1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 118 119 // TODO: It may be better to default to latency-oriented scheduling, however 120 // LLVM's current latency-oriented scheduler can't handle physreg definitions 121 // such as SystemZ has with CC, so set this to the register-pressure 122 // scheduler, because it can. 123 setSchedulingPreference(Sched::RegPressure); 124 125 setBooleanContents(ZeroOrOneBooleanContent); 126 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 127 128 // Instructions are strings of 2-byte aligned 2-byte values. 129 setMinFunctionAlignment(2); 130 131 // Handle operations that are handled in a similar way for all types. 132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 133 I <= MVT::LAST_FP_VALUETYPE; 134 ++I) { 135 MVT VT = MVT::SimpleValueType(I); 136 if (isTypeLegal(VT)) { 137 // Lower SET_CC into an IPM-based sequence. 138 setOperationAction(ISD::SETCC, VT, Custom); 139 140 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 141 setOperationAction(ISD::SELECT, VT, Expand); 142 143 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 144 setOperationAction(ISD::SELECT_CC, VT, Custom); 145 setOperationAction(ISD::BR_CC, VT, Custom); 146 } 147 } 148 149 // Expand jump table branches as address arithmetic followed by an 150 // indirect jump. 151 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 152 153 // Expand BRCOND into a BR_CC (see above). 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // Handle integer types. 157 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 158 I <= MVT::LAST_INTEGER_VALUETYPE; 159 ++I) { 160 MVT VT = MVT::SimpleValueType(I); 161 if (isTypeLegal(VT)) { 162 // Expand individual DIV and REMs into DIVREMs. 163 setOperationAction(ISD::SDIV, VT, Expand); 164 setOperationAction(ISD::UDIV, VT, Expand); 165 setOperationAction(ISD::SREM, VT, Expand); 166 setOperationAction(ISD::UREM, VT, Expand); 167 setOperationAction(ISD::SDIVREM, VT, Custom); 168 setOperationAction(ISD::UDIVREM, VT, Custom); 169 170 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 171 // stores, putting a serialization instruction after the stores. 172 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 173 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 174 175 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 176 // available, or if the operand is constant. 177 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 178 179 // Use POPCNT on z196 and above. 180 if (Subtarget.hasPopulationCount()) 181 setOperationAction(ISD::CTPOP, VT, Custom); 182 else 183 setOperationAction(ISD::CTPOP, VT, Expand); 184 185 // No special instructions for these. 186 setOperationAction(ISD::CTTZ, VT, Expand); 187 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 188 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 189 setOperationAction(ISD::ROTR, VT, Expand); 190 191 // Use *MUL_LOHI where possible instead of MULH*. 192 setOperationAction(ISD::MULHS, VT, Expand); 193 setOperationAction(ISD::MULHU, VT, Expand); 194 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 195 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 196 197 // Only z196 and above have native support for conversions to unsigned. 198 if (!Subtarget.hasFPExtension()) 199 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 200 } 201 } 202 203 // Type legalization will convert 8- and 16-bit atomic operations into 204 // forms that operate on i32s (but still keeping the original memory VT). 205 // Lower them into full i32 operations. 206 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 208 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 218 219 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 220 221 // z10 has instructions for signed but not unsigned FP conversion. 222 // Handle unsigned 32-bit types as signed 64-bit types. 223 if (!Subtarget.hasFPExtension()) { 224 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 225 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 226 } 227 228 // We have native support for a 64-bit CTLZ, via FLOGR. 229 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 230 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 231 232 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 233 setOperationAction(ISD::OR, MVT::i64, Custom); 234 235 // FIXME: Can we support these natively? 236 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 237 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 239 240 // We have native instructions for i8, i16 and i32 extensions, but not i1. 241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 242 for (MVT VT : MVT::integer_valuetypes()) { 243 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 244 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 246 } 247 248 // Handle the various types of symbolic address. 249 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 250 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 251 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 252 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 253 setOperationAction(ISD::JumpTable, PtrVT, Custom); 254 255 // We need to handle dynamic allocations specially because of the 256 // 160-byte area at the bottom of the stack. 257 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 258 259 // Use custom expanders so that we can force the function to use 260 // a frame pointer. 261 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 262 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 263 264 // Handle prefetches with PFD or PFDRL. 265 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 266 267 for (MVT VT : MVT::vector_valuetypes()) { 268 // Assume by default that all vector operations need to be expanded. 269 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 270 if (getOperationAction(Opcode, VT) == Legal) 271 setOperationAction(Opcode, VT, Expand); 272 273 // Likewise all truncating stores and extending loads. 274 for (MVT InnerVT : MVT::vector_valuetypes()) { 275 setTruncStoreAction(VT, InnerVT, Expand); 276 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 277 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 278 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 279 } 280 281 if (isTypeLegal(VT)) { 282 // These operations are legal for anything that can be stored in a 283 // vector register, even if there is no native support for the format 284 // as such. In particular, we can do these for v4f32 even though there 285 // are no specific instructions for that format. 286 setOperationAction(ISD::LOAD, VT, Legal); 287 setOperationAction(ISD::STORE, VT, Legal); 288 setOperationAction(ISD::VSELECT, VT, Legal); 289 setOperationAction(ISD::BITCAST, VT, Legal); 290 setOperationAction(ISD::UNDEF, VT, Legal); 291 292 // Likewise, except that we need to replace the nodes with something 293 // more specific. 294 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 295 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 296 } 297 } 298 299 // Handle integer vector types. 300 for (MVT VT : MVT::integer_vector_valuetypes()) { 301 if (isTypeLegal(VT)) { 302 // These operations have direct equivalents. 303 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 304 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 305 setOperationAction(ISD::ADD, VT, Legal); 306 setOperationAction(ISD::SUB, VT, Legal); 307 if (VT != MVT::v2i64) 308 setOperationAction(ISD::MUL, VT, Legal); 309 setOperationAction(ISD::AND, VT, Legal); 310 setOperationAction(ISD::OR, VT, Legal); 311 setOperationAction(ISD::XOR, VT, Legal); 312 setOperationAction(ISD::CTPOP, VT, Custom); 313 setOperationAction(ISD::CTTZ, VT, Legal); 314 setOperationAction(ISD::CTLZ, VT, Legal); 315 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 316 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 317 318 // Convert a GPR scalar to a vector by inserting it into element 0. 319 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 320 321 // Use a series of unpacks for extensions. 322 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 323 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 324 325 // Detect shifts by a scalar amount and convert them into 326 // V*_BY_SCALAR. 327 setOperationAction(ISD::SHL, VT, Custom); 328 setOperationAction(ISD::SRA, VT, Custom); 329 setOperationAction(ISD::SRL, VT, Custom); 330 331 // At present ROTL isn't matched by DAGCombiner. ROTR should be 332 // converted into ROTL. 333 setOperationAction(ISD::ROTL, VT, Expand); 334 setOperationAction(ISD::ROTR, VT, Expand); 335 336 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 337 // and inverting the result as necessary. 338 setOperationAction(ISD::SETCC, VT, Custom); 339 } 340 } 341 342 if (Subtarget.hasVector()) { 343 // There should be no need to check for float types other than v2f64 344 // since <2 x f32> isn't a legal type. 345 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 346 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 348 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 349 } 350 351 // Handle floating-point types. 352 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 353 I <= MVT::LAST_FP_VALUETYPE; 354 ++I) { 355 MVT VT = MVT::SimpleValueType(I); 356 if (isTypeLegal(VT)) { 357 // We can use FI for FRINT. 358 setOperationAction(ISD::FRINT, VT, Legal); 359 360 // We can use the extended form of FI for other rounding operations. 361 if (Subtarget.hasFPExtension()) { 362 setOperationAction(ISD::FNEARBYINT, VT, Legal); 363 setOperationAction(ISD::FFLOOR, VT, Legal); 364 setOperationAction(ISD::FCEIL, VT, Legal); 365 setOperationAction(ISD::FTRUNC, VT, Legal); 366 setOperationAction(ISD::FROUND, VT, Legal); 367 } 368 369 // No special instructions for these. 370 setOperationAction(ISD::FSIN, VT, Expand); 371 setOperationAction(ISD::FCOS, VT, Expand); 372 setOperationAction(ISD::FSINCOS, VT, Expand); 373 setOperationAction(ISD::FREM, VT, Expand); 374 setOperationAction(ISD::FPOW, VT, Expand); 375 } 376 } 377 378 // Handle floating-point vector types. 379 if (Subtarget.hasVector()) { 380 // Scalar-to-vector conversion is just a subreg. 381 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 382 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 383 384 // Some insertions and extractions can be done directly but others 385 // need to go via integers. 386 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 388 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 389 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 390 391 // These operations have direct equivalents. 392 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 393 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 394 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 395 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 396 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 397 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 398 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 399 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 401 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 402 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 403 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 404 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 405 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 406 } 407 408 // We have fused multiply-addition for f32 and f64 but not f128. 409 setOperationAction(ISD::FMA, MVT::f32, Legal); 410 setOperationAction(ISD::FMA, MVT::f64, Legal); 411 setOperationAction(ISD::FMA, MVT::f128, Expand); 412 413 // Needed so that we don't try to implement f128 constant loads using 414 // a load-and-extend of a f80 constant (in cases where the constant 415 // would fit in an f80). 416 for (MVT VT : MVT::fp_valuetypes()) 417 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 418 419 // Floating-point truncation and stores need to be done separately. 420 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 421 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 422 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 423 424 // We have 64-bit FPR<->GPR moves, but need special handling for 425 // 32-bit forms. 426 if (!Subtarget.hasVector()) { 427 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 428 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 429 } 430 431 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 432 // structure, but VAEND is a no-op. 433 setOperationAction(ISD::VASTART, MVT::Other, Custom); 434 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 435 setOperationAction(ISD::VAEND, MVT::Other, Expand); 436 437 // Codes for which we want to perform some z-specific combinations. 438 setTargetDAGCombine(ISD::SIGN_EXTEND); 439 setTargetDAGCombine(ISD::STORE); 440 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 441 setTargetDAGCombine(ISD::FP_ROUND); 442 443 // Handle intrinsics. 444 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 445 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 446 447 // We want to use MVC in preference to even a single load/store pair. 448 MaxStoresPerMemcpy = 0; 449 MaxStoresPerMemcpyOptSize = 0; 450 451 // The main memset sequence is a byte store followed by an MVC. 452 // Two STC or MV..I stores win over that, but the kind of fused stores 453 // generated by target-independent code don't when the byte value is 454 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 455 // than "STC;MVC". Handle the choice in target-specific code instead. 456 MaxStoresPerMemset = 0; 457 MaxStoresPerMemsetOptSize = 0; 458 } 459 460 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 461 LLVMContext &, EVT VT) const { 462 if (!VT.isVector()) 463 return MVT::i32; 464 return VT.changeVectorElementTypeToInteger(); 465 } 466 467 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 468 VT = VT.getScalarType(); 469 470 if (!VT.isSimple()) 471 return false; 472 473 switch (VT.getSimpleVT().SimpleTy) { 474 case MVT::f32: 475 case MVT::f64: 476 return true; 477 case MVT::f128: 478 return false; 479 default: 480 break; 481 } 482 483 return false; 484 } 485 486 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 487 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 488 return Imm.isZero() || Imm.isNegZero(); 489 } 490 491 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 492 // We can use CGFI or CLGFI. 493 return isInt<32>(Imm) || isUInt<32>(Imm); 494 } 495 496 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 497 // We can use ALGFI or SLGFI. 498 return isUInt<32>(Imm) || isUInt<32>(-Imm); 499 } 500 501 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 502 unsigned, 503 unsigned, 504 bool *Fast) const { 505 // Unaligned accesses should never be slower than the expanded version. 506 // We check specifically for aligned accesses in the few cases where 507 // they are required. 508 if (Fast) 509 *Fast = true; 510 return true; 511 } 512 513 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 514 const AddrMode &AM, Type *Ty, 515 unsigned AS) const { 516 // Punt on globals for now, although they can be used in limited 517 // RELATIVE LONG cases. 518 if (AM.BaseGV) 519 return false; 520 521 // Require a 20-bit signed offset. 522 if (!isInt<20>(AM.BaseOffs)) 523 return false; 524 525 // Indexing is OK but no scale factor can be applied. 526 return AM.Scale == 0 || AM.Scale == 1; 527 } 528 529 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 530 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 531 return false; 532 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 533 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 534 return FromBits > ToBits; 535 } 536 537 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 538 if (!FromVT.isInteger() || !ToVT.isInteger()) 539 return false; 540 unsigned FromBits = FromVT.getSizeInBits(); 541 unsigned ToBits = ToVT.getSizeInBits(); 542 return FromBits > ToBits; 543 } 544 545 //===----------------------------------------------------------------------===// 546 // Inline asm support 547 //===----------------------------------------------------------------------===// 548 549 TargetLowering::ConstraintType 550 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 551 if (Constraint.size() == 1) { 552 switch (Constraint[0]) { 553 case 'a': // Address register 554 case 'd': // Data register (equivalent to 'r') 555 case 'f': // Floating-point register 556 case 'h': // High-part register 557 case 'r': // General-purpose register 558 return C_RegisterClass; 559 560 case 'Q': // Memory with base and unsigned 12-bit displacement 561 case 'R': // Likewise, plus an index 562 case 'S': // Memory with base and signed 20-bit displacement 563 case 'T': // Likewise, plus an index 564 case 'm': // Equivalent to 'T'. 565 return C_Memory; 566 567 case 'I': // Unsigned 8-bit constant 568 case 'J': // Unsigned 12-bit constant 569 case 'K': // Signed 16-bit constant 570 case 'L': // Signed 20-bit displacement (on all targets we support) 571 case 'M': // 0x7fffffff 572 return C_Other; 573 574 default: 575 break; 576 } 577 } 578 return TargetLowering::getConstraintType(Constraint); 579 } 580 581 TargetLowering::ConstraintWeight SystemZTargetLowering:: 582 getSingleConstraintMatchWeight(AsmOperandInfo &info, 583 const char *constraint) const { 584 ConstraintWeight weight = CW_Invalid; 585 Value *CallOperandVal = info.CallOperandVal; 586 // If we don't have a value, we can't do a match, 587 // but allow it at the lowest weight. 588 if (!CallOperandVal) 589 return CW_Default; 590 Type *type = CallOperandVal->getType(); 591 // Look at the constraint type. 592 switch (*constraint) { 593 default: 594 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 595 break; 596 597 case 'a': // Address register 598 case 'd': // Data register (equivalent to 'r') 599 case 'h': // High-part register 600 case 'r': // General-purpose register 601 if (CallOperandVal->getType()->isIntegerTy()) 602 weight = CW_Register; 603 break; 604 605 case 'f': // Floating-point register 606 if (type->isFloatingPointTy()) 607 weight = CW_Register; 608 break; 609 610 case 'I': // Unsigned 8-bit constant 611 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 612 if (isUInt<8>(C->getZExtValue())) 613 weight = CW_Constant; 614 break; 615 616 case 'J': // Unsigned 12-bit constant 617 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 618 if (isUInt<12>(C->getZExtValue())) 619 weight = CW_Constant; 620 break; 621 622 case 'K': // Signed 16-bit constant 623 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 624 if (isInt<16>(C->getSExtValue())) 625 weight = CW_Constant; 626 break; 627 628 case 'L': // Signed 20-bit displacement (on all targets we support) 629 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 630 if (isInt<20>(C->getSExtValue())) 631 weight = CW_Constant; 632 break; 633 634 case 'M': // 0x7fffffff 635 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 636 if (C->getZExtValue() == 0x7fffffff) 637 weight = CW_Constant; 638 break; 639 } 640 return weight; 641 } 642 643 // Parse a "{tNNN}" register constraint for which the register type "t" 644 // has already been verified. MC is the class associated with "t" and 645 // Map maps 0-based register numbers to LLVM register numbers. 646 static std::pair<unsigned, const TargetRegisterClass *> 647 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 648 const unsigned *Map) { 649 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 650 if (isdigit(Constraint[2])) { 651 unsigned Index; 652 bool Failed = 653 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 654 if (!Failed && Index < 16 && Map[Index]) 655 return std::make_pair(Map[Index], RC); 656 } 657 return std::make_pair(0U, nullptr); 658 } 659 660 std::pair<unsigned, const TargetRegisterClass *> 661 SystemZTargetLowering::getRegForInlineAsmConstraint( 662 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 663 if (Constraint.size() == 1) { 664 // GCC Constraint Letters 665 switch (Constraint[0]) { 666 default: break; 667 case 'd': // Data register (equivalent to 'r') 668 case 'r': // General-purpose register 669 if (VT == MVT::i64) 670 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 671 else if (VT == MVT::i128) 672 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 673 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 674 675 case 'a': // Address register 676 if (VT == MVT::i64) 677 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 678 else if (VT == MVT::i128) 679 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 680 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 681 682 case 'h': // High-part register (an LLVM extension) 683 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 684 685 case 'f': // Floating-point register 686 if (VT == MVT::f64) 687 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 688 else if (VT == MVT::f128) 689 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 690 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 691 } 692 } 693 if (Constraint.size() > 0 && Constraint[0] == '{') { 694 // We need to override the default register parsing for GPRs and FPRs 695 // because the interpretation depends on VT. The internal names of 696 // the registers are also different from the external names 697 // (F0D and F0S instead of F0, etc.). 698 if (Constraint[1] == 'r') { 699 if (VT == MVT::i32) 700 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 701 SystemZMC::GR32Regs); 702 if (VT == MVT::i128) 703 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 704 SystemZMC::GR128Regs); 705 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 706 SystemZMC::GR64Regs); 707 } 708 if (Constraint[1] == 'f') { 709 if (VT == MVT::f32) 710 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 711 SystemZMC::FP32Regs); 712 if (VT == MVT::f128) 713 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 714 SystemZMC::FP128Regs); 715 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 716 SystemZMC::FP64Regs); 717 } 718 } 719 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 720 } 721 722 void SystemZTargetLowering:: 723 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 724 std::vector<SDValue> &Ops, 725 SelectionDAG &DAG) const { 726 // Only support length 1 constraints for now. 727 if (Constraint.length() == 1) { 728 switch (Constraint[0]) { 729 case 'I': // Unsigned 8-bit constant 730 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 731 if (isUInt<8>(C->getZExtValue())) 732 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 733 Op.getValueType())); 734 return; 735 736 case 'J': // Unsigned 12-bit constant 737 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 738 if (isUInt<12>(C->getZExtValue())) 739 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 740 Op.getValueType())); 741 return; 742 743 case 'K': // Signed 16-bit constant 744 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 745 if (isInt<16>(C->getSExtValue())) 746 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 747 Op.getValueType())); 748 return; 749 750 case 'L': // Signed 20-bit displacement (on all targets we support) 751 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 752 if (isInt<20>(C->getSExtValue())) 753 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 754 Op.getValueType())); 755 return; 756 757 case 'M': // 0x7fffffff 758 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 759 if (C->getZExtValue() == 0x7fffffff) 760 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 761 Op.getValueType())); 762 return; 763 } 764 } 765 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // Calling conventions 770 //===----------------------------------------------------------------------===// 771 772 #include "SystemZGenCallingConv.inc" 773 774 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 775 Type *ToType) const { 776 return isTruncateFree(FromType, ToType); 777 } 778 779 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 780 return CI->isTailCall(); 781 } 782 783 // We do not yet support 128-bit single-element vector types. If the user 784 // attempts to use such types as function argument or return type, prefer 785 // to error out instead of emitting code violating the ABI. 786 static void VerifyVectorType(MVT VT, EVT ArgVT) { 787 if (ArgVT.isVector() && !VT.isVector()) 788 report_fatal_error("Unsupported vector argument or return type"); 789 } 790 791 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 792 for (unsigned i = 0; i < Ins.size(); ++i) 793 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 794 } 795 796 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 797 for (unsigned i = 0; i < Outs.size(); ++i) 798 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 799 } 800 801 // Value is a value that has been passed to us in the location described by VA 802 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 803 // any loads onto Chain. 804 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 805 CCValAssign &VA, SDValue Chain, 806 SDValue Value) { 807 // If the argument has been promoted from a smaller type, insert an 808 // assertion to capture this. 809 if (VA.getLocInfo() == CCValAssign::SExt) 810 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 811 DAG.getValueType(VA.getValVT())); 812 else if (VA.getLocInfo() == CCValAssign::ZExt) 813 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 814 DAG.getValueType(VA.getValVT())); 815 816 if (VA.isExtInLoc()) 817 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 818 else if (VA.getLocInfo() == CCValAssign::BCvt) { 819 // If this is a short vector argument loaded from the stack, 820 // extend from i64 to full vector size and then bitcast. 821 assert(VA.getLocVT() == MVT::i64); 822 assert(VA.getValVT().isVector()); 823 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 824 Value, DAG.getUNDEF(MVT::i64)); 825 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 826 } else 827 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 828 return Value; 829 } 830 831 // Value is a value of type VA.getValVT() that we need to copy into 832 // the location described by VA. Return a copy of Value converted to 833 // VA.getValVT(). The caller is responsible for handling indirect values. 834 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 835 CCValAssign &VA, SDValue Value) { 836 switch (VA.getLocInfo()) { 837 case CCValAssign::SExt: 838 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 839 case CCValAssign::ZExt: 840 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 841 case CCValAssign::AExt: 842 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 843 case CCValAssign::BCvt: 844 // If this is a short vector argument to be stored to the stack, 845 // bitcast to v2i64 and then extract first element. 846 assert(VA.getLocVT() == MVT::i64); 847 assert(VA.getValVT().isVector()); 848 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 849 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 850 DAG.getConstant(0, DL, MVT::i32)); 851 case CCValAssign::Full: 852 return Value; 853 default: 854 llvm_unreachable("Unhandled getLocInfo()"); 855 } 856 } 857 858 SDValue SystemZTargetLowering:: 859 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 860 const SmallVectorImpl<ISD::InputArg> &Ins, 861 SDLoc DL, SelectionDAG &DAG, 862 SmallVectorImpl<SDValue> &InVals) const { 863 MachineFunction &MF = DAG.getMachineFunction(); 864 MachineFrameInfo *MFI = MF.getFrameInfo(); 865 MachineRegisterInfo &MRI = MF.getRegInfo(); 866 SystemZMachineFunctionInfo *FuncInfo = 867 MF.getInfo<SystemZMachineFunctionInfo>(); 868 auto *TFL = 869 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 870 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 871 872 // Detect unsupported vector argument types. 