1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setExceptionPointerRegister(SystemZ::R6D); 118 setExceptionSelectorRegister(SystemZ::R7D); 119 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 120 121 // TODO: It may be better to default to latency-oriented scheduling, however 122 // LLVM's current latency-oriented scheduler can't handle physreg definitions 123 // such as SystemZ has with CC, so set this to the register-pressure 124 // scheduler, because it can. 125 setSchedulingPreference(Sched::RegPressure); 126 127 setBooleanContents(ZeroOrOneBooleanContent); 128 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 129 130 // Instructions are strings of 2-byte aligned 2-byte values. 131 setMinFunctionAlignment(2); 132 133 // Handle operations that are handled in a similar way for all types. 134 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 135 I <= MVT::LAST_FP_VALUETYPE; 136 ++I) { 137 MVT VT = MVT::SimpleValueType(I); 138 if (isTypeLegal(VT)) { 139 // Lower SET_CC into an IPM-based sequence. 140 setOperationAction(ISD::SETCC, VT, Custom); 141 142 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 143 setOperationAction(ISD::SELECT, VT, Expand); 144 145 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 146 setOperationAction(ISD::SELECT_CC, VT, Custom); 147 setOperationAction(ISD::BR_CC, VT, Custom); 148 } 149 } 150 151 // Expand jump table branches as address arithmetic followed by an 152 // indirect jump. 153 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 154 155 // Expand BRCOND into a BR_CC (see above). 156 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 157 158 // Handle integer types. 159 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 160 I <= MVT::LAST_INTEGER_VALUETYPE; 161 ++I) { 162 MVT VT = MVT::SimpleValueType(I); 163 if (isTypeLegal(VT)) { 164 // Expand individual DIV and REMs into DIVREMs. 165 setOperationAction(ISD::SDIV, VT, Expand); 166 setOperationAction(ISD::UDIV, VT, Expand); 167 setOperationAction(ISD::SREM, VT, Expand); 168 setOperationAction(ISD::UREM, VT, Expand); 169 setOperationAction(ISD::SDIVREM, VT, Custom); 170 setOperationAction(ISD::UDIVREM, VT, Custom); 171 172 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 173 // stores, putting a serialization instruction after the stores. 174 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 175 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 176 177 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 178 // available, or if the operand is constant. 179 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 180 181 // Use POPCNT on z196 and above. 182 if (Subtarget.hasPopulationCount()) 183 setOperationAction(ISD::CTPOP, VT, Custom); 184 else 185 setOperationAction(ISD::CTPOP, VT, Expand); 186 187 // No special instructions for these. 188 setOperationAction(ISD::CTTZ, VT, Expand); 189 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 190 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 191 setOperationAction(ISD::ROTR, VT, Expand); 192 193 // Use *MUL_LOHI where possible instead of MULH*. 194 setOperationAction(ISD::MULHS, VT, Expand); 195 setOperationAction(ISD::MULHU, VT, Expand); 196 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 197 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 198 199 // Only z196 and above have native support for conversions to unsigned. 200 if (!Subtarget.hasFPExtension()) 201 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 202 } 203 } 204 205 // Type legalization will convert 8- and 16-bit atomic operations into 206 // forms that operate on i32s (but still keeping the original memory VT). 207 // Lower them into full i32 operations. 208 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 220 221 // z10 has instructions for signed but not unsigned FP conversion. 222 // Handle unsigned 32-bit types as signed 64-bit types. 223 if (!Subtarget.hasFPExtension()) { 224 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 225 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 226 } 227 228 // We have native support for a 64-bit CTLZ, via FLOGR. 229 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 230 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 231 232 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 233 setOperationAction(ISD::OR, MVT::i64, Custom); 234 235 // FIXME: Can we support these natively? 236 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 237 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 239 240 // We have native instructions for i8, i16 and i32 extensions, but not i1. 241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 242 for (MVT VT : MVT::integer_valuetypes()) { 243 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 244 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 246 } 247 248 // Handle the various types of symbolic address. 249 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 250 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 251 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 252 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 253 setOperationAction(ISD::JumpTable, PtrVT, Custom); 254 255 // We need to handle dynamic allocations specially because of the 256 // 160-byte area at the bottom of the stack. 257 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 258 259 // Use custom expanders so that we can force the function to use 260 // a frame pointer. 261 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 262 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 263 264 // Handle prefetches with PFD or PFDRL. 265 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 266 267 for (MVT VT : MVT::vector_valuetypes()) { 268 // Assume by default that all vector operations need to be expanded. 269 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 270 if (getOperationAction(Opcode, VT) == Legal) 271 setOperationAction(Opcode, VT, Expand); 272 273 // Likewise all truncating stores and extending loads. 274 for (MVT InnerVT : MVT::vector_valuetypes()) { 275 setTruncStoreAction(VT, InnerVT, Expand); 276 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 277 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 278 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 279 } 280 281 if (isTypeLegal(VT)) { 282 // These operations are legal for anything that can be stored in a 283 // vector register, even if there is no native support for the format 284 // as such. In particular, we can do these for v4f32 even though there 285 // are no specific instructions for that format. 286 setOperationAction(ISD::LOAD, VT, Legal); 287 setOperationAction(ISD::STORE, VT, Legal); 288 setOperationAction(ISD::VSELECT, VT, Legal); 289 setOperationAction(ISD::BITCAST, VT, Legal); 290 setOperationAction(ISD::UNDEF, VT, Legal); 291 292 // Likewise, except that we need to replace the nodes with something 293 // more specific. 294 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 295 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 296 } 297 } 298 299 // Handle integer vector types. 300 for (MVT VT : MVT::integer_vector_valuetypes()) { 301 if (isTypeLegal(VT)) { 302 // These operations have direct equivalents. 303 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 304 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 305 setOperationAction(ISD::ADD, VT, Legal); 306 setOperationAction(ISD::SUB, VT, Legal); 307 if (VT != MVT::v2i64) 308 setOperationAction(ISD::MUL, VT, Legal); 309 setOperationAction(ISD::AND, VT, Legal); 310 setOperationAction(ISD::OR, VT, Legal); 311 setOperationAction(ISD::XOR, VT, Legal); 312 setOperationAction(ISD::CTPOP, VT, Custom); 313 setOperationAction(ISD::CTTZ, VT, Legal); 314 setOperationAction(ISD::CTLZ, VT, Legal); 315 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 316 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 317 318 // Convert a GPR scalar to a vector by inserting it into element 0. 319 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 320 321 // Use a series of unpacks for extensions. 322 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 323 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 324 325 // Detect shifts by a scalar amount and convert them into 326 // V*_BY_SCALAR. 327 setOperationAction(ISD::SHL, VT, Custom); 328 setOperationAction(ISD::SRA, VT, Custom); 329 setOperationAction(ISD::SRL, VT, Custom); 330 331 // At present ROTL isn't matched by DAGCombiner. ROTR should be 332 // converted into ROTL. 333 setOperationAction(ISD::ROTL, VT, Expand); 334 setOperationAction(ISD::ROTR, VT, Expand); 335 336 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 337 // and inverting the result as necessary. 338 setOperationAction(ISD::SETCC, VT, Custom); 339 } 340 } 341 342 if (Subtarget.hasVector()) { 343 // There should be no need to check for float types other than v2f64 344 // since <2 x f32> isn't a legal type. 345 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 346 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 348 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 349 } 350 351 // Handle floating-point types. 352 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 353 I <= MVT::LAST_FP_VALUETYPE; 354 ++I) { 355 MVT VT = MVT::SimpleValueType(I); 356 if (isTypeLegal(VT)) { 357 // We can use FI for FRINT. 358 setOperationAction(ISD::FRINT, VT, Legal); 359 360 // We can use the extended form of FI for other rounding operations. 361 if (Subtarget.hasFPExtension()) { 362 setOperationAction(ISD::FNEARBYINT, VT, Legal); 363 setOperationAction(ISD::FFLOOR, VT, Legal); 364 setOperationAction(ISD::FCEIL, VT, Legal); 365 setOperationAction(ISD::FTRUNC, VT, Legal); 366 setOperationAction(ISD::FROUND, VT, Legal); 367 } 368 369 // No special instructions for these. 370 setOperationAction(ISD::FSIN, VT, Expand); 371 setOperationAction(ISD::FCOS, VT, Expand); 372 setOperationAction(ISD::FSINCOS, VT, Expand); 373 setOperationAction(ISD::FREM, VT, Expand); 374 setOperationAction(ISD::FPOW, VT, Expand); 375 } 376 } 377 378 // Handle floating-point vector types. 379 if (Subtarget.hasVector()) { 380 // Scalar-to-vector conversion is just a subreg. 381 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 382 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 383 384 // Some insertions and extractions can be done directly but others 385 // need to go via integers. 386 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 388 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 389 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 390 391 // These operations have direct equivalents. 392 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 393 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 394 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 395 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 396 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 397 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 398 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 399 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 401 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 402 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 403 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 404 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 405 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 406 } 407 408 // We have fused multiply-addition for f32 and f64 but not f128. 409 setOperationAction(ISD::FMA, MVT::f32, Legal); 410 setOperationAction(ISD::FMA, MVT::f64, Legal); 411 setOperationAction(ISD::FMA, MVT::f128, Expand); 412 413 // Needed so that we don't try to implement f128 constant loads using 414 // a load-and-extend of a f80 constant (in cases where the constant 415 // would fit in an f80). 416 for (MVT VT : MVT::fp_valuetypes()) 417 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 418 419 // Floating-point truncation and stores need to be done separately. 420 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 421 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 422 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 423 424 // We have 64-bit FPR<->GPR moves, but need special handling for 425 // 32-bit forms. 426 if (!Subtarget.hasVector()) { 427 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 428 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 429 } 430 431 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 432 // structure, but VAEND is a no-op. 433 setOperationAction(ISD::VASTART, MVT::Other, Custom); 434 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 435 setOperationAction(ISD::VAEND, MVT::Other, Expand); 436 437 // Codes for which we want to perform some z-specific combinations. 438 setTargetDAGCombine(ISD::SIGN_EXTEND); 439 setTargetDAGCombine(ISD::STORE); 440 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 441 setTargetDAGCombine(ISD::FP_ROUND); 442 443 // Handle intrinsics. 444 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 445 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 446 447 // We want to use MVC in preference to even a single load/store pair. 448 MaxStoresPerMemcpy = 0; 449 MaxStoresPerMemcpyOptSize = 0; 450 451 // The main memset sequence is a byte store followed by an MVC. 452 // Two STC or MV..I stores win over that, but the kind of fused stores 453 // generated by target-independent code don't when the byte value is 454 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 455 // than "STC;MVC". Handle the choice in target-specific code instead. 456 MaxStoresPerMemset = 0; 457 MaxStoresPerMemsetOptSize = 0; 458 } 459 460 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 461 LLVMContext &, EVT VT) const { 462 if (!VT.isVector()) 463 return MVT::i32; 464 return VT.changeVectorElementTypeToInteger(); 465 } 466 467 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 468 VT = VT.getScalarType(); 469 470 if (!VT.isSimple()) 471 return false; 472 473 switch (VT.getSimpleVT().SimpleTy) { 474 case MVT::f32: 475 case MVT::f64: 476 return true; 477 case MVT::f128: 478 return false; 479 default: 480 break; 481 } 482 483 return false; 484 } 485 486 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 487 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 488 return Imm.isZero() || Imm.isNegZero(); 489 } 490 491 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 492 // We can use CGFI or CLGFI. 493 return isInt<32>(Imm) || isUInt<32>(Imm); 494 } 495 496 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 497 // We can use ALGFI or SLGFI. 498 return isUInt<32>(Imm) || isUInt<32>(-Imm); 499 } 500 501 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 502 unsigned, 503 unsigned, 504 bool *Fast) const { 505 // Unaligned accesses should never be slower than the expanded version. 506 // We check specifically for aligned accesses in the few cases where 507 // they are required. 508 if (Fast) 509 *Fast = true; 510 return true; 511 } 512 513 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 514 const AddrMode &AM, Type *Ty, 515 unsigned AS) const { 516 // Punt on globals for now, although they can be used in limited 517 // RELATIVE LONG cases. 518 if (AM.BaseGV) 519 return false; 520 521 // Require a 20-bit signed offset. 522 if (!isInt<20>(AM.BaseOffs)) 523 return false; 524 525 // Indexing is OK but no scale factor can be applied. 526 return AM.Scale == 0 || AM.Scale == 1; 527 } 528 529 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 530 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 531 return false; 532 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 533 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 534 return FromBits > ToBits; 535 } 536 537 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 538 if (!FromVT.isInteger() || !ToVT.isInteger()) 539 return false; 540 unsigned FromBits = FromVT.getSizeInBits(); 541 unsigned ToBits = ToVT.getSizeInBits(); 542 return FromBits > ToBits; 543 } 544 545 //===----------------------------------------------------------------------===// 546 // Inline asm support 547 //===----------------------------------------------------------------------===// 548 549 TargetLowering::ConstraintType 550 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 551 if (Constraint.size() == 1) { 552 switch (Constraint[0]) { 553 case 'a': // Address register 554 case 'd': // Data register (equivalent to 'r') 555 case 'f': // Floating-point register 556 case 'h': // High-part register 557 case 'r': // General-purpose register 558 return C_RegisterClass; 559 560 case 'Q': // Memory with base and unsigned 12-bit displacement 561 case 'R': // Likewise, plus an index 562 case 'S': // Memory with base and signed 20-bit displacement 563 case 'T': // Likewise, plus an index 564 case 'm': // Equivalent to 'T'. 565 return C_Memory; 566 567 case 'I': // Unsigned 8-bit constant 568 case 'J': // Unsigned 12-bit constant 569 case 'K': // Signed 16-bit constant 570 case 'L': // Signed 20-bit displacement (on all targets we support) 571 case 'M': // 0x7fffffff 572 return C_Other; 573 574 default: 575 break; 576 } 577 } 578 return TargetLowering::getConstraintType(Constraint); 579 } 580 581 TargetLowering::ConstraintWeight SystemZTargetLowering:: 582 getSingleConstraintMatchWeight(AsmOperandInfo &info, 583 const char *constraint) const { 584 ConstraintWeight weight = CW_Invalid; 585 Value *CallOperandVal = info.CallOperandVal; 586 // If we don't have a value, we can't do a match, 587 // but allow it at the lowest weight. 588 if (!CallOperandVal) 589 return CW_Default; 590 Type *type = CallOperandVal->getType(); 591 // Look at the constraint type. 592 switch (*constraint) { 593 default: 594 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 595 break; 596 597 case 'a': // Address register 598 case 'd': // Data register (equivalent to 'r') 599 case 'h': // High-part register 600 case 'r': // General-purpose register 601 if (CallOperandVal->getType()->isIntegerTy()) 602 weight = CW_Register; 603 break; 604 605 case 'f': // Floating-point register 606 if (type->isFloatingPointTy()) 607 weight = CW_Register; 608 break; 609 610 case 'I': // Unsigned 8-bit constant 611 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 612 if (isUInt<8>(C->getZExtValue())) 613 weight = CW_Constant; 614 break; 615 616 case 'J': // Unsigned 12-bit constant 617 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 618 if (isUInt<12>(C->getZExtValue())) 619 weight = CW_Constant; 620 break; 621 622 case 'K': // Signed 16-bit constant 623 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 624 if (isInt<16>(C->getSExtValue())) 625 weight = CW_Constant; 626 break; 627 628 case 'L': // Signed 20-bit displacement (on all targets we support) 629 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 630 if (isInt<20>(C->getSExtValue())) 631 weight = CW_Constant; 632 break; 633 634 case 'M': // 0x7fffffff 635 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 636 if (C->getZExtValue() == 0x7fffffff) 637 weight = CW_Constant; 638 break; 639 } 640 return weight; 641 } 642 643 // Parse a "{tNNN}" register constraint for which the register type "t" 644 // has already been verified. MC is the class associated with "t" and 645 // Map maps 0-based register numbers to LLVM register numbers. 646 static std::pair<unsigned, const TargetRegisterClass *> 647 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 648 const unsigned *Map) { 649 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 650 if (isdigit(Constraint[2])) { 651 unsigned Index; 652 bool Failed = 653 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 654 if (!Failed && Index < 16 && Map[Index]) 655 return std::make_pair(Map[Index], RC); 656 } 657 return std::make_pair(0U, nullptr); 658 } 659 660 std::pair<unsigned, const TargetRegisterClass *> 661 SystemZTargetLowering::getRegForInlineAsmConstraint( 662 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 663 if (Constraint.size() == 1) { 664 // GCC Constraint Letters 665 switch (Constraint[0]) { 666 default: break; 667 case 'd': // Data register (equivalent to 'r') 668 case 'r': // General-purpose register 669 if (VT == MVT::i64) 670 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 671 else if (VT == MVT::i128) 672 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 673 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 674 675 case 'a': // Address register 676 if (VT == MVT::i64) 677 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 678 else if (VT == MVT::i128) 679 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 680 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 681 682 case 'h': // High-part register (an LLVM extension) 683 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 684 685 case 'f': // Floating-point register 686 if (VT == MVT::f64) 687 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 688 else if (VT == MVT::f128) 689 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 690 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 691 } 692 } 693 if (Constraint.size() > 0 && Constraint[0] == '{') { 694 // We need to override the default register parsing for GPRs and FPRs 695 // because the interpretation depends on VT. The internal names of 696 // the registers are also different from the external names 697 // (F0D and F0S instead of F0, etc.). 698 if (Constraint[1] == 'r') { 699 if (VT == MVT::i32) 700 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 701 SystemZMC::GR32Regs); 702 if (VT == MVT::i128) 703 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 704 SystemZMC::GR128Regs); 705 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 706 SystemZMC::GR64Regs); 707 } 708 if (Constraint[1] == 'f') { 709 if (VT == MVT::f32) 710 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 711 SystemZMC::FP32Regs); 712 if (VT == MVT::f128) 713 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 714 SystemZMC::FP128Regs); 715 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 716 SystemZMC::FP64Regs); 717 } 718 } 719 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 720 } 721 722 void SystemZTargetLowering:: 723 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 724 std::vector<SDValue> &Ops, 725 SelectionDAG &DAG) const { 726 // Only support length 1 constraints for now. 727 if (Constraint.length() == 1) { 728 switch (Constraint[0]) { 729 case 'I': // Unsigned 8-bit constant 730 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 731 if (isUInt<8>(C->getZExtValue())) 732 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 733 Op.getValueType())); 734 return; 735 736 case 'J': // Unsigned 12-bit constant 737 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 738 if (isUInt<12>(C->getZExtValue())) 739 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 740 Op.getValueType())); 741 return; 742 743 case 'K': // Signed 16-bit constant 744 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 745 if (isInt<16>(C->getSExtValue())) 746 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 747 Op.getValueType())); 748 return; 749 750 case 'L': // Signed 20-bit displacement (on all targets we support) 751 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 752 if (isInt<20>(C->getSExtValue())) 753 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 754 Op.getValueType())); 755 return; 756 757 case 'M': // 0x7fffffff 758 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 759 if (C->getZExtValue() == 0x7fffffff) 760 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 761 Op.getValueType())); 762 return; 763 } 764 } 765 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // Calling conventions 770 //===----------------------------------------------------------------------===// 771 772 #include "SystemZGenCallingConv.inc" 773 774 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 775 Type *ToType) const { 776 return isTruncateFree(FromType, ToType); 777 } 778 779 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 780 if (!CI->isTailCall()) 781 return false; 782 return true; 783 } 784 785 // We do not yet support 128-bit single-element vector types. If the user 786 // attempts to use such types as function argument or return type, prefer 787 // to error out instead of emitting code violating the ABI. 788 static void VerifyVectorType(MVT VT, EVT ArgVT) { 789 if (ArgVT.isVector() && !VT.isVector()) 790 report_fatal_error("Unsupported vector argument or return type"); 791 } 792 793 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 794 for (unsigned i = 0; i < Ins.size(); ++i) 795 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 796 } 797 798 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 799 for (unsigned i = 0; i < Outs.size(); ++i) 800 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 801 } 802 803 // Value is a value that has been passed to us in the location described by VA 804 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 805 // any loads onto Chain. 806 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 807 CCValAssign &VA, SDValue Chain, 808 SDValue Value) { 809 // If the argument has been promoted from a smaller type, insert an 810 // assertion to capture this. 811 if (VA.getLocInfo() == CCValAssign::SExt) 812 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 813 DAG.getValueType(VA.getValVT())); 814 else if (VA.getLocInfo() == CCValAssign::ZExt) 815 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 816 DAG.getValueType(VA.getValVT())); 817 818 if (VA.isExtInLoc()) 819 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 820 else if (VA.getLocInfo() == CCValAssign::Indirect) 821 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 822 MachinePointerInfo(), false, false, false, 0); 823 else if (VA.getLocInfo() == CCValAssign::BCvt) { 824 // If this is a short vector argument loaded from the stack, 825 // extend from i64 to full vector size and then bitcast. 826 assert(VA.getLocVT() == MVT::i64); 827 assert(VA.getValVT().isVector()); 828 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 829 Value, DAG.getUNDEF(MVT::i64)); 830 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 831 } else 832 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 833 return Value; 834 } 835 836 // Value is a value of type VA.getValVT() that we need to copy into 837 // the location described by VA. Return a copy of Value converted to 838 // VA.getValVT(). The caller is responsible for handling indirect values. 839 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 840 CCValAssign &VA, SDValue Value) { 841 switch (VA.getLocInfo()) { 842 case CCValAssign::SExt: 843 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 844 case CCValAssign::ZExt: 845 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 846 case CCValAssign::AExt: 847 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 848 case CCValAssign::BCvt: 849 // If this is a short vector argument to be stored to the stack, 850 // bitcast to v2i64 and then extract first element. 