1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Special treatment.
475       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
476 
477       // Handle constrained floating-point operations.
478       setOperationAction(ISD::STRICT_FADD, VT, Legal);
479       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
480       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
481       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
482       setOperationAction(ISD::STRICT_FMA, VT, Legal);
483       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
484       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
485       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
486       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
487       if (Subtarget.hasFPExtension()) {
488         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
489         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
490         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
491         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
492         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
493       }
494     }
495   }
496 
497   // Handle floating-point vector types.
498   if (Subtarget.hasVector()) {
499     // Scalar-to-vector conversion is just a subreg.
500     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
501     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
502 
503     // Some insertions and extractions can be done directly but others
504     // need to go via integers.
505     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
506     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
507     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
508     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
509 
510     // These operations have direct equivalents.
511     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
512     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
513     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
514     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
515     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
516     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
517     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
518     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
519     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
520     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
521     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
522     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
523     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
524     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
525 
526     // Handle constrained floating-point operations.
527     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
536     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
537     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
538     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
539   }
540 
541   // The vector enhancements facility 1 has instructions for these.
542   if (Subtarget.hasVectorEnhancements1()) {
543     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
544     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
545     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
546     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
547     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
548     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
549     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
550     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
551     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
553     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
554     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
555     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
556     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
557 
558     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
559     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
560     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
561     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
562 
563     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
564     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
565     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
566     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
567 
568     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
569     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
570     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
571     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
572 
573     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
574     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
575     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
576     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
577 
578     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
579     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
580     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
581     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
582 
583     // Handle constrained floating-point operations.
584     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
593     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
594     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
595     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
596     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
597                      MVT::v4f32, MVT::v2f64 }) {
598       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
599       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
600       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
601       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
602     }
603   }
604 
605   // We only have fused f128 multiply-addition on vector registers.
606   if (!Subtarget.hasVectorEnhancements1()) {
607     setOperationAction(ISD::FMA, MVT::f128, Expand);
608     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
609   }
610 
611   // We don't have a copysign instruction on vector registers.
612   if (Subtarget.hasVectorEnhancements1())
613     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
614 
615   // Needed so that we don't try to implement f128 constant loads using
616   // a load-and-extend of a f80 constant (in cases where the constant
617   // would fit in an f80).
618   for (MVT VT : MVT::fp_valuetypes())
619     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
620 
621   // We don't have extending load instruction on vector registers.
622   if (Subtarget.hasVectorEnhancements1()) {
623     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
624     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
625   }
626 
627   // Floating-point truncation and stores need to be done separately.
628   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
629   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
630   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
631 
632   // We have 64-bit FPR<->GPR moves, but need special handling for
633   // 32-bit forms.
634   if (!Subtarget.hasVector()) {
635     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
636     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
637   }
638 
639   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
640   // structure, but VAEND is a no-op.
641   setOperationAction(ISD::VASTART, MVT::Other, Custom);
642   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
643   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
644 
645   // Codes for which we want to perform some z-specific combinations.
646   setTargetDAGCombine({ISD::ZERO_EXTEND,
647                        ISD::SIGN_EXTEND,
648                        ISD::SIGN_EXTEND_INREG,
649                        ISD::LOAD,
650                        ISD::STORE,
651                        ISD::VECTOR_SHUFFLE,
652                        ISD::EXTRACT_VECTOR_ELT,
653                        ISD::FP_ROUND,
654                        ISD::STRICT_FP_ROUND,
655                        ISD::FP_EXTEND,
656                        ISD::SINT_TO_FP,
657                        ISD::UINT_TO_FP,
658                        ISD::STRICT_FP_EXTEND,
659                        ISD::BSWAP,
660                        ISD::SDIV,
661                        ISD::UDIV,
662                        ISD::SREM,
663                        ISD::UREM,
664                        ISD::INTRINSIC_VOID,
665                        ISD::INTRINSIC_W_CHAIN});
666 
667   // Handle intrinsics.
668   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
669   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
670 
671   // We want to use MVC in preference to even a single load/store pair.
672   MaxStoresPerMemcpy = 0;
673   MaxStoresPerMemcpyOptSize = 0;
674 
675   // The main memset sequence is a byte store followed by an MVC.
676   // Two STC or MV..I stores win over that, but the kind of fused stores
677   // generated by target-independent code don't when the byte value is
678   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
679   // than "STC;MVC".  Handle the choice in target-specific code instead.
680   MaxStoresPerMemset = 0;
681   MaxStoresPerMemsetOptSize = 0;
682 
683   // Default to having -disable-strictnode-mutation on
684   IsStrictFPEnabled = true;
685 }
686 
687 bool SystemZTargetLowering::useSoftFloat() const {
688   return Subtarget.hasSoftFloat();
689 }
690 
691 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
692                                               LLVMContext &, EVT VT) const {
693   if (!VT.isVector())
694     return MVT::i32;
695   return VT.changeVectorElementTypeToInteger();
696 }
697 
698 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
699     const MachineFunction &MF, EVT VT) const {
700   VT = VT.getScalarType();
701 
702   if (!VT.isSimple())
703     return false;
704 
705   switch (VT.getSimpleVT().SimpleTy) {
706   case MVT::f32:
707   case MVT::f64:
708     return true;
709   case MVT::f128:
710     return Subtarget.hasVectorEnhancements1();
711   default:
712     break;
713   }
714 
715   return false;
716 }
717 
718 // Return true if the constant can be generated with a vector instruction,
719 // such as VGM, VGMB or VREPI.
720 bool SystemZVectorConstantInfo::isVectorConstantLegal(
721     const SystemZSubtarget &Subtarget) {
722   const SystemZInstrInfo *TII =
723       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
724   if (!Subtarget.hasVector() ||
725       (isFP128 && !Subtarget.hasVectorEnhancements1()))
726     return false;
727 
728   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
729   // preferred way of creating all-zero and all-one vectors so give it
730   // priority over other methods below.
731   unsigned Mask = 0;
732   unsigned I = 0;
733   for (; I < SystemZ::VectorBytes; ++I) {
734     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
735     if (Byte == 0xff)
736       Mask |= 1ULL << I;
737     else if (Byte != 0)
738       break;
739   }
740   if (I == SystemZ::VectorBytes) {
741     Opcode = SystemZISD::BYTE_MASK;
742     OpVals.push_back(Mask);
743     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
744     return true;
745   }
746 
747   if (SplatBitSize > 64)
748     return false;
749 
750   auto tryValue = [&](uint64_t Value) -> bool {
751     // Try VECTOR REPLICATE IMMEDIATE
752     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
753     if (isInt<16>(SignedValue)) {
754       OpVals.push_back(((unsigned) SignedValue));
755       Opcode = SystemZISD::REPLICATE;
756       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
757                                SystemZ::VectorBits / SplatBitSize);
758       return true;
759     }
760     // Try VECTOR GENERATE MASK
761     unsigned Start, End;
762     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
763       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
764       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
765       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
766       OpVals.push_back(Start - (64 - SplatBitSize));
767       OpVals.push_back(End - (64 - SplatBitSize));
768       Opcode = SystemZISD::ROTATE_MASK;
769       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
770                                SystemZ::VectorBits / SplatBitSize);
771       return true;
772     }
773     return false;
774   };
775 
776   // First try assuming that any undefined bits above the highest set bit
777   // and below the lowest set bit are 1s.  This increases the likelihood of
778   // being able to use a sign-extended element value in VECTOR REPLICATE
779   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
780   uint64_t SplatBitsZ = SplatBits.getZExtValue();
781   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
782   uint64_t Lower =
783       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
784   uint64_t Upper =
785       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
786   if (tryValue(SplatBitsZ | Upper | Lower))
787     return true;
788 
789   // Now try assuming that any undefined bits between the first and
790   // last defined set bits are set.  This increases the chances of
791   // using a non-wraparound mask.
792   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
793   return tryValue(SplatBitsZ | Middle);
794 }
795 
796 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
797   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
798   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
799   SplatBits = FPImm.bitcastToAPInt();
800   unsigned Width = SplatBits.getBitWidth();
801   IntBits <<= (SystemZ::VectorBits - Width);
802 
803   // Find the smallest splat.
804   while (Width > 8) {
805     unsigned HalfSize = Width / 2;
806     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
807     APInt LowValue = SplatBits.trunc(HalfSize);
808 
809     // If the two halves do not match, stop here.
810     if (HighValue != LowValue || 8 > HalfSize)
811       break;
812 
813     SplatBits = HighValue;
814     Width = HalfSize;
815   }
816   SplatUndef = 0;
817   SplatBitSize = Width;
818 }
819 
820 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
821   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
822   bool HasAnyUndefs;
823 
824   // Get IntBits by finding the 128 bit splat.
825   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
826                        true);
827 
828   // Get SplatBits by finding the 8 bit or greater splat.
829   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
830                        true);
831 }
832 
833 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
834                                          bool ForCodeSize) const {
835   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
836   if (Imm.isZero() || Imm.isNegZero())
837     return true;
838 
839   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
840 }
841 
842 /// Returns true if stack probing through inline assembly is requested.
843 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
844   // If the function specifically requests inline stack probes, emit them.
845   if (MF.getFunction().hasFnAttribute("probe-stack"))
846     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
847            "inline-asm";
848   return false;
849 }
850 
851 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
852   // We can use CGFI or CLGFI.
853   return isInt<32>(Imm) || isUInt<32>(Imm);
854 }
855 
856 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
857   // We can use ALGFI or SLGFI.
858   return isUInt<32>(Imm) || isUInt<32>(-Imm);
859 }
860 
861 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
862     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
863   // Unaligned accesses should never be slower than the expanded version.
864   // We check specifically for aligned accesses in the few cases where
865   // they are required.
866   if (Fast)
867     *Fast = true;
868   return true;
869 }
870 
871 // Information about the addressing mode for a memory access.
872 struct AddressingMode {
873   // True if a long displacement is supported.
874   bool LongDisplacement;
875 
876   // True if use of index register is supported.
877   bool IndexReg;
878 
879   AddressingMode(bool LongDispl, bool IdxReg) :
880     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
881 };
882 
883 // Return the desired addressing mode for a Load which has only one use (in
884 // the same block) which is a Store.
885 static AddressingMode getLoadStoreAddrMode(bool HasVector,
886                                           Type *Ty) {
887   // With vector support a Load->Store combination may be combined to either
888   // an MVC or vector operations and it seems to work best to allow the
889   // vector addressing mode.
890   if (HasVector)
891     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
892 
893   // Otherwise only the MVC case is special.
894   bool MVC = Ty->isIntegerTy(8);
895   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
896 }
897 
898 // Return the addressing mode which seems most desirable given an LLVM
899 // Instruction pointer.
900 static AddressingMode
901 supportedAddressingMode(Instruction *I, bool HasVector) {
902   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
903     switch (II->getIntrinsicID()) {
904     default: break;
905     case Intrinsic::memset:
906     case Intrinsic::memmove:
907     case Intrinsic::memcpy:
908       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
909     }
910   }
911 
912   if (isa<LoadInst>(I) && I->hasOneUse()) {
913     auto *SingleUser = cast<Instruction>(*I->user_begin());
914     if (SingleUser->getParent() == I->getParent()) {
915       if (isa<ICmpInst>(SingleUser)) {
916         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
917           if (C->getBitWidth() <= 64 &&
918               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
919             // Comparison of memory with 16 bit signed / unsigned immediate
920             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
921       } else if (isa<StoreInst>(SingleUser))
922         // Load->Store
923         return getLoadStoreAddrMode(HasVector, I->getType());
924     }
925   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
926     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
927       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
928         // Load->Store
929         return getLoadStoreAddrMode(HasVector, LoadI->getType());
930   }
931 
932   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
933 
934     // * Use LDE instead of LE/LEY for z13 to avoid partial register
935     //   dependencies (LDE only supports small offsets).
936     // * Utilize the vector registers to hold floating point
937     //   values (vector load / store instructions only support small
938     //   offsets).
939 
940     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
941                          I->getOperand(0)->getType());
942     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
943     bool IsVectorAccess = MemAccessTy->isVectorTy();
944 
945     // A store of an extracted vector element will be combined into a VSTE type
946     // instruction.
947     if (!IsVectorAccess && isa<StoreInst>(I)) {
948       Value *DataOp = I->getOperand(0);
949       if (isa<ExtractElementInst>(DataOp))
950         IsVectorAccess = true;
951     }
952 
953     // A load which gets inserted into a vector element will be combined into a
954     // VLE type instruction.
955     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
956       User *LoadUser = *I->user_begin();
957       if (isa<InsertElementInst>(LoadUser))
958         IsVectorAccess = true;
959     }
960 
961     if (IsFPAccess || IsVectorAccess)
962       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
963   }
964 
965   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
966 }
967 
968 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
969        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
970   // Punt on globals for now, although they can be used in limited
971   // RELATIVE LONG cases.
972   if (AM.BaseGV)
973     return false;
974 
975   // Require a 20-bit signed offset.
976   if (!isInt<20>(AM.BaseOffs))
977     return false;
978 
979   AddressingMode SupportedAM(true, true);
980   if (I != nullptr)
981     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
982 
983   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
984     return false;
985 
986   if (!SupportedAM.IndexReg)
987     // No indexing allowed.
988     return AM.Scale == 0;
989   else
990     // Indexing is OK but no scale factor can be applied.
991     return AM.Scale == 0 || AM.Scale == 1;
992 }
993 
994 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
995   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
996     return false;
997   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
998   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
999   return FromBits > ToBits;
1000 }
1001 
1002 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1003   if (!FromVT.isInteger() || !ToVT.isInteger())
1004     return false;
1005   unsigned FromBits = FromVT.getFixedSizeInBits();
1006   unsigned ToBits = ToVT.getFixedSizeInBits();
1007   return FromBits > ToBits;
1008 }
1009 
1010 //===----------------------------------------------------------------------===//
1011 // Inline asm support
1012 //===----------------------------------------------------------------------===//
1013 
1014 TargetLowering::ConstraintType
1015 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1016   if (Constraint.size() == 1) {
1017     switch (Constraint[0]) {
1018     case 'a': // Address register
1019     case 'd': // Data register (equivalent to 'r')
1020     case 'f': // Floating-point register
1021     case 'h': // High-part register
1022     case 'r': // General-purpose register
1023     case 'v': // Vector register
1024       return C_RegisterClass;
1025 
1026     case 'Q': // Memory with base and unsigned 12-bit displacement
1027     case 'R': // Likewise, plus an index
1028     case 'S': // Memory with base and signed 20-bit displacement
1029     case 'T': // Likewise, plus an index
1030     case 'm': // Equivalent to 'T'.
1031       return C_Memory;
1032 
1033     case 'I': // Unsigned 8-bit constant
1034     case 'J': // Unsigned 12-bit constant
1035     case 'K': // Signed 16-bit constant
1036     case 'L': // Signed 20-bit displacement (on all targets we support)
1037     case 'M': // 0x7fffffff
1038       return C_Immediate;
1039 
1040     default:
1041       break;
1042     }
1043   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1044     switch (Constraint[1]) {
1045     case 'Q': // Address with base and unsigned 12-bit displacement
1046     case 'R': // Likewise, plus an index
1047     case 'S': // Address with base and signed 20-bit displacement
1048     case 'T': // Likewise, plus an index
1049       return C_Address;
1050 
1051     default:
1052       break;
1053     }
1054   }
1055   return TargetLowering::getConstraintType(Constraint);
1056 }
1057 
1058 TargetLowering::ConstraintWeight SystemZTargetLowering::
1059 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1060                                const char *constraint) const {
1061   ConstraintWeight weight = CW_Invalid;
1062   Value *CallOperandVal = info.CallOperandVal;
1063   // If we don't have a value, we can't do a match,
1064   // but allow it at the lowest weight.
1065   if (!CallOperandVal)
1066     return CW_Default;
1067   Type *type = CallOperandVal->getType();
1068   // Look at the constraint type.
1069   switch (*constraint) {
1070   default:
1071     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1072     break;
1073 
1074   case 'a': // Address register
1075   case 'd': // Data register (equivalent to 'r')
1076   case 'h': // High-part register
1077   case 'r': // General-purpose register
1078     if (CallOperandVal->getType()->isIntegerTy())
1079       weight = CW_Register;
1080     break;
1081 
1082   case 'f': // Floating-point register
1083     if (type->isFloatingPointTy())
1084       weight = CW_Register;
1085     break;
1086 
1087   case 'v': // Vector register
1088     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1089         Subtarget.hasVector())
1090       weight = CW_Register;
1091     break;
1092 
1093   case 'I': // Unsigned 8-bit constant
1094     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1095       if (isUInt<8>(C->getZExtValue()))
1096         weight = CW_Constant;
1097     break;
1098 
1099   case 'J': // Unsigned 12-bit constant
1100     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1101       if (isUInt<12>(C->getZExtValue()))
1102         weight = CW_Constant;
1103     break;
1104 
1105   case 'K': // Signed 16-bit constant
1106     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1107       if (isInt<16>(C->getSExtValue()))
1108         weight = CW_Constant;
1109     break;
1110 
1111   case 'L': // Signed 20-bit displacement (on all targets we support)
1112     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1113       if (isInt<20>(C->getSExtValue()))
1114         weight = CW_Constant;
1115     break;
1116 
1117   case 'M': // 0x7fffffff
1118     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1119       if (C->getZExtValue() == 0x7fffffff)
1120         weight = CW_Constant;
1121     break;
1122   }
1123   return weight;
1124 }
1125 
1126 // Parse a "{tNNN}" register constraint for which the register type "t"
1127 // has already been verified.  MC is the class associated with "t" and
1128 // Map maps 0-based register numbers to LLVM register numbers.
1129 static std::pair<unsigned, const TargetRegisterClass *>
1130 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1131                     const unsigned *Map, unsigned Size) {
1132   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1133   if (isdigit(Constraint[2])) {
1134     unsigned Index;
1135     bool Failed =
1136         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1137     if (!Failed && Index < Size && Map[Index])
1138       return std::make_pair(Map[Index], RC);
1139   }
1140   return std::make_pair(0U, nullptr);
1141 }
1142 
1143 std::pair<unsigned, const TargetRegisterClass *>
1144 SystemZTargetLowering::getRegForInlineAsmConstraint(
1145     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1146   if (Constraint.size() == 1) {
1147     // GCC Constraint Letters
1148     switch (Constraint[0]) {
1149     default: break;
1150     case 'd': // Data register (equivalent to 'r')
1151     case 'r': // General-purpose register
1152       if (VT == MVT::i64)
1153         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1154       else if (VT == MVT::i128)
1155         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1156       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1157 
1158     case 'a': // Address register
1159       if (VT == MVT::i64)
1160         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1161       else if (VT == MVT::i128)
1162         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1163       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1164 
1165     case 'h': // High-part register (an LLVM extension)
1166       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1167 
1168     case 'f': // Floating-point register
1169       if (!useSoftFloat()) {
1170         if (VT == MVT::f64)
1171           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1172         else if (VT == MVT::f128)
1173           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1174         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1175       }
1176       break;
1177     case 'v': // Vector register
1178       if (Subtarget.hasVector()) {
1179         if (VT == MVT::f32)
1180           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1181         if (VT == MVT::f64)
1182           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1183         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1184       }
1185       break;
1186     }
1187   }
1188   if (Constraint.size() > 0 && Constraint[0] == '{') {
1189     // We need to override the default register parsing for GPRs and FPRs
1190     // because the interpretation depends on VT.  The internal names of
1191     // the registers are also different from the external names
1192     // (F0D and F0S instead of F0, etc.).
1193     if (Constraint[1] == 'r') {
1194       if (VT == MVT::i32)
1195         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1196                                    SystemZMC::GR32Regs, 16);
1197       if (VT == MVT::i128)
1198         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1199                                    SystemZMC::GR128Regs, 16);
1200       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1201                                  SystemZMC::GR64Regs, 16);
1202     }
1203     if (Constraint[1] == 'f') {
1204       if (useSoftFloat())
1205         return std::make_pair(
1206             0u, static_cast<const TargetRegisterClass *>(nullptr));
1207       if (VT == MVT::f32)
1208         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1209                                    SystemZMC::FP32Regs, 16);
1210       if (VT == MVT::f128)
1211         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1212                                    SystemZMC::FP128Regs, 16);
1213       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1214                                  SystemZMC::FP64Regs, 16);
1215     }
1216     if (Constraint[1] == 'v') {
1217       if (!Subtarget.hasVector())
1218         return std::make_pair(
1219             0u, static_cast<const TargetRegisterClass *>(nullptr));
1220       if (VT == MVT::f32)
1221         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1222                                    SystemZMC::VR32Regs, 32);
1223       if (VT == MVT::f64)
1224         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1225                                    SystemZMC::VR64Regs, 32);
1226       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1227                                  SystemZMC::VR128Regs, 32);
1228     }
1229   }
1230   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1231 }
1232 
1233 // FIXME? Maybe this could be a TableGen attribute on some registers and
1234 // this table could be generated automatically from RegInfo.
1235 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1236                                                   const MachineFunction &MF) const {
1237 
1238   Register Reg = StringSwitch<Register>(RegName)
1239                    .Case("r15", SystemZ::R15D)
1240                    .Default(0);
1241   if (Reg)
1242     return Reg;
1243   report_fatal_error("Invalid register name global variable");
1244 }
1245 
1246 void SystemZTargetLowering::
1247 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1248                              std::vector<SDValue> &Ops,
1249                              SelectionDAG &DAG) const {
1250   // Only support length 1 constraints for now.
1251   if (Constraint.length() == 1) {
1252     switch (Constraint[0]) {
1253     case 'I': // Unsigned 8-bit constant
1254       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1255         if (isUInt<8>(C->getZExtValue()))
1256           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1257                                               Op.getValueType()));
1258       return;
1259 
1260     case 'J': // Unsigned 12-bit constant
1261       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1262         if (isUInt<12>(C->getZExtValue()))
1263           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1264                                               Op.getValueType()));
1265       return;
1266 
1267     case 'K': // Signed 16-bit constant
1268       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1269         if (isInt<16>(C->getSExtValue()))
1270           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1271                                               Op.getValueType()));
1272       return;
1273 
1274     case 'L': // Signed 20-bit displacement (on all targets we support)
1275       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1276         if (isInt<20>(C->getSExtValue()))
1277           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1278                                               Op.getValueType()));
1279       return;
1280 
1281     case 'M': // 0x7fffffff
1282       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1283         if (C->getZExtValue() == 0x7fffffff)
1284           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1285                                               Op.getValueType()));
1286       return;
1287     }
1288   }
1289   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1290 }
1291 
1292 //===----------------------------------------------------------------------===//
1293 // Calling conventions
1294 //===----------------------------------------------------------------------===//
1295 
1296 #include "SystemZGenCallingConv.inc"
1297 
1298 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1299   CallingConv::ID) const {
1300   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1301                                            SystemZ::R14D, 0 };
1302   return ScratchRegs;
1303 }
1304 
1305 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1306                                                      Type *ToType) const {
1307   return isTruncateFree(FromType, ToType);
1308 }
1309 
1310 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1311   return CI->isTailCall();
1312 }
1313 
1314 // We do not yet support 128-bit single-element vector types.  If the user
1315 // attempts to use such types as function argument or return type, prefer
1316 // to error out instead of emitting code violating the ABI.
1317 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1318   if (ArgVT.isVector() && !VT.isVector())
1319     report_fatal_error("Unsupported vector argument or return type");
1320 }
1321 
1322 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1323   for (unsigned i = 0; i < Ins.size(); ++i)
1324     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1325 }
1326 
1327 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1328   for (unsigned i = 0; i < Outs.size(); ++i)
1329     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1330 }
1331 
1332 // Value is a value that has been passed to us in the location described by VA
1333 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1334 // any loads onto Chain.
1335 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1336                                    CCValAssign &VA, SDValue Chain,
1337                                    SDValue Value) {
1338   // If the argument has been promoted from a smaller type, insert an
1339   // assertion to capture this.
1340   if (VA.getLocInfo() == CCValAssign::SExt)
1341     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1342                         DAG.getValueType(VA.getValVT()));
1343   else if (VA.getLocInfo() == CCValAssign::ZExt)
1344     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1345                         DAG.getValueType(VA.getValVT()));
1346 
1347   if (VA.isExtInLoc())
1348     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1349   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1350     // If this is a short vector argument loaded from the stack,
1351     // extend from i64 to full vector size and then bitcast.
1352     assert(VA.getLocVT() == MVT::i64);
1353     assert(VA.getValVT().isVector());
1354     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1355     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1356   } else
1357     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1358   return Value;
1359 }
1360 
1361 // Value is a value of type VA.getValVT() that we need to copy into
1362 // the location described by VA.  Return a copy of Value converted to
1363 // VA.getValVT().  The caller is responsible for handling indirect values.
1364 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1365                                    CCValAssign &VA, SDValue Value) {
1366   switch (VA.getLocInfo()) {
1367   case CCValAssign::SExt:
1368     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1369   case CCValAssign::ZExt:
1370     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1371   case CCValAssign::AExt:
1372     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1373   case CCValAssign::BCvt: {
1374     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1375     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1376            VA.getValVT() == MVT::f128);
1377     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1378                             ? MVT::v2i64
1379                             : VA.getLocVT();
1380     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1381     // For ELF, this is a short vector argument to be stored to the stack,
1382     // bitcast to v2i64 and then extract first element.
1383     if (BitCastToType == MVT::v2i64)
1384       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1385                          DAG.getConstant(0, DL, MVT::i32));
1386     return Value;
1387   }
1388   case CCValAssign::Full:
1389     return Value;
1390   default:
1391     llvm_unreachable("Unhandled getLocInfo()");
1392   }
1393 }
1394 
1395 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1396   SDLoc DL(In);
1397   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1398                            DAG.getIntPtrConstant(0, DL));
1399   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1400                            DAG.getIntPtrConstant(1, DL));
1401   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1402                                     MVT::Untyped, Hi, Lo);
1403   return SDValue(Pair, 0);
1404 }
1405 
1406 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1407   SDLoc DL(In);
1408   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1409                                           DL, MVT::i64, In);
1410   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1411                                           DL, MVT::i64, In);
1412   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1413 }
1414 
1415 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1416     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1417     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1418   EVT ValueVT = Val.getValueType();
1419   assert((ValueVT != MVT::i128 ||
1420           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1421            (NumParts == 2 && PartVT == MVT::i64))) &&
1422          "Unknown handling of i128 value.");
1423   if (ValueVT == MVT::i128 && NumParts == 1) {
1424     // Inline assembly operand.
1425     Parts[0] = lowerI128ToGR128(DAG, Val);
1426     return true;
1427   }
1428   return false;
1429 }
1430 
1431 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1432     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1433     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1434   assert((ValueVT != MVT::i128 ||
1435           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1436            (NumParts == 2 && PartVT == MVT::i64))) &&
1437          "Unknown handling of i128 value.");
1438   if (ValueVT == MVT::i128 && NumParts == 1)
1439     // Inline assembly operand.
1440     return lowerGR128ToI128(DAG, Parts[0]);
1441   return SDValue();
1442 }
1443 
1444 SDValue SystemZTargetLowering::LowerFormalArguments(
1445     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1446     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1447     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1448   MachineFunction &MF = DAG.getMachineFunction();
1449   MachineFrameInfo &MFI = MF.getFrameInfo();
1450   MachineRegisterInfo &MRI = MF.getRegInfo();
1451   SystemZMachineFunctionInfo *FuncInfo =
1452       MF.getInfo<SystemZMachineFunctionInfo>();
1453   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1454   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1455 
1456   // Detect unsupported vector argument types.
1457   if (Subtarget.hasVector())
1458     VerifyVectorTypes(Ins);
1459 
1460   // Assign locations to all of the incoming arguments.
1461   SmallVector<CCValAssign, 16> ArgLocs;
1462   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1463   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1464 
1465   unsigned NumFixedGPRs = 0;
1466   unsigned NumFixedFPRs = 0;
1467   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1468     SDValue ArgValue;
1469     CCValAssign &VA = ArgLocs[I];
1470     EVT LocVT = VA.getLocVT();
1471     if (VA.isRegLoc()) {
1472       // Arguments passed in registers
1473       const TargetRegisterClass *RC;
1474       switch (LocVT.getSimpleVT().SimpleTy) {
1475       default:
1476         // Integers smaller than i64 should be promoted to i64.
1477         llvm_unreachable("Unexpected argument type");
1478       case MVT::i32:
1479         NumFixedGPRs += 1;
1480         RC = &SystemZ::GR32BitRegClass;
1481         break;
1482       case MVT::i64:
1483         NumFixedGPRs += 1;
1484         RC = &SystemZ::GR64BitRegClass;
1485         break;
1486       case MVT::f32:
1487         NumFixedFPRs += 1;
1488         RC = &SystemZ::FP32BitRegClass;
1489         break;
1490       case MVT::f64:
1491         NumFixedFPRs += 1;
1492         RC = &SystemZ::FP64BitRegClass;
1493         break;
1494       case MVT::f128:
1495         NumFixedFPRs += 2;
1496         RC = &SystemZ::FP128BitRegClass;
1497         break;
1498       case MVT::v16i8:
1499       case MVT::v8i16:
1500       case MVT::v4i32:
1501       case MVT::v2i64:
1502       case MVT::v4f32:
1503       case MVT::v2f64:
1504         RC = &SystemZ::VR128BitRegClass;
1505         break;
1506       }
1507 
1508       Register VReg = MRI.createVirtualRegister(RC);
1509       MRI.addLiveIn(VA.getLocReg(), VReg);
1510       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1511     } else {
1512       assert(VA.isMemLoc() && "Argument not register or memory");
1513 
1514       // Create the frame index object for this incoming parameter.
1515       // FIXME: Pre-include call frame size in the offset, should not
1516       // need to manually add it here.
1517       int64_t ArgSPOffset = VA.getLocMemOffset();
1518       if (Subtarget.isTargetXPLINK64()) {
1519         auto &XPRegs =
1520             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1521         ArgSPOffset += XPRegs.getCallFrameSize();
1522       }
1523       int FI =
1524           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1525 
1526       // Create the SelectionDAG nodes corresponding to a load
1527       // from this parameter.  Unpromoted ints and floats are
1528       // passed as right-justified 8-byte values.
1529       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1530       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1531         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1532                           DAG.getIntPtrConstant(4, DL));
1533       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1534                              MachinePointerInfo::getFixedStack(MF, FI));
1535     }
1536 
1537     // Convert the value of the argument register into the value that's
1538     // being passed.
1539     if (VA.getLocInfo() == CCValAssign::Indirect) {
1540       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1541                                    MachinePointerInfo()));
1542       // If the original argument was split (e.g. i128), we need
1543       // to load all parts of it here (using the same address).
1544       unsigned ArgIndex = Ins[I].OrigArgIndex;
1545       assert (Ins[I].PartOffset == 0);
1546       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1547         CCValAssign &PartVA = ArgLocs[I + 1];
1548         unsigned PartOffset = Ins[I + 1].PartOffset;
1549         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1550                                       DAG.getIntPtrConstant(PartOffset, DL));
1551         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1552                                      MachinePointerInfo()));
1553         ++I;
1554       }
1555     } else
1556       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1557   }
1558 
1559   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1560   if (IsVarArg && Subtarget.isTargetELF()) {
1561     // Save the number of non-varargs registers for later use by va_start, etc.
1562     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1563     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1564 
1565     // Likewise the address (in the form of a frame index) of where the
1566     // first stack vararg would be.  The 1-byte size here is arbitrary.
1567     int64_t StackSize = CCInfo.getNextStackOffset();
1568     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1569 
1570     // ...and a similar frame index for the caller-allocated save area
1571     // that will be used to store the incoming registers.
1572     int64_t RegSaveOffset =
1573       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1574     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1575     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1576 
1577     // Store the FPR varargs in the reserved frame slots.  (We store the
1578     // GPRs as part of the prologue.)
1579     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1580       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1581       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1582         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1583         int FI =
1584           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1585         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1586         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1587                                      &SystemZ::FP64BitRegClass);
1588         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1589         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1590                                  MachinePointerInfo::getFixedStack(MF, FI));
1591       }
1592       // Join the stores, which are independent of one another.
1593       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1594                           makeArrayRef(&MemOps[NumFixedFPRs],
1595                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1596     }
1597   }
1598 
1599   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1600   // register (R5)
1601   return Chain;
1602 }
1603 
1604 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1605                               SmallVectorImpl<CCValAssign> &ArgLocs,
1606                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1607   // Punt if there are any indirect or stack arguments, or if the call
1608   // needs the callee-saved argument register R6, or if the call uses
1609   // the callee-saved register arguments SwiftSelf and SwiftError.