873 if (Subtarget.hasVector()) 874 VerifyVectorTypes(Ins); 875 876 // Assign locations to all of the incoming arguments. 877 SmallVector<CCValAssign, 16> ArgLocs; 878 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 879 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 880 881 unsigned NumFixedGPRs = 0; 882 unsigned NumFixedFPRs = 0; 883 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 884 SDValue ArgValue; 885 CCValAssign &VA = ArgLocs[I]; 886 EVT LocVT = VA.getLocVT(); 887 if (VA.isRegLoc()) { 888 // Arguments passed in registers 889 const TargetRegisterClass *RC; 890 switch (LocVT.getSimpleVT().SimpleTy) { 891 default: 892 // Integers smaller than i64 should be promoted to i64. 893 llvm_unreachable("Unexpected argument type"); 894 case MVT::i32: 895 NumFixedGPRs += 1; 896 RC = &SystemZ::GR32BitRegClass; 897 break; 898 case MVT::i64: 899 NumFixedGPRs += 1; 900 RC = &SystemZ::GR64BitRegClass; 901 break; 902 case MVT::f32: 903 NumFixedFPRs += 1; 904 RC = &SystemZ::FP32BitRegClass; 905 break; 906 case MVT::f64: 907 NumFixedFPRs += 1; 908 RC = &SystemZ::FP64BitRegClass; 909 break; 910 case MVT::v16i8: 911 case MVT::v8i16: 912 case MVT::v4i32: 913 case MVT::v2i64: 914 case MVT::v4f32: 915 case MVT::v2f64: 916 RC = &SystemZ::VR128BitRegClass; 917 break; 918 } 919 920 unsigned VReg = MRI.createVirtualRegister(RC); 921 MRI.addLiveIn(VA.getLocReg(), VReg); 922 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 923 } else { 924 assert(VA.isMemLoc() && "Argument not register or memory"); 925 926 // Create the frame index object for this incoming parameter. 927 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 928 VA.getLocMemOffset(), true); 929 930 // Create the SelectionDAG nodes corresponding to a load 931 // from this parameter. Unpromoted ints and floats are 932 // passed as right-justified 8-byte values. 933 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 934 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 935 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 936 DAG.getIntPtrConstant(4, DL)); 937 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 938 MachinePointerInfo::getFixedStack(MF, FI), false, 939 false, false, 0); 940 } 941 942 // Convert the value of the argument register into the value that's 943 // being passed. 944 if (VA.getLocInfo() == CCValAssign::Indirect) { 945 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, 946 ArgValue, MachinePointerInfo(), 947 false, false, false, 0)); 948 // If the original argument was split (e.g. i128), we need 949 // to load all parts of it here (using the same address). 950 unsigned ArgIndex = Ins[I].OrigArgIndex; 951 assert (Ins[I].PartOffset == 0); 952 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 953 CCValAssign &PartVA = ArgLocs[I + 1]; 954 unsigned PartOffset = Ins[I + 1].PartOffset; 955 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 956 DAG.getIntPtrConstant(PartOffset, DL)); 957 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, 958 Address, MachinePointerInfo(), 959 false, false, false, 0)); 960 ++I; 961 } 962 } else 963 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 964 } 965 966 if (IsVarArg) { 967 // Save the number of non-varargs registers for later use by va_start, etc. 968 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 969 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 970 971 // Likewise the address (in the form of a frame index) of where the 972 // first stack vararg would be. The 1-byte size here is arbitrary. 973 int64_t StackSize = CCInfo.getNextStackOffset(); 974 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 975 976 // ...and a similar frame index for the caller-allocated save area 977 // that will be used to store the incoming registers. 978 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 979 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 980 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 981 982 // Store the FPR varargs in the reserved frame slots. (We store the 983 // GPRs as part of the prologue.) 984 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 985 SDValue MemOps[SystemZ::NumArgFPRs]; 986 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 987 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 988 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 989 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 990 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 991 &SystemZ::FP64BitRegClass); 992 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 993 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 994 MachinePointerInfo::getFixedStack(MF, FI), 995 false, false, 0); 996 } 997 // Join the stores, which are independent of one another. 998 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 999 makeArrayRef(&MemOps[NumFixedFPRs], 1000 SystemZ::NumArgFPRs-NumFixedFPRs)); 1001 } 1002 } 1003 1004 return Chain; 1005 } 1006 1007 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1008 SmallVectorImpl<CCValAssign> &ArgLocs) { 1009 // Punt if there are any indirect or stack arguments, or if the call 1010 // needs the call-saved argument register R6. 1011 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1012 CCValAssign &VA = ArgLocs[I]; 1013 if (VA.getLocInfo() == CCValAssign::Indirect) 1014 return false; 1015 if (!VA.isRegLoc()) 1016 return false; 1017 unsigned Reg = VA.getLocReg(); 1018 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1019 return false; 1020 } 1021 return true; 1022 } 1023 1024 SDValue 1025 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1026 SmallVectorImpl<SDValue> &InVals) const { 1027 SelectionDAG &DAG = CLI.DAG; 1028 SDLoc &DL = CLI.DL; 1029 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1030 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1031 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1032 SDValue Chain = CLI.Chain; 1033 SDValue Callee = CLI.Callee; 1034 bool &IsTailCall = CLI.IsTailCall; 1035 CallingConv::ID CallConv = CLI.CallConv; 1036 bool IsVarArg = CLI.IsVarArg; 1037 MachineFunction &MF = DAG.getMachineFunction(); 1038 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1039 1040 // Detect unsupported vector argument and return types. 1041 if (Subtarget.hasVector()) { 1042 VerifyVectorTypes(Outs); 1043 VerifyVectorTypes(Ins); 1044 } 1045 1046 // Analyze the operands of the call, assigning locations to each operand. 1047 SmallVector<CCValAssign, 16> ArgLocs; 1048 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1049 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1050 1051 // We don't support GuaranteedTailCallOpt, only automatically-detected 1052 // sibling calls. 1053 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1054 IsTailCall = false; 1055 1056 // Get a count of how many bytes are to be pushed on the stack. 1057 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1058 1059 // Mark the start of the call. 1060 if (!IsTailCall) 1061 Chain = DAG.getCALLSEQ_START(Chain, 1062 DAG.getConstant(NumBytes, DL, PtrVT, true), 1063 DL); 1064 1065 // Copy argument values to their designated locations. 1066 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1067 SmallVector<SDValue, 8> MemOpChains; 1068 SDValue StackPtr; 1069 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1070 CCValAssign &VA = ArgLocs[I]; 1071 SDValue ArgValue = OutVals[I]; 1072 1073 if (VA.getLocInfo() == CCValAssign::Indirect) { 1074 // Store the argument in a stack slot and pass its address. 1075 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1076 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1077 MemOpChains.push_back(DAG.getStore( 1078 Chain, DL, ArgValue, SpillSlot, 1079 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1080 // If the original argument was split (e.g. i128), we need 1081 // to store all parts of it here (and pass just one address). 1082 unsigned ArgIndex = Outs[I].OrigArgIndex; 1083 assert (Outs[I].PartOffset == 0); 1084 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1085 SDValue PartValue = OutVals[I + 1]; 1086 unsigned PartOffset = Outs[I + 1].PartOffset; 1087 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1088 DAG.getIntPtrConstant(PartOffset, DL)); 1089 MemOpChains.push_back(DAG.getStore( 1090 Chain, DL, PartValue, Address, 1091 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1092 ++I; 1093 } 1094 ArgValue = SpillSlot; 1095 } else 1096 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1097 1098 if (VA.isRegLoc()) 1099 // Queue up the argument copies and emit them at the end. 1100 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1101 else { 1102 assert(VA.isMemLoc() && "Argument not register or memory"); 1103 1104 // Work out the address of the stack slot. Unpromoted ints and 1105 // floats are passed as right-justified 8-byte values. 1106 if (!StackPtr.getNode()) 1107 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1108 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1109 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1110 Offset += 4; 1111 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1112 DAG.getIntPtrConstant(Offset, DL)); 1113 1114 // Emit the store. 1115 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1116 MachinePointerInfo(), 1117 false, false, 0)); 1118 } 1119 } 1120 1121 // Join the stores, which are independent of one another. 1122 if (!MemOpChains.empty()) 1123 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1124 1125 // Accept direct calls by converting symbolic call addresses to the 1126 // associated Target* opcodes. Force %r1 to be used for indirect 1127 // tail calls. 1128 SDValue Glue; 1129 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1130 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1131 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1132 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1133 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1134 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1135 } else if (IsTailCall) { 1136 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1137 Glue = Chain.getValue(1); 1138 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1139 } 1140 1141 // Build a sequence of copy-to-reg nodes, chained and glued together. 1142 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1143 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1144 RegsToPass[I].second, Glue); 1145 Glue = Chain.getValue(1); 1146 } 1147 1148 // The first call operand is the chain and the second is the target address. 1149 SmallVector<SDValue, 8> Ops; 1150 Ops.push_back(Chain); 1151 Ops.push_back(Callee); 1152 1153 // Add argument registers to the end of the list so that they are 1154 // known live into the call. 1155 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1156 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1157 RegsToPass[I].second.getValueType())); 1158 1159 // Add a register mask operand representing the call-preserved registers. 1160 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1161 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1162 assert(Mask && "Missing call preserved mask for calling convention"); 1163 Ops.push_back(DAG.getRegisterMask(Mask)); 1164 1165 // Glue the call to the argument copies, if any. 1166 if (Glue.getNode()) 1167 Ops.push_back(Glue); 1168 1169 // Emit the call. 1170 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1171 if (IsTailCall) 1172 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1173 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1174 Glue = Chain.getValue(1); 1175 1176 // Mark the end of the call, which is glued to the call itself. 1177 Chain = DAG.getCALLSEQ_END(Chain, 1178 DAG.getConstant(NumBytes, DL, PtrVT, true), 1179 DAG.getConstant(0, DL, PtrVT, true), 1180 Glue, DL); 1181 Glue = Chain.getValue(1); 1182 1183 // Assign locations to each value returned by this call. 1184 SmallVector<CCValAssign, 16> RetLocs; 1185 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1186 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1187 1188 // Copy all of the result registers out of their specified physreg. 1189 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1190 CCValAssign &VA = RetLocs[I]; 1191 1192 // Copy the value out, gluing the copy to the end of the call sequence. 1193 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1194 VA.getLocVT(), Glue); 1195 Chain = RetValue.getValue(1); 1196 Glue = RetValue.getValue(2); 1197 1198 // Convert the value of the return register into the value that's 1199 // being returned. 1200 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1201 } 1202 1203 return Chain; 1204 } 1205 1206 bool SystemZTargetLowering:: 1207 CanLowerReturn(CallingConv::ID CallConv, 1208 MachineFunction &MF, bool isVarArg, 1209 const SmallVectorImpl<ISD::OutputArg> &Outs, 1210 LLVMContext &Context) const { 1211 // Detect unsupported vector return types. 1212 if (Subtarget.hasVector()) 1213 VerifyVectorTypes(Outs); 1214 1215 // Special case that we cannot easily detect in RetCC_SystemZ since 1216 // i128 is not a legal type. 1217 for (auto &Out : Outs) 1218 if (Out.ArgVT == MVT::i128) 1219 return false; 1220 1221 SmallVector<CCValAssign, 16> RetLocs; 1222 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1223 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1224 } 1225 1226 SDValue 1227 SystemZTargetLowering::LowerReturn(SDValue Chain, 1228 CallingConv::ID CallConv, bool IsVarArg, 1229 const SmallVectorImpl<ISD::OutputArg> &Outs, 1230 const SmallVectorImpl<SDValue> &OutVals, 1231 SDLoc DL, SelectionDAG &DAG) const { 1232 MachineFunction &MF = DAG.getMachineFunction(); 1233 1234 // Detect unsupported vector return types. 1235 if (Subtarget.hasVector()) 1236 VerifyVectorTypes(Outs); 1237 1238 // Assign locations to each returned value. 1239 SmallVector<CCValAssign, 16> RetLocs; 1240 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1241 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1242 1243 // Quick exit for void returns 1244 if (RetLocs.empty()) 1245 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1246 1247 // Copy the result values into the output registers. 1248 SDValue Glue; 1249 SmallVector<SDValue, 4> RetOps; 1250 RetOps.push_back(Chain); 1251 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1252 CCValAssign &VA = RetLocs[I]; 1253 SDValue RetValue = OutVals[I]; 1254 1255 // Make the return register live on exit. 1256 assert(VA.isRegLoc() && "Can only return in registers!"); 1257 1258 // Promote the value as required. 1259 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1260 1261 // Chain and glue the copies together. 1262 unsigned Reg = VA.getLocReg(); 1263 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1264 Glue = Chain.getValue(1); 1265 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1266 } 1267 1268 // Update chain and glue. 1269 RetOps[0] = Chain; 1270 if (Glue.getNode()) 1271 RetOps.push_back(Glue); 1272 1273 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1274 } 1275 1276 SDValue SystemZTargetLowering:: 1277 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1278 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1279 } 1280 1281 // Return true if Op is an intrinsic node with chain that returns the CC value 1282 // as its only (other) argument. Provide the associated SystemZISD opcode and 1283 // the mask of valid CC values if so. 1284 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1285 unsigned &CCValid) { 1286 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1287 switch (Id) { 1288 case Intrinsic::s390_tbegin: 1289 Opcode = SystemZISD::TBEGIN; 1290 CCValid = SystemZ::CCMASK_TBEGIN; 1291 return true; 1292 1293 case Intrinsic::s390_tbegin_nofloat: 1294 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1295 CCValid = SystemZ::CCMASK_TBEGIN; 1296 return true; 1297 1298 case Intrinsic::s390_tend: 1299 Opcode = SystemZISD::TEND; 1300 CCValid = SystemZ::CCMASK_TEND; 1301 return true; 1302 1303 default: 1304 return false; 1305 } 1306 } 1307 1308 // Return true if Op is an intrinsic node without chain that returns the 1309 // CC value as its final argument. Provide the associated SystemZISD 1310 // opcode and the mask of valid CC values if so. 1311 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1312 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1313 switch (Id) { 1314 case Intrinsic::s390_vpkshs: 1315 case Intrinsic::s390_vpksfs: 1316 case Intrinsic::s390_vpksgs: 1317 Opcode = SystemZISD::PACKS_CC; 1318 CCValid = SystemZ::CCMASK_VCMP; 1319 return true; 1320 1321 case Intrinsic::s390_vpklshs: 1322 case Intrinsic::s390_vpklsfs: 1323 case Intrinsic::s390_vpklsgs: 1324 Opcode = SystemZISD::PACKLS_CC; 1325 CCValid = SystemZ::CCMASK_VCMP; 1326 return true; 1327 1328 case Intrinsic::s390_vceqbs: 1329 case Intrinsic::s390_vceqhs: 1330 case Intrinsic::s390_vceqfs: 1331 case Intrinsic::s390_vceqgs: 1332 Opcode = SystemZISD::VICMPES; 1333 CCValid = SystemZ::CCMASK_VCMP; 1334 return true; 1335 1336 case Intrinsic::s390_vchbs: 1337 case Intrinsic::s390_vchhs: 1338 case Intrinsic::s390_vchfs: 1339 case Intrinsic::s390_vchgs: 1340 Opcode = SystemZISD::VICMPHS; 1341 CCValid = SystemZ::CCMASK_VCMP; 1342 return true; 1343 1344 case Intrinsic::s390_vchlbs: 1345 case Intrinsic::s390_vchlhs: 1346 case Intrinsic::s390_vchlfs: 1347 case Intrinsic::s390_vchlgs: 1348 Opcode = SystemZISD::VICMPHLS; 1349 CCValid = SystemZ::CCMASK_VCMP; 1350 return true; 1351 1352 case Intrinsic::s390_vtm: 1353 Opcode = SystemZISD::VTM; 1354 CCValid = SystemZ::CCMASK_VCMP; 1355 return true; 1356 1357 case Intrinsic::s390_vfaebs: 1358 case Intrinsic::s390_vfaehs: 1359 case Intrinsic::s390_vfaefs: 1360 Opcode = SystemZISD::VFAE_CC; 1361 CCValid = SystemZ::CCMASK_ANY; 1362 return true; 1363 1364 case Intrinsic::s390_vfaezbs: 1365 case Intrinsic::s390_vfaezhs: 1366 case Intrinsic::s390_vfaezfs: 1367 Opcode = SystemZISD::VFAEZ_CC; 1368 CCValid = SystemZ::CCMASK_ANY; 1369 return true; 1370 1371 case Intrinsic::s390_vfeebs: 1372 case Intrinsic::s390_vfeehs: 1373 case Intrinsic::s390_vfeefs: 1374 Opcode = SystemZISD::VFEE_CC; 1375 CCValid = SystemZ::CCMASK_ANY; 1376 return true; 1377 1378 case Intrinsic::s390_vfeezbs: 1379 case Intrinsic::s390_vfeezhs: 1380 case Intrinsic::s390_vfeezfs: 1381 Opcode = SystemZISD::VFEEZ_CC; 1382 CCValid = SystemZ::CCMASK_ANY; 1383 return true; 1384 1385 case Intrinsic::s390_vfenebs: 1386 case Intrinsic::s390_vfenehs: 1387 case Intrinsic::s390_vfenefs: 1388 Opcode = SystemZISD::VFENE_CC; 1389 CCValid = SystemZ::CCMASK_ANY; 1390 return true; 1391 1392 case Intrinsic::s390_vfenezbs: 1393 case Intrinsic::s390_vfenezhs: 1394 case Intrinsic::s390_vfenezfs: 1395 Opcode = SystemZISD::VFENEZ_CC; 1396 CCValid = SystemZ::CCMASK_ANY; 1397 return true; 1398 1399 case Intrinsic::s390_vistrbs: 1400 case Intrinsic::s390_vistrhs: 1401 case Intrinsic::s390_vistrfs: 1402 Opcode = SystemZISD::VISTR_CC; 1403 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1404 return true; 1405 1406 case Intrinsic::s390_vstrcbs: 1407 case Intrinsic::s390_vstrchs: 1408 case Intrinsic::s390_vstrcfs: 1409 Opcode = SystemZISD::VSTRC_CC; 1410 CCValid = SystemZ::CCMASK_ANY; 1411 return true; 1412 1413 case Intrinsic::s390_vstrczbs: 1414 case Intrinsic::s390_vstrczhs: 1415 case Intrinsic::s390_vstrczfs: 1416 Opcode = SystemZISD::VSTRCZ_CC; 1417 CCValid = SystemZ::CCMASK_ANY; 1418 return true; 1419 1420 case Intrinsic::s390_vfcedbs: 1421 Opcode = SystemZISD::VFCMPES; 1422 CCValid = SystemZ::CCMASK_VCMP; 1423 return true; 1424 1425 case Intrinsic::s390_vfchdbs: 1426 Opcode = SystemZISD::VFCMPHS; 1427 CCValid = SystemZ::CCMASK_VCMP; 1428 return true; 1429 1430 case Intrinsic::s390_vfchedbs: 1431 Opcode = SystemZISD::VFCMPHES; 1432 CCValid = SystemZ::CCMASK_VCMP; 1433 return true; 1434 1435 case Intrinsic::s390_vftcidb: 1436 Opcode = SystemZISD::VFTCI; 1437 CCValid = SystemZ::CCMASK_VCMP; 1438 return true; 1439 1440 default: 1441 return false; 1442 } 1443 } 1444 1445 // Emit an intrinsic with chain with a glued value instead of its CC result. 1446 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1447 unsigned Opcode) { 1448 // Copy all operands except the intrinsic ID. 1449 unsigned NumOps = Op.getNumOperands(); 1450 SmallVector<SDValue, 6> Ops; 1451 Ops.reserve(NumOps - 1); 1452 Ops.push_back(Op.getOperand(0)); 1453 for (unsigned I = 2; I < NumOps; ++I) 1454 Ops.push_back(Op.getOperand(I)); 1455 1456 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1457 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1458 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1459 SDValue OldChain = SDValue(Op.getNode(), 1); 1460 SDValue NewChain = SDValue(Intr.getNode(), 0); 1461 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1462 return Intr; 1463 } 1464 1465 // Emit an intrinsic with a glued value instead of its CC result. 1466 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1467 unsigned Opcode) { 1468 // Copy all operands except the intrinsic ID. 1469 unsigned NumOps = Op.getNumOperands(); 1470 SmallVector<SDValue, 6> Ops; 1471 Ops.reserve(NumOps - 1); 1472 for (unsigned I = 1; I < NumOps; ++I) 1473 Ops.push_back(Op.getOperand(I)); 1474 1475 if (Op->getNumValues() == 1) 1476 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1477 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1478 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1479 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1480 } 1481 1482 // CC is a comparison that will be implemented using an integer or 1483 // floating-point comparison. Return the condition code mask for 1484 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1485 // unsigned comparisons and clear for signed ones. In the floating-point 1486 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1487 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1488 #define CONV(X) \ 1489 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1490 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1491 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1492 1493 switch (CC) { 1494 default: 1495 llvm_unreachable("Invalid integer condition!"); 1496 1497 CONV(EQ); 1498 CONV(NE); 1499 CONV(GT); 1500 CONV(GE); 1501 CONV(LT); 1502 CONV(LE); 1503 1504 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1505 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1506 } 1507 #undef CONV 1508 } 1509 1510 // Return a sequence for getting a 1 from an IPM result when CC has a 1511 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1512 // The handling of CC values outside CCValid doesn't matter. 1513 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1514 // Deal with cases where the result can be taken directly from a bit 1515 // of the IPM result. 1516 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1517 return IPMConversion(0, 0, SystemZ::IPM_CC); 1518 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1519 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1520 1521 // Deal with cases where we can add a value to force the sign bit 1522 // to contain the right value. Putting the bit in 31 means we can 1523 // use SRL rather than RISBG(L), and also makes it easier to get a 1524 // 0/-1 value, so it has priority over the other tests below. 1525 // 1526 // These sequences rely on the fact that the upper two bits of the 1527 // IPM result are zero. 1528 uint64_t TopBit = uint64_t(1) << 31; 1529 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1530 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1531 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1532 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1533 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1534 | SystemZ::CCMASK_1 1535 | SystemZ::CCMASK_2))) 1536 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1537 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1538 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1539 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1540 | SystemZ::CCMASK_2 1541 | SystemZ::CCMASK_3))) 1542 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1543 1544 // Next try inverting the value and testing a bit. 0/1 could be 1545 // handled this way too, but we dealt with that case above. 1546 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1547 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1548 1549 // Handle cases where adding a value forces a non-sign bit to contain 1550 // the right value. 1551 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1552 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1553 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1554 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1555 1556 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1557 // can be done by inverting the low CC bit and applying one of the 1558 // sign-based extractions above. 1559 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1560 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1561 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1562 return IPMConversion(1 << SystemZ::IPM_CC, 1563 TopBit - (3 << SystemZ::IPM_CC), 31); 1564 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1565 | SystemZ::CCMASK_1 1566 | SystemZ::CCMASK_3))) 1567 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1568 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1569 | SystemZ::CCMASK_2 1570 | SystemZ::CCMASK_3))) 1571 return IPMConversion(1 << SystemZ::IPM_CC, 1572 TopBit - (1 << SystemZ::IPM_CC), 31); 1573 1574 llvm_unreachable("Unexpected CC combination"); 1575 } 1576 1577 // If C can be converted to a comparison against zero, adjust the operands 1578 // as necessary. 1579 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1580 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1581 return; 1582 1583 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1584 if (!ConstOp1) 1585 return; 1586 1587 int64_t Value = ConstOp1->getSExtValue(); 1588 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1589 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1590 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1591 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1592 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1593 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1594 } 1595 } 1596 1597 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1598 // adjust the operands as necessary. 1599 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1600 // For us to make any changes, it must a comparison between a single-use 1601 // load and a constant. 1602 if (!C.Op0.hasOneUse() || 1603 C.Op0.getOpcode() != ISD::LOAD || 1604 C.Op1.getOpcode() != ISD::Constant) 1605 return; 1606 1607 // We must have an 8- or 16-bit load. 1608 auto *Load = cast<LoadSDNode>(C.Op0); 1609 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1610 if (NumBits != 8 && NumBits != 16) 1611 return; 1612 1613 // The load must be an extending one and the constant must be within the 1614 // range of the unextended value. 1615 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1616 uint64_t Value = ConstOp1->getZExtValue(); 1617 uint64_t Mask = (1 << NumBits) - 1; 1618 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1619 // Make sure that ConstOp1 is in range of C.Op0. 