851 assert(VA.getLocVT() == MVT::i64); 852 assert(VA.getValVT().isVector()); 853 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 854 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 855 DAG.getConstant(0, DL, MVT::i32)); 856 case CCValAssign::Full: 857 return Value; 858 default: 859 llvm_unreachable("Unhandled getLocInfo()"); 860 } 861 } 862 863 SDValue SystemZTargetLowering:: 864 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 865 const SmallVectorImpl<ISD::InputArg> &Ins, 866 SDLoc DL, SelectionDAG &DAG, 867 SmallVectorImpl<SDValue> &InVals) const { 868 MachineFunction &MF = DAG.getMachineFunction(); 869 MachineFrameInfo *MFI = MF.getFrameInfo(); 870 MachineRegisterInfo &MRI = MF.getRegInfo(); 871 SystemZMachineFunctionInfo *FuncInfo = 872 MF.getInfo<SystemZMachineFunctionInfo>(); 873 auto *TFL = 874 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 875 876 // Detect unsupported vector argument types. 877 if (Subtarget.hasVector()) 878 VerifyVectorTypes(Ins); 879 880 // Assign locations to all of the incoming arguments. 881 SmallVector<CCValAssign, 16> ArgLocs; 882 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 883 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 884 885 unsigned NumFixedGPRs = 0; 886 unsigned NumFixedFPRs = 0; 887 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 888 SDValue ArgValue; 889 CCValAssign &VA = ArgLocs[I]; 890 EVT LocVT = VA.getLocVT(); 891 if (VA.isRegLoc()) { 892 // Arguments passed in registers 893 const TargetRegisterClass *RC; 894 switch (LocVT.getSimpleVT().SimpleTy) { 895 default: 896 // Integers smaller than i64 should be promoted to i64. 897 llvm_unreachable("Unexpected argument type"); 898 case MVT::i32: 899 NumFixedGPRs += 1; 900 RC = &SystemZ::GR32BitRegClass; 901 break; 902 case MVT::i64: 903 NumFixedGPRs += 1; 904 RC = &SystemZ::GR64BitRegClass; 905 break; 906 case MVT::f32: 907 NumFixedFPRs += 1; 908 RC = &SystemZ::FP32BitRegClass; 909 break; 910 case MVT::f64: 911 NumFixedFPRs += 1; 912 RC = &SystemZ::FP64BitRegClass; 913 break; 914 case MVT::v16i8: 915 case MVT::v8i16: 916 case MVT::v4i32: 917 case MVT::v2i64: 918 case MVT::v4f32: 919 case MVT::v2f64: 920 RC = &SystemZ::VR128BitRegClass; 921 break; 922 } 923 924 unsigned VReg = MRI.createVirtualRegister(RC); 925 MRI.addLiveIn(VA.getLocReg(), VReg); 926 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 927 } else { 928 assert(VA.isMemLoc() && "Argument not register or memory"); 929 930 // Create the frame index object for this incoming parameter. 931 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 932 VA.getLocMemOffset(), true); 933 934 // Create the SelectionDAG nodes corresponding to a load 935 // from this parameter. Unpromoted ints and floats are 936 // passed as right-justified 8-byte values. 937 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 938 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 939 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 940 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 941 DAG.getIntPtrConstant(4, DL)); 942 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 943 MachinePointerInfo::getFixedStack(MF, FI), false, 944 false, false, 0); 945 } 946 947 // Convert the value of the argument register into the value that's 948 // being passed. 949 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 950 } 951 952 if (IsVarArg) { 953 // Save the number of non-varargs registers for later use by va_start, etc. 954 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 955 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 956 957 // Likewise the address (in the form of a frame index) of where the 958 // first stack vararg would be. The 1-byte size here is arbitrary. 959 int64_t StackSize = CCInfo.getNextStackOffset(); 960 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 961 962 // ...and a similar frame index for the caller-allocated save area 963 // that will be used to store the incoming registers. 964 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 965 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 966 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 967 968 // Store the FPR varargs in the reserved frame slots. (We store the 969 // GPRs as part of the prologue.) 970 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 971 SDValue MemOps[SystemZ::NumArgFPRs]; 972 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 973 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 974 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 975 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 976 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 977 &SystemZ::FP64BitRegClass); 978 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 979 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 980 MachinePointerInfo::getFixedStack(MF, FI), 981 false, false, 0); 982 } 983 // Join the stores, which are independent of one another. 984 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 985 makeArrayRef(&MemOps[NumFixedFPRs], 986 SystemZ::NumArgFPRs-NumFixedFPRs)); 987 } 988 } 989 990 return Chain; 991 } 992 993 static bool canUseSiblingCall(const CCState &ArgCCInfo, 994 SmallVectorImpl<CCValAssign> &ArgLocs) { 995 // Punt if there are any indirect or stack arguments, or if the call 996 // needs the call-saved argument register R6. 997 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 998 CCValAssign &VA = ArgLocs[I]; 999 if (VA.getLocInfo() == CCValAssign::Indirect) 1000 return false; 1001 if (!VA.isRegLoc()) 1002 return false; 1003 unsigned Reg = VA.getLocReg(); 1004 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1005 return false; 1006 } 1007 return true; 1008 } 1009 1010 SDValue 1011 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1012 SmallVectorImpl<SDValue> &InVals) const { 1013 SelectionDAG &DAG = CLI.DAG; 1014 SDLoc &DL = CLI.DL; 1015 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1016 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1017 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1018 SDValue Chain = CLI.Chain; 1019 SDValue Callee = CLI.Callee; 1020 bool &IsTailCall = CLI.IsTailCall; 1021 CallingConv::ID CallConv = CLI.CallConv; 1022 bool IsVarArg = CLI.IsVarArg; 1023 MachineFunction &MF = DAG.getMachineFunction(); 1024 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1025 1026 // Detect unsupported vector argument and return types. 1027 if (Subtarget.hasVector()) { 1028 VerifyVectorTypes(Outs); 1029 VerifyVectorTypes(Ins); 1030 } 1031 1032 // Analyze the operands of the call, assigning locations to each operand. 1033 SmallVector<CCValAssign, 16> ArgLocs; 1034 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1035 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1036 1037 // We don't support GuaranteedTailCallOpt, only automatically-detected 1038 // sibling calls. 1039 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1040 IsTailCall = false; 1041 1042 // Get a count of how many bytes are to be pushed on the stack. 1043 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1044 1045 // Mark the start of the call. 1046 if (!IsTailCall) 1047 Chain = DAG.getCALLSEQ_START(Chain, 1048 DAG.getConstant(NumBytes, DL, PtrVT, true), 1049 DL); 1050 1051 // Copy argument values to their designated locations. 1052 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1053 SmallVector<SDValue, 8> MemOpChains; 1054 SDValue StackPtr; 1055 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1056 CCValAssign &VA = ArgLocs[I]; 1057 SDValue ArgValue = OutVals[I]; 1058 1059 if (VA.getLocInfo() == CCValAssign::Indirect) { 1060 // Store the argument in a stack slot and pass its address. 1061 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1062 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1063 MemOpChains.push_back(DAG.getStore( 1064 Chain, DL, ArgValue, SpillSlot, 1065 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1066 ArgValue = SpillSlot; 1067 } else 1068 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1069 1070 if (VA.isRegLoc()) 1071 // Queue up the argument copies and emit them at the end. 1072 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1073 else { 1074 assert(VA.isMemLoc() && "Argument not register or memory"); 1075 1076 // Work out the address of the stack slot. Unpromoted ints and 1077 // floats are passed as right-justified 8-byte values. 1078 if (!StackPtr.getNode()) 1079 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1080 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1081 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1082 Offset += 4; 1083 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1084 DAG.getIntPtrConstant(Offset, DL)); 1085 1086 // Emit the store. 1087 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1088 MachinePointerInfo(), 1089 false, false, 0)); 1090 } 1091 } 1092 1093 // Join the stores, which are independent of one another. 1094 if (!MemOpChains.empty()) 1095 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1096 1097 // Accept direct calls by converting symbolic call addresses to the 1098 // associated Target* opcodes. Force %r1 to be used for indirect 1099 // tail calls. 1100 SDValue Glue; 1101 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1102 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1103 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1104 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1105 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1106 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1107 } else if (IsTailCall) { 1108 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1109 Glue = Chain.getValue(1); 1110 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1111 } 1112 1113 // Build a sequence of copy-to-reg nodes, chained and glued together. 1114 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1115 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1116 RegsToPass[I].second, Glue); 1117 Glue = Chain.getValue(1); 1118 } 1119 1120 // The first call operand is the chain and the second is the target address. 1121 SmallVector<SDValue, 8> Ops; 1122 Ops.push_back(Chain); 1123 Ops.push_back(Callee); 1124 1125 // Add argument registers to the end of the list so that they are 1126 // known live into the call. 1127 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1128 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1129 RegsToPass[I].second.getValueType())); 1130 1131 // Add a register mask operand representing the call-preserved registers. 1132 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1133 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1134 assert(Mask && "Missing call preserved mask for calling convention"); 1135 Ops.push_back(DAG.getRegisterMask(Mask)); 1136 1137 // Glue the call to the argument copies, if any. 1138 if (Glue.getNode()) 1139 Ops.push_back(Glue); 1140 1141 // Emit the call. 1142 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1143 if (IsTailCall) 1144 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1145 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1146 Glue = Chain.getValue(1); 1147 1148 // Mark the end of the call, which is glued to the call itself. 1149 Chain = DAG.getCALLSEQ_END(Chain, 1150 DAG.getConstant(NumBytes, DL, PtrVT, true), 1151 DAG.getConstant(0, DL, PtrVT, true), 1152 Glue, DL); 1153 Glue = Chain.getValue(1); 1154 1155 // Assign locations to each value returned by this call. 1156 SmallVector<CCValAssign, 16> RetLocs; 1157 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1158 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1159 1160 // Copy all of the result registers out of their specified physreg. 1161 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1162 CCValAssign &VA = RetLocs[I]; 1163 1164 // Copy the value out, gluing the copy to the end of the call sequence. 1165 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1166 VA.getLocVT(), Glue); 1167 Chain = RetValue.getValue(1); 1168 Glue = RetValue.getValue(2); 1169 1170 // Convert the value of the return register into the value that's 1171 // being returned. 1172 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1173 } 1174 1175 return Chain; 1176 } 1177 1178 bool SystemZTargetLowering:: 1179 CanLowerReturn(CallingConv::ID CallConv, 1180 MachineFunction &MF, bool isVarArg, 1181 const SmallVectorImpl<ISD::OutputArg> &Outs, 1182 LLVMContext &Context) const { 1183 // Detect unsupported vector return types. 1184 if (Subtarget.hasVector()) 1185 VerifyVectorTypes(Outs); 1186 1187 SmallVector<CCValAssign, 16> RetLocs; 1188 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1189 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1190 } 1191 1192 SDValue 1193 SystemZTargetLowering::LowerReturn(SDValue Chain, 1194 CallingConv::ID CallConv, bool IsVarArg, 1195 const SmallVectorImpl<ISD::OutputArg> &Outs, 1196 const SmallVectorImpl<SDValue> &OutVals, 1197 SDLoc DL, SelectionDAG &DAG) const { 1198 MachineFunction &MF = DAG.getMachineFunction(); 1199 1200 // Detect unsupported vector return types. 1201 if (Subtarget.hasVector()) 1202 VerifyVectorTypes(Outs); 1203 1204 // Assign locations to each returned value. 1205 SmallVector<CCValAssign, 16> RetLocs; 1206 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1207 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1208 1209 // Quick exit for void returns 1210 if (RetLocs.empty()) 1211 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1212 1213 // Copy the result values into the output registers. 1214 SDValue Glue; 1215 SmallVector<SDValue, 4> RetOps; 1216 RetOps.push_back(Chain); 1217 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1218 CCValAssign &VA = RetLocs[I]; 1219 SDValue RetValue = OutVals[I]; 1220 1221 // Make the return register live on exit. 1222 assert(VA.isRegLoc() && "Can only return in registers!"); 1223 1224 // Promote the value as required. 1225 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1226 1227 // Chain and glue the copies together. 1228 unsigned Reg = VA.getLocReg(); 1229 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1230 Glue = Chain.getValue(1); 1231 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1232 } 1233 1234 // Update chain and glue. 1235 RetOps[0] = Chain; 1236 if (Glue.getNode()) 1237 RetOps.push_back(Glue); 1238 1239 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1240 } 1241 1242 SDValue SystemZTargetLowering:: 1243 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1244 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1245 } 1246 1247 // Return true if Op is an intrinsic node with chain that returns the CC value 1248 // as its only (other) argument. Provide the associated SystemZISD opcode and 1249 // the mask of valid CC values if so. 1250 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1251 unsigned &CCValid) { 1252 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1253 switch (Id) { 1254 case Intrinsic::s390_tbegin: 1255 Opcode = SystemZISD::TBEGIN; 1256 CCValid = SystemZ::CCMASK_TBEGIN; 1257 return true; 1258 1259 case Intrinsic::s390_tbegin_nofloat: 1260 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1261 CCValid = SystemZ::CCMASK_TBEGIN; 1262 return true; 1263 1264 case Intrinsic::s390_tend: 1265 Opcode = SystemZISD::TEND; 1266 CCValid = SystemZ::CCMASK_TEND; 1267 return true; 1268 1269 default: 1270 return false; 1271 } 1272 } 1273 1274 // Return true if Op is an intrinsic node without chain that returns the 1275 // CC value as its final argument. Provide the associated SystemZISD 1276 // opcode and the mask of valid CC values if so. 1277 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1278 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1279 switch (Id) { 1280 case Intrinsic::s390_vpkshs: 1281 case Intrinsic::s390_vpksfs: 1282 case Intrinsic::s390_vpksgs: 1283 Opcode = SystemZISD::PACKS_CC; 1284 CCValid = SystemZ::CCMASK_VCMP; 1285 return true; 1286 1287 case Intrinsic::s390_vpklshs: 1288 case Intrinsic::s390_vpklsfs: 1289 case Intrinsic::s390_vpklsgs: 1290 Opcode = SystemZISD::PACKLS_CC; 1291 CCValid = SystemZ::CCMASK_VCMP; 1292 return true; 1293 1294 case Intrinsic::s390_vceqbs: 1295 case Intrinsic::s390_vceqhs: 1296 case Intrinsic::s390_vceqfs: 1297 case Intrinsic::s390_vceqgs: 1298 Opcode = SystemZISD::VICMPES; 1299 CCValid = SystemZ::CCMASK_VCMP; 1300 return true; 1301 1302 case Intrinsic::s390_vchbs: 1303 case Intrinsic::s390_vchhs: 1304 case Intrinsic::s390_vchfs: 1305 case Intrinsic::s390_vchgs: 1306 Opcode = SystemZISD::VICMPHS; 1307 CCValid = SystemZ::CCMASK_VCMP; 1308 return true; 1309 1310 case Intrinsic::s390_vchlbs: 1311 case Intrinsic::s390_vchlhs: 1312 case Intrinsic::s390_vchlfs: 1313 case Intrinsic::s390_vchlgs: 1314 Opcode = SystemZISD::VICMPHLS; 1315 CCValid = SystemZ::CCMASK_VCMP; 1316 return true; 1317 1318 case Intrinsic::s390_vtm: 1319 Opcode = SystemZISD::VTM; 1320 CCValid = SystemZ::CCMASK_VCMP; 1321 return true; 1322 1323 case Intrinsic::s390_vfaebs: 1324 case Intrinsic::s390_vfaehs: 1325 case Intrinsic::s390_vfaefs: 1326 Opcode = SystemZISD::VFAE_CC; 1327 CCValid = SystemZ::CCMASK_ANY; 1328 return true; 1329 1330 case Intrinsic::s390_vfaezbs: 1331 case Intrinsic::s390_vfaezhs: 1332 case Intrinsic::s390_vfaezfs: 1333 Opcode = SystemZISD::VFAEZ_CC; 1334 CCValid = SystemZ::CCMASK_ANY; 1335 return true; 1336 1337 case Intrinsic::s390_vfeebs: 1338 case Intrinsic::s390_vfeehs: 1339 case Intrinsic::s390_vfeefs: 1340 Opcode = SystemZISD::VFEE_CC; 1341 CCValid = SystemZ::CCMASK_ANY; 1342 return true; 1343 1344 case Intrinsic::s390_vfeezbs: 1345 case Intrinsic::s390_vfeezhs: 1346 case Intrinsic::s390_vfeezfs: 1347 Opcode = SystemZISD::VFEEZ_CC; 1348 CCValid = SystemZ::CCMASK_ANY; 1349 return true; 1350 1351 case Intrinsic::s390_vfenebs: 1352 case Intrinsic::s390_vfenehs: 1353 case Intrinsic::s390_vfenefs: 1354 Opcode = SystemZISD::VFENE_CC; 1355 CCValid = SystemZ::CCMASK_ANY; 1356 return true; 1357 1358 case Intrinsic::s390_vfenezbs: 1359 case Intrinsic::s390_vfenezhs: 1360 case Intrinsic::s390_vfenezfs: 1361 Opcode = SystemZISD::VFENEZ_CC; 1362 CCValid = SystemZ::CCMASK_ANY; 1363 return true; 1364 1365 case Intrinsic::s390_vistrbs: 1366 case Intrinsic::s390_vistrhs: 1367 case Intrinsic::s390_vistrfs: 1368 Opcode = SystemZISD::VISTR_CC; 1369 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1370 return true; 1371 1372 case Intrinsic::s390_vstrcbs: 1373 case Intrinsic::s390_vstrchs: 1374 case Intrinsic::s390_vstrcfs: 1375 Opcode = SystemZISD::VSTRC_CC; 1376 CCValid = SystemZ::CCMASK_ANY; 1377 return true; 1378 1379 case Intrinsic::s390_vstrczbs: 1380 case Intrinsic::s390_vstrczhs: 1381 case Intrinsic::s390_vstrczfs: 1382 Opcode = SystemZISD::VSTRCZ_CC; 1383 CCValid = SystemZ::CCMASK_ANY; 1384 return true; 1385 1386 case Intrinsic::s390_vfcedbs: 1387 Opcode = SystemZISD::VFCMPES; 1388 CCValid = SystemZ::CCMASK_VCMP; 1389 return true; 1390 1391 case Intrinsic::s390_vfchdbs: 1392 Opcode = SystemZISD::VFCMPHS; 1393 CCValid = SystemZ::CCMASK_VCMP; 1394 return true; 1395 1396 case Intrinsic::s390_vfchedbs: 1397 Opcode = SystemZISD::VFCMPHES; 1398 CCValid = SystemZ::CCMASK_VCMP; 1399 return true; 1400 1401 case Intrinsic::s390_vftcidb: 1402 Opcode = SystemZISD::VFTCI; 1403 CCValid = SystemZ::CCMASK_VCMP; 1404 return true; 1405 1406 default: 1407 return false; 1408 } 1409 } 1410 1411 // Emit an intrinsic with chain with a glued value instead of its CC result. 1412 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1413 unsigned Opcode) { 1414 // Copy all operands except the intrinsic ID. 1415 unsigned NumOps = Op.getNumOperands(); 1416 SmallVector<SDValue, 6> Ops; 1417 Ops.reserve(NumOps - 1); 1418 Ops.push_back(Op.getOperand(0)); 1419 for (unsigned I = 2; I < NumOps; ++I) 1420 Ops.push_back(Op.getOperand(I)); 1421 1422 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1423 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1424 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1425 SDValue OldChain = SDValue(Op.getNode(), 1); 1426 SDValue NewChain = SDValue(Intr.getNode(), 0); 1427 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1428 return Intr; 1429 } 1430 1431 // Emit an intrinsic with a glued value instead of its CC result. 1432 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1433 unsigned Opcode) { 1434 // Copy all operands except the intrinsic ID. 1435 unsigned NumOps = Op.getNumOperands(); 1436 SmallVector<SDValue, 6> Ops; 1437 Ops.reserve(NumOps - 1); 1438 for (unsigned I = 1; I < NumOps; ++I) 1439 Ops.push_back(Op.getOperand(I)); 1440 1441 if (Op->getNumValues() == 1) 1442 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1443 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1444 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1445 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1446 } 1447 1448 // CC is a comparison that will be implemented using an integer or 1449 // floating-point comparison. Return the condition code mask for 1450 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1451 // unsigned comparisons and clear for signed ones. In the floating-point 1452 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1453 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1454 #define CONV(X) \ 1455 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1456 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1457 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1458 1459 switch (CC) { 1460 default: 1461 llvm_unreachable("Invalid integer condition!"); 1462 1463 CONV(EQ); 1464 CONV(NE); 1465 CONV(GT); 1466 CONV(GE); 1467 CONV(LT); 1468 CONV(LE); 1469 1470 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1471 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1472 } 1473 #undef CONV 1474 } 1475 1476 // Return a sequence for getting a 1 from an IPM result when CC has a 1477 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1478 // The handling of CC values outside CCValid doesn't matter. 1479 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1480 // Deal with cases where the result can be taken directly from a bit 1481 // of the IPM result. 1482 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1483 return IPMConversion(0, 0, SystemZ::IPM_CC); 1484 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1485 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1486 1487 // Deal with cases where we can add a value to force the sign bit 1488 // to contain the right value. Putting the bit in 31 means we can 1489 // use SRL rather than RISBG(L), and also makes it easier to get a 1490 // 0/-1 value, so it has priority over the other tests below. 1491 // 1492 // These sequences rely on the fact that the upper two bits of the 1493 // IPM result are zero. 1494 uint64_t TopBit = uint64_t(1) << 31; 1495 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1496 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1497 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1498 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1499 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1500 | SystemZ::CCMASK_1 1501 | SystemZ::CCMASK_2))) 1502 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1503 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1504 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1505 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1506 | SystemZ::CCMASK_2 1507 | SystemZ::CCMASK_3))) 1508 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1509 1510 // Next try inverting the value and testing a bit. 0/1 could be 1511 // handled this way too, but we dealt with that case above. 1512 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1513 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1514 1515 // Handle cases where adding a value forces a non-sign bit to contain 1516 // the right value. 1517 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1518 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1519 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1520 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1521 1522 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1523 // can be done by inverting the low CC bit and applying one of the 1524 // sign-based extractions above. 1525 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1526 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1527 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1528 return IPMConversion(1 << SystemZ::IPM_CC, 1529 TopBit - (3 << SystemZ::IPM_CC), 31); 1530 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1531 | SystemZ::CCMASK_1 1532 | SystemZ::CCMASK_3))) 1533 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1534 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1535 | SystemZ::CCMASK_2 1536 | SystemZ::CCMASK_3))) 1537 return IPMConversion(1 << SystemZ::IPM_CC, 1538 TopBit - (1 << SystemZ::IPM_CC), 31); 1539 1540 llvm_unreachable("Unexpected CC combination"); 1541 } 1542 1543 // If C can be converted to a comparison against zero, adjust the operands 1544 // as necessary. 1545 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1546 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1547 return; 1548 1549 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1550 if (!ConstOp1) 1551 return; 1552 1553 int64_t Value = ConstOp1->getSExtValue(); 1554 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1555 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1556 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1557 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1558 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1559 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1560 } 1561 } 1562 1563 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1564 // adjust the operands as necessary. 1565 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1566 // For us to make any changes, it must a comparison between a single-use 1567 // load and a constant. 1568 if (!C.Op0.hasOneUse() || 1569 C.Op0.getOpcode() != ISD::LOAD || 1570 C.Op1.getOpcode() != ISD::Constant) 1571 return; 1572 1573 // We must have an 8- or 16-bit load. 1574 auto *Load = cast<LoadSDNode>(C.Op0); 1575 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1576 if (NumBits != 8 && NumBits != 16) 1577 return; 1578 1579 // The load must be an extending one and the constant must be within the 1580 // range of the unextended value. 1581 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1582 uint64_t Value = ConstOp1->getZExtValue(); 1583 uint64_t Mask = (1 << NumBits) - 1; 1584 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1585 // Make sure that ConstOp1 is in range of C.Op0. 1586 int64_t SignedValue = ConstOp1->getSExtValue(); 1587 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1588 return; 1589 if (C.ICmpType != SystemZICMP::SignedOnly) { 1590 // Unsigned comparison between two sign-extended values is equivalent 1591 // to unsigned comparison between two zero-extended values. 1592 Value &= Mask; 1593 } else if (NumBits == 8) { 1594 // Try to treat the comparison as unsigned, so that we can use CLI. 1595 // Adjust CCMask and Value as necessary. 1596 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1597 // Test whether the high bit of the byte is set. 1598 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1599 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1600 // Test whether the high bit of the byte is clear. 1601 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1602 else 1603 // No instruction exists for this combination. 