1610   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1611     CCValAssign &VA = ArgLocs[I];
1612     if (VA.getLocInfo() == CCValAssign::Indirect)
1613       return false;
1614     if (!VA.isRegLoc())
1615       return false;
1616     Register Reg = VA.getLocReg();
1617     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1618       return false;
1619     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1620       return false;
1621   }
1622   return true;
1623 }
1624 
1625 SDValue
1626 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1627                                  SmallVectorImpl<SDValue> &InVals) const {
1628   SelectionDAG &DAG = CLI.DAG;
1629   SDLoc &DL = CLI.DL;
1630   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1631   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1632   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1633   SDValue Chain = CLI.Chain;
1634   SDValue Callee = CLI.Callee;
1635   bool &IsTailCall = CLI.IsTailCall;
1636   CallingConv::ID CallConv = CLI.CallConv;
1637   bool IsVarArg = CLI.IsVarArg;
1638   MachineFunction &MF = DAG.getMachineFunction();
1639   EVT PtrVT = getPointerTy(MF.getDataLayout());
1640   LLVMContext &Ctx = *DAG.getContext();
1641   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1642 
1643   // FIXME: z/OS support to be added in later.
1644   if (Subtarget.isTargetXPLINK64())
1645     IsTailCall = false;
1646 
1647   // Detect unsupported vector argument and return types.
1648   if (Subtarget.hasVector()) {
1649     VerifyVectorTypes(Outs);
1650     VerifyVectorTypes(Ins);
1651   }
1652 
1653   // Analyze the operands of the call, assigning locations to each operand.
1654   SmallVector<CCValAssign, 16> ArgLocs;
1655   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1656   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1657 
1658   // We don't support GuaranteedTailCallOpt, only automatically-detected
1659   // sibling calls.
1660   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1661     IsTailCall = false;
1662 
1663   // Get a count of how many bytes are to be pushed on the stack.
1664   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1665 
1666   if (Subtarget.isTargetXPLINK64())
1667     // Although the XPLINK specifications for AMODE64 state that minimum size
1668     // of the param area is minimum 32 bytes and no rounding is otherwise
1669     // specified, we round this area in 64 bytes increments to be compatible
1670     // with existing compilers.
1671     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1672 
1673   // Mark the start of the call.
1674   if (!IsTailCall)
1675     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1676 
1677   // Copy argument values to their designated locations.
1678   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1679   SmallVector<SDValue, 8> MemOpChains;
1680   SDValue StackPtr;
1681   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1682     CCValAssign &VA = ArgLocs[I];
1683     SDValue ArgValue = OutVals[I];
1684 
1685     if (VA.getLocInfo() == CCValAssign::Indirect) {
1686       // Store the argument in a stack slot and pass its address.
1687       unsigned ArgIndex = Outs[I].OrigArgIndex;
1688       EVT SlotVT;
1689       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1690         // Allocate the full stack space for a promoted (and split) argument.
1691         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1692         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1693         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1694         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1695         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1696       } else {
1697         SlotVT = Outs[I].ArgVT;
1698       }
1699       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1700       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1701       MemOpChains.push_back(
1702           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1703                        MachinePointerInfo::getFixedStack(MF, FI)));
1704       // If the original argument was split (e.g. i128), we need
1705       // to store all parts of it here (and pass just one address).
1706       assert (Outs[I].PartOffset == 0);
1707       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1708         SDValue PartValue = OutVals[I + 1];
1709         unsigned PartOffset = Outs[I + 1].PartOffset;
1710         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1711                                       DAG.getIntPtrConstant(PartOffset, DL));
1712         MemOpChains.push_back(
1713             DAG.getStore(Chain, DL, PartValue, Address,
1714                          MachinePointerInfo::getFixedStack(MF, FI)));
1715         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1716                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1717         ++I;
1718       }
1719       ArgValue = SpillSlot;
1720     } else
1721       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1722 
1723     if (VA.isRegLoc()) {
1724       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1725       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1726       // and low values.
1727       if (VA.getLocVT() == MVT::i128)
1728         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1729       // Queue up the argument copies and emit them at the end.
1730       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1731     } else {
1732       assert(VA.isMemLoc() && "Argument not register or memory");
1733 
1734       // Work out the address of the stack slot.  Unpromoted ints and
1735       // floats are passed as right-justified 8-byte values.
1736       if (!StackPtr.getNode())
1737         StackPtr = DAG.getCopyFromReg(Chain, DL,
1738                                       Regs->getStackPointerRegister(), PtrVT);
1739       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1740                         VA.getLocMemOffset();
1741       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1742         Offset += 4;
1743       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1744                                     DAG.getIntPtrConstant(Offset, DL));
1745 
1746       // Emit the store.
1747       MemOpChains.push_back(
1748           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1749 
1750       // Although long doubles or vectors are passed through the stack when
1751       // they are vararg (non-fixed arguments), if a long double or vector
1752       // occupies the third and fourth slot of the argument list GPR3 should
1753       // still shadow the third slot of the argument list.
1754       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1755         SDValue ShadowArgValue =
1756             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1757                         DAG.getIntPtrConstant(1, DL));
1758         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1759       }
1760     }
1761   }
1762 
1763   // Join the stores, which are independent of one another.
1764   if (!MemOpChains.empty())
1765     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1766 
1767   // Accept direct calls by converting symbolic call addresses to the
1768   // associated Target* opcodes.  Force %r1 to be used for indirect
1769   // tail calls.
1770   SDValue Glue;
1771   // FIXME: Add support for XPLINK using the ADA register.
1772   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1773     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1774     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1775   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1776     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1777     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1778   } else if (IsTailCall) {
1779     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1780     Glue = Chain.getValue(1);
1781     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1782   }
1783 
1784   // Build a sequence of copy-to-reg nodes, chained and glued together.
1785   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1786     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1787                              RegsToPass[I].second, Glue);
1788     Glue = Chain.getValue(1);
1789   }
1790 
1791   // The first call operand is the chain and the second is the target address.
1792   SmallVector<SDValue, 8> Ops;
1793   Ops.push_back(Chain);
1794   Ops.push_back(Callee);
1795 
1796   // Add argument registers to the end of the list so that they are
1797   // known live into the call.
1798   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1799     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1800                                   RegsToPass[I].second.getValueType()));
1801 
1802   // Add a register mask operand representing the call-preserved registers.
1803   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1804   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1805   assert(Mask && "Missing call preserved mask for calling convention");
1806   Ops.push_back(DAG.getRegisterMask(Mask));
1807 
1808   // Glue the call to the argument copies, if any.
1809   if (Glue.getNode())
1810     Ops.push_back(Glue);
1811 
1812   // Emit the call.
1813   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1814   if (IsTailCall)
1815     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1816   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1817   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1818   Glue = Chain.getValue(1);
1819 
1820   // Mark the end of the call, which is glued to the call itself.
1821   Chain = DAG.getCALLSEQ_END(Chain,
1822                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1823                              DAG.getConstant(0, DL, PtrVT, true),
1824                              Glue, DL);
1825   Glue = Chain.getValue(1);
1826 
1827   // Assign locations to each value returned by this call.
1828   SmallVector<CCValAssign, 16> RetLocs;
1829   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1830   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1831 
1832   // Copy all of the result registers out of their specified physreg.
1833   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1834     CCValAssign &VA = RetLocs[I];
1835 
1836     // Copy the value out, gluing the copy to the end of the call sequence.
1837     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1838                                           VA.getLocVT(), Glue);
1839     Chain = RetValue.getValue(1);
1840     Glue = RetValue.getValue(2);
1841 
1842     // Convert the value of the return register into the value that's
1843     // being returned.
1844     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1845   }
1846 
1847   return Chain;
1848 }
1849 
1850 // Generate a call taking the given operands as arguments and returning a
1851 // result of type RetVT.
1852 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
1853     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
1854     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
1855     bool DoesNotReturn, bool IsReturnValueUsed) const {
1856   TargetLowering::ArgListTy Args;
1857   Args.reserve(Ops.size());
1858 
1859   TargetLowering::ArgListEntry Entry;
1860   for (SDValue Op : Ops) {
1861     Entry.Node = Op;
1862     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1863     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1864     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1865     Args.push_back(Entry);
1866   }
1867 
1868   SDValue Callee =
1869       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
1870 
1871   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1872   TargetLowering::CallLoweringInfo CLI(DAG);
1873   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
1874   CLI.setDebugLoc(DL)
1875       .setChain(Chain)
1876       .setCallee(CallConv, RetTy, Callee, std::move(Args))
1877       .setNoReturn(DoesNotReturn)
1878       .setDiscardResult(!IsReturnValueUsed)
1879       .setSExtResult(SignExtend)
1880       .setZExtResult(!SignExtend);
1881   return LowerCallTo(CLI);
1882 }
1883 
1884 bool SystemZTargetLowering::
1885 CanLowerReturn(CallingConv::ID CallConv,
1886                MachineFunction &MF, bool isVarArg,
1887                const SmallVectorImpl<ISD::OutputArg> &Outs,
1888                LLVMContext &Context) const {
1889   // Detect unsupported vector return types.
1890   if (Subtarget.hasVector())
1891     VerifyVectorTypes(Outs);
1892 
1893   // Special case that we cannot easily detect in RetCC_SystemZ since
1894   // i128 is not a legal type.
1895   for (auto &Out : Outs)
1896     if (Out.ArgVT == MVT::i128)
1897       return false;
1898 
1899   SmallVector<CCValAssign, 16> RetLocs;
1900   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1901   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1902 }
1903 
1904 SDValue
1905 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1906                                    bool IsVarArg,
1907                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1908                                    const SmallVectorImpl<SDValue> &OutVals,
1909                                    const SDLoc &DL, SelectionDAG &DAG) const {
1910   MachineFunction &MF = DAG.getMachineFunction();
1911 
1912   // Detect unsupported vector return types.
1913   if (Subtarget.hasVector())
1914     VerifyVectorTypes(Outs);
1915 
1916   // Assign locations to each returned value.
1917   SmallVector<CCValAssign, 16> RetLocs;
1918   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1919   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1920 
1921   // Quick exit for void returns
1922   if (RetLocs.empty())
1923     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1924 
1925   if (CallConv == CallingConv::GHC)
1926     report_fatal_error("GHC functions return void only");
1927 
1928   // Copy the result values into the output registers.
1929   SDValue Glue;
1930   SmallVector<SDValue, 4> RetOps;
1931   RetOps.push_back(Chain);
1932   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1933     CCValAssign &VA = RetLocs[I];
1934     SDValue RetValue = OutVals[I];
1935 
1936     // Make the return register live on exit.
1937     assert(VA.isRegLoc() && "Can only return in registers!");
1938 
1939     // Promote the value as required.
1940     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1941 
1942     // Chain and glue the copies together.
1943     Register Reg = VA.getLocReg();
1944     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1945     Glue = Chain.getValue(1);
1946     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1947   }
1948 
1949   // Update chain and glue.
1950   RetOps[0] = Chain;
1951   if (Glue.getNode())
1952     RetOps.push_back(Glue);
1953 
1954   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1955 }
1956 
1957 // Return true if Op is an intrinsic node with chain that returns the CC value
1958 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1959 // the mask of valid CC values if so.
1960 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1961                                       unsigned &CCValid) {
1962   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1963   switch (Id) {
1964   case Intrinsic::s390_tbegin:
1965     Opcode = SystemZISD::TBEGIN;
1966     CCValid = SystemZ::CCMASK_TBEGIN;
1967     return true;
1968 
1969   case Intrinsic::s390_tbegin_nofloat:
1970     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1971     CCValid = SystemZ::CCMASK_TBEGIN;
1972     return true;
1973 
1974   case Intrinsic::s390_tend:
1975     Opcode = SystemZISD::TEND;
1976     CCValid = SystemZ::CCMASK_TEND;
1977     return true;
1978 
1979   default:
1980     return false;
1981   }
1982 }
1983 
1984 // Return true if Op is an intrinsic node without chain that returns the
1985 // CC value as its final argument.  Provide the associated SystemZISD
1986 // opcode and the mask of valid CC values if so.
1987 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1988   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1989   switch (Id) {
1990   case Intrinsic::s390_vpkshs:
1991   case Intrinsic::s390_vpksfs:
1992   case Intrinsic::s390_vpksgs:
1993     Opcode = SystemZISD::PACKS_CC;
1994     CCValid = SystemZ::CCMASK_VCMP;
1995     return true;
1996 
1997   case Intrinsic::s390_vpklshs:
1998   case Intrinsic::s390_vpklsfs:
1999   case Intrinsic::s390_vpklsgs:
2000     Opcode = SystemZISD::PACKLS_CC;
2001     CCValid = SystemZ::CCMASK_VCMP;
2002     return true;
2003 
2004   case Intrinsic::s390_vceqbs:
2005   case Intrinsic::s390_vceqhs:
2006   case Intrinsic::s390_vceqfs:
2007   case Intrinsic::s390_vceqgs:
2008     Opcode = SystemZISD::VICMPES;
2009     CCValid = SystemZ::CCMASK_VCMP;
2010     return true;
2011 
2012   case Intrinsic::s390_vchbs:
2013   case Intrinsic::s390_vchhs:
2014   case Intrinsic::s390_vchfs:
2015   case Intrinsic::s390_vchgs:
2016     Opcode = SystemZISD::VICMPHS;
2017     CCValid = SystemZ::CCMASK_VCMP;
2018     return true;
2019 
2020   case Intrinsic::s390_vchlbs:
2021   case Intrinsic::s390_vchlhs:
2022   case Intrinsic::s390_vchlfs:
2023   case Intrinsic::s390_vchlgs:
2024     Opcode = SystemZISD::VICMPHLS;
2025     CCValid = SystemZ::CCMASK_VCMP;
2026     return true;
2027 
2028   case Intrinsic::s390_vtm:
2029     Opcode = SystemZISD::VTM;
2030     CCValid = SystemZ::CCMASK_VCMP;
2031     return true;
2032 
2033   case Intrinsic::s390_vfaebs:
2034   case Intrinsic::s390_vfaehs:
2035   case Intrinsic::s390_vfaefs:
2036     Opcode = SystemZISD::VFAE_CC;
2037     CCValid = SystemZ::CCMASK_ANY;
2038     return true;
2039 
2040   case Intrinsic::s390_vfaezbs:
2041   case Intrinsic::s390_vfaezhs:
2042   case Intrinsic::s390_vfaezfs:
2043     Opcode = SystemZISD::VFAEZ_CC;
2044     CCValid = SystemZ::CCMASK_ANY;
2045     return true;
2046 
2047   case Intrinsic::s390_vfeebs:
2048   case Intrinsic::s390_vfeehs:
2049   case Intrinsic::s390_vfeefs:
2050     Opcode = SystemZISD::VFEE_CC;
2051     CCValid = SystemZ::CCMASK_ANY;
2052     return true;
2053 
2054   case Intrinsic::s390_vfeezbs:
2055   case Intrinsic::s390_vfeezhs:
2056   case Intrinsic::s390_vfeezfs:
2057     Opcode = SystemZISD::VFEEZ_CC;
2058     CCValid = SystemZ::CCMASK_ANY;
2059     return true;
2060 
2061   case Intrinsic::s390_vfenebs:
2062   case Intrinsic::s390_vfenehs:
2063   case Intrinsic::s390_vfenefs:
2064     Opcode = SystemZISD::VFENE_CC;
2065     CCValid = SystemZ::CCMASK_ANY;
2066     return true;
2067 
2068   case Intrinsic::s390_vfenezbs:
2069   case Intrinsic::s390_vfenezhs:
2070   case Intrinsic::s390_vfenezfs:
2071     Opcode = SystemZISD::VFENEZ_CC;
2072     CCValid = SystemZ::CCMASK_ANY;
2073     return true;
2074 
2075   case Intrinsic::s390_vistrbs:
2076   case Intrinsic::s390_vistrhs:
2077   case Intrinsic::s390_vistrfs:
2078     Opcode = SystemZISD::VISTR_CC;
2079     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2080     return true;
2081 
2082   case Intrinsic::s390_vstrcbs:
2083   case Intrinsic::s390_vstrchs:
2084   case Intrinsic::s390_vstrcfs:
2085     Opcode = SystemZISD::VSTRC_CC;
2086     CCValid = SystemZ::CCMASK_ANY;
2087     return true;
2088 
2089   case Intrinsic::s390_vstrczbs:
2090   case Intrinsic::s390_vstrczhs:
2091   case Intrinsic::s390_vstrczfs:
2092     Opcode = SystemZISD::VSTRCZ_CC;
2093     CCValid = SystemZ::CCMASK_ANY;
2094     return true;
2095 
2096   case Intrinsic::s390_vstrsb:
2097   case Intrinsic::s390_vstrsh:
2098   case Intrinsic::s390_vstrsf:
2099     Opcode = SystemZISD::VSTRS_CC;
2100     CCValid = SystemZ::CCMASK_ANY;
2101     return true;
2102 
2103   case Intrinsic::s390_vstrszb:
2104   case Intrinsic::s390_vstrszh:
2105   case Intrinsic::s390_vstrszf:
2106     Opcode = SystemZISD::VSTRSZ_CC;
2107     CCValid = SystemZ::CCMASK_ANY;
2108     return true;
2109 
2110   case Intrinsic::s390_vfcedbs:
2111   case Intrinsic::s390_vfcesbs:
2112     Opcode = SystemZISD::VFCMPES;
2113     CCValid = SystemZ::CCMASK_VCMP;
2114     return true;
2115 
2116   case Intrinsic::s390_vfchdbs:
2117   case Intrinsic::s390_vfchsbs:
2118     Opcode = SystemZISD::VFCMPHS;
2119     CCValid = SystemZ::CCMASK_VCMP;
2120     return true;
2121 
2122   case Intrinsic::s390_vfchedbs:
2123   case Intrinsic::s390_vfchesbs:
2124     Opcode = SystemZISD::VFCMPHES;
2125     CCValid = SystemZ::CCMASK_VCMP;
2126     return true;
2127 
2128   case Intrinsic::s390_vftcidb:
2129   case Intrinsic::s390_vftcisb:
2130     Opcode = SystemZISD::VFTCI;
2131     CCValid = SystemZ::CCMASK_VCMP;
2132     return true;
2133 
2134   case Intrinsic::s390_tdc:
2135     Opcode = SystemZISD::TDC;
2136     CCValid = SystemZ::CCMASK_TDC;
2137     return true;
2138 
2139   default:
2140     return false;
2141   }
2142 }
2143 
2144 // Emit an intrinsic with chain and an explicit CC register result.
2145 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2146                                            unsigned Opcode) {
2147   // Copy all operands except the intrinsic ID.
2148   unsigned NumOps = Op.getNumOperands();
2149   SmallVector<SDValue, 6> Ops;
2150   Ops.reserve(NumOps - 1);
2151   Ops.push_back(Op.getOperand(0));
2152   for (unsigned I = 2; I < NumOps; ++I)
2153     Ops.push_back(Op.getOperand(I));
2154 
2155   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2156   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2157   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2158   SDValue OldChain = SDValue(Op.getNode(), 1);
2159   SDValue NewChain = SDValue(Intr.getNode(), 1);
2160   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2161   return Intr.getNode();
2162 }
2163 
2164 // Emit an intrinsic with an explicit CC register result.
2165 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2166                                    unsigned Opcode) {
2167   // Copy all operands except the intrinsic ID.
2168   unsigned NumOps = Op.getNumOperands();
2169   SmallVector<SDValue, 6> Ops;
2170   Ops.reserve(NumOps - 1);
2171   for (unsigned I = 1; I < NumOps; ++I)
2172     Ops.push_back(Op.getOperand(I));
2173 
2174   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2175   return Intr.getNode();
2176 }
2177 
2178 // CC is a comparison that will be implemented using an integer or
2179 // floating-point comparison.  Return the condition code mask for
2180 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2181 // unsigned comparisons and clear for signed ones.  In the floating-point
2182 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2183 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2184 #define CONV(X) \
2185   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2186   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2187   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2188 
2189   switch (CC) {
2190   default:
2191     llvm_unreachable("Invalid integer condition!");
2192 
2193   CONV(EQ);
2194   CONV(NE);
2195   CONV(GT);
2196   CONV(GE);
2197   CONV(LT);
2198   CONV(LE);
2199 
2200   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2201   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2202   }
2203 #undef CONV
2204 }
2205 
2206 // If C can be converted to a comparison against zero, adjust the operands
2207 // as necessary.
2208 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2209   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2210     return;
2211 
2212   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2213   if (!ConstOp1)
2214     return;
2215 
2216   int64_t Value = ConstOp1->getSExtValue();
2217   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2218       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2219       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2220       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2221     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2222     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2223   }
2224 }
2225 
2226 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2227 // adjust the operands as necessary.
2228 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2229                              Comparison &C) {
2230   // For us to make any changes, it must a comparison between a single-use
2231   // load and a constant.
2232   if (!C.Op0.hasOneUse() ||
2233       C.Op0.getOpcode() != ISD::LOAD ||
2234       C.Op1.getOpcode() != ISD::Constant)
2235     return;
2236 
2237   // We must have an 8- or 16-bit load.
2238   auto *Load = cast<LoadSDNode>(C.Op0);
2239   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2240   if ((NumBits != 8 && NumBits != 16) ||
2241       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2242     return;
2243 
2244   // The load must be an extending one and the constant must be within the
2245   // range of the unextended value.
2246   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2247   uint64_t Value = ConstOp1->getZExtValue();
2248   uint64_t Mask = (1 << NumBits) - 1;
2249   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2250     // Make sure that ConstOp1 is in range of C.Op0.
2251     int64_t SignedValue = ConstOp1->getSExtValue();
2252     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2253       return;
2254     if (C.ICmpType != SystemZICMP::SignedOnly) {
2255       // Unsigned comparison between two sign-extended values is equivalent
2256       // to unsigned comparison between two zero-extended values.
2257       Value &= Mask;
2258     } else if (NumBits == 8) {
2259       // Try to treat the comparison as unsigned, so that we can use CLI.
2260       // Adjust CCMask and Value as necessary.
2261       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2262         // Test whether the high bit of the byte is set.
2263         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2264       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2265         // Test whether the high bit of the byte is clear.
2266         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2267       else
2268         // No instruction exists for this combination.
2269         return;
2270       C.ICmpType = SystemZICMP::UnsignedOnly;
2271     }
2272   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2273     if (Value > Mask)
2274       return;
2275     // If the constant is in range, we can use any comparison.
2276     C.ICmpType = SystemZICMP::Any;
2277   } else
2278     return;
2279 
2280   // Make sure that the first operand is an i32 of the right extension type.
2281   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2282                               ISD::SEXTLOAD :
2283                               ISD::ZEXTLOAD);
2284   if (C.Op0.getValueType() != MVT::i32 ||
2285       Load->getExtensionType() != ExtType) {
2286     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2287                            Load->getBasePtr(), Load->getPointerInfo(),
2288                            Load->getMemoryVT(), Load->getAlignment(),
2289                            Load->getMemOperand()->getFlags());
2290     // Update the chain uses.
2291     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2292   }
2293 
2294   // Make sure that the second operand is an i32 with the right value.
2295   if (C.Op1.getValueType() != MVT::i32 ||
2296       Value != ConstOp1->getZExtValue())
2297     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2298 }
2299 
2300 // Return true if Op is either an unextended load, or a load suitable
2301 // for integer register-memory comparisons of type ICmpType.
2302 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2303   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2304   if (Load) {
2305     // There are no instructions to compare a register with a memory byte.
2306     if (Load->getMemoryVT() == MVT::i8)
2307       return false;
2308     // Otherwise decide on extension type.
2309     switch (Load->getExtensionType()) {
2310     case ISD::NON_EXTLOAD:
2311       return true;
2312     case ISD::SEXTLOAD:
2313       return ICmpType != SystemZICMP::UnsignedOnly;
2314     case ISD::ZEXTLOAD:
2315       return ICmpType != SystemZICMP::SignedOnly;
2316     default:
2317       break;
2318     }
2319   }
2320   return false;
2321 }
2322 
2323 // Return true if it is better to swap the operands of C.
2324 static bool shouldSwapCmpOperands(const Comparison &C) {
2325   // Leave f128 comparisons alone, since they have no memory forms.
2326   if (C.Op0.getValueType() == MVT::f128)
2327     return false;
2328 
2329   // Always keep a floating-point constant second, since comparisons with
2330   // zero can use LOAD TEST and comparisons with other constants make a
2331   // natural memory operand.
2332   if (isa<ConstantFPSDNode>(C.Op1))
2333     return false;
2334 
2335   // Never swap comparisons with zero since there are many ways to optimize
2336   // those later.
2337   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2338   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2339     return false;
2340 
2341   // Also keep natural memory operands second if the loaded value is
2342   // only used here.  Several comparisons have memory forms.
2343   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2344     return false;
2345 
2346   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2347   // In that case we generally prefer the memory to be second.
2348   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2349     // The only exceptions are when the second operand is a constant and
2350     // we can use things like CHHSI.
2351     if (!ConstOp1)
2352       return true;
2353     // The unsigned memory-immediate instructions can handle 16-bit
2354     // unsigned integers.
2355     if (C.ICmpType != SystemZICMP::SignedOnly &&
2356         isUInt<16>(ConstOp1->getZExtValue()))
2357       return false;
2358     // The signed memory-immediate instructions can handle 16-bit
2359     // signed integers.
2360     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2361         isInt<16>(ConstOp1->getSExtValue()))
2362       return false;
2363     return true;
2364   }
2365 
2366   // Try to promote the use of CGFR and CLGFR.
2367   unsigned Opcode0 = C.Op0.getOpcode();
2368   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2369     return true;
2370   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2371     return true;
2372   if (C.ICmpType != SystemZICMP::SignedOnly &&
2373       Opcode0 == ISD::AND &&
2374       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2375       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2376     return true;
2377 
2378   return false;
2379 }
2380 
2381 // Check whether C tests for equality between X and Y and whether X - Y
2382 // or Y - X is also computed.  In that case it's better to compare the
2383 // result of the subtraction against zero.
2384 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2385                                  Comparison &C) {
2386   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2387       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2388     for (SDNode *N : C.Op0->uses()) {
2389       if (N->getOpcode() == ISD::SUB &&
2390           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2391            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2392         C.Op0 = SDValue(N, 0);
2393         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2394         return;
2395       }
2396     }
2397   }
2398 }
2399 
2400 // Check whether C compares a floating-point value with zero and if that
2401 // floating-point value is also negated.  In this case we can use the
2402 // negation to set CC, so avoiding separate LOAD AND TEST and
2403 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2404 static void adjustForFNeg(Comparison &C) {
2405   // This optimization is invalid for strict comparisons, since FNEG
2406   // does not raise any exceptions.
2407   if (C.Chain)
2408     return;
2409   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2410   if (C1 && C1->isZero()) {
2411     for (SDNode *N : C.Op0->uses()) {
2412       if (N->getOpcode() == ISD::FNEG) {
2413         C.Op0 = SDValue(N, 0);
2414         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2415         return;
2416       }
2417     }
2418   }
2419 }
2420 
2421 // Check whether C compares (shl X, 32) with 0 and whether X is
2422 // also sign-extended.  In that case it is better to test the result
2423 // of the sign extension using LTGFR.
2424 //
2425 // This case is important because InstCombine transforms a comparison
2426 // with (sext (trunc X)) into a comparison with (shl X, 32).
2427 static void adjustForLTGFR(Comparison &C) {
2428   // Check for a comparison between (shl X, 32) and 0.
2429   if (C.Op0.getOpcode() == ISD::SHL &&
2430       C.Op0.getValueType() == MVT::i64 &&
2431       C.Op1.getOpcode() == ISD::Constant &&
2432       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2433     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2434     if (C1 && C1->getZExtValue() == 32) {
2435       SDValue ShlOp0 = C.Op0.getOperand(0);
2436       // See whether X has any SIGN_EXTEND_INREG uses.
2437       for (SDNode *N : ShlOp0->uses()) {
2438         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2439             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2440           C.Op0 = SDValue(N, 0);
2441           return;
2442         }
2443       }
2444     }
2445   }
2446 }
2447 
2448 // If C compares the truncation of an extending load, try to compare
2449 // the untruncated value instead.  This exposes more opportunities to
2450 // reuse CC.
2451 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2452                                Comparison &C) {
2453   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2454       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2455       C.Op1.getOpcode() == ISD::Constant &&
2456       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2457     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2458     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2459         C.Op0.getValueSizeInBits().getFixedSize()) {
2460       unsigned Type = L->getExtensionType();
2461       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2462           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2463         C.Op0 = C.Op0.getOperand(0);
2464         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2465       }
2466     }
2467   }
2468 }
2469 
2470 // Return true if shift operation N has an in-range constant shift value.
2471 // Store it in ShiftVal if so.
2472 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2473   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2474   if (!Shift)
2475     return false;
2476 
2477   uint64_t Amount = Shift->getZExtValue();
2478   if (Amount >= N.getValueSizeInBits())
2479     return false;
2480 
2481   ShiftVal = Amount;
2482   return true;
2483 }
2484 
2485 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2486 // instruction and whether the CC value is descriptive enough to handle
2487 // a comparison of type Opcode between the AND result and CmpVal.
2488 // CCMask says which comparison result is being tested and BitSize is
2489 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2490 // return the corresponding CC mask, otherwise return 0.
2491 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2492                                      uint64_t Mask, uint64_t CmpVal,
2493                                      unsigned ICmpType) {
2494   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2495 
2496   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2497   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2498       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2499     return 0;
2500 
2501   // Work out the masks for the lowest and highest bits.
2502   unsigned HighShift = 63 - countLeadingZeros(Mask);
2503   uint64_t High = uint64_t(1) << HighShift;
2504   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2505 
2506   // Signed ordered comparisons are effectively unsigned if the sign
2507   // bit is dropped.
2508   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2509 
2510   // Check for equality comparisons with 0, or the equivalent.
2511   if (CmpVal == 0) {
2512     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2513       return SystemZ::CCMASK_TM_ALL_0;
2514     if (CCMask == SystemZ::CCMASK_CMP_NE)
2515       return SystemZ::CCMASK_TM_SOME_1;
2516   }
2517   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2518     if (CCMask == SystemZ::CCMASK_CMP_LT)
2519       return SystemZ::CCMASK_TM_ALL_0;
2520     if (CCMask == SystemZ::CCMASK_CMP_GE)
2521       return SystemZ::CCMASK_TM_SOME_1;
2522   }
2523   if (EffectivelyUnsigned && CmpVal < Low) {
2524     if (CCMask == SystemZ::CCMASK_CMP_LE)
2525       return SystemZ::CCMASK_TM_ALL_0;
2526     if (CCMask == SystemZ::CCMASK_CMP_GT)
2527       return SystemZ::CCMASK_TM_SOME_1;
2528   }
2529 
2530   // Check for equality comparisons with the mask, or the equivalent.
2531   if (CmpVal == Mask) {
2532     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2533       return SystemZ::CCMASK_TM_ALL_1;
2534     if (CCMask == SystemZ::CCMASK_CMP_NE)
2535       return SystemZ::CCMASK_TM_SOME_0;
2536   }
2537   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2538     if (CCMask == SystemZ::CCMASK_CMP_GT)
2539       return SystemZ::CCMASK_TM_ALL_1;
2540     if (CCMask == SystemZ::CCMASK_CMP_LE)
2541       return SystemZ::CCMASK_TM_SOME_0;
2542   }
2543   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2544     if (CCMask == SystemZ::CCMASK_CMP_GE)
2545       return SystemZ::CCMASK_TM_ALL_1;
2546     if (CCMask == SystemZ::CCMASK_CMP_LT)
2547       return SystemZ::CCMASK_TM_SOME_0;
2548   }
2549 
2550   // Check for ordered comparisons with the top bit.
2551   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2552     if (CCMask == SystemZ::CCMASK_CMP_LE)
2553       return SystemZ::CCMASK_TM_MSB_0;
2554     if (CCMask == SystemZ::CCMASK_CMP_GT)
2555       return SystemZ::CCMASK_TM_MSB_1;
2556   }
2557   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2558     if (CCMask == SystemZ::CCMASK_CMP_LT)
2559       return SystemZ::CCMASK_TM_MSB_0;
2560     if (CCMask == SystemZ::CCMASK_CMP_GE)
2561       return SystemZ::CCMASK_TM_MSB_1;
2562   }
2563 
2564   // If there are just two bits, we can do equality checks for Low and High
2565   // as well.
2566   if (Mask == Low + High) {
2567     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2568       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2569     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2570       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2571     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2572       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2573     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2574       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2575   }
2576 
2577   // Looks like we've exhausted our options.
2578   return 0;
2579 }
2580 
2581 // See whether C can be implemented as a TEST UNDER MASK instruction.
2582 // Update the arguments with the TM version if so.
2583 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2584                                    Comparison &C) {
2585   // Check that we have a comparison with a constant.
2586   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2587   if (!ConstOp1)
2588     return;
2589   uint64_t CmpVal = ConstOp1->getZExtValue();
2590 
2591   // Check whether the nonconstant input is an AND with a constant mask.
2592   Comparison NewC(C);
2593   uint64_t MaskVal;
2594   ConstantSDNode *Mask = nullptr;
2595   if (C.Op0.getOpcode() == ISD::AND) {
2596     NewC.Op0 = C.Op0.getOperand(0);
2597     NewC.Op1 = C.Op0.getOperand(1);
2598     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2599     if (!Mask)
2600       return;
2601     MaskVal = Mask->getZExtValue();
2602   } else {
2603     // There is no instruction to compare with a 64-bit immediate
2604     // so use TMHH instead if possible.  We need an unsigned ordered
2605     // comparison with an i64 immediate.