1620 int64_t SignedValue = ConstOp1->getSExtValue(); 1621 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1622 return; 1623 if (C.ICmpType != SystemZICMP::SignedOnly) { 1624 // Unsigned comparison between two sign-extended values is equivalent 1625 // to unsigned comparison between two zero-extended values. 1626 Value &= Mask; 1627 } else if (NumBits == 8) { 1628 // Try to treat the comparison as unsigned, so that we can use CLI. 1629 // Adjust CCMask and Value as necessary. 1630 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1631 // Test whether the high bit of the byte is set. 1632 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1633 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1634 // Test whether the high bit of the byte is clear. 1635 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1636 else 1637 // No instruction exists for this combination. 1638 return; 1639 C.ICmpType = SystemZICMP::UnsignedOnly; 1640 } 1641 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1642 if (Value > Mask) 1643 return; 1644 // If the constant is in range, we can use any comparison. 1645 C.ICmpType = SystemZICMP::Any; 1646 } else 1647 return; 1648 1649 // Make sure that the first operand is an i32 of the right extension type. 1650 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1651 ISD::SEXTLOAD : 1652 ISD::ZEXTLOAD); 1653 if (C.Op0.getValueType() != MVT::i32 || 1654 Load->getExtensionType() != ExtType) 1655 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1656 Load->getChain(), Load->getBasePtr(), 1657 Load->getPointerInfo(), Load->getMemoryVT(), 1658 Load->isVolatile(), Load->isNonTemporal(), 1659 Load->isInvariant(), Load->getAlignment()); 1660 1661 // Make sure that the second operand is an i32 with the right value. 1662 if (C.Op1.getValueType() != MVT::i32 || 1663 Value != ConstOp1->getZExtValue()) 1664 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1665 } 1666 1667 // Return true if Op is either an unextended load, or a load suitable 1668 // for integer register-memory comparisons of type ICmpType. 1669 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1670 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1671 if (Load) { 1672 // There are no instructions to compare a register with a memory byte. 1673 if (Load->getMemoryVT() == MVT::i8) 1674 return false; 1675 // Otherwise decide on extension type. 1676 switch (Load->getExtensionType()) { 1677 case ISD::NON_EXTLOAD: 1678 return true; 1679 case ISD::SEXTLOAD: 1680 return ICmpType != SystemZICMP::UnsignedOnly; 1681 case ISD::ZEXTLOAD: 1682 return ICmpType != SystemZICMP::SignedOnly; 1683 default: 1684 break; 1685 } 1686 } 1687 return false; 1688 } 1689 1690 // Return true if it is better to swap the operands of C. 1691 static bool shouldSwapCmpOperands(const Comparison &C) { 1692 // Leave f128 comparisons alone, since they have no memory forms. 1693 if (C.Op0.getValueType() == MVT::f128) 1694 return false; 1695 1696 // Always keep a floating-point constant second, since comparisons with 1697 // zero can use LOAD TEST and comparisons with other constants make a 1698 // natural memory operand. 1699 if (isa<ConstantFPSDNode>(C.Op1)) 1700 return false; 1701 1702 // Never swap comparisons with zero since there are many ways to optimize 1703 // those later. 1704 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1705 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1706 return false; 1707 1708 // Also keep natural memory operands second if the loaded value is 1709 // only used here. Several comparisons have memory forms. 1710 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1711 return false; 1712 1713 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1714 // In that case we generally prefer the memory to be second. 1715 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1716 // The only exceptions are when the second operand is a constant and 1717 // we can use things like CHHSI. 1718 if (!ConstOp1) 1719 return true; 1720 // The unsigned memory-immediate instructions can handle 16-bit 1721 // unsigned integers. 1722 if (C.ICmpType != SystemZICMP::SignedOnly && 1723 isUInt<16>(ConstOp1->getZExtValue())) 1724 return false; 1725 // The signed memory-immediate instructions can handle 16-bit 1726 // signed integers. 1727 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1728 isInt<16>(ConstOp1->getSExtValue())) 1729 return false; 1730 return true; 1731 } 1732 1733 // Try to promote the use of CGFR and CLGFR. 1734 unsigned Opcode0 = C.Op0.getOpcode(); 1735 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1736 return true; 1737 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1738 return true; 1739 if (C.ICmpType != SystemZICMP::SignedOnly && 1740 Opcode0 == ISD::AND && 1741 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1742 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1743 return true; 1744 1745 return false; 1746 } 1747 1748 // Return a version of comparison CC mask CCMask in which the LT and GT 1749 // actions are swapped. 1750 static unsigned reverseCCMask(unsigned CCMask) { 1751 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1752 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1753 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1754 (CCMask & SystemZ::CCMASK_CMP_UO)); 1755 } 1756 1757 // Check whether C tests for equality between X and Y and whether X - Y 1758 // or Y - X is also computed. In that case it's better to compare the 1759 // result of the subtraction against zero. 1760 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1761 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1762 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1763 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1764 SDNode *N = *I; 1765 if (N->getOpcode() == ISD::SUB && 1766 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1767 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1768 C.Op0 = SDValue(N, 0); 1769 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1770 return; 1771 } 1772 } 1773 } 1774 } 1775 1776 // Check whether C compares a floating-point value with zero and if that 1777 // floating-point value is also negated. In this case we can use the 1778 // negation to set CC, so avoiding separate LOAD AND TEST and 1779 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1780 static void adjustForFNeg(Comparison &C) { 1781 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1782 if (C1 && C1->isZero()) { 1783 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1784 SDNode *N = *I; 1785 if (N->getOpcode() == ISD::FNEG) { 1786 C.Op0 = SDValue(N, 0); 1787 C.CCMask = reverseCCMask(C.CCMask); 1788 return; 1789 } 1790 } 1791 } 1792 } 1793 1794 // Check whether C compares (shl X, 32) with 0 and whether X is 1795 // also sign-extended. In that case it is better to test the result 1796 // of the sign extension using LTGFR. 1797 // 1798 // This case is important because InstCombine transforms a comparison 1799 // with (sext (trunc X)) into a comparison with (shl X, 32). 1800 static void adjustForLTGFR(Comparison &C) { 1801 // Check for a comparison between (shl X, 32) and 0. 1802 if (C.Op0.getOpcode() == ISD::SHL && 1803 C.Op0.getValueType() == MVT::i64 && 1804 C.Op1.getOpcode() == ISD::Constant && 1805 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1806 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1807 if (C1 && C1->getZExtValue() == 32) { 1808 SDValue ShlOp0 = C.Op0.getOperand(0); 1809 // See whether X has any SIGN_EXTEND_INREG uses. 1810 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1811 SDNode *N = *I; 1812 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1813 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1814 C.Op0 = SDValue(N, 0); 1815 return; 1816 } 1817 } 1818 } 1819 } 1820 } 1821 1822 // If C compares the truncation of an extending load, try to compare 1823 // the untruncated value instead. This exposes more opportunities to 1824 // reuse CC. 1825 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1826 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1827 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1828 C.Op1.getOpcode() == ISD::Constant && 1829 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1830 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1831 if (L->getMemoryVT().getStoreSizeInBits() 1832 <= C.Op0.getValueType().getSizeInBits()) { 1833 unsigned Type = L->getExtensionType(); 1834 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1835 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1836 C.Op0 = C.Op0.getOperand(0); 1837 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1838 } 1839 } 1840 } 1841 } 1842 1843 // Return true if shift operation N has an in-range constant shift value. 1844 // Store it in ShiftVal if so. 1845 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1846 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1847 if (!Shift) 1848 return false; 1849 1850 uint64_t Amount = Shift->getZExtValue(); 1851 if (Amount >= N.getValueType().getSizeInBits()) 1852 return false; 1853 1854 ShiftVal = Amount; 1855 return true; 1856 } 1857 1858 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1859 // instruction and whether the CC value is descriptive enough to handle 1860 // a comparison of type Opcode between the AND result and CmpVal. 1861 // CCMask says which comparison result is being tested and BitSize is 1862 // the number of bits in the operands. If TEST UNDER MASK can be used, 1863 // return the corresponding CC mask, otherwise return 0. 1864 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1865 uint64_t Mask, uint64_t CmpVal, 1866 unsigned ICmpType) { 1867 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1868 1869 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1870 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1871 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1872 return 0; 1873 1874 // Work out the masks for the lowest and highest bits. 1875 unsigned HighShift = 63 - countLeadingZeros(Mask); 1876 uint64_t High = uint64_t(1) << HighShift; 1877 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1878 1879 // Signed ordered comparisons are effectively unsigned if the sign 1880 // bit is dropped. 1881 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1882 1883 // Check for equality comparisons with 0, or the equivalent. 1884 if (CmpVal == 0) { 1885 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1886 return SystemZ::CCMASK_TM_ALL_0; 1887 if (CCMask == SystemZ::CCMASK_CMP_NE) 1888 return SystemZ::CCMASK_TM_SOME_1; 1889 } 1890 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1891 if (CCMask == SystemZ::CCMASK_CMP_LT) 1892 return SystemZ::CCMASK_TM_ALL_0; 1893 if (CCMask == SystemZ::CCMASK_CMP_GE) 1894 return SystemZ::CCMASK_TM_SOME_1; 1895 } 1896 if (EffectivelyUnsigned && CmpVal < Low) { 1897 if (CCMask == SystemZ::CCMASK_CMP_LE) 1898 return SystemZ::CCMASK_TM_ALL_0; 1899 if (CCMask == SystemZ::CCMASK_CMP_GT) 1900 return SystemZ::CCMASK_TM_SOME_1; 1901 } 1902 1903 // Check for equality comparisons with the mask, or the equivalent. 1904 if (CmpVal == Mask) { 1905 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1906 return SystemZ::CCMASK_TM_ALL_1; 1907 if (CCMask == SystemZ::CCMASK_CMP_NE) 1908 return SystemZ::CCMASK_TM_SOME_0; 1909 } 1910 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1911 if (CCMask == SystemZ::CCMASK_CMP_GT) 1912 return SystemZ::CCMASK_TM_ALL_1; 1913 if (CCMask == SystemZ::CCMASK_CMP_LE) 1914 return SystemZ::CCMASK_TM_SOME_0; 1915 } 1916 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1917 if (CCMask == SystemZ::CCMASK_CMP_GE) 1918 return SystemZ::CCMASK_TM_ALL_1; 1919 if (CCMask == SystemZ::CCMASK_CMP_LT) 1920 return SystemZ::CCMASK_TM_SOME_0; 1921 } 1922 1923 // Check for ordered comparisons with the top bit. 1924 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1925 if (CCMask == SystemZ::CCMASK_CMP_LE) 1926 return SystemZ::CCMASK_TM_MSB_0; 1927 if (CCMask == SystemZ::CCMASK_CMP_GT) 1928 return SystemZ::CCMASK_TM_MSB_1; 1929 } 1930 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1931 if (CCMask == SystemZ::CCMASK_CMP_LT) 1932 return SystemZ::CCMASK_TM_MSB_0; 1933 if (CCMask == SystemZ::CCMASK_CMP_GE) 1934 return SystemZ::CCMASK_TM_MSB_1; 1935 } 1936 1937 // If there are just two bits, we can do equality checks for Low and High 1938 // as well. 1939 if (Mask == Low + High) { 1940 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1941 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1942 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1943 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1944 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1945 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1946 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1947 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1948 } 1949 1950 // Looks like we've exhausted our options. 1951 return 0; 1952 } 1953 1954 // See whether C can be implemented as a TEST UNDER MASK instruction. 1955 // Update the arguments with the TM version if so. 1956 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1957 // Check that we have a comparison with a constant. 1958 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1959 if (!ConstOp1) 1960 return; 1961 uint64_t CmpVal = ConstOp1->getZExtValue(); 1962 1963 // Check whether the nonconstant input is an AND with a constant mask. 1964 Comparison NewC(C); 1965 uint64_t MaskVal; 1966 ConstantSDNode *Mask = nullptr; 1967 if (C.Op0.getOpcode() == ISD::AND) { 1968 NewC.Op0 = C.Op0.getOperand(0); 1969 NewC.Op1 = C.Op0.getOperand(1); 1970 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1971 if (!Mask) 1972 return; 1973 MaskVal = Mask->getZExtValue(); 1974 } else { 1975 // There is no instruction to compare with a 64-bit immediate 1976 // so use TMHH instead if possible. We need an unsigned ordered 1977 // comparison with an i64 immediate. 1978 if (NewC.Op0.getValueType() != MVT::i64 || 1979 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1980 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1981 NewC.ICmpType == SystemZICMP::SignedOnly) 1982 return; 1983 // Convert LE and GT comparisons into LT and GE. 1984 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1985 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1986 if (CmpVal == uint64_t(-1)) 1987 return; 1988 CmpVal += 1; 1989 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1990 } 1991 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1992 // be masked off without changing the result. 1993 MaskVal = -(CmpVal & -CmpVal); 1994 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1995 } 1996 if (!MaskVal) 1997 return; 1998 1999 // Check whether the combination of mask, comparison value and comparison 2000 // type are suitable. 2001 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 2002 unsigned NewCCMask, ShiftVal; 2003 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2004 NewC.Op0.getOpcode() == ISD::SHL && 2005 isSimpleShift(NewC.Op0, ShiftVal) && 2006 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2007 MaskVal >> ShiftVal, 2008 CmpVal >> ShiftVal, 2009 SystemZICMP::Any))) { 2010 NewC.Op0 = NewC.Op0.getOperand(0); 2011 MaskVal >>= ShiftVal; 2012 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2013 NewC.Op0.getOpcode() == ISD::SRL && 2014 isSimpleShift(NewC.Op0, ShiftVal) && 2015 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2016 MaskVal << ShiftVal, 2017 CmpVal << ShiftVal, 2018 SystemZICMP::UnsignedOnly))) { 2019 NewC.Op0 = NewC.Op0.getOperand(0); 2020 MaskVal <<= ShiftVal; 2021 } else { 2022 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2023 NewC.ICmpType); 2024 if (!NewCCMask) 2025 return; 2026 } 2027 2028 // Go ahead and make the change. 2029 C.Opcode = SystemZISD::TM; 2030 C.Op0 = NewC.Op0; 2031 if (Mask && Mask->getZExtValue() == MaskVal) 2032 C.Op1 = SDValue(Mask, 0); 2033 else 2034 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2035 C.CCValid = SystemZ::CCMASK_TM; 2036 C.CCMask = NewCCMask; 2037 } 2038 2039 // Return a Comparison that tests the condition-code result of intrinsic 2040 // node Call against constant integer CC using comparison code Cond. 2041 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2042 // and CCValid is the set of possible condition-code results. 2043 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2044 SDValue Call, unsigned CCValid, uint64_t CC, 2045 ISD::CondCode Cond) { 2046 Comparison C(Call, SDValue()); 2047 C.Opcode = Opcode; 2048 C.CCValid = CCValid; 2049 if (Cond == ISD::SETEQ) 2050 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2051 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2052 else if (Cond == ISD::SETNE) 2053 // ...and the inverse of that. 2054 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2055 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2056 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2057 // always true for CC>3. 2058 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2059 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2060 // ...and the inverse of that. 2061 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2062 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2063 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2064 // always true for CC>3. 2065 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2066 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2067 // ...and the inverse of that. 2068 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2069 else 2070 llvm_unreachable("Unexpected integer comparison type"); 2071 C.CCMask &= CCValid; 2072 return C; 2073 } 2074 2075 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2076 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2077 ISD::CondCode Cond, SDLoc DL) { 2078 if (CmpOp1.getOpcode() == ISD::Constant) { 2079 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2080 unsigned Opcode, CCValid; 2081 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2082 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2083 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2084 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2085 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2086 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2087 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2088 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2089 } 2090 Comparison C(CmpOp0, CmpOp1); 2091 C.CCMask = CCMaskForCondCode(Cond); 2092 if (C.Op0.getValueType().isFloatingPoint()) { 2093 C.CCValid = SystemZ::CCMASK_FCMP; 2094 C.Opcode = SystemZISD::FCMP; 2095 adjustForFNeg(C); 2096 } else { 2097 C.CCValid = SystemZ::CCMASK_ICMP; 2098 C.Opcode = SystemZISD::ICMP; 2099 // Choose the type of comparison. Equality and inequality tests can 2100 // use either signed or unsigned comparisons. The choice also doesn't 2101 // matter if both sign bits are known to be clear. In those cases we 2102 // want to give the main isel code the freedom to choose whichever 2103 // form fits best. 2104 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2105 C.CCMask == SystemZ::CCMASK_CMP_NE || 2106 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2107 C.ICmpType = SystemZICMP::Any; 2108 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2109 C.ICmpType = SystemZICMP::UnsignedOnly; 2110 else 2111 C.ICmpType = SystemZICMP::SignedOnly; 2112 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2113 adjustZeroCmp(DAG, DL, C); 2114 adjustSubwordCmp(DAG, DL, C); 2115 adjustForSubtraction(DAG, DL, C); 2116 adjustForLTGFR(C); 2117 adjustICmpTruncate(DAG, DL, C); 2118 } 2119 2120 if (shouldSwapCmpOperands(C)) { 2121 std::swap(C.Op0, C.Op1); 2122 C.CCMask = reverseCCMask(C.CCMask); 2123 } 2124 2125 adjustForTestUnderMask(DAG, DL, C); 2126 return C; 2127 } 2128 2129 // Emit the comparison instruction described by C. 2130 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2131 if (!C.Op1.getNode()) { 2132 SDValue Op; 2133 switch (C.Op0.getOpcode()) { 2134 case ISD::INTRINSIC_W_CHAIN: 2135 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2136 break; 2137 case ISD::INTRINSIC_WO_CHAIN: 2138 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2139 break; 2140 default: 2141 llvm_unreachable("Invalid comparison operands"); 2142 } 2143 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2144 } 2145 if (C.Opcode == SystemZISD::ICMP) 2146 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2147 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2148 if (C.Opcode == SystemZISD::TM) { 2149 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2150 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2151 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2152 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2153 } 2154 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2155 } 2156 2157 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2158 // 64 bits. Extend is the extension type to use. Store the high part 2159 // in Hi and the low part in Lo. 2160 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2161 unsigned Extend, SDValue Op0, SDValue Op1, 2162 SDValue &Hi, SDValue &Lo) { 2163 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2164 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2165 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2166 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2167 DAG.getConstant(32, DL, MVT::i64)); 2168 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2169 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2170 } 2171 2172 // Lower a binary operation that produces two VT results, one in each 2173 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2174 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2175 // on the extended Op0 and (unextended) Op1. Store the even register result 2176 // in Even and the odd register result in Odd. 2177 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2178 unsigned Extend, unsigned Opcode, 2179 SDValue Op0, SDValue Op1, 2180 SDValue &Even, SDValue &Odd) { 2181 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2182 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2183 SDValue(In128, 0), Op1); 2184 bool Is32Bit = is32Bit(VT); 2185 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2186 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2187 } 2188 2189 // Return an i32 value that is 1 if the CC value produced by Glue is 2190 // in the mask CCMask and 0 otherwise. CC is known to have a value 2191 // in CCValid, so other values can be ignored. 2192 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2193 unsigned CCValid, unsigned CCMask) { 2194 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2195 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2196 2197 if (Conversion.XORValue) 2198 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2199 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2200 2201 if (Conversion.AddValue) 2202 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2203 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2204 2205 // The SHR/AND sequence should get optimized to an RISBG. 2206 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2207 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2208 if (Conversion.Bit != 31) 2209 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2210 DAG.getConstant(1, DL, MVT::i32)); 2211 return Result; 2212 } 2213 2214 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2215 // be done directly. IsFP is true if CC is for a floating-point rather than 2216 // integer comparison. 2217 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2218 switch (CC) { 2219 case ISD::SETOEQ: 2220 case ISD::SETEQ: 2221 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2222 2223 case ISD::SETOGE: 2224 case ISD::SETGE: 2225 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2226 2227 case ISD::SETOGT: 2228 case ISD::SETGT: 2229 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2230 2231 case ISD::SETUGT: 2232 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2233 2234 default: 2235 return 0; 2236 } 2237 } 2238 2239 // Return the SystemZISD vector comparison operation for CC or its inverse, 2240 // or 0 if neither can be done directly. Indicate in Invert whether the 2241 // result is for the inverse of CC. IsFP is true if CC is for a 2242 // floating-point rather than integer comparison. 2243 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2244 bool &Invert) { 2245 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2246 Invert = false; 2247 return Opcode; 2248 } 2249 2250 CC = ISD::getSetCCInverse(CC, !IsFP); 2251 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2252 Invert = true; 2253 return Opcode; 2254 } 2255 2256 return 0; 2257 } 2258 2259 // Return a v2f64 that contains the extended form of elements Start and Start+1 2260 // of v4f32 value Op. 2261 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2262 SDValue Op) { 2263 int Mask[] = { Start, -1, Start + 1, -1 }; 2264 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2265 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2266 } 2267 2268 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2269 // producing a result of type VT. 2270 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2271 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2272 // There is no hardware support for v4f32, so extend the vector into 2273 // two v2f64s and compare those. 2274 if (CmpOp0.getValueType() == MVT::v4f32) { 2275 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2276 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2277 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2278 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2279 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2280 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2281 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2282 } 2283 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2284 } 2285 2286 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2287 // an integer mask of type VT. 2288 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2289 ISD::CondCode CC, SDValue CmpOp0, 2290 SDValue CmpOp1) { 2291 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2292 bool Invert = false; 2293 SDValue Cmp; 2294 switch (CC) { 2295 // Handle tests for order using (or (ogt y x) (oge x y)). 2296 case ISD::SETUO: 2297 Invert = true; 2298 case ISD::SETO: { 2299 assert(IsFP && "Unexpected integer comparison"); 2300 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2301 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2302 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2303 break; 2304 } 2305 2306 // Handle <> tests using (or (ogt y x) (ogt x y)). 