1604 return; 1605 C.ICmpType = SystemZICMP::UnsignedOnly; 1606 } 1607 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1608 if (Value > Mask) 1609 return; 1610 assert(C.ICmpType == SystemZICMP::Any && 1611 "Signedness shouldn't matter here."); 1612 } else 1613 return; 1614 1615 // Make sure that the first operand is an i32 of the right extension type. 1616 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1617 ISD::SEXTLOAD : 1618 ISD::ZEXTLOAD); 1619 if (C.Op0.getValueType() != MVT::i32 || 1620 Load->getExtensionType() != ExtType) 1621 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1622 Load->getChain(), Load->getBasePtr(), 1623 Load->getPointerInfo(), Load->getMemoryVT(), 1624 Load->isVolatile(), Load->isNonTemporal(), 1625 Load->isInvariant(), Load->getAlignment()); 1626 1627 // Make sure that the second operand is an i32 with the right value. 1628 if (C.Op1.getValueType() != MVT::i32 || 1629 Value != ConstOp1->getZExtValue()) 1630 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1631 } 1632 1633 // Return true if Op is either an unextended load, or a load suitable 1634 // for integer register-memory comparisons of type ICmpType. 1635 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1636 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1637 if (Load) { 1638 // There are no instructions to compare a register with a memory byte. 1639 if (Load->getMemoryVT() == MVT::i8) 1640 return false; 1641 // Otherwise decide on extension type. 1642 switch (Load->getExtensionType()) { 1643 case ISD::NON_EXTLOAD: 1644 return true; 1645 case ISD::SEXTLOAD: 1646 return ICmpType != SystemZICMP::UnsignedOnly; 1647 case ISD::ZEXTLOAD: 1648 return ICmpType != SystemZICMP::SignedOnly; 1649 default: 1650 break; 1651 } 1652 } 1653 return false; 1654 } 1655 1656 // Return true if it is better to swap the operands of C. 1657 static bool shouldSwapCmpOperands(const Comparison &C) { 1658 // Leave f128 comparisons alone, since they have no memory forms. 1659 if (C.Op0.getValueType() == MVT::f128) 1660 return false; 1661 1662 // Always keep a floating-point constant second, since comparisons with 1663 // zero can use LOAD TEST and comparisons with other constants make a 1664 // natural memory operand. 1665 if (isa<ConstantFPSDNode>(C.Op1)) 1666 return false; 1667 1668 // Never swap comparisons with zero since there are many ways to optimize 1669 // those later. 1670 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1671 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1672 return false; 1673 1674 // Also keep natural memory operands second if the loaded value is 1675 // only used here. Several comparisons have memory forms. 1676 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1677 return false; 1678 1679 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1680 // In that case we generally prefer the memory to be second. 1681 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1682 // The only exceptions are when the second operand is a constant and 1683 // we can use things like CHHSI. 1684 if (!ConstOp1) 1685 return true; 1686 // The unsigned memory-immediate instructions can handle 16-bit 1687 // unsigned integers. 1688 if (C.ICmpType != SystemZICMP::SignedOnly && 1689 isUInt<16>(ConstOp1->getZExtValue())) 1690 return false; 1691 // The signed memory-immediate instructions can handle 16-bit 1692 // signed integers. 1693 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1694 isInt<16>(ConstOp1->getSExtValue())) 1695 return false; 1696 return true; 1697 } 1698 1699 // Try to promote the use of CGFR and CLGFR. 1700 unsigned Opcode0 = C.Op0.getOpcode(); 1701 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1702 return true; 1703 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1704 return true; 1705 if (C.ICmpType != SystemZICMP::SignedOnly && 1706 Opcode0 == ISD::AND && 1707 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1708 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1709 return true; 1710 1711 return false; 1712 } 1713 1714 // Return a version of comparison CC mask CCMask in which the LT and GT 1715 // actions are swapped. 1716 static unsigned reverseCCMask(unsigned CCMask) { 1717 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1718 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1719 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1720 (CCMask & SystemZ::CCMASK_CMP_UO)); 1721 } 1722 1723 // Check whether C tests for equality between X and Y and whether X - Y 1724 // or Y - X is also computed. In that case it's better to compare the 1725 // result of the subtraction against zero. 1726 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1727 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1728 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1729 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1730 SDNode *N = *I; 1731 if (N->getOpcode() == ISD::SUB && 1732 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1733 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1734 C.Op0 = SDValue(N, 0); 1735 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1736 return; 1737 } 1738 } 1739 } 1740 } 1741 1742 // Check whether C compares a floating-point value with zero and if that 1743 // floating-point value is also negated. In this case we can use the 1744 // negation to set CC, so avoiding separate LOAD AND TEST and 1745 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1746 static void adjustForFNeg(Comparison &C) { 1747 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1748 if (C1 && C1->isZero()) { 1749 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1750 SDNode *N = *I; 1751 if (N->getOpcode() == ISD::FNEG) { 1752 C.Op0 = SDValue(N, 0); 1753 C.CCMask = reverseCCMask(C.CCMask); 1754 return; 1755 } 1756 } 1757 } 1758 } 1759 1760 // Check whether C compares (shl X, 32) with 0 and whether X is 1761 // also sign-extended. In that case it is better to test the result 1762 // of the sign extension using LTGFR. 1763 // 1764 // This case is important because InstCombine transforms a comparison 1765 // with (sext (trunc X)) into a comparison with (shl X, 32). 1766 static void adjustForLTGFR(Comparison &C) { 1767 // Check for a comparison between (shl X, 32) and 0. 1768 if (C.Op0.getOpcode() == ISD::SHL && 1769 C.Op0.getValueType() == MVT::i64 && 1770 C.Op1.getOpcode() == ISD::Constant && 1771 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1772 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1773 if (C1 && C1->getZExtValue() == 32) { 1774 SDValue ShlOp0 = C.Op0.getOperand(0); 1775 // See whether X has any SIGN_EXTEND_INREG uses. 1776 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1777 SDNode *N = *I; 1778 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1779 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1780 C.Op0 = SDValue(N, 0); 1781 return; 1782 } 1783 } 1784 } 1785 } 1786 } 1787 1788 // If C compares the truncation of an extending load, try to compare 1789 // the untruncated value instead. This exposes more opportunities to 1790 // reuse CC. 1791 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1792 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1793 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1794 C.Op1.getOpcode() == ISD::Constant && 1795 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1796 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1797 if (L->getMemoryVT().getStoreSizeInBits() 1798 <= C.Op0.getValueType().getSizeInBits()) { 1799 unsigned Type = L->getExtensionType(); 1800 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1801 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1802 C.Op0 = C.Op0.getOperand(0); 1803 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1804 } 1805 } 1806 } 1807 } 1808 1809 // Return true if shift operation N has an in-range constant shift value. 1810 // Store it in ShiftVal if so. 1811 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1812 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1813 if (!Shift) 1814 return false; 1815 1816 uint64_t Amount = Shift->getZExtValue(); 1817 if (Amount >= N.getValueType().getSizeInBits()) 1818 return false; 1819 1820 ShiftVal = Amount; 1821 return true; 1822 } 1823 1824 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1825 // instruction and whether the CC value is descriptive enough to handle 1826 // a comparison of type Opcode between the AND result and CmpVal. 1827 // CCMask says which comparison result is being tested and BitSize is 1828 // the number of bits in the operands. If TEST UNDER MASK can be used, 1829 // return the corresponding CC mask, otherwise return 0. 1830 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1831 uint64_t Mask, uint64_t CmpVal, 1832 unsigned ICmpType) { 1833 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1834 1835 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1836 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1837 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1838 return 0; 1839 1840 // Work out the masks for the lowest and highest bits. 1841 unsigned HighShift = 63 - countLeadingZeros(Mask); 1842 uint64_t High = uint64_t(1) << HighShift; 1843 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1844 1845 // Signed ordered comparisons are effectively unsigned if the sign 1846 // bit is dropped. 1847 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1848 1849 // Check for equality comparisons with 0, or the equivalent. 1850 if (CmpVal == 0) { 1851 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1852 return SystemZ::CCMASK_TM_ALL_0; 1853 if (CCMask == SystemZ::CCMASK_CMP_NE) 1854 return SystemZ::CCMASK_TM_SOME_1; 1855 } 1856 if (EffectivelyUnsigned && CmpVal <= Low) { 1857 if (CCMask == SystemZ::CCMASK_CMP_LT) 1858 return SystemZ::CCMASK_TM_ALL_0; 1859 if (CCMask == SystemZ::CCMASK_CMP_GE) 1860 return SystemZ::CCMASK_TM_SOME_1; 1861 } 1862 if (EffectivelyUnsigned && CmpVal < Low) { 1863 if (CCMask == SystemZ::CCMASK_CMP_LE) 1864 return SystemZ::CCMASK_TM_ALL_0; 1865 if (CCMask == SystemZ::CCMASK_CMP_GT) 1866 return SystemZ::CCMASK_TM_SOME_1; 1867 } 1868 1869 // Check for equality comparisons with the mask, or the equivalent. 1870 if (CmpVal == Mask) { 1871 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1872 return SystemZ::CCMASK_TM_ALL_1; 1873 if (CCMask == SystemZ::CCMASK_CMP_NE) 1874 return SystemZ::CCMASK_TM_SOME_0; 1875 } 1876 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1877 if (CCMask == SystemZ::CCMASK_CMP_GT) 1878 return SystemZ::CCMASK_TM_ALL_1; 1879 if (CCMask == SystemZ::CCMASK_CMP_LE) 1880 return SystemZ::CCMASK_TM_SOME_0; 1881 } 1882 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1883 if (CCMask == SystemZ::CCMASK_CMP_GE) 1884 return SystemZ::CCMASK_TM_ALL_1; 1885 if (CCMask == SystemZ::CCMASK_CMP_LT) 1886 return SystemZ::CCMASK_TM_SOME_0; 1887 } 1888 1889 // Check for ordered comparisons with the top bit. 1890 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1891 if (CCMask == SystemZ::CCMASK_CMP_LE) 1892 return SystemZ::CCMASK_TM_MSB_0; 1893 if (CCMask == SystemZ::CCMASK_CMP_GT) 1894 return SystemZ::CCMASK_TM_MSB_1; 1895 } 1896 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1897 if (CCMask == SystemZ::CCMASK_CMP_LT) 1898 return SystemZ::CCMASK_TM_MSB_0; 1899 if (CCMask == SystemZ::CCMASK_CMP_GE) 1900 return SystemZ::CCMASK_TM_MSB_1; 1901 } 1902 1903 // If there are just two bits, we can do equality checks for Low and High 1904 // as well. 1905 if (Mask == Low + High) { 1906 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1907 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1908 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1909 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1910 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1911 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1912 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1913 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1914 } 1915 1916 // Looks like we've exhausted our options. 1917 return 0; 1918 } 1919 1920 // See whether C can be implemented as a TEST UNDER MASK instruction. 1921 // Update the arguments with the TM version if so. 1922 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1923 // Check that we have a comparison with a constant. 1924 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1925 if (!ConstOp1) 1926 return; 1927 uint64_t CmpVal = ConstOp1->getZExtValue(); 1928 1929 // Check whether the nonconstant input is an AND with a constant mask. 1930 Comparison NewC(C); 1931 uint64_t MaskVal; 1932 ConstantSDNode *Mask = nullptr; 1933 if (C.Op0.getOpcode() == ISD::AND) { 1934 NewC.Op0 = C.Op0.getOperand(0); 1935 NewC.Op1 = C.Op0.getOperand(1); 1936 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1937 if (!Mask) 1938 return; 1939 MaskVal = Mask->getZExtValue(); 1940 } else { 1941 // There is no instruction to compare with a 64-bit immediate 1942 // so use TMHH instead if possible. We need an unsigned ordered 1943 // comparison with an i64 immediate. 1944 if (NewC.Op0.getValueType() != MVT::i64 || 1945 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1946 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1947 NewC.ICmpType == SystemZICMP::SignedOnly) 1948 return; 1949 // Convert LE and GT comparisons into LT and GE. 1950 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1951 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1952 if (CmpVal == uint64_t(-1)) 1953 return; 1954 CmpVal += 1; 1955 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1956 } 1957 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1958 // be masked off without changing the result. 1959 MaskVal = -(CmpVal & -CmpVal); 1960 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1961 } 1962 if (!MaskVal) 1963 return; 1964 1965 // Check whether the combination of mask, comparison value and comparison 1966 // type are suitable. 1967 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1968 unsigned NewCCMask, ShiftVal; 1969 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1970 NewC.Op0.getOpcode() == ISD::SHL && 1971 isSimpleShift(NewC.Op0, ShiftVal) && 1972 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1973 MaskVal >> ShiftVal, 1974 CmpVal >> ShiftVal, 1975 SystemZICMP::Any))) { 1976 NewC.Op0 = NewC.Op0.getOperand(0); 1977 MaskVal >>= ShiftVal; 1978 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1979 NewC.Op0.getOpcode() == ISD::SRL && 1980 isSimpleShift(NewC.Op0, ShiftVal) && 1981 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1982 MaskVal << ShiftVal, 1983 CmpVal << ShiftVal, 1984 SystemZICMP::UnsignedOnly))) { 1985 NewC.Op0 = NewC.Op0.getOperand(0); 1986 MaskVal <<= ShiftVal; 1987 } else { 1988 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1989 NewC.ICmpType); 1990 if (!NewCCMask) 1991 return; 1992 } 1993 1994 // Go ahead and make the change. 1995 C.Opcode = SystemZISD::TM; 1996 C.Op0 = NewC.Op0; 1997 if (Mask && Mask->getZExtValue() == MaskVal) 1998 C.Op1 = SDValue(Mask, 0); 1999 else 2000 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2001 C.CCValid = SystemZ::CCMASK_TM; 2002 C.CCMask = NewCCMask; 2003 } 2004 2005 // Return a Comparison that tests the condition-code result of intrinsic 2006 // node Call against constant integer CC using comparison code Cond. 2007 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2008 // and CCValid is the set of possible condition-code results. 2009 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2010 SDValue Call, unsigned CCValid, uint64_t CC, 2011 ISD::CondCode Cond) { 2012 Comparison C(Call, SDValue()); 2013 C.Opcode = Opcode; 2014 C.CCValid = CCValid; 2015 if (Cond == ISD::SETEQ) 2016 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2017 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2018 else if (Cond == ISD::SETNE) 2019 // ...and the inverse of that. 2020 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2021 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2022 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2023 // always true for CC>3. 2024 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2025 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2026 // ...and the inverse of that. 2027 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2028 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2029 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2030 // always true for CC>3. 2031 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2032 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2033 // ...and the inverse of that. 2034 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2035 else 2036 llvm_unreachable("Unexpected integer comparison type"); 2037 C.CCMask &= CCValid; 2038 return C; 2039 } 2040 2041 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2042 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2043 ISD::CondCode Cond, SDLoc DL) { 2044 if (CmpOp1.getOpcode() == ISD::Constant) { 2045 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2046 unsigned Opcode, CCValid; 2047 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2048 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2049 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2050 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2051 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2052 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2053 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2054 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2055 } 2056 Comparison C(CmpOp0, CmpOp1); 2057 C.CCMask = CCMaskForCondCode(Cond); 2058 if (C.Op0.getValueType().isFloatingPoint()) { 2059 C.CCValid = SystemZ::CCMASK_FCMP; 2060 C.Opcode = SystemZISD::FCMP; 2061 adjustForFNeg(C); 2062 } else { 2063 C.CCValid = SystemZ::CCMASK_ICMP; 2064 C.Opcode = SystemZISD::ICMP; 2065 // Choose the type of comparison. Equality and inequality tests can 2066 // use either signed or unsigned comparisons. The choice also doesn't 2067 // matter if both sign bits are known to be clear. In those cases we 2068 // want to give the main isel code the freedom to choose whichever 2069 // form fits best. 2070 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2071 C.CCMask == SystemZ::CCMASK_CMP_NE || 2072 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2073 C.ICmpType = SystemZICMP::Any; 2074 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2075 C.ICmpType = SystemZICMP::UnsignedOnly; 2076 else 2077 C.ICmpType = SystemZICMP::SignedOnly; 2078 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2079 adjustZeroCmp(DAG, DL, C); 2080 adjustSubwordCmp(DAG, DL, C); 2081 adjustForSubtraction(DAG, DL, C); 2082 adjustForLTGFR(C); 2083 adjustICmpTruncate(DAG, DL, C); 2084 } 2085 2086 if (shouldSwapCmpOperands(C)) { 2087 std::swap(C.Op0, C.Op1); 2088 C.CCMask = reverseCCMask(C.CCMask); 2089 } 2090 2091 adjustForTestUnderMask(DAG, DL, C); 2092 return C; 2093 } 2094 2095 // Emit the comparison instruction described by C. 2096 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2097 if (!C.Op1.getNode()) { 2098 SDValue Op; 2099 switch (C.Op0.getOpcode()) { 2100 case ISD::INTRINSIC_W_CHAIN: 2101 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2102 break; 2103 case ISD::INTRINSIC_WO_CHAIN: 2104 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2105 break; 2106 default: 2107 llvm_unreachable("Invalid comparison operands"); 2108 } 2109 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2110 } 2111 if (C.Opcode == SystemZISD::ICMP) 2112 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2113 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2114 if (C.Opcode == SystemZISD::TM) { 2115 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2116 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2117 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2118 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2119 } 2120 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2121 } 2122 2123 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2124 // 64 bits. Extend is the extension type to use. Store the high part 2125 // in Hi and the low part in Lo. 2126 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2127 unsigned Extend, SDValue Op0, SDValue Op1, 2128 SDValue &Hi, SDValue &Lo) { 2129 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2130 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2131 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2132 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2133 DAG.getConstant(32, DL, MVT::i64)); 2134 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2135 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2136 } 2137 2138 // Lower a binary operation that produces two VT results, one in each 2139 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2140 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2141 // on the extended Op0 and (unextended) Op1. Store the even register result 2142 // in Even and the odd register result in Odd. 2143 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2144 unsigned Extend, unsigned Opcode, 2145 SDValue Op0, SDValue Op1, 2146 SDValue &Even, SDValue &Odd) { 2147 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2148 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2149 SDValue(In128, 0), Op1); 2150 bool Is32Bit = is32Bit(VT); 2151 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2152 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2153 } 2154 2155 // Return an i32 value that is 1 if the CC value produced by Glue is 2156 // in the mask CCMask and 0 otherwise. CC is known to have a value 2157 // in CCValid, so other values can be ignored. 2158 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2159 unsigned CCValid, unsigned CCMask) { 2160 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2161 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2162 2163 if (Conversion.XORValue) 2164 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2165 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2166 2167 if (Conversion.AddValue) 2168 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2169 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2170 2171 // The SHR/AND sequence should get optimized to an RISBG. 2172 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2173 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2174 if (Conversion.Bit != 31) 2175 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2176 DAG.getConstant(1, DL, MVT::i32)); 2177 return Result; 2178 } 2179 2180 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2181 // be done directly. IsFP is true if CC is for a floating-point rather than 2182 // integer comparison. 2183 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2184 switch (CC) { 2185 case ISD::SETOEQ: 2186 case ISD::SETEQ: 2187 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2188 2189 case ISD::SETOGE: 2190 case ISD::SETGE: 2191 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2192 2193 case ISD::SETOGT: 2194 case ISD::SETGT: 2195 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2196 2197 case ISD::SETUGT: 2198 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2199 2200 default: 2201 return 0; 2202 } 2203 } 2204 2205 // Return the SystemZISD vector comparison operation for CC or its inverse, 2206 // or 0 if neither can be done directly. Indicate in Invert whether the 2207 // result is for the inverse of CC. IsFP is true if CC is for a 2208 // floating-point rather than integer comparison. 2209 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2210 bool &Invert) { 2211 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2212 Invert = false; 2213 return Opcode; 2214 } 2215 2216 CC = ISD::getSetCCInverse(CC, !IsFP); 2217 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2218 Invert = true; 2219 return Opcode; 2220 } 2221 2222 return 0; 2223 } 2224 2225 // Return a v2f64 that contains the extended form of elements Start and Start+1 2226 // of v4f32 value Op. 2227 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2228 SDValue Op) { 2229 int Mask[] = { Start, -1, Start + 1, -1 }; 2230 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2231 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2232 } 2233 2234 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2235 // producing a result of type VT. 2236 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2237 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2238 // There is no hardware support for v4f32, so extend the vector into 2239 // two v2f64s and compare those. 2240 if (CmpOp0.getValueType() == MVT::v4f32) { 2241 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2242 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2243 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2244 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2245 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2246 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2247 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2248 } 2249 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2250 } 2251 2252 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2253 // an integer mask of type VT. 2254 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2255 ISD::CondCode CC, SDValue CmpOp0, 2256 SDValue CmpOp1) { 2257 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2258 bool Invert = false; 2259 SDValue Cmp; 2260 switch (CC) { 2261 // Handle tests for order using (or (ogt y x) (oge x y)). 2262 case ISD::SETUO: 2263 Invert = true; 2264 case ISD::SETO: { 2265 assert(IsFP && "Unexpected integer comparison"); 2266 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2267 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2268 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2269 break; 2270 } 2271 2272 // Handle <> tests using (or (ogt y x) (ogt x y)). 2273 case ISD::SETUEQ: 2274 Invert = true; 2275 case ISD::SETONE: { 2276 assert(IsFP && "Unexpected integer comparison"); 2277 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2278 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2279 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2280 break; 2281 } 2282 2283 // Otherwise a single comparison is enough. It doesn't really 2284 // matter whether we try the inversion or the swap first, since 2285 // there are no cases where both work. 2286 default: 2287 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2288 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2289 else { 2290 CC = ISD::getSetCCSwappedOperands(CC); 2291 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2292 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2293 else 2294 llvm_unreachable("Unhandled comparison"); 2295 } 2296 break; 2297 } 2298 if (Invert) { 2299 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2300 DAG.getConstant(65535, DL, MVT::i32)); 2301 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2302 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2303 } 2304 return Cmp; 2305 } 2306 2307 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2308 SelectionDAG &DAG) const { 2309 SDValue CmpOp0 = Op.getOperand(0); 2310 SDValue CmpOp1 = Op.getOperand(1); 2311 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2312 SDLoc DL(Op); 2313 EVT VT = Op.getValueType(); 2314 if (VT.isVector()) 2315 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2316 2317 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2318 SDValue Glue = emitCmp(DAG, DL, C); 2319 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2320 } 2321 2322 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2323 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2324 SDValue CmpOp0 = Op.getOperand(2); 2325 SDValue CmpOp1 = Op.getOperand(3); 2326 SDValue Dest = Op.getOperand(4); 2327 SDLoc DL(Op); 2328 2329 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2330 SDValue Glue = emitCmp(DAG, DL, C); 2331 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2332 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2333 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2334 } 2335 2336 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2337 // allowing Pos and Neg to be wider than CmpOp. 