2606     if (NewC.Op0.getValueType() != MVT::i64 ||
2607         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2608         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2609         NewC.ICmpType == SystemZICMP::SignedOnly)
2610       return;
2611     // Convert LE and GT comparisons into LT and GE.
2612     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2613         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2614       if (CmpVal == uint64_t(-1))
2615         return;
2616       CmpVal += 1;
2617       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2618     }
2619     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2620     // be masked off without changing the result.
2621     MaskVal = -(CmpVal & -CmpVal);
2622     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2623   }
2624   if (!MaskVal)
2625     return;
2626 
2627   // Check whether the combination of mask, comparison value and comparison
2628   // type are suitable.
2629   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2630   unsigned NewCCMask, ShiftVal;
2631   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2632       NewC.Op0.getOpcode() == ISD::SHL &&
2633       isSimpleShift(NewC.Op0, ShiftVal) &&
2634       (MaskVal >> ShiftVal != 0) &&
2635       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2636       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2637                                         MaskVal >> ShiftVal,
2638                                         CmpVal >> ShiftVal,
2639                                         SystemZICMP::Any))) {
2640     NewC.Op0 = NewC.Op0.getOperand(0);
2641     MaskVal >>= ShiftVal;
2642   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2643              NewC.Op0.getOpcode() == ISD::SRL &&
2644              isSimpleShift(NewC.Op0, ShiftVal) &&
2645              (MaskVal << ShiftVal != 0) &&
2646              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2647              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2648                                                MaskVal << ShiftVal,
2649                                                CmpVal << ShiftVal,
2650                                                SystemZICMP::UnsignedOnly))) {
2651     NewC.Op0 = NewC.Op0.getOperand(0);
2652     MaskVal <<= ShiftVal;
2653   } else {
2654     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2655                                      NewC.ICmpType);
2656     if (!NewCCMask)
2657       return;
2658   }
2659 
2660   // Go ahead and make the change.
2661   C.Opcode = SystemZISD::TM;
2662   C.Op0 = NewC.Op0;
2663   if (Mask && Mask->getZExtValue() == MaskVal)
2664     C.Op1 = SDValue(Mask, 0);
2665   else
2666     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2667   C.CCValid = SystemZ::CCMASK_TM;
2668   C.CCMask = NewCCMask;
2669 }
2670 
2671 // See whether the comparison argument contains a redundant AND
2672 // and remove it if so.  This sometimes happens due to the generic
2673 // BRCOND expansion.
2674 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2675                                   Comparison &C) {
2676   if (C.Op0.getOpcode() != ISD::AND)
2677     return;
2678   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2679   if (!Mask)
2680     return;
2681   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2682   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2683     return;
2684 
2685   C.Op0 = C.Op0.getOperand(0);
2686 }
2687 
2688 // Return a Comparison that tests the condition-code result of intrinsic
2689 // node Call against constant integer CC using comparison code Cond.
2690 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2691 // and CCValid is the set of possible condition-code results.
2692 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2693                                   SDValue Call, unsigned CCValid, uint64_t CC,
2694                                   ISD::CondCode Cond) {
2695   Comparison C(Call, SDValue(), SDValue());
2696   C.Opcode = Opcode;
2697   C.CCValid = CCValid;
2698   if (Cond == ISD::SETEQ)
2699     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2700     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2701   else if (Cond == ISD::SETNE)
2702     // ...and the inverse of that.
2703     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2704   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2705     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2706     // always true for CC>3.
2707     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2708   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2709     // ...and the inverse of that.
2710     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2711   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2712     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2713     // always true for CC>3.
2714     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2715   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2716     // ...and the inverse of that.
2717     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2718   else
2719     llvm_unreachable("Unexpected integer comparison type");
2720   C.CCMask &= CCValid;
2721   return C;
2722 }
2723 
2724 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2725 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2726                          ISD::CondCode Cond, const SDLoc &DL,
2727                          SDValue Chain = SDValue(),
2728                          bool IsSignaling = false) {
2729   if (CmpOp1.getOpcode() == ISD::Constant) {
2730     assert(!Chain);
2731     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2732     unsigned Opcode, CCValid;
2733     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2734         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2735         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2736       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2737     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2738         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2739         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2740       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2741   }
2742   Comparison C(CmpOp0, CmpOp1, Chain);
2743   C.CCMask = CCMaskForCondCode(Cond);
2744   if (C.Op0.getValueType().isFloatingPoint()) {
2745     C.CCValid = SystemZ::CCMASK_FCMP;
2746     if (!C.Chain)
2747       C.Opcode = SystemZISD::FCMP;
2748     else if (!IsSignaling)
2749       C.Opcode = SystemZISD::STRICT_FCMP;
2750     else
2751       C.Opcode = SystemZISD::STRICT_FCMPS;
2752     adjustForFNeg(C);
2753   } else {
2754     assert(!C.Chain);
2755     C.CCValid = SystemZ::CCMASK_ICMP;
2756     C.Opcode = SystemZISD::ICMP;
2757     // Choose the type of comparison.  Equality and inequality tests can
2758     // use either signed or unsigned comparisons.  The choice also doesn't
2759     // matter if both sign bits are known to be clear.  In those cases we
2760     // want to give the main isel code the freedom to choose whichever
2761     // form fits best.
2762     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2763         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2764         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2765       C.ICmpType = SystemZICMP::Any;
2766     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2767       C.ICmpType = SystemZICMP::UnsignedOnly;
2768     else
2769       C.ICmpType = SystemZICMP::SignedOnly;
2770     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2771     adjustForRedundantAnd(DAG, DL, C);
2772     adjustZeroCmp(DAG, DL, C);
2773     adjustSubwordCmp(DAG, DL, C);
2774     adjustForSubtraction(DAG, DL, C);
2775     adjustForLTGFR(C);
2776     adjustICmpTruncate(DAG, DL, C);
2777   }
2778 
2779   if (shouldSwapCmpOperands(C)) {
2780     std::swap(C.Op0, C.Op1);
2781     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2782   }
2783 
2784   adjustForTestUnderMask(DAG, DL, C);
2785   return C;
2786 }
2787 
2788 // Emit the comparison instruction described by C.
2789 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2790   if (!C.Op1.getNode()) {
2791     SDNode *Node;
2792     switch (C.Op0.getOpcode()) {
2793     case ISD::INTRINSIC_W_CHAIN:
2794       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2795       return SDValue(Node, 0);
2796     case ISD::INTRINSIC_WO_CHAIN:
2797       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2798       return SDValue(Node, Node->getNumValues() - 1);
2799     default:
2800       llvm_unreachable("Invalid comparison operands");
2801     }
2802   }
2803   if (C.Opcode == SystemZISD::ICMP)
2804     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2805                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2806   if (C.Opcode == SystemZISD::TM) {
2807     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2808                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2809     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2810                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2811   }
2812   if (C.Chain) {
2813     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2814     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2815   }
2816   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2817 }
2818 
2819 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2820 // 64 bits.  Extend is the extension type to use.  Store the high part
2821 // in Hi and the low part in Lo.
2822 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2823                             SDValue Op0, SDValue Op1, SDValue &Hi,
2824                             SDValue &Lo) {
2825   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2826   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2827   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2828   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2829                    DAG.getConstant(32, DL, MVT::i64));
2830   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2831   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2832 }
2833 
2834 // Lower a binary operation that produces two VT results, one in each
2835 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2836 // and Opcode performs the GR128 operation.  Store the even register result
2837 // in Even and the odd register result in Odd.
2838 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2839                              unsigned Opcode, SDValue Op0, SDValue Op1,
2840                              SDValue &Even, SDValue &Odd) {
2841   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2842   bool Is32Bit = is32Bit(VT);
2843   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2844   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2845 }
2846 
2847 // Return an i32 value that is 1 if the CC value produced by CCReg is
2848 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2849 // in CCValid, so other values can be ignored.
2850 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2851                          unsigned CCValid, unsigned CCMask) {
2852   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2853                    DAG.getConstant(0, DL, MVT::i32),
2854                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2855                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2856   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2857 }
2858 
2859 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2860 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2861 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2862 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2863 // floating-point comparisons.
2864 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2865 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2866   switch (CC) {
2867   case ISD::SETOEQ:
2868   case ISD::SETEQ:
2869     switch (Mode) {
2870     case CmpMode::Int:         return SystemZISD::VICMPE;
2871     case CmpMode::FP:          return SystemZISD::VFCMPE;
2872     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2873     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2874     }
2875     llvm_unreachable("Bad mode");
2876 
2877   case ISD::SETOGE:
2878   case ISD::SETGE:
2879     switch (Mode) {
2880     case CmpMode::Int:         return 0;
2881     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2882     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2883     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2884     }
2885     llvm_unreachable("Bad mode");
2886 
2887   case ISD::SETOGT:
2888   case ISD::SETGT:
2889     switch (Mode) {
2890     case CmpMode::Int:         return SystemZISD::VICMPH;
2891     case CmpMode::FP:          return SystemZISD::VFCMPH;
2892     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2893     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2894     }
2895     llvm_unreachable("Bad mode");
2896 
2897   case ISD::SETUGT:
2898     switch (Mode) {
2899     case CmpMode::Int:         return SystemZISD::VICMPHL;
2900     case CmpMode::FP:          return 0;
2901     case CmpMode::StrictFP:    return 0;
2902     case CmpMode::SignalingFP: return 0;
2903     }
2904     llvm_unreachable("Bad mode");
2905 
2906   default:
2907     return 0;
2908   }
2909 }
2910 
2911 // Return the SystemZISD vector comparison operation for CC or its inverse,
2912 // or 0 if neither can be done directly.  Indicate in Invert whether the
2913 // result is for the inverse of CC.  Mode is as above.
2914 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2915                                             bool &Invert) {
2916   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2917     Invert = false;
2918     return Opcode;
2919   }
2920 
2921   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2922   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2923     Invert = true;
2924     return Opcode;
2925   }
2926 
2927   return 0;
2928 }
2929 
2930 // Return a v2f64 that contains the extended form of elements Start and Start+1
2931 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2932 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2933                                   SDValue Op, SDValue Chain) {
2934   int Mask[] = { Start, -1, Start + 1, -1 };
2935   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2936   if (Chain) {
2937     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2938     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2939   }
2940   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2941 }
2942 
2943 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2944 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2945 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2946                                             const SDLoc &DL, EVT VT,
2947                                             SDValue CmpOp0,
2948                                             SDValue CmpOp1,
2949                                             SDValue Chain) const {
2950   // There is no hardware support for v4f32 (unless we have the vector
2951   // enhancements facility 1), so extend the vector into two v2f64s
2952   // and compare those.
2953   if (CmpOp0.getValueType() == MVT::v4f32 &&
2954       !Subtarget.hasVectorEnhancements1()) {
2955     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2956     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2957     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2958     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2959     if (Chain) {
2960       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2961       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2962       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2963       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2964       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2965                             H1.getValue(1), L1.getValue(1),
2966                             HRes.getValue(1), LRes.getValue(1) };
2967       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2968       SDValue Ops[2] = { Res, NewChain };
2969       return DAG.getMergeValues(Ops, DL);
2970     }
2971     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2972     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2973     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2974   }
2975   if (Chain) {
2976     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2977     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2978   }
2979   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2980 }
2981 
2982 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2983 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2984 // floating-point comparison.  If in addition IsSignaling is true, we have
2985 // a strict signaling floating-point comparison.
2986 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2987                                                 const SDLoc &DL, EVT VT,
2988                                                 ISD::CondCode CC,
2989                                                 SDValue CmpOp0,
2990                                                 SDValue CmpOp1,
2991                                                 SDValue Chain,
2992                                                 bool IsSignaling) const {
2993   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2994   assert (!Chain || IsFP);
2995   assert (!IsSignaling || Chain);
2996   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2997                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2998   bool Invert = false;
2999   SDValue Cmp;
3000   switch (CC) {
3001     // Handle tests for order using (or (ogt y x) (oge x y)).
3002   case ISD::SETUO:
3003     Invert = true;
3004     LLVM_FALLTHROUGH;
3005   case ISD::SETO: {
3006     assert(IsFP && "Unexpected integer comparison");
3007     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3008                               DL, VT, CmpOp1, CmpOp0, Chain);
3009     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3010                               DL, VT, CmpOp0, CmpOp1, Chain);
3011     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3012     if (Chain)
3013       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3014                           LT.getValue(1), GE.getValue(1));
3015     break;
3016   }
3017 
3018     // Handle <> tests using (or (ogt y x) (ogt x y)).
3019   case ISD::SETUEQ:
3020     Invert = true;
3021     LLVM_FALLTHROUGH;
3022   case ISD::SETONE: {
3023     assert(IsFP && "Unexpected integer comparison");
3024     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3025                               DL, VT, CmpOp1, CmpOp0, Chain);
3026     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3027                               DL, VT, CmpOp0, CmpOp1, Chain);
3028     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3029     if (Chain)
3030       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3031                           LT.getValue(1), GT.getValue(1));
3032     break;
3033   }
3034 
3035     // Otherwise a single comparison is enough.  It doesn't really
3036     // matter whether we try the inversion or the swap first, since
3037     // there are no cases where both work.
3038   default:
3039     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3040       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3041     else {
3042       CC = ISD::getSetCCSwappedOperands(CC);
3043       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3044         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3045       else
3046         llvm_unreachable("Unhandled comparison");
3047     }
3048     if (Chain)
3049       Chain = Cmp.getValue(1);
3050     break;
3051   }
3052   if (Invert) {
3053     SDValue Mask =
3054       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3055     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3056   }
3057   if (Chain && Chain.getNode() != Cmp.getNode()) {
3058     SDValue Ops[2] = { Cmp, Chain };
3059     Cmp = DAG.getMergeValues(Ops, DL);
3060   }
3061   return Cmp;
3062 }
3063 
3064 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3065                                           SelectionDAG &DAG) const {
3066   SDValue CmpOp0   = Op.getOperand(0);
3067   SDValue CmpOp1   = Op.getOperand(1);
3068   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3069   SDLoc DL(Op);
3070   EVT VT = Op.getValueType();
3071   if (VT.isVector())
3072     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3073 
3074   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3075   SDValue CCReg = emitCmp(DAG, DL, C);
3076   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3077 }
3078 
3079 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3080                                                   SelectionDAG &DAG,
3081                                                   bool IsSignaling) const {
3082   SDValue Chain    = Op.getOperand(0);
3083   SDValue CmpOp0   = Op.getOperand(1);
3084   SDValue CmpOp1   = Op.getOperand(2);
3085   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3086   SDLoc DL(Op);
3087   EVT VT = Op.getNode()->getValueType(0);
3088   if (VT.isVector()) {
3089     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3090                                    Chain, IsSignaling);
3091     return Res.getValue(Op.getResNo());
3092   }
3093 
3094   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3095   SDValue CCReg = emitCmp(DAG, DL, C);
3096   CCReg->setFlags(Op->getFlags());
3097   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3098   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3099   return DAG.getMergeValues(Ops, DL);
3100 }
3101 
3102 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3103   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3104   SDValue CmpOp0   = Op.getOperand(2);
3105   SDValue CmpOp1   = Op.getOperand(3);
3106   SDValue Dest     = Op.getOperand(4);
3107   SDLoc DL(Op);
3108 
3109   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3110   SDValue CCReg = emitCmp(DAG, DL, C);
3111   return DAG.getNode(
3112       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3113       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3114       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3115 }
3116 
3117 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3118 // allowing Pos and Neg to be wider than CmpOp.
3119 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3120   return (Neg.getOpcode() == ISD::SUB &&
3121           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3122           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3123           Neg.getOperand(1) == Pos &&
3124           (Pos == CmpOp ||
3125            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3126             Pos.getOperand(0) == CmpOp)));
3127 }
3128 
3129 // Return the absolute or negative absolute of Op; IsNegative decides which.
3130 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3131                            bool IsNegative) {
3132   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3133   if (IsNegative)
3134     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3135                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3136   return Op;
3137 }
3138 
3139 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3140                                               SelectionDAG &DAG) const {
3141   SDValue CmpOp0   = Op.getOperand(0);
3142   SDValue CmpOp1   = Op.getOperand(1);
3143   SDValue TrueOp   = Op.getOperand(2);
3144   SDValue FalseOp  = Op.getOperand(3);
3145   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3146   SDLoc DL(Op);
3147 
3148   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3149 
3150   // Check for absolute and negative-absolute selections, including those
3151   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3152   // This check supplements the one in DAGCombiner.
3153   if (C.Opcode == SystemZISD::ICMP &&
3154       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3155       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3156       C.Op1.getOpcode() == ISD::Constant &&
3157       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3158     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3159       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3160     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3161       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3162   }
3163 
3164   SDValue CCReg = emitCmp(DAG, DL, C);
3165   SDValue Ops[] = {TrueOp, FalseOp,
3166                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3167                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3168 
3169   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3170 }
3171 
3172 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3173                                                   SelectionDAG &DAG) const {
3174   SDLoc DL(Node);
3175   const GlobalValue *GV = Node->getGlobal();
3176   int64_t Offset = Node->getOffset();
3177   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3178   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3179 
3180   SDValue Result;
3181   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3182     if (isInt<32>(Offset)) {
3183       // Assign anchors at 1<<12 byte boundaries.
3184       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3185       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3186       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3187 
3188       // The offset can be folded into the address if it is aligned to a
3189       // halfword.
3190       Offset -= Anchor;
3191       if (Offset != 0 && (Offset & 1) == 0) {
3192         SDValue Full =
3193           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3194         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3195         Offset = 0;
3196       }
3197     } else {
3198       // Conservatively load a constant offset greater than 32 bits into a
3199       // register below.
3200       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3201       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3202     }
3203   } else {
3204     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3205     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3206     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3207                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3208   }
3209 
3210   // If there was a non-zero offset that we didn't fold, create an explicit
3211   // addition for it.
3212   if (Offset != 0)
3213     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3214                          DAG.getConstant(Offset, DL, PtrVT));
3215 
3216   return Result;
3217 }
3218 
3219 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3220                                                  SelectionDAG &DAG,
3221                                                  unsigned Opcode,
3222                                                  SDValue GOTOffset) const {
3223   SDLoc DL(Node);
3224   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3225   SDValue Chain = DAG.getEntryNode();
3226   SDValue Glue;
3227 
3228   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3229       CallingConv::GHC)
3230     report_fatal_error("In GHC calling convention TLS is not supported");
3231 
3232   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3233   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3234   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3235   Glue = Chain.getValue(1);
3236   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3237   Glue = Chain.getValue(1);
3238 
3239   // The first call operand is the chain and the second is the TLS symbol.
3240   SmallVector<SDValue, 8> Ops;
3241   Ops.push_back(Chain);
3242   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3243                                            Node->getValueType(0),
3244                                            0, 0));
3245 
3246   // Add argument registers to the end of the list so that they are
3247   // known live into the call.
3248   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3249   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3250 
3251   // Add a register mask operand representing the call-preserved registers.
3252   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3253   const uint32_t *Mask =
3254       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3255   assert(Mask && "Missing call preserved mask for calling convention");
3256   Ops.push_back(DAG.getRegisterMask(Mask));
3257 
3258   // Glue the call to the argument copies.
3259   Ops.push_back(Glue);
3260 
3261   // Emit the call.
3262   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3263   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3264   Glue = Chain.getValue(1);
3265 
3266   // Copy the return value from %r2.
3267   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3268 }
3269 
3270 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3271                                                   SelectionDAG &DAG) const {
3272   SDValue Chain = DAG.getEntryNode();
3273   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3274 
3275   // The high part of the thread pointer is in access register 0.
3276   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3277   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3278 
3279   // The low part of the thread pointer is in access register 1.
3280   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3281   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3282 
3283   // Merge them into a single 64-bit address.
3284   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3285                                     DAG.getConstant(32, DL, PtrVT));
3286   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3287 }
3288 
3289 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3290                                                      SelectionDAG &DAG) const {
3291   if (DAG.getTarget().useEmulatedTLS())
3292     return LowerToTLSEmulatedModel(Node, DAG);
3293   SDLoc DL(Node);
3294   const GlobalValue *GV = Node->getGlobal();
3295   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3296   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3297 
3298   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3299       CallingConv::GHC)
3300     report_fatal_error("In GHC calling convention TLS is not supported");
3301 
3302   SDValue TP = lowerThreadPointer(DL, DAG);
3303 
3304   // Get the offset of GA from the thread pointer, based on the TLS model.
3305   SDValue Offset;
3306   switch (model) {
3307     case TLSModel::GeneralDynamic: {
3308       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3309       SystemZConstantPoolValue *CPV =
3310         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3311 
3312       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3313       Offset = DAG.getLoad(
3314           PtrVT, DL, DAG.getEntryNode(), Offset,
3315           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3316 
3317       // Call __tls_get_offset to retrieve the offset.
3318       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3319       break;
3320     }
3321 
3322     case TLSModel::LocalDynamic: {
3323       // Load the GOT offset of the module ID.
3324       SystemZConstantPoolValue *CPV =
3325         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3326 
3327       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3328       Offset = DAG.getLoad(
3329           PtrVT, DL, DAG.getEntryNode(), Offset,
3330           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3331 
3332       // Call __tls_get_offset to retrieve the module base offset.
3333       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3334 
3335       // Note: The SystemZLDCleanupPass will remove redundant computations
3336       // of the module base offset.  Count total number of local-dynamic
3337       // accesses to trigger execution of that pass.
3338       SystemZMachineFunctionInfo* MFI =
3339         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3340       MFI->incNumLocalDynamicTLSAccesses();
3341 
3342       // Add the per-symbol offset.
3343       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3344 
3345       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3346       DTPOffset = DAG.getLoad(
3347           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3348           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3349 
3350       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3351       break;
3352     }
3353 
3354     case TLSModel::InitialExec: {
3355       // Load the offset from the GOT.
3356       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3357                                           SystemZII::MO_INDNTPOFF);
3358       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3359       Offset =
3360           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3361                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3362       break;
3363     }
3364 
3365     case TLSModel::LocalExec: {
3366       // Force the offset into the constant pool and load it from there.
3367       SystemZConstantPoolValue *CPV =
3368         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3369 
3370       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3371       Offset = DAG.getLoad(
3372           PtrVT, DL, DAG.getEntryNode(), Offset,
3373           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3374       break;
3375     }
3376   }
3377 
3378   // Add the base and offset together.
3379   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3380 }
3381 
3382 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3383                                                  SelectionDAG &DAG) const {
3384   SDLoc DL(Node);
3385   const BlockAddress *BA = Node->getBlockAddress();
3386   int64_t Offset = Node->getOffset();
3387   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3388 
3389   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3390   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3391   return Result;
3392 }
3393 
3394 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3395                                               SelectionDAG &DAG) const {
3396   SDLoc DL(JT);
3397   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3398   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3399 
3400   // Use LARL to load the address of the table.
3401   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3402 }
3403 
3404 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3405                                                  SelectionDAG &DAG) const {
3406   SDLoc DL(CP);
3407   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3408 
3409   SDValue Result;
3410   if (CP->isMachineConstantPoolEntry())
3411     Result =
3412         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3413   else
3414     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3415                                        CP->getOffset());
3416 
3417   // Use LARL to load the address of the constant pool entry.
3418   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3419 }
3420 
3421 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3422                                               SelectionDAG &DAG) const {
3423   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3424   MachineFunction &MF = DAG.getMachineFunction();
3425   MachineFrameInfo &MFI = MF.getFrameInfo();
3426   MFI.setFrameAddressIsTaken(true);
3427 
3428   SDLoc DL(Op);
3429   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3430   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3431 
3432   // By definition, the frame address is the address of the back chain.  (In
3433   // the case of packed stack without backchain, return the address where the
3434   // backchain would have been stored. This will either be an unused space or
3435   // contain a saved register).
3436   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3437   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3438 
3439   // FIXME The frontend should detect this case.
3440   if (Depth > 0) {
3441     report_fatal_error("Unsupported stack frame traversal count");
3442   }
3443 
3444   return BackChain;
3445 }
3446 
3447 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3448                                                SelectionDAG &DAG) const {
3449   MachineFunction &MF = DAG.getMachineFunction();
3450   MachineFrameInfo &MFI = MF.getFrameInfo();
3451   MFI.setReturnAddressIsTaken(true);
3452 
3453   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3454     return SDValue();
3455 
3456   SDLoc DL(Op);
3457   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3458   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3459 
3460   // FIXME The frontend should detect this case.
3461   if (Depth > 0) {
3462     report_fatal_error("Unsupported stack frame traversal count");
3463   }
3464 
3465   // Return R14D, which has the return address. Mark it an implicit live-in.
3466   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3467   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3468 }
3469 
3470 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3471                                             SelectionDAG &DAG) const {
3472   SDLoc DL(Op);
3473   SDValue In = Op.getOperand(0);
3474   EVT InVT = In.getValueType();
3475   EVT ResVT = Op.getValueType();
3476 
3477   // Convert loads directly.  This is normally done by DAGCombiner,
3478   // but we need this case for bitcasts that are created during lowering
3479   // and which are then lowered themselves.
3480   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3481     if (ISD::isNormalLoad(LoadN)) {
3482       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3483                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3484       // Update the chain uses.
3485       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3486       return NewLoad;
3487     }
3488 
3489   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3490     SDValue In64;
3491     if (Subtarget.hasHighWord()) {
3492       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3493                                        MVT::i64);
3494       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3495                                        MVT::i64, SDValue(U64, 0), In);
3496     } else {
3497       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3498       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3499                          DAG.getConstant(32, DL, MVT::i64));
3500     }
3501     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3502     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3503                                       DL, MVT::f32, Out64);
3504   }
3505   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3506     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3507     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3508                                              MVT::f64, SDValue(U64, 0), In);
3509     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3510     if (Subtarget.hasHighWord())
3511       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3512                                         MVT::i32, Out64);
3513     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3514                                 DAG.getConstant(32, DL, MVT::i64));
3515     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3516   }
3517   llvm_unreachable("Unexpected bitcast combination");
3518 }
3519 
3520 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3521                                             SelectionDAG &DAG) const {
3522 
3523   if (Subtarget.isTargetXPLINK64())
3524     return lowerVASTART_XPLINK(Op, DAG);
3525   else
3526     return lowerVASTART_ELF(Op, DAG);
3527 }
3528 
3529 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3530                                                    SelectionDAG &DAG) const {
3531   MachineFunction &MF = DAG.getMachineFunction();
3532   SystemZMachineFunctionInfo *FuncInfo =
3533       MF.getInfo<SystemZMachineFunctionInfo>();
3534 
3535   SDLoc DL(Op);
3536 
3537   // vastart just stores the address of the VarArgsFrameIndex slot into the
3538   // memory location argument.
3539   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3540   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3541   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3542   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3543                       MachinePointerInfo(SV));
3544 }
3545 
3546 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3547                                                 SelectionDAG &DAG) const {
3548   MachineFunction &MF = DAG.getMachineFunction();
3549   SystemZMachineFunctionInfo *FuncInfo =
3550     MF.getInfo<SystemZMachineFunctionInfo>();
3551   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3552 
3553   SDValue Chain   = Op.getOperand(0);
3554   SDValue Addr    = Op.getOperand(1);
3555   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3556   SDLoc DL(Op);
3557 
3558   // The initial values of each field.
3559   const unsigned NumFields = 4;
3560   SDValue Fields[NumFields] = {
3561     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3562     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3563     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3564     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3565   };
3566 
3567   // Store each field into its respective slot.
3568   SDValue MemOps[NumFields];
3569   unsigned Offset = 0;
3570   for (unsigned I = 0; I < NumFields; ++I) {
3571     SDValue FieldAddr = Addr;
3572     if (Offset != 0)
3573       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3574                               DAG.getIntPtrConstant(Offset, DL));
3575     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3576                              MachinePointerInfo(SV, Offset));
3577     Offset += 8;
3578   }
3579   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3580 }
3581 
3582 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3583                                            SelectionDAG &DAG) const {
3584   SDValue Chain      = Op.getOperand(0);
3585   SDValue DstPtr     = Op.getOperand(1);
3586   SDValue SrcPtr     = Op.getOperand(2);
3587   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3588   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3589   SDLoc DL(Op);
3590 
3591   uint32_t Sz =
3592       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3593   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3594                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3595                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3596                        MachinePointerInfo(SrcSV));
3597 }
3598 
3599 SDValue
3600 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3601                                                SelectionDAG &DAG) const {
3602   if (Subtarget.isTargetXPLINK64())
3603     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3604   else
3605     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3606 }
3607 
3608 SDValue
3609 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3610                                                       SelectionDAG &DAG) const {
3611   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3612   MachineFunction &MF = DAG.getMachineFunction();
3613   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3614   SDValue Chain = Op.getOperand(0);
3615   SDValue Size = Op.getOperand(1);
3616   SDValue Align = Op.getOperand(2);
3617   SDLoc DL(Op);
3618 
3619   // If user has set the no alignment function attribute, ignore
3620   // alloca alignments.
3621   uint64_t AlignVal =
3622       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3623 
3624   uint64_t StackAlign = TFI->getStackAlignment();
3625   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3626   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3627 
3628   SDValue NeededSpace = Size;
3629 
3630   // Add extra space for alignment if needed.
3631   EVT PtrVT = getPointerTy(MF.getDataLayout());
3632   if (ExtraAlignSpace)
3633     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3634                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3635 
3636   bool IsSigned = false;
3637   bool DoesNotReturn = false;
3638   bool IsReturnValueUsed = false;
3639   EVT VT = Op.getValueType();
3640   SDValue AllocaCall =
3641       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace),
3642                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3643                        IsReturnValueUsed)
3644           .first;
3645 
3646   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3647   // to end of call in order to ensure it isn't broken up from the call
3648   // sequence.
3649   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3650   Register SPReg = Regs.getStackPointerRegister();
3651   Chain = AllocaCall.getValue(1);
3652   SDValue Glue = AllocaCall.getValue(2);
3653   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3654   Chain = NewSPRegNode.getValue(1);
3655 
3656   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3657   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3658   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3659 
3660   // Dynamically realign if needed.
3661   if (ExtraAlignSpace) {
3662     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3663                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3664     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3665                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3666   }
3667 
3668   SDValue Ops[2] = {Result, Chain};
3669   return DAG.getMergeValues(Ops, DL);
3670 }
3671 
3672 SDValue
3673 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
3674                                                    SelectionDAG &DAG) const {
3675   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3676   MachineFunction &MF = DAG.getMachineFunction();
3677   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3678   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3679 
3680   SDValue Chain = Op.getOperand(0);
3681   SDValue Size  = Op.getOperand(1);
3682   SDValue Align = Op.getOperand(2);
3683   SDLoc DL(Op);
3684 
3685   // If user has set the no alignment function attribute, ignore
3686   // alloca alignments.
3687   uint64_t AlignVal =
3688       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3689 
3690   uint64_t StackAlign = TFI->getStackAlignment();
3691   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3692   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3693 
3694   Register SPReg = getStackPointerRegisterToSaveRestore();
3695   SDValue NeededSpace = Size;
3696 
3697   // Get a reference to the stack pointer.
3698   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3699 
3700   // If we need a backchain, save it now.
3701   SDValue Backchain;
3702   if (StoreBackchain)
3703     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3704                             MachinePointerInfo());
3705 
3706   // Add extra space for alignment if needed.
3707   if (ExtraAlignSpace)
3708     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3709                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3710 
3711   // Get the new stack pointer value.
3712   SDValue NewSP;
3713   if (hasInlineStackProbe(MF)) {
3714     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3715                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3716     Chain = NewSP.getValue(1);
3717   }
3718   else {
3719     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3720     // Copy the new stack pointer back.
3721     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3722   }
3723 
3724   // The allocated data lives above the 160 bytes allocated for the standard
3725   // frame, plus any outgoing stack arguments.  We don't know how much that
3726   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3727   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3728   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3729 
3730   // Dynamically realign if needed.
3731   if (RequiredAlign > StackAlign) {
3732     Result =
3733       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3734                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3735     Result =
3736       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3737                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3738   }
3739 
3740   if (StoreBackchain)
3741     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3742                          MachinePointerInfo());
3743 
3744   SDValue Ops[2] = { Result, Chain };
3745   return DAG.getMergeValues(Ops, DL);
3746 }
3747 
3748 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3749     SDValue Op, SelectionDAG &DAG) const {
3750   SDLoc DL(Op);
3751 
3752   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3753 }
3754 
3755 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3756                                               SelectionDAG &DAG) const {
3757   EVT VT = Op.getValueType();
3758   SDLoc DL(Op);
3759   SDValue Ops[2];
3760   if (is32Bit(VT))
3761     // Just do a normal 64-bit multiplication and extract the results.
3762     // We define this so that it can be used for constant division.
3763     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3764                     Op.getOperand(1), Ops[1], Ops[0]);
3765   else if (Subtarget.hasMiscellaneousExtensions2())
3766     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3767     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3768     // return the low half first, so the results are in reverse order.
