) {
6374         unsigned Reg = SystemZMC::FP64Regs[I];
6375         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6376       }
6377     }
6378   }
6379 
6380   return MBB;
6381 }
6382 
6383 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6384     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6385   MachineFunction &MF = *MBB->getParent();
6386   MachineRegisterInfo *MRI = &MF.getRegInfo();
6387   const SystemZInstrInfo *TII =
6388       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6389   DebugLoc DL = MI.getDebugLoc();
6390 
6391   unsigned SrcReg = MI.getOperand(0).getReg();
6392 
6393   // Create new virtual register of the same class as source.
6394   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
6395   unsigned DstReg = MRI->createVirtualRegister(RC);
6396 
6397   // Replace pseudo with a normal load-and-test that models the def as
6398   // well.
6399   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
6400     .addReg(SrcReg);
6401   MI.eraseFromParent();
6402 
6403   return MBB;
6404 }
6405 
6406 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
6407     MachineInstr &MI, MachineBasicBlock *MBB) const {
6408   switch (MI.getOpcode()) {
6409   case SystemZ::Select32Mux:
6410     return emitSelect(MI, MBB,
6411                       Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0);
6412   case SystemZ::Select32:
6413     return emitSelect(MI, MBB, SystemZ::LOCR);
6414   case SystemZ::Select64:
6415     return emitSelect(MI, MBB, SystemZ::LOCGR);
6416   case SystemZ::SelectF32:
6417   case SystemZ::SelectF64:
6418   case SystemZ::SelectF128:
6419   case SystemZ::SelectVR128:
6420     return emitSelect(MI, MBB, 0);
6421 
6422   case SystemZ::CondStore8Mux:
6423     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6424   case SystemZ::CondStore8MuxInv:
6425     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6426   case SystemZ::CondStore16Mux:
6427     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6428   case SystemZ::CondStore16MuxInv:
6429     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6430   case SystemZ::CondStore32Mux:
6431     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
6432   case SystemZ::CondStore32MuxInv:
6433     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
6434   case SystemZ::CondStore8:
6435     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6436   case SystemZ::CondStore8Inv:
6437     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6438   case SystemZ::CondStore16:
6439     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6440   case SystemZ::CondStore16Inv:
6441     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6442   case SystemZ::CondStore32:
6443     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6444   case SystemZ::CondStore32Inv:
6445     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6446   case SystemZ::CondStore64:
6447     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6448   case SystemZ::CondStore64Inv:
6449     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6450   case SystemZ::CondStoreF32:
6451     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6452   case SystemZ::CondStoreF32Inv:
6453     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6454   case SystemZ::CondStoreF64:
6455     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6456   case SystemZ::CondStoreF64Inv:
6457     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6458 
6459   case SystemZ::PAIR128:
6460     return emitPair128(MI, MBB);
6461   case SystemZ::AEXT128:
6462     return emitExt128(MI, MBB, false);
6463   case SystemZ::ZEXT128:
6464     return emitExt128(MI, MBB, true);
6465 
6466   case SystemZ::ATOMIC_SWAPW:
6467     return emitAtomicLoadBinary(MI, MBB, 0, 0);
6468   case SystemZ::ATOMIC_SWAP_32:
6469     return emitAtomicLoadBinary(MI, MBB, 0, 32);
6470   case SystemZ::ATOMIC_SWAP_64:
6471     return emitAtomicLoadBinary(MI, MBB, 0, 64);
6472 
6473   case SystemZ::ATOMIC_LOADW_AR:
6474     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6475   case SystemZ::ATOMIC_LOADW_AFI:
6476     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6477   case SystemZ::ATOMIC_LOAD_AR:
6478     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6479   case SystemZ::ATOMIC_LOAD_AHI:
6480     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6481   case SystemZ::ATOMIC_LOAD_AFI:
6482     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6483   case SystemZ::ATOMIC_LOAD_AGR:
6484     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6485   case SystemZ::ATOMIC_LOAD_AGHI:
6486     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6487   case SystemZ::ATOMIC_LOAD_AGFI:
6488     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6489 
6490   case SystemZ::ATOMIC_LOADW_SR:
6491     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6492   case SystemZ::ATOMIC_LOAD_SR:
6493     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6494   case SystemZ::ATOMIC_LOAD_SGR:
6495     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6496 
6497   case SystemZ::ATOMIC_LOADW_NR:
6498     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6499   case SystemZ::ATOMIC_LOADW_NILH:
6500     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6501   case SystemZ::ATOMIC_LOAD_NR:
6502     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6503   case SystemZ::ATOMIC_LOAD_NILL:
6504     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6505   case SystemZ::ATOMIC_LOAD_NILH:
6506     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6507   case SystemZ::ATOMIC_LOAD_NILF:
6508     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6509   case SystemZ::ATOMIC_LOAD_NGR:
6510     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6511   case SystemZ::ATOMIC_LOAD_NILL64:
6512     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6513   case SystemZ::ATOMIC_LOAD_NILH64:
6514     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6515   case SystemZ::ATOMIC_LOAD_NIHL64:
6516     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6517   case SystemZ::ATOMIC_LOAD_NIHH64:
6518     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6519   case SystemZ::ATOMIC_LOAD_NILF64:
6520     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6521   case SystemZ::ATOMIC_LOAD_NIHF64:
6522     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6523 
6524   case SystemZ::ATOMIC_LOADW_OR:
6525     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6526   case SystemZ::ATOMIC_LOADW_OILH:
6527     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6528   case SystemZ::ATOMIC_LOAD_OR:
6529     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6530   case SystemZ::ATOMIC_LOAD_OILL:
6531     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6532   case SystemZ::ATOMIC_LOAD_OILH:
6533     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6534   case SystemZ::ATOMIC_LOAD_OILF:
6535     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6536   case SystemZ::ATOMIC_LOAD_OGR:
6537     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6538   case SystemZ::ATOMIC_LOAD_OILL64:
6539     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6540   case SystemZ::ATOMIC_LOAD_OILH64:
6541     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6542   case SystemZ::ATOMIC_LOAD_OIHL64:
6543     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6544   case SystemZ::ATOMIC_LOAD_OIHH64:
6545     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6546   case SystemZ::ATOMIC_LOAD_OILF64:
6547     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6548   case SystemZ::ATOMIC_LOAD_OIHF64:
6549     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6550 
6551   case SystemZ::ATOMIC_LOADW_XR:
6552     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6553   case SystemZ::ATOMIC_LOADW_XILF:
6554     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6555   case SystemZ::ATOMIC_LOAD_XR:
6556     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6557   case SystemZ::ATOMIC_LOAD_XILF:
6558     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6559   case SystemZ::ATOMIC_LOAD_XGR:
6560     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6561   case SystemZ::ATOMIC_LOAD_XILF64:
6562     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6563   case SystemZ::ATOMIC_LOAD_XIHF64:
6564     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6565 
6566   case SystemZ::ATOMIC_LOADW_NRi:
6567     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6568   case SystemZ::ATOMIC_LOADW_NILHi:
6569     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6570   case SystemZ::ATOMIC_LOAD_NRi:
6571     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6572   case SystemZ::ATOMIC_LOAD_NILLi:
6573     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6574   case SystemZ::ATOMIC_LOAD_NILHi:
6575     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6576   case SystemZ::ATOMIC_LOAD_NILFi:
6577     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6578   case SystemZ::ATOMIC_LOAD_NGRi:
6579     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6580   case SystemZ::ATOMIC_LOAD_NILL64i:
6581     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6582   case SystemZ::ATOMIC_LOAD_NILH64i:
6583     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
6584   case SystemZ::ATOMIC_LOAD_NIHL64i:
6585     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6586   case SystemZ::ATOMIC_LOAD_NIHH64i:
6587     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
6588   case SystemZ::ATOMIC_LOAD_NILF64i:
6589     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
6590   case SystemZ::ATOMIC_LOAD_NIHF64i:
6591     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
6592 
6593   case SystemZ::ATOMIC_LOADW_MIN:
6594     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6595                                 SystemZ::CCMASK_CMP_LE, 0);
6596   case SystemZ::ATOMIC_LOAD_MIN_32:
6597     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6598                                 SystemZ::CCMASK_CMP_LE, 32);
6599   case SystemZ::ATOMIC_LOAD_MIN_64:
6600     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6601                                 SystemZ::CCMASK_CMP_LE, 64);
6602 
6603   case SystemZ::ATOMIC_LOADW_MAX:
6604     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6605                                 SystemZ::CCMASK_CMP_GE, 0);
6606   case SystemZ::ATOMIC_LOAD_MAX_32:
6607     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6608                                 SystemZ::CCMASK_CMP_GE, 32);
6609   case SystemZ::ATOMIC_LOAD_MAX_64:
6610     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6611                                 SystemZ::CCMASK_CMP_GE, 64);
6612 
6613   case SystemZ::ATOMIC_LOADW_UMIN:
6614     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6615                                 SystemZ::CCMASK_CMP_LE, 0);
6616   case SystemZ::ATOMIC_LOAD_UMIN_32:
6617     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6618                                 SystemZ::CCMASK_CMP_LE, 32);
6619   case SystemZ::ATOMIC_LOAD_UMIN_64:
6620     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6621                                 SystemZ::CCMASK_CMP_LE, 64);
6622 
6623   case SystemZ::ATOMIC_LOADW_UMAX:
6624     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6625                                 SystemZ::CCMASK_CMP_GE, 0);
6626   case SystemZ::ATOMIC_LOAD_UMAX_32:
6627     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6628                                 SystemZ::CCMASK_CMP_GE, 32);
6629   case SystemZ::ATOMIC_LOAD_UMAX_64:
6630     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6631                                 SystemZ::CCMASK_CMP_GE, 64);
6632 
6633   case SystemZ::ATOMIC_CMP_SWAPW:
6634     return emitAtomicCmpSwapW(MI, MBB);
6635   case SystemZ::MVCSequence:
6636   case SystemZ::MVCLoop:
6637     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
6638   case SystemZ::NCSequence:
6639   case SystemZ::NCLoop:
6640     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6641   case SystemZ::OCSequence:
6642   case SystemZ::OCLoop:
6643     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6644   case SystemZ::XCSequence:
6645   case SystemZ::XCLoop:
6646     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
6647   case SystemZ::CLCSequence:
6648   case SystemZ::CLCLoop:
6649     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
6650   case SystemZ::CLSTLoop:
6651     return emitStringWrapper(MI, MBB, SystemZ::CLST);
6652   case SystemZ::MVSTLoop:
6653     return emitStringWrapper(MI, MBB, SystemZ::MVST);
6654   case SystemZ::SRSTLoop:
6655     return emitStringWrapper(MI, MBB, SystemZ::SRST);
6656   case SystemZ::TBEGIN:
6657     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6658   case SystemZ::TBEGIN_nofloat:
6659     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6660   case SystemZ::TBEGINC:
6661     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
6662   case SystemZ::LTEBRCompare_VecPseudo:
6663     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6664   case SystemZ::LTDBRCompare_VecPseudo:
6665     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6666   case SystemZ::LTXBRCompare_VecPseudo:
6667     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6668 
6669   default:
6670     llvm_unreachable("Unexpected instr type to insert");
6671   }
6672 }
6673 
6674 // This is only used by the isel schedulers, and is needed only to prevent
6675 // compiler from crashing when list-ilp is used.
6676 const TargetRegisterClass *
6677 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
6678   if (VT == MVT::Untyped)
6679     return &SystemZ::ADDR128BitRegClass;
6680   return TargetLowering::getRepRegClassFor(VT);
6681 }
6682