2338 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2339 return (Neg.getOpcode() == ISD::SUB && 2340 Neg.getOperand(0).getOpcode() == ISD::Constant && 2341 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2342 Neg.getOperand(1) == Pos && 2343 (Pos == CmpOp || 2344 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2345 Pos.getOperand(0) == CmpOp))); 2346 } 2347 2348 // Return the absolute or negative absolute of Op; IsNegative decides which. 2349 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2350 bool IsNegative) { 2351 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2352 if (IsNegative) 2353 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2354 DAG.getConstant(0, DL, Op.getValueType()), Op); 2355 return Op; 2356 } 2357 2358 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2359 SelectionDAG &DAG) const { 2360 SDValue CmpOp0 = Op.getOperand(0); 2361 SDValue CmpOp1 = Op.getOperand(1); 2362 SDValue TrueOp = Op.getOperand(2); 2363 SDValue FalseOp = Op.getOperand(3); 2364 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2365 SDLoc DL(Op); 2366 2367 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2368 2369 // Check for absolute and negative-absolute selections, including those 2370 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2371 // This check supplements the one in DAGCombiner. 2372 if (C.Opcode == SystemZISD::ICMP && 2373 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2374 C.CCMask != SystemZ::CCMASK_CMP_NE && 2375 C.Op1.getOpcode() == ISD::Constant && 2376 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2377 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2378 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2379 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2380 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2381 } 2382 2383 SDValue Glue = emitCmp(DAG, DL, C); 2384 2385 // Special case for handling -1/0 results. The shifts we use here 2386 // should get optimized with the IPM conversion sequence. 2387 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2388 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2389 if (TrueC && FalseC) { 2390 int64_t TrueVal = TrueC->getSExtValue(); 2391 int64_t FalseVal = FalseC->getSExtValue(); 2392 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2393 // Invert the condition if we want -1 on false. 2394 if (TrueVal == 0) 2395 C.CCMask ^= C.CCValid; 2396 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2397 EVT VT = Op.getValueType(); 2398 // Extend the result to VT. Upper bits are ignored. 2399 if (!is32Bit(VT)) 2400 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2401 // Sign-extend from the low bit. 2402 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2403 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2404 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2405 } 2406 } 2407 2408 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2409 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2410 2411 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2412 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2413 } 2414 2415 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2416 SelectionDAG &DAG) const { 2417 SDLoc DL(Node); 2418 const GlobalValue *GV = Node->getGlobal(); 2419 int64_t Offset = Node->getOffset(); 2420 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2421 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2422 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2423 2424 SDValue Result; 2425 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2426 // Assign anchors at 1<<12 byte boundaries. 2427 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2428 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2429 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2430 2431 // The offset can be folded into the address if it is aligned to a halfword. 2432 Offset -= Anchor; 2433 if (Offset != 0 && (Offset & 1) == 0) { 2434 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2435 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2436 Offset = 0; 2437 } 2438 } else { 2439 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2440 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2441 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2442 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2443 false, false, false, 0); 2444 } 2445 2446 // If there was a non-zero offset that we didn't fold, create an explicit 2447 // addition for it. 2448 if (Offset != 0) 2449 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2450 DAG.getConstant(Offset, DL, PtrVT)); 2451 2452 return Result; 2453 } 2454 2455 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2456 SelectionDAG &DAG, 2457 unsigned Opcode, 2458 SDValue GOTOffset) const { 2459 SDLoc DL(Node); 2460 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2461 SDValue Chain = DAG.getEntryNode(); 2462 SDValue Glue; 2463 2464 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2465 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2466 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2467 Glue = Chain.getValue(1); 2468 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2469 Glue = Chain.getValue(1); 2470 2471 // The first call operand is the chain and the second is the TLS symbol. 2472 SmallVector<SDValue, 8> Ops; 2473 Ops.push_back(Chain); 2474 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2475 Node->getValueType(0), 2476 0, 0)); 2477 2478 // Add argument registers to the end of the list so that they are 2479 // known live into the call. 2480 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2481 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2482 2483 // Add a register mask operand representing the call-preserved registers. 2484 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2485 const uint32_t *Mask = 2486 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2487 assert(Mask && "Missing call preserved mask for calling convention"); 2488 Ops.push_back(DAG.getRegisterMask(Mask)); 2489 2490 // Glue the call to the argument copies. 2491 Ops.push_back(Glue); 2492 2493 // Emit the call. 2494 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2495 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2496 Glue = Chain.getValue(1); 2497 2498 // Copy the return value from %r2. 2499 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2500 } 2501 2502 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2503 SelectionDAG &DAG) const { 2504 if (DAG.getTarget().Options.EmulatedTLS) 2505 return LowerToTLSEmulatedModel(Node, DAG); 2506 SDLoc DL(Node); 2507 const GlobalValue *GV = Node->getGlobal(); 2508 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2509 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2510 2511 // The high part of the thread pointer is in access register 0. 2512 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2513 DAG.getConstant(0, DL, MVT::i32)); 2514 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2515 2516 // The low part of the thread pointer is in access register 1. 2517 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2518 DAG.getConstant(1, DL, MVT::i32)); 2519 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2520 2521 // Merge them into a single 64-bit address. 2522 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2523 DAG.getConstant(32, DL, PtrVT)); 2524 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2525 2526 // Get the offset of GA from the thread pointer, based on the TLS model. 2527 SDValue Offset; 2528 switch (model) { 2529 case TLSModel::GeneralDynamic: { 2530 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2531 SystemZConstantPoolValue *CPV = 2532 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2533 2534 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2535 Offset = DAG.getLoad( 2536 PtrVT, DL, DAG.getEntryNode(), Offset, 2537 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2538 false, false, 0); 2539 2540 // Call __tls_get_offset to retrieve the offset. 2541 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2542 break; 2543 } 2544 2545 case TLSModel::LocalDynamic: { 2546 // Load the GOT offset of the module ID. 2547 SystemZConstantPoolValue *CPV = 2548 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2549 2550 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2551 Offset = DAG.getLoad( 2552 PtrVT, DL, DAG.getEntryNode(), Offset, 2553 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2554 false, false, 0); 2555 2556 // Call __tls_get_offset to retrieve the module base offset. 2557 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2558 2559 // Note: The SystemZLDCleanupPass will remove redundant computations 2560 // of the module base offset. Count total number of local-dynamic 2561 // accesses to trigger execution of that pass. 2562 SystemZMachineFunctionInfo* MFI = 2563 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2564 MFI->incNumLocalDynamicTLSAccesses(); 2565 2566 // Add the per-symbol offset. 2567 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2568 2569 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2570 DTPOffset = DAG.getLoad( 2571 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2572 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2573 false, false, 0); 2574 2575 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2576 break; 2577 } 2578 2579 case TLSModel::InitialExec: { 2580 // Load the offset from the GOT. 2581 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2582 SystemZII::MO_INDNTPOFF); 2583 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2584 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2585 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2586 false, false, false, 0); 2587 break; 2588 } 2589 2590 case TLSModel::LocalExec: { 2591 // Force the offset into the constant pool and load it from there. 2592 SystemZConstantPoolValue *CPV = 2593 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2594 2595 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2596 Offset = DAG.getLoad( 2597 PtrVT, DL, DAG.getEntryNode(), Offset, 2598 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2599 false, false, 0); 2600 break; 2601 } 2602 } 2603 2604 // Add the base and offset together. 2605 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2606 } 2607 2608 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2609 SelectionDAG &DAG) const { 2610 SDLoc DL(Node); 2611 const BlockAddress *BA = Node->getBlockAddress(); 2612 int64_t Offset = Node->getOffset(); 2613 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2614 2615 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2616 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2617 return Result; 2618 } 2619 2620 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2621 SelectionDAG &DAG) const { 2622 SDLoc DL(JT); 2623 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2624 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2625 2626 // Use LARL to load the address of the table. 2627 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2628 } 2629 2630 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2631 SelectionDAG &DAG) const { 2632 SDLoc DL(CP); 2633 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2634 2635 SDValue Result; 2636 if (CP->isMachineConstantPoolEntry()) 2637 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2638 CP->getAlignment()); 2639 else 2640 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2641 CP->getAlignment(), CP->getOffset()); 2642 2643 // Use LARL to load the address of the constant pool entry. 2644 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2645 } 2646 2647 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2648 SelectionDAG &DAG) const { 2649 SDLoc DL(Op); 2650 SDValue In = Op.getOperand(0); 2651 EVT InVT = In.getValueType(); 2652 EVT ResVT = Op.getValueType(); 2653 2654 // Convert loads directly. This is normally done by DAGCombiner, 2655 // but we need this case for bitcasts that are created during lowering 2656 // and which are then lowered themselves. 2657 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2658 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2659 LoadN->getMemOperand()); 2660 2661 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2662 SDValue In64; 2663 if (Subtarget.hasHighWord()) { 2664 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2665 MVT::i64); 2666 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2667 MVT::i64, SDValue(U64, 0), In); 2668 } else { 2669 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2670 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2671 DAG.getConstant(32, DL, MVT::i64)); 2672 } 2673 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2674 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2675 DL, MVT::f32, Out64); 2676 } 2677 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2678 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2679 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2680 MVT::f64, SDValue(U64, 0), In); 2681 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2682 if (Subtarget.hasHighWord()) 2683 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2684 MVT::i32, Out64); 2685 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2686 DAG.getConstant(32, DL, MVT::i64)); 2687 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2688 } 2689 llvm_unreachable("Unexpected bitcast combination"); 2690 } 2691 2692 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2693 SelectionDAG &DAG) const { 2694 MachineFunction &MF = DAG.getMachineFunction(); 2695 SystemZMachineFunctionInfo *FuncInfo = 2696 MF.getInfo<SystemZMachineFunctionInfo>(); 2697 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2698 2699 SDValue Chain = Op.getOperand(0); 2700 SDValue Addr = Op.getOperand(1); 2701 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2702 SDLoc DL(Op); 2703 2704 // The initial values of each field. 2705 const unsigned NumFields = 4; 2706 SDValue Fields[NumFields] = { 2707 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2708 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2709 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2710 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2711 }; 2712 2713 // Store each field into its respective slot. 2714 SDValue MemOps[NumFields]; 2715 unsigned Offset = 0; 2716 for (unsigned I = 0; I < NumFields; ++I) { 2717 SDValue FieldAddr = Addr; 2718 if (Offset != 0) 2719 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2720 DAG.getIntPtrConstant(Offset, DL)); 2721 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2722 MachinePointerInfo(SV, Offset), 2723 false, false, 0); 2724 Offset += 8; 2725 } 2726 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2727 } 2728 2729 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2730 SelectionDAG &DAG) const { 2731 SDValue Chain = Op.getOperand(0); 2732 SDValue DstPtr = Op.getOperand(1); 2733 SDValue SrcPtr = Op.getOperand(2); 2734 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2735 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2736 SDLoc DL(Op); 2737 2738 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2739 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2740 /*isTailCall*/false, 2741 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2742 } 2743 2744 SDValue SystemZTargetLowering:: 2745 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2746 SDValue Chain = Op.getOperand(0); 2747 SDValue Size = Op.getOperand(1); 2748 SDLoc DL(Op); 2749 2750 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2751 2752 // Get a reference to the stack pointer. 2753 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2754 2755 // Get the new stack pointer value. 2756 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2757 2758 // Copy the new stack pointer back. 2759 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2760 2761 // The allocated data lives above the 160 bytes allocated for the standard 2762 // frame, plus any outgoing stack arguments. We don't know how much that 2763 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2764 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2765 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2766 2767 SDValue Ops[2] = { Result, Chain }; 2768 return DAG.getMergeValues(Ops, DL); 2769 } 2770 2771 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2772 SelectionDAG &DAG) const { 2773 EVT VT = Op.getValueType(); 2774 SDLoc DL(Op); 2775 SDValue Ops[2]; 2776 if (is32Bit(VT)) 2777 // Just do a normal 64-bit multiplication and extract the results. 2778 // We define this so that it can be used for constant division. 2779 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2780 Op.getOperand(1), Ops[1], Ops[0]); 2781 else { 2782 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2783 // 2784 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2785 // 2786 // but using the fact that the upper halves are either all zeros 2787 // or all ones: 2788 // 2789 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2790 // 2791 // and grouping the right terms together since they are quicker than the 2792 // multiplication: 2793 // 2794 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2795 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2796 SDValue LL = Op.getOperand(0); 2797 SDValue RL = Op.getOperand(1); 2798 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2799 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2800 // UMUL_LOHI64 returns the low result in the odd register and the high 2801 // result in the even register. SMUL_LOHI is defined to return the 2802 // low half first, so the results are in reverse order. 2803 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2804 LL, RL, Ops[1], Ops[0]); 2805 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2806 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2807 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2808 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2809 } 2810 return DAG.getMergeValues(Ops, DL); 2811 } 2812 2813 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2814 SelectionDAG &DAG) const { 2815 EVT VT = Op.getValueType(); 2816 SDLoc DL(Op); 2817 SDValue Ops[2]; 2818 if (is32Bit(VT)) 2819 // Just do a normal 64-bit multiplication and extract the results. 2820 // We define this so that it can be used for constant division. 2821 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2822 Op.getOperand(1), Ops[1], Ops[0]); 2823 else 2824 // UMUL_LOHI64 returns the low result in the odd register and the high 2825 // result in the even register. UMUL_LOHI is defined to return the 2826 // low half first, so the results are in reverse order. 2827 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2828 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2829 return DAG.getMergeValues(Ops, DL); 2830 } 2831 2832 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2833 SelectionDAG &DAG) const { 2834 SDValue Op0 = Op.getOperand(0); 2835 SDValue Op1 = Op.getOperand(1); 2836 EVT VT = Op.getValueType(); 2837 SDLoc DL(Op); 2838 unsigned Opcode; 2839 2840 // We use DSGF for 32-bit division. 2841 if (is32Bit(VT)) { 2842 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2843 Opcode = SystemZISD::SDIVREM32; 2844 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2845 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2846 Opcode = SystemZISD::SDIVREM32; 2847 } else 2848 Opcode = SystemZISD::SDIVREM64; 2849 2850 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2851 // input is "don't care". The instruction returns the remainder in 2852 // the even register and the quotient in the odd register. 2853 SDValue Ops[2]; 2854 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2855 Op0, Op1, Ops[1], Ops[0]); 2856 return DAG.getMergeValues(Ops, DL); 2857 } 2858 2859 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2860 SelectionDAG &DAG) const { 2861 EVT VT = Op.getValueType(); 2862 SDLoc DL(Op); 2863 2864 // DL(G) uses a double-width dividend, so we need to clear the even 2865 // register in the GR128 input. The instruction returns the remainder 2866 // in the even register and the quotient in the odd register. 2867 SDValue Ops[2]; 2868 if (is32Bit(VT)) 2869 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2870 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2871 else 2872 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2873 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2874 return DAG.getMergeValues(Ops, DL); 2875 } 2876 2877 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2878 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2879 2880 // Get the known-zero masks for each operand. 2881 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2882 APInt KnownZero[2], KnownOne[2]; 2883 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2884 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2885 2886 // See if the upper 32 bits of one operand and the lower 32 bits of the 2887 // other are known zero. They are the low and high operands respectively. 2888 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2889 KnownZero[1].getZExtValue() }; 2890 unsigned High, Low; 2891 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2892 High = 1, Low = 0; 2893 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2894 High = 0, Low = 1; 2895 else 2896 return Op; 2897 2898 SDValue LowOp = Ops[Low]; 2899 SDValue HighOp = Ops[High]; 2900 2901 // If the high part is a constant, we're better off using IILH. 2902 if (HighOp.getOpcode() == ISD::Constant) 2903 return Op; 2904 2905 // If the low part is a constant that is outside the range of LHI, 2906 // then we're better off using IILF. 2907 if (LowOp.getOpcode() == ISD::Constant) { 2908 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2909 if (!isInt<16>(Value)) 2910 return Op; 2911 } 2912 2913 // Check whether the high part is an AND that doesn't change the 2914 // high 32 bits and just masks out low bits. We can skip it if so. 2915 if (HighOp.getOpcode() == ISD::AND && 2916 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2917 SDValue HighOp0 = HighOp.getOperand(0); 2918 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2919 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2920 HighOp = HighOp0; 2921 } 2922 2923 // Take advantage of the fact that all GR32 operations only change the 2924 // low 32 bits by truncating Low to an i32 and inserting it directly 2925 // using a subreg. The interesting cases are those where the truncation 2926 // can be folded. 2927 SDLoc DL(Op); 2928 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2929 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2930 MVT::i64, HighOp, Low32); 2931 } 2932 2933 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2934 SelectionDAG &DAG) const { 2935 EVT VT = Op.getValueType(); 2936 SDLoc DL(Op); 2937 Op = Op.getOperand(0); 2938 2939 // Handle vector types via VPOPCT. 2940 if (VT.isVector()) { 2941 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 2942 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 2943 switch (VT.getVectorElementType().getSizeInBits()) { 2944 case 8: 2945 break; 2946 case 16: { 2947 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 2948 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 2949 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 2950 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2951 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 2952 break; 2953 } 2954 case 32: { 2955 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2956 DAG.getConstant(0, DL, MVT::i32)); 2957 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2958 break; 2959 } 2960 case 64: { 2961 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2962 DAG.getConstant(0, DL, MVT::i32)); 2963 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 2964 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2965 break; 2966 } 2967 default: 2968 llvm_unreachable("Unexpected type"); 2969 } 2970 return Op; 2971 } 2972 2973 // Get the known-zero mask for the operand. 2974 APInt KnownZero, KnownOne; 2975 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2976 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 2977 if (NumSignificantBits == 0) 2978 return DAG.getConstant(0, DL, VT); 2979 2980 // Skip known-zero high parts of the operand. 2981 int64_t OrigBitSize = VT.getSizeInBits(); 2982 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 2983 BitSize = std::min(BitSize, OrigBitSize); 2984 2985 // The POPCNT instruction counts the number of bits in each byte. 2986 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 2987 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 2988 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 2989 2990 // Add up per-byte counts in a binary tree. All bits of Op at 2991 // position larger than BitSize remain zero throughout. 2992 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 2993 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 2994 if (BitSize != OrigBitSize) 2995 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 2996 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 2997 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2998 } 2999 3000 // Extract overall result from high byte. 3001 if (BitSize > 8) 3002 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3003 DAG.getConstant(BitSize - 8, DL, VT)); 3004 3005 return Op; 3006 } 3007 3008 // Op is an atomic load. Lower it into a normal volatile load. 3009 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3010 SelectionDAG &DAG) const { 3011 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3012 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3013 Node->getChain(), Node->getBasePtr(), 3014 Node->getMemoryVT(), Node->getMemOperand()); 3015 } 3016 3017 // Op is an atomic store. Lower it into a normal volatile store followed 3018 // by a serialization. 3019 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3020 SelectionDAG &DAG) const { 3021 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3022 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3023 Node->getBasePtr(), Node->getMemoryVT(), 3024 Node->getMemOperand()); 3025 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3026 Chain), 0); 3027 } 3028 3029 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3030 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3031 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3032 SelectionDAG &DAG, 3033 unsigned Opcode) const { 3034 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3035 3036 // 32-bit operations need no code outside the main loop. 3037 EVT NarrowVT = Node->getMemoryVT(); 3038 EVT WideVT = MVT::i32; 3039 if (NarrowVT == WideVT) 3040 return Op; 3041 3042 int64_t BitSize = NarrowVT.getSizeInBits(); 3043 SDValue ChainIn = Node->getChain(); 3044 SDValue Addr = Node->getBasePtr(); 3045 SDValue Src2 = Node->getVal(); 3046 MachineMemOperand *MMO = Node->getMemOperand(); 3047 SDLoc DL(Node); 3048 EVT PtrVT = Addr.getValueType(); 3049 3050 // Convert atomic subtracts of constants into additions. 