3769     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3770                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3771   else {
3772     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3773     //
3774     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3775     //
3776     // but using the fact that the upper halves are either all zeros
3777     // or all ones:
3778     //
3779     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3780     //
3781     // and grouping the right terms together since they are quicker than the
3782     // multiplication:
3783     //
3784     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3785     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3786     SDValue LL = Op.getOperand(0);
3787     SDValue RL = Op.getOperand(1);
3788     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3789     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3790     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3791     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3792     // return the low half first, so the results are in reverse order.
3793     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3794                      LL, RL, Ops[1], Ops[0]);
3795     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3796     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3797     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3798     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3799   }
3800   return DAG.getMergeValues(Ops, DL);
3801 }
3802 
3803 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3804                                               SelectionDAG &DAG) const {
3805   EVT VT = Op.getValueType();
3806   SDLoc DL(Op);
3807   SDValue Ops[2];
3808   if (is32Bit(VT))
3809     // Just do a normal 64-bit multiplication and extract the results.
3810     // We define this so that it can be used for constant division.
3811     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3812                     Op.getOperand(1), Ops[1], Ops[0]);
3813   else
3814     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3815     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3816     // return the low half first, so the results are in reverse order.
3817     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3818                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3819   return DAG.getMergeValues(Ops, DL);
3820 }
3821 
3822 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3823                                             SelectionDAG &DAG) const {
3824   SDValue Op0 = Op.getOperand(0);
3825   SDValue Op1 = Op.getOperand(1);
3826   EVT VT = Op.getValueType();
3827   SDLoc DL(Op);
3828 
3829   // We use DSGF for 32-bit division.  This means the first operand must
3830   // always be 64-bit, and the second operand should be 32-bit whenever
3831   // that is possible, to improve performance.
3832   if (is32Bit(VT))
3833     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3834   else if (DAG.ComputeNumSignBits(Op1) > 32)
3835     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3836 
3837   // DSG(F) returns the remainder in the even register and the
3838   // quotient in the odd register.
3839   SDValue Ops[2];
3840   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3841   return DAG.getMergeValues(Ops, DL);
3842 }
3843 
3844 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3845                                             SelectionDAG &DAG) const {
3846   EVT VT = Op.getValueType();
3847   SDLoc DL(Op);
3848 
3849   // DL(G) returns the remainder in the even register and the
3850   // quotient in the odd register.
3851   SDValue Ops[2];
3852   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3853                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3854   return DAG.getMergeValues(Ops, DL);
3855 }
3856 
3857 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3858   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3859 
3860   // Get the known-zero masks for each operand.
3861   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3862   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3863                         DAG.computeKnownBits(Ops[1])};
3864 
3865   // See if the upper 32 bits of one operand and the lower 32 bits of the
3866   // other are known zero.  They are the low and high operands respectively.
3867   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3868                        Known[1].Zero.getZExtValue() };
3869   unsigned High, Low;
3870   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3871     High = 1, Low = 0;
3872   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3873     High = 0, Low = 1;
3874   else
3875     return Op;
3876 
3877   SDValue LowOp = Ops[Low];
3878   SDValue HighOp = Ops[High];
3879 
3880   // If the high part is a constant, we're better off using IILH.
3881   if (HighOp.getOpcode() == ISD::Constant)
3882     return Op;
3883 
3884   // If the low part is a constant that is outside the range of LHI,
3885   // then we're better off using IILF.
3886   if (LowOp.getOpcode() == ISD::Constant) {
3887     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3888     if (!isInt<16>(Value))
3889       return Op;
3890   }
3891 
3892   // Check whether the high part is an AND that doesn't change the
3893   // high 32 bits and just masks out low bits.  We can skip it if so.
3894   if (HighOp.getOpcode() == ISD::AND &&
3895       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3896     SDValue HighOp0 = HighOp.getOperand(0);
3897     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3898     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3899       HighOp = HighOp0;
3900   }
3901 
3902   // Take advantage of the fact that all GR32 operations only change the
3903   // low 32 bits by truncating Low to an i32 and inserting it directly
3904   // using a subreg.  The interesting cases are those where the truncation
3905   // can be folded.
3906   SDLoc DL(Op);
3907   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3908   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3909                                    MVT::i64, HighOp, Low32);
3910 }
3911 
3912 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3913 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3914                                           SelectionDAG &DAG) const {
3915   SDNode *N = Op.getNode();
3916   SDValue LHS = N->getOperand(0);
3917   SDValue RHS = N->getOperand(1);
3918   SDLoc DL(N);
3919   unsigned BaseOp = 0;
3920   unsigned CCValid = 0;
3921   unsigned CCMask = 0;
3922 
3923   switch (Op.getOpcode()) {
3924   default: llvm_unreachable("Unknown instruction!");
3925   case ISD::SADDO:
3926     BaseOp = SystemZISD::SADDO;
3927     CCValid = SystemZ::CCMASK_ARITH;
3928     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3929     break;
3930   case ISD::SSUBO:
3931     BaseOp = SystemZISD::SSUBO;
3932     CCValid = SystemZ::CCMASK_ARITH;
3933     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3934     break;
3935   case ISD::UADDO:
3936     BaseOp = SystemZISD::UADDO;
3937     CCValid = SystemZ::CCMASK_LOGICAL;
3938     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3939     break;
3940   case ISD::USUBO:
3941     BaseOp = SystemZISD::USUBO;
3942     CCValid = SystemZ::CCMASK_LOGICAL;
3943     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3944     break;
3945   }
3946 
3947   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3948   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3949 
3950   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3951   if (N->getValueType(1) == MVT::i1)
3952     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3953 
3954   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3955 }
3956 
3957 static bool isAddCarryChain(SDValue Carry) {
3958   while (Carry.getOpcode() == ISD::ADDCARRY)
3959     Carry = Carry.getOperand(2);
3960   return Carry.getOpcode() == ISD::UADDO;
3961 }
3962 
3963 static bool isSubBorrowChain(SDValue Carry) {
3964   while (Carry.getOpcode() == ISD::SUBCARRY)
3965     Carry = Carry.getOperand(2);
3966   return Carry.getOpcode() == ISD::USUBO;
3967 }
3968 
3969 // Lower ADDCARRY/SUBCARRY nodes.
3970 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3971                                                 SelectionDAG &DAG) const {
3972 
3973   SDNode *N = Op.getNode();
3974   MVT VT = N->getSimpleValueType(0);
3975 
3976   // Let legalize expand this if it isn't a legal type yet.
3977   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3978     return SDValue();
3979 
3980   SDValue LHS = N->getOperand(0);
3981   SDValue RHS = N->getOperand(1);
3982   SDValue Carry = Op.getOperand(2);
3983   SDLoc DL(N);
3984   unsigned BaseOp = 0;
3985   unsigned CCValid = 0;
3986   unsigned CCMask = 0;
3987 
3988   switch (Op.getOpcode()) {
3989   default: llvm_unreachable("Unknown instruction!");
3990   case ISD::ADDCARRY:
3991     if (!isAddCarryChain(Carry))
3992       return SDValue();
3993 
3994     BaseOp = SystemZISD::ADDCARRY;
3995     CCValid = SystemZ::CCMASK_LOGICAL;
3996     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3997     break;
3998   case ISD::SUBCARRY:
3999     if (!isSubBorrowChain(Carry))
4000       return SDValue();
4001 
4002     BaseOp = SystemZISD::SUBCARRY;
4003     CCValid = SystemZ::CCMASK_LOGICAL;
4004     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4005     break;
4006   }
4007 
4008   // Set the condition code from the carry flag.
4009   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4010                       DAG.getConstant(CCValid, DL, MVT::i32),
4011                       DAG.getConstant(CCMask, DL, MVT::i32));
4012 
4013   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4014   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4015 
4016   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4017   if (N->getValueType(1) == MVT::i1)
4018     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4019 
4020   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4021 }
4022 
4023 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4024                                           SelectionDAG &DAG) const {
4025   EVT VT = Op.getValueType();
4026   SDLoc DL(Op);
4027   Op = Op.getOperand(0);
4028 
4029   // Handle vector types via VPOPCT.
4030   if (VT.isVector()) {
4031     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4032     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4033     switch (VT.getScalarSizeInBits()) {
4034     case 8:
4035       break;
4036     case 16: {
4037       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4038       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4039       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4040       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4041       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4042       break;
4043     }
4044     case 32: {
4045       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4046                                             DAG.getConstant(0, DL, MVT::i32));
4047       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4048       break;
4049     }
4050     case 64: {
4051       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4052                                             DAG.getConstant(0, DL, MVT::i32));
4053       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4054       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4055       break;
4056     }
4057     default:
4058       llvm_unreachable("Unexpected type");
4059     }
4060     return Op;
4061   }
4062 
4063   // Get the known-zero mask for the operand.
4064   KnownBits Known = DAG.computeKnownBits(Op);
4065   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4066   if (NumSignificantBits == 0)
4067     return DAG.getConstant(0, DL, VT);
4068 
4069   // Skip known-zero high parts of the operand.
4070   int64_t OrigBitSize = VT.getSizeInBits();
4071   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
4072   BitSize = std::min(BitSize, OrigBitSize);
4073 
4074   // The POPCNT instruction counts the number of bits in each byte.
4075   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4076   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4077   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4078 
4079   // Add up per-byte counts in a binary tree.  All bits of Op at
4080   // position larger than BitSize remain zero throughout.
4081   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4082     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4083     if (BitSize != OrigBitSize)
4084       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4085                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4086     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4087   }
4088 
4089   // Extract overall result from high byte.
4090   if (BitSize > 8)
4091     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4092                      DAG.getConstant(BitSize - 8, DL, VT));
4093 
4094   return Op;
4095 }
4096 
4097 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4098                                                  SelectionDAG &DAG) const {
4099   SDLoc DL(Op);
4100   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
4101     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
4102   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
4103     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
4104 
4105   // The only fence that needs an instruction is a sequentially-consistent
4106   // cross-thread fence.
4107   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4108       FenceSSID == SyncScope::System) {
4109     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4110                                       Op.getOperand(0)),
4111                    0);
4112   }
4113 
4114   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4115   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4116 }
4117 
4118 // Op is an atomic load.  Lower it into a normal volatile load.
4119 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4120                                                 SelectionDAG &DAG) const {
4121   auto *Node = cast<AtomicSDNode>(Op.getNode());
4122   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4123                         Node->getChain(), Node->getBasePtr(),
4124                         Node->getMemoryVT(), Node->getMemOperand());
4125 }
4126 
4127 // Op is an atomic store.  Lower it into a normal volatile store.
4128 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4129                                                  SelectionDAG &DAG) const {
4130   auto *Node = cast<AtomicSDNode>(Op.getNode());
4131   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4132                                     Node->getBasePtr(), Node->getMemoryVT(),
4133                                     Node->getMemOperand());
4134   // We have to enforce sequential consistency by performing a
4135   // serialization operation after the store.
4136   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4137     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4138                                        MVT::Other, Chain), 0);
4139   return Chain;
4140 }
4141 
4142 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4143 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4144 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4145                                                    SelectionDAG &DAG,
4146                                                    unsigned Opcode) const {
4147   auto *Node = cast<AtomicSDNode>(Op.getNode());
4148 
4149   // 32-bit operations need no code outside the main loop.
4150   EVT NarrowVT = Node->getMemoryVT();
4151   EVT WideVT = MVT::i32;
4152   if (NarrowVT == WideVT)
4153     return Op;
4154 
4155   int64_t BitSize = NarrowVT.getSizeInBits();
4156   SDValue ChainIn = Node->getChain();
4157   SDValue Addr = Node->getBasePtr();
4158   SDValue Src2 = Node->getVal();
4159   MachineMemOperand *MMO = Node->getMemOperand();
4160   SDLoc DL(Node);
4161   EVT PtrVT = Addr.getValueType();
4162 
4163   // Convert atomic subtracts of constants into additions.
4164   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4165     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4166       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4167       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4168     }
4169 
4170   // Get the address of the containing word.
4171   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4172                                     DAG.getConstant(-4, DL, PtrVT));
4173 
4174   // Get the number of bits that the word must be rotated left in order
4175   // to bring the field to the top bits of a GR32.
4176   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4177                                  DAG.getConstant(3, DL, PtrVT));
4178   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4179 
4180   // Get the complementing shift amount, for rotating a field in the top
4181   // bits back to its proper position.
4182   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4183                                     DAG.getConstant(0, DL, WideVT), BitShift);
4184 
4185   // Extend the source operand to 32 bits and prepare it for the inner loop.
4186   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4187   // operations require the source to be shifted in advance.  (This shift
4188   // can be folded if the source is constant.)  For AND and NAND, the lower
4189   // bits must be set, while for other opcodes they should be left clear.
4190   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4191     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4192                        DAG.getConstant(32 - BitSize, DL, WideVT));
4193   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4194       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4195     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4196                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4197 
4198   // Construct the ATOMIC_LOADW_* node.
4199   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4200   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4201                     DAG.getConstant(BitSize, DL, WideVT) };
4202   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4203                                              NarrowVT, MMO);
4204 
4205   // Rotate the result of the final CS so that the field is in the lower
4206   // bits of a GR32, then truncate it.
4207   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4208                                     DAG.getConstant(BitSize, DL, WideVT));
4209   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4210 
4211   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4212   return DAG.getMergeValues(RetOps, DL);
4213 }
4214 
4215 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4216 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4217 // operations into additions.
4218 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4219                                                     SelectionDAG &DAG) const {
4220   auto *Node = cast<AtomicSDNode>(Op.getNode());
4221   EVT MemVT = Node->getMemoryVT();
4222   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4223     // A full-width operation.
4224     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4225     SDValue Src2 = Node->getVal();
4226     SDValue NegSrc2;
4227     SDLoc DL(Src2);
4228 
4229     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4230       // Use an addition if the operand is constant and either LAA(G) is
4231       // available or the negative value is in the range of A(G)FHI.
4232       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4233       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4234         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4235     } else if (Subtarget.hasInterlockedAccess1())
4236       // Use LAA(G) if available.
4237       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4238                             Src2);
4239 
4240     if (NegSrc2.getNode())
4241       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4242                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4243                            Node->getMemOperand());
4244 
4245     // Use the node as-is.
4246     return Op;
4247   }
4248 
4249   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4250 }
4251 
4252 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4253 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4254                                                     SelectionDAG &DAG) const {
4255   auto *Node = cast<AtomicSDNode>(Op.getNode());
4256   SDValue ChainIn = Node->getOperand(0);
4257   SDValue Addr = Node->getOperand(1);
4258   SDValue CmpVal = Node->getOperand(2);
4259   SDValue SwapVal = Node->getOperand(3);
4260   MachineMemOperand *MMO = Node->getMemOperand();
4261   SDLoc DL(Node);
4262 
4263   // We have native support for 32-bit and 64-bit compare and swap, but we
4264   // still need to expand extracting the "success" result from the CC.
4265   EVT NarrowVT = Node->getMemoryVT();
4266   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4267   if (NarrowVT == WideVT) {
4268     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4269     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4270     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4271                                                DL, Tys, Ops, NarrowVT, MMO);
4272     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4273                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4274 
4275     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4276     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4277     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4278     return SDValue();
4279   }
4280 
4281   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4282   // via a fullword ATOMIC_CMP_SWAPW operation.
4283   int64_t BitSize = NarrowVT.getSizeInBits();
4284   EVT PtrVT = Addr.getValueType();
4285 
4286   // Get the address of the containing word.
4287   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4288                                     DAG.getConstant(-4, DL, PtrVT));
4289 
4290   // Get the number of bits that the word must be rotated left in order
4291   // to bring the field to the top bits of a GR32.
4292   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4293                                  DAG.getConstant(3, DL, PtrVT));
4294   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4295 
4296   // Get the complementing shift amount, for rotating a field in the top
4297   // bits back to its proper position.
4298   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4299                                     DAG.getConstant(0, DL, WideVT), BitShift);
4300 
4301   // Construct the ATOMIC_CMP_SWAPW node.
4302   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4303   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4304                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4305   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4306                                              VTList, Ops, NarrowVT, MMO);
4307   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4308                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4309 
4310   // emitAtomicCmpSwapW() will zero extend the result (original value).
4311   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4312                                 DAG.getValueType(NarrowVT));
4313   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4314   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4315   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4316   return SDValue();
4317 }
4318 
4319 MachineMemOperand::Flags
4320 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4321   // Because of how we convert atomic_load and atomic_store to normal loads and
4322   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4323   // since DAGCombine hasn't been updated to account for atomic, but non
4324   // volatile loads.  (See D57601)
4325   if (auto *SI = dyn_cast<StoreInst>(&I))
4326     if (SI->isAtomic())
4327       return MachineMemOperand::MOVolatile;
4328   if (auto *LI = dyn_cast<LoadInst>(&I))
4329     if (LI->isAtomic())
4330       return MachineMemOperand::MOVolatile;
4331   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4332     if (AI->isAtomic())
4333       return MachineMemOperand::MOVolatile;
4334   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4335     if (AI->isAtomic())
4336       return MachineMemOperand::MOVolatile;
4337   return MachineMemOperand::MONone;
4338 }
4339 
4340 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4341                                               SelectionDAG &DAG) const {
4342   MachineFunction &MF = DAG.getMachineFunction();
4343   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4344   auto *Regs = Subtarget->getSpecialRegisters();
4345   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4346     report_fatal_error("Variable-sized stack allocations are not supported "
4347                        "in GHC calling convention");
4348   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4349                             Regs->getStackPointerRegister(), Op.getValueType());
4350 }
4351 
4352 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4353                                                  SelectionDAG &DAG) const {
4354   MachineFunction &MF = DAG.getMachineFunction();
4355   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4356   auto *Regs = Subtarget->getSpecialRegisters();
4357   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4358 
4359   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4360     report_fatal_error("Variable-sized stack allocations are not supported "
4361                        "in GHC calling convention");
4362 
4363   SDValue Chain = Op.getOperand(0);
4364   SDValue NewSP = Op.getOperand(1);
4365   SDValue Backchain;
4366   SDLoc DL(Op);
4367 
4368   if (StoreBackchain) {
4369     SDValue OldSP = DAG.getCopyFromReg(
4370         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4371     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4372                             MachinePointerInfo());
4373   }
4374 
4375   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4376 
4377   if (StoreBackchain)
4378     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4379                          MachinePointerInfo());
4380 
4381   return Chain;
4382 }
4383 
4384 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4385                                              SelectionDAG &DAG) const {
4386   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4387   if (!IsData)
4388     // Just preserve the chain.
4389     return Op.getOperand(0);
4390 
4391   SDLoc DL(Op);
4392   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4393   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4394   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4395   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4396                    Op.getOperand(1)};
4397   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4398                                  Node->getVTList(), Ops,
4399                                  Node->getMemoryVT(), Node->getMemOperand());
4400 }
4401 
4402 // Convert condition code in CCReg to an i32 value.
4403 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4404   SDLoc DL(CCReg);
4405   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4406   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4407                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4408 }
4409 
4410 SDValue
4411 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4412                                               SelectionDAG &DAG) const {
4413   unsigned Opcode, CCValid;
4414   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4415     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4416     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4417     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4418     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4419     return SDValue();
4420   }
4421 
4422   return SDValue();
4423 }
4424 
4425 SDValue
4426 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4427                                                SelectionDAG &DAG) const {
4428   unsigned Opcode, CCValid;
4429   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4430     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4431     if (Op->getNumValues() == 1)
4432       return getCCResult(DAG, SDValue(Node, 0));
4433     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4434     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4435                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4436   }
4437 
4438   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4439   switch (Id) {
4440   case Intrinsic::thread_pointer:
4441     return lowerThreadPointer(SDLoc(Op), DAG);
4442 
4443   case Intrinsic::s390_vpdi:
4444     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4445                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4446 
4447   case Intrinsic::s390_vperm:
4448     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4449                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4450 
4451   case Intrinsic::s390_vuphb:
4452   case Intrinsic::s390_vuphh:
4453   case Intrinsic::s390_vuphf:
4454     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4455                        Op.getOperand(1));
4456 
4457   case Intrinsic::s390_vuplhb:
4458   case Intrinsic::s390_vuplhh:
4459   case Intrinsic::s390_vuplhf:
4460     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4461                        Op.getOperand(1));
4462 
4463   case Intrinsic::s390_vuplb:
4464   case Intrinsic::s390_vuplhw:
4465   case Intrinsic::s390_vuplf:
4466     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4467                        Op.getOperand(1));
4468 
4469   case Intrinsic::s390_vupllb:
4470   case Intrinsic::s390_vupllh:
4471   case Intrinsic::s390_vupllf:
4472     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4473                        Op.getOperand(1));
4474 
4475   case Intrinsic::s390_vsumb:
4476   case Intrinsic::s390_vsumh:
4477   case Intrinsic::s390_vsumgh:
4478   case Intrinsic::s390_vsumgf:
4479   case Intrinsic::s390_vsumqf:
4480   case Intrinsic::s390_vsumqg:
4481     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4482                        Op.getOperand(1), Op.getOperand(2));
4483   }
4484 
4485   return SDValue();
4486 }
4487 
4488 namespace {
4489 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4490 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4491 // Operand is the constant third operand, otherwise it is the number of
4492 // bytes in each element of the result.
4493 struct Permute {
4494   unsigned Opcode;
4495   unsigned Operand;
4496   unsigned char Bytes[SystemZ::VectorBytes];
4497 };
4498 }
4499 
4500 static const Permute PermuteForms[] = {
4501   // VMRHG
4502   { SystemZISD::MERGE_HIGH, 8,
4503     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4504   // VMRHF
4505   { SystemZISD::MERGE_HIGH, 4,
4506     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4507   // VMRHH
4508   { SystemZISD::MERGE_HIGH, 2,
4509     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4510   // VMRHB
4511   { SystemZISD::MERGE_HIGH, 1,
4512     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4513   // VMRLG
4514   { SystemZISD::MERGE_LOW, 8,
4515     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4516   // VMRLF
4517   { SystemZISD::MERGE_LOW, 4,
4518     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4519   // VMRLH
4520   { SystemZISD::MERGE_LOW, 2,
4521     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4522   // VMRLB
4523   { SystemZISD::MERGE_LOW, 1,
4524     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4525   // VPKG
4526   { SystemZISD::PACK, 4,
4527     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4528   // VPKF
4529   { SystemZISD::PACK, 2,
4530     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4531   // VPKH
4532   { SystemZISD::PACK, 1,
4533     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4534   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4535   { SystemZISD::PERMUTE_DWORDS, 4,
4536     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4537   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4538   { SystemZISD::PERMUTE_DWORDS, 1,
4539     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4540 };
4541 
4542 // Called after matching a vector shuffle against a particular pattern.
4543 // Both the original shuffle and the pattern have two vector operands.
4544 // OpNos[0] is the operand of the original shuffle that should be used for
4545 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4546 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4547 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4548 // for operands 0 and 1 of the pattern.
4549 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4550   if (OpNos[0] < 0) {
4551     if (OpNos[1] < 0)
4552       return false;
4553     OpNo0 = OpNo1 = OpNos[1];
4554   } else if (OpNos[1] < 0) {
4555     OpNo0 = OpNo1 = OpNos[0];
4556   } else {
4557     OpNo0 = OpNos[0];
4558     OpNo1 = OpNos[1];
4559   }
4560   return true;
4561 }
4562 
4563 // Bytes is a VPERM-like permute vector, except that -1 is used for
4564 // undefined bytes.  Return true if the VPERM can be implemented using P.
4565 // When returning true set OpNo0 to the VPERM operand that should be
4566 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4567 //
4568 // For example, if swapping the VPERM operands allows P to match, OpNo0
4569 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4570 // operand, but rewriting it to use two duplicated operands allows it to
4571 // match P, then OpNo0 and OpNo1 will be the same.
4572 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4573                          unsigned &OpNo0, unsigned &OpNo1) {
4574   int OpNos[] = { -1, -1 };
4575   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4576     int Elt = Bytes[I];
4577     if (Elt >= 0) {
4578       // Make sure that the two permute vectors use the same suboperand
4579       // byte number.  Only the operand numbers (the high bits) are
4580       // allowed to differ.
4581       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4582         return false;
4583       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4584       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4585       // Make sure that the operand mappings are consistent with previous
4586       // elements.
4587       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4588         return false;
4589       OpNos[ModelOpNo] = RealOpNo;
4590     }
4591   }
4592   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4593 }
4594 
4595 // As above, but search for a matching permute.
4596 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4597                                    unsigned &OpNo0, unsigned &OpNo1) {
4598   for (auto &P : PermuteForms)
4599     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4600       return &P;
4601   return nullptr;
4602 }
4603 
4604 // Bytes is a VPERM-like permute vector, except that -1 is used for
4605 // undefined bytes.  This permute is an operand of an outer permute.
4606 // See whether redistributing the -1 bytes gives a shuffle that can be
4607 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4608 // that, when applied to the result of P, gives the original permute in Bytes.
4609 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4610                                const Permute &P,
4611                                SmallVectorImpl<int> &Transform) {
4612   unsigned To = 0;
4613   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4614     int Elt = Bytes[From];
4615     if (Elt < 0)
4616       // Byte number From of the result is undefined.
4617       Transform[From] = -1;
4618     else {
4619       while (P.Bytes[To] != Elt) {
4620         To += 1;
4621         if (To == SystemZ::VectorBytes)
4622           return false;
4623       }
4624       Transform[From] = To;
4625     }
4626   }
4627   return true;
4628 }
4629 
4630 // As above, but search for a matching permute.
4631 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4632                                          SmallVectorImpl<int> &Transform) {
4633   for (auto &P : PermuteForms)
4634     if (matchDoublePermute(Bytes, P, Transform))
4635       return &P;
4636   return nullptr;
4637 }
4638 
4639 // Convert the mask of the given shuffle op into a byte-level mask,
4640 // as if it had type vNi8.
4641 static bool getVPermMask(SDValue ShuffleOp,
4642                          SmallVectorImpl<int> &Bytes) {
4643   EVT VT = ShuffleOp.getValueType();
4644   unsigned NumElements = VT.getVectorNumElements();
4645   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4646 
4647   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4648     Bytes.resize(NumElements * BytesPerElement, -1);
4649     for (unsigned I = 0; I < NumElements; ++I) {
4650       int Index = VSN->getMaskElt(I);
4651       if (Index >= 0)
4652         for (unsigned J = 0; J < BytesPerElement; ++J)
4653           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4654     }
4655     return true;
4656   }
4657   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4658       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4659     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4660     Bytes.resize(NumElements * BytesPerElement, -1);
4661     for (unsigned I = 0; I < NumElements; ++I)
4662       for (unsigned J = 0; J < BytesPerElement; ++J)
4663         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4664     return true;
4665   }
4666   return false;
4667 }
4668 
4669 // Bytes is a VPERM-like permute vector, except that -1 is used for
4670 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4671 // the result come from a contiguous sequence of bytes from one input.
4672 // Set Base to the selector for the first byte if so.
4673 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4674                             unsigned BytesPerElement, int &Base) {
4675   Base = -1;
4676   for (unsigned I = 0; I < BytesPerElement; ++I) {
4677     if (Bytes[Start + I] >= 0) {
4678       unsigned Elem = Bytes[Start + I];
4679       if (Base < 0) {
4680         Base = Elem - I;
4681         // Make sure the bytes would come from one input operand.
4682         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4683           return false;
4684       } else if (unsigned(Base) != Elem - I)
4685         return false;
4686     }
4687   }
4688   return true;
4689 }
4690 
4691 // Bytes is a VPERM-like permute vector, except that -1 is used for
4692 // undefined bytes.  Return true if it can be performed using VSLDB.
4693 // When returning true, set StartIndex to the shift amount and OpNo0
4694 // and OpNo1 to the VPERM operands that should be used as the first
4695 // and second shift operand respectively.
4696 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4697                                unsigned &StartIndex, unsigned &OpNo0,
4698                                unsigned &OpNo1) {
4699   int OpNos[] = { -1, -1 };
4700   int Shift = -1;
4701   for (unsigned I = 0; I < 16; ++I) {
4702     int Index = Bytes[I];
4703     if (Index >= 0) {
4704       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4705       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4706       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4707       if (Shift < 0)
4708         Shift = ExpectedShift;
4709       else if (Shift != ExpectedShift)
4710         return false;
4711       // Make sure that the operand mappings are consistent with previous
4712       // elements.
4713       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4714         return false;
4715       OpNos[ModelOpNo] = RealOpNo;
4716     }
4717   }
4718   StartIndex = Shift;
4719   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4720 }
4721 
4722 // Create a node that performs P on operands Op0 and Op1, casting the
4723 // operands to the appropriate type.  The type of the result is determined by P.
4724 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4725                               const Permute &P, SDValue Op0, SDValue Op1) {
4726   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4727   // elements of a PACK are twice as wide as the outputs.
4728   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4729                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4730                       P.Operand);
4731   // Cast both operands to the appropriate type.
4732   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4733                               SystemZ::VectorBytes / InBytes);
4734   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4735   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4736   SDValue Op;
4737   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4738     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4739     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4740   } else if (P.Opcode == SystemZISD::PACK) {
4741     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4742                                  SystemZ::VectorBytes / P.Operand);
4743     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4744   } else {
4745     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4746   }
4747   return Op;
4748 }
4749 
4750 static bool isZeroVector(SDValue N) {
4751   if (N->getOpcode() == ISD::BITCAST)
4752     N = N->getOperand(0);
4753   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4754     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4755       return Op->getZExtValue() == 0;
4756   return ISD::isBuildVectorAllZeros(N.getNode());
4757 }
4758 
4759 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4760 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4761   for (unsigned I = 0; I < Num ; I++)
4762     if (isZeroVector(Ops[I]))
4763       return I;
4764   return UINT32_MAX;
4765 }
4766 
4767 // Bytes is a VPERM-like permute vector, except that -1 is used for
4768 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4769 // VSLDB or VPERM.
4770 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4771                                      SDValue *Ops,
4772                                      const SmallVectorImpl<int> &Bytes) {
4773   for (unsigned I = 0; I < 2; ++I)
4774     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4775 
4776   // First see whether VSLDB can be used.
4777   unsigned StartIndex, OpNo0, OpNo1;
4778   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4779     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4780                        Ops[OpNo1],
4781                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4782 
4783   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4784   // eliminate a zero vector by reusing any zero index in the permute vector.
4785   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4786   if (ZeroVecIdx != UINT32_MAX) {
4787     bool MaskFirst = true;
4788     int ZeroIdx = -1;
4789     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4790       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4791       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4792       if (OpNo == ZeroVecIdx && I == 0) {
4793         // If the first byte is zero, use mask as first operand.
4794         ZeroIdx = 0;
4795         break;
4796       }
4797       if (OpNo != ZeroVecIdx && Byte == 0) {
4798         // If mask contains a zero, use it by placing that vector first.
4799         ZeroIdx = I + SystemZ::VectorBytes;
4800         MaskFirst = false;
4801         break;
4802       }
4803     }
4804     if (ZeroIdx != -1) {
4805       SDValue IndexNodes[SystemZ::VectorBytes];
4806       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4807         if (Bytes[I] >= 0) {
4808           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4809           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4810           if (OpNo == ZeroVecIdx)
4811             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4812           else {
4813             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4814             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4815           }
4816         } else
4817           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4818       }
4819       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4820       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4821       if (MaskFirst)
4822         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4823                            Mask);
4824       else
4825         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4826                            Mask);
4827     }
4828   }
4829 
4830   SDValue IndexNodes[SystemZ::VectorBytes];
4831   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4832     if (Bytes[I] >= 0)
4833       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4834     else
4835       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4836   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4837   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4838                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4839 }
4840 
4841 namespace {
4842 // Describes a general N-operand vector shuffle.
4843 struct GeneralShuffle {
4844   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4845   void addUndef();
4846   bool add(SDValue, unsigned);
4847   SDValue getNode(SelectionDAG &, const SDLoc &);
4848   void tryPrepareForUnpack();
4849   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4850   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4851 
4852   // The operands of the shuffle.
4853   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4854 
4855   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4856   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4857   // Bytes[I] / SystemZ::VectorBytes.
4858   SmallVector<int, SystemZ::VectorBytes> Bytes;
4859 
4860   // The type of the shuffle result.
4861   EVT VT;
4862 
4863   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4864   unsigned UnpackFromEltSize;
4865 };
4866 }
4867 
4868 // Add an extra undefined element to the shuffle.
4869 void GeneralShuffle::addUndef() {
4870   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4871   for (unsigned I = 0; I < BytesPerElement; ++I)
4872     Bytes.push_back(-1);
4873 }
4874 
4875 // Add an extra element to the shuffle, taking it from element Elem of Op.
4876 // A null Op indicates a vector input whose value will be calculated later;
4877 // there is at most one such input per shuffle and it always has the same
4878 // type as the result. Aborts and returns false if the source vector elements
4879 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4880 // LLVM they become implicitly extended, but this is rare and not optimized.
4881 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4882   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4883 
4884   // The source vector can have wider elements than the result,
4885   // either through an explicit TRUNCATE or because of type legalization.
4886   // We want the least significant part.
4887   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4888   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4889 
4890   // Return false if the source elements are smaller than their destination
4891   // elements.