2307 case ISD::SETUEQ: 2308 Invert = true; 2309 case ISD::SETONE: { 2310 assert(IsFP && "Unexpected integer comparison"); 2311 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2312 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2313 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2314 break; 2315 } 2316 2317 // Otherwise a single comparison is enough. It doesn't really 2318 // matter whether we try the inversion or the swap first, since 2319 // there are no cases where both work. 2320 default: 2321 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2322 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2323 else { 2324 CC = ISD::getSetCCSwappedOperands(CC); 2325 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2326 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2327 else 2328 llvm_unreachable("Unhandled comparison"); 2329 } 2330 break; 2331 } 2332 if (Invert) { 2333 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2334 DAG.getConstant(65535, DL, MVT::i32)); 2335 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2336 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2337 } 2338 return Cmp; 2339 } 2340 2341 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2342 SelectionDAG &DAG) const { 2343 SDValue CmpOp0 = Op.getOperand(0); 2344 SDValue CmpOp1 = Op.getOperand(1); 2345 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2346 SDLoc DL(Op); 2347 EVT VT = Op.getValueType(); 2348 if (VT.isVector()) 2349 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2350 2351 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2352 SDValue Glue = emitCmp(DAG, DL, C); 2353 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2354 } 2355 2356 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2357 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2358 SDValue CmpOp0 = Op.getOperand(2); 2359 SDValue CmpOp1 = Op.getOperand(3); 2360 SDValue Dest = Op.getOperand(4); 2361 SDLoc DL(Op); 2362 2363 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2364 SDValue Glue = emitCmp(DAG, DL, C); 2365 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2366 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2367 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2368 } 2369 2370 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2371 // allowing Pos and Neg to be wider than CmpOp. 2372 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2373 return (Neg.getOpcode() == ISD::SUB && 2374 Neg.getOperand(0).getOpcode() == ISD::Constant && 2375 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2376 Neg.getOperand(1) == Pos && 2377 (Pos == CmpOp || 2378 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2379 Pos.getOperand(0) == CmpOp))); 2380 } 2381 2382 // Return the absolute or negative absolute of Op; IsNegative decides which. 2383 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2384 bool IsNegative) { 2385 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2386 if (IsNegative) 2387 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2388 DAG.getConstant(0, DL, Op.getValueType()), Op); 2389 return Op; 2390 } 2391 2392 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2393 SelectionDAG &DAG) const { 2394 SDValue CmpOp0 = Op.getOperand(0); 2395 SDValue CmpOp1 = Op.getOperand(1); 2396 SDValue TrueOp = Op.getOperand(2); 2397 SDValue FalseOp = Op.getOperand(3); 2398 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2399 SDLoc DL(Op); 2400 2401 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2402 2403 // Check for absolute and negative-absolute selections, including those 2404 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2405 // This check supplements the one in DAGCombiner. 2406 if (C.Opcode == SystemZISD::ICMP && 2407 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2408 C.CCMask != SystemZ::CCMASK_CMP_NE && 2409 C.Op1.getOpcode() == ISD::Constant && 2410 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2411 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2412 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2413 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2414 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2415 } 2416 2417 SDValue Glue = emitCmp(DAG, DL, C); 2418 2419 // Special case for handling -1/0 results. The shifts we use here 2420 // should get optimized with the IPM conversion sequence. 2421 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2422 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2423 if (TrueC && FalseC) { 2424 int64_t TrueVal = TrueC->getSExtValue(); 2425 int64_t FalseVal = FalseC->getSExtValue(); 2426 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2427 // Invert the condition if we want -1 on false. 2428 if (TrueVal == 0) 2429 C.CCMask ^= C.CCValid; 2430 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2431 EVT VT = Op.getValueType(); 2432 // Extend the result to VT. Upper bits are ignored. 2433 if (!is32Bit(VT)) 2434 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2435 // Sign-extend from the low bit. 2436 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2437 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2438 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2439 } 2440 } 2441 2442 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2443 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2444 2445 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2446 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2447 } 2448 2449 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2450 SelectionDAG &DAG) const { 2451 SDLoc DL(Node); 2452 const GlobalValue *GV = Node->getGlobal(); 2453 int64_t Offset = Node->getOffset(); 2454 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2455 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2456 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2457 2458 SDValue Result; 2459 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2460 // Assign anchors at 1<<12 byte boundaries. 2461 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2462 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2463 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2464 2465 // The offset can be folded into the address if it is aligned to a halfword. 2466 Offset -= Anchor; 2467 if (Offset != 0 && (Offset & 1) == 0) { 2468 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2469 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2470 Offset = 0; 2471 } 2472 } else { 2473 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2474 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2475 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2476 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2477 false, false, false, 0); 2478 } 2479 2480 // If there was a non-zero offset that we didn't fold, create an explicit 2481 // addition for it. 2482 if (Offset != 0) 2483 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2484 DAG.getConstant(Offset, DL, PtrVT)); 2485 2486 return Result; 2487 } 2488 2489 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2490 SelectionDAG &DAG, 2491 unsigned Opcode, 2492 SDValue GOTOffset) const { 2493 SDLoc DL(Node); 2494 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2495 SDValue Chain = DAG.getEntryNode(); 2496 SDValue Glue; 2497 2498 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2499 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2500 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2501 Glue = Chain.getValue(1); 2502 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2503 Glue = Chain.getValue(1); 2504 2505 // The first call operand is the chain and the second is the TLS symbol. 2506 SmallVector<SDValue, 8> Ops; 2507 Ops.push_back(Chain); 2508 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2509 Node->getValueType(0), 2510 0, 0)); 2511 2512 // Add argument registers to the end of the list so that they are 2513 // known live into the call. 2514 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2515 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2516 2517 // Add a register mask operand representing the call-preserved registers. 2518 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2519 const uint32_t *Mask = 2520 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2521 assert(Mask && "Missing call preserved mask for calling convention"); 2522 Ops.push_back(DAG.getRegisterMask(Mask)); 2523 2524 // Glue the call to the argument copies. 2525 Ops.push_back(Glue); 2526 2527 // Emit the call. 2528 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2529 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2530 Glue = Chain.getValue(1); 2531 2532 // Copy the return value from %r2. 2533 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2534 } 2535 2536 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2537 SelectionDAG &DAG) const { 2538 if (DAG.getTarget().Options.EmulatedTLS) 2539 return LowerToTLSEmulatedModel(Node, DAG); 2540 SDLoc DL(Node); 2541 const GlobalValue *GV = Node->getGlobal(); 2542 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2543 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2544 2545 // The high part of the thread pointer is in access register 0. 2546 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2547 DAG.getConstant(0, DL, MVT::i32)); 2548 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2549 2550 // The low part of the thread pointer is in access register 1. 2551 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2552 DAG.getConstant(1, DL, MVT::i32)); 2553 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2554 2555 // Merge them into a single 64-bit address. 2556 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2557 DAG.getConstant(32, DL, PtrVT)); 2558 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2559 2560 // Get the offset of GA from the thread pointer, based on the TLS model. 2561 SDValue Offset; 2562 switch (model) { 2563 case TLSModel::GeneralDynamic: { 2564 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2565 SystemZConstantPoolValue *CPV = 2566 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2567 2568 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2569 Offset = DAG.getLoad( 2570 PtrVT, DL, DAG.getEntryNode(), Offset, 2571 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2572 false, false, 0); 2573 2574 // Call __tls_get_offset to retrieve the offset. 2575 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2576 break; 2577 } 2578 2579 case TLSModel::LocalDynamic: { 2580 // Load the GOT offset of the module ID. 2581 SystemZConstantPoolValue *CPV = 2582 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2583 2584 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2585 Offset = DAG.getLoad( 2586 PtrVT, DL, DAG.getEntryNode(), Offset, 2587 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2588 false, false, 0); 2589 2590 // Call __tls_get_offset to retrieve the module base offset. 2591 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2592 2593 // Note: The SystemZLDCleanupPass will remove redundant computations 2594 // of the module base offset. Count total number of local-dynamic 2595 // accesses to trigger execution of that pass. 2596 SystemZMachineFunctionInfo* MFI = 2597 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2598 MFI->incNumLocalDynamicTLSAccesses(); 2599 2600 // Add the per-symbol offset. 2601 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2602 2603 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2604 DTPOffset = DAG.getLoad( 2605 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2606 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2607 false, false, 0); 2608 2609 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2610 break; 2611 } 2612 2613 case TLSModel::InitialExec: { 2614 // Load the offset from the GOT. 2615 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2616 SystemZII::MO_INDNTPOFF); 2617 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2618 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2619 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2620 false, false, false, 0); 2621 break; 2622 } 2623 2624 case TLSModel::LocalExec: { 2625 // Force the offset into the constant pool and load it from there. 2626 SystemZConstantPoolValue *CPV = 2627 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2628 2629 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2630 Offset = DAG.getLoad( 2631 PtrVT, DL, DAG.getEntryNode(), Offset, 2632 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2633 false, false, 0); 2634 break; 2635 } 2636 } 2637 2638 // Add the base and offset together. 2639 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2640 } 2641 2642 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2643 SelectionDAG &DAG) const { 2644 SDLoc DL(Node); 2645 const BlockAddress *BA = Node->getBlockAddress(); 2646 int64_t Offset = Node->getOffset(); 2647 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2648 2649 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2650 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2651 return Result; 2652 } 2653 2654 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2655 SelectionDAG &DAG) const { 2656 SDLoc DL(JT); 2657 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2658 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2659 2660 // Use LARL to load the address of the table. 2661 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2662 } 2663 2664 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2665 SelectionDAG &DAG) const { 2666 SDLoc DL(CP); 2667 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2668 2669 SDValue Result; 2670 if (CP->isMachineConstantPoolEntry()) 2671 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2672 CP->getAlignment()); 2673 else 2674 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2675 CP->getAlignment(), CP->getOffset()); 2676 2677 // Use LARL to load the address of the constant pool entry. 2678 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2679 } 2680 2681 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2682 SelectionDAG &DAG) const { 2683 MachineFunction &MF = DAG.getMachineFunction(); 2684 MachineFrameInfo *MFI = MF.getFrameInfo(); 2685 MFI->setFrameAddressIsTaken(true); 2686 2687 SDLoc DL(Op); 2688 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2689 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2690 2691 // If the back chain frame index has not been allocated yet, do so. 2692 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2693 int BackChainIdx = FI->getFramePointerSaveIndex(); 2694 if (!BackChainIdx) { 2695 // By definition, the frame address is the address of the back chain. 2696 BackChainIdx = MFI->CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2697 FI->setFramePointerSaveIndex(BackChainIdx); 2698 } 2699 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2700 2701 // FIXME The frontend should detect this case. 2702 if (Depth > 0) { 2703 report_fatal_error("Unsupported stack frame traversal count"); 2704 } 2705 2706 return BackChain; 2707 } 2708 2709 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2710 SelectionDAG &DAG) const { 2711 MachineFunction &MF = DAG.getMachineFunction(); 2712 MachineFrameInfo *MFI = MF.getFrameInfo(); 2713 MFI->setReturnAddressIsTaken(true); 2714 2715 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2716 return SDValue(); 2717 2718 SDLoc DL(Op); 2719 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2720 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2721 2722 // FIXME The frontend should detect this case. 2723 if (Depth > 0) { 2724 report_fatal_error("Unsupported stack frame traversal count"); 2725 } 2726 2727 // Return R14D, which has the return address. Mark it an implicit live-in. 2728 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2729 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2730 } 2731 2732 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2733 SelectionDAG &DAG) const { 2734 SDLoc DL(Op); 2735 SDValue In = Op.getOperand(0); 2736 EVT InVT = In.getValueType(); 2737 EVT ResVT = Op.getValueType(); 2738 2739 // Convert loads directly. This is normally done by DAGCombiner, 2740 // but we need this case for bitcasts that are created during lowering 2741 // and which are then lowered themselves. 2742 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2743 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2744 LoadN->getMemOperand()); 2745 2746 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2747 SDValue In64; 2748 if (Subtarget.hasHighWord()) { 2749 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2750 MVT::i64); 2751 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2752 MVT::i64, SDValue(U64, 0), In); 2753 } else { 2754 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2755 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2756 DAG.getConstant(32, DL, MVT::i64)); 2757 } 2758 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2759 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2760 DL, MVT::f32, Out64); 2761 } 2762 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2763 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2764 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2765 MVT::f64, SDValue(U64, 0), In); 2766 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2767 if (Subtarget.hasHighWord()) 2768 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2769 MVT::i32, Out64); 2770 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2771 DAG.getConstant(32, DL, MVT::i64)); 2772 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2773 } 2774 llvm_unreachable("Unexpected bitcast combination"); 2775 } 2776 2777 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2778 SelectionDAG &DAG) const { 2779 MachineFunction &MF = DAG.getMachineFunction(); 2780 SystemZMachineFunctionInfo *FuncInfo = 2781 MF.getInfo<SystemZMachineFunctionInfo>(); 2782 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2783 2784 SDValue Chain = Op.getOperand(0); 2785 SDValue Addr = Op.getOperand(1); 2786 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2787 SDLoc DL(Op); 2788 2789 // The initial values of each field. 2790 const unsigned NumFields = 4; 2791 SDValue Fields[NumFields] = { 2792 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2793 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2794 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2795 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2796 }; 2797 2798 // Store each field into its respective slot. 2799 SDValue MemOps[NumFields]; 2800 unsigned Offset = 0; 2801 for (unsigned I = 0; I < NumFields; ++I) { 2802 SDValue FieldAddr = Addr; 2803 if (Offset != 0) 2804 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2805 DAG.getIntPtrConstant(Offset, DL)); 2806 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2807 MachinePointerInfo(SV, Offset), 2808 false, false, 0); 2809 Offset += 8; 2810 } 2811 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2812 } 2813 2814 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2815 SelectionDAG &DAG) const { 2816 SDValue Chain = Op.getOperand(0); 2817 SDValue DstPtr = Op.getOperand(1); 2818 SDValue SrcPtr = Op.getOperand(2); 2819 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2820 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2821 SDLoc DL(Op); 2822 2823 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2824 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2825 /*isTailCall*/false, 2826 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2827 } 2828 2829 SDValue SystemZTargetLowering:: 2830 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2831 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2832 bool RealignOpt = !DAG.getMachineFunction().getFunction()-> 2833 hasFnAttribute("no-realign-stack"); 2834 2835 SDValue Chain = Op.getOperand(0); 2836 SDValue Size = Op.getOperand(1); 2837 SDValue Align = Op.getOperand(2); 2838 SDLoc DL(Op); 2839 2840 // If user has set the no alignment function attribute, ignore 2841 // alloca alignments. 2842 uint64_t AlignVal = (RealignOpt ? 2843 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2844 2845 uint64_t StackAlign = TFI->getStackAlignment(); 2846 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2847 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2848 2849 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2850 SDValue NeededSpace = Size; 2851 2852 // Get a reference to the stack pointer. 2853 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2854 2855 // Add extra space for alignment if needed. 2856 if (ExtraAlignSpace) 2857 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2858 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2859 2860 // Get the new stack pointer value. 2861 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2862 2863 // Copy the new stack pointer back. 2864 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2865 2866 // The allocated data lives above the 160 bytes allocated for the standard 2867 // frame, plus any outgoing stack arguments. We don't know how much that 2868 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2869 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2870 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2871 2872 // Dynamically realign if needed. 2873 if (RequiredAlign > StackAlign) { 2874 Result = 2875 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2876 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2877 Result = 2878 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2879 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2880 } 2881 2882 SDValue Ops[2] = { Result, Chain }; 2883 return DAG.getMergeValues(Ops, DL); 2884 } 2885 2886 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2887 SelectionDAG &DAG) const { 2888 EVT VT = Op.getValueType(); 2889 SDLoc DL(Op); 2890 SDValue Ops[2]; 2891 if (is32Bit(VT)) 2892 // Just do a normal 64-bit multiplication and extract the results. 2893 // We define this so that it can be used for constant division. 2894 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2895 Op.getOperand(1), Ops[1], Ops[0]); 2896 else { 2897 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2898 // 2899 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2900 // 2901 // but using the fact that the upper halves are either all zeros 2902 // or all ones: 2903 // 2904 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2905 // 2906 // and grouping the right terms together since they are quicker than the 2907 // multiplication: 2908 // 2909 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2910 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2911 SDValue LL = Op.getOperand(0); 2912 SDValue RL = Op.getOperand(1); 2913 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2914 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2915 // UMUL_LOHI64 returns the low result in the odd register and the high 2916 // result in the even register. SMUL_LOHI is defined to return the 2917 // low half first, so the results are in reverse order. 2918 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2919 LL, RL, Ops[1], Ops[0]); 2920 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2921 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2922 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2923 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2924 } 2925 return DAG.getMergeValues(Ops, DL); 2926 } 2927 2928 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2929 SelectionDAG &DAG) const { 2930 EVT VT = Op.getValueType(); 2931 SDLoc DL(Op); 2932 SDValue Ops[2]; 2933 if (is32Bit(VT)) 2934 // Just do a normal 64-bit multiplication and extract the results. 2935 // We define this so that it can be used for constant division. 2936 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2937 Op.getOperand(1), Ops[1], Ops[0]); 2938 else 2939 // UMUL_LOHI64 returns the low result in the odd register and the high 2940 // result in the even register. UMUL_LOHI is defined to return the 2941 // low half first, so the results are in reverse order. 2942 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2943 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2944 return DAG.getMergeValues(Ops, DL); 2945 } 2946 2947 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2948 SelectionDAG &DAG) const { 2949 SDValue Op0 = Op.getOperand(0); 2950 SDValue Op1 = Op.getOperand(1); 2951 EVT VT = Op.getValueType(); 2952 SDLoc DL(Op); 2953 unsigned Opcode; 2954 2955 // We use DSGF for 32-bit division. 2956 if (is32Bit(VT)) { 2957 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2958 Opcode = SystemZISD::SDIVREM32; 2959 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2960 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2961 Opcode = SystemZISD::SDIVREM32; 2962 } else 2963 Opcode = SystemZISD::SDIVREM64; 2964 2965 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2966 // input is "don't care". The instruction returns the remainder in 2967 // the even register and the quotient in the odd register. 2968 SDValue Ops[2]; 2969 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2970 Op0, Op1, Ops[1], Ops[0]); 2971 return DAG.getMergeValues(Ops, DL); 2972 } 2973 2974 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2975 SelectionDAG &DAG) const { 2976 EVT VT = Op.getValueType(); 2977 SDLoc DL(Op); 2978 2979 // DL(G) uses a double-width dividend, so we need to clear the even 2980 // register in the GR128 input. The instruction returns the remainder 2981 // in the even register and the quotient in the odd register. 2982 SDValue Ops[2]; 2983 if (is32Bit(VT)) 2984 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2985 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2986 else 2987 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2988 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2989 return DAG.getMergeValues(Ops, DL); 2990 } 2991 2992 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2993 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2994 2995 // Get the known-zero masks for each operand. 2996 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2997 APInt KnownZero[2], KnownOne[2]; 2998 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2999 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 3000 3001 // See if the upper 32 bits of one operand and the lower 32 bits of the 3002 // other are known zero. They are the low and high operands respectively. 3003 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 3004 KnownZero[1].getZExtValue() }; 3005 unsigned High, Low; 3006 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3007 High = 1, Low = 0; 3008 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3009 High = 0, Low = 1; 3010 else 3011 return Op; 3012 3013 SDValue LowOp = Ops[Low]; 3014 SDValue HighOp = Ops[High]; 3015 3016 // If the high part is a constant, we're better off using IILH. 3017 if (HighOp.getOpcode() == ISD::Constant) 3018 return Op; 3019 3020 // If the low part is a constant that is outside the range of LHI, 3021 // then we're better off using IILF. 3022 if (LowOp.getOpcode() == ISD::Constant) { 3023 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3024 if (!isInt<16>(Value)) 3025 return Op; 3026 } 3027 3028 // Check whether the high part is an AND that doesn't change the 3029 // high 32 bits and just masks out low bits. We can skip it if so. 3030 if (HighOp.getOpcode() == ISD::AND && 3031 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3032 SDValue HighOp0 = HighOp.getOperand(0); 3033 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3034 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3035 HighOp = HighOp0; 3036 } 3037 3038 // Take advantage of the fact that all GR32 operations only change the 3039 // low 32 bits by truncating Low to an i32 and inserting it directly 3040 // using a subreg. The interesting cases are those where the truncation 3041 // can be folded. 