3051 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3052 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3053 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3054 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3055 } 3056 3057 // Get the address of the containing word. 3058 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3059 DAG.getConstant(-4, DL, PtrVT)); 3060 3061 // Get the number of bits that the word must be rotated left in order 3062 // to bring the field to the top bits of a GR32. 3063 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3064 DAG.getConstant(3, DL, PtrVT)); 3065 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3066 3067 // Get the complementing shift amount, for rotating a field in the top 3068 // bits back to its proper position. 3069 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3070 DAG.getConstant(0, DL, WideVT), BitShift); 3071 3072 // Extend the source operand to 32 bits and prepare it for the inner loop. 3073 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3074 // operations require the source to be shifted in advance. (This shift 3075 // can be folded if the source is constant.) For AND and NAND, the lower 3076 // bits must be set, while for other opcodes they should be left clear. 3077 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3078 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3079 DAG.getConstant(32 - BitSize, DL, WideVT)); 3080 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3081 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3082 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3083 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3084 3085 // Construct the ATOMIC_LOADW_* node. 3086 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3087 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3088 DAG.getConstant(BitSize, DL, WideVT) }; 3089 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3090 NarrowVT, MMO); 3091 3092 // Rotate the result of the final CS so that the field is in the lower 3093 // bits of a GR32, then truncate it. 3094 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3095 DAG.getConstant(BitSize, DL, WideVT)); 3096 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3097 3098 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3099 return DAG.getMergeValues(RetOps, DL); 3100 } 3101 3102 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3103 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3104 // operations into additions. 3105 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3106 SelectionDAG &DAG) const { 3107 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3108 EVT MemVT = Node->getMemoryVT(); 3109 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3110 // A full-width operation. 3111 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3112 SDValue Src2 = Node->getVal(); 3113 SDValue NegSrc2; 3114 SDLoc DL(Src2); 3115 3116 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3117 // Use an addition if the operand is constant and either LAA(G) is 3118 // available or the negative value is in the range of A(G)FHI. 3119 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3120 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3121 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3122 } else if (Subtarget.hasInterlockedAccess1()) 3123 // Use LAA(G) if available. 3124 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3125 Src2); 3126 3127 if (NegSrc2.getNode()) 3128 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3129 Node->getChain(), Node->getBasePtr(), NegSrc2, 3130 Node->getMemOperand(), Node->getOrdering(), 3131 Node->getSynchScope()); 3132 3133 // Use the node as-is. 3134 return Op; 3135 } 3136 3137 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3138 } 3139 3140 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3141 // into a fullword ATOMIC_CMP_SWAPW operation. 3142 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3143 SelectionDAG &DAG) const { 3144 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3145 3146 // We have native support for 32-bit compare and swap. 3147 EVT NarrowVT = Node->getMemoryVT(); 3148 EVT WideVT = MVT::i32; 3149 if (NarrowVT == WideVT) 3150 return Op; 3151 3152 int64_t BitSize = NarrowVT.getSizeInBits(); 3153 SDValue ChainIn = Node->getOperand(0); 3154 SDValue Addr = Node->getOperand(1); 3155 SDValue CmpVal = Node->getOperand(2); 3156 SDValue SwapVal = Node->getOperand(3); 3157 MachineMemOperand *MMO = Node->getMemOperand(); 3158 SDLoc DL(Node); 3159 EVT PtrVT = Addr.getValueType(); 3160 3161 // Get the address of the containing word. 3162 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3163 DAG.getConstant(-4, DL, PtrVT)); 3164 3165 // Get the number of bits that the word must be rotated left in order 3166 // to bring the field to the top bits of a GR32. 3167 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3168 DAG.getConstant(3, DL, PtrVT)); 3169 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3170 3171 // Get the complementing shift amount, for rotating a field in the top 3172 // bits back to its proper position. 3173 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3174 DAG.getConstant(0, DL, WideVT), BitShift); 3175 3176 // Construct the ATOMIC_CMP_SWAPW node. 3177 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3178 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3179 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3180 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3181 VTList, Ops, NarrowVT, MMO); 3182 return AtomicOp; 3183 } 3184 3185 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3186 SelectionDAG &DAG) const { 3187 MachineFunction &MF = DAG.getMachineFunction(); 3188 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3189 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3190 SystemZ::R15D, Op.getValueType()); 3191 } 3192 3193 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3194 SelectionDAG &DAG) const { 3195 MachineFunction &MF = DAG.getMachineFunction(); 3196 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3197 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3198 SystemZ::R15D, Op.getOperand(1)); 3199 } 3200 3201 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3202 SelectionDAG &DAG) const { 3203 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3204 if (!IsData) 3205 // Just preserve the chain. 3206 return Op.getOperand(0); 3207 3208 SDLoc DL(Op); 3209 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3210 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3211 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3212 SDValue Ops[] = { 3213 Op.getOperand(0), 3214 DAG.getConstant(Code, DL, MVT::i32), 3215 Op.getOperand(1) 3216 }; 3217 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3218 Node->getVTList(), Ops, 3219 Node->getMemoryVT(), Node->getMemOperand()); 3220 } 3221 3222 // Return an i32 that contains the value of CC immediately after After, 3223 // whose final operand must be MVT::Glue. 3224 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3225 SDLoc DL(After); 3226 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3227 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3228 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3229 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3230 } 3231 3232 SDValue 3233 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3234 SelectionDAG &DAG) const { 3235 unsigned Opcode, CCValid; 3236 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3237 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3238 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3239 SDValue CC = getCCResult(DAG, Glued.getNode()); 3240 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3241 return SDValue(); 3242 } 3243 3244 return SDValue(); 3245 } 3246 3247 SDValue 3248 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3249 SelectionDAG &DAG) const { 3250 unsigned Opcode, CCValid; 3251 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3252 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3253 SDValue CC = getCCResult(DAG, Glued.getNode()); 3254 if (Op->getNumValues() == 1) 3255 return CC; 3256 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3257 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3258 CC); 3259 } 3260 3261 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3262 switch (Id) { 3263 case Intrinsic::s390_vpdi: 3264 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3265 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3266 3267 case Intrinsic::s390_vperm: 3268 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3269 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3270 3271 case Intrinsic::s390_vuphb: 3272 case Intrinsic::s390_vuphh: 3273 case Intrinsic::s390_vuphf: 3274 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3275 Op.getOperand(1)); 3276 3277 case Intrinsic::s390_vuplhb: 3278 case Intrinsic::s390_vuplhh: 3279 case Intrinsic::s390_vuplhf: 3280 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3281 Op.getOperand(1)); 3282 3283 case Intrinsic::s390_vuplb: 3284 case Intrinsic::s390_vuplhw: 3285 case Intrinsic::s390_vuplf: 3286 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3287 Op.getOperand(1)); 3288 3289 case Intrinsic::s390_vupllb: 3290 case Intrinsic::s390_vupllh: 3291 case Intrinsic::s390_vupllf: 3292 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3293 Op.getOperand(1)); 3294 3295 case Intrinsic::s390_vsumb: 3296 case Intrinsic::s390_vsumh: 3297 case Intrinsic::s390_vsumgh: 3298 case Intrinsic::s390_vsumgf: 3299 case Intrinsic::s390_vsumqf: 3300 case Intrinsic::s390_vsumqg: 3301 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3302 Op.getOperand(1), Op.getOperand(2)); 3303 } 3304 3305 return SDValue(); 3306 } 3307 3308 namespace { 3309 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3310 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3311 // Operand is the constant third operand, otherwise it is the number of 3312 // bytes in each element of the result. 3313 struct Permute { 3314 unsigned Opcode; 3315 unsigned Operand; 3316 unsigned char Bytes[SystemZ::VectorBytes]; 3317 }; 3318 } 3319 3320 static const Permute PermuteForms[] = { 3321 // VMRHG 3322 { SystemZISD::MERGE_HIGH, 8, 3323 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3324 // VMRHF 3325 { SystemZISD::MERGE_HIGH, 4, 3326 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3327 // VMRHH 3328 { SystemZISD::MERGE_HIGH, 2, 3329 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3330 // VMRHB 3331 { SystemZISD::MERGE_HIGH, 1, 3332 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3333 // VMRLG 3334 { SystemZISD::MERGE_LOW, 8, 3335 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3336 // VMRLF 3337 { SystemZISD::MERGE_LOW, 4, 3338 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3339 // VMRLH 3340 { SystemZISD::MERGE_LOW, 2, 3341 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3342 // VMRLB 3343 { SystemZISD::MERGE_LOW, 1, 3344 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3345 // VPKG 3346 { SystemZISD::PACK, 4, 3347 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3348 // VPKF 3349 { SystemZISD::PACK, 2, 3350 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3351 // VPKH 3352 { SystemZISD::PACK, 1, 3353 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3354 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3355 { SystemZISD::PERMUTE_DWORDS, 4, 3356 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3357 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3358 { SystemZISD::PERMUTE_DWORDS, 1, 3359 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3360 }; 3361 3362 // Called after matching a vector shuffle against a particular pattern. 3363 // Both the original shuffle and the pattern have two vector operands. 3364 // OpNos[0] is the operand of the original shuffle that should be used for 3365 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3366 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3367 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3368 // for operands 0 and 1 of the pattern. 3369 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3370 if (OpNos[0] < 0) { 3371 if (OpNos[1] < 0) 3372 return false; 3373 OpNo0 = OpNo1 = OpNos[1]; 3374 } else if (OpNos[1] < 0) { 3375 OpNo0 = OpNo1 = OpNos[0]; 3376 } else { 3377 OpNo0 = OpNos[0]; 3378 OpNo1 = OpNos[1]; 3379 } 3380 return true; 3381 } 3382 3383 // Bytes is a VPERM-like permute vector, except that -1 is used for 3384 // undefined bytes. Return true if the VPERM can be implemented using P. 3385 // When returning true set OpNo0 to the VPERM operand that should be 3386 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3387 // 3388 // For example, if swapping the VPERM operands allows P to match, OpNo0 3389 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3390 // operand, but rewriting it to use two duplicated operands allows it to 3391 // match P, then OpNo0 and OpNo1 will be the same. 3392 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3393 unsigned &OpNo0, unsigned &OpNo1) { 3394 int OpNos[] = { -1, -1 }; 3395 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3396 int Elt = Bytes[I]; 3397 if (Elt >= 0) { 3398 // Make sure that the two permute vectors use the same suboperand 3399 // byte number. Only the operand numbers (the high bits) are 3400 // allowed to differ. 3401 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3402 return false; 3403 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3404 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3405 // Make sure that the operand mappings are consistent with previous 3406 // elements. 3407 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3408 return false; 3409 OpNos[ModelOpNo] = RealOpNo; 3410 } 3411 } 3412 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3413 } 3414 3415 // As above, but search for a matching permute. 3416 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3417 unsigned &OpNo0, unsigned &OpNo1) { 3418 for (auto &P : PermuteForms) 3419 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3420 return &P; 3421 return nullptr; 3422 } 3423 3424 // Bytes is a VPERM-like permute vector, except that -1 is used for 3425 // undefined bytes. This permute is an operand of an outer permute. 3426 // See whether redistributing the -1 bytes gives a shuffle that can be 3427 // implemented using P. If so, set Transform to a VPERM-like permute vector 3428 // that, when applied to the result of P, gives the original permute in Bytes. 3429 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3430 const Permute &P, 3431 SmallVectorImpl<int> &Transform) { 3432 unsigned To = 0; 3433 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3434 int Elt = Bytes[From]; 3435 if (Elt < 0) 3436 // Byte number From of the result is undefined. 3437 Transform[From] = -1; 3438 else { 3439 while (P.Bytes[To] != Elt) { 3440 To += 1; 3441 if (To == SystemZ::VectorBytes) 3442 return false; 3443 } 3444 Transform[From] = To; 3445 } 3446 } 3447 return true; 3448 } 3449 3450 // As above, but search for a matching permute. 3451 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3452 SmallVectorImpl<int> &Transform) { 3453 for (auto &P : PermuteForms) 3454 if (matchDoublePermute(Bytes, P, Transform)) 3455 return &P; 3456 return nullptr; 3457 } 3458 3459 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3460 // as if it had type vNi8. 3461 static void getVPermMask(ShuffleVectorSDNode *VSN, 3462 SmallVectorImpl<int> &Bytes) { 3463 EVT VT = VSN->getValueType(0); 3464 unsigned NumElements = VT.getVectorNumElements(); 3465 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3466 Bytes.resize(NumElements * BytesPerElement, -1); 3467 for (unsigned I = 0; I < NumElements; ++I) { 3468 int Index = VSN->getMaskElt(I); 3469 if (Index >= 0) 3470 for (unsigned J = 0; J < BytesPerElement; ++J) 3471 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3472 } 3473 } 3474 3475 // Bytes is a VPERM-like permute vector, except that -1 is used for 3476 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3477 // the result come from a contiguous sequence of bytes from one input. 3478 // Set Base to the selector for the first byte if so. 3479 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3480 unsigned BytesPerElement, int &Base) { 3481 Base = -1; 3482 for (unsigned I = 0; I < BytesPerElement; ++I) { 3483 if (Bytes[Start + I] >= 0) { 3484 unsigned Elem = Bytes[Start + I]; 3485 if (Base < 0) { 3486 Base = Elem - I; 3487 // Make sure the bytes would come from one input operand. 3488 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3489 return false; 3490 } else if (unsigned(Base) != Elem - I) 3491 return false; 3492 } 3493 } 3494 return true; 3495 } 3496 3497 // Bytes is a VPERM-like permute vector, except that -1 is used for 3498 // undefined bytes. Return true if it can be performed using VSLDI. 3499 // When returning true, set StartIndex to the shift amount and OpNo0 3500 // and OpNo1 to the VPERM operands that should be used as the first 3501 // and second shift operand respectively. 3502 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3503 unsigned &StartIndex, unsigned &OpNo0, 3504 unsigned &OpNo1) { 3505 int OpNos[] = { -1, -1 }; 3506 int Shift = -1; 3507 for (unsigned I = 0; I < 16; ++I) { 3508 int Index = Bytes[I]; 3509 if (Index >= 0) { 3510 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3511 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3512 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3513 if (Shift < 0) 3514 Shift = ExpectedShift; 3515 else if (Shift != ExpectedShift) 3516 return false; 3517 // Make sure that the operand mappings are consistent with previous 3518 // elements. 3519 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3520 return false; 3521 OpNos[ModelOpNo] = RealOpNo; 3522 } 3523 } 3524 StartIndex = Shift; 3525 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3526 } 3527 3528 // Create a node that performs P on operands Op0 and Op1, casting the 3529 // operands to the appropriate type. The type of the result is determined by P. 3530 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3531 const Permute &P, SDValue Op0, SDValue Op1) { 3532 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3533 // elements of a PACK are twice as wide as the outputs. 3534 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3535 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3536 P.Operand); 3537 // Cast both operands to the appropriate type. 3538 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3539 SystemZ::VectorBytes / InBytes); 3540 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3541 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3542 SDValue Op; 3543 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3544 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3545 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3546 } else if (P.Opcode == SystemZISD::PACK) { 3547 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3548 SystemZ::VectorBytes / P.Operand); 3549 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3550 } else { 3551 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3552 } 3553 return Op; 3554 } 3555 3556 // Bytes is a VPERM-like permute vector, except that -1 is used for 3557 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3558 // VSLDI or VPERM. 3559 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3560 const SmallVectorImpl<int> &Bytes) { 3561 for (unsigned I = 0; I < 2; ++I) 3562 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3563 3564 // First see whether VSLDI can be used. 3565 unsigned StartIndex, OpNo0, OpNo1; 3566 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3567 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3568 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3569 3570 // Fall back on VPERM. Construct an SDNode for the permute vector. 3571 SDValue IndexNodes[SystemZ::VectorBytes]; 3572 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3573 if (Bytes[I] >= 0) 3574 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3575 else 3576 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3577 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3578 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3579 } 3580 3581 namespace { 3582 // Describes a general N-operand vector shuffle. 3583 struct GeneralShuffle { 3584 GeneralShuffle(EVT vt) : VT(vt) {} 3585 void addUndef(); 3586 void add(SDValue, unsigned); 3587 SDValue getNode(SelectionDAG &, SDLoc); 3588 3589 // The operands of the shuffle. 3590 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3591 3592 // Index I is -1 if byte I of the result is undefined. Otherwise the 3593 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3594 // Bytes[I] / SystemZ::VectorBytes. 3595 SmallVector<int, SystemZ::VectorBytes> Bytes; 3596 3597 // The type of the shuffle result. 3598 EVT VT; 3599 }; 3600 } 3601 3602 // Add an extra undefined element to the shuffle. 3603 void GeneralShuffle::addUndef() { 3604 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3605 for (unsigned I = 0; I < BytesPerElement; ++I) 3606 Bytes.push_back(-1); 3607 } 3608 3609 // Add an extra element to the shuffle, taking it from element Elem of Op. 3610 // A null Op indicates a vector input whose value will be calculated later; 3611 // there is at most one such input per shuffle and it always has the same 3612 // type as the result. 3613 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3614 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3615 3616 // The source vector can have wider elements than the result, 3617 // either through an explicit TRUNCATE or because of type legalization. 3618 // We want the least significant part. 3619 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3620 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3621 assert(FromBytesPerElement >= BytesPerElement && 3622 "Invalid EXTRACT_VECTOR_ELT"); 3623 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3624 (FromBytesPerElement - BytesPerElement)); 3625 3626 // Look through things like shuffles and bitcasts. 3627 while (Op.getNode()) { 3628 if (Op.getOpcode() == ISD::BITCAST) 3629 Op = Op.getOperand(0); 3630 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3631 // See whether the bytes we need come from a contiguous part of one 3632 // operand. 3633 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3634 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3635 int NewByte; 3636 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3637 break; 3638 if (NewByte < 0) { 3639 addUndef(); 3640 return; 3641 } 3642 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3643 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3644 } else if (Op.getOpcode() == ISD::UNDEF) { 3645 addUndef(); 3646 return; 3647 } else 3648 break; 3649 } 3650 3651 // Make sure that the source of the extraction is in Ops. 3652 unsigned OpNo = 0; 3653 for (; OpNo < Ops.size(); ++OpNo) 3654 if (Ops[OpNo] == Op) 3655 break; 3656 if (OpNo == Ops.size()) 3657 Ops.push_back(Op); 3658 3659 // Add the element to Bytes. 3660 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3661 for (unsigned I = 0; I < BytesPerElement; ++I) 3662 Bytes.push_back(Base + I); 3663 } 3664 3665 // Return SDNodes for the completed shuffle. 3666 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3667 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3668 3669 if (Ops.size() == 0) 3670 return DAG.getUNDEF(VT); 3671 3672 // Make sure that there are at least two shuffle operands. 3673 if (Ops.size() == 1) 3674 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3675 3676 // Create a tree of shuffles, deferring root node until after the loop. 3677 // Try to redistribute the undefined elements of non-root nodes so that 3678 // the non-root shuffles match something like a pack or merge, then adjust 3679 // the parent node's permute vector to compensate for the new order. 3680 // Among other things, this copes with vectors like <2 x i16> that were 3681 // padded with undefined elements during type legalization. 3682 // 3683 // In the best case this redistribution will lead to the whole tree 3684 // using packs and merges. It should rarely be a loss in other cases. 3685 unsigned Stride = 1; 3686 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3687 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3688 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3689 3690 // Create a mask for just these two operands. 3691 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3692 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3693 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3694 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3695 if (OpNo == I) 3696 NewBytes[J] = Byte; 3697 else if (OpNo == I + Stride) 3698 NewBytes[J] = SystemZ::VectorBytes + Byte; 3699 else 3700 NewBytes[J] = -1; 3701 } 3702 // See if it would be better to reorganize NewMask to avoid using VPERM. 3703 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3704 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3705 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3706 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3707 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3708 if (NewBytes[J] >= 0) { 3709 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3710 "Invalid double permute"); 3711 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3712 } else 3713 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3714 } 3715 } else { 3716 // Just use NewBytes on the operands. 3717 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3718 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3719 if (NewBytes[J] >= 0) 3720 Bytes[J] = I * SystemZ::VectorBytes + J; 3721 } 3722 } 3723 } 3724 3725 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3726 if (Stride > 1) { 3727 Ops[1] = Ops[Stride]; 3728 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3729 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3730 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3731 } 3732 3733 // Look for an instruction that can do the permute without resorting 3734 // to VPERM. 3735 unsigned OpNo0, OpNo1; 3736 SDValue Op; 3737 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3738 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3739 else 3740 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3741 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3742 } 3743 3744 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3745 static bool isScalarToVector(SDValue Op) { 3746 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3747 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3748 return false; 3749 return true; 3750 } 3751 3752 // Return a vector of type VT that contains Value in the first element. 3753 // The other elements don't matter. 