4892   if (FromBytesPerElement < BytesPerElement)
4893     return false;
4894 
4895   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4896                    (FromBytesPerElement - BytesPerElement));
4897 
4898   // Look through things like shuffles and bitcasts.
4899   while (Op.getNode()) {
4900     if (Op.getOpcode() == ISD::BITCAST)
4901       Op = Op.getOperand(0);
4902     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4903       // See whether the bytes we need come from a contiguous part of one
4904       // operand.
4905       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4906       if (!getVPermMask(Op, OpBytes))
4907         break;
4908       int NewByte;
4909       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4910         break;
4911       if (NewByte < 0) {
4912         addUndef();
4913         return true;
4914       }
4915       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4916       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4917     } else if (Op.isUndef()) {
4918       addUndef();
4919       return true;
4920     } else
4921       break;
4922   }
4923 
4924   // Make sure that the source of the extraction is in Ops.
4925   unsigned OpNo = 0;
4926   for (; OpNo < Ops.size(); ++OpNo)
4927     if (Ops[OpNo] == Op)
4928       break;
4929   if (OpNo == Ops.size())
4930     Ops.push_back(Op);
4931 
4932   // Add the element to Bytes.
4933   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4934   for (unsigned I = 0; I < BytesPerElement; ++I)
4935     Bytes.push_back(Base + I);
4936 
4937   return true;
4938 }
4939 
4940 // Return SDNodes for the completed shuffle.
4941 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4942   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4943 
4944   if (Ops.size() == 0)
4945     return DAG.getUNDEF(VT);
4946 
4947   // Use a single unpack if possible as the last operation.
4948   tryPrepareForUnpack();
4949 
4950   // Make sure that there are at least two shuffle operands.
4951   if (Ops.size() == 1)
4952     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4953 
4954   // Create a tree of shuffles, deferring root node until after the loop.
4955   // Try to redistribute the undefined elements of non-root nodes so that
4956   // the non-root shuffles match something like a pack or merge, then adjust
4957   // the parent node's permute vector to compensate for the new order.
4958   // Among other things, this copes with vectors like <2 x i16> that were
4959   // padded with undefined elements during type legalization.
4960   //
4961   // In the best case this redistribution will lead to the whole tree
4962   // using packs and merges.  It should rarely be a loss in other cases.
4963   unsigned Stride = 1;
4964   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4965     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4966       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4967 
4968       // Create a mask for just these two operands.
4969       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4970       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4971         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4972         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4973         if (OpNo == I)
4974           NewBytes[J] = Byte;
4975         else if (OpNo == I + Stride)
4976           NewBytes[J] = SystemZ::VectorBytes + Byte;
4977         else
4978           NewBytes[J] = -1;
4979       }
4980       // See if it would be better to reorganize NewMask to avoid using VPERM.
4981       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4982       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4983         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4984         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4985         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4986           if (NewBytes[J] >= 0) {
4987             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4988                    "Invalid double permute");
4989             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4990           } else
4991             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4992         }
4993       } else {
4994         // Just use NewBytes on the operands.
4995         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4996         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4997           if (NewBytes[J] >= 0)
4998             Bytes[J] = I * SystemZ::VectorBytes + J;
4999       }
5000     }
5001   }
5002 
5003   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5004   if (Stride > 1) {
5005     Ops[1] = Ops[Stride];
5006     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5007       if (Bytes[I] >= int(SystemZ::VectorBytes))
5008         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5009   }
5010 
5011   // Look for an instruction that can do the permute without resorting
5012   // to VPERM.
5013   unsigned OpNo0, OpNo1;
5014   SDValue Op;
5015   if (unpackWasPrepared() && Ops[1].isUndef())
5016     Op = Ops[0];
5017   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5018     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5019   else
5020     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5021 
5022   Op = insertUnpackIfPrepared(DAG, DL, Op);
5023 
5024   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5025 }
5026 
5027 #ifndef NDEBUG
5028 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5029   dbgs() << Msg.c_str() << " { ";
5030   for (unsigned i = 0; i < Bytes.size(); i++)
5031     dbgs() << Bytes[i] << " ";
5032   dbgs() << "}\n";
5033 }
5034 #endif
5035 
5036 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5037 // after all else by removing the zero vector and the effect of the unpack on
5038 // Bytes.
5039 void GeneralShuffle::tryPrepareForUnpack() {
5040   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5041   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5042     return;
5043 
5044   // Only do this if removing the zero vector reduces the depth, otherwise
5045   // the critical path will increase with the final unpack.
5046   if (Ops.size() > 2 &&
5047       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5048     return;
5049 
5050   // Find an unpack that would allow removing the zero vector from Ops.
5051   UnpackFromEltSize = 1;
5052   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5053     bool MatchUnpack = true;
5054     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5055     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5056       unsigned ToEltSize = UnpackFromEltSize * 2;
5057       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5058       if (!IsZextByte)
5059         SrcBytes.push_back(Bytes[Elt]);
5060       if (Bytes[Elt] != -1) {
5061         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5062         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5063           MatchUnpack = false;
5064           break;
5065         }
5066       }
5067     }
5068     if (MatchUnpack) {
5069       if (Ops.size() == 2) {
5070         // Don't use unpack if a single source operand needs rearrangement.
5071         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5072           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5073             UnpackFromEltSize = UINT_MAX;
5074             return;
5075           }
5076       }
5077       break;
5078     }
5079   }
5080   if (UnpackFromEltSize > 4)
5081     return;
5082 
5083   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5084              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5085              << ".\n";
5086              dumpBytes(Bytes, "Original Bytes vector:"););
5087 
5088   // Apply the unpack in reverse to the Bytes array.
5089   unsigned B = 0;
5090   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5091     Elt += UnpackFromEltSize;
5092     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5093       Bytes[B] = Bytes[Elt];
5094   }
5095   while (B < SystemZ::VectorBytes)
5096     Bytes[B++] = -1;
5097 
5098   // Remove the zero vector from Ops
5099   Ops.erase(&Ops[ZeroVecOpNo]);
5100   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5101     if (Bytes[I] >= 0) {
5102       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5103       if (OpNo > ZeroVecOpNo)
5104         Bytes[I] -= SystemZ::VectorBytes;
5105     }
5106 
5107   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5108              dbgs() << "\n";);
5109 }
5110 
5111 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5112                                                const SDLoc &DL,
5113                                                SDValue Op) {
5114   if (!unpackWasPrepared())
5115     return Op;
5116   unsigned InBits = UnpackFromEltSize * 8;
5117   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5118                                 SystemZ::VectorBits / InBits);
5119   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5120   unsigned OutBits = InBits * 2;
5121   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5122                                SystemZ::VectorBits / OutBits);
5123   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5124 }
5125 
5126 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5127 static bool isScalarToVector(SDValue Op) {
5128   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5129     if (!Op.getOperand(I).isUndef())
5130       return false;
5131   return true;
5132 }
5133 
5134 // Return a vector of type VT that contains Value in the first element.
5135 // The other elements don't matter.
5136 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5137                                    SDValue Value) {
5138   // If we have a constant, replicate it to all elements and let the
5139   // BUILD_VECTOR lowering take care of it.
5140   if (Value.getOpcode() == ISD::Constant ||
5141       Value.getOpcode() == ISD::ConstantFP) {
5142     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5143     return DAG.getBuildVector(VT, DL, Ops);
5144   }
5145   if (Value.isUndef())
5146     return DAG.getUNDEF(VT);
5147   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5148 }
5149 
5150 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5151 // element 1.  Used for cases in which replication is cheap.
5152 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5153                                  SDValue Op0, SDValue Op1) {
5154   if (Op0.isUndef()) {
5155     if (Op1.isUndef())
5156       return DAG.getUNDEF(VT);
5157     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5158   }
5159   if (Op1.isUndef())
5160     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5161   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5162                      buildScalarToVector(DAG, DL, VT, Op0),
5163                      buildScalarToVector(DAG, DL, VT, Op1));
5164 }
5165 
5166 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5167 // vector for them.
5168 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5169                           SDValue Op1) {
5170   if (Op0.isUndef() && Op1.isUndef())
5171     return DAG.getUNDEF(MVT::v2i64);
5172   // If one of the two inputs is undefined then replicate the other one,
5173   // in order to avoid using another register unnecessarily.
5174   if (Op0.isUndef())
5175     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5176   else if (Op1.isUndef())
5177     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5178   else {
5179     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5180     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5181   }
5182   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5183 }
5184 
5185 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5186 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5187 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5188 // would benefit from this representation and return it if so.
5189 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5190                                      BuildVectorSDNode *BVN) {
5191   EVT VT = BVN->getValueType(0);
5192   unsigned NumElements = VT.getVectorNumElements();
5193 
5194   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5195   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5196   // need a BUILD_VECTOR, add an additional placeholder operand for that
5197   // BUILD_VECTOR and store its operands in ResidueOps.
5198   GeneralShuffle GS(VT);
5199   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5200   bool FoundOne = false;
5201   for (unsigned I = 0; I < NumElements; ++I) {
5202     SDValue Op = BVN->getOperand(I);
5203     if (Op.getOpcode() == ISD::TRUNCATE)
5204       Op = Op.getOperand(0);
5205     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5206         Op.getOperand(1).getOpcode() == ISD::Constant) {
5207       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5208       if (!GS.add(Op.getOperand(0), Elem))
5209         return SDValue();
5210       FoundOne = true;
5211     } else if (Op.isUndef()) {
5212       GS.addUndef();
5213     } else {
5214       if (!GS.add(SDValue(), ResidueOps.size()))
5215         return SDValue();
5216       ResidueOps.push_back(BVN->getOperand(I));
5217     }
5218   }
5219 
5220   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5221   if (!FoundOne)
5222     return SDValue();
5223 
5224   // Create the BUILD_VECTOR for the remaining elements, if any.
5225   if (!ResidueOps.empty()) {
5226     while (ResidueOps.size() < NumElements)
5227       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5228     for (auto &Op : GS.Ops) {
5229       if (!Op.getNode()) {
5230         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5231         break;
5232       }
5233     }
5234   }
5235   return GS.getNode(DAG, SDLoc(BVN));
5236 }
5237 
5238 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5239   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5240     return true;
5241   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5242     return true;
5243   return false;
5244 }
5245 
5246 // Combine GPR scalar values Elems into a vector of type VT.
5247 SDValue
5248 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5249                                    SmallVectorImpl<SDValue> &Elems) const {
5250   // See whether there is a single replicated value.
5251   SDValue Single;
5252   unsigned int NumElements = Elems.size();
5253   unsigned int Count = 0;
5254   for (auto Elem : Elems) {
5255     if (!Elem.isUndef()) {
5256       if (!Single.getNode())
5257         Single = Elem;
5258       else if (Elem != Single) {
5259         Single = SDValue();
5260         break;
5261       }
5262       Count += 1;
5263     }
5264   }
5265   // There are three cases here:
5266   //
5267   // - if the only defined element is a loaded one, the best sequence
5268   //   is a replicating load.
5269   //
5270   // - otherwise, if the only defined element is an i64 value, we will
5271   //   end up with the same VLVGP sequence regardless of whether we short-cut
5272   //   for replication or fall through to the later code.
5273   //
5274   // - otherwise, if the only defined element is an i32 or smaller value,
5275   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5276   //   This is only a win if the single defined element is used more than once.
5277   //   In other cases we're better off using a single VLVGx.
5278   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5279     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5280 
5281   // If all elements are loads, use VLREP/VLEs (below).
5282   bool AllLoads = true;
5283   for (auto Elem : Elems)
5284     if (!isVectorElementLoad(Elem)) {
5285       AllLoads = false;
5286       break;
5287     }
5288 
5289   // The best way of building a v2i64 from two i64s is to use VLVGP.
5290   if (VT == MVT::v2i64 && !AllLoads)
5291     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5292 
5293   // Use a 64-bit merge high to combine two doubles.
5294   if (VT == MVT::v2f64 && !AllLoads)
5295     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5296 
5297   // Build v4f32 values directly from the FPRs:
5298   //
5299   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5300   //         V              V         VMRHF
5301   //      <ABxx>         <CDxx>
5302   //                V                 VMRHG
5303   //              <ABCD>
5304   if (VT == MVT::v4f32 && !AllLoads) {
5305     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5306     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5307     // Avoid unnecessary undefs by reusing the other operand.
5308     if (Op01.isUndef())
5309       Op01 = Op23;
5310     else if (Op23.isUndef())
5311       Op23 = Op01;
5312     // Merging identical replications is a no-op.
5313     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5314       return Op01;
5315     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5316     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5317     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5318                              DL, MVT::v2i64, Op01, Op23);
5319     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5320   }
5321 
5322   // Collect the constant terms.
5323   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5324   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5325 
5326   unsigned NumConstants = 0;
5327   for (unsigned I = 0; I < NumElements; ++I) {
5328     SDValue Elem = Elems[I];
5329     if (Elem.getOpcode() == ISD::Constant ||
5330         Elem.getOpcode() == ISD::ConstantFP) {
5331       NumConstants += 1;
5332       Constants[I] = Elem;
5333       Done[I] = true;
5334     }
5335   }
5336   // If there was at least one constant, fill in the other elements of
5337   // Constants with undefs to get a full vector constant and use that
5338   // as the starting point.
5339   SDValue Result;
5340   SDValue ReplicatedVal;
5341   if (NumConstants > 0) {
5342     for (unsigned I = 0; I < NumElements; ++I)
5343       if (!Constants[I].getNode())
5344         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5345     Result = DAG.getBuildVector(VT, DL, Constants);
5346   } else {
5347     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5348     // avoid a false dependency on any previous contents of the vector
5349     // register.
5350 
5351     // Use a VLREP if at least one element is a load. Make sure to replicate
5352     // the load with the most elements having its value.
5353     std::map<const SDNode*, unsigned> UseCounts;
5354     SDNode *LoadMaxUses = nullptr;
5355     for (unsigned I = 0; I < NumElements; ++I)
5356       if (isVectorElementLoad(Elems[I])) {
5357         SDNode *Ld = Elems[I].getNode();
5358         UseCounts[Ld]++;
5359         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5360           LoadMaxUses = Ld;
5361       }
5362     if (LoadMaxUses != nullptr) {
5363       ReplicatedVal = SDValue(LoadMaxUses, 0);
5364       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5365     } else {
5366       // Try to use VLVGP.
5367       unsigned I1 = NumElements / 2 - 1;
5368       unsigned I2 = NumElements - 1;
5369       bool Def1 = !Elems[I1].isUndef();
5370       bool Def2 = !Elems[I2].isUndef();
5371       if (Def1 || Def2) {
5372         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5373         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5374         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5375                              joinDwords(DAG, DL, Elem1, Elem2));
5376         Done[I1] = true;
5377         Done[I2] = true;
5378       } else
5379         Result = DAG.getUNDEF(VT);
5380     }
5381   }
5382 
5383   // Use VLVGx to insert the other elements.
5384   for (unsigned I = 0; I < NumElements; ++I)
5385     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5386       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5387                            DAG.getConstant(I, DL, MVT::i32));
5388   return Result;
5389 }
5390 
5391 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5392                                                  SelectionDAG &DAG) const {
5393   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5394   SDLoc DL(Op);
5395   EVT VT = Op.getValueType();
5396 
5397   if (BVN->isConstant()) {
5398     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5399       return Op;
5400 
5401     // Fall back to loading it from memory.
5402     return SDValue();
5403   }
5404 
5405   // See if we should use shuffles to construct the vector from other vectors.
5406   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5407     return Res;
5408 
5409   // Detect SCALAR_TO_VECTOR conversions.
5410   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5411     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5412 
5413   // Otherwise use buildVector to build the vector up from GPRs.
5414   unsigned NumElements = Op.getNumOperands();
5415   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5416   for (unsigned I = 0; I < NumElements; ++I)
5417     Ops[I] = Op.getOperand(I);
5418   return buildVector(DAG, DL, VT, Ops);
5419 }
5420 
5421 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5422                                                    SelectionDAG &DAG) const {
5423   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5424   SDLoc DL(Op);
5425   EVT VT = Op.getValueType();
5426   unsigned NumElements = VT.getVectorNumElements();
5427 
5428   if (VSN->isSplat()) {
5429     SDValue Op0 = Op.getOperand(0);
5430     unsigned Index = VSN->getSplatIndex();
5431     assert(Index < VT.getVectorNumElements() &&
5432            "Splat index should be defined and in first operand");
5433     // See whether the value we're splatting is directly available as a scalar.
5434     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5435         Op0.getOpcode() == ISD::BUILD_VECTOR)
5436       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5437     // Otherwise keep it as a vector-to-vector operation.
5438     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5439                        DAG.getTargetConstant(Index, DL, MVT::i32));
5440   }
5441 
5442   GeneralShuffle GS(VT);
5443   for (unsigned I = 0; I < NumElements; ++I) {
5444     int Elt = VSN->getMaskElt(I);
5445     if (Elt < 0)
5446       GS.addUndef();
5447     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5448                      unsigned(Elt) % NumElements))
5449       return SDValue();
5450   }
5451   return GS.getNode(DAG, SDLoc(VSN));
5452 }
5453 
5454 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5455                                                      SelectionDAG &DAG) const {
5456   SDLoc DL(Op);
5457   // Just insert the scalar into element 0 of an undefined vector.
5458   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5459                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5460                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5461 }
5462 
5463 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5464                                                       SelectionDAG &DAG) const {
5465   // Handle insertions of floating-point values.
5466   SDLoc DL(Op);
5467   SDValue Op0 = Op.getOperand(0);
5468   SDValue Op1 = Op.getOperand(1);
5469   SDValue Op2 = Op.getOperand(2);
5470   EVT VT = Op.getValueType();
5471 
5472   // Insertions into constant indices of a v2f64 can be done using VPDI.
5473   // However, if the inserted value is a bitcast or a constant then it's
5474   // better to use GPRs, as below.
5475   if (VT == MVT::v2f64 &&
5476       Op1.getOpcode() != ISD::BITCAST &&
5477       Op1.getOpcode() != ISD::ConstantFP &&
5478       Op2.getOpcode() == ISD::Constant) {
5479     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5480     unsigned Mask = VT.getVectorNumElements() - 1;
5481     if (Index <= Mask)
5482       return Op;
5483   }
5484 
5485   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5486   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5487   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5488   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5489                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5490                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5491   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5492 }
5493 
5494 SDValue
5495 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5496                                                SelectionDAG &DAG) const {
5497   // Handle extractions of floating-point values.
5498   SDLoc DL(Op);
5499   SDValue Op0 = Op.getOperand(0);
5500   SDValue Op1 = Op.getOperand(1);
5501   EVT VT = Op.getValueType();
5502   EVT VecVT = Op0.getValueType();
5503 
5504   // Extractions of constant indices can be done directly.
5505   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5506     uint64_t Index = CIndexN->getZExtValue();
5507     unsigned Mask = VecVT.getVectorNumElements() - 1;
5508     if (Index <= Mask)
5509       return Op;
5510   }
5511 
5512   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5513   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5514   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5515   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5516                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5517   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5518 }
5519 
5520 SDValue SystemZTargetLowering::
5521 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5522   SDValue PackedOp = Op.getOperand(0);
5523   EVT OutVT = Op.getValueType();
5524   EVT InVT = PackedOp.getValueType();
5525   unsigned ToBits = OutVT.getScalarSizeInBits();
5526   unsigned FromBits = InVT.getScalarSizeInBits();
5527   do {
5528     FromBits *= 2;
5529     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5530                                  SystemZ::VectorBits / FromBits);
5531     PackedOp =
5532       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5533   } while (FromBits != ToBits);
5534   return PackedOp;
5535 }
5536 
5537 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5538 SDValue SystemZTargetLowering::
5539 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5540   SDValue PackedOp = Op.getOperand(0);
5541   SDLoc DL(Op);
5542   EVT OutVT = Op.getValueType();
5543   EVT InVT = PackedOp.getValueType();
5544   unsigned InNumElts = InVT.getVectorNumElements();
5545   unsigned OutNumElts = OutVT.getVectorNumElements();
5546   unsigned NumInPerOut = InNumElts / OutNumElts;
5547 
5548   SDValue ZeroVec =
5549     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5550 
5551   SmallVector<int, 16> Mask(InNumElts);
5552   unsigned ZeroVecElt = InNumElts;
5553   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5554     unsigned MaskElt = PackedElt * NumInPerOut;
5555     unsigned End = MaskElt + NumInPerOut - 1;
5556     for (; MaskElt < End; MaskElt++)
5557       Mask[MaskElt] = ZeroVecElt++;
5558     Mask[MaskElt] = PackedElt;
5559   }
5560   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5561   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5562 }
5563 
5564 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5565                                           unsigned ByScalar) const {
5566   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5567   SDValue Op0 = Op.getOperand(0);
5568   SDValue Op1 = Op.getOperand(1);
5569   SDLoc DL(Op);
5570   EVT VT = Op.getValueType();
5571   unsigned ElemBitSize = VT.getScalarSizeInBits();
5572 
5573   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5574   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5575     APInt SplatBits, SplatUndef;
5576     unsigned SplatBitSize;
5577     bool HasAnyUndefs;
5578     // Check for constant splats.  Use ElemBitSize as the minimum element
5579     // width and reject splats that need wider elements.
5580     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5581                              ElemBitSize, true) &&
5582         SplatBitSize == ElemBitSize) {
5583       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5584                                       DL, MVT::i32);
5585       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5586     }
5587     // Check for variable splats.
5588     BitVector UndefElements;
5589     SDValue Splat = BVN->getSplatValue(&UndefElements);
5590     if (Splat) {
5591       // Since i32 is the smallest legal type, we either need a no-op
5592       // or a truncation.
5593       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5594       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5595     }
5596   }
5597 
5598   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5599   // and the shift amount is directly available in a GPR.
5600   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5601     if (VSN->isSplat()) {
5602       SDValue VSNOp0 = VSN->getOperand(0);
5603       unsigned Index = VSN->getSplatIndex();
5604       assert(Index < VT.getVectorNumElements() &&
5605              "Splat index should be defined and in first operand");
5606       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5607           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5608         // Since i32 is the smallest legal type, we either need a no-op
5609         // or a truncation.
5610         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5611                                     VSNOp0.getOperand(Index));
5612         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5613       }
5614     }
5615   }
5616 
5617   // Otherwise just treat the current form as legal.
5618   return Op;
5619 }
5620 
5621 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
5622                                                SelectionDAG &DAG) const {
5623   SDLoc DL(Op);
5624   MVT ResultVT = Op.getSimpleValueType();
5625   SDValue Arg = Op.getOperand(0);
5626   auto CNode = cast<ConstantSDNode>(Op.getOperand(1));
5627   unsigned Check = CNode->getZExtValue();
5628 
5629   unsigned TDCMask = 0;
5630   if (Check & fcSNan)
5631     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
5632   if (Check & fcQNan)
5633     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
5634   if (Check & fcPosInf)
5635     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
5636   if (Check & fcNegInf)
5637     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
5638   if (Check & fcPosNormal)
5639     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
5640   if (Check & fcNegNormal)
5641     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
5642   if (Check & fcPosSubnormal)
5643     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
5644   if (Check & fcNegSubnormal)
5645     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
5646   if (Check & fcPosZero)
5647     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
5648   if (Check & fcNegZero)
5649     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
5650   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
5651 
5652   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
5653   return getCCResult(DAG, Intr);
5654 }
5655 
5656 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5657                                               SelectionDAG &DAG) const {
5658   switch (Op.getOpcode()) {
5659   case ISD::FRAMEADDR:
5660     return lowerFRAMEADDR(Op, DAG);
5661   case ISD::RETURNADDR:
5662     return lowerRETURNADDR(Op, DAG);
5663   case ISD::BR_CC:
5664     return lowerBR_CC(Op, DAG);
5665   case ISD::SELECT_CC:
5666     return lowerSELECT_CC(Op, DAG);
5667   case ISD::SETCC:
5668     return lowerSETCC(Op, DAG);
5669   case ISD::STRICT_FSETCC:
5670     return lowerSTRICT_FSETCC(Op, DAG, false);
5671   case ISD::STRICT_FSETCCS:
5672     return lowerSTRICT_FSETCC(Op, DAG, true);
5673   case ISD::GlobalAddress:
5674     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5675   case ISD::GlobalTLSAddress:
5676     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5677   case ISD::BlockAddress:
5678     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5679   case ISD::JumpTable:
5680     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5681   case ISD::ConstantPool:
5682     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5683   case ISD::BITCAST:
5684     return lowerBITCAST(Op, DAG);
5685   case ISD::VASTART:
5686     return lowerVASTART(Op, DAG);
5687   case ISD::VACOPY:
5688     return lowerVACOPY(Op, DAG);
5689   case ISD::DYNAMIC_STACKALLOC:
5690     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5691   case ISD::GET_DYNAMIC_AREA_OFFSET:
5692     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5693   case ISD::SMUL_LOHI:
5694     return lowerSMUL_LOHI(Op, DAG);
5695   case ISD::UMUL_LOHI:
5696     return lowerUMUL_LOHI(Op, DAG);
5697   case ISD::SDIVREM:
5698     return lowerSDIVREM(Op, DAG);
5699   case ISD::UDIVREM:
5700     return lowerUDIVREM(Op, DAG);
5701   case ISD::SADDO:
5702   case ISD::SSUBO:
5703   case ISD::UADDO:
5704   case ISD::USUBO:
5705     return lowerXALUO(Op, DAG);
5706   case ISD::ADDCARRY:
5707   case ISD::SUBCARRY:
5708     return lowerADDSUBCARRY(Op, DAG);
5709   case ISD::OR:
5710     return lowerOR(Op, DAG);
5711   case ISD::CTPOP:
5712     return lowerCTPOP(Op, DAG);
5713   case ISD::ATOMIC_FENCE:
5714     return lowerATOMIC_FENCE(Op, DAG);
5715   case ISD::ATOMIC_SWAP:
5716     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5717   case ISD::ATOMIC_STORE:
5718     return lowerATOMIC_STORE(Op, DAG);
5719   case ISD::ATOMIC_LOAD:
5720     return lowerATOMIC_LOAD(Op, DAG);
5721   case ISD::ATOMIC_LOAD_ADD:
5722     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5723   case ISD::ATOMIC_LOAD_SUB:
5724     return lowerATOMIC_LOAD_SUB(Op, DAG);
5725   case ISD::ATOMIC_LOAD_AND:
5726     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5727   case ISD::ATOMIC_LOAD_OR:
5728     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5729   case ISD::ATOMIC_LOAD_XOR:
5730     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5731   case ISD::ATOMIC_LOAD_NAND:
5732     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5733   case ISD::ATOMIC_LOAD_MIN:
5734     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5735   case ISD::ATOMIC_LOAD_MAX:
5736     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5737   case ISD::ATOMIC_LOAD_UMIN:
5738     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5739   case ISD::ATOMIC_LOAD_UMAX:
5740     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5741   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5742     return lowerATOMIC_CMP_SWAP(Op, DAG);
5743   case ISD::STACKSAVE:
5744     return lowerSTACKSAVE(Op, DAG);
5745   case ISD::STACKRESTORE:
5746     return lowerSTACKRESTORE(Op, DAG);
5747   case ISD::PREFETCH:
5748     return lowerPREFETCH(Op, DAG);
5749   case ISD::INTRINSIC_W_CHAIN:
5750     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5751   case ISD::INTRINSIC_WO_CHAIN:
5752     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5753   case ISD::BUILD_VECTOR:
5754     return lowerBUILD_VECTOR(Op, DAG);
5755   case ISD::VECTOR_SHUFFLE:
5756     return lowerVECTOR_SHUFFLE(Op, DAG);
5757   case ISD::SCALAR_TO_VECTOR:
5758     return lowerSCALAR_TO_VECTOR(Op, DAG);
5759   case ISD::INSERT_VECTOR_ELT:
5760     return lowerINSERT_VECTOR_ELT(Op, DAG);
5761   case ISD::EXTRACT_VECTOR_ELT:
5762     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5763   case ISD::SIGN_EXTEND_VECTOR_INREG:
5764     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5765   case ISD::ZERO_EXTEND_VECTOR_INREG:
5766     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5767   case ISD::SHL:
5768     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5769   case ISD::SRL:
5770     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5771   case ISD::SRA:
5772     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5773   case ISD::IS_FPCLASS:
5774     return lowerIS_FPCLASS(Op, DAG);
5775   default:
5776     llvm_unreachable("Unexpected node to lower");
5777   }
5778 }
5779 
5780 // Lower operations with invalid operand or result types (currently used
5781 // only for 128-bit integer types).
5782 void
5783 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5784                                              SmallVectorImpl<SDValue> &Results,
5785                                              SelectionDAG &DAG) const {
5786   switch (N->getOpcode()) {
5787   case ISD::ATOMIC_LOAD: {
5788     SDLoc DL(N);
5789     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5790     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5791     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5792     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5793                                           DL, Tys, Ops, MVT::i128, MMO);
5794     Results.push_back(lowerGR128ToI128(DAG, Res));
5795     Results.push_back(Res.getValue(1));
5796     break;
5797   }
5798   case ISD::ATOMIC_STORE: {
5799     SDLoc DL(N);
5800     SDVTList Tys = DAG.getVTList(MVT::Other);
5801     SDValue Ops[] = { N->getOperand(0),
5802                       lowerI128ToGR128(DAG, N->getOperand(2)),
5803                       N->getOperand(1) };
5804     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5805     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5806                                           DL, Tys, Ops, MVT::i128, MMO);
5807     // We have to enforce sequential consistency by performing a
5808     // serialization operation after the store.