3042 SDLoc DL(Op); 3043 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3044 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3045 MVT::i64, HighOp, Low32); 3046 } 3047 3048 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3049 SelectionDAG &DAG) const { 3050 EVT VT = Op.getValueType(); 3051 SDLoc DL(Op); 3052 Op = Op.getOperand(0); 3053 3054 // Handle vector types via VPOPCT. 3055 if (VT.isVector()) { 3056 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3057 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3058 switch (VT.getVectorElementType().getSizeInBits()) { 3059 case 8: 3060 break; 3061 case 16: { 3062 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3063 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3064 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3065 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3066 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3067 break; 3068 } 3069 case 32: { 3070 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3071 DAG.getConstant(0, DL, MVT::i32)); 3072 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3073 break; 3074 } 3075 case 64: { 3076 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3077 DAG.getConstant(0, DL, MVT::i32)); 3078 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3079 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3080 break; 3081 } 3082 default: 3083 llvm_unreachable("Unexpected type"); 3084 } 3085 return Op; 3086 } 3087 3088 // Get the known-zero mask for the operand. 3089 APInt KnownZero, KnownOne; 3090 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3091 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3092 if (NumSignificantBits == 0) 3093 return DAG.getConstant(0, DL, VT); 3094 3095 // Skip known-zero high parts of the operand. 3096 int64_t OrigBitSize = VT.getSizeInBits(); 3097 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3098 BitSize = std::min(BitSize, OrigBitSize); 3099 3100 // The POPCNT instruction counts the number of bits in each byte. 3101 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3102 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3103 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3104 3105 // Add up per-byte counts in a binary tree. All bits of Op at 3106 // position larger than BitSize remain zero throughout. 3107 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3108 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3109 if (BitSize != OrigBitSize) 3110 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3111 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3112 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3113 } 3114 3115 // Extract overall result from high byte. 3116 if (BitSize > 8) 3117 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3118 DAG.getConstant(BitSize - 8, DL, VT)); 3119 3120 return Op; 3121 } 3122 3123 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3124 SelectionDAG &DAG) const { 3125 SDLoc DL(Op); 3126 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3127 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3128 SynchronizationScope FenceScope = static_cast<SynchronizationScope>( 3129 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3130 3131 // The only fence that needs an instruction is a sequentially-consistent 3132 // cross-thread fence. 3133 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3134 FenceScope == CrossThread) { 3135 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3136 Op.getOperand(0)), 3137 0); 3138 } 3139 3140 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3141 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3142 } 3143 3144 // Op is an atomic load. Lower it into a normal volatile load. 3145 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3146 SelectionDAG &DAG) const { 3147 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3148 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3149 Node->getChain(), Node->getBasePtr(), 3150 Node->getMemoryVT(), Node->getMemOperand()); 3151 } 3152 3153 // Op is an atomic store. Lower it into a normal volatile store followed 3154 // by a serialization. 3155 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3156 SelectionDAG &DAG) const { 3157 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3158 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3159 Node->getBasePtr(), Node->getMemoryVT(), 3160 Node->getMemOperand()); 3161 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3162 Chain), 0); 3163 } 3164 3165 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3166 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3167 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3168 SelectionDAG &DAG, 3169 unsigned Opcode) const { 3170 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3171 3172 // 32-bit operations need no code outside the main loop. 3173 EVT NarrowVT = Node->getMemoryVT(); 3174 EVT WideVT = MVT::i32; 3175 if (NarrowVT == WideVT) 3176 return Op; 3177 3178 int64_t BitSize = NarrowVT.getSizeInBits(); 3179 SDValue ChainIn = Node->getChain(); 3180 SDValue Addr = Node->getBasePtr(); 3181 SDValue Src2 = Node->getVal(); 3182 MachineMemOperand *MMO = Node->getMemOperand(); 3183 SDLoc DL(Node); 3184 EVT PtrVT = Addr.getValueType(); 3185 3186 // Convert atomic subtracts of constants into additions. 3187 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3188 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3189 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3190 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3191 } 3192 3193 // Get the address of the containing word. 3194 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3195 DAG.getConstant(-4, DL, PtrVT)); 3196 3197 // Get the number of bits that the word must be rotated left in order 3198 // to bring the field to the top bits of a GR32. 3199 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3200 DAG.getConstant(3, DL, PtrVT)); 3201 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3202 3203 // Get the complementing shift amount, for rotating a field in the top 3204 // bits back to its proper position. 3205 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3206 DAG.getConstant(0, DL, WideVT), BitShift); 3207 3208 // Extend the source operand to 32 bits and prepare it for the inner loop. 3209 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3210 // operations require the source to be shifted in advance. (This shift 3211 // can be folded if the source is constant.) For AND and NAND, the lower 3212 // bits must be set, while for other opcodes they should be left clear. 3213 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3214 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3215 DAG.getConstant(32 - BitSize, DL, WideVT)); 3216 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3217 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3218 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3219 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3220 3221 // Construct the ATOMIC_LOADW_* node. 3222 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3223 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3224 DAG.getConstant(BitSize, DL, WideVT) }; 3225 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3226 NarrowVT, MMO); 3227 3228 // Rotate the result of the final CS so that the field is in the lower 3229 // bits of a GR32, then truncate it. 3230 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3231 DAG.getConstant(BitSize, DL, WideVT)); 3232 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3233 3234 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3235 return DAG.getMergeValues(RetOps, DL); 3236 } 3237 3238 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3239 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3240 // operations into additions. 3241 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3242 SelectionDAG &DAG) const { 3243 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3244 EVT MemVT = Node->getMemoryVT(); 3245 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3246 // A full-width operation. 3247 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3248 SDValue Src2 = Node->getVal(); 3249 SDValue NegSrc2; 3250 SDLoc DL(Src2); 3251 3252 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3253 // Use an addition if the operand is constant and either LAA(G) is 3254 // available or the negative value is in the range of A(G)FHI. 3255 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3256 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3257 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3258 } else if (Subtarget.hasInterlockedAccess1()) 3259 // Use LAA(G) if available. 3260 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3261 Src2); 3262 3263 if (NegSrc2.getNode()) 3264 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3265 Node->getChain(), Node->getBasePtr(), NegSrc2, 3266 Node->getMemOperand(), Node->getOrdering(), 3267 Node->getSynchScope()); 3268 3269 // Use the node as-is. 3270 return Op; 3271 } 3272 3273 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3274 } 3275 3276 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3277 // into a fullword ATOMIC_CMP_SWAPW operation. 3278 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3279 SelectionDAG &DAG) const { 3280 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3281 3282 // We have native support for 32-bit compare and swap. 3283 EVT NarrowVT = Node->getMemoryVT(); 3284 EVT WideVT = MVT::i32; 3285 if (NarrowVT == WideVT) 3286 return Op; 3287 3288 int64_t BitSize = NarrowVT.getSizeInBits(); 3289 SDValue ChainIn = Node->getOperand(0); 3290 SDValue Addr = Node->getOperand(1); 3291 SDValue CmpVal = Node->getOperand(2); 3292 SDValue SwapVal = Node->getOperand(3); 3293 MachineMemOperand *MMO = Node->getMemOperand(); 3294 SDLoc DL(Node); 3295 EVT PtrVT = Addr.getValueType(); 3296 3297 // Get the address of the containing word. 3298 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3299 DAG.getConstant(-4, DL, PtrVT)); 3300 3301 // Get the number of bits that the word must be rotated left in order 3302 // to bring the field to the top bits of a GR32. 3303 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3304 DAG.getConstant(3, DL, PtrVT)); 3305 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3306 3307 // Get the complementing shift amount, for rotating a field in the top 3308 // bits back to its proper position. 3309 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3310 DAG.getConstant(0, DL, WideVT), BitShift); 3311 3312 // Construct the ATOMIC_CMP_SWAPW node. 3313 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3314 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3315 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3316 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3317 VTList, Ops, NarrowVT, MMO); 3318 return AtomicOp; 3319 } 3320 3321 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3322 SelectionDAG &DAG) const { 3323 MachineFunction &MF = DAG.getMachineFunction(); 3324 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3325 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3326 SystemZ::R15D, Op.getValueType()); 3327 } 3328 3329 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3330 SelectionDAG &DAG) const { 3331 MachineFunction &MF = DAG.getMachineFunction(); 3332 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3333 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3334 SystemZ::R15D, Op.getOperand(1)); 3335 } 3336 3337 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3338 SelectionDAG &DAG) const { 3339 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3340 if (!IsData) 3341 // Just preserve the chain. 3342 return Op.getOperand(0); 3343 3344 SDLoc DL(Op); 3345 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3346 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3347 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3348 SDValue Ops[] = { 3349 Op.getOperand(0), 3350 DAG.getConstant(Code, DL, MVT::i32), 3351 Op.getOperand(1) 3352 }; 3353 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3354 Node->getVTList(), Ops, 3355 Node->getMemoryVT(), Node->getMemOperand()); 3356 } 3357 3358 // Return an i32 that contains the value of CC immediately after After, 3359 // whose final operand must be MVT::Glue. 3360 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3361 SDLoc DL(After); 3362 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3363 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3364 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3365 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3366 } 3367 3368 SDValue 3369 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3370 SelectionDAG &DAG) const { 3371 unsigned Opcode, CCValid; 3372 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3373 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3374 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3375 SDValue CC = getCCResult(DAG, Glued.getNode()); 3376 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3377 return SDValue(); 3378 } 3379 3380 return SDValue(); 3381 } 3382 3383 SDValue 3384 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3385 SelectionDAG &DAG) const { 3386 unsigned Opcode, CCValid; 3387 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3388 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3389 SDValue CC = getCCResult(DAG, Glued.getNode()); 3390 if (Op->getNumValues() == 1) 3391 return CC; 3392 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3393 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3394 CC); 3395 } 3396 3397 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3398 switch (Id) { 3399 case Intrinsic::s390_vpdi: 3400 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3401 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3402 3403 case Intrinsic::s390_vperm: 3404 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3405 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3406 3407 case Intrinsic::s390_vuphb: 3408 case Intrinsic::s390_vuphh: 3409 case Intrinsic::s390_vuphf: 3410 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3411 Op.getOperand(1)); 3412 3413 case Intrinsic::s390_vuplhb: 3414 case Intrinsic::s390_vuplhh: 3415 case Intrinsic::s390_vuplhf: 3416 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3417 Op.getOperand(1)); 3418 3419 case Intrinsic::s390_vuplb: 3420 case Intrinsic::s390_vuplhw: 3421 case Intrinsic::s390_vuplf: 3422 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3423 Op.getOperand(1)); 3424 3425 case Intrinsic::s390_vupllb: 3426 case Intrinsic::s390_vupllh: 3427 case Intrinsic::s390_vupllf: 3428 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3429 Op.getOperand(1)); 3430 3431 case Intrinsic::s390_vsumb: 3432 case Intrinsic::s390_vsumh: 3433 case Intrinsic::s390_vsumgh: 3434 case Intrinsic::s390_vsumgf: 3435 case Intrinsic::s390_vsumqf: 3436 case Intrinsic::s390_vsumqg: 3437 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3438 Op.getOperand(1), Op.getOperand(2)); 3439 } 3440 3441 return SDValue(); 3442 } 3443 3444 namespace { 3445 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3446 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3447 // Operand is the constant third operand, otherwise it is the number of 3448 // bytes in each element of the result. 3449 struct Permute { 3450 unsigned Opcode; 3451 unsigned Operand; 3452 unsigned char Bytes[SystemZ::VectorBytes]; 3453 }; 3454 } 3455 3456 static const Permute PermuteForms[] = { 3457 // VMRHG 3458 { SystemZISD::MERGE_HIGH, 8, 3459 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3460 // VMRHF 3461 { SystemZISD::MERGE_HIGH, 4, 3462 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3463 // VMRHH 3464 { SystemZISD::MERGE_HIGH, 2, 3465 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3466 // VMRHB 3467 { SystemZISD::MERGE_HIGH, 1, 3468 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3469 // VMRLG 3470 { SystemZISD::MERGE_LOW, 8, 3471 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3472 // VMRLF 3473 { SystemZISD::MERGE_LOW, 4, 3474 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3475 // VMRLH 3476 { SystemZISD::MERGE_LOW, 2, 3477 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3478 // VMRLB 3479 { SystemZISD::MERGE_LOW, 1, 3480 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3481 // VPKG 3482 { SystemZISD::PACK, 4, 3483 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3484 // VPKF 3485 { SystemZISD::PACK, 2, 3486 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3487 // VPKH 3488 { SystemZISD::PACK, 1, 3489 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3490 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3491 { SystemZISD::PERMUTE_DWORDS, 4, 3492 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3493 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3494 { SystemZISD::PERMUTE_DWORDS, 1, 3495 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3496 }; 3497 3498 // Called after matching a vector shuffle against a particular pattern. 3499 // Both the original shuffle and the pattern have two vector operands. 3500 // OpNos[0] is the operand of the original shuffle that should be used for 3501 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3502 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3503 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3504 // for operands 0 and 1 of the pattern. 3505 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3506 if (OpNos[0] < 0) { 3507 if (OpNos[1] < 0) 3508 return false; 3509 OpNo0 = OpNo1 = OpNos[1]; 3510 } else if (OpNos[1] < 0) { 3511 OpNo0 = OpNo1 = OpNos[0]; 3512 } else { 3513 OpNo0 = OpNos[0]; 3514 OpNo1 = OpNos[1]; 3515 } 3516 return true; 3517 } 3518 3519 // Bytes is a VPERM-like permute vector, except that -1 is used for 3520 // undefined bytes. Return true if the VPERM can be implemented using P. 3521 // When returning true set OpNo0 to the VPERM operand that should be 3522 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3523 // 3524 // For example, if swapping the VPERM operands allows P to match, OpNo0 3525 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3526 // operand, but rewriting it to use two duplicated operands allows it to 3527 // match P, then OpNo0 and OpNo1 will be the same. 3528 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3529 unsigned &OpNo0, unsigned &OpNo1) { 3530 int OpNos[] = { -1, -1 }; 3531 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3532 int Elt = Bytes[I]; 3533 if (Elt >= 0) { 3534 // Make sure that the two permute vectors use the same suboperand 3535 // byte number. Only the operand numbers (the high bits) are 3536 // allowed to differ. 3537 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3538 return false; 3539 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3540 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3541 // Make sure that the operand mappings are consistent with previous 3542 // elements. 3543 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3544 return false; 3545 OpNos[ModelOpNo] = RealOpNo; 3546 } 3547 } 3548 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3549 } 3550 3551 // As above, but search for a matching permute. 3552 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3553 unsigned &OpNo0, unsigned &OpNo1) { 3554 for (auto &P : PermuteForms) 3555 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3556 return &P; 3557 return nullptr; 3558 } 3559 3560 // Bytes is a VPERM-like permute vector, except that -1 is used for 3561 // undefined bytes. This permute is an operand of an outer permute. 3562 // See whether redistributing the -1 bytes gives a shuffle that can be 3563 // implemented using P. If so, set Transform to a VPERM-like permute vector 3564 // that, when applied to the result of P, gives the original permute in Bytes. 3565 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3566 const Permute &P, 3567 SmallVectorImpl<int> &Transform) { 3568 unsigned To = 0; 3569 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3570 int Elt = Bytes[From]; 3571 if (Elt < 0) 3572 // Byte number From of the result is undefined. 3573 Transform[From] = -1; 3574 else { 3575 while (P.Bytes[To] != Elt) { 3576 To += 1; 3577 if (To == SystemZ::VectorBytes) 3578 return false; 3579 } 3580 Transform[From] = To; 3581 } 3582 } 3583 return true; 3584 } 3585 3586 // As above, but search for a matching permute. 3587 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3588 SmallVectorImpl<int> &Transform) { 3589 for (auto &P : PermuteForms) 3590 if (matchDoublePermute(Bytes, P, Transform)) 3591 return &P; 3592 return nullptr; 3593 } 3594 3595 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3596 // as if it had type vNi8. 3597 static void getVPermMask(ShuffleVectorSDNode *VSN, 3598 SmallVectorImpl<int> &Bytes) { 3599 EVT VT = VSN->getValueType(0); 3600 unsigned NumElements = VT.getVectorNumElements(); 3601 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3602 Bytes.resize(NumElements * BytesPerElement, -1); 3603 for (unsigned I = 0; I < NumElements; ++I) { 3604 int Index = VSN->getMaskElt(I); 3605 if (Index >= 0) 3606 for (unsigned J = 0; J < BytesPerElement; ++J) 3607 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3608 } 3609 } 3610 3611 // Bytes is a VPERM-like permute vector, except that -1 is used for 3612 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3613 // the result come from a contiguous sequence of bytes from one input. 3614 // Set Base to the selector for the first byte if so. 3615 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3616 unsigned BytesPerElement, int &Base) { 3617 Base = -1; 3618 for (unsigned I = 0; I < BytesPerElement; ++I) { 3619 if (Bytes[Start + I] >= 0) { 3620 unsigned Elem = Bytes[Start + I]; 3621 if (Base < 0) { 3622 Base = Elem - I; 3623 // Make sure the bytes would come from one input operand. 3624 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3625 return false; 3626 } else if (unsigned(Base) != Elem - I) 3627 return false; 3628 } 3629 } 3630 return true; 3631 } 3632 3633 // Bytes is a VPERM-like permute vector, except that -1 is used for 3634 // undefined bytes. Return true if it can be performed using VSLDI. 3635 // When returning true, set StartIndex to the shift amount and OpNo0 3636 // and OpNo1 to the VPERM operands that should be used as the first 3637 // and second shift operand respectively. 3638 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3639 unsigned &StartIndex, unsigned &OpNo0, 3640 unsigned &OpNo1) { 3641 int OpNos[] = { -1, -1 }; 3642 int Shift = -1; 3643 for (unsigned I = 0; I < 16; ++I) { 3644 int Index = Bytes[I]; 3645 if (Index >= 0) { 3646 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3647 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3648 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3649 if (Shift < 0) 3650 Shift = ExpectedShift; 3651 else if (Shift != ExpectedShift) 3652 return false; 3653 // Make sure that the operand mappings are consistent with previous 3654 // elements. 3655 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3656 return false; 3657 OpNos[ModelOpNo] = RealOpNo; 3658 } 3659 } 3660 StartIndex = Shift; 3661 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3662 } 3663 3664 // Create a node that performs P on operands Op0 and Op1, casting the 3665 // operands to the appropriate type. The type of the result is determined by P. 3666 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3667 const Permute &P, SDValue Op0, SDValue Op1) { 3668 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3669 // elements of a PACK are twice as wide as the outputs. 3670 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3671 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3672 P.Operand); 3673 // Cast both operands to the appropriate type. 3674 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3675 SystemZ::VectorBytes / InBytes); 3676 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3677 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3678 SDValue Op; 3679 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3680 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3681 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3682 } else if (P.Opcode == SystemZISD::PACK) { 3683 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3684 SystemZ::VectorBytes / P.Operand); 3685 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3686 } else { 3687 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3688 } 3689 return Op; 3690 } 3691 3692 // Bytes is a VPERM-like permute vector, except that -1 is used for 3693 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3694 // VSLDI or VPERM. 3695 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3696 const SmallVectorImpl<int> &Bytes) { 3697 for (unsigned I = 0; I < 2; ++I) 3698 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3699 3700 // First see whether VSLDI can be used. 3701 unsigned StartIndex, OpNo0, OpNo1; 3702 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3703 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3704 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3705 3706 // Fall back on VPERM. Construct an SDNode for the permute vector. 3707 SDValue IndexNodes[SystemZ::VectorBytes]; 3708 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3709 if (Bytes[I] >= 0) 3710 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3711 else 3712 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3713 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3714 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3715 } 3716 3717 namespace { 3718 // Describes a general N-operand vector shuffle. 3719 struct GeneralShuffle { 3720 GeneralShuffle(EVT vt) : VT(vt) {} 3721 void addUndef(); 3722 void add(SDValue, unsigned); 3723 SDValue getNode(SelectionDAG &, SDLoc); 3724 3725 // The operands of the shuffle. 3726 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3727 3728 // Index I is -1 if byte I of the result is undefined. Otherwise the 3729 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3730 // Bytes[I] / SystemZ::VectorBytes. 3731 SmallVector<int, SystemZ::VectorBytes> Bytes; 3732 3733 // The type of the shuffle result. 3734 EVT VT; 3735 }; 3736 } 3737 3738 // Add an extra undefined element to the shuffle. 3739 void GeneralShuffle::addUndef() { 3740 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3741 for (unsigned I = 0; I < BytesPerElement; ++I) 3742 Bytes.push_back(-1); 3743 } 3744 3745 // Add an extra element to the shuffle, taking it from element Elem of Op. 3746 // A null Op indicates a vector input whose value will be calculated later; 3747 // there is at most one such input per shuffle and it always has the same 3748 // type as the result. 3749 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3750 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3751 3752 // The source vector can have wider elements than the result, 3753 // either through an explicit TRUNCATE or because of type legalization. 3754 // We want the least significant part. 3755 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3756 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3757 assert(FromBytesPerElement >= BytesPerElement && 3758 "Invalid EXTRACT_VECTOR_ELT"); 3759 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3760 (FromBytesPerElement - BytesPerElement)); 3761 3762 // Look through things like shuffles and bitcasts. 3763 while (Op.getNode()) { 3764 if (Op.getOpcode() == ISD::BITCAST) 3765 Op = Op.getOperand(0); 3766 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3767 // See whether the bytes we need come from a contiguous part of one 3768 // operand. 3769 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3770 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3771 int NewByte; 3772 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3773 break; 3774 if (NewByte < 0) { 3775 addUndef(); 3776 return; 3777 } 3778 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3779 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3780 } else if (Op.isUndef()) { 3781 addUndef(); 3782 return; 3783 } else 3784 break; 3785 } 3786 3787 // Make sure that the source of the extraction is in Ops. 3788 unsigned OpNo = 0; 3789 for (; OpNo < Ops.size(); ++OpNo) 3790 if (Ops[OpNo] == Op) 3791 break; 3792 if (OpNo == Ops.size()) 3793 Ops.push_back(Op); 3794 3795 // Add the element to Bytes. 3796 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3797 for (unsigned I = 0; I < BytesPerElement; ++I) 3798 Bytes.push_back(Base + I); 3799 } 3800 3801 // Return SDNodes for the completed shuffle. 3802 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3803 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3804 3805 if (Ops.size() == 0) 3806 return DAG.getUNDEF(VT); 3807 3808 // Make sure that there are at least two shuffle operands. 3809 if (Ops.size() == 1) 3810 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3811 3812 // Create a tree of shuffles, deferring root node until after the loop. 3813 // Try to redistribute the undefined elements of non-root nodes so that 3814 // the non-root shuffles match something like a pack or merge, then adjust 3815 // the parent node's permute vector to compensate for the new order. 3816 // Among other things, this copes with vectors like <2 x i16> that were 3817 // padded with undefined elements during type legalization. 3818 // 3819 // In the best case this redistribution will lead to the whole tree 3820 // using packs and merges. It should rarely be a loss in other cases. 3821 unsigned Stride = 1; 3822 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3823 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3824 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3825 3826 // Create a mask for just these two operands. 3827 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3828 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3829 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3830 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3831 if (OpNo == I) 3832 NewBytes[J] = Byte; 3833 else if (OpNo == I + Stride) 3834 NewBytes[J] = SystemZ::VectorBytes + Byte; 3835 else 3836 NewBytes[J] = -1; 3837 } 3838 // See if it would be better to reorganize NewMask to avoid using VPERM. 3839 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3840 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3841 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3842 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3843 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3844 if (NewBytes[J] >= 0) { 3845 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3846 "Invalid double permute"); 3847 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3848 } else 3849 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3850 } 3851 } else { 3852 // Just use NewBytes on the operands. 3853 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3854 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3855 if (NewBytes[J] >= 0) 3856 Bytes[J] = I * SystemZ::VectorBytes + J; 3857 } 3858 } 3859 } 3860 3861 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3862 if (Stride > 1) { 3863 Ops[1] = Ops[Stride]; 3864 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3865 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3866 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3867 } 3868 3869 // Look for an instruction that can do the permute without resorting 3870 // to VPERM. 3871 unsigned OpNo0, OpNo1; 3872 SDValue Op; 3873 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3874 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3875 else 3876 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3877 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3878 } 3879 3880 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3881 static bool isScalarToVector(SDValue Op) { 3882 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3883 if (!Op.getOperand(I).isUndef()) 3884 return false; 3885 return true; 3886 } 3887 3888 // Return a vector of type VT that contains Value in the first element. 3889 // The other elements don't matter. 3890 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3891 SDValue Value) { 3892 // If we have a constant, replicate it to all elements and let the 3893 // BUILD_VECTOR lowering take care of it. 3894 if (Value.getOpcode() == ISD::Constant || 3895 Value.getOpcode() == ISD::ConstantFP) { 3896 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3897 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3898 } 3899 if (Value.isUndef()) 3900 return DAG.getUNDEF(VT); 3901 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3902 } 3903 3904 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3905 // element 1. Used for cases in which replication is cheap. 3906 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3907 SDValue Op0, SDValue Op1) { 3908 if (Op0.isUndef()) { 3909 if (Op1.isUndef()) 3910 return DAG.getUNDEF(VT); 3911 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3912 } 3913 if (Op1.isUndef()) 3914 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3915 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3916 buildScalarToVector(DAG, DL, VT, Op0), 3917 buildScalarToVector(DAG, DL, VT, Op1)); 3918 } 3919 3920 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3921 // vector for them. 3922 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3923 SDValue Op1) { 3924 if (Op0.isUndef() && Op1.isUndef()) 3925 return DAG.getUNDEF(MVT::v2i64); 3926 // If one of the two inputs is undefined then replicate the other one, 3927 // in order to avoid using another register unnecessarily. 3928 if (Op0.isUndef()) 3929 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3930 else if (Op1.isUndef()) 3931 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3932 else { 3933 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3934 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3935 } 3936 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3937 } 3938 3939 // Try to represent constant BUILD_VECTOR node BVN using a 3940 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3941 // on success. 3942 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3943 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3944 unsigned BytesPerElement = ElemVT.getStoreSize(); 3945 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3946 SDValue Op = BVN->getOperand(I); 3947 if (!Op.isUndef()) { 3948 uint64_t Value; 3949 if (Op.getOpcode() == ISD::Constant) 3950 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3951 else if (Op.getOpcode() == ISD::ConstantFP) 3952 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3953 .getZExtValue()); 3954 else 3955 return false; 3956 for (unsigned J = 0; J < BytesPerElement; ++J) { 3957 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3958 if (Byte == 0xff) 3959 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3960 else if (Byte != 0) 3961 return false; 3962 } 3963 } 3964 } 3965 return true; 3966 } 3967 3968 // Try to load a vector constant in which BitsPerElement-bit value Value 3969 // is replicated to fill the vector. VT is the type of the resulting 3970 // constant, which may have elements of a different size from BitsPerElement. 3971 // Return the SDValue of the constant on success, otherwise return 3972 // an empty value. 3973 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3974 const SystemZInstrInfo *TII, 3975 SDLoc DL, EVT VT, uint64_t Value, 3976 unsigned BitsPerElement) { 3977 // Signed 16-bit values can be replicated using VREPI. 3978 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3979 if (isInt<16>(SignedValue)) { 3980 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3981 SystemZ::VectorBits / BitsPerElement); 3982 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3983 DAG.getConstant(SignedValue, DL, MVT::i32)); 3984 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3985 } 3986 // See whether rotating the constant left some N places gives a value that 3987 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3988 // If so we can use VGM. 3989 unsigned Start, End; 3990 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3991 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3992 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3993 // bit numbers for an BitsPerElement value, so that 0 denotes 3994 // 1 << (BitsPerElement-1). 3995 Start -= 64 - BitsPerElement; 3996 End -= 64 - BitsPerElement; 3997 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3998 SystemZ::VectorBits / BitsPerElement); 3999 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4000 DAG.getConstant(Start, DL, MVT::i32), 4001 DAG.getConstant(End, DL, MVT::i32)); 4002 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4003 } 4004 return SDValue(); 4005 } 4006 4007 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4008 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4009 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4010 // would benefit from this representation and return it if so. 4011 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4012 BuildVectorSDNode *BVN) { 4013 EVT VT = BVN->getValueType(0); 4014 unsigned NumElements = VT.getVectorNumElements(); 4015 4016 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4017 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4018 // need a BUILD_VECTOR, add an additional placeholder operand for that 4019 // BUILD_VECTOR and store its operands in ResidueOps. 4020 GeneralShuffle GS(VT); 4021 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4022 bool FoundOne = false; 4023 for (unsigned I = 0; I < NumElements; ++I) { 4024 SDValue Op = BVN->getOperand(I); 4025 if (Op.getOpcode() == ISD::TRUNCATE) 4026 Op = Op.getOperand(0); 4027 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4028 Op.getOperand(1).getOpcode() == ISD::Constant) { 4029 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4030 GS.add(Op.getOperand(0), Elem); 4031 FoundOne = true; 4032 } else if (Op.isUndef()) { 4033 GS.addUndef(); 4034 } else { 4035 GS.add(SDValue(), ResidueOps.size()); 4036 ResidueOps.push_back(BVN->getOperand(I)); 4037 } 4038 } 4039 4040 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4041 if (!FoundOne) 4042 return SDValue(); 4043 4044 // Create the BUILD_VECTOR for the remaining elements, if any. 4045 if (!ResidueOps.empty()) { 4046 while (ResidueOps.size() < NumElements) 4047 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4048 for (auto &Op : GS.Ops) { 4049 if (!Op.getNode()) { 4050 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 4051 break; 4052 } 4053 } 4054 } 4055 return GS.getNode(DAG, SDLoc(BVN)); 4056 } 4057 4058 // Combine GPR scalar values Elems into a vector of type VT. 4059 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 4060 SmallVectorImpl<SDValue> &Elems) { 4061 // See whether there is a single replicated value. 4062 SDValue Single; 4063 unsigned int NumElements = Elems.size(); 4064 unsigned int Count = 0; 4065 for (auto Elem : Elems) { 4066 if (!Elem.isUndef()) { 4067 if (!Single.getNode()) 4068 Single = Elem; 4069 else if (Elem != Single) { 4070 Single = SDValue(); 4071 break; 4072 } 4073 Count += 1; 4074 } 4075 } 4076 // There are three cases here: 4077 // 4078 // - if the only defined element is a loaded one, the best sequence 4079 // is a replicating load. 4080 // 4081 // - otherwise, if the only defined element is an i64 value, we will 4082 // end up with the same VLVGP sequence regardless of whether we short-cut 4083 // for replication or fall through to the later code. 4084 // 4085 // - otherwise, if the only defined element is an i32 or smaller value, 4086 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4087 // This is only a win if the single defined element is used more than once. 4088 // In other cases we're better off using a single VLVGx. 4089 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4090 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4091 4092 // The best way of building a v2i64 from two i64s is to use VLVGP. 4093 if (VT == MVT::v2i64) 4094 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4095 4096 // Use a 64-bit merge high to combine two doubles. 4097 if (VT == MVT::v2f64) 4098 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4099 4100 // Build v4f32 values directly from the FPRs: 4101 // 4102 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4103 // V V VMRHF 4104 // <ABxx> <CDxx> 4105 // V VMRHG 4106 // <ABCD> 4107 if (VT == MVT::v4f32) { 4108 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4109 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4110 // Avoid unnecessary undefs by reusing the other operand. 4111 if (Op01.isUndef()) 4112 Op01 = Op23; 4113 else if (Op23.isUndef()) 4114 Op23 = Op01; 4115 // Merging identical replications is a no-op. 4116 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4117 return Op01; 4118 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4119 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4120 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4121 DL, MVT::v2i64, Op01, Op23); 4122 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4123 } 4124 4125 // Collect the constant terms. 4126 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4127 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4128 4129 unsigned NumConstants = 0; 4130 for (unsigned I = 0; I < NumElements; ++I) { 4131 SDValue Elem = Elems[I]; 4132 if (Elem.getOpcode() == ISD::Constant || 4133 Elem.getOpcode() == ISD::ConstantFP) { 4134 NumConstants += 1; 4135 Constants[I] = Elem; 4136 Done[I] = true; 4137 } 4138 } 4139 // If there was at least one constant, fill in the other elements of 4140 // Constants with undefs to get a full vector constant and use that 4141 // as the starting point. 4142 SDValue Result; 4143 if (NumConstants > 0) { 4144 for (unsigned I = 0; I < NumElements; ++I) 4145 if (!Constants[I].getNode()) 4146 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4147 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 4148 } else { 4149 // Otherwise try to use VLVGP to start the sequence in order to 4150 // avoid a false dependency on any previous contents of the vector 4151 // register. This only makes sense if one of the associated elements 4152 // is defined. 4153 unsigned I1 = NumElements / 2 - 1; 4154 unsigned I2 = NumElements - 1; 4155 bool Def1 = !Elems[I1].isUndef(); 4156 bool Def2 = !Elems[I2].isUndef(); 4157 if (Def1 || Def2) { 4158 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4159 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4160 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4161 joinDwords(DAG, DL, Elem1, Elem2)); 4162 Done[I1] = true; 4163 Done[I2] = true; 4164 } else 4165 Result = DAG.getUNDEF(VT); 4166 } 4167 4168 // Use VLVGx to insert the other elements. 4169 for (unsigned I = 0; I < NumElements; ++I) 4170 if (!Done[I] && !Elems[I].isUndef()) 4171 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4172 DAG.getConstant(I, DL, MVT::i32)); 4173 return Result; 4174 } 4175 4176 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4177 SelectionDAG &DAG) const { 4178 const SystemZInstrInfo *TII = 4179 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4180 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4181 SDLoc DL(Op); 4182 EVT VT = Op.getValueType(); 4183 4184 if (BVN->isConstant()) { 4185 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4186 // preferred way of creating all-zero and all-one vectors so give it 4187 // priority over other methods below. 4188 uint64_t Mask = 0; 4189 if (tryBuildVectorByteMask(BVN, Mask)) { 4190 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4191 DAG.getConstant(Mask, DL, MVT::i32)); 4192 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4193 } 4194 4195 // Try using some form of replication. 4196 APInt SplatBits, SplatUndef; 4197 unsigned SplatBitSize; 4198 bool HasAnyUndefs; 4199 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4200 8, true) && 4201 SplatBitSize <= 64) { 4202 // First try assuming that any undefined bits above the highest set bit 4203 // and below the lowest set bit are 1s. This increases the likelihood of 4204 // being able to use a sign-extended element value in VECTOR REPLICATE 4205 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4206 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4207 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4208 uint64_t Lower = (SplatUndefZ 4209 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4210 uint64_t Upper = (SplatUndefZ 4211 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4212 uint64_t Value = SplatBitsZ | Upper | Lower; 4213 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4214 SplatBitSize); 4215 if (Op.getNode()) 4216 return Op; 4217 4218 // Now try assuming that any undefined bits between the first and 4219 // last defined set bits are set. This increases the chances of 4220 // using a non-wraparound mask. 4221 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4222 Value = SplatBitsZ | Middle; 4223 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4224 if (Op.getNode()) 4225 return Op; 4226 } 4227 4228 // Fall back to loading it from memory. 4229 return SDValue(); 4230 } 4231 4232 // See if we should use shuffles to construct the vector from other vectors. 4233 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4234 return Res; 4235 4236 // Detect SCALAR_TO_VECTOR conversions. 4237 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4238 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4239 4240 // Otherwise use buildVector to build the vector up from GPRs. 4241 unsigned NumElements = Op.getNumOperands(); 4242 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4243 for (unsigned I = 0; I < NumElements; ++I) 4244 Ops[I] = Op.getOperand(I); 4245 return buildVector(DAG, DL, VT, Ops); 4246 } 4247 4248 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4249 SelectionDAG &DAG) const { 4250 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4251 SDLoc DL(Op); 4252 EVT VT = Op.getValueType(); 4253 unsigned NumElements = VT.getVectorNumElements(); 4254 4255 if (VSN->isSplat()) { 4256 SDValue Op0 = Op.getOperand(0); 4257 unsigned Index = VSN->getSplatIndex(); 4258 assert(Index < VT.getVectorNumElements() && 4259 "Splat index should be defined and in first operand"); 4260 // See whether the value we're splatting is directly available as a scalar. 4261 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4262 Op0.getOpcode() == ISD::BUILD_VECTOR) 4263 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4264 // Otherwise keep it as a vector-to-vector operation. 4265 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4266 DAG.getConstant(Index, DL, MVT::i32)); 4267 } 4268 4269 GeneralShuffle GS(VT); 4270 for (unsigned I = 0; I < NumElements; ++I) { 4271 int Elt = VSN->getMaskElt(I); 4272 if (Elt < 0) 4273 GS.addUndef(); 4274 else 4275 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4276 unsigned(Elt) % NumElements); 4277 } 4278 return GS.getNode(DAG, SDLoc(VSN)); 4279 } 4280 4281 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4282 SelectionDAG &DAG) const { 4283 SDLoc DL(Op); 4284 // Just insert the scalar into element 0 of an undefined vector. 4285 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4286 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4287 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4288 } 4289 4290 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4291 SelectionDAG &DAG) const { 4292 // Handle insertions of floating-point values. 4293 SDLoc DL(Op); 4294 SDValue Op0 = Op.getOperand(0); 4295 SDValue Op1 = Op.getOperand(1); 4296 SDValue Op2 = Op.getOperand(2); 4297 EVT VT = Op.getValueType(); 4298 4299 // Insertions into constant indices of a v2f64 can be done using VPDI. 4300 // However, if the inserted value is a bitcast or a constant then it's 4301 // better to use GPRs, as below. 4302 if (VT == MVT::v2f64 && 4303 Op1.getOpcode() != ISD::BITCAST && 4304 Op1.getOpcode() != ISD::ConstantFP && 4305 Op2.getOpcode() == ISD::Constant) { 4306 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4307 unsigned Mask = VT.getVectorNumElements() - 1; 4308 if (Index <= Mask) 4309 return Op; 4310 } 4311 4312 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4313 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4314 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4315 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4316 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4317 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4318 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4319 } 4320 4321 SDValue 4322 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4323 SelectionDAG &DAG) const { 4324 // Handle extractions of floating-point values. 4325 SDLoc DL(Op); 4326 SDValue Op0 = Op.getOperand(0); 4327 SDValue Op1 = Op.getOperand(1); 4328 EVT VT = Op.getValueType(); 4329 EVT VecVT = Op0.getValueType(); 4330 4331 // Extractions of constant indices can be done directly. 4332 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4333 uint64_t Index = CIndexN->getZExtValue(); 4334 unsigned Mask = VecVT.getVectorNumElements() - 1; 4335 if (Index <= Mask) 4336 return Op; 4337 } 4338 4339 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4340 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4341 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4342 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4343 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4344 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4345 } 4346 4347 SDValue 4348 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4349 unsigned UnpackHigh) const { 4350 SDValue PackedOp = Op.getOperand(0); 4351 EVT OutVT = Op.getValueType(); 4352 EVT InVT = PackedOp.getValueType(); 4353 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4354 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4355 do { 4356 FromBits *= 2; 4357 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4358 SystemZ::VectorBits / FromBits); 4359 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4360 } while (FromBits != ToBits); 4361 return PackedOp; 4362 } 4363 4364 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4365 unsigned ByScalar) const { 4366 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4367 SDValue Op0 = Op.getOperand(0); 4368 SDValue Op1 = Op.getOperand(1); 4369 SDLoc DL(Op); 4370 EVT VT = Op.getValueType(); 4371 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4372 4373 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4374 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4375 APInt SplatBits, SplatUndef; 4376 unsigned SplatBitSize; 4377 bool HasAnyUndefs; 4378 // Check for constant splats. Use ElemBitSize as the minimum element 4379 // width and reject splats that need wider elements. 4380 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4381 ElemBitSize, true) && 4382 SplatBitSize == ElemBitSize) { 4383 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4384 DL, MVT::i32); 4385 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4386 } 4387 // Check for variable splats. 4388 BitVector UndefElements; 4389 SDValue Splat = BVN->getSplatValue(&UndefElements); 4390 if (Splat) { 4391 // Since i32 is the smallest legal type, we either need a no-op 4392 // or a truncation. 4393 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4394 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4395 } 4396 } 4397 4398 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4399 // and the shift amount is directly available in a GPR. 4400 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4401 if (VSN->isSplat()) { 4402 SDValue VSNOp0 = VSN->getOperand(0); 4403 unsigned Index = VSN->getSplatIndex(); 4404 assert(Index < VT.getVectorNumElements() && 4405 "Splat index should be defined and in first operand"); 4406 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4407 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4408 // Since i32 is the smallest legal type, we either need a no-op 4409 // or a truncation. 4410 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4411 VSNOp0.getOperand(Index)); 4412 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4413 } 4414 } 4415 } 4416 4417 // Otherwise just treat the current form as legal. 4418 return Op; 4419 } 4420 4421 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4422 SelectionDAG &DAG) const { 4423 switch (Op.getOpcode()) { 4424 case ISD::FRAMEADDR: 4425 return lowerFRAMEADDR(Op, DAG); 4426 case ISD::RETURNADDR: 4427 return lowerRETURNADDR(Op, DAG); 4428 case ISD::BR_CC: 4429 return lowerBR_CC(Op, DAG); 4430 case ISD::SELECT_CC: 4431 return lowerSELECT_CC(Op, DAG); 4432 case ISD::SETCC: 4433 return lowerSETCC(Op, DAG); 4434 case ISD::GlobalAddress: 4435 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4436 case ISD::GlobalTLSAddress: 4437 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4438 case ISD::BlockAddress: 4439 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4440 case ISD::JumpTable: 4441 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4442 case ISD::ConstantPool: 4443 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4444 case ISD::BITCAST: 4445 return lowerBITCAST(Op, DAG); 4446 case ISD::VASTART: 4447 return lowerVASTART(Op, DAG); 4448 case ISD::VACOPY: 4449 return lowerVACOPY(Op, DAG); 4450 case ISD::DYNAMIC_STACKALLOC: 4451 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4452 case ISD::SMUL_LOHI: 4453 return lowerSMUL_LOHI(Op, DAG); 4454 case ISD::UMUL_LOHI: 4455 return lowerUMUL_LOHI(Op, DAG); 4456 case ISD::SDIVREM: 4457 return lowerSDIVREM(Op, DAG); 4458 case ISD::UDIVREM: 4459 return lowerUDIVREM(Op, DAG); 4460 case ISD::OR: 4461 return lowerOR(Op, DAG); 4462 case ISD::CTPOP: 4463 return lowerCTPOP(Op, DAG); 4464 case ISD::CTLZ_ZERO_UNDEF: 4465 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4466 Op.getValueType(), Op.getOperand(0)); 4467 case ISD::CTTZ_ZERO_UNDEF: 4468 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4469 Op.getValueType(), Op.getOperand(0)); 4470 case ISD::ATOMIC_FENCE: 4471 return lowerATOMIC_FENCE(Op, DAG); 4472 case ISD::ATOMIC_SWAP: 4473 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4474 case ISD::ATOMIC_STORE: 4475 return lowerATOMIC_STORE(Op, DAG); 4476 case ISD::ATOMIC_LOAD: 4477 return lowerATOMIC_LOAD(Op, DAG); 4478 case ISD::ATOMIC_LOAD_ADD: 4479 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4480 case ISD::ATOMIC_LOAD_SUB: 4481 return lowerATOMIC_LOAD_SUB(Op, DAG); 4482 case ISD::ATOMIC_LOAD_AND: 4483 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4484 case ISD::ATOMIC_LOAD_OR: 4485 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4486 case ISD::ATOMIC_LOAD_XOR: 4487 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4488 case ISD::ATOMIC_LOAD_NAND: 4489 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4490 case ISD::ATOMIC_LOAD_MIN: 4491 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4492 case ISD::ATOMIC_LOAD_MAX: 4493 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4494 case ISD::ATOMIC_LOAD_UMIN: 4495 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4496 case ISD::ATOMIC_LOAD_UMAX: 4497 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4498 case ISD::ATOMIC_CMP_SWAP: 4499 return lowerATOMIC_CMP_SWAP(Op, DAG); 4500 case ISD::STACKSAVE: 4501 return lowerSTACKSAVE(Op, DAG); 4502 case ISD::STACKRESTORE: 4503 return lowerSTACKRESTORE(Op, DAG); 4504 case ISD::PREFETCH: 4505 return lowerPREFETCH(Op, DAG); 4506 case ISD::INTRINSIC_W_CHAIN: 4507 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4508 case ISD::INTRINSIC_WO_CHAIN: 4509 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4510 case ISD::BUILD_VECTOR: 4511 return lowerBUILD_VECTOR(Op, DAG); 4512 case ISD::VECTOR_SHUFFLE: 4513 return lowerVECTOR_SHUFFLE(Op, DAG); 4514 case ISD::SCALAR_TO_VECTOR: 4515 return lowerSCALAR_TO_VECTOR(Op, DAG); 4516 case ISD::INSERT_VECTOR_ELT: 4517 return lowerINSERT_VECTOR_ELT(Op, DAG); 4518 case ISD::EXTRACT_VECTOR_ELT: 4519 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4520 case ISD::SIGN_EXTEND_VECTOR_INREG: 4521 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4522 case ISD::ZERO_EXTEND_VECTOR_INREG: 4523 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4524 case ISD::SHL: 4525 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4526 case ISD::SRL: 4527 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4528 case ISD::SRA: 4529 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4530 default: 4531 llvm_unreachable("Unexpected node to lower"); 4532 } 4533 } 4534 4535 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4536 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4537 switch ((SystemZISD::NodeType)Opcode) { 4538 case SystemZISD::FIRST_NUMBER: break; 4539 OPCODE(RET_FLAG); 4540 OPCODE(CALL); 4541 OPCODE(SIBCALL); 4542 OPCODE(TLS_GDCALL); 4543 OPCODE(TLS_LDCALL); 4544 OPCODE(PCREL_WRAPPER); 4545 OPCODE(PCREL_OFFSET); 4546 OPCODE(IABS); 4547 OPCODE(ICMP); 4548 OPCODE(FCMP); 4549 OPCODE(TM); 4550 OPCODE(BR_CCMASK); 4551 OPCODE(SELECT_CCMASK); 4552 OPCODE(ADJDYNALLOC); 4553 OPCODE(EXTRACT_ACCESS); 4554 OPCODE(POPCNT); 4555 OPCODE(UMUL_LOHI64); 4556 OPCODE(SDIVREM32); 4557 OPCODE(SDIVREM64); 4558 OPCODE(UDIVREM32); 4559 OPCODE(UDIVREM64); 4560 OPCODE(MVC); 4561 OPCODE(MVC_LOOP); 4562 OPCODE(NC); 4563 OPCODE(NC_LOOP); 4564 OPCODE(OC); 4565 OPCODE(OC_LOOP); 4566 OPCODE(XC); 4567 OPCODE(XC_LOOP); 4568 OPCODE(CLC); 4569 OPCODE(CLC_LOOP); 4570 OPCODE(STPCPY); 4571 OPCODE(STRCMP); 4572 OPCODE(SEARCH_STRING); 4573 OPCODE(IPM); 4574 OPCODE(SERIALIZE); 4575 OPCODE(MEMBARRIER); 4576 OPCODE(TBEGIN); 4577 OPCODE(TBEGIN_NOFLOAT); 4578 OPCODE(TEND); 4579 OPCODE(BYTE_MASK); 4580 OPCODE(ROTATE_MASK); 4581 OPCODE(REPLICATE); 4582 OPCODE(JOIN_DWORDS); 4583 OPCODE(SPLAT); 4584 OPCODE(MERGE_HIGH); 4585 OPCODE(MERGE_LOW); 4586 OPCODE(SHL_DOUBLE); 4587 OPCODE(PERMUTE_DWORDS); 4588 OPCODE(PERMUTE); 4589 OPCODE(PACK); 4590 OPCODE(PACKS_CC); 4591 OPCODE(PACKLS_CC); 4592 OPCODE(UNPACK_HIGH); 4593 OPCODE(UNPACKL_HIGH); 4594 OPCODE(UNPACK_LOW); 4595 OPCODE(UNPACKL_LOW); 4596 OPCODE(VSHL_BY_SCALAR); 4597 OPCODE(VSRL_BY_SCALAR); 4598 OPCODE(VSRA_BY_SCALAR); 4599 OPCODE(VSUM); 4600 OPCODE(VICMPE); 4601 OPCODE(VICMPH); 4602 OPCODE(VICMPHL); 4603 OPCODE(VICMPES); 4604 OPCODE(VICMPHS); 4605 OPCODE(VICMPHLS); 4606 OPCODE(VFCMPE); 4607 OPCODE(VFCMPH); 4608 OPCODE(VFCMPHE); 4609 OPCODE(VFCMPES); 4610 OPCODE(VFCMPHS); 4611 OPCODE(VFCMPHES); 4612 OPCODE(VFTCI); 4613 OPCODE(VEXTEND); 4614 OPCODE(VROUND); 4615 OPCODE(VTM); 4616 OPCODE(VFAE_CC); 4617 OPCODE(VFAEZ_CC); 4618 OPCODE(VFEE_CC); 4619 OPCODE(VFEEZ_CC); 4620 OPCODE(VFENE_CC); 4621 OPCODE(VFENEZ_CC); 4622 OPCODE(VISTR_CC); 4623 OPCODE(VSTRC_CC); 4624 OPCODE(VSTRCZ_CC); 4625 OPCODE(ATOMIC_SWAPW); 4626 OPCODE(ATOMIC_LOADW_ADD); 4627 OPCODE(ATOMIC_LOADW_SUB); 4628 OPCODE(ATOMIC_LOADW_AND); 4629 OPCODE(ATOMIC_LOADW_OR); 4630 OPCODE(ATOMIC_LOADW_XOR); 4631 OPCODE(ATOMIC_LOADW_NAND); 4632 OPCODE(ATOMIC_LOADW_MIN); 4633 OPCODE(ATOMIC_LOADW_MAX); 4634 OPCODE(ATOMIC_LOADW_UMIN); 4635 OPCODE(ATOMIC_LOADW_UMAX); 4636 OPCODE(ATOMIC_CMP_SWAPW); 4637 OPCODE(PREFETCH); 4638 } 4639 return nullptr; 4640 #undef OPCODE 4641 } 4642 4643 // Return true if VT is a vector whose elements are a whole number of bytes 4644 // in width. 4645 static bool canTreatAsByteVector(EVT VT) { 4646 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4647 } 4648 4649 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4650 // producing a result of type ResVT. Op is a possibly bitcast version 4651 // of the input vector and Index is the index (based on type VecVT) that 4652 // should be extracted. Return the new extraction if a simplification 4653 // was possible or if Force is true. 4654 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4655 SDValue Op, unsigned Index, 4656 DAGCombinerInfo &DCI, 4657 bool Force) const { 4658 SelectionDAG &DAG = DCI.DAG; 4659 4660 // The number of bytes being extracted. 4661 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4662 4663 for (;;) { 4664 unsigned Opcode = Op.getOpcode(); 4665 if (Opcode == ISD::BITCAST) 4666 // Look through bitcasts. 4667 Op = Op.getOperand(0); 4668 else if (Opcode == ISD::VECTOR_SHUFFLE && 4669 canTreatAsByteVector(Op.getValueType())) { 4670 // Get a VPERM-like permute mask and see whether the bytes covered 4671 // by the extracted element are a contiguous sequence from one 4672 // source operand. 4673 SmallVector<int, SystemZ::VectorBytes> Bytes; 4674 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4675 int First; 4676 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4677 BytesPerElement, First)) 4678 break; 4679 if (First < 0) 4680 return DAG.getUNDEF(ResVT); 4681 // Make sure the contiguous sequence starts at a multiple of the 4682 // original element size. 4683 unsigned Byte = unsigned(First) % Bytes.size(); 4684 if (Byte % BytesPerElement != 0) 4685 break; 4686 // We can get the extracted value directly from an input. 4687 Index = Byte / BytesPerElement; 4688 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4689 Force = true; 4690 } else if (Opcode == ISD::BUILD_VECTOR && 4691 canTreatAsByteVector(Op.getValueType())) { 4692 // We can only optimize this case if the BUILD_VECTOR elements are 4693 // at least as wide as the extracted value. 4694 EVT OpVT = Op.getValueType(); 4695 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4696 if (OpBytesPerElement < BytesPerElement) 4697 break; 4698 // Make sure that the least-significant bit of the extracted value 4699 // is the least significant bit of an input. 4700 unsigned End = (Index + 1) * BytesPerElement; 4701 if (End % OpBytesPerElement != 0) 4702 break; 4703 // We're extracting the low part of one operand of the BUILD_VECTOR. 4704 Op = Op.getOperand(End / OpBytesPerElement - 1); 4705 if (!Op.getValueType().isInteger()) { 4706 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4707 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4708 DCI.AddToWorklist(Op.getNode()); 4709 } 4710 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4711 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4712 if (VT != ResVT) { 4713 DCI.AddToWorklist(Op.getNode()); 4714 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4715 } 4716 return Op; 4717 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4718 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4719 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4720 canTreatAsByteVector(Op.getValueType()) && 4721 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4722 // Make sure that only the unextended bits are significant. 4723 EVT ExtVT = Op.getValueType(); 4724 EVT OpVT = Op.getOperand(0).getValueType(); 4725 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4726 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4727 unsigned Byte = Index * BytesPerElement; 4728 unsigned SubByte = Byte % ExtBytesPerElement; 4729 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4730 if (SubByte < MinSubByte || 4731 SubByte + BytesPerElement > ExtBytesPerElement) 4732 break; 4733 // Get the byte offset of the unextended element 4734 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4735 // ...then add the byte offset relative to that element. 4736 Byte += SubByte - MinSubByte; 4737 if (Byte % BytesPerElement != 0) 4738 break; 4739 Op = Op.getOperand(0); 4740 Index = Byte / BytesPerElement; 4741 Force = true; 4742 } else 4743 break; 4744 } 4745 if (Force) { 4746 if (Op.getValueType() != VecVT) { 4747 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4748 DCI.AddToWorklist(Op.getNode()); 4749 } 4750 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4751 DAG.getConstant(Index, DL, MVT::i32)); 4752 } 4753 return SDValue(); 4754 } 4755 4756 // Optimize vector operations in scalar value Op on the basis that Op 4757 // is truncated to TruncVT. 4758 SDValue 4759 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4760 DAGCombinerInfo &DCI) const { 4761 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4762 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4763 // of type TruncVT. 4764 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4765 TruncVT.getSizeInBits() % 8 == 0) { 4766 SDValue Vec = Op.getOperand(0); 4767 EVT VecVT = Vec.getValueType(); 4768 if (canTreatAsByteVector(VecVT)) { 4769 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4770 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4771 unsigned TruncBytes = TruncVT.getStoreSize(); 4772 if (BytesPerElement % TruncBytes == 0) { 4773 // Calculate the value of Y' in the above description. We are 4774 // splitting the original elements into Scale equal-sized pieces 4775 // and for truncation purposes want the last (least-significant) 4776 // of these pieces for IndexN. This is easiest to do by calculating 4777 // the start index of the following element and then subtracting 1. 4778 unsigned Scale = BytesPerElement / TruncBytes; 4779 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4780 4781 // Defer the creation of the bitcast from X to combineExtract, 4782 // which might be able to optimize the extraction. 4783 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4784 VecVT.getStoreSize() / TruncBytes); 4785 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4786 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4787 } 4788 } 4789 } 4790 } 4791 return SDValue(); 4792 } 4793 4794 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4795 DAGCombinerInfo &DCI) const { 4796 SelectionDAG &DAG = DCI.DAG; 4797 unsigned Opcode = N->getOpcode(); 4798 if (Opcode == ISD::SIGN_EXTEND) { 4799 // Convert (sext (ashr (shl X, C1), C2)) to 4800 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4801 // cheap as narrower ones. 4802 SDValue N0 = N->getOperand(0); 4803 EVT VT = N->getValueType(0); 4804 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4805 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4806 SDValue Inner = N0.getOperand(0); 4807 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4808 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4809 unsigned Extra = (VT.getSizeInBits() - 4810 N0.getValueType().getSizeInBits()); 4811 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4812 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4813 EVT ShiftVT = N0.getOperand(1).getValueType(); 4814 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4815 Inner.getOperand(0)); 4816 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4817 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4818 ShiftVT)); 4819 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4820 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4821 } 4822 } 4823 } 4824 } 4825 if (Opcode == SystemZISD::MERGE_HIGH || 4826 Opcode == SystemZISD::MERGE_LOW) { 4827 SDValue Op0 = N->getOperand(0); 4828 SDValue Op1 = N->getOperand(1); 4829 if (Op0.getOpcode() == ISD::BITCAST) 4830 Op0 = Op0.getOperand(0); 4831 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4832 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4833 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4834 // for v4f32. 4835 if (Op1 == N->getOperand(0)) 4836 return Op1; 4837 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4838 EVT VT = Op1.getValueType(); 4839 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4840 if (ElemBytes <= 4) { 4841 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4842 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4843 EVT InVT = VT.changeVectorElementTypeToInteger(); 4844 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4845 SystemZ::VectorBytes / ElemBytes / 2); 4846 if (VT != InVT) { 4847 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4848 DCI.AddToWorklist(Op1.getNode()); 4849 } 4850 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4851 DCI.AddToWorklist(Op.getNode()); 4852 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4853 } 4854 } 4855 } 4856 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4857 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4858 // If X has wider elements then convert it to: 4859 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4860 if (Opcode == ISD::STORE) { 4861 auto *SN = cast<StoreSDNode>(N); 4862 EVT MemVT = SN->getMemoryVT(); 4863 if (MemVT.isInteger()) { 4864 if (SDValue Value = 4865 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4866 DCI.AddToWorklist(Value.getNode()); 4867 4868 // Rewrite the store with the new form of stored value. 4869 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4870 SN->getBasePtr(), SN->getMemoryVT(), 4871 SN->getMemOperand()); 4872 } 4873 } 4874 } 4875 // Try to simplify a vector extraction. 4876 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4877 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4878 SDValue Op0 = N->getOperand(0); 4879 EVT VecVT = Op0.getValueType(); 4880 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4881 IndexN->getZExtValue(), DCI, false); 4882 } 4883 } 4884 // (join_dwords X, X) == (replicate X) 4885 if (Opcode == SystemZISD::JOIN_DWORDS && 4886 N->getOperand(0) == N->getOperand(1)) 4887 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4888 N->getOperand(0)); 4889 // (fround (extract_vector_elt X 0)) 4890 // (fround (extract_vector_elt X 1)) -> 4891 // (extract_vector_elt (VROUND X) 0) 4892 // (extract_vector_elt (VROUND X) 1) 4893 // 4894 // This is a special case since the target doesn't really support v2f32s. 4895 if (Opcode == ISD::FP_ROUND) { 4896 SDValue Op0 = N->getOperand(0); 4897 if (N->getValueType(0) == MVT::f32 && 4898 Op0.hasOneUse() && 4899 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4900 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4901 Op0.getOperand(1).getOpcode() == ISD::Constant && 4902 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4903 SDValue Vec = Op0.getOperand(0); 4904 for (auto *U : Vec->uses()) { 4905 if (U != Op0.getNode() && 4906 U->hasOneUse() && 4907 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4908 U->getOperand(0) == Vec && 4909 U->getOperand(1).getOpcode() == ISD::Constant && 4910 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4911 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4912 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4913 OtherRound.getOperand(0) == SDValue(U, 0) && 4914 OtherRound.getValueType() == MVT::f32) { 4915 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4916 MVT::v4f32, Vec); 4917 DCI.AddToWorklist(VRound.getNode()); 4918 SDValue Extract1 = 4919 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4920 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4921 DCI.AddToWorklist(Extract1.getNode()); 4922 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4923 SDValue Extract0 = 4924 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4925 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4926 return Extract0; 4927 } 4928 } 4929 } 4930 } 4931 } 4932 return SDValue(); 4933 } 4934 4935 //===----------------------------------------------------------------------===// 4936 // Custom insertion 4937 //===----------------------------------------------------------------------===// 4938 4939 // Create a new basic block after MBB. 4940 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4941 MachineFunction &MF = *MBB->getParent(); 4942 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4943 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4944 return NewMBB; 4945 } 4946 4947 // Split MBB after MI and return the new block (the one that contains 4948 // instructions after MI). 4949 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4950 MachineBasicBlock *MBB) { 4951 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4952 NewMBB->splice(NewMBB->begin(), MBB, 4953 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4954 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4955 return NewMBB; 4956 } 4957 4958 // Split MBB before MI and return the new block (the one that contains MI). 4959 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4960 MachineBasicBlock *MBB) { 4961 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4962 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4963 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4964 return NewMBB; 4965 } 4966 4967 // Force base value Base into a register before MI. Return the register. 4968 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4969 const SystemZInstrInfo *TII) { 4970 if (Base.isReg()) 4971 return Base.getReg(); 4972 4973 MachineBasicBlock *MBB = MI->getParent(); 4974 MachineFunction &MF = *MBB->getParent(); 4975 MachineRegisterInfo &MRI = MF.getRegInfo(); 4976 4977 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4978 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4979 .addOperand(Base).addImm(0).addReg(0); 4980 return Reg; 4981 } 4982 4983 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4984 MachineBasicBlock * 4985 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4986 MachineBasicBlock *MBB) const { 4987 const SystemZInstrInfo *TII = 4988 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4989 4990 unsigned DestReg = MI->getOperand(0).getReg(); 4991 unsigned TrueReg = MI->getOperand(1).getReg(); 4992 unsigned FalseReg = MI->getOperand(2).getReg(); 4993 unsigned CCValid = MI->getOperand(3).getImm(); 4994 unsigned CCMask = MI->getOperand(4).getImm(); 4995 DebugLoc DL = MI->getDebugLoc(); 4996 4997 MachineBasicBlock *StartMBB = MBB; 4998 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4999 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5000 5001 // StartMBB: 5002 // BRC CCMask, JoinMBB 5003 // # fallthrough to FalseMBB 5004 MBB = StartMBB; 5005 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5006 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5007 MBB->addSuccessor(JoinMBB); 5008 MBB->addSuccessor(FalseMBB); 5009 5010 // FalseMBB: 5011 // # fallthrough to JoinMBB 5012 MBB = FalseMBB; 5013 MBB->addSuccessor(JoinMBB); 5014 5015 // JoinMBB: 5016 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5017 // ... 5018 MBB = JoinMBB; 5019 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5020 .addReg(TrueReg).addMBB(StartMBB) 5021 .addReg(FalseReg).addMBB(FalseMBB); 5022 5023 MI->eraseFromParent(); 5024 return JoinMBB; 5025 } 5026 5027 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5028 // StoreOpcode is the store to use and Invert says whether the store should 5029 // happen when the condition is false rather than true. If a STORE ON 5030 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5031 MachineBasicBlock * 5032 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 5033 MachineBasicBlock *MBB, 5034 unsigned StoreOpcode, unsigned STOCOpcode, 5035 bool Invert) const { 5036 const SystemZInstrInfo *TII = 5037 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5038 5039 unsigned SrcReg = MI->getOperand(0).getReg(); 5040 MachineOperand Base = MI->getOperand(1); 5041 int64_t Disp = MI->getOperand(2).getImm(); 5042 unsigned IndexReg = MI->getOperand(3).getReg(); 5043 unsigned CCValid = MI->getOperand(4).getImm(); 5044 unsigned CCMask = MI->getOperand(5).getImm(); 5045 DebugLoc DL = MI->getDebugLoc(); 5046 5047 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5048 5049 // Use STOCOpcode if possible. We could use different store patterns in 5050 // order to avoid matching the index register, but the performance trade-offs 5051 // might be more complicated in that case. 5052 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5053 if (Invert) 5054 CCMask ^= CCValid; 5055 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5056 .addReg(SrcReg).addOperand(Base).addImm(Disp) 5057 .addImm(CCValid).addImm(CCMask); 5058 MI->eraseFromParent(); 5059 return MBB; 5060 } 5061 5062 // Get the condition needed to branch around the store. 5063 if (!Invert) 5064 CCMask ^= CCValid; 5065 5066 MachineBasicBlock *StartMBB = MBB; 5067 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5068 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5069 5070 // StartMBB: 5071 // BRC CCMask, JoinMBB 5072 // # fallthrough to FalseMBB 5073 MBB = StartMBB; 5074 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5075 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5076 MBB->addSuccessor(JoinMBB); 5077 MBB->addSuccessor(FalseMBB); 5078 5079 // FalseMBB: 5080 // store %SrcReg, %Disp(%Index,%Base) 5081 // # fallthrough to JoinMBB 5082 MBB = FalseMBB; 5083 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5084 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 5085 MBB->addSuccessor(JoinMBB); 5086 5087 MI->eraseFromParent(); 5088 return JoinMBB; 5089 } 5090 5091 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5092 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5093 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5094 // BitSize is the width of the field in bits, or 0 if this is a partword 5095 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5096 // is one of the operands. Invert says whether the field should be 5097 // inverted after performing BinOpcode (e.g. for NAND). 5098 MachineBasicBlock * 5099 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 5100 MachineBasicBlock *MBB, 5101 unsigned BinOpcode, 5102 unsigned BitSize, 5103 bool Invert) const { 5104 MachineFunction &MF = *MBB->getParent(); 5105 const SystemZInstrInfo *TII = 5106 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5107 MachineRegisterInfo &MRI = MF.getRegInfo(); 5108 bool IsSubWord = (BitSize < 32); 5109 5110 // Extract the operands. Base can be a register or a frame index. 5111 // Src2 can be a register or immediate. 5112 unsigned Dest = MI->getOperand(0).getReg(); 5113 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5114 int64_t Disp = MI->getOperand(2).getImm(); 5115 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 5116 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5117 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5118 DebugLoc DL = MI->getDebugLoc(); 5119 if (IsSubWord) 5120 BitSize = MI->getOperand(6).getImm(); 5121 5122 // Subword operations use 32-bit registers. 5123 const TargetRegisterClass *RC = (BitSize <= 32 ? 5124 &SystemZ::GR32BitRegClass : 5125 &SystemZ::GR64BitRegClass); 5126 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5127 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5128 5129 // Get the right opcodes for the displacement. 5130 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5131 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5132 assert(LOpcode && CSOpcode && "Displacement out of range"); 5133 5134 // Create virtual registers for temporary results. 5135 unsigned OrigVal = MRI.createVirtualRegister(RC); 5136 unsigned OldVal = MRI.createVirtualRegister(RC); 5137 unsigned NewVal = (BinOpcode || IsSubWord ? 5138 MRI.createVirtualRegister(RC) : Src2.getReg()); 5139 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5140 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5141 5142 // Insert a basic block for the main loop. 5143 MachineBasicBlock *StartMBB = MBB; 5144 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5145 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5146 5147 // StartMBB: 5148 // ... 5149 // %OrigVal = L Disp(%Base) 5150 // # fall through to LoopMMB 5151 MBB = StartMBB; 5152 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5153 .addOperand(Base).addImm(Disp).addReg(0); 5154 MBB->addSuccessor(LoopMBB); 5155 5156 // LoopMBB: 5157 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5158 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5159 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5160 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5161 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5162 // JNE LoopMBB 5163 // # fall through to DoneMMB 5164 MBB = LoopMBB; 5165 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5166 .addReg(OrigVal).addMBB(StartMBB) 5167 .addReg(Dest).addMBB(LoopMBB); 5168 if (IsSubWord) 5169 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5170 .addReg(OldVal).addReg(BitShift).addImm(0); 5171 if (Invert) { 5172 // Perform the operation normally and then invert every bit of the field. 5173 unsigned Tmp = MRI.createVirtualRegister(RC); 5174 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5175 .addReg(RotatedOldVal).addOperand(Src2); 5176 if (BitSize <= 32) 5177 // XILF with the upper BitSize bits set. 5178 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5179 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5180 else { 5181 // Use LCGR and add -1 to the result, which is more compact than 5182 // an XILF, XILH pair. 5183 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5184 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5185 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5186 .addReg(Tmp2).addImm(-1); 5187 } 5188 } else if (BinOpcode) 5189 // A simply binary operation. 5190 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5191 .addReg(RotatedOldVal).addOperand(Src2); 5192 else if (IsSubWord) 5193 // Use RISBG to rotate Src2 into position and use it to replace the 5194 // field in RotatedOldVal. 5195 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5196 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5197 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5198 if (IsSubWord) 5199 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5200 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5201 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5202 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5203 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5204 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5205 MBB->addSuccessor(LoopMBB); 5206 MBB->addSuccessor(DoneMBB); 5207 5208 MI->eraseFromParent(); 5209 return DoneMBB; 5210 } 5211 5212 // Implement EmitInstrWithCustomInserter for pseudo 5213 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5214 // instruction that should be used to compare the current field with the 5215 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5216 // for when the current field should be kept. BitSize is the width of 5217 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5218 MachineBasicBlock * 5219 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5220 MachineBasicBlock *MBB, 5221 unsigned CompareOpcode, 5222 unsigned KeepOldMask, 5223 unsigned BitSize) const { 5224 MachineFunction &MF = *MBB->getParent(); 5225 const SystemZInstrInfo *TII = 5226 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5227 MachineRegisterInfo &MRI = MF.getRegInfo(); 5228 bool IsSubWord = (BitSize < 32); 5229 5230 // Extract the operands. Base can be a register or a frame index. 5231 unsigned Dest = MI->getOperand(0).getReg(); 5232 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5233 int64_t Disp = MI->getOperand(2).getImm(); 5234 unsigned Src2 = MI->getOperand(3).getReg(); 5235 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5236 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5237 DebugLoc DL = MI->getDebugLoc(); 5238 if (IsSubWord) 5239 BitSize = MI->getOperand(6).getImm(); 5240 5241 // Subword operations use 32-bit registers. 5242 const TargetRegisterClass *RC = (BitSize <= 32 ? 5243 &SystemZ::GR32BitRegClass : 5244 &SystemZ::GR64BitRegClass); 5245 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5246 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5247 5248 // Get the right opcodes for the displacement. 5249 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5250 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5251 assert(LOpcode && CSOpcode && "Displacement out of range"); 5252 5253 // Create virtual registers for temporary results. 5254 unsigned OrigVal = MRI.createVirtualRegister(RC); 5255 unsigned OldVal = MRI.createVirtualRegister(RC); 5256 unsigned NewVal = MRI.createVirtualRegister(RC); 5257 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5258 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5259 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5260 5261 // Insert 3 basic blocks for the loop. 5262 MachineBasicBlock *StartMBB = MBB; 5263 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5264 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5265 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5266 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5267 5268 // StartMBB: 5269 // ... 5270 // %OrigVal = L Disp(%Base) 5271 // # fall through to LoopMMB 5272 MBB = StartMBB; 5273 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5274 .addOperand(Base).addImm(Disp).addReg(0); 5275 MBB->addSuccessor(LoopMBB); 5276 5277 // LoopMBB: 5278 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5279 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5280 // CompareOpcode %RotatedOldVal, %Src2 5281 // BRC KeepOldMask, UpdateMBB 5282 MBB = LoopMBB; 5283 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5284 .addReg(OrigVal).addMBB(StartMBB) 5285 .addReg(Dest).addMBB(UpdateMBB); 5286 if (IsSubWord) 5287 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5288 .addReg(OldVal).addReg(BitShift).addImm(0); 5289 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5290 .addReg(RotatedOldVal).addReg(Src2); 5291 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5292 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5293 MBB->addSuccessor(UpdateMBB); 5294 MBB->addSuccessor(UseAltMBB); 5295 5296 // UseAltMBB: 5297 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5298 // # fall through to UpdateMMB 5299 MBB = UseAltMBB; 5300 if (IsSubWord) 5301 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5302 .addReg(RotatedOldVal).addReg(Src2) 5303 .addImm(32).addImm(31 + BitSize).addImm(0); 5304 MBB->addSuccessor(UpdateMBB); 5305 5306 // UpdateMBB: 5307 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5308 // [ %RotatedAltVal, UseAltMBB ] 5309 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5310 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5311 // JNE LoopMBB 5312 // # fall through to DoneMMB 5313 MBB = UpdateMBB; 5314 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5315 .addReg(RotatedOldVal).addMBB(LoopMBB) 5316 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5317 if (IsSubWord) 5318 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5319 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5320 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5321 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5322 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5323 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5324 MBB->addSuccessor(LoopMBB); 5325 MBB->addSuccessor(DoneMBB); 5326 5327 MI->eraseFromParent(); 5328 return DoneMBB; 5329 } 5330 5331 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5332 // instruction MI. 5333 MachineBasicBlock * 5334 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5335 MachineBasicBlock *MBB) const { 5336 5337 MachineFunction &MF = *MBB->getParent(); 5338 const SystemZInstrInfo *TII = 5339 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5340 MachineRegisterInfo &MRI = MF.getRegInfo(); 5341 5342 // Extract the operands. Base can be a register or a frame index. 5343 unsigned Dest = MI->getOperand(0).getReg(); 5344 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5345 int64_t Disp = MI->getOperand(2).getImm(); 5346 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5347 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5348 unsigned BitShift = MI->getOperand(5).getReg(); 5349 unsigned NegBitShift = MI->getOperand(6).getReg(); 5350 int64_t BitSize = MI->getOperand(7).getImm(); 5351 DebugLoc DL = MI->getDebugLoc(); 5352 5353 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5354 5355 // Get the right opcodes for the displacement. 5356 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5357 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5358 assert(LOpcode && CSOpcode && "Displacement out of range"); 5359 5360 // Create virtual registers for temporary results. 5361 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5362 unsigned OldVal = MRI.createVirtualRegister(RC); 5363 unsigned CmpVal = MRI.createVirtualRegister(RC); 5364 unsigned SwapVal = MRI.createVirtualRegister(RC); 5365 unsigned StoreVal = MRI.createVirtualRegister(RC); 5366 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5367 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5368 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5369 5370 // Insert 2 basic blocks for the loop. 5371 MachineBasicBlock *StartMBB = MBB; 5372 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5373 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5374 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5375 5376 // StartMBB: 5377 // ... 5378 // %OrigOldVal = L Disp(%Base) 5379 // # fall through to LoopMMB 5380 MBB = StartMBB; 5381 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5382 .addOperand(Base).addImm(Disp).addReg(0); 5383 MBB->addSuccessor(LoopMBB); 5384 5385 // LoopMBB: 5386 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5387 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5388 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5389 // %Dest = RLL %OldVal, BitSize(%BitShift) 5390 // ^^ The low BitSize bits contain the field 5391 // of interest. 5392 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5393 // ^^ Replace the upper 32-BitSize bits of the 5394 // comparison value with those that we loaded, 5395 // so that we can use a full word comparison. 5396 // CR %Dest, %RetryCmpVal 5397 // JNE DoneMBB 5398 // # Fall through to SetMBB 5399 MBB = LoopMBB; 5400 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5401 .addReg(OrigOldVal).addMBB(StartMBB) 5402 .addReg(RetryOldVal).addMBB(SetMBB); 5403 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5404 .addReg(OrigCmpVal).addMBB(StartMBB) 5405 .addReg(RetryCmpVal).addMBB(SetMBB); 5406 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5407 .addReg(OrigSwapVal).addMBB(StartMBB) 5408 .addReg(RetrySwapVal).addMBB(SetMBB); 5409 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5410 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5411 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5412 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5413 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5414 .addReg(Dest).addReg(RetryCmpVal); 5415 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5416 .addImm(SystemZ::CCMASK_ICMP) 5417 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5418 MBB->addSuccessor(DoneMBB); 5419 MBB->addSuccessor(SetMBB); 5420 5421 // SetMBB: 5422 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5423 // ^^ Replace the upper 32-BitSize bits of the new 5424 // value with those that we loaded. 5425 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5426 // ^^ Rotate the new field to its proper position. 5427 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5428 // JNE LoopMBB 5429 // # fall through to ExitMMB 5430 MBB = SetMBB; 5431 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5432 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5433 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5434 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5435 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5436 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5437 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5438 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5439 MBB->addSuccessor(LoopMBB); 5440 MBB->addSuccessor(DoneMBB); 5441 5442 MI->eraseFromParent(); 5443 return DoneMBB; 5444 } 5445 5446 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5447 // if the high register of the GR128 value must be cleared or false if 5448 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5449 // and subreg_l64 when extending a GR64. 5450 MachineBasicBlock * 5451 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5452 MachineBasicBlock *MBB, 5453 bool ClearEven, unsigned SubReg) const { 5454 MachineFunction &MF = *MBB->getParent(); 5455 const SystemZInstrInfo *TII = 5456 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5457 MachineRegisterInfo &MRI = MF.getRegInfo(); 5458 DebugLoc DL = MI->getDebugLoc(); 5459 5460 unsigned Dest = MI->getOperand(0).getReg(); 5461 unsigned Src = MI->getOperand(1).getReg(); 5462 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5463 5464 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5465 if (ClearEven) { 5466 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5467 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5468 5469 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5470 .addImm(0); 5471 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5472 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5473 In128 = NewIn128; 5474 } 5475 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5476 .addReg(In128).addReg(Src).addImm(SubReg); 5477 5478 MI->eraseFromParent(); 5479 return MBB; 5480 } 5481 5482 MachineBasicBlock * 5483 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5484 MachineBasicBlock *MBB, 5485 unsigned Opcode) const { 5486 MachineFunction &MF = *MBB->getParent(); 5487 const SystemZInstrInfo *TII = 5488 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5489 MachineRegisterInfo &MRI = MF.getRegInfo(); 5490 DebugLoc DL = MI->getDebugLoc(); 5491 5492 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5493 uint64_t DestDisp = MI->getOperand(1).getImm(); 5494 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5495 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5496 uint64_t Length = MI->getOperand(4).getImm(); 5497 5498 // When generating more than one CLC, all but the last will need to 5499 // branch to the end when a difference is found. 5500 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5501 splitBlockAfter(MI, MBB) : nullptr); 5502 5503 // Check for the loop form, in which operand 5 is the trip count. 5504 if (MI->getNumExplicitOperands() > 5) { 5505 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5506 5507 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5508 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5509 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5510 forceReg(MI, DestBase, TII)); 5511 5512 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5513 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5514 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5515 MRI.createVirtualRegister(RC)); 5516 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5517 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5518 MRI.createVirtualRegister(RC)); 5519 5520 RC = &SystemZ::GR64BitRegClass; 5521 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5522 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5523 5524 MachineBasicBlock *StartMBB = MBB; 5525 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5526 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5527 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5528 5529 // StartMBB: 5530 // # fall through to LoopMMB 5531 MBB->addSuccessor(LoopMBB); 5532 5533 // LoopMBB: 5534 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5535 // [ %NextDestReg, NextMBB ] 5536 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5537 // [ %NextSrcReg, NextMBB ] 5538 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5539 // [ %NextCountReg, NextMBB ] 5540 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5541 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5542 // ( JLH EndMBB ) 5543 // 5544 // The prefetch is used only for MVC. The JLH is used only for CLC. 5545 MBB = LoopMBB; 5546 5547 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5548 .addReg(StartDestReg).addMBB(StartMBB) 5549 .addReg(NextDestReg).addMBB(NextMBB); 5550 if (!HaveSingleBase) 5551 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5552 .addReg(StartSrcReg).addMBB(StartMBB) 5553 .addReg(NextSrcReg).addMBB(NextMBB); 5554 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5555 .addReg(StartCountReg).addMBB(StartMBB) 5556 .addReg(NextCountReg).addMBB(NextMBB); 5557 if (Opcode == SystemZ::MVC) 5558 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5559 .addImm(SystemZ::PFD_WRITE) 5560 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5561 BuildMI(MBB, DL, TII->get(Opcode)) 5562 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5563 .addReg(ThisSrcReg).addImm(SrcDisp); 5564 if (EndMBB) { 5565 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5566 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5567 .addMBB(EndMBB); 5568 MBB->addSuccessor(EndMBB); 5569 MBB->addSuccessor(NextMBB); 5570 } 5571 5572 // NextMBB: 5573 // %NextDestReg = LA 256(%ThisDestReg) 5574 // %NextSrcReg = LA 256(%ThisSrcReg) 5575 // %NextCountReg = AGHI %ThisCountReg, -1 5576 // CGHI %NextCountReg, 0 5577 // JLH LoopMBB 5578 // # fall through to DoneMMB 5579 // 5580 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5581 MBB = NextMBB; 5582 5583 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5584 .addReg(ThisDestReg).addImm(256).addReg(0); 5585 if (!HaveSingleBase) 5586 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5587 .addReg(ThisSrcReg).addImm(256).addReg(0); 5588 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5589 .addReg(ThisCountReg).addImm(-1); 5590 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5591 .addReg(NextCountReg).addImm(0); 5592 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5593 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5594 .addMBB(LoopMBB); 5595 MBB->addSuccessor(LoopMBB); 5596 MBB->addSuccessor(DoneMBB); 5597 5598 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5599 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5600 Length &= 255; 5601 MBB = DoneMBB; 5602 } 5603 // Handle any remaining bytes with straight-line code. 5604 while (Length > 0) { 5605 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5606 // The previous iteration might have created out-of-range displacements. 5607 // Apply them using LAY if so. 5608 if (!isUInt<12>(DestDisp)) { 5609 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5610 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5611 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5612 DestBase = MachineOperand::CreateReg(Reg, false); 5613 DestDisp = 0; 5614 } 5615 if (!isUInt<12>(SrcDisp)) { 5616 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5617 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5618 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5619 SrcBase = MachineOperand::CreateReg(Reg, false); 5620 SrcDisp = 0; 5621 } 5622 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5623 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5624 .addOperand(SrcBase).addImm(SrcDisp); 5625 DestDisp += ThisLength; 5626 SrcDisp += ThisLength; 5627 Length -= ThisLength; 5628 // If there's another CLC to go, branch to the end if a difference 5629 // was found. 5630 if (EndMBB && Length > 0) { 5631 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5632 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5633 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5634 .addMBB(EndMBB); 5635 MBB->addSuccessor(EndMBB); 5636 MBB->addSuccessor(NextMBB); 5637 MBB = NextMBB; 5638 } 5639 } 5640 if (EndMBB) { 5641 MBB->addSuccessor(EndMBB); 5642 MBB = EndMBB; 5643 MBB->addLiveIn(SystemZ::CC); 5644 } 5645 5646 MI->eraseFromParent(); 5647 return MBB; 5648 } 5649 5650 // Decompose string pseudo-instruction MI into a loop that continually performs 5651 // Opcode until CC != 3. 5652 MachineBasicBlock * 5653 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5654 MachineBasicBlock *MBB, 5655 unsigned Opcode) const { 5656 MachineFunction &MF = *MBB->getParent(); 5657 const SystemZInstrInfo *TII = 5658 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5659 MachineRegisterInfo &MRI = MF.getRegInfo(); 5660 DebugLoc DL = MI->getDebugLoc(); 5661 5662 uint64_t End1Reg = MI->getOperand(0).getReg(); 5663 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5664 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5665 uint64_t CharReg = MI->getOperand(3).getReg(); 5666 5667 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5668 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5669 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5670 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5671 5672 MachineBasicBlock *StartMBB = MBB; 5673 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5674 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5675 5676 // StartMBB: 5677 // # fall through to LoopMMB 5678 MBB->addSuccessor(LoopMBB); 5679 5680 // LoopMBB: 5681 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5682 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5683 // R0L = %CharReg 5684 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5685 // JO LoopMBB 5686 // # fall through to DoneMMB 5687 // 5688 // The load of R0L can be hoisted by post-RA LICM. 5689 MBB = LoopMBB; 5690 5691 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5692 .addReg(Start1Reg).addMBB(StartMBB) 5693 .addReg(End1Reg).addMBB(LoopMBB); 5694 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5695 .addReg(Start2Reg).addMBB(StartMBB) 5696 .addReg(End2Reg).addMBB(LoopMBB); 5697 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5698 BuildMI(MBB, DL, TII->get(Opcode)) 5699 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5700 .addReg(This1Reg).addReg(This2Reg); 5701 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5702 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5703 MBB->addSuccessor(LoopMBB); 5704 MBB->addSuccessor(DoneMBB); 5705 5706 DoneMBB->addLiveIn(SystemZ::CC); 5707 5708 MI->eraseFromParent(); 5709 return DoneMBB; 5710 } 5711 5712 // Update TBEGIN instruction with final opcode and register clobbers. 5713 MachineBasicBlock * 5714 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5715 MachineBasicBlock *MBB, 5716 unsigned Opcode, 5717 bool NoFloat) const { 5718 MachineFunction &MF = *MBB->getParent(); 5719 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5720 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5721 5722 // Update opcode. 5723 MI->setDesc(TII->get(Opcode)); 5724 5725 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5726 // Make sure to add the corresponding GRSM bits if they are missing. 5727 uint64_t Control = MI->getOperand(2).getImm(); 5728 static const unsigned GPRControlBit[16] = { 5729 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5730 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5731 }; 5732 Control |= GPRControlBit[15]; 5733 if (TFI->hasFP(MF)) 5734 Control |= GPRControlBit[11]; 5735 MI->getOperand(2).setImm(Control); 5736 5737 // Add GPR clobbers. 5738 for (int I = 0; I < 16; I++) { 5739 if ((Control & GPRControlBit[I]) == 0) { 5740 unsigned Reg = SystemZMC::GR64Regs[I]; 5741 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5742 } 5743 } 5744 5745 // Add FPR/VR clobbers. 5746 if (!NoFloat && (Control & 4) != 0) { 5747 if (Subtarget.hasVector()) { 5748 for (int I = 0; I < 32; I++) { 5749 unsigned Reg = SystemZMC::VR128Regs[I]; 5750 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5751 } 5752 } else { 5753 for (int I = 0; I < 16; I++) { 5754 unsigned Reg = SystemZMC::FP64Regs[I]; 5755 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5756 } 5757 } 5758 } 5759 5760 return MBB; 5761 } 5762 5763 MachineBasicBlock * 5764 SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI, 5765 MachineBasicBlock *MBB, 5766 unsigned Opcode) const { 5767 MachineFunction &MF = *MBB->getParent(); 5768 MachineRegisterInfo *MRI = &MF.getRegInfo(); 5769 const SystemZInstrInfo *TII = 5770 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5771 DebugLoc DL = MI->getDebugLoc(); 5772 5773 unsigned SrcReg = MI->getOperand(0).getReg(); 5774 5775 // Create new virtual register of the same class as source. 5776 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 5777 unsigned DstReg = MRI->createVirtualRegister(RC); 5778 5779 // Replace pseudo with a normal load-and-test that models the def as 5780 // well. 5781 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 5782 .addReg(SrcReg); 5783 MI->eraseFromParent(); 5784 5785 return MBB; 5786 } 5787 5788 MachineBasicBlock *SystemZTargetLowering:: 5789 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5790 switch (MI->getOpcode()) { 5791 case SystemZ::Select32Mux: 5792 case SystemZ::Select32: 5793 case SystemZ::SelectF32: 5794 case SystemZ::Select64: 5795 case SystemZ::SelectF64: 5796 case SystemZ::SelectF128: 5797 return emitSelect(MI, MBB); 5798 5799 case SystemZ::CondStore8Mux: 5800 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5801 case SystemZ::CondStore8MuxInv: 5802 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5803 case SystemZ::CondStore16Mux: 5804 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5805 case SystemZ::CondStore16MuxInv: 5806 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5807 case SystemZ::CondStore8: 5808 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5809 case SystemZ::CondStore8Inv: 5810 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5811 case SystemZ::CondStore16: 5812 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5813 case SystemZ::CondStore16Inv: 5814 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5815 case SystemZ::CondStore32: 5816 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5817 case SystemZ::CondStore32Inv: 5818 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5819 case SystemZ::CondStore64: 5820 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5821 case SystemZ::CondStore64Inv: 5822 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5823 case SystemZ::CondStoreF32: 5824 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5825 case SystemZ::CondStoreF32Inv: 5826 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5827 case SystemZ::CondStoreF64: 5828 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5829 case SystemZ::CondStoreF64Inv: 5830 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5831 5832 case SystemZ::AEXT128_64: 5833 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5834 case SystemZ::ZEXT128_32: 5835 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5836 case SystemZ::ZEXT128_64: 5837 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5838 5839 case SystemZ::ATOMIC_SWAPW: 5840 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5841 case SystemZ::ATOMIC_SWAP_32: 5842 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5843 case SystemZ::ATOMIC_SWAP_64: 5844 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5845 5846 case SystemZ::ATOMIC_LOADW_AR: 5847 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5848 case SystemZ::ATOMIC_LOADW_AFI: 5849 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5850 case SystemZ::ATOMIC_LOAD_AR: 5851 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5852 case SystemZ::ATOMIC_LOAD_AHI: 5853 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5854 case SystemZ::ATOMIC_LOAD_AFI: 5855 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5856 case SystemZ::ATOMIC_LOAD_AGR: 5857 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5858 case SystemZ::ATOMIC_LOAD_AGHI: 5859 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5860 case SystemZ::ATOMIC_LOAD_AGFI: 5861 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5862 5863 case SystemZ::ATOMIC_LOADW_SR: 5864 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5865 case SystemZ::ATOMIC_LOAD_SR: 5866 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5867 case SystemZ::ATOMIC_LOAD_SGR: 5868 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5869 5870 case SystemZ::ATOMIC_LOADW_NR: 5871 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5872 case SystemZ::ATOMIC_LOADW_NILH: 5873 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5874 case SystemZ::ATOMIC_LOAD_NR: 5875 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5876 case SystemZ::ATOMIC_LOAD_NILL: 5877 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5878 case SystemZ::ATOMIC_LOAD_NILH: 5879 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5880 case SystemZ::ATOMIC_LOAD_NILF: 5881 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5882 case SystemZ::ATOMIC_LOAD_NGR: 5883 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5884 case SystemZ::ATOMIC_LOAD_NILL64: 5885 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5886 case SystemZ::ATOMIC_LOAD_NILH64: 5887 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5888 case SystemZ::ATOMIC_LOAD_NIHL64: 5889 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5890 case SystemZ::ATOMIC_LOAD_NIHH64: 5891 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5892 case SystemZ::ATOMIC_LOAD_NILF64: 5893 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5894 case SystemZ::ATOMIC_LOAD_NIHF64: 5895 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5896 5897 case SystemZ::ATOMIC_LOADW_OR: 5898 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5899 case SystemZ::ATOMIC_LOADW_OILH: 5900 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5901 case SystemZ::ATOMIC_LOAD_OR: 5902 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5903 case SystemZ::ATOMIC_LOAD_OILL: 5904 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5905 case SystemZ::ATOMIC_LOAD_OILH: 5906 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5907 case SystemZ::ATOMIC_LOAD_OILF: 5908 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5909 case SystemZ::ATOMIC_LOAD_OGR: 5910 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5911 case SystemZ::ATOMIC_LOAD_OILL64: 