3754 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3755 SDValue Value) { 3756 // If we have a constant, replicate it to all elements and let the 3757 // BUILD_VECTOR lowering take care of it. 3758 if (Value.getOpcode() == ISD::Constant || 3759 Value.getOpcode() == ISD::ConstantFP) { 3760 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3761 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3762 } 3763 if (Value.getOpcode() == ISD::UNDEF) 3764 return DAG.getUNDEF(VT); 3765 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3766 } 3767 3768 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3769 // element 1. Used for cases in which replication is cheap. 3770 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3771 SDValue Op0, SDValue Op1) { 3772 if (Op0.getOpcode() == ISD::UNDEF) { 3773 if (Op1.getOpcode() == ISD::UNDEF) 3774 return DAG.getUNDEF(VT); 3775 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3776 } 3777 if (Op1.getOpcode() == ISD::UNDEF) 3778 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3779 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3780 buildScalarToVector(DAG, DL, VT, Op0), 3781 buildScalarToVector(DAG, DL, VT, Op1)); 3782 } 3783 3784 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3785 // vector for them. 3786 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3787 SDValue Op1) { 3788 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3789 return DAG.getUNDEF(MVT::v2i64); 3790 // If one of the two inputs is undefined then replicate the other one, 3791 // in order to avoid using another register unnecessarily. 3792 if (Op0.getOpcode() == ISD::UNDEF) 3793 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3794 else if (Op1.getOpcode() == ISD::UNDEF) 3795 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3796 else { 3797 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3798 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3799 } 3800 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3801 } 3802 3803 // Try to represent constant BUILD_VECTOR node BVN using a 3804 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3805 // on success. 3806 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3807 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3808 unsigned BytesPerElement = ElemVT.getStoreSize(); 3809 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3810 SDValue Op = BVN->getOperand(I); 3811 if (Op.getOpcode() != ISD::UNDEF) { 3812 uint64_t Value; 3813 if (Op.getOpcode() == ISD::Constant) 3814 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3815 else if (Op.getOpcode() == ISD::ConstantFP) 3816 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3817 .getZExtValue()); 3818 else 3819 return false; 3820 for (unsigned J = 0; J < BytesPerElement; ++J) { 3821 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3822 if (Byte == 0xff) 3823 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3824 else if (Byte != 0) 3825 return false; 3826 } 3827 } 3828 } 3829 return true; 3830 } 3831 3832 // Try to load a vector constant in which BitsPerElement-bit value Value 3833 // is replicated to fill the vector. VT is the type of the resulting 3834 // constant, which may have elements of a different size from BitsPerElement. 3835 // Return the SDValue of the constant on success, otherwise return 3836 // an empty value. 3837 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3838 const SystemZInstrInfo *TII, 3839 SDLoc DL, EVT VT, uint64_t Value, 3840 unsigned BitsPerElement) { 3841 // Signed 16-bit values can be replicated using VREPI. 3842 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3843 if (isInt<16>(SignedValue)) { 3844 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3845 SystemZ::VectorBits / BitsPerElement); 3846 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3847 DAG.getConstant(SignedValue, DL, MVT::i32)); 3848 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3849 } 3850 // See whether rotating the constant left some N places gives a value that 3851 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3852 // If so we can use VGM. 3853 unsigned Start, End; 3854 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3855 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3856 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3857 // bit numbers for an BitsPerElement value, so that 0 denotes 3858 // 1 << (BitsPerElement-1). 3859 Start -= 64 - BitsPerElement; 3860 End -= 64 - BitsPerElement; 3861 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3862 SystemZ::VectorBits / BitsPerElement); 3863 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3864 DAG.getConstant(Start, DL, MVT::i32), 3865 DAG.getConstant(End, DL, MVT::i32)); 3866 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3867 } 3868 return SDValue(); 3869 } 3870 3871 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3872 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3873 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3874 // would benefit from this representation and return it if so. 3875 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3876 BuildVectorSDNode *BVN) { 3877 EVT VT = BVN->getValueType(0); 3878 unsigned NumElements = VT.getVectorNumElements(); 3879 3880 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3881 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3882 // need a BUILD_VECTOR, add an additional placeholder operand for that 3883 // BUILD_VECTOR and store its operands in ResidueOps. 3884 GeneralShuffle GS(VT); 3885 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3886 bool FoundOne = false; 3887 for (unsigned I = 0; I < NumElements; ++I) { 3888 SDValue Op = BVN->getOperand(I); 3889 if (Op.getOpcode() == ISD::TRUNCATE) 3890 Op = Op.getOperand(0); 3891 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3892 Op.getOperand(1).getOpcode() == ISD::Constant) { 3893 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3894 GS.add(Op.getOperand(0), Elem); 3895 FoundOne = true; 3896 } else if (Op.getOpcode() == ISD::UNDEF) { 3897 GS.addUndef(); 3898 } else { 3899 GS.add(SDValue(), ResidueOps.size()); 3900 ResidueOps.push_back(BVN->getOperand(I)); 3901 } 3902 } 3903 3904 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3905 if (!FoundOne) 3906 return SDValue(); 3907 3908 // Create the BUILD_VECTOR for the remaining elements, if any. 3909 if (!ResidueOps.empty()) { 3910 while (ResidueOps.size() < NumElements) 3911 ResidueOps.push_back(DAG.getUNDEF(VT.getVectorElementType())); 3912 for (auto &Op : GS.Ops) { 3913 if (!Op.getNode()) { 3914 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3915 break; 3916 } 3917 } 3918 } 3919 return GS.getNode(DAG, SDLoc(BVN)); 3920 } 3921 3922 // Combine GPR scalar values Elems into a vector of type VT. 3923 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3924 SmallVectorImpl<SDValue> &Elems) { 3925 // See whether there is a single replicated value. 3926 SDValue Single; 3927 unsigned int NumElements = Elems.size(); 3928 unsigned int Count = 0; 3929 for (auto Elem : Elems) { 3930 if (Elem.getOpcode() != ISD::UNDEF) { 3931 if (!Single.getNode()) 3932 Single = Elem; 3933 else if (Elem != Single) { 3934 Single = SDValue(); 3935 break; 3936 } 3937 Count += 1; 3938 } 3939 } 3940 // There are three cases here: 3941 // 3942 // - if the only defined element is a loaded one, the best sequence 3943 // is a replicating load. 3944 // 3945 // - otherwise, if the only defined element is an i64 value, we will 3946 // end up with the same VLVGP sequence regardless of whether we short-cut 3947 // for replication or fall through to the later code. 3948 // 3949 // - otherwise, if the only defined element is an i32 or smaller value, 3950 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 3951 // This is only a win if the single defined element is used more than once. 3952 // In other cases we're better off using a single VLVGx. 3953 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 3954 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 3955 3956 // The best way of building a v2i64 from two i64s is to use VLVGP. 3957 if (VT == MVT::v2i64) 3958 return joinDwords(DAG, DL, Elems[0], Elems[1]); 3959 3960 // Use a 64-bit merge high to combine two doubles. 3961 if (VT == MVT::v2f64) 3962 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3963 3964 // Build v4f32 values directly from the FPRs: 3965 // 3966 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 3967 // V V VMRHF 3968 // <ABxx> <CDxx> 3969 // V VMRHG 3970 // <ABCD> 3971 if (VT == MVT::v4f32) { 3972 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3973 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 3974 // Avoid unnecessary undefs by reusing the other operand. 3975 if (Op01.getOpcode() == ISD::UNDEF) 3976 Op01 = Op23; 3977 else if (Op23.getOpcode() == ISD::UNDEF) 3978 Op23 = Op01; 3979 // Merging identical replications is a no-op. 3980 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 3981 return Op01; 3982 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 3983 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 3984 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 3985 DL, MVT::v2i64, Op01, Op23); 3986 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3987 } 3988 3989 // Collect the constant terms. 3990 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 3991 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 3992 3993 unsigned NumConstants = 0; 3994 for (unsigned I = 0; I < NumElements; ++I) { 3995 SDValue Elem = Elems[I]; 3996 if (Elem.getOpcode() == ISD::Constant || 3997 Elem.getOpcode() == ISD::ConstantFP) { 3998 NumConstants += 1; 3999 Constants[I] = Elem; 4000 Done[I] = true; 4001 } 4002 } 4003 // If there was at least one constant, fill in the other elements of 4004 // Constants with undefs to get a full vector constant and use that 4005 // as the starting point. 4006 SDValue Result; 4007 if (NumConstants > 0) { 4008 for (unsigned I = 0; I < NumElements; ++I) 4009 if (!Constants[I].getNode()) 4010 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4011 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 4012 } else { 4013 // Otherwise try to use VLVGP to start the sequence in order to 4014 // avoid a false dependency on any previous contents of the vector 4015 // register. This only makes sense if one of the associated elements 4016 // is defined. 4017 unsigned I1 = NumElements / 2 - 1; 4018 unsigned I2 = NumElements - 1; 4019 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 4020 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 4021 if (Def1 || Def2) { 4022 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4023 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4024 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4025 joinDwords(DAG, DL, Elem1, Elem2)); 4026 Done[I1] = true; 4027 Done[I2] = true; 4028 } else 4029 Result = DAG.getUNDEF(VT); 4030 } 4031 4032 // Use VLVGx to insert the other elements. 4033 for (unsigned I = 0; I < NumElements; ++I) 4034 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4035 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4036 DAG.getConstant(I, DL, MVT::i32)); 4037 return Result; 4038 } 4039 4040 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4041 SelectionDAG &DAG) const { 4042 const SystemZInstrInfo *TII = 4043 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4044 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4045 SDLoc DL(Op); 4046 EVT VT = Op.getValueType(); 4047 4048 if (BVN->isConstant()) { 4049 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4050 // preferred way of creating all-zero and all-one vectors so give it 4051 // priority over other methods below. 4052 uint64_t Mask = 0; 4053 if (tryBuildVectorByteMask(BVN, Mask)) { 4054 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4055 DAG.getConstant(Mask, DL, MVT::i32)); 4056 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4057 } 4058 4059 // Try using some form of replication. 4060 APInt SplatBits, SplatUndef; 4061 unsigned SplatBitSize; 4062 bool HasAnyUndefs; 4063 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4064 8, true) && 4065 SplatBitSize <= 64) { 4066 // First try assuming that any undefined bits above the highest set bit 4067 // and below the lowest set bit are 1s. This increases the likelihood of 4068 // being able to use a sign-extended element value in VECTOR REPLICATE 4069 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4070 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4071 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4072 uint64_t Lower = (SplatUndefZ 4073 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4074 uint64_t Upper = (SplatUndefZ 4075 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4076 uint64_t Value = SplatBitsZ | Upper | Lower; 4077 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4078 SplatBitSize); 4079 if (Op.getNode()) 4080 return Op; 4081 4082 // Now try assuming that any undefined bits between the first and 4083 // last defined set bits are set. This increases the chances of 4084 // using a non-wraparound mask. 4085 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4086 Value = SplatBitsZ | Middle; 4087 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4088 if (Op.getNode()) 4089 return Op; 4090 } 4091 4092 // Fall back to loading it from memory. 4093 return SDValue(); 4094 } 4095 4096 // See if we should use shuffles to construct the vector from other vectors. 4097 SDValue Res = tryBuildVectorShuffle(DAG, BVN); 4098 if (Res.getNode()) 4099 return Res; 4100 4101 // Detect SCALAR_TO_VECTOR conversions. 4102 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4103 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4104 4105 // Otherwise use buildVector to build the vector up from GPRs. 4106 unsigned NumElements = Op.getNumOperands(); 4107 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4108 for (unsigned I = 0; I < NumElements; ++I) 4109 Ops[I] = Op.getOperand(I); 4110 return buildVector(DAG, DL, VT, Ops); 4111 } 4112 4113 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4114 SelectionDAG &DAG) const { 4115 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4116 SDLoc DL(Op); 4117 EVT VT = Op.getValueType(); 4118 unsigned NumElements = VT.getVectorNumElements(); 4119 4120 if (VSN->isSplat()) { 4121 SDValue Op0 = Op.getOperand(0); 4122 unsigned Index = VSN->getSplatIndex(); 4123 assert(Index < VT.getVectorNumElements() && 4124 "Splat index should be defined and in first operand"); 4125 // See whether the value we're splatting is directly available as a scalar. 4126 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4127 Op0.getOpcode() == ISD::BUILD_VECTOR) 4128 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4129 // Otherwise keep it as a vector-to-vector operation. 4130 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4131 DAG.getConstant(Index, DL, MVT::i32)); 4132 } 4133 4134 GeneralShuffle GS(VT); 4135 for (unsigned I = 0; I < NumElements; ++I) { 4136 int Elt = VSN->getMaskElt(I); 4137 if (Elt < 0) 4138 GS.addUndef(); 4139 else 4140 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4141 unsigned(Elt) % NumElements); 4142 } 4143 return GS.getNode(DAG, SDLoc(VSN)); 4144 } 4145 4146 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4147 SelectionDAG &DAG) const { 4148 SDLoc DL(Op); 4149 // Just insert the scalar into element 0 of an undefined vector. 4150 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4151 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4152 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4153 } 4154 4155 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4156 SelectionDAG &DAG) const { 4157 // Handle insertions of floating-point values. 4158 SDLoc DL(Op); 4159 SDValue Op0 = Op.getOperand(0); 4160 SDValue Op1 = Op.getOperand(1); 4161 SDValue Op2 = Op.getOperand(2); 4162 EVT VT = Op.getValueType(); 4163 4164 // Insertions into constant indices of a v2f64 can be done using VPDI. 4165 // However, if the inserted value is a bitcast or a constant then it's 4166 // better to use GPRs, as below. 4167 if (VT == MVT::v2f64 && 4168 Op1.getOpcode() != ISD::BITCAST && 4169 Op1.getOpcode() != ISD::ConstantFP && 4170 Op2.getOpcode() == ISD::Constant) { 4171 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4172 unsigned Mask = VT.getVectorNumElements() - 1; 4173 if (Index <= Mask) 4174 return Op; 4175 } 4176 4177 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4178 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4179 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4180 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4181 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4182 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4183 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4184 } 4185 4186 SDValue 4187 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4188 SelectionDAG &DAG) const { 4189 // Handle extractions of floating-point values. 4190 SDLoc DL(Op); 4191 SDValue Op0 = Op.getOperand(0); 4192 SDValue Op1 = Op.getOperand(1); 4193 EVT VT = Op.getValueType(); 4194 EVT VecVT = Op0.getValueType(); 4195 4196 // Extractions of constant indices can be done directly. 4197 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4198 uint64_t Index = CIndexN->getZExtValue(); 4199 unsigned Mask = VecVT.getVectorNumElements() - 1; 4200 if (Index <= Mask) 4201 return Op; 4202 } 4203 4204 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4205 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4206 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4207 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4208 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4209 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4210 } 4211 4212 SDValue 4213 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4214 unsigned UnpackHigh) const { 4215 SDValue PackedOp = Op.getOperand(0); 4216 EVT OutVT = Op.getValueType(); 4217 EVT InVT = PackedOp.getValueType(); 4218 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4219 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4220 do { 4221 FromBits *= 2; 4222 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4223 SystemZ::VectorBits / FromBits); 4224 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4225 } while (FromBits != ToBits); 4226 return PackedOp; 4227 } 4228 4229 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4230 unsigned ByScalar) const { 4231 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4232 SDValue Op0 = Op.getOperand(0); 4233 SDValue Op1 = Op.getOperand(1); 4234 SDLoc DL(Op); 4235 EVT VT = Op.getValueType(); 4236 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4237 4238 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4239 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4240 APInt SplatBits, SplatUndef; 4241 unsigned SplatBitSize; 4242 bool HasAnyUndefs; 4243 // Check for constant splats. Use ElemBitSize as the minimum element 4244 // width and reject splats that need wider elements. 4245 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4246 ElemBitSize, true) && 4247 SplatBitSize == ElemBitSize) { 4248 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4249 DL, MVT::i32); 4250 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4251 } 4252 // Check for variable splats. 4253 BitVector UndefElements; 4254 SDValue Splat = BVN->getSplatValue(&UndefElements); 4255 if (Splat) { 4256 // Since i32 is the smallest legal type, we either need a no-op 4257 // or a truncation. 4258 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4259 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4260 } 4261 } 4262 4263 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4264 // and the shift amount is directly available in a GPR. 4265 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4266 if (VSN->isSplat()) { 4267 SDValue VSNOp0 = VSN->getOperand(0); 4268 unsigned Index = VSN->getSplatIndex(); 4269 assert(Index < VT.getVectorNumElements() && 4270 "Splat index should be defined and in first operand"); 4271 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4272 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4273 // Since i32 is the smallest legal type, we either need a no-op 4274 // or a truncation. 4275 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4276 VSNOp0.getOperand(Index)); 4277 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4278 } 4279 } 4280 } 4281 4282 // Otherwise just treat the current form as legal. 4283 return Op; 4284 } 4285 4286 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4287 SelectionDAG &DAG) const { 4288 switch (Op.getOpcode()) { 4289 case ISD::BR_CC: 4290 return lowerBR_CC(Op, DAG); 4291 case ISD::SELECT_CC: 4292 return lowerSELECT_CC(Op, DAG); 4293 case ISD::SETCC: 4294 return lowerSETCC(Op, DAG); 4295 case ISD::GlobalAddress: 4296 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4297 case ISD::GlobalTLSAddress: 4298 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4299 case ISD::BlockAddress: 4300 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4301 case ISD::JumpTable: 4302 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4303 case ISD::ConstantPool: 4304 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4305 case ISD::BITCAST: 4306 return lowerBITCAST(Op, DAG); 4307 case ISD::VASTART: 4308 return lowerVASTART(Op, DAG); 4309 case ISD::VACOPY: 4310 return lowerVACOPY(Op, DAG); 4311 case ISD::DYNAMIC_STACKALLOC: 4312 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4313 case ISD::SMUL_LOHI: 4314 return lowerSMUL_LOHI(Op, DAG); 4315 case ISD::UMUL_LOHI: 4316 return lowerUMUL_LOHI(Op, DAG); 4317 case ISD::SDIVREM: 4318 return lowerSDIVREM(Op, DAG); 4319 case ISD::UDIVREM: 4320 return lowerUDIVREM(Op, DAG); 4321 case ISD::OR: 4322 return lowerOR(Op, DAG); 4323 case ISD::CTPOP: 4324 return lowerCTPOP(Op, DAG); 4325 case ISD::CTLZ_ZERO_UNDEF: 4326 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4327 Op.getValueType(), Op.getOperand(0)); 4328 case ISD::CTTZ_ZERO_UNDEF: 4329 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4330 Op.getValueType(), Op.getOperand(0)); 4331 case ISD::ATOMIC_SWAP: 4332 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4333 case ISD::ATOMIC_STORE: 4334 return lowerATOMIC_STORE(Op, DAG); 4335 case ISD::ATOMIC_LOAD: 4336 return lowerATOMIC_LOAD(Op, DAG); 4337 case ISD::ATOMIC_LOAD_ADD: 4338 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4339 case ISD::ATOMIC_LOAD_SUB: 4340 return lowerATOMIC_LOAD_SUB(Op, DAG); 4341 case ISD::ATOMIC_LOAD_AND: 4342 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4343 case ISD::ATOMIC_LOAD_OR: 4344 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4345 case ISD::ATOMIC_LOAD_XOR: 4346 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4347 case ISD::ATOMIC_LOAD_NAND: 4348 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4349 case ISD::ATOMIC_LOAD_MIN: 4350 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4351 case ISD::ATOMIC_LOAD_MAX: 4352 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4353 case ISD::ATOMIC_LOAD_UMIN: 4354 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4355 case ISD::ATOMIC_LOAD_UMAX: 4356 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4357 case ISD::ATOMIC_CMP_SWAP: 4358 return lowerATOMIC_CMP_SWAP(Op, DAG); 4359 case ISD::STACKSAVE: 4360 return lowerSTACKSAVE(Op, DAG); 4361 case ISD::STACKRESTORE: 4362 return lowerSTACKRESTORE(Op, DAG); 4363 case ISD::PREFETCH: 4364 return lowerPREFETCH(Op, DAG); 4365 case ISD::INTRINSIC_W_CHAIN: 4366 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4367 case ISD::INTRINSIC_WO_CHAIN: 4368 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4369 case ISD::BUILD_VECTOR: 4370 return lowerBUILD_VECTOR(Op, DAG); 4371 case ISD::VECTOR_SHUFFLE: 4372 return lowerVECTOR_SHUFFLE(Op, DAG); 4373 case ISD::SCALAR_TO_VECTOR: 4374 return lowerSCALAR_TO_VECTOR(Op, DAG); 4375 case ISD::INSERT_VECTOR_ELT: 4376 return lowerINSERT_VECTOR_ELT(Op, DAG); 4377 case ISD::EXTRACT_VECTOR_ELT: 4378 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4379 case ISD::SIGN_EXTEND_VECTOR_INREG: 4380 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4381 case ISD::ZERO_EXTEND_VECTOR_INREG: 4382 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4383 case ISD::SHL: 4384 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4385 case ISD::SRL: 4386 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4387 case ISD::SRA: 4388 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4389 default: 4390 llvm_unreachable("Unexpected node to lower"); 4391 } 4392 } 4393 4394 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4395 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4396 switch ((SystemZISD::NodeType)Opcode) { 4397 case SystemZISD::FIRST_NUMBER: break; 4398 OPCODE(RET_FLAG); 4399 OPCODE(CALL); 4400 OPCODE(SIBCALL); 4401 OPCODE(TLS_GDCALL); 4402 OPCODE(TLS_LDCALL); 4403 OPCODE(PCREL_WRAPPER); 4404 OPCODE(PCREL_OFFSET); 4405 OPCODE(IABS); 4406 OPCODE(ICMP); 4407 OPCODE(FCMP); 4408 OPCODE(TM); 4409 OPCODE(BR_CCMASK); 4410 OPCODE(SELECT_CCMASK); 4411 OPCODE(ADJDYNALLOC); 4412 OPCODE(EXTRACT_ACCESS); 4413 OPCODE(POPCNT); 4414 OPCODE(UMUL_LOHI64); 4415 OPCODE(SDIVREM32); 4416 OPCODE(SDIVREM64); 4417 OPCODE(UDIVREM32); 4418 OPCODE(UDIVREM64); 4419 OPCODE(MVC); 4420 OPCODE(MVC_LOOP); 4421 OPCODE(NC); 4422 OPCODE(NC_LOOP); 4423 OPCODE(OC); 4424 OPCODE(OC_LOOP); 4425 OPCODE(XC); 4426 OPCODE(XC_LOOP); 4427 OPCODE(CLC); 4428 OPCODE(CLC_LOOP); 4429 OPCODE(STPCPY); 4430 OPCODE(STRCMP); 4431 OPCODE(SEARCH_STRING); 4432 OPCODE(IPM); 4433 OPCODE(SERIALIZE); 4434 OPCODE(TBEGIN); 4435 OPCODE(TBEGIN_NOFLOAT); 4436 OPCODE(TEND); 4437 OPCODE(BYTE_MASK); 4438 OPCODE(ROTATE_MASK); 4439 OPCODE(REPLICATE); 4440 OPCODE(JOIN_DWORDS); 4441 OPCODE(SPLAT); 4442 OPCODE(MERGE_HIGH); 4443 OPCODE(MERGE_LOW); 4444 OPCODE(SHL_DOUBLE); 4445 OPCODE(PERMUTE_DWORDS); 4446 OPCODE(PERMUTE); 4447 OPCODE(PACK); 4448 OPCODE(PACKS_CC); 4449 OPCODE(PACKLS_CC); 4450 OPCODE(UNPACK_HIGH); 4451 OPCODE(UNPACKL_HIGH); 4452 OPCODE(UNPACK_LOW); 4453 OPCODE(UNPACKL_LOW); 4454 OPCODE(VSHL_BY_SCALAR); 4455 OPCODE(VSRL_BY_SCALAR); 4456 OPCODE(VSRA_BY_SCALAR); 4457 OPCODE(VSUM); 4458 OPCODE(VICMPE); 4459 OPCODE(VICMPH); 4460 OPCODE(VICMPHL); 4461 OPCODE(VICMPES); 4462 OPCODE(VICMPHS); 4463 OPCODE(VICMPHLS); 4464 OPCODE(VFCMPE); 4465 OPCODE(VFCMPH); 4466 OPCODE(VFCMPHE); 4467 OPCODE(VFCMPES); 4468 OPCODE(VFCMPHS); 4469 OPCODE(VFCMPHES); 4470 OPCODE(VFTCI); 4471 OPCODE(VEXTEND); 4472 OPCODE(VROUND); 4473 OPCODE(VTM); 4474 OPCODE(VFAE_CC); 4475 OPCODE(VFAEZ_CC); 4476 OPCODE(VFEE_CC); 4477 OPCODE(VFEEZ_CC); 4478 OPCODE(VFENE_CC); 4479 OPCODE(VFENEZ_CC); 4480 OPCODE(VISTR_CC); 4481 OPCODE(VSTRC_CC); 4482 OPCODE(VSTRCZ_CC); 4483 OPCODE(ATOMIC_SWAPW); 4484 OPCODE(ATOMIC_LOADW_ADD); 4485 OPCODE(ATOMIC_LOADW_SUB); 4486 OPCODE(ATOMIC_LOADW_AND); 4487 OPCODE(ATOMIC_LOADW_OR); 4488 OPCODE(ATOMIC_LOADW_XOR); 4489 OPCODE(ATOMIC_LOADW_NAND); 4490 OPCODE(ATOMIC_LOADW_MIN); 4491 OPCODE(ATOMIC_LOADW_MAX); 4492 OPCODE(ATOMIC_LOADW_UMIN); 4493 OPCODE(ATOMIC_LOADW_UMAX); 4494 OPCODE(ATOMIC_CMP_SWAPW); 4495 OPCODE(PREFETCH); 4496 } 4497 return nullptr; 4498 #undef OPCODE 4499 } 4500 4501 // Return true if VT is a vector whose elements are a whole number of bytes 4502 // in width. 