5809     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5810         AtomicOrdering::SequentiallyConsistent)
5811       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5812                                        MVT::Other, Res), 0);
5813     Results.push_back(Res);
5814     break;
5815   }
5816   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5817     SDLoc DL(N);
5818     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5819     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5820                       lowerI128ToGR128(DAG, N->getOperand(2)),
5821                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5822     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5823     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5824                                           DL, Tys, Ops, MVT::i128, MMO);
5825     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5826                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5827     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5828     Results.push_back(lowerGR128ToI128(DAG, Res));
5829     Results.push_back(Success);
5830     Results.push_back(Res.getValue(2));
5831     break;
5832   }
5833   case ISD::BITCAST: {
5834     SDValue Src = N->getOperand(0);
5835     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5836         !useSoftFloat()) {
5837       SDLoc DL(N);
5838       SDValue Lo, Hi;
5839       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5840         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5841         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5842                          DAG.getConstant(1, DL, MVT::i32));
5843         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5844                          DAG.getConstant(0, DL, MVT::i32));
5845       } else {
5846         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5847                "Unrecognized register class for f128.");
5848         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5849                                                   DL, MVT::f64, Src);
5850         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5851                                                   DL, MVT::f64, Src);
5852         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5853         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5854       }
5855       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5856     }
5857     break;
5858   }
5859   default:
5860     llvm_unreachable("Unexpected node to lower");
5861   }
5862 }
5863 
5864 void
5865 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5866                                           SmallVectorImpl<SDValue> &Results,
5867                                           SelectionDAG &DAG) const {
5868   return LowerOperationWrapper(N, Results, DAG);
5869 }
5870 
5871 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5872 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5873   switch ((SystemZISD::NodeType)Opcode) {
5874     case SystemZISD::FIRST_NUMBER: break;
5875     OPCODE(RET_FLAG);
5876     OPCODE(CALL);
5877     OPCODE(SIBCALL);
5878     OPCODE(TLS_GDCALL);
5879     OPCODE(TLS_LDCALL);
5880     OPCODE(PCREL_WRAPPER);
5881     OPCODE(PCREL_OFFSET);
5882     OPCODE(ICMP);
5883     OPCODE(FCMP);
5884     OPCODE(STRICT_FCMP);
5885     OPCODE(STRICT_FCMPS);
5886     OPCODE(TM);
5887     OPCODE(BR_CCMASK);
5888     OPCODE(SELECT_CCMASK);
5889     OPCODE(ADJDYNALLOC);
5890     OPCODE(PROBED_ALLOCA);
5891     OPCODE(POPCNT);
5892     OPCODE(SMUL_LOHI);
5893     OPCODE(UMUL_LOHI);
5894     OPCODE(SDIVREM);
5895     OPCODE(UDIVREM);
5896     OPCODE(SADDO);
5897     OPCODE(SSUBO);
5898     OPCODE(UADDO);
5899     OPCODE(USUBO);
5900     OPCODE(ADDCARRY);
5901     OPCODE(SUBCARRY);
5902     OPCODE(GET_CCMASK);
5903     OPCODE(MVC);
5904     OPCODE(NC);
5905     OPCODE(OC);
5906     OPCODE(XC);
5907     OPCODE(CLC);
5908     OPCODE(MEMSET_MVC);
5909     OPCODE(STPCPY);
5910     OPCODE(STRCMP);
5911     OPCODE(SEARCH_STRING);
5912     OPCODE(IPM);
5913     OPCODE(MEMBARRIER);
5914     OPCODE(TBEGIN);
5915     OPCODE(TBEGIN_NOFLOAT);
5916     OPCODE(TEND);
5917     OPCODE(BYTE_MASK);
5918     OPCODE(ROTATE_MASK);
5919     OPCODE(REPLICATE);
5920     OPCODE(JOIN_DWORDS);
5921     OPCODE(SPLAT);
5922     OPCODE(MERGE_HIGH);
5923     OPCODE(MERGE_LOW);
5924     OPCODE(SHL_DOUBLE);
5925     OPCODE(PERMUTE_DWORDS);
5926     OPCODE(PERMUTE);
5927     OPCODE(PACK);
5928     OPCODE(PACKS_CC);
5929     OPCODE(PACKLS_CC);
5930     OPCODE(UNPACK_HIGH);
5931     OPCODE(UNPACKL_HIGH);
5932     OPCODE(UNPACK_LOW);
5933     OPCODE(UNPACKL_LOW);
5934     OPCODE(VSHL_BY_SCALAR);
5935     OPCODE(VSRL_BY_SCALAR);
5936     OPCODE(VSRA_BY_SCALAR);
5937     OPCODE(VSUM);
5938     OPCODE(VICMPE);
5939     OPCODE(VICMPH);
5940     OPCODE(VICMPHL);
5941     OPCODE(VICMPES);
5942     OPCODE(VICMPHS);
5943     OPCODE(VICMPHLS);
5944     OPCODE(VFCMPE);
5945     OPCODE(STRICT_VFCMPE);
5946     OPCODE(STRICT_VFCMPES);
5947     OPCODE(VFCMPH);
5948     OPCODE(STRICT_VFCMPH);
5949     OPCODE(STRICT_VFCMPHS);
5950     OPCODE(VFCMPHE);
5951     OPCODE(STRICT_VFCMPHE);
5952     OPCODE(STRICT_VFCMPHES);
5953     OPCODE(VFCMPES);
5954     OPCODE(VFCMPHS);
5955     OPCODE(VFCMPHES);
5956     OPCODE(VFTCI);
5957     OPCODE(VEXTEND);
5958     OPCODE(STRICT_VEXTEND);
5959     OPCODE(VROUND);
5960     OPCODE(STRICT_VROUND);
5961     OPCODE(VTM);
5962     OPCODE(VFAE_CC);
5963     OPCODE(VFAEZ_CC);
5964     OPCODE(VFEE_CC);
5965     OPCODE(VFEEZ_CC);
5966     OPCODE(VFENE_CC);
5967     OPCODE(VFENEZ_CC);
5968     OPCODE(VISTR_CC);
5969     OPCODE(VSTRC_CC);
5970     OPCODE(VSTRCZ_CC);
5971     OPCODE(VSTRS_CC);
5972     OPCODE(VSTRSZ_CC);
5973     OPCODE(TDC);
5974     OPCODE(ATOMIC_SWAPW);
5975     OPCODE(ATOMIC_LOADW_ADD);
5976     OPCODE(ATOMIC_LOADW_SUB);
5977     OPCODE(ATOMIC_LOADW_AND);
5978     OPCODE(ATOMIC_LOADW_OR);
5979     OPCODE(ATOMIC_LOADW_XOR);
5980     OPCODE(ATOMIC_LOADW_NAND);
5981     OPCODE(ATOMIC_LOADW_MIN);
5982     OPCODE(ATOMIC_LOADW_MAX);
5983     OPCODE(ATOMIC_LOADW_UMIN);
5984     OPCODE(ATOMIC_LOADW_UMAX);
5985     OPCODE(ATOMIC_CMP_SWAPW);
5986     OPCODE(ATOMIC_CMP_SWAP);
5987     OPCODE(ATOMIC_LOAD_128);
5988     OPCODE(ATOMIC_STORE_128);
5989     OPCODE(ATOMIC_CMP_SWAP_128);
5990     OPCODE(LRV);
5991     OPCODE(STRV);
5992     OPCODE(VLER);
5993     OPCODE(VSTER);
5994     OPCODE(PREFETCH);
5995   }
5996   return nullptr;
5997 #undef OPCODE
5998 }
5999 
6000 // Return true if VT is a vector whose elements are a whole number of bytes
6001 // in width. Also check for presence of vector support.
6002 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6003   if (!Subtarget.hasVector())
6004     return false;
6005 
6006   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6007 }
6008 
6009 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6010 // producing a result of type ResVT.  Op is a possibly bitcast version
6011 // of the input vector and Index is the index (based on type VecVT) that
6012 // should be extracted.  Return the new extraction if a simplification
6013 // was possible or if Force is true.
6014 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6015                                               EVT VecVT, SDValue Op,
6016                                               unsigned Index,
6017                                               DAGCombinerInfo &DCI,
6018                                               bool Force) const {
6019   SelectionDAG &DAG = DCI.DAG;
6020 
6021   // The number of bytes being extracted.
6022   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6023 
6024   for (;;) {
6025     unsigned Opcode = Op.getOpcode();
6026     if (Opcode == ISD::BITCAST)
6027       // Look through bitcasts.
6028       Op = Op.getOperand(0);
6029     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6030              canTreatAsByteVector(Op.getValueType())) {
6031       // Get a VPERM-like permute mask and see whether the bytes covered
6032       // by the extracted element are a contiguous sequence from one
6033       // source operand.
6034       SmallVector<int, SystemZ::VectorBytes> Bytes;
6035       if (!getVPermMask(Op, Bytes))
6036         break;
6037       int First;
6038       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6039                            BytesPerElement, First))
6040         break;
6041       if (First < 0)
6042         return DAG.getUNDEF(ResVT);
6043       // Make sure the contiguous sequence starts at a multiple of the
6044       // original element size.
6045       unsigned Byte = unsigned(First) % Bytes.size();
6046       if (Byte % BytesPerElement != 0)
6047         break;
6048       // We can get the extracted value directly from an input.
6049       Index = Byte / BytesPerElement;
6050       Op = Op.getOperand(unsigned(First) / Bytes.size());
6051       Force = true;
6052     } else if (Opcode == ISD::BUILD_VECTOR &&
6053                canTreatAsByteVector(Op.getValueType())) {
6054       // We can only optimize this case if the BUILD_VECTOR elements are
6055       // at least as wide as the extracted value.
6056       EVT OpVT = Op.getValueType();
6057       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6058       if (OpBytesPerElement < BytesPerElement)
6059         break;
6060       // Make sure that the least-significant bit of the extracted value
6061       // is the least significant bit of an input.
6062       unsigned End = (Index + 1) * BytesPerElement;
6063       if (End % OpBytesPerElement != 0)
6064         break;
6065       // We're extracting the low part of one operand of the BUILD_VECTOR.
6066       Op = Op.getOperand(End / OpBytesPerElement - 1);
6067       if (!Op.getValueType().isInteger()) {
6068         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6069         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6070         DCI.AddToWorklist(Op.getNode());
6071       }
6072       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6073       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6074       if (VT != ResVT) {
6075         DCI.AddToWorklist(Op.getNode());
6076         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6077       }
6078       return Op;
6079     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6080                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6081                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6082                canTreatAsByteVector(Op.getValueType()) &&
6083                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6084       // Make sure that only the unextended bits are significant.
6085       EVT ExtVT = Op.getValueType();
6086       EVT OpVT = Op.getOperand(0).getValueType();
6087       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6088       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6089       unsigned Byte = Index * BytesPerElement;
6090       unsigned SubByte = Byte % ExtBytesPerElement;
6091       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6092       if (SubByte < MinSubByte ||
6093           SubByte + BytesPerElement > ExtBytesPerElement)
6094         break;
6095       // Get the byte offset of the unextended element
6096       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6097       // ...then add the byte offset relative to that element.
6098       Byte += SubByte - MinSubByte;
6099       if (Byte % BytesPerElement != 0)
6100         break;
6101       Op = Op.getOperand(0);
6102       Index = Byte / BytesPerElement;
6103       Force = true;
6104     } else
6105       break;
6106   }
6107   if (Force) {
6108     if (Op.getValueType() != VecVT) {
6109       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6110       DCI.AddToWorklist(Op.getNode());
6111     }
6112     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6113                        DAG.getConstant(Index, DL, MVT::i32));
6114   }
6115   return SDValue();
6116 }
6117 
6118 // Optimize vector operations in scalar value Op on the basis that Op
6119 // is truncated to TruncVT.
6120 SDValue SystemZTargetLowering::combineTruncateExtract(
6121     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6122   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6123   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6124   // of type TruncVT.
6125   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6126       TruncVT.getSizeInBits() % 8 == 0) {
6127     SDValue Vec = Op.getOperand(0);
6128     EVT VecVT = Vec.getValueType();
6129     if (canTreatAsByteVector(VecVT)) {
6130       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6131         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6132         unsigned TruncBytes = TruncVT.getStoreSize();
6133         if (BytesPerElement % TruncBytes == 0) {
6134           // Calculate the value of Y' in the above description.  We are
6135           // splitting the original elements into Scale equal-sized pieces
6136           // and for truncation purposes want the last (least-significant)
6137           // of these pieces for IndexN.  This is easiest to do by calculating
6138           // the start index of the following element and then subtracting 1.
6139           unsigned Scale = BytesPerElement / TruncBytes;
6140           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6141 
6142           // Defer the creation of the bitcast from X to combineExtract,
6143           // which might be able to optimize the extraction.
6144           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6145                                    VecVT.getStoreSize() / TruncBytes);
6146           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6147           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6148         }
6149       }
6150     }
6151   }
6152   return SDValue();
6153 }
6154 
6155 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6156     SDNode *N, DAGCombinerInfo &DCI) const {
6157   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6158   SelectionDAG &DAG = DCI.DAG;
6159   SDValue N0 = N->getOperand(0);
6160   EVT VT = N->getValueType(0);
6161   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6162     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6163     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6164     if (TrueOp && FalseOp) {
6165       SDLoc DL(N0);
6166       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6167                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6168                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6169       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6170       // If N0 has multiple uses, change other uses as well.
6171       if (!N0.hasOneUse()) {
6172         SDValue TruncSelect =
6173           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6174         DCI.CombineTo(N0.getNode(), TruncSelect);
6175       }
6176       return NewSelect;
6177     }
6178   }
6179   return SDValue();
6180 }
6181 
6182 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6183     SDNode *N, DAGCombinerInfo &DCI) const {
6184   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6185   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6186   // into (select_cc LHS, RHS, -1, 0, COND)
6187   SelectionDAG &DAG = DCI.DAG;
6188   SDValue N0 = N->getOperand(0);
6189   EVT VT = N->getValueType(0);
6190   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6191   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6192     N0 = N0.getOperand(0);
6193   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6194     SDLoc DL(N0);
6195     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6196                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6197                       N0.getOperand(2) };
6198     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6199   }
6200   return SDValue();
6201 }
6202 
6203 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6204     SDNode *N, DAGCombinerInfo &DCI) const {
6205   // Convert (sext (ashr (shl X, C1), C2)) to
6206   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6207   // cheap as narrower ones.
6208   SelectionDAG &DAG = DCI.DAG;
6209   SDValue N0 = N->getOperand(0);
6210   EVT VT = N->getValueType(0);
6211   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6212     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6213     SDValue Inner = N0.getOperand(0);
6214     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6215       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6216         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6217         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6218         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6219         EVT ShiftVT = N0.getOperand(1).getValueType();
6220         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6221                                   Inner.getOperand(0));
6222         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6223                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6224                                                   ShiftVT));
6225         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6226                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6227       }
6228     }
6229   }
6230   return SDValue();
6231 }
6232 
6233 SDValue SystemZTargetLowering::combineMERGE(
6234     SDNode *N, DAGCombinerInfo &DCI) const {
6235   SelectionDAG &DAG = DCI.DAG;
6236   unsigned Opcode = N->getOpcode();
6237   SDValue Op0 = N->getOperand(0);
6238   SDValue Op1 = N->getOperand(1);
6239   if (Op0.getOpcode() == ISD::BITCAST)
6240     Op0 = Op0.getOperand(0);
6241   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6242     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6243     // for v4f32.
6244     if (Op1 == N->getOperand(0))
6245       return Op1;
6246     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6247     EVT VT = Op1.getValueType();
6248     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6249     if (ElemBytes <= 4) {
6250       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6251                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6252       EVT InVT = VT.changeVectorElementTypeToInteger();
6253       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6254                                    SystemZ::VectorBytes / ElemBytes / 2);
6255       if (VT != InVT) {
6256         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6257         DCI.AddToWorklist(Op1.getNode());
6258       }
6259       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6260       DCI.AddToWorklist(Op.getNode());
6261       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6262     }
6263   }
6264   return SDValue();
6265 }
6266 
6267 SDValue SystemZTargetLowering::combineLOAD(
6268     SDNode *N, DAGCombinerInfo &DCI) const {
6269   SelectionDAG &DAG = DCI.DAG;
6270   EVT LdVT = N->getValueType(0);
6271   if (LdVT.isVector() || LdVT.isInteger())
6272     return SDValue();
6273   // Transform a scalar load that is REPLICATEd as well as having other
6274   // use(s) to the form where the other use(s) use the first element of the
6275   // REPLICATE instead of the load. Otherwise instruction selection will not
6276   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6277   // point loads.
6278 
6279   SDValue Replicate;
6280   SmallVector<SDNode*, 8> OtherUses;
6281   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6282        UI != UE; ++UI) {
6283     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6284       if (Replicate)
6285         return SDValue(); // Should never happen
6286       Replicate = SDValue(*UI, 0);
6287     }
6288     else if (UI.getUse().getResNo() == 0)
6289       OtherUses.push_back(*UI);
6290   }
6291   if (!Replicate || OtherUses.empty())
6292     return SDValue();
6293 
6294   SDLoc DL(N);
6295   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6296                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6297   // Update uses of the loaded Value while preserving old chains.
6298   for (SDNode *U : OtherUses) {
6299     SmallVector<SDValue, 8> Ops;
6300     for (SDValue Op : U->ops())
6301       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6302     DAG.UpdateNodeOperands(U, Ops);
6303   }
6304   return SDValue(N, 0);
6305 }
6306 
6307 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6308   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6309     return true;
6310   if (Subtarget.hasVectorEnhancements2())
6311     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6312       return true;
6313   return false;
6314 }
6315 
6316 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6317   if (!VT.isVector() || !VT.isSimple() ||
6318       VT.getSizeInBits() != 128 ||
6319       VT.getScalarSizeInBits() % 8 != 0)
6320     return false;
6321 
6322   unsigned NumElts = VT.getVectorNumElements();
6323   for (unsigned i = 0; i < NumElts; ++i) {
6324     if (M[i] < 0) continue; // ignore UNDEF indices
6325     if ((unsigned) M[i] != NumElts - 1 - i)
6326       return false;
6327   }
6328 
6329   return true;
6330 }
6331 
6332 SDValue SystemZTargetLowering::combineSTORE(
6333     SDNode *N, DAGCombinerInfo &DCI) const {
6334   SelectionDAG &DAG = DCI.DAG;
6335   auto *SN = cast<StoreSDNode>(N);
6336   auto &Op1 = N->getOperand(1);
6337   EVT MemVT = SN->getMemoryVT();
6338   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6339   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6340   // If X has wider elements then convert it to:
6341   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6342   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6343     if (SDValue Value =
6344             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6345       DCI.AddToWorklist(Value.getNode());
6346 
6347       // Rewrite the store with the new form of stored value.
6348       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6349                                SN->getBasePtr(), SN->getMemoryVT(),
6350                                SN->getMemOperand());
6351     }
6352   }
6353   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6354   if (!SN->isTruncatingStore() &&
6355       Op1.getOpcode() == ISD::BSWAP &&
6356       Op1.getNode()->hasOneUse() &&
6357       canLoadStoreByteSwapped(Op1.getValueType())) {
6358 
6359       SDValue BSwapOp = Op1.getOperand(0);
6360 
6361       if (BSwapOp.getValueType() == MVT::i16)
6362         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6363 
6364       SDValue Ops[] = {
6365         N->getOperand(0), BSwapOp, N->getOperand(2)
6366       };
6367 
6368       return
6369         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6370                                 Ops, MemVT, SN->getMemOperand());
6371     }
6372   // Combine STORE (element-swap) into VSTER
6373   if (!SN->isTruncatingStore() &&
6374       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6375       Op1.getNode()->hasOneUse() &&
6376       Subtarget.hasVectorEnhancements2()) {
6377     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6378     ArrayRef<int> ShuffleMask = SVN->getMask();
6379     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6380       SDValue Ops[] = {
6381         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6382       };
6383 
6384       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6385                                      DAG.getVTList(MVT::Other),
6386                                      Ops, MemVT, SN->getMemOperand());
6387     }
6388   }
6389 
6390   return SDValue();
6391 }
6392 
6393 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6394     SDNode *N, DAGCombinerInfo &DCI) const {
6395   SelectionDAG &DAG = DCI.DAG;
6396   // Combine element-swap (LOAD) into VLER
6397   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6398       N->getOperand(0).hasOneUse() &&
6399       Subtarget.hasVectorEnhancements2()) {
6400     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6401     ArrayRef<int> ShuffleMask = SVN->getMask();
6402     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6403       SDValue Load = N->getOperand(0);
6404       LoadSDNode *LD = cast<LoadSDNode>(Load);
6405 
6406       // Create the element-swapping load.
6407       SDValue Ops[] = {
6408         LD->getChain(),    // Chain
6409         LD->getBasePtr()   // Ptr
6410       };
6411       SDValue ESLoad =
6412         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6413                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6414                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6415 
6416       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6417       // by the load dead.
6418       DCI.CombineTo(N, ESLoad);
6419 
6420       // Next, combine the load away, we give it a bogus result value but a real
6421       // chain result.  The result value is dead because the shuffle is dead.
6422       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6423 
6424       // Return N so it doesn't get rechecked!
6425       return SDValue(N, 0);
6426     }
6427   }
6428 
6429   return SDValue();
6430 }
6431 
6432 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6433     SDNode *N, DAGCombinerInfo &DCI) const {
6434   SelectionDAG &DAG = DCI.DAG;
6435 
6436   if (!Subtarget.hasVector())
6437     return SDValue();
6438 
6439   // Look through bitcasts that retain the number of vector elements.
6440   SDValue Op = N->getOperand(0);
6441   if (Op.getOpcode() == ISD::BITCAST &&
6442       Op.getValueType().isVector() &&
6443       Op.getOperand(0).getValueType().isVector() &&
6444       Op.getValueType().getVectorNumElements() ==
6445       Op.getOperand(0).getValueType().getVectorNumElements())
6446     Op = Op.getOperand(0);
6447 
6448   // Pull BSWAP out of a vector extraction.
6449   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6450     EVT VecVT = Op.getValueType();
6451     EVT EltVT = VecVT.getVectorElementType();
6452     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6453                      Op.getOperand(0), N->getOperand(1));
6454     DCI.AddToWorklist(Op.getNode());
6455     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6456     if (EltVT != N->getValueType(0)) {
6457       DCI.AddToWorklist(Op.getNode());
6458       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6459     }
6460     return Op;
6461   }
6462 
6463   // Try to simplify a vector extraction.
6464   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6465     SDValue Op0 = N->getOperand(0);
6466     EVT VecVT = Op0.getValueType();
6467     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6468                           IndexN->getZExtValue(), DCI, false);
6469   }
6470   return SDValue();
6471 }
6472 
6473 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6474     SDNode *N, DAGCombinerInfo &DCI) const {
6475   SelectionDAG &DAG = DCI.DAG;
6476   // (join_dwords X, X) == (replicate X)
6477   if (N->getOperand(0) == N->getOperand(1))
6478     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6479                        N->getOperand(0));
6480   return SDValue();
6481 }
6482 
6483 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6484   SDValue Chain1 = N1->getOperand(0);
6485   SDValue Chain2 = N2->getOperand(0);
6486 
6487   // Trivial case: both nodes take the same chain.
6488   if (Chain1 == Chain2)
6489     return Chain1;
6490 
6491   // FIXME - we could handle more complex cases via TokenFactor,
6492   // assuming we can verify that this would not create a cycle.
6493   return SDValue();
6494 }
6495 
6496 SDValue SystemZTargetLowering::combineFP_ROUND(
6497     SDNode *N, DAGCombinerInfo &DCI) const {
6498 
6499   if (!Subtarget.hasVector())
6500     return SDValue();
6501 
6502   // (fpround (extract_vector_elt X 0))
6503   // (fpround (extract_vector_elt X 1)) ->
6504   // (extract_vector_elt (VROUND X) 0)
6505   // (extract_vector_elt (VROUND X) 2)
6506   //
6507   // This is a special case since the target doesn't really support v2f32s.
6508   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6509   SelectionDAG &DAG = DCI.DAG;
6510   SDValue Op0 = N->getOperand(OpNo);
6511   if (N->getValueType(0) == MVT::f32 &&
6512       Op0.hasOneUse() &&
6513       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6514       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6515       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6516       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6517     SDValue Vec = Op0.getOperand(0);
6518     for (auto *U : Vec->uses()) {
6519       if (U != Op0.getNode() &&
6520           U->hasOneUse() &&
6521           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6522           U->getOperand(0) == Vec &&
6523           U->getOperand(1).getOpcode() == ISD::Constant &&
6524           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6525         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6526         if (OtherRound.getOpcode() == N->getOpcode() &&
6527             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6528             OtherRound.getValueType() == MVT::f32) {
6529           SDValue VRound, Chain;
6530           if (N->isStrictFPOpcode()) {
6531             Chain = MergeInputChains(N, OtherRound.getNode());
6532             if (!Chain)
6533               continue;
6534             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6535                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6536             Chain = VRound.getValue(1);
6537           } else
6538             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6539                                  MVT::v4f32, Vec);
6540           DCI.AddToWorklist(VRound.getNode());
6541           SDValue Extract1 =
6542             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6543                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6544           DCI.AddToWorklist(Extract1.getNode());
6545           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6546           if (Chain)
6547             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6548           SDValue Extract0 =
6549             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6550                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6551           if (Chain)
6552             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6553                                N->getVTList(), Extract0, Chain);
6554           return Extract0;
6555         }
6556       }
6557     }
6558   }
6559   return SDValue();
6560 }
6561 
6562 SDValue SystemZTargetLowering::combineFP_EXTEND(
6563     SDNode *N, DAGCombinerInfo &DCI) const {
6564 
6565   if (!Subtarget.hasVector())
6566     return SDValue();
6567 
6568   // (fpextend (extract_vector_elt X 0))
6569   // (fpextend (extract_vector_elt X 2)) ->
6570   // (extract_vector_elt (VEXTEND X) 0)
6571   // (extract_vector_elt (VEXTEND X) 1)
6572   //
6573   // This is a special case since the target doesn't really support v2f32s.
6574   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6575   SelectionDAG &DAG = DCI.DAG;
6576   SDValue Op0 = N->getOperand(OpNo);
6577   if (N->getValueType(0) == MVT::f64 &&
6578       Op0.hasOneUse() &&
6579       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6580       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6581       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6582       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6583     SDValue Vec = Op0.getOperand(0);
6584     for (auto *U : Vec->uses()) {
6585       if (U != Op0.getNode() &&
6586           U->hasOneUse() &&
6587           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6588           U->getOperand(0) == Vec &&
6589           U->getOperand(1).getOpcode() == ISD::Constant &&
6590           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6591         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6592         if (OtherExtend.getOpcode() == N->getOpcode() &&
6593             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6594             OtherExtend.getValueType() == MVT::f64) {
6595           SDValue VExtend, Chain;
6596           if (N->isStrictFPOpcode()) {
6597             Chain = MergeInputChains(N, OtherExtend.getNode());
6598             if (!Chain)
6599               continue;
6600             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6601                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6602             Chain = VExtend.getValue(1);
6603           } else
6604             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6605                                   MVT::v2f64, Vec);
6606           DCI.AddToWorklist(VExtend.getNode());
6607           SDValue Extract1 =
6608             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6609                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6610           DCI.AddToWorklist(Extract1.getNode());
6611           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6612           if (Chain)
6613             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6614           SDValue Extract0 =
6615             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6616                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6617           if (Chain)
6618             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6619                                N->getVTList(), Extract0, Chain);
6620           return Extract0;
6621         }
6622       }
6623     }
6624   }
6625   return SDValue();
6626 }
6627 
6628 SDValue SystemZTargetLowering::combineINT_TO_FP(
6629     SDNode *N, DAGCombinerInfo &DCI) const {
6630   if (DCI.Level != BeforeLegalizeTypes)
6631     return SDValue();
6632   unsigned Opcode = N->getOpcode();
6633   EVT OutVT = N->getValueType(0);
6634   SelectionDAG &DAG = DCI.DAG;
6635   SDValue Op = N->getOperand(0);
6636   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6637   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6638 
6639   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6640   // v2f64 = uint_to_fp v2i16
6641   // =>
6642   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6643   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6644     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6645                                  OutVT.getVectorNumElements());
6646     unsigned ExtOpcode =
6647       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6648     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6649     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6650   }
6651   return SDValue();
6652 }
6653 
6654 SDValue SystemZTargetLowering::combineBSWAP(
6655     SDNode *N, DAGCombinerInfo &DCI) const {
6656   SelectionDAG &DAG = DCI.DAG;
6657   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6658   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6659       N->getOperand(0).hasOneUse() &&
6660       canLoadStoreByteSwapped(N->getValueType(0))) {
6661       SDValue Load = N->getOperand(0);
6662       LoadSDNode *LD = cast<LoadSDNode>(Load);
6663 
6664       // Create the byte-swapping load.
6665       SDValue Ops[] = {
6666         LD->getChain(),    // Chain
6667         LD->getBasePtr()   // Ptr
6668       };
6669       EVT LoadVT = N->getValueType(0);
6670       if (LoadVT == MVT::i16)
6671         LoadVT = MVT::i32;
6672       SDValue BSLoad =
6673         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6674                                 DAG.getVTList(LoadVT, MVT::Other),
6675                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6676 
6677       // If this is an i16 load, insert the truncate.
6678       SDValue ResVal = BSLoad;
6679       if (N->getValueType(0) == MVT::i16)
6680         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6681 
6682       // First, combine the bswap away.  This makes the value produced by the
6683       // load dead.
6684       DCI.CombineTo(N, ResVal);
6685 
6686       // Next, combine the load away, we give it a bogus result value but a real
6687       // chain result.  The result value is dead because the bswap is dead.
6688       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6689 
6690       // Return N so it doesn't get rechecked!
6691       return SDValue(N, 0);
6692     }
6693 
6694   // Look through bitcasts that retain the number of vector elements.
6695   SDValue Op = N->getOperand(0);
6696   if (Op.getOpcode() == ISD::BITCAST &&
6697       Op.getValueType().isVector() &&
6698       Op.getOperand(0).getValueType().isVector() &&
6699       Op.getValueType().getVectorNumElements() ==
6700       Op.getOperand(0).getValueType().getVectorNumElements())
6701     Op = Op.getOperand(0);
6702 
6703   // Push BSWAP into a vector insertion if at least one side then simplifies.
6704   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6705     SDValue Vec = Op.getOperand(0);
6706     SDValue Elt = Op.getOperand(1);
6707     SDValue Idx = Op.getOperand(2);
6708 
6709     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6710         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6711         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6712         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6713         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6714          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6715       EVT VecVT = N->getValueType(0);
6716       EVT EltVT = N->getValueType(0).getVectorElementType();
6717       if (VecVT != Vec.getValueType()) {
6718         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6719         DCI.AddToWorklist(Vec.getNode());
6720       }
6721       if (EltVT != Elt.getValueType()) {
6722         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6723         DCI.AddToWorklist(Elt.getNode());
6724       }
6725       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6726       DCI.AddToWorklist(Vec.getNode());
6727       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6728       DCI.AddToWorklist(Elt.getNode());
6729       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6730                          Vec, Elt, Idx);
6731     }
6732   }
6733 
6734   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6735   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6736   if (SV && Op.hasOneUse()) {
6737     SDValue Op0 = Op.getOperand(0);
6738     SDValue Op1 = Op.getOperand(1);
6739 
6740     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6741         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6742         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6743         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6744       EVT VecVT = N->getValueType(0);
6745       if (VecVT != Op0.getValueType()) {
6746         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6747         DCI.AddToWorklist(Op0.getNode());
6748       }
6749       if (VecVT != Op1.getValueType()) {
6750         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6751         DCI.AddToWorklist(Op1.getNode());
6752       }
6753       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6754       DCI.AddToWorklist(Op0.getNode());
6755       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6756       DCI.AddToWorklist(Op1.getNode());
6757       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6758     }
6759   }
6760 
6761   return SDValue();
6762 }
6763 
6764 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6765   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6766   // set by the CCReg instruction using the CCValid / CCMask masks,
6767   // If the CCReg instruction is itself a ICMP testing the condition
6768   // code set by some other instruction, see whether we can directly
6769   // use that condition code.
6770 
6771   // Verify that we have an ICMP against some constant.
6772   if (CCValid != SystemZ::CCMASK_ICMP)
6773     return false;
6774   auto *ICmp = CCReg.getNode();
6775   if (ICmp->getOpcode() != SystemZISD::ICMP)
6776     return false;
6777   auto *CompareLHS = ICmp->getOperand(0).getNode();
6778   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6779   if (!CompareRHS)
6780     return false;
6781 
6782   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6783   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6784     // Verify that we have an appropriate mask for a EQ or NE comparison.
6785     bool Invert = false;
6786     if (CCMask == SystemZ::CCMASK_CMP_NE)
6787       Invert = !Invert;
6788     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6789       return false;
6790 
6791     // Verify that the ICMP compares against one of select values.
6792     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6793     if (!TrueVal)
6794       return false;
6795     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6796     if (!FalseVal)
6797       return false;
6798     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6799       Invert = !Invert;
6800     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6801       return false;
6802 
6803     // Compute the effective CC mask for the new branch or select.
6804     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6805     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6806     if (!NewCCValid || !NewCCMask)
6807       return false;
6808     CCValid = NewCCValid->getZExtValue();
6809     CCMask = NewCCMask->getZExtValue();
6810     if (Invert)
6811       CCMask ^= CCValid;
6812 
6813     // Return the updated CCReg link.
6814     CCReg = CompareLHS->getOperand(4);
6815     return true;
6816   }
6817 
6818   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6819   if (CompareLHS->getOpcode() == ISD::SRA) {
6820     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6821     if (!SRACount || SRACount->getZExtValue() != 30)
6822       return false;
6823     auto *SHL = CompareLHS->getOperand(0).getNode();
6824     if (SHL->getOpcode() != ISD::SHL)
6825       return false;
6826     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6827     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6828       return false;
6829     auto *IPM = SHL->getOperand(0).getNode();
6830     if (IPM->getOpcode() != SystemZISD::IPM)
6831       return false;
6832 
6833     // Avoid introducing CC spills (because SRA would clobber CC).
6834     if (!CompareLHS->hasOneUse())
6835       return false;
6836     // Verify that the ICMP compares against zero.
6837     if (CompareRHS->getZExtValue() != 0)
6838       return false;
6839 
6840     // Compute the effective CC mask for the new branch or select.
6841     CCMask = SystemZ::reverseCCMask(CCMask);
6842 
6843     // Return the updated CCReg link.
6844     CCReg = IPM->getOperand(0);
6845     return true;
6846   }
6847 
6848   return false;
6849 }
6850 
6851 SDValue SystemZTargetLowering::combineBR_CCMASK(
6852     SDNode *N, DAGCombinerInfo &DCI) const {
6853   SelectionDAG &DAG = DCI.DAG;
6854 
6855   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6856   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6857   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6858   if (!CCValid || !CCMask)
6859     return SDValue();
6860 
6861   int CCValidVal = CCValid->getZExtValue();
6862   int CCMaskVal = CCMask->getZExtValue();
6863   SDValue Chain = N->getOperand(0);
6864   SDValue CCReg = N->getOperand(4);
6865 
6866   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6867     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6868                        Chain,
6869                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6870                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6871                        N->getOperand(3), CCReg);
6872   return SDValue();
6873 }
6874 
6875 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6876     SDNode *N, DAGCombinerInfo &DCI) const {
6877   SelectionDAG &DAG = DCI.DAG;
6878 
6879   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6880   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6881   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6882   if (!CCValid || !CCMask)
6883     return SDValue();
6884 
6885   int CCValidVal = CCValid->getZExtValue();
6886   int CCMaskVal = CCMask->getZExtValue();
6887   SDValue CCReg = N->getOperand(4);
6888 
6889   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6890     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6891                        N->getOperand(0), N->getOperand(1),
6892                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6893                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6894                        CCReg);
6895   return SDValue();
6896 }
6897 
6898 
6899 SDValue SystemZTargetLowering::combineGET_CCMASK(
6900     SDNode *N, DAGCombinerInfo &DCI) const {
6901 
6902   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6903   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6904   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6905   if (!CCValid || !CCMask)
6906     return SDValue();
6907   int CCValidVal = CCValid->getZExtValue();
6908   int CCMaskVal = CCMask->getZExtValue();
6909 
6910   SDValue Select = N->getOperand(0);
6911   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6912     return SDValue();
6913 
6914   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6915   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6916   if (!SelectCCValid || !SelectCCMask)
6917     return SDValue();
6918   int SelectCCValidVal = SelectCCValid->getZExtValue();
6919   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6920 
6921   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6922   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6923   if (!TrueVal || !FalseVal)
6924     return SDValue();
6925   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6926     ;
6927   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6928     SelectCCMaskVal ^= SelectCCValidVal;
6929   else
6930     return SDValue();
6931 
6932   if (SelectCCValidVal & ~CCValidVal)
6933     return SDValue();
6934   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6935     return SDValue();
6936 
6937   return Select->getOperand(4);
6938 }
6939 
6940 SDValue SystemZTargetLowering::combineIntDIVREM(
6941     SDNode *N, DAGCombinerInfo &DCI) const {
6942   SelectionDAG &DAG = DCI.DAG;
6943   EVT VT = N->getValueType(0);
6944   // In the case where the divisor is a vector of constants a cheaper
6945   // sequence of instructions can replace the divide. BuildSDIV is called to
6946   // do this during DAG combining, but it only succeeds when it can build a
6947   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6948   // since it is not Legal but Custom it can only happen before
6949   // legalization. Therefore we must scalarize this early before Combine
6950   // 1. For widened vectors, this is already the result of type legalization.