4503 static bool canTreatAsByteVector(EVT VT) { 4504 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4505 } 4506 4507 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4508 // producing a result of type ResVT. Op is a possibly bitcast version 4509 // of the input vector and Index is the index (based on type VecVT) that 4510 // should be extracted. Return the new extraction if a simplification 4511 // was possible or if Force is true. 4512 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4513 SDValue Op, unsigned Index, 4514 DAGCombinerInfo &DCI, 4515 bool Force) const { 4516 SelectionDAG &DAG = DCI.DAG; 4517 4518 // The number of bytes being extracted. 4519 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4520 4521 for (;;) { 4522 unsigned Opcode = Op.getOpcode(); 4523 if (Opcode == ISD::BITCAST) 4524 // Look through bitcasts. 4525 Op = Op.getOperand(0); 4526 else if (Opcode == ISD::VECTOR_SHUFFLE && 4527 canTreatAsByteVector(Op.getValueType())) { 4528 // Get a VPERM-like permute mask and see whether the bytes covered 4529 // by the extracted element are a contiguous sequence from one 4530 // source operand. 4531 SmallVector<int, SystemZ::VectorBytes> Bytes; 4532 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4533 int First; 4534 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4535 BytesPerElement, First)) 4536 break; 4537 if (First < 0) 4538 return DAG.getUNDEF(ResVT); 4539 // Make sure the contiguous sequence starts at a multiple of the 4540 // original element size. 4541 unsigned Byte = unsigned(First) % Bytes.size(); 4542 if (Byte % BytesPerElement != 0) 4543 break; 4544 // We can get the extracted value directly from an input. 4545 Index = Byte / BytesPerElement; 4546 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4547 Force = true; 4548 } else if (Opcode == ISD::BUILD_VECTOR && 4549 canTreatAsByteVector(Op.getValueType())) { 4550 // We can only optimize this case if the BUILD_VECTOR elements are 4551 // at least as wide as the extracted value. 4552 EVT OpVT = Op.getValueType(); 4553 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4554 if (OpBytesPerElement < BytesPerElement) 4555 break; 4556 // Make sure that the least-significant bit of the extracted value 4557 // is the least significant bit of an input. 4558 unsigned End = (Index + 1) * BytesPerElement; 4559 if (End % OpBytesPerElement != 0) 4560 break; 4561 // We're extracting the low part of one operand of the BUILD_VECTOR. 4562 Op = Op.getOperand(End / OpBytesPerElement - 1); 4563 if (!Op.getValueType().isInteger()) { 4564 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4565 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4566 DCI.AddToWorklist(Op.getNode()); 4567 } 4568 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4569 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4570 if (VT != ResVT) { 4571 DCI.AddToWorklist(Op.getNode()); 4572 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4573 } 4574 return Op; 4575 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4576 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4577 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4578 canTreatAsByteVector(Op.getValueType()) && 4579 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4580 // Make sure that only the unextended bits are significant. 4581 EVT ExtVT = Op.getValueType(); 4582 EVT OpVT = Op.getOperand(0).getValueType(); 4583 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4584 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4585 unsigned Byte = Index * BytesPerElement; 4586 unsigned SubByte = Byte % ExtBytesPerElement; 4587 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4588 if (SubByte < MinSubByte || 4589 SubByte + BytesPerElement > ExtBytesPerElement) 4590 break; 4591 // Get the byte offset of the unextended element 4592 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4593 // ...then add the byte offset relative to that element. 4594 Byte += SubByte - MinSubByte; 4595 if (Byte % BytesPerElement != 0) 4596 break; 4597 Op = Op.getOperand(0); 4598 Index = Byte / BytesPerElement; 4599 Force = true; 4600 } else 4601 break; 4602 } 4603 if (Force) { 4604 if (Op.getValueType() != VecVT) { 4605 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4606 DCI.AddToWorklist(Op.getNode()); 4607 } 4608 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4609 DAG.getConstant(Index, DL, MVT::i32)); 4610 } 4611 return SDValue(); 4612 } 4613 4614 // Optimize vector operations in scalar value Op on the basis that Op 4615 // is truncated to TruncVT. 4616 SDValue 4617 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4618 DAGCombinerInfo &DCI) const { 4619 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4620 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4621 // of type TruncVT. 4622 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4623 TruncVT.getSizeInBits() % 8 == 0) { 4624 SDValue Vec = Op.getOperand(0); 4625 EVT VecVT = Vec.getValueType(); 4626 if (canTreatAsByteVector(VecVT)) { 4627 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4628 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4629 unsigned TruncBytes = TruncVT.getStoreSize(); 4630 if (BytesPerElement % TruncBytes == 0) { 4631 // Calculate the value of Y' in the above description. We are 4632 // splitting the original elements into Scale equal-sized pieces 4633 // and for truncation purposes want the last (least-significant) 4634 // of these pieces for IndexN. This is easiest to do by calculating 4635 // the start index of the following element and then subtracting 1. 4636 unsigned Scale = BytesPerElement / TruncBytes; 4637 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4638 4639 // Defer the creation of the bitcast from X to combineExtract, 4640 // which might be able to optimize the extraction. 4641 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4642 VecVT.getStoreSize() / TruncBytes); 4643 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4644 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4645 } 4646 } 4647 } 4648 } 4649 return SDValue(); 4650 } 4651 4652 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4653 DAGCombinerInfo &DCI) const { 4654 SelectionDAG &DAG = DCI.DAG; 4655 unsigned Opcode = N->getOpcode(); 4656 if (Opcode == ISD::SIGN_EXTEND) { 4657 // Convert (sext (ashr (shl X, C1), C2)) to 4658 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4659 // cheap as narrower ones. 4660 SDValue N0 = N->getOperand(0); 4661 EVT VT = N->getValueType(0); 4662 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4663 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4664 SDValue Inner = N0.getOperand(0); 4665 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4666 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4667 unsigned Extra = (VT.getSizeInBits() - 4668 N0.getValueType().getSizeInBits()); 4669 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4670 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4671 EVT ShiftVT = N0.getOperand(1).getValueType(); 4672 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4673 Inner.getOperand(0)); 4674 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4675 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4676 ShiftVT)); 4677 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4678 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4679 } 4680 } 4681 } 4682 } 4683 if (Opcode == SystemZISD::MERGE_HIGH || 4684 Opcode == SystemZISD::MERGE_LOW) { 4685 SDValue Op0 = N->getOperand(0); 4686 SDValue Op1 = N->getOperand(1); 4687 if (Op0.getOpcode() == ISD::BITCAST) 4688 Op0 = Op0.getOperand(0); 4689 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4690 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4691 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4692 // for v4f32. 4693 if (Op1 == N->getOperand(0)) 4694 return Op1; 4695 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4696 EVT VT = Op1.getValueType(); 4697 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4698 if (ElemBytes <= 4) { 4699 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4700 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4701 EVT InVT = VT.changeVectorElementTypeToInteger(); 4702 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4703 SystemZ::VectorBytes / ElemBytes / 2); 4704 if (VT != InVT) { 4705 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4706 DCI.AddToWorklist(Op1.getNode()); 4707 } 4708 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4709 DCI.AddToWorklist(Op.getNode()); 4710 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4711 } 4712 } 4713 } 4714 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4715 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4716 // If X has wider elements then convert it to: 4717 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4718 if (Opcode == ISD::STORE) { 4719 auto *SN = cast<StoreSDNode>(N); 4720 EVT MemVT = SN->getMemoryVT(); 4721 if (MemVT.isInteger()) { 4722 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, 4723 SN->getValue(), DCI); 4724 if (Value.getNode()) { 4725 DCI.AddToWorklist(Value.getNode()); 4726 4727 // Rewrite the store with the new form of stored value. 4728 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4729 SN->getBasePtr(), SN->getMemoryVT(), 4730 SN->getMemOperand()); 4731 } 4732 } 4733 } 4734 // Try to simplify a vector extraction. 4735 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4736 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4737 SDValue Op0 = N->getOperand(0); 4738 EVT VecVT = Op0.getValueType(); 4739 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4740 IndexN->getZExtValue(), DCI, false); 4741 } 4742 } 4743 // (join_dwords X, X) == (replicate X) 4744 if (Opcode == SystemZISD::JOIN_DWORDS && 4745 N->getOperand(0) == N->getOperand(1)) 4746 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4747 N->getOperand(0)); 4748 // (fround (extract_vector_elt X 0)) 4749 // (fround (extract_vector_elt X 1)) -> 4750 // (extract_vector_elt (VROUND X) 0) 4751 // (extract_vector_elt (VROUND X) 1) 4752 // 4753 // This is a special case since the target doesn't really support v2f32s. 4754 if (Opcode == ISD::FP_ROUND) { 4755 SDValue Op0 = N->getOperand(0); 4756 if (N->getValueType(0) == MVT::f32 && 4757 Op0.hasOneUse() && 4758 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4759 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4760 Op0.getOperand(1).getOpcode() == ISD::Constant && 4761 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4762 SDValue Vec = Op0.getOperand(0); 4763 for (auto *U : Vec->uses()) { 4764 if (U != Op0.getNode() && 4765 U->hasOneUse() && 4766 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4767 U->getOperand(0) == Vec && 4768 U->getOperand(1).getOpcode() == ISD::Constant && 4769 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4770 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4771 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4772 OtherRound.getOperand(0) == SDValue(U, 0) && 4773 OtherRound.getValueType() == MVT::f32) { 4774 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4775 MVT::v4f32, Vec); 4776 DCI.AddToWorklist(VRound.getNode()); 4777 SDValue Extract1 = 4778 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4779 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4780 DCI.AddToWorklist(Extract1.getNode()); 4781 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4782 SDValue Extract0 = 4783 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4784 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4785 return Extract0; 4786 } 4787 } 4788 } 4789 } 4790 } 4791 return SDValue(); 4792 } 4793 4794 //===----------------------------------------------------------------------===// 4795 // Custom insertion 4796 //===----------------------------------------------------------------------===// 4797 4798 // Create a new basic block after MBB. 4799 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4800 MachineFunction &MF = *MBB->getParent(); 4801 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4802 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4803 return NewMBB; 4804 } 4805 4806 // Split MBB after MI and return the new block (the one that contains 4807 // instructions after MI). 4808 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4809 MachineBasicBlock *MBB) { 4810 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4811 NewMBB->splice(NewMBB->begin(), MBB, 4812 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4813 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4814 return NewMBB; 4815 } 4816 4817 // Split MBB before MI and return the new block (the one that contains MI). 4818 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4819 MachineBasicBlock *MBB) { 4820 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4821 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4822 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4823 return NewMBB; 4824 } 4825 4826 // Force base value Base into a register before MI. Return the register. 4827 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4828 const SystemZInstrInfo *TII) { 4829 if (Base.isReg()) 4830 return Base.getReg(); 4831 4832 MachineBasicBlock *MBB = MI->getParent(); 4833 MachineFunction &MF = *MBB->getParent(); 4834 MachineRegisterInfo &MRI = MF.getRegInfo(); 4835 4836 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4837 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4838 .addOperand(Base).addImm(0).addReg(0); 4839 return Reg; 4840 } 4841 4842 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4843 MachineBasicBlock * 4844 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4845 MachineBasicBlock *MBB) const { 4846 const SystemZInstrInfo *TII = 4847 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4848 4849 unsigned DestReg = MI->getOperand(0).getReg(); 4850 unsigned TrueReg = MI->getOperand(1).getReg(); 4851 unsigned FalseReg = MI->getOperand(2).getReg(); 4852 unsigned CCValid = MI->getOperand(3).getImm(); 4853 unsigned CCMask = MI->getOperand(4).getImm(); 4854 DebugLoc DL = MI->getDebugLoc(); 4855 4856 MachineBasicBlock *StartMBB = MBB; 4857 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4858 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4859 4860 // StartMBB: 4861 // BRC CCMask, JoinMBB 4862 // # fallthrough to FalseMBB 4863 MBB = StartMBB; 4864 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4865 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4866 MBB->addSuccessor(JoinMBB); 4867 MBB->addSuccessor(FalseMBB); 4868 4869 // FalseMBB: 4870 // # fallthrough to JoinMBB 4871 MBB = FalseMBB; 4872 MBB->addSuccessor(JoinMBB); 4873 4874 // JoinMBB: 4875 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4876 // ... 4877 MBB = JoinMBB; 4878 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4879 .addReg(TrueReg).addMBB(StartMBB) 4880 .addReg(FalseReg).addMBB(FalseMBB); 4881 4882 MI->eraseFromParent(); 4883 return JoinMBB; 4884 } 4885 4886 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4887 // StoreOpcode is the store to use and Invert says whether the store should 4888 // happen when the condition is false rather than true. If a STORE ON 4889 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4890 MachineBasicBlock * 4891 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4892 MachineBasicBlock *MBB, 4893 unsigned StoreOpcode, unsigned STOCOpcode, 4894 bool Invert) const { 4895 const SystemZInstrInfo *TII = 4896 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4897 4898 unsigned SrcReg = MI->getOperand(0).getReg(); 4899 MachineOperand Base = MI->getOperand(1); 4900 int64_t Disp = MI->getOperand(2).getImm(); 4901 unsigned IndexReg = MI->getOperand(3).getReg(); 4902 unsigned CCValid = MI->getOperand(4).getImm(); 4903 unsigned CCMask = MI->getOperand(5).getImm(); 4904 DebugLoc DL = MI->getDebugLoc(); 4905 4906 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4907 4908 // Use STOCOpcode if possible. We could use different store patterns in 4909 // order to avoid matching the index register, but the performance trade-offs 4910 // might be more complicated in that case. 4911 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4912 if (Invert) 4913 CCMask ^= CCValid; 4914 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4915 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4916 .addImm(CCValid).addImm(CCMask); 4917 MI->eraseFromParent(); 4918 return MBB; 4919 } 4920 4921 // Get the condition needed to branch around the store. 4922 if (!Invert) 4923 CCMask ^= CCValid; 4924 4925 MachineBasicBlock *StartMBB = MBB; 4926 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4927 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4928 4929 // StartMBB: 4930 // BRC CCMask, JoinMBB 4931 // # fallthrough to FalseMBB 4932 MBB = StartMBB; 4933 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4934 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4935 MBB->addSuccessor(JoinMBB); 4936 MBB->addSuccessor(FalseMBB); 4937 4938 // FalseMBB: 4939 // store %SrcReg, %Disp(%Index,%Base) 4940 // # fallthrough to JoinMBB 4941 MBB = FalseMBB; 4942 BuildMI(MBB, DL, TII->get(StoreOpcode)) 4943 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 4944 MBB->addSuccessor(JoinMBB); 4945 4946 MI->eraseFromParent(); 4947 return JoinMBB; 4948 } 4949 4950 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 4951 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 4952 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 4953 // BitSize is the width of the field in bits, or 0 if this is a partword 4954 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 4955 // is one of the operands. Invert says whether the field should be 4956 // inverted after performing BinOpcode (e.g. for NAND). 4957 MachineBasicBlock * 4958 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 4959 MachineBasicBlock *MBB, 4960 unsigned BinOpcode, 4961 unsigned BitSize, 4962 bool Invert) const { 4963 MachineFunction &MF = *MBB->getParent(); 4964 const SystemZInstrInfo *TII = 4965 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4966 MachineRegisterInfo &MRI = MF.getRegInfo(); 4967 bool IsSubWord = (BitSize < 32); 4968 4969 // Extract the operands. Base can be a register or a frame index. 4970 // Src2 can be a register or immediate. 4971 unsigned Dest = MI->getOperand(0).getReg(); 4972 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 4973 int64_t Disp = MI->getOperand(2).getImm(); 4974 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 4975 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 4976 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 4977 DebugLoc DL = MI->getDebugLoc(); 4978 if (IsSubWord) 4979 BitSize = MI->getOperand(6).getImm(); 4980 4981 // Subword operations use 32-bit registers. 4982 const TargetRegisterClass *RC = (BitSize <= 32 ? 4983 &SystemZ::GR32BitRegClass : 4984 &SystemZ::GR64BitRegClass); 4985 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 4986 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 4987 4988 // Get the right opcodes for the displacement. 4989 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 4990 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 4991 assert(LOpcode && CSOpcode && "Displacement out of range"); 4992 4993 // Create virtual registers for temporary results. 4994 unsigned OrigVal = MRI.createVirtualRegister(RC); 4995 unsigned OldVal = MRI.createVirtualRegister(RC); 4996 unsigned NewVal = (BinOpcode || IsSubWord ? 4997 MRI.createVirtualRegister(RC) : Src2.getReg()); 4998 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 4999 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5000 5001 // Insert a basic block for the main loop. 5002 MachineBasicBlock *StartMBB = MBB; 5003 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5004 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5005 5006 // StartMBB: 5007 // ... 5008 // %OrigVal = L Disp(%Base) 5009 // # fall through to LoopMMB 5010 MBB = StartMBB; 5011 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5012 .addOperand(Base).addImm(Disp).addReg(0); 5013 MBB->addSuccessor(LoopMBB); 5014 5015 // LoopMBB: 5016 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5017 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5018 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5019 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5020 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5021 // JNE LoopMBB 5022 // # fall through to DoneMMB 5023 MBB = LoopMBB; 5024 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5025 .addReg(OrigVal).addMBB(StartMBB) 5026 .addReg(Dest).addMBB(LoopMBB); 5027 if (IsSubWord) 5028 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5029 .addReg(OldVal).addReg(BitShift).addImm(0); 5030 if (Invert) { 5031 // Perform the operation normally and then invert every bit of the field. 5032 unsigned Tmp = MRI.createVirtualRegister(RC); 5033 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5034 .addReg(RotatedOldVal).addOperand(Src2); 5035 if (BitSize <= 32) 5036 // XILF with the upper BitSize bits set. 5037 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5038 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5039 else { 5040 // Use LCGR and add -1 to the result, which is more compact than 5041 // an XILF, XILH pair. 5042 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5043 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5044 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5045 .addReg(Tmp2).addImm(-1); 5046 } 5047 } else if (BinOpcode) 5048 // A simply binary operation. 5049 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5050 .addReg(RotatedOldVal).addOperand(Src2); 5051 else if (IsSubWord) 5052 // Use RISBG to rotate Src2 into position and use it to replace the 5053 // field in RotatedOldVal. 5054 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5055 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5056 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5057 if (IsSubWord) 5058 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5059 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5060 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5061 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5062 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5063 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5064 MBB->addSuccessor(LoopMBB); 5065 MBB->addSuccessor(DoneMBB); 5066 5067 MI->eraseFromParent(); 5068 return DoneMBB; 5069 } 5070 5071 // Implement EmitInstrWithCustomInserter for pseudo 5072 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5073 // instruction that should be used to compare the current field with the 5074 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5075 // for when the current field should be kept. BitSize is the width of 5076 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5077 MachineBasicBlock * 5078 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5079 MachineBasicBlock *MBB, 5080 unsigned CompareOpcode, 5081 unsigned KeepOldMask, 5082 unsigned BitSize) const { 5083 MachineFunction &MF = *MBB->getParent(); 5084 const SystemZInstrInfo *TII = 5085 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5086 MachineRegisterInfo &MRI = MF.getRegInfo(); 5087 bool IsSubWord = (BitSize < 32); 5088 5089 // Extract the operands. Base can be a register or a frame index. 5090 unsigned Dest = MI->getOperand(0).getReg(); 5091 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5092 int64_t Disp = MI->getOperand(2).getImm(); 5093 unsigned Src2 = MI->getOperand(3).getReg(); 5094 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5095 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5096 DebugLoc DL = MI->getDebugLoc(); 5097 if (IsSubWord) 5098 BitSize = MI->getOperand(6).getImm(); 5099 5100 // Subword operations use 32-bit registers. 5101 const TargetRegisterClass *RC = (BitSize <= 32 ? 5102 &SystemZ::GR32BitRegClass : 5103 &SystemZ::GR64BitRegClass); 5104 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5105 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5106 5107 // Get the right opcodes for the displacement. 5108 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5109 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5110 assert(LOpcode && CSOpcode && "Displacement out of range"); 5111 5112 // Create virtual registers for temporary results. 5113 unsigned OrigVal = MRI.createVirtualRegister(RC); 5114 unsigned OldVal = MRI.createVirtualRegister(RC); 5115 unsigned NewVal = MRI.createVirtualRegister(RC); 5116 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5117 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5118 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5119 5120 // Insert 3 basic blocks for the loop. 5121 MachineBasicBlock *StartMBB = MBB; 5122 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5123 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5124 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5125 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5126 5127 // StartMBB: 5128 // ... 5129 // %OrigVal = L Disp(%Base) 5130 // # fall through to LoopMMB 5131 MBB = StartMBB; 5132 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5133 .addOperand(Base).addImm(Disp).addReg(0); 5134 MBB->addSuccessor(LoopMBB); 5135 5136 // LoopMBB: 5137 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5138 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5139 // CompareOpcode %RotatedOldVal, %Src2 5140 // BRC KeepOldMask, UpdateMBB 5141 MBB = LoopMBB; 5142 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5143 .addReg(OrigVal).addMBB(StartMBB) 5144 .addReg(Dest).addMBB(UpdateMBB); 5145 if (IsSubWord) 5146 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5147 .addReg(OldVal).addReg(BitShift).addImm(0); 5148 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5149 .addReg(RotatedOldVal).addReg(Src2); 5150 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5151 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5152 MBB->addSuccessor(UpdateMBB); 5153 MBB->addSuccessor(UseAltMBB); 5154 5155 // UseAltMBB: 5156 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5157 // # fall through to UpdateMMB 5158 MBB = UseAltMBB; 5159 if (IsSubWord) 5160 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5161 .addReg(RotatedOldVal).addReg(Src2) 5162 .addImm(32).addImm(31 + BitSize).addImm(0); 5163 MBB->addSuccessor(UpdateMBB); 5164 5165 // UpdateMBB: 5166 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5167 // [ %RotatedAltVal, UseAltMBB ] 5168 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5169 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5170 // JNE LoopMBB 5171 // # fall through to DoneMMB 5172 MBB = UpdateMBB; 5173 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5174 .addReg(RotatedOldVal).addMBB(LoopMBB) 5175 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5176 if (IsSubWord) 5177 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5178 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5179 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5180 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5181 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5182 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5183 MBB->addSuccessor(LoopMBB); 5184 MBB->addSuccessor(DoneMBB); 5185 5186 MI->eraseFromParent(); 5187 return DoneMBB; 5188 } 5189 5190 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5191 // instruction MI. 5192 MachineBasicBlock * 5193 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5194 MachineBasicBlock *MBB) const { 5195 MachineFunction &MF = *MBB->getParent(); 5196 const SystemZInstrInfo *TII = 5197 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5198 MachineRegisterInfo &MRI = MF.getRegInfo(); 5199 5200 // Extract the operands. Base can be a register or a frame index. 5201 unsigned Dest = MI->getOperand(0).getReg(); 5202 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5203 int64_t Disp = MI->getOperand(2).getImm(); 5204 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5205 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5206 unsigned BitShift = MI->getOperand(5).getReg(); 5207 unsigned NegBitShift = MI->getOperand(6).getReg(); 5208 int64_t BitSize = MI->getOperand(7).getImm(); 5209 DebugLoc DL = MI->getDebugLoc(); 5210 5211 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5212 5213 // Get the right opcodes for the displacement. 5214 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5215 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5216 assert(LOpcode && CSOpcode && "Displacement out of range"); 5217 5218 // Create virtual registers for temporary results. 5219 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5220 unsigned OldVal = MRI.createVirtualRegister(RC); 5221 unsigned CmpVal = MRI.createVirtualRegister(RC); 5222 unsigned SwapVal = MRI.createVirtualRegister(RC); 5223 unsigned StoreVal = MRI.createVirtualRegister(RC); 5224 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5225 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5226 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5227 5228 // Insert 2 basic blocks for the loop. 5229 MachineBasicBlock *StartMBB = MBB; 5230 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5231 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5232 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5233 5234 // StartMBB: 5235 // ... 5236 // %OrigOldVal = L Disp(%Base) 5237 // # fall through to LoopMMB 5238 MBB = StartMBB; 5239 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5240 .addOperand(Base).addImm(Disp).addReg(0); 5241 MBB->addSuccessor(LoopMBB); 5242 5243 // LoopMBB: 5244 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5245 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5246 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5247 // %Dest = RLL %OldVal, BitSize(%BitShift) 5248 // ^^ The low BitSize bits contain the field 5249 // of interest. 5250 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5251 // ^^ Replace the upper 32-BitSize bits of the 5252 // comparison value with those that we loaded, 5253 // so that we can use a full word comparison. 5254 // CR %Dest, %RetryCmpVal 5255 // JNE DoneMBB 5256 // # Fall through to SetMBB 5257 MBB = LoopMBB; 5258 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5259 .addReg(OrigOldVal).addMBB(StartMBB) 5260 .addReg(RetryOldVal).addMBB(SetMBB); 5261 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5262 .addReg(OrigCmpVal).addMBB(StartMBB) 5263 .addReg(RetryCmpVal).addMBB(SetMBB); 5264 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5265 .addReg(OrigSwapVal).addMBB(StartMBB) 5266 .addReg(RetrySwapVal).addMBB(SetMBB); 5267 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5268 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5269 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5270 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5271 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5272 .addReg(Dest).addReg(RetryCmpVal); 5273 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5274 .addImm(SystemZ::CCMASK_ICMP) 5275 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5276 MBB->addSuccessor(DoneMBB); 5277 MBB->addSuccessor(SetMBB); 5278 5279 // SetMBB: 5280 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5281 // ^^ Replace the upper 32-BitSize bits of the new 5282 // value with those that we loaded. 5283 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5284 // ^^ Rotate the new field to its proper position. 5285 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5286 // JNE LoopMBB 5287 // # fall through to ExitMMB 5288 MBB = SetMBB; 5289 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5290 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5291 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5292 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5293 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5294 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5295 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5296 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5297 MBB->addSuccessor(LoopMBB); 5298 MBB->addSuccessor(DoneMBB); 5299 5300 MI->eraseFromParent(); 5301 return DoneMBB; 5302 } 5303 5304 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5305 // if the high register of the GR128 value must be cleared or false if 5306 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5307 // and subreg_l64 when extending a GR64. 5308 MachineBasicBlock * 5309 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5310 MachineBasicBlock *MBB, 5311 bool ClearEven, unsigned SubReg) const { 5312 MachineFunction &MF = *MBB->getParent(); 5313 const SystemZInstrInfo *TII = 5314 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5315 MachineRegisterInfo &MRI = MF.getRegInfo(); 5316 DebugLoc DL = MI->getDebugLoc(); 5317 5318 unsigned Dest = MI->getOperand(0).getReg(); 5319 unsigned Src = MI->getOperand(1).getReg(); 5320 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5321 5322 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5323 if (ClearEven) { 5324 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5325 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5326 5327 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5328 .addImm(0); 5329 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5330 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5331 In128 = NewIn128; 5332 } 5333 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5334 .addReg(In128).addReg(Src).addImm(SubReg); 5335 5336 MI->eraseFromParent(); 5337 return MBB; 5338 } 5339 5340 MachineBasicBlock * 5341 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5342 MachineBasicBlock *MBB, 5343 unsigned Opcode) const { 5344 MachineFunction &MF = *MBB->getParent(); 5345 const SystemZInstrInfo *TII = 5346 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5347 MachineRegisterInfo &MRI = MF.getRegInfo(); 5348 DebugLoc DL = MI->getDebugLoc(); 5349 5350 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5351 uint64_t DestDisp = MI->getOperand(1).getImm(); 5352 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5353 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5354 uint64_t Length = MI->getOperand(4).getImm(); 5355 5356 // When generating more than one CLC, all but the last will need to 5357 // branch to the end when a difference is found. 5358 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5359 splitBlockAfter(MI, MBB) : nullptr); 5360 5361 // Check for the loop form, in which operand 5 is the trip count. 5362 if (MI->getNumExplicitOperands() > 5) { 5363 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5364 5365 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5366 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5367 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5368 forceReg(MI, DestBase, TII)); 5369 5370 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5371 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5372 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5373 MRI.createVirtualRegister(RC)); 5374 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5375 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5376 MRI.createVirtualRegister(RC)); 5377 5378 RC = &SystemZ::GR64BitRegClass; 5379 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5380 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5381 5382 MachineBasicBlock *StartMBB = MBB; 5383 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5384 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5385 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5386 5387 // StartMBB: 5388 // # fall through to LoopMMB 5389 MBB->addSuccessor(LoopMBB); 5390 5391 // LoopMBB: 5392 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5393 // [ %NextDestReg, NextMBB ] 5394 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5395 // [ %NextSrcReg, NextMBB ] 5396 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5397 // [ %NextCountReg, NextMBB ] 5398 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5399 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5400 // ( JLH EndMBB ) 5401 // 5402 // The prefetch is used only for MVC. The JLH is used only for CLC. 5403 MBB = LoopMBB; 5404 5405 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5406 .addReg(StartDestReg).addMBB(StartMBB) 5407 .addReg(NextDestReg).addMBB(NextMBB); 5408 if (!HaveSingleBase) 5409 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5410 .addReg(StartSrcReg).addMBB(StartMBB) 5411 .addReg(NextSrcReg).addMBB(NextMBB); 5412 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5413 .addReg(StartCountReg).addMBB(StartMBB) 5414 .addReg(NextCountReg).addMBB(NextMBB); 5415 if (Opcode == SystemZ::MVC) 5416 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5417 .addImm(SystemZ::PFD_WRITE) 5418 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5419 BuildMI(MBB, DL, TII->get(Opcode)) 5420 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5421 .addReg(ThisSrcReg).addImm(SrcDisp); 5422 if (EndMBB) { 5423 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5424 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5425 .addMBB(EndMBB); 5426 MBB->addSuccessor(EndMBB); 5427 MBB->addSuccessor(NextMBB); 5428 } 5429 5430 // NextMBB: 5431 // %NextDestReg = LA 256(%ThisDestReg) 5432 // %NextSrcReg = LA 256(%ThisSrcReg) 5433 // %NextCountReg = AGHI %ThisCountReg, -1 5434 // CGHI %NextCountReg, 0 5435 // JLH LoopMBB 5436 // # fall through to DoneMMB 5437 // 5438 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5439 MBB = NextMBB; 5440 5441 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5442 .addReg(ThisDestReg).addImm(256).addReg(0); 5443 if (!HaveSingleBase) 5444 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5445 .addReg(ThisSrcReg).addImm(256).addReg(0); 5446 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5447 .addReg(ThisCountReg).addImm(-1); 5448 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5449 .addReg(NextCountReg).addImm(0); 5450 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5451 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5452 .addMBB(LoopMBB); 5453 MBB->addSuccessor(LoopMBB); 5454 MBB->addSuccessor(DoneMBB); 5455 5456 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5457 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5458 Length &= 255; 5459 MBB = DoneMBB; 5460 } 5461 // Handle any remaining bytes with straight-line code. 5462 while (Length > 0) { 5463 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5464 // The previous iteration might have created out-of-range displacements. 5465 // Apply them using LAY if so. 5466 if (!isUInt<12>(DestDisp)) { 5467 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5468 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5469 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5470 DestBase = MachineOperand::CreateReg(Reg, false); 5471 DestDisp = 0; 5472 } 5473 if (!isUInt<12>(SrcDisp)) { 5474 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5475 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5476 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5477 SrcBase = MachineOperand::CreateReg(Reg, false); 5478 SrcDisp = 0; 5479 } 5480 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5481 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5482 .addOperand(SrcBase).addImm(SrcDisp); 5483 DestDisp += ThisLength; 5484 SrcDisp += ThisLength; 5485 Length -= ThisLength; 5486 // If there's another CLC to go, branch to the end if a difference 5487 // was found. 5488 if (EndMBB && Length > 0) { 5489 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5490 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5491 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5492 .addMBB(EndMBB); 5493 MBB->addSuccessor(EndMBB); 5494 MBB->addSuccessor(NextMBB); 5495 MBB = NextMBB; 5496 } 5497 } 5498 if (EndMBB) { 5499 MBB->addSuccessor(EndMBB); 5500 MBB = EndMBB; 5501 MBB->addLiveIn(SystemZ::CC); 5502 } 5503 5504 MI->eraseFromParent(); 5505 return MBB; 5506 } 5507 5508 // Decompose string pseudo-instruction MI into a loop that continually performs 5509 // Opcode until CC != 3. 5510 MachineBasicBlock * 5511 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5512 MachineBasicBlock *MBB, 5513 unsigned Opcode) const { 5514 MachineFunction &MF = *MBB->getParent(); 5515 const SystemZInstrInfo *TII = 5516 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5517 MachineRegisterInfo &MRI = MF.getRegInfo(); 5518 DebugLoc DL = MI->getDebugLoc(); 5519 5520 uint64_t End1Reg = MI->getOperand(0).getReg(); 5521 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5522 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5523 uint64_t CharReg = MI->getOperand(3).getReg(); 5524 5525 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5526 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5527 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5528 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5529 5530 MachineBasicBlock *StartMBB = MBB; 5531 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5532 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5533 5534 // StartMBB: 5535 // # fall through to LoopMMB 5536 MBB->addSuccessor(LoopMBB); 5537 5538 // LoopMBB: 5539 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5540 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5541 // R0L = %CharReg 5542 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5543 // JO LoopMBB 5544 // # fall through to DoneMMB 5545 // 5546 // The load of R0L can be hoisted by post-RA LICM. 5547 MBB = LoopMBB; 5548 5549 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5550 .addReg(Start1Reg).addMBB(StartMBB) 5551 .addReg(End1Reg).addMBB(LoopMBB); 5552 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5553 .addReg(Start2Reg).addMBB(StartMBB) 5554 .addReg(End2Reg).addMBB(LoopMBB); 5555 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5556 BuildMI(MBB, DL, TII->get(Opcode)) 5557 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5558 .addReg(This1Reg).addReg(This2Reg); 5559 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5560 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5561 MBB->addSuccessor(LoopMBB); 5562 MBB->addSuccessor(DoneMBB); 5563 5564 DoneMBB->addLiveIn(SystemZ::CC); 5565 5566 MI->eraseFromParent(); 5567 return DoneMBB; 5568 } 5569 5570 // Update TBEGIN instruction with final opcode and register clobbers. 5571 MachineBasicBlock * 5572 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5573 MachineBasicBlock *MBB, 5574 unsigned Opcode, 5575 bool NoFloat) const { 5576 MachineFunction &MF = *MBB->getParent(); 5577 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5578 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5579 5580 // Update opcode. 5581 MI->setDesc(TII->get(Opcode)); 5582 5583 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5584 // Make sure to add the corresponding GRSM bits if they are missing. 5585 uint64_t Control = MI->getOperand(2).getImm(); 5586 static const unsigned GPRControlBit[16] = { 5587 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5588 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5589 }; 5590 Control |= GPRControlBit[15]; 5591 if (TFI->hasFP(MF)) 5592 Control |= GPRControlBit[11]; 5593 MI->getOperand(2).setImm(Control); 5594 5595 // Add GPR clobbers. 5596 for (int I = 0; I < 16; I++) { 5597 if ((Control & GPRControlBit[I]) == 0) { 5598 unsigned Reg = SystemZMC::GR64Regs[I]; 5599 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5600 } 5601 } 5602 5603 // Add FPR/VR clobbers. 5604 if (!NoFloat && (Control & 4) != 0) { 5605 if (Subtarget.hasVector()) { 5606 for (int I = 0; I < 32; I++) { 5607 unsigned Reg = SystemZMC::VR128Regs[I]; 5608 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5609 } 5610 } else { 5611 for (int I = 0; I < 16; I++) { 5612 unsigned Reg = SystemZMC::FP64Regs[I]; 5613 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5614 } 5615 } 5616 } 5617 5618 return MBB; 5619 } 5620 5621 MachineBasicBlock *SystemZTargetLowering:: 5622 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5623 switch (MI->getOpcode()) { 5624 case SystemZ::Select32Mux: 5625 case SystemZ::Select32: 5626 case SystemZ::SelectF32: 5627 case SystemZ::Select64: 5628 case SystemZ::SelectF64: 5629 case SystemZ::SelectF128: 5630 return emitSelect(MI, MBB); 5631 5632 case SystemZ::CondStore8Mux: 5633 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5634 case SystemZ::CondStore8MuxInv: 5635 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5636 case SystemZ::CondStore16Mux: 5637 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5638 case SystemZ::CondStore16MuxInv: 5639 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5640 case SystemZ::CondStore8: 5641 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5642 case SystemZ::CondStore8Inv: 5643 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5644 case SystemZ::CondStore16: 5645 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5646 case SystemZ::CondStore16Inv: 5647 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5648 case SystemZ::CondStore32: 5649 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5650 case SystemZ::CondStore32Inv: 5651 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5652 case SystemZ::CondStore64: 5653 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5654 case SystemZ::CondStore64Inv: 5655 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5656 case SystemZ::CondStoreF32: 5657 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5658 case SystemZ::CondStoreF32Inv: 5659 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5660 case SystemZ::CondStoreF64: 5661 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5662 case SystemZ::CondStoreF64Inv: 5663 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5664 5665 case SystemZ::AEXT128_64: 5666 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5667 case SystemZ::ZEXT128_32: 5668 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5669 case SystemZ::ZEXT128_64: 5670 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5671 5672 case SystemZ::ATOMIC_SWAPW: 5673 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5674 case SystemZ::ATOMIC_SWAP_32: 5675 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5676 case SystemZ::ATOMIC_SWAP_64: 5677 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5678 5679 case SystemZ::ATOMIC_LOADW_AR: 5680 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5681 case SystemZ::ATOMIC_LOADW_AFI: 5682 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5683 case SystemZ::ATOMIC_LOAD_AR: 5684 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5685 case SystemZ::ATOMIC_LOAD_AHI: 5686 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5687 case SystemZ::ATOMIC_LOAD_AFI: 5688 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5689 case SystemZ::ATOMIC_LOAD_AGR: 5690 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5691 case SystemZ::ATOMIC_LOAD_AGHI: 5692 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5693 case SystemZ::ATOMIC_LOAD_AGFI: 5694 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5695 5696 case SystemZ::ATOMIC_LOADW_SR: 5697 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5698 case SystemZ::ATOMIC_LOAD_SR: 5699 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5700 case SystemZ::ATOMIC_LOAD_SGR: 5701 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5702 5703 case SystemZ::ATOMIC_LOADW_NR: 5704 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5705 case SystemZ::ATOMIC_LOADW_NILH: 5706 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5707 case SystemZ::ATOMIC_LOAD_NR: 5708 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5709 case SystemZ::ATOMIC_LOAD_NILL: 5710 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5711 case SystemZ::ATOMIC_LOAD_NILH: 5712 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5713 case SystemZ::ATOMIC_LOAD_NILF: 5714 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5715 case SystemZ::ATOMIC_LOAD_NGR: 5716 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5717 case SystemZ::ATOMIC_LOAD_NILL64: 5718 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5719 case SystemZ::ATOMIC_LOAD_NILH64: 5720 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5721 case SystemZ::ATOMIC_LOAD_NIHL64: 5722 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5723 case SystemZ::ATOMIC_LOAD_NIHH64: 5724 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5725 case SystemZ::ATOMIC_LOAD_NILF64: 5726 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5727 case SystemZ::ATOMIC_LOAD_NIHF64: 5728 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5729 5730 case SystemZ::ATOMIC_LOADW_OR: 5731 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5732 case SystemZ::ATOMIC_LOADW_OILH: 5733 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5734 case SystemZ::ATOMIC_LOAD_OR: 5735 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5736 case SystemZ::ATOMIC_LOAD_OILL: 5737 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5738 case SystemZ::ATOMIC_LOAD_OILH: 5739 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5740 case SystemZ::ATOMIC_LOAD_OILF: 5741 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5742 case SystemZ::ATOMIC_LOAD_OGR: 5743 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5744 case SystemZ::ATOMIC_LOAD_OILL64: 5745 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5746 case SystemZ::ATOMIC_LOAD_OILH64: 5747 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5748 case SystemZ::ATOMIC_LOAD_OIHL64: 5749 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5750 case SystemZ::ATOMIC_LOAD_OIHH64: 5751 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5752 case SystemZ::ATOMIC_LOAD_OILF64: 5753 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5754 case SystemZ::ATOMIC_LOAD_OIHF64: 5755 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5756 5757 case SystemZ::ATOMIC_LOADW_XR: 5758 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5759 case SystemZ::ATOMIC_LOADW_XILF: 5760 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5761 case SystemZ::ATOMIC_LOAD_XR: 5762 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5763 case SystemZ::ATOMIC_LOAD_XILF: 5764 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5765 case SystemZ::ATOMIC_LOAD_XGR: 5766 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5767 case SystemZ::ATOMIC_LOAD_XILF64: 5768 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5769 case SystemZ::ATOMIC_LOAD_XIHF64: 5770 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5771 5772 case SystemZ::ATOMIC_LOADW_NRi: 5773 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5774 case SystemZ::ATOMIC_LOADW_NILHi: 5775 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5776 case SystemZ::ATOMIC_LOAD_NRi: 5777 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5778 case SystemZ::ATOMIC_LOAD_NILLi: 5779 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5780 case SystemZ::ATOMIC_LOAD_NILHi: 5781 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5782 case SystemZ::ATOMIC_LOAD_NILFi: 5783 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5784 case SystemZ::ATOMIC_LOAD_NGRi: 5785 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5786 case SystemZ::ATOMIC_LOAD_NILL64i: 5787 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5788 case SystemZ::ATOMIC_LOAD_NILH64i: 5789 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5790 case SystemZ::ATOMIC_LOAD_NIHL64i: 5791 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5792 case SystemZ::ATOMIC_LOAD_NIHH64i: 5793 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5794 case SystemZ::ATOMIC_LOAD_NILF64i: 5795 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5796 case SystemZ::ATOMIC_LOAD_NIHF64i: 5797 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5798 5799 case SystemZ::ATOMIC_LOADW_MIN: 5800 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5801 SystemZ::CCMASK_CMP_LE, 0); 5802 case SystemZ::ATOMIC_LOAD_MIN_32: 5803 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5804 SystemZ::CCMASK_CMP_LE, 32); 5805 case SystemZ::ATOMIC_LOAD_MIN_64: 5806 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5807 SystemZ::CCMASK_CMP_LE, 64); 5808 5809 case SystemZ::ATOMIC_LOADW_MAX: 5810 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5811 SystemZ::CCMASK_CMP_GE, 0); 5812 case SystemZ::ATOMIC_LOAD_MAX_32: 5813 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5814 SystemZ::CCMASK_CMP_GE, 32); 5815 case SystemZ::ATOMIC_LOAD_MAX_64: 5816 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5817 SystemZ::CCMASK_CMP_GE, 64); 5818 5819 case SystemZ::ATOMIC_LOADW_UMIN: 5820 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5821 SystemZ::CCMASK_CMP_LE, 0); 5822 case SystemZ::ATOMIC_LOAD_UMIN_32: 5823 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5824 SystemZ::CCMASK_CMP_LE, 32); 5825 case SystemZ::ATOMIC_LOAD_UMIN_64: 5826 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5827 SystemZ::CCMASK_CMP_LE, 64); 5828 5829 case SystemZ::ATOMIC_LOADW_UMAX: 5830 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5831 SystemZ::CCMASK_CMP_GE, 0); 5832 case SystemZ::ATOMIC_LOAD_UMAX_32: 5833 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5834 SystemZ::CCMASK_CMP_GE, 32); 5835 case SystemZ::ATOMIC_LOAD_UMAX_64: 5836 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5837 SystemZ::CCMASK_CMP_GE, 64); 5838 5839 case SystemZ::ATOMIC_CMP_SWAPW: 5840 return emitAtomicCmpSwapW(MI, MBB); 5841 case SystemZ::MVCSequence: 5842 case SystemZ::MVCLoop: 5843 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5844 case SystemZ::NCSequence: 5845 case SystemZ::NCLoop: 5846 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5847 case SystemZ::OCSequence: 5848 case SystemZ::OCLoop: 5849 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5850 case SystemZ::XCSequence: 5851 case SystemZ::XCLoop: 5852 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5853 case SystemZ::CLCSequence: 5854 case SystemZ::CLCLoop: 5855 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5856 case SystemZ::CLSTLoop: 5857 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5858 case SystemZ::MVSTLoop: 5859 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5860 case SystemZ::SRSTLoop: 5861 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5862 case SystemZ::TBEGIN: 5863 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5864 case SystemZ::TBEGIN_nofloat: 5865 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5866 case SystemZ::TBEGINC: 5867 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5868 default: 5869 llvm_unreachable("Unexpected instr type to insert"); 5870 } 5871 } 5872