6951   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6952       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6953     return DAG.UnrollVectorOp(N);
6954   return SDValue();
6955 }
6956 
6957 SDValue SystemZTargetLowering::combineINTRINSIC(
6958     SDNode *N, DAGCombinerInfo &DCI) const {
6959   SelectionDAG &DAG = DCI.DAG;
6960 
6961   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6962   switch (Id) {
6963   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6964   // or larger is simply a vector load.
6965   case Intrinsic::s390_vll:
6966   case Intrinsic::s390_vlrl:
6967     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6968       if (C->getZExtValue() >= 15)
6969         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6970                            N->getOperand(3), MachinePointerInfo());
6971     break;
6972   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6973   case Intrinsic::s390_vstl:
6974   case Intrinsic::s390_vstrl:
6975     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6976       if (C->getZExtValue() >= 15)
6977         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6978                             N->getOperand(4), MachinePointerInfo());
6979     break;
6980   }
6981 
6982   return SDValue();
6983 }
6984 
6985 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6986   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6987     return N->getOperand(0);
6988   return N;
6989 }
6990 
6991 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6992                                                  DAGCombinerInfo &DCI) const {
6993   switch(N->getOpcode()) {
6994   default: break;
6995   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6996   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6997   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6998   case SystemZISD::MERGE_HIGH:
6999   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7000   case ISD::LOAD:               return combineLOAD(N, DCI);
7001   case ISD::STORE:              return combineSTORE(N, DCI);
7002   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7003   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7004   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7005   case ISD::STRICT_FP_ROUND:
7006   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7007   case ISD::STRICT_FP_EXTEND:
7008   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7009   case ISD::SINT_TO_FP:
7010   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7011   case ISD::BSWAP:              return combineBSWAP(N, DCI);
7012   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7013   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7014   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7015   case ISD::SDIV:
7016   case ISD::UDIV:
7017   case ISD::SREM:
7018   case ISD::UREM:               return combineIntDIVREM(N, DCI);
7019   case ISD::INTRINSIC_W_CHAIN:
7020   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7021   }
7022 
7023   return SDValue();
7024 }
7025 
7026 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7027 // are for Op.
7028 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7029                                     unsigned OpNo) {
7030   EVT VT = Op.getValueType();
7031   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7032   APInt SrcDemE;
7033   unsigned Opcode = Op.getOpcode();
7034   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7035     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7036     switch (Id) {
7037     case Intrinsic::s390_vpksh:   // PACKS
7038     case Intrinsic::s390_vpksf:
7039     case Intrinsic::s390_vpksg:
7040     case Intrinsic::s390_vpkshs:  // PACKS_CC
7041     case Intrinsic::s390_vpksfs:
7042     case Intrinsic::s390_vpksgs:
7043     case Intrinsic::s390_vpklsh:  // PACKLS
7044     case Intrinsic::s390_vpklsf:
7045     case Intrinsic::s390_vpklsg:
7046     case Intrinsic::s390_vpklshs: // PACKLS_CC
7047     case Intrinsic::s390_vpklsfs:
7048     case Intrinsic::s390_vpklsgs:
7049       // VECTOR PACK truncates the elements of two source vectors into one.
7050       SrcDemE = DemandedElts;
7051       if (OpNo == 2)
7052         SrcDemE.lshrInPlace(NumElts / 2);
7053       SrcDemE = SrcDemE.trunc(NumElts / 2);
7054       break;
7055       // VECTOR UNPACK extends half the elements of the source vector.
7056     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7057     case Intrinsic::s390_vuphh:
7058     case Intrinsic::s390_vuphf:
7059     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7060     case Intrinsic::s390_vuplhh:
7061     case Intrinsic::s390_vuplhf:
7062       SrcDemE = APInt(NumElts * 2, 0);
7063       SrcDemE.insertBits(DemandedElts, 0);
7064       break;
7065     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7066     case Intrinsic::s390_vuplhw:
7067     case Intrinsic::s390_vuplf:
7068     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7069     case Intrinsic::s390_vupllh:
7070     case Intrinsic::s390_vupllf:
7071       SrcDemE = APInt(NumElts * 2, 0);
7072       SrcDemE.insertBits(DemandedElts, NumElts);
7073       break;
7074     case Intrinsic::s390_vpdi: {
7075       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7076       SrcDemE = APInt(NumElts, 0);
7077       if (!DemandedElts[OpNo - 1])
7078         break;
7079       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7080       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7081       // Demand input element 0 or 1, given by the mask bit value.
7082       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7083       break;
7084     }
7085     case Intrinsic::s390_vsldb: {
7086       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7087       assert(VT == MVT::v16i8 && "Unexpected type.");
7088       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7089       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7090       unsigned NumSrc0Els = 16 - FirstIdx;
7091       SrcDemE = APInt(NumElts, 0);
7092       if (OpNo == 1) {
7093         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7094         SrcDemE.insertBits(DemEls, FirstIdx);
7095       } else {
7096         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7097         SrcDemE.insertBits(DemEls, 0);
7098       }
7099       break;
7100     }
7101     case Intrinsic::s390_vperm:
7102       SrcDemE = APInt(NumElts, 1);
7103       break;
7104     default:
7105       llvm_unreachable("Unhandled intrinsic.");
7106       break;
7107     }
7108   } else {
7109     switch (Opcode) {
7110     case SystemZISD::JOIN_DWORDS:
7111       // Scalar operand.
7112       SrcDemE = APInt(1, 1);
7113       break;
7114     case SystemZISD::SELECT_CCMASK:
7115       SrcDemE = DemandedElts;
7116       break;
7117     default:
7118       llvm_unreachable("Unhandled opcode.");
7119       break;
7120     }
7121   }
7122   return SrcDemE;
7123 }
7124 
7125 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7126                                   const APInt &DemandedElts,
7127                                   const SelectionDAG &DAG, unsigned Depth,
7128                                   unsigned OpNo) {
7129   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7130   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7131   KnownBits LHSKnown =
7132       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7133   KnownBits RHSKnown =
7134       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7135   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
7136 }
7137 
7138 void
7139 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7140                                                      KnownBits &Known,
7141                                                      const APInt &DemandedElts,
7142                                                      const SelectionDAG &DAG,
7143                                                      unsigned Depth) const {
7144   Known.resetAll();
7145 
7146   // Intrinsic CC result is returned in the two low bits.
7147   unsigned tmp0, tmp1; // not used
7148   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7149     Known.Zero.setBitsFrom(2);
7150     return;
7151   }
7152   EVT VT = Op.getValueType();
7153   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7154     return;
7155   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7156           "KnownBits does not match VT in bitwidth");
7157   assert ((!VT.isVector() ||
7158            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7159           "DemandedElts does not match VT number of elements");
7160   unsigned BitWidth = Known.getBitWidth();
7161   unsigned Opcode = Op.getOpcode();
7162   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7163     bool IsLogical = false;
7164     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7165     switch (Id) {
7166     case Intrinsic::s390_vpksh:   // PACKS
7167     case Intrinsic::s390_vpksf:
7168     case Intrinsic::s390_vpksg:
7169     case Intrinsic::s390_vpkshs:  // PACKS_CC
7170     case Intrinsic::s390_vpksfs:
7171     case Intrinsic::s390_vpksgs:
7172     case Intrinsic::s390_vpklsh:  // PACKLS
7173     case Intrinsic::s390_vpklsf:
7174     case Intrinsic::s390_vpklsg:
7175     case Intrinsic::s390_vpklshs: // PACKLS_CC
7176     case Intrinsic::s390_vpklsfs:
7177     case Intrinsic::s390_vpklsgs:
7178     case Intrinsic::s390_vpdi:
7179     case Intrinsic::s390_vsldb:
7180     case Intrinsic::s390_vperm:
7181       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7182       break;
7183     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7184     case Intrinsic::s390_vuplhh:
7185     case Intrinsic::s390_vuplhf:
7186     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7187     case Intrinsic::s390_vupllh:
7188     case Intrinsic::s390_vupllf:
7189       IsLogical = true;
7190       LLVM_FALLTHROUGH;
7191     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7192     case Intrinsic::s390_vuphh:
7193     case Intrinsic::s390_vuphf:
7194     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7195     case Intrinsic::s390_vuplhw:
7196     case Intrinsic::s390_vuplf: {
7197       SDValue SrcOp = Op.getOperand(1);
7198       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7199       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7200       if (IsLogical) {
7201         Known = Known.zext(BitWidth);
7202       } else
7203         Known = Known.sext(BitWidth);
7204       break;
7205     }
7206     default:
7207       break;
7208     }
7209   } else {
7210     switch (Opcode) {
7211     case SystemZISD::JOIN_DWORDS:
7212     case SystemZISD::SELECT_CCMASK:
7213       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7214       break;
7215     case SystemZISD::REPLICATE: {
7216       SDValue SrcOp = Op.getOperand(0);
7217       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7218       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7219         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7220       break;
7221     }
7222     default:
7223       break;
7224     }
7225   }
7226 
7227   // Known has the width of the source operand(s). Adjust if needed to match
7228   // the passed bitwidth.
7229   if (Known.getBitWidth() != BitWidth)
7230     Known = Known.anyextOrTrunc(BitWidth);
7231 }
7232 
7233 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7234                                         const SelectionDAG &DAG, unsigned Depth,
7235                                         unsigned OpNo) {
7236   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7237   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7238   if (LHS == 1) return 1; // Early out.
7239   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7240   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7241   if (RHS == 1) return 1; // Early out.
7242   unsigned Common = std::min(LHS, RHS);
7243   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7244   EVT VT = Op.getValueType();
7245   unsigned VTBits = VT.getScalarSizeInBits();
7246   if (SrcBitWidth > VTBits) { // PACK
7247     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7248     if (Common > SrcExtraBits)
7249       return (Common - SrcExtraBits);
7250     return 1;
7251   }
7252   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7253   return Common;
7254 }
7255 
7256 unsigned
7257 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7258     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7259     unsigned Depth) const {
7260   if (Op.getResNo() != 0)
7261     return 1;
7262   unsigned Opcode = Op.getOpcode();
7263   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7264     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7265     switch (Id) {
7266     case Intrinsic::s390_vpksh:   // PACKS
7267     case Intrinsic::s390_vpksf:
7268     case Intrinsic::s390_vpksg:
7269     case Intrinsic::s390_vpkshs:  // PACKS_CC
7270     case Intrinsic::s390_vpksfs:
7271     case Intrinsic::s390_vpksgs:
7272     case Intrinsic::s390_vpklsh:  // PACKLS
7273     case Intrinsic::s390_vpklsf:
7274     case Intrinsic::s390_vpklsg:
7275     case Intrinsic::s390_vpklshs: // PACKLS_CC
7276     case Intrinsic::s390_vpklsfs:
7277     case Intrinsic::s390_vpklsgs:
7278     case Intrinsic::s390_vpdi:
7279     case Intrinsic::s390_vsldb:
7280     case Intrinsic::s390_vperm:
7281       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7282     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7283     case Intrinsic::s390_vuphh:
7284     case Intrinsic::s390_vuphf:
7285     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7286     case Intrinsic::s390_vuplhw:
7287     case Intrinsic::s390_vuplf: {
7288       SDValue PackedOp = Op.getOperand(1);
7289       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7290       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7291       EVT VT = Op.getValueType();
7292       unsigned VTBits = VT.getScalarSizeInBits();
7293       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7294       return Tmp;
7295     }
7296     default:
7297       break;
7298     }
7299   } else {
7300     switch (Opcode) {
7301     case SystemZISD::SELECT_CCMASK:
7302       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7303     default:
7304       break;
7305     }
7306   }
7307 
7308   return 1;
7309 }
7310 
7311 unsigned
7312 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7313   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7314   unsigned StackAlign = TFI->getStackAlignment();
7315   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7316          "Unexpected stack alignment");
7317   // The default stack probe size is 4096 if the function has no
7318   // stack-probe-size attribute.
7319   unsigned StackProbeSize = 4096;
7320   const Function &Fn = MF.getFunction();
7321   if (Fn.hasFnAttribute("stack-probe-size"))
7322     Fn.getFnAttribute("stack-probe-size")
7323         .getValueAsString()
7324         .getAsInteger(0, StackProbeSize);
7325   // Round down to the stack alignment.
7326   StackProbeSize &= ~(StackAlign - 1);
7327   return StackProbeSize ? StackProbeSize : StackAlign;
7328 }
7329 
7330 //===----------------------------------------------------------------------===//
7331 // Custom insertion
7332 //===----------------------------------------------------------------------===//
7333 
7334 // Force base value Base into a register before MI.  Return the register.
7335 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7336                          const SystemZInstrInfo *TII) {
7337   MachineBasicBlock *MBB = MI.getParent();
7338   MachineFunction &MF = *MBB->getParent();
7339   MachineRegisterInfo &MRI = MF.getRegInfo();
7340 
7341   if (Base.isReg()) {
7342     // Copy Base into a new virtual register to help register coalescing in
7343     // cases with multiple uses.
7344     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7345     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7346       .add(Base);
7347     return Reg;
7348   }
7349 
7350   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7351   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7352       .add(Base)
7353       .addImm(0)
7354       .addReg(0);
7355   return Reg;
7356 }
7357 
7358 // The CC operand of MI might be missing a kill marker because there
7359 // were multiple uses of CC, and ISel didn't know which to mark.
7360 // Figure out whether MI should have had a kill marker.
7361 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7362   // Scan forward through BB for a use/def of CC.
7363   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7364   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7365     const MachineInstr& mi = *miI;
7366     if (mi.readsRegister(SystemZ::CC))
7367       return false;
7368     if (mi.definesRegister(SystemZ::CC))
7369       break; // Should have kill-flag - update below.
7370   }
7371 
7372   // If we hit the end of the block, check whether CC is live into a
7373   // successor.
7374   if (miI == MBB->end()) {
7375     for (const MachineBasicBlock *Succ : MBB->successors())
7376       if (Succ->isLiveIn(SystemZ::CC))
7377         return false;
7378   }
7379 
7380   return true;
7381 }
7382 
7383 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7384 // together with other Select pseudo-opcodes into a single basic-block with
7385 // a conditional jump around it.
7386 static bool isSelectPseudo(MachineInstr &MI) {
7387   switch (MI.getOpcode()) {
7388   case SystemZ::Select32:
7389   case SystemZ::Select64:
7390   case SystemZ::SelectF32:
7391   case SystemZ::SelectF64:
7392   case SystemZ::SelectF128:
7393   case SystemZ::SelectVR32:
7394   case SystemZ::SelectVR64:
7395   case SystemZ::SelectVR128:
7396     return true;
7397 
7398   default:
7399     return false;
7400   }
7401 }
7402 
7403 // Helper function, which inserts PHI functions into SinkMBB:
7404 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7405 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7406 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7407                                  MachineBasicBlock *TrueMBB,
7408                                  MachineBasicBlock *FalseMBB,
7409                                  MachineBasicBlock *SinkMBB) {
7410   MachineFunction *MF = TrueMBB->getParent();
7411   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7412 
7413   MachineInstr *FirstMI = Selects.front();
7414   unsigned CCValid = FirstMI->getOperand(3).getImm();
7415   unsigned CCMask = FirstMI->getOperand(4).getImm();
7416 
7417   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7418 
7419   // As we are creating the PHIs, we have to be careful if there is more than
7420   // one.  Later Selects may reference the results of earlier Selects, but later
7421   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7422   // That also means that PHI construction must work forward from earlier to
7423   // later, and that the code must maintain a mapping from earlier PHI's
7424   // destination registers, and the registers that went into the PHI.
7425   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7426 
7427   for (auto MI : Selects) {
7428     Register DestReg = MI->getOperand(0).getReg();
7429     Register TrueReg = MI->getOperand(1).getReg();
7430     Register FalseReg = MI->getOperand(2).getReg();
7431 
7432     // If this Select we are generating is the opposite condition from
7433     // the jump we generated, then we have to swap the operands for the
7434     // PHI that is going to be generated.
7435     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7436       std::swap(TrueReg, FalseReg);
7437 
7438     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7439       TrueReg = RegRewriteTable[TrueReg].first;
7440 
7441     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7442       FalseReg = RegRewriteTable[FalseReg].second;
7443 
7444     DebugLoc DL = MI->getDebugLoc();
7445     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7446       .addReg(TrueReg).addMBB(TrueMBB)
7447       .addReg(FalseReg).addMBB(FalseMBB);
7448 
7449     // Add this PHI to the rewrite table.
7450     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7451   }
7452 
7453   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7454 }
7455 
7456 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7457 MachineBasicBlock *
7458 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7459                                   MachineBasicBlock *MBB) const {
7460   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7461   const SystemZInstrInfo *TII =
7462       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7463 
7464   unsigned CCValid = MI.getOperand(3).getImm();
7465   unsigned CCMask = MI.getOperand(4).getImm();
7466 
7467   // If we have a sequence of Select* pseudo instructions using the
7468   // same condition code value, we want to expand all of them into
7469   // a single pair of basic blocks using the same condition.
7470   SmallVector<MachineInstr*, 8> Selects;
7471   SmallVector<MachineInstr*, 8> DbgValues;
7472   Selects.push_back(&MI);
7473   unsigned Count = 0;
7474   for (MachineBasicBlock::iterator NextMIIt =
7475          std::next(MachineBasicBlock::iterator(MI));
7476        NextMIIt != MBB->end(); ++NextMIIt) {
7477     if (isSelectPseudo(*NextMIIt)) {
7478       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7479              "Bad CCValid operands since CC was not redefined.");
7480       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7481           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7482         Selects.push_back(&*NextMIIt);
7483         continue;
7484       }
7485       break;
7486     }
7487     if (NextMIIt->definesRegister(SystemZ::CC) ||
7488         NextMIIt->usesCustomInsertionHook())
7489       break;
7490     bool User = false;
7491     for (auto SelMI : Selects)
7492       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7493         User = true;
7494         break;
7495       }
7496     if (NextMIIt->isDebugInstr()) {
7497       if (User) {
7498         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7499         DbgValues.push_back(&*NextMIIt);
7500       }
7501     }
7502     else if (User || ++Count > 20)
7503       break;
7504   }
7505 
7506   MachineInstr *LastMI = Selects.back();
7507   bool CCKilled =
7508       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7509   MachineBasicBlock *StartMBB = MBB;
7510   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7511   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7512 
7513   // Unless CC was killed in the last Select instruction, mark it as
7514   // live-in to both FalseMBB and JoinMBB.
7515   if (!CCKilled) {
7516     FalseMBB->addLiveIn(SystemZ::CC);
7517     JoinMBB->addLiveIn(SystemZ::CC);
7518   }
7519 
7520   //  StartMBB:
7521   //   BRC CCMask, JoinMBB
7522   //   # fallthrough to FalseMBB
7523   MBB = StartMBB;
7524   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7525     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7526   MBB->addSuccessor(JoinMBB);
7527   MBB->addSuccessor(FalseMBB);
7528 
7529   //  FalseMBB:
7530   //   # fallthrough to JoinMBB
7531   MBB = FalseMBB;
7532   MBB->addSuccessor(JoinMBB);
7533 
7534   //  JoinMBB:
7535   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7536   //  ...
7537   MBB = JoinMBB;
7538   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7539   for (auto SelMI : Selects)
7540     SelMI->eraseFromParent();
7541 
7542   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7543   for (auto DbgMI : DbgValues)
7544     MBB->splice(InsertPos, StartMBB, DbgMI);
7545 
7546   return JoinMBB;
7547 }
7548 
7549 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7550 // StoreOpcode is the store to use and Invert says whether the store should
7551 // happen when the condition is false rather than true.  If a STORE ON
7552 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7553 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7554                                                         MachineBasicBlock *MBB,
7555                                                         unsigned StoreOpcode,
7556                                                         unsigned STOCOpcode,
7557                                                         bool Invert) const {
7558   const SystemZInstrInfo *TII =
7559       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7560 
7561   Register SrcReg = MI.getOperand(0).getReg();
7562   MachineOperand Base = MI.getOperand(1);
7563   int64_t Disp = MI.getOperand(2).getImm();
7564   Register IndexReg = MI.getOperand(3).getReg();
7565   unsigned CCValid = MI.getOperand(4).getImm();
7566   unsigned CCMask = MI.getOperand(5).getImm();
7567   DebugLoc DL = MI.getDebugLoc();
7568 
7569   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7570 
7571   // ISel pattern matching also adds a load memory operand of the same
7572   // address, so take special care to find the storing memory operand.
7573   MachineMemOperand *MMO = nullptr;
7574   for (auto *I : MI.memoperands())
7575     if (I->isStore()) {
7576       MMO = I;
7577       break;
7578     }
7579 
7580   // Use STOCOpcode if possible.  We could use different store patterns in
7581   // order to avoid matching the index register, but the performance trade-offs
7582   // might be more complicated in that case.
7583   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7584     if (Invert)
7585       CCMask ^= CCValid;
7586 
7587     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7588       .addReg(SrcReg)
7589       .add(Base)
7590       .addImm(Disp)
7591       .addImm(CCValid)
7592       .addImm(CCMask)
7593       .addMemOperand(MMO);
7594 
7595     MI.eraseFromParent();
7596     return MBB;
7597   }
7598 
7599   // Get the condition needed to branch around the store.
7600   if (!Invert)
7601     CCMask ^= CCValid;
7602 
7603   MachineBasicBlock *StartMBB = MBB;
7604   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7605   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7606 
7607   // Unless CC was killed in the CondStore instruction, mark it as
7608   // live-in to both FalseMBB and JoinMBB.
7609   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7610     FalseMBB->addLiveIn(SystemZ::CC);
7611     JoinMBB->addLiveIn(SystemZ::CC);
7612   }
7613 
7614   //  StartMBB:
7615   //   BRC CCMask, JoinMBB
7616   //   # fallthrough to FalseMBB
7617   MBB = StartMBB;
7618   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7619     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7620   MBB->addSuccessor(JoinMBB);
7621   MBB->addSuccessor(FalseMBB);
7622 
7623   //  FalseMBB:
7624   //   store %SrcReg, %Disp(%Index,%Base)
7625   //   # fallthrough to JoinMBB
7626   MBB = FalseMBB;
7627   BuildMI(MBB, DL, TII->get(StoreOpcode))
7628       .addReg(SrcReg)
7629       .add(Base)
7630       .addImm(Disp)
7631       .addReg(IndexReg)
7632       .addMemOperand(MMO);
7633   MBB->addSuccessor(JoinMBB);
7634 
7635   MI.eraseFromParent();
7636   return JoinMBB;
7637 }
7638 
7639 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7640 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7641 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7642 // BitSize is the width of the field in bits, or 0 if this is a partword
7643 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7644 // is one of the operands.  Invert says whether the field should be
7645 // inverted after performing BinOpcode (e.g. for NAND).
7646 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7647     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7648     unsigned BitSize, bool Invert) const {
7649   MachineFunction &MF = *MBB->getParent();
7650   const SystemZInstrInfo *TII =
7651       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7652   MachineRegisterInfo &MRI = MF.getRegInfo();
7653   bool IsSubWord = (BitSize < 32);
7654 
7655   // Extract the operands.  Base can be a register or a frame index.
7656   // Src2 can be a register or immediate.
7657   Register Dest = MI.getOperand(0).getReg();
7658   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7659   int64_t Disp = MI.getOperand(2).getImm();
7660   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7661   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7662   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7663   DebugLoc DL = MI.getDebugLoc();
7664   if (IsSubWord)
7665     BitSize = MI.getOperand(6).getImm();
7666 
7667   // Subword operations use 32-bit registers.
7668   const TargetRegisterClass *RC = (BitSize <= 32 ?
7669                                    &SystemZ::GR32BitRegClass :
7670                                    &SystemZ::GR64BitRegClass);
7671   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7672   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7673 
7674   // Get the right opcodes for the displacement.
7675   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7676   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7677   assert(LOpcode && CSOpcode && "Displacement out of range");
7678 
7679   // Create virtual registers for temporary results.
7680   Register OrigVal       = MRI.createVirtualRegister(RC);
7681   Register OldVal        = MRI.createVirtualRegister(RC);
7682   Register NewVal        = (BinOpcode || IsSubWord ?
7683                             MRI.createVirtualRegister(RC) : Src2.getReg());
7684   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7685   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7686 
7687   // Insert a basic block for the main loop.
7688   MachineBasicBlock *StartMBB = MBB;
7689   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7690   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7691 
7692   //  StartMBB:
7693   //   ...
7694   //   %OrigVal = L Disp(%Base)
7695   //   # fall through to LoopMBB
7696   MBB = StartMBB;
7697   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7698   MBB->addSuccessor(LoopMBB);
7699 
7700   //  LoopMBB:
7701   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7702   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7703   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7704   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7705   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7706   //   JNE LoopMBB
7707   //   # fall through to DoneMBB
7708   MBB = LoopMBB;
7709   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7710     .addReg(OrigVal).addMBB(StartMBB)
7711     .addReg(Dest).addMBB(LoopMBB);
7712   if (IsSubWord)
7713     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7714       .addReg(OldVal).addReg(BitShift).addImm(0);
7715   if (Invert) {
7716     // Perform the operation normally and then invert every bit of the field.
7717     Register Tmp = MRI.createVirtualRegister(RC);
7718     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7719     if (BitSize <= 32)
7720       // XILF with the upper BitSize bits set.
7721       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7722         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7723     else {
7724       // Use LCGR and add -1 to the result, which is more compact than
7725       // an XILF, XILH pair.
7726       Register Tmp2 = MRI.createVirtualRegister(RC);
7727       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7728       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7729         .addReg(Tmp2).addImm(-1);
7730     }
7731   } else if (BinOpcode)
7732     // A simply binary operation.
7733     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7734         .addReg(RotatedOldVal)
7735         .add(Src2);
7736   else if (IsSubWord)
7737     // Use RISBG to rotate Src2 into position and use it to replace the
7738     // field in RotatedOldVal.
7739     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7740       .addReg(RotatedOldVal).addReg(Src2.getReg())
7741       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7742   if (IsSubWord)
7743     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7744       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7745   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7746       .addReg(OldVal)
7747       .addReg(NewVal)
7748       .add(Base)
7749       .addImm(Disp);
7750   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7751     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7752   MBB->addSuccessor(LoopMBB);
7753   MBB->addSuccessor(DoneMBB);
7754 
7755   MI.eraseFromParent();
7756   return DoneMBB;
7757 }
7758 
7759 // Implement EmitInstrWithCustomInserter for pseudo
7760 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7761 // instruction that should be used to compare the current field with the
7762 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7763 // for when the current field should be kept.  BitSize is the width of
7764 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7765 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7766     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7767     unsigned KeepOldMask, unsigned BitSize) const {
7768   MachineFunction &MF = *MBB->getParent();
7769   const SystemZInstrInfo *TII =
7770       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7771   MachineRegisterInfo &MRI = MF.getRegInfo();
7772   bool IsSubWord = (BitSize < 32);
7773 
7774   // Extract the operands.  Base can be a register or a frame index.
7775   Register Dest = MI.getOperand(0).getReg();
7776   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7777   int64_t Disp = MI.getOperand(2).getImm();
7778   Register Src2 = MI.getOperand(3).getReg();
7779   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7780   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7781   DebugLoc DL = MI.getDebugLoc();
7782   if (IsSubWord)
7783     BitSize = MI.getOperand(6).getImm();
7784 
7785   // Subword operations use 32-bit registers.
7786   const TargetRegisterClass *RC = (BitSize <= 32 ?
7787                                    &SystemZ::GR32BitRegClass :
7788                                    &SystemZ::GR64BitRegClass);
7789   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7790   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7791 
7792   // Get the right opcodes for the displacement.
7793   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7794   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7795   assert(LOpcode && CSOpcode && "Displacement out of range");
7796 
7797   // Create virtual registers for temporary results.
7798   Register OrigVal       = MRI.createVirtualRegister(RC);
7799   Register OldVal        = MRI.createVirtualRegister(RC);
7800   Register NewVal        = MRI.createVirtualRegister(RC);
7801   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7802   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7803   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7804 
7805   // Insert 3 basic blocks for the loop.
7806   MachineBasicBlock *StartMBB  = MBB;
7807   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7808   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7809   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7810   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7811 
7812   //  StartMBB:
7813   //   ...
7814   //   %OrigVal     = L Disp(%Base)
7815   //   # fall through to LoopMBB
7816   MBB = StartMBB;
7817   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7818   MBB->addSuccessor(LoopMBB);
7819 
7820   //  LoopMBB:
7821   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7822   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7823   //   CompareOpcode %RotatedOldVal, %Src2
7824   //   BRC KeepOldMask, UpdateMBB
7825   MBB = LoopMBB;
7826   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7827     .addReg(OrigVal).addMBB(StartMBB)
7828     .addReg(Dest).addMBB(UpdateMBB);
7829   if (IsSubWord)
7830     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7831       .addReg(OldVal).addReg(BitShift).addImm(0);
7832   BuildMI(MBB, DL, TII->get(CompareOpcode))
7833     .addReg(RotatedOldVal).addReg(Src2);
7834   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7835     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7836   MBB->addSuccessor(UpdateMBB);
7837   MBB->addSuccessor(UseAltMBB);
7838 
7839   //  UseAltMBB:
7840   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7841   //   # fall through to UpdateMBB
7842   MBB = UseAltMBB;
7843   if (IsSubWord)
7844     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7845       .addReg(RotatedOldVal).addReg(Src2)
7846       .addImm(32).addImm(31 + BitSize).addImm(0);
7847   MBB->addSuccessor(UpdateMBB);
7848 
7849   //  UpdateMBB:
7850   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7851   //                        [ %RotatedAltVal, UseAltMBB ]
7852   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7853   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7854   //   JNE LoopMBB
7855   //   # fall through to DoneMBB
7856   MBB = UpdateMBB;
7857   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7858     .addReg(RotatedOldVal).addMBB(LoopMBB)
7859     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7860   if (IsSubWord)
7861     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7862       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7863   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7864       .addReg(OldVal)
7865       .addReg(NewVal)
7866       .add(Base)
7867       .addImm(Disp);
7868   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7869     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7870   MBB->addSuccessor(LoopMBB);
7871   MBB->addSuccessor(DoneMBB);
7872 
7873   MI.eraseFromParent();
7874   return DoneMBB;
7875 }
7876 
7877 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7878 // instruction MI.
7879 MachineBasicBlock *
7880 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7881                                           MachineBasicBlock *MBB) const {
7882   MachineFunction &MF = *MBB->getParent();
7883   const SystemZInstrInfo *TII =
7884       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7885   MachineRegisterInfo &MRI = MF.getRegInfo();
7886 
7887   // Extract the operands.  Base can be a register or a frame index.
7888   Register Dest = MI.getOperand(0).getReg();
7889   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7890   int64_t Disp = MI.getOperand(2).getImm();
7891   Register CmpVal = MI.getOperand(3).getReg();
7892   Register OrigSwapVal = MI.getOperand(4).getReg();
7893   Register BitShift = MI.getOperand(5).getReg();
7894   Register NegBitShift = MI.getOperand(6).getReg();
7895   int64_t BitSize = MI.getOperand(7).getImm();
7896   DebugLoc DL = MI.getDebugLoc();
7897 
7898   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7899 
7900   // Get the right opcodes for the displacement and zero-extension.
7901   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7902   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7903   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7904   assert(LOpcode && CSOpcode && "Displacement out of range");
7905 
7906   // Create virtual registers for temporary results.
7907   Register OrigOldVal = MRI.createVirtualRegister(RC);
7908   Register OldVal = MRI.createVirtualRegister(RC);
7909   Register SwapVal = MRI.createVirtualRegister(RC);
7910   Register StoreVal = MRI.createVirtualRegister(RC);
7911   Register OldValRot = MRI.createVirtualRegister(RC);
7912   Register RetryOldVal = MRI.createVirtualRegister(RC);
7913   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7914 
7915   // Insert 2 basic blocks for the loop.
7916   MachineBasicBlock *StartMBB = MBB;
7917   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7918   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7919   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7920 
7921   //  StartMBB:
7922   //   ...
7923   //   %OrigOldVal     = L Disp(%Base)
7924   //   # fall through to LoopMBB
7925   MBB = StartMBB;
7926   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7927       .add(Base)
7928       .addImm(Disp)
7929       .addReg(0);
7930   MBB->addSuccessor(LoopMBB);
7931 
7932   //  LoopMBB:
7933   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7934   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7935   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
7936   //                      ^^ The low BitSize bits contain the field
7937   //                         of interest.
7938   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7939   //                      ^^ Replace the upper 32-BitSize bits of the
7940   //                         swap value with those that we loaded and rotated.
7941   //   %Dest = LL[CH] %OldValRot
7942   //   CR %Dest, %CmpVal
7943   //   JNE DoneMBB
7944   //   # Fall through to SetMBB
7945   MBB = LoopMBB;
7946   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7947     .addReg(OrigOldVal).addMBB(StartMBB)
7948     .addReg(RetryOldVal).addMBB(SetMBB);
7949   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7950     .addReg(OrigSwapVal).addMBB(StartMBB)
7951     .addReg(RetrySwapVal).addMBB(SetMBB);
7952   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7953     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7954   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7955     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7956   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7957     .addReg(OldValRot);
7958   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7959     .addReg(Dest).addReg(CmpVal);
7960   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7961     .addImm(SystemZ::CCMASK_ICMP)
7962     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7963   MBB->addSuccessor(DoneMBB);
7964   MBB->addSuccessor(SetMBB);
7965 
7966   //  SetMBB:
7967   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7968   //                      ^^ Rotate the new field to its proper position.
7969   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
7970   //   JNE LoopMBB
7971   //   # fall through to ExitMBB
7972   MBB = SetMBB;
7973   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7974     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7975   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7976       .addReg(OldVal)
7977       .addReg(StoreVal)
7978       .add(Base)
7979       .addImm(Disp);
7980   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7981     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7982   MBB->addSuccessor(LoopMBB);
7983   MBB->addSuccessor(DoneMBB);
7984 
7985   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7986   // to the block after the loop.  At this point, CC may have been defined
7987   // either by the CR in LoopMBB or by the CS in SetMBB.
7988   if (!MI.registerDefIsDead(SystemZ::CC))
7989     DoneMBB->addLiveIn(SystemZ::CC);
7990 
7991   MI.eraseFromParent();
7992   return DoneMBB;
7993 }
7994 
7995 // Emit a move from two GR64s to a GR128.
7996 MachineBasicBlock *
7997 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7998                                    MachineBasicBlock *MBB) const {
7999   MachineFunction &MF = *MBB->getParent();
8000   const SystemZInstrInfo *TII =
8001       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8002   MachineRegisterInfo &MRI = MF.getRegInfo();
8003   DebugLoc DL = MI.getDebugLoc();
8004 
8005   Register Dest = MI.getOperand(0).getReg();
8006   Register Hi = MI.getOperand(1).getReg();
8007   Register Lo = MI.getOperand(2).getReg();
8008   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8009   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8010 
8011   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
8012   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
8013     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
8014   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8015     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
8016 
8017   MI.eraseFromParent();
8018   return MBB;
8019 }
8020 
8021 // Emit an extension from a GR64 to a GR128.  ClearEven is true
8022 // if the high register of the GR128 value must be cleared or false if
8023 // it's "don't care".
8024 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8025                                                      MachineBasicBlock *MBB,
8026                                                      bool ClearEven) const {
8027   MachineFunction &MF = *MBB->getParent();
8028   const SystemZInstrInfo *TII =
8029       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8030   MachineRegisterInfo &MRI = MF.getRegInfo();
8031   DebugLoc DL = MI.getDebugLoc();
8032 
8033   Register Dest = MI.getOperand(0).getReg();
8034   Register Src = MI.getOperand(1).getReg();
8035   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8036 
8037   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8038   if (ClearEven) {
8039     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8040     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8041 
8042     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8043       .addImm(0);
8044     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8045       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8046     In128 = NewIn128;
8047   }
8048   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8049     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8050 
8051   MI.eraseFromParent();
8052   return MBB;
8053 }
8054 
8055 MachineBasicBlock *
8056 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8057                                          MachineBasicBlock *MBB,
8058                                          unsigned Opcode, bool IsMemset) const {
8059   MachineFunction &MF = *MBB->getParent();
8060   const SystemZInstrInfo *TII =
8061       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8062   MachineRegisterInfo &MRI = MF.getRegInfo();
8063   DebugLoc DL = MI.getDebugLoc();
8064 
8065   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8066   uint64_t DestDisp = MI.getOperand(1).getImm();
8067   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8068   uint64_t SrcDisp;
8069 
8070   // Fold the displacement Disp if it is out of range.
8071   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8072     if (!isUInt<12>(Disp)) {
8073       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8074       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8075       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8076         .add(Base).addImm(Disp).addReg(0);
8077       Base = MachineOperand::CreateReg(Reg, false);
8078       Disp = 0;
8079     }
8080   };
8081 
8082   if (!IsMemset) {
8083     SrcBase = earlyUseOperand(MI.getOperand(2));
8084     SrcDisp = MI.getOperand(3).getImm();
8085   } else {
8086     SrcBase = DestBase;
8087     SrcDisp = DestDisp++;
8088     foldDisplIfNeeded(DestBase, DestDisp);
8089   }
8090 
8091   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8092   bool IsImmForm = LengthMO.isImm();
8093   bool IsRegForm = !IsImmForm;
8094 
8095   // Build and insert one Opcode of Length, with special treatment for memset.
8096   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8097                             MachineBasicBlock::iterator InsPos,
8098                             MachineOperand DBase, uint64_t DDisp,
8099                             MachineOperand SBase, uint64_t SDisp,
8100                             unsigned Length) -> void {
8101     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8102     if (IsMemset) {
8103       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8104       if (ByteMO.isImm())
8105         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8106           .add(SBase).addImm(SDisp).add(ByteMO);
8107       else
8108         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8109           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8110       if (--Length == 0)
8111         return;
8112     }
8113     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8114       .add(DBase).addImm(DDisp).addImm(Length)
8115       .add(SBase).addImm(SDisp)
8116       .setMemRefs(MI.memoperands());
8117   };
8118 
8119   bool NeedsLoop = false;
8120   uint64_t ImmLength = 0;
8121   Register LenAdjReg = SystemZ::NoRegister;
8122   if (IsImmForm) {
8123     ImmLength = LengthMO.getImm();
8124     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8125     if (ImmLength == 0) {
8126       MI.eraseFromParent();
8127       return MBB;
8128     }
8129     if (Opcode == SystemZ::CLC) {
8130       if (ImmLength > 3 * 256)
8131         // A two-CLC sequence is a clear win over a loop, not least because
8132         // it needs only one branch.  A three-CLC sequence needs the same
8133         // number of branches as a loop (i.e. 2), but is shorter.  That
8134         // brings us to lengths greater than 768 bytes.  It seems relatively
8135         // likely that a difference will be found within the first 768 bytes,
8136         // so we just optimize for the smallest number of branch
8137         // instructions, in order to avoid polluting the prediction buffer
8138         // too much.
8139         NeedsLoop = true;
8140     } else if (ImmLength > 6 * 256)
8141       // The heuristic we use is to prefer loops for anything that would
8142       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8143       // to choose between straight-line code and looping code, since the
8144       // time will be dominated by the MVCs themselves.
8145       NeedsLoop = true;
8146   } else {
8147     NeedsLoop = true;
8148     LenAdjReg = LengthMO.getReg();
8149   }
8150 
8151   // When generating more than one CLC, all but the last will need to
8152   // branch to the end when a difference is found.
8153   MachineBasicBlock *EndMBB =
8154       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8155            ? SystemZ::splitBlockAfter(MI, MBB)
8156            : nullptr);
8157 
8158   if (NeedsLoop) {
8159     Register StartCountReg =
8160       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8161     if (IsImmForm) {
8162       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8163       ImmLength &= 255;
8164     } else {
8165       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8166         .addReg(LenAdjReg)
8167         .addReg(0)
8168         .addImm(8);
8169     }
8170 
8171     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8172     auto loadZeroAddress = [&]() -> MachineOperand {
8173       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8174       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8175       return MachineOperand::CreateReg(Reg, false);
8176     };
8177     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8178       DestBase = loadZeroAddress();
8179     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8180       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8181 
8182     MachineBasicBlock *StartMBB = nullptr;
8183     MachineBasicBlock *LoopMBB = nullptr;
8184     MachineBasicBlock *NextMBB = nullptr;
8185     MachineBasicBlock *DoneMBB = nullptr;
8186     MachineBasicBlock *AllDoneMBB = nullptr;
8187 
8188     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8189     Register StartDestReg =
8190         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8191 
8192     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8193     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8194     Register ThisDestReg =
8195         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8196     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8197     Register NextDestReg =
8198         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8199     RC = &SystemZ::GR64BitRegClass;
8200     Register ThisCountReg = MRI.createVirtualRegister(RC);
8201     Register NextCountReg = MRI.createVirtualRegister(RC);
8202 
8203     if (IsRegForm) {
8204       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8205       StartMBB = SystemZ::emitBlockAfter(MBB);
8206       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8207       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8208       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8209 
8210       //  MBB:
8211       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8212       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8213         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8214       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8215         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8216         .addMBB(AllDoneMBB);
8217       MBB->addSuccessor(AllDoneMBB);
8218       if (!IsMemset)
8219         MBB->addSuccessor(StartMBB);
8220       else {
8221         // MemsetOneCheckMBB:
8222         // # Jump to MemsetOneMBB for a memset of length 1, or
8223         // # fall thru to StartMBB.
8224         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8225         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8226         MBB->addSuccessor(MemsetOneCheckMBB);
8227         MBB = MemsetOneCheckMBB;
8228         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8229           .addReg(LenAdjReg).addImm(-1);
8230         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8231           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8232           .addMBB(MemsetOneMBB);
8233         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8234         MBB->addSuccessor(StartMBB, {90, 100});
8235 
8236         // MemsetOneMBB:
8237         // # Jump back to AllDoneMBB after a single MVI or STC.
8238         MBB = MemsetOneMBB;
8239         insertMemMemOp(MBB, MBB->end(),
8240                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8241                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8242                        1);
8243         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8244         MBB->addSuccessor(AllDoneMBB);
8245       }
8246 
8247       // StartMBB:
8248       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8249       MBB = StartMBB;
8250       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8251         .addReg(StartCountReg).addImm(0);
8252       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8253         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8254         .addMBB(DoneMBB);
8255       MBB->addSuccessor(DoneMBB);
8256       MBB->addSuccessor(LoopMBB);
8257     }
8258     else {
8259       StartMBB = MBB;
8260       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8261       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8262       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8263 
8264       //  StartMBB:
8265       //   # fall through to LoopMBB
8266       MBB->addSuccessor(LoopMBB);
8267 
8268       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8269       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8270       if (EndMBB && !ImmLength)
8271         // If the loop handled the whole CLC range, DoneMBB will be empty with
8272         // CC live-through into EndMBB, so add it as live-in.
8273         DoneMBB->addLiveIn(SystemZ::CC);
8274     }
8275 
8276     //  LoopMBB:
8277     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8278     //                      [ %NextDestReg, NextMBB ]
8279     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8280     //                     [ %NextSrcReg, NextMBB ]
8281     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8282     //                       [ %NextCountReg, NextMBB ]
8283     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8284     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8285     //   ( JLH EndMBB )
8286     //
8287     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8288     MBB = LoopMBB;
8289     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8290       .addReg(StartDestReg).addMBB(StartMBB)
8291       .addReg(NextDestReg).addMBB(NextMBB);
8292     if (!HaveSingleBase)
8293       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8294         .addReg(StartSrcReg).addMBB(StartMBB)
8295         .addReg(NextSrcReg).addMBB(NextMBB);
8296     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8297       .addReg(StartCountReg).addMBB(StartMBB)
8298       .addReg(NextCountReg).addMBB(NextMBB);
8299     if (Opcode == SystemZ::MVC)
8300       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8301         .addImm(SystemZ::PFD_WRITE)
8302         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8303     insertMemMemOp(MBB, MBB->end(),
8304                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8305                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8306     if (EndMBB) {
8307       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8308         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8309         .addMBB(EndMBB);
8310       MBB->addSuccessor(EndMBB);
8311       MBB->addSuccessor(NextMBB);
8312     }
8313 
8314     // NextMBB:
8315     //   %NextDestReg = LA 256(%ThisDestReg)
8316     //   %NextSrcReg = LA 256(%ThisSrcReg)
8317     //   %NextCountReg = AGHI %ThisCountReg, -1
8318     //   CGHI %NextCountReg, 0
8319     //   JLH LoopMBB
8320     //   # fall through to DoneMBB
8321     //
8322     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8323     MBB = NextMBB;
8324     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8325       .addReg(ThisDestReg).addImm(256).addReg(0);
8326     if (!HaveSingleBase)
8327       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8328         .addReg(ThisSrcReg).addImm(256).addReg(0);
8329     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8330       .addReg(ThisCountReg).addImm(-1);
8331     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8332       .addReg(NextCountReg).addImm(0);
8333     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8334       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8335       .addMBB(LoopMBB);
8336     MBB->addSuccessor(LoopMBB);
8337     MBB->addSuccessor(DoneMBB);
8338 
8339     MBB = DoneMBB;
8340     if (IsRegForm) {
8341       // DoneMBB:
8342       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8343       // # Use EXecute Relative Long for the remainder of the bytes. The target
8344       //   instruction of the EXRL will have a length field of 1 since 0 is an
8345       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8346       //   0xff) + 1.
8347       // # Fall through to AllDoneMBB.
8348       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8349       Register RemDestReg = HaveSingleBase ? RemSrcReg
8350         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8351       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8352         .addReg(StartDestReg).addMBB(StartMBB)
8353         .addReg(NextDestReg).addMBB(NextMBB);
8354       if (!HaveSingleBase)
8355         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8356           .addReg(StartSrcReg).addMBB(StartMBB)
8357           .addReg(NextSrcReg).addMBB(NextMBB);
8358       if (IsMemset)
8359         insertMemMemOp(MBB, MBB->end(),
8360                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
8361                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8362       MachineInstrBuilder EXRL_MIB =
8363         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8364           .addImm(Opcode)
8365           .addReg(LenAdjReg)
8366           .addReg(RemDestReg).addImm(DestDisp)
8367           .addReg(RemSrcReg).addImm(SrcDisp);
8368       MBB->addSuccessor(AllDoneMBB);
8369       MBB = AllDoneMBB;
8370       if (EndMBB) {
8371         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8372         MBB->addLiveIn(SystemZ::CC);
8373       }
8374     }
8375   }
8376 
8377   // Handle any remaining bytes with straight-line code.
8378   while (ImmLength > 0) {
8379     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8380     // The previous iteration might have created out-of-range displacements.
8381     // Apply them using LA/LAY if so.
8382     foldDisplIfNeeded(DestBase, DestDisp);
8383     foldDisplIfNeeded(SrcBase, SrcDisp);
8384     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
8385     DestDisp += ThisLength;
8386     SrcDisp += ThisLength;
8387     ImmLength -= ThisLength;
8388     // If there's another CLC to go, branch to the end if a difference
8389     // was found.
8390     if (EndMBB && ImmLength > 0) {
8391       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8392       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8393         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8394         .addMBB(EndMBB);
8395       MBB->addSuccessor(EndMBB);
8396       MBB->addSuccessor(NextMBB);
8397       MBB = NextMBB;
8398     }
8399   }
8400   if (EndMBB) {
8401     MBB->addSuccessor(EndMBB);
8402     MBB = EndMBB;
8403     MBB->addLiveIn(SystemZ::CC);
8404   }
8405 
8406   MI.eraseFromParent();
8407   return MBB;
8408 }
8409 
8410 // Decompose string pseudo-instruction MI into a loop that continually performs
8411 // Opcode until CC != 3.
8412 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8413     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8414   MachineFunction &MF = *MBB->getParent();
8415   const SystemZInstrInfo *TII =
8416       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8417   MachineRegisterInfo &MRI = MF.getRegInfo();
8418   DebugLoc DL = MI.getDebugLoc();
8419 
8420   uint64_t End1Reg = MI.getOperand(0).getReg();
8421   uint64_t Start1Reg = MI.getOperand(1).getReg();
8422   uint64_t Start2Reg = MI.getOperand(2).getReg();
8423   uint64_t CharReg = MI.getOperand(3).getReg();
8424 
8425   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8426   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8427   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8428   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8429 
8430   MachineBasicBlock *StartMBB = MBB;
8431   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8432   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8433 
8434   //  StartMBB:
8435   //   # fall through to LoopMBB
8436   MBB->addSuccessor(LoopMBB);
8437 
8438   //  LoopMBB:
8439   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8440   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8441   //   R0L = %CharReg
8442   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8443   //   JO LoopMBB
8444   //   # fall through to DoneMBB
8445   //
8446   // The load of R0L can be hoisted by post-RA LICM.
8447   MBB = LoopMBB;
8448 
8449   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8450     .addReg(Start1Reg).addMBB(StartMBB)
8451     .addReg(End1Reg).addMBB(LoopMBB);
8452   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8453     .addReg(Start2Reg).addMBB(StartMBB)
8454     .addReg(End2Reg).addMBB(LoopMBB);
8455   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8456   BuildMI(MBB, DL, TII->get(Opcode))
8457     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8458     .addReg(This1Reg).addReg(This2Reg);
8459   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8460     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8461   MBB->addSuccessor(LoopMBB);
8462   MBB->addSuccessor(DoneMBB);
8463 
8464   DoneMBB->addLiveIn(SystemZ::CC);
8465 
8466   MI.eraseFromParent();
8467   return DoneMBB;
8468 }
8469 
8470 // Update TBEGIN instruction with final opcode and register clobbers.
8471 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8472     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8473     bool NoFloat) const {
8474   MachineFunction &MF = *MBB->getParent();
8475   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8476   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8477 
8478   // Update opcode.
8479   MI.setDesc(TII->get(Opcode));
8480 
8481   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8482   // Make sure to add the corresponding GRSM bits if they are missing.
8483   uint64_t Control = MI.getOperand(2).getImm();
8484   static const unsigned GPRControlBit[16] = {
8485     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8486     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8487   };
8488   Control |= GPRControlBit[15];
8489   if (TFI->hasFP(MF))
8490     Control |= GPRControlBit[11];
8491   MI.getOperand(2).setImm(Control);
8492 
8493   // Add GPR clobbers.
8494   for (int I = 0; I < 16; I++) {
8495     if ((Control & GPRControlBit[I]) == 0) {
8496       unsigned Reg = SystemZMC::GR64Regs[I];
8497       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8498     }
8499   }
8500 
8501   // Add FPR/VR clobbers.
8502   if (!NoFloat && (Control & 4) != 0) {
8503     if (Subtarget.hasVector()) {
8504       for (unsigned Reg : SystemZMC::VR128Regs) {
8505         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8506       }
8507     } else {
8508       for (unsigned Reg : SystemZMC::FP64Regs) {
8509         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8510       }
8511     }
8512   }
8513 
8514   return MBB;
8515 }
8516 
8517 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8518     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8519   MachineFunction &MF = *MBB->getParent();
8520   MachineRegisterInfo *MRI = &MF.getRegInfo();
8521   const SystemZInstrInfo *TII =
8522       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8523   DebugLoc DL = MI.getDebugLoc();
8524 
8525   Register SrcReg = MI.getOperand(0).getReg();
8526 
8527   // Create new virtual register of the same class as source.
8528   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8529   Register DstReg = MRI->createVirtualRegister(RC);
8530 
8531   // Replace pseudo with a normal load-and-test that models the def as
8532   // well.
8533   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8534     .addReg(SrcReg)
8535     .setMIFlags(MI.getFlags());
8536   MI.eraseFromParent();
8537 
8538   return MBB;
8539 }
8540 
8541 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8542     MachineInstr &MI, MachineBasicBlock *MBB) const {
8543   MachineFunction &MF = *MBB->getParent();
8544   MachineRegisterInfo *MRI = &MF.getRegInfo();
8545   const SystemZInstrInfo *TII =
8546       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8547   DebugLoc DL = MI.getDebugLoc();
8548   const unsigned ProbeSize = getStackProbeSize(MF);
8549   Register DstReg = MI.getOperand(0).getReg();
8550   Register SizeReg = MI.getOperand(2).getReg();
8551 
8552   MachineBasicBlock *StartMBB = MBB;
8553   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8554   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8555   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8556   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8557   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8558 
8559   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8560     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8561 
8562   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8563   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8564 
8565   //  LoopTestMBB
8566   //  BRC TailTestMBB
8567   //  # fallthrough to LoopBodyMBB
8568   StartMBB->addSuccessor(LoopTestMBB);
8569   MBB = LoopTestMBB;
8570   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8571     .addReg(SizeReg)
8572     .addMBB(StartMBB)
8573     .addReg(IncReg)
8574     .addMBB(LoopBodyMBB);
8575   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8576     .addReg(PHIReg)
8577     .addImm(ProbeSize);
8578   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8579     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8580     .addMBB(TailTestMBB);
8581   MBB->addSuccessor(LoopBodyMBB);
8582   MBB->addSuccessor(TailTestMBB);
8583 
8584   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8585   //  J LoopTestMBB
8586   MBB = LoopBodyMBB;
8587   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8588     .addReg(PHIReg)
8589     .addImm(ProbeSize);
8590   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8591     .addReg(SystemZ::R15D)
8592     .addImm(ProbeSize);
8593   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8594     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8595     .setMemRefs(VolLdMMO);
8596   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8597   MBB->addSuccessor(LoopTestMBB);
8598 
8599   //  TailTestMBB
8600   //  BRC DoneMBB
8601   //  # fallthrough to TailMBB
8602   MBB = TailTestMBB;
8603   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8604     .addReg(PHIReg)
8605     .addImm(0);
8606   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8607     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8608     .addMBB(DoneMBB);
8609   MBB->addSuccessor(TailMBB);
8610   MBB->addSuccessor(DoneMBB);
8611 
8612   //  TailMBB
8613   //  # fallthrough to DoneMBB
8614   MBB = TailMBB;
8615   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8616     .addReg(SystemZ::R15D)
8617     .addReg(PHIReg);
8618   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8619     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8620     .setMemRefs(VolLdMMO);
8621   MBB->addSuccessor(DoneMBB);
8622 
8623   //  DoneMBB
8624   MBB = DoneMBB;
8625   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8626     .addReg(SystemZ::R15D);
8627 
8628   MI.eraseFromParent();
8629   return DoneMBB;
8630 }
8631 
8632 SDValue SystemZTargetLowering::
8633 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8634   MachineFunction &MF = DAG.getMachineFunction();
8635   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8636   SDLoc DL(SP);
8637   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8638                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8639 }
8640 
8641 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8642     MachineInstr &MI, MachineBasicBlock *MBB) const {
8643   switch (MI.getOpcode()) {
8644   case SystemZ::Select32:
8645   case SystemZ::Select64:
8646   case SystemZ::SelectF32:
8647   case SystemZ::SelectF64:
8648   case SystemZ::SelectF128:
8649   case SystemZ::SelectVR32:
8650   case SystemZ::SelectVR64:
8651   case SystemZ::SelectVR128:
8652     return emitSelect(MI, MBB);
8653 
8654   case SystemZ::CondStore8Mux:
8655     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8656   case SystemZ::CondStore8MuxInv:
8657     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8658   case SystemZ::CondStore16Mux:
8659     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8660   case SystemZ::CondStore16MuxInv:
8661     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8662   case SystemZ::CondStore32Mux:
8663     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8664   case SystemZ::CondStore32MuxInv:
8665     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8666   case SystemZ::CondStore8:
8667     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8668   case SystemZ::CondStore8Inv:
8669     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8670   case SystemZ::CondStore16:
8671     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8672   case SystemZ::CondStore16Inv:
8673     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8674   case SystemZ::CondStore32:
8675     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8676   case SystemZ::CondStore32Inv:
8677     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8678   case SystemZ::CondStore64:
8679     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8680   case SystemZ::CondStore64Inv:
8681     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8682   case SystemZ::CondStoreF32:
8683     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8684   case SystemZ::CondStoreF32Inv:
8685     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8686   case SystemZ::CondStoreF64:
8687     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8688   case SystemZ::CondStoreF64Inv:
8689     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8690 
8691   case SystemZ::PAIR128:
8692     return emitPair128(MI, MBB);
8693   case SystemZ::AEXT128:
8694     return emitExt128(MI, MBB, false);
8695   case SystemZ::ZEXT128:
8696     return emitExt128(MI, MBB, true);
8697 
8698   case SystemZ::ATOMIC_SWAPW:
8699     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8700   case SystemZ::ATOMIC_SWAP_32:
8701     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8702   case SystemZ::ATOMIC_SWAP_64:
8703     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8704 
8705   case SystemZ::ATOMIC_LOADW_AR:
8706     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8707   case SystemZ::ATOMIC_LOADW_AFI:
8708     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8709   case SystemZ::ATOMIC_LOAD_AR:
8710     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8711   case SystemZ::ATOMIC_LOAD_AHI:
8712     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8713   case SystemZ::ATOMIC_LOAD_AFI:
8714     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8715   case SystemZ::ATOMIC_LOAD_AGR:
8716     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8717   case SystemZ::ATOMIC_LOAD_AGHI:
8718     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8719   case SystemZ::ATOMIC_LOAD_AGFI:
8720     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8721 
8722   case SystemZ::ATOMIC_LOADW_SR:
8723     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8724   case SystemZ::ATOMIC_LOAD_SR:
8725     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8726   case SystemZ::ATOMIC_LOAD_SGR:
8727     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8728 
8729   case SystemZ::ATOMIC_LOADW_NR:
8730     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8731   case SystemZ::ATOMIC_LOADW_NILH:
8732     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8733   case SystemZ::ATOMIC_LOAD_NR:
8734     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8735   case SystemZ::ATOMIC_LOAD_NILL:
8736     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8737   case SystemZ::ATOMIC_LOAD_NILH:
8738     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8739   case SystemZ::ATOMIC_LOAD_NILF:
8740     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8741   case SystemZ::ATOMIC_LOAD_NGR:
8742     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8743   case SystemZ::ATOMIC_LOAD_NILL64:
8744     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8745   case SystemZ::ATOMIC_LOAD_NILH64:
8746     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8747   case SystemZ::ATOMIC_LOAD_NIHL64:
8748     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8749   case SystemZ::ATOMIC_LOAD_NIHH64:
8750     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8751   case SystemZ::ATOMIC_LOAD_NILF64:
8752     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8753   case SystemZ::ATOMIC_LOAD_NIHF64:
8754     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8755 
8756   case SystemZ::ATOMIC_LOADW_OR:
8757     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8758   case SystemZ::ATOMIC_LOADW_OILH:
8759     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8760   case SystemZ::ATOMIC_LOAD_OR:
8761     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8762   case SystemZ::ATOMIC_LOAD_OILL:
8763     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8764   case SystemZ::ATOMIC_LOAD_OILH:
8765     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8766   case SystemZ::ATOMIC_LOAD_OILF:
8767     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8768   case SystemZ::ATOMIC_LOAD_OGR:
8769     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8770   case SystemZ::ATOMIC_LOAD_OILL64:
8771     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8772   case SystemZ::ATOMIC_LOAD_OILH64:
8773     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8774   case SystemZ::ATOMIC_LOAD_OIHL64:
8775     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8776   case SystemZ::ATOMIC_LOAD_OIHH64:
8777     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8778   case SystemZ::ATOMIC_LOAD_OILF64:
8779     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8780   case SystemZ::ATOMIC_LOAD_OIHF64:
8781     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8782 
8783   case SystemZ::ATOMIC_LOADW_XR:
8784     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8785   case SystemZ::ATOMIC_LOADW_XILF:
8786     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8787   case SystemZ::ATOMIC_LOAD_XR:
8788     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8789   case SystemZ::ATOMIC_LOAD_XILF:
8790     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8791   case SystemZ::ATOMIC_LOAD_XGR:
8792     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8793   case SystemZ::ATOMIC_LOAD_XILF64:
8794     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8795   case SystemZ::ATOMIC_LOAD_XIHF64:
8796     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8797 
8798   case SystemZ::ATOMIC_LOADW_NRi:
8799     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8800   case SystemZ::ATOMIC_LOADW_NILHi:
8801     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8802   case SystemZ::ATOMIC_LOAD_NRi:
8803     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8804   case SystemZ::ATOMIC_LOAD_NILLi:
8805     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8806   case SystemZ::ATOMIC_LOAD_NILHi:
8807     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8808   case SystemZ::ATOMIC_LOAD_NILFi:
8809     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8810   case SystemZ::ATOMIC_LOAD_NGRi:
8811     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8812   case SystemZ::ATOMIC_LOAD_NILL64i:
8813     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8814   case SystemZ::ATOMIC_LOAD_NILH64i:
8815     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8816   case SystemZ::ATOMIC_LOAD_NIHL64i:
8817     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8818   case SystemZ::ATOMIC_LOAD_NIHH64i:
8819     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8820   case SystemZ::ATOMIC_LOAD_NILF64i:
8821     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8822   case SystemZ::ATOMIC_LOAD_NIHF64i:
8823     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8824 
8825   case SystemZ::ATOMIC_LOADW_MIN:
8826     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8827                                 SystemZ::CCMASK_CMP_LE, 0);
8828   case SystemZ::ATOMIC_LOAD_MIN_32:
8829     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8830                                 SystemZ::CCMASK_CMP_LE, 32);
8831   case SystemZ::ATOMIC_LOAD_MIN_64:
8832     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8833                                 SystemZ::CCMASK_CMP_LE, 64);
8834 
8835   case SystemZ::ATOMIC_LOADW_MAX:
8836     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8837                                 SystemZ::CCMASK_CMP_GE, 0);
8838   case SystemZ::ATOMIC_LOAD_MAX_32:
8839     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8840                                 SystemZ::CCMASK_CMP_GE, 32);
8841   case SystemZ::ATOMIC_LOAD_MAX_64:
8842     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8843                                 SystemZ::CCMASK_CMP_GE, 64);
8844 
8845   case SystemZ::ATOMIC_LOADW_UMIN:
8846     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8847                                 SystemZ::CCMASK_CMP_LE, 0);
8848   case SystemZ::ATOMIC_LOAD_UMIN_32:
8849     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8850                                 SystemZ::CCMASK_CMP_LE, 32);
8851   case SystemZ::ATOMIC_LOAD_UMIN_64:
8852     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8853                                 SystemZ::CCMASK_CMP_LE, 64);
8854 
8855   case SystemZ::ATOMIC_LOADW_UMAX:
8856     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8857                                 SystemZ::CCMASK_CMP_GE, 0);
8858   case SystemZ::ATOMIC_LOAD_UMAX_32:
8859     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8860                                 SystemZ::CCMASK_CMP_GE, 32);
8861   case SystemZ::ATOMIC_LOAD_UMAX_64:
8862     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8863                                 SystemZ::CCMASK_CMP_GE, 64);
8864 
8865   case SystemZ::ATOMIC_CMP_SWAPW:
8866     return emitAtomicCmpSwapW(MI, MBB);
8867   case SystemZ::MVCImm:
8868   case SystemZ::MVCReg:
8869     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8870   case SystemZ::NCImm:
8871     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8872   case SystemZ::OCImm:
8873     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8874   case SystemZ::XCImm:
8875   case SystemZ::XCReg:
8876     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8877   case SystemZ::CLCImm:
8878   case SystemZ::CLCReg:
8879     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8880   case SystemZ::MemsetImmImm:
8881   case SystemZ::MemsetImmReg:
8882   case SystemZ::MemsetRegImm:
8883   case SystemZ::MemsetRegReg:
8884     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
8885   case SystemZ::CLSTLoop:
8886     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8887   case SystemZ::MVSTLoop:
8888     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8889   case SystemZ::SRSTLoop:
8890     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8891   case SystemZ::TBEGIN:
8892     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8893   case SystemZ::TBEGIN_nofloat:
8894     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8895   case SystemZ::TBEGINC:
8896     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8897   case SystemZ::LTEBRCompare_VecPseudo:
8898     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8899   case SystemZ::LTDBRCompare_VecPseudo:
8900     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8901   case SystemZ::LTXBRCompare_VecPseudo:
8902     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8903 
8904   case SystemZ::PROBED_ALLOCA:
8905     return emitProbedAlloca(MI, MBB);
8906 
8907   case TargetOpcode::STACKMAP:
8908   case TargetOpcode::PATCHPOINT:
8909     return emitPatchPoint(MI, MBB);
8910 
8911   default:
8912     llvm_unreachable("Unexpected instr type to insert");
8913   }
8914 }
8915 
8916 // This is only used by the isel schedulers, and is needed only to prevent
8917 // compiler from crashing when list-ilp is used.
8918 const TargetRegisterClass *
8919 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8920   if (VT == MVT::Untyped)
8921     return &SystemZ::ADDR128BitRegClass;
8922   return TargetLowering::getRepRegClassFor(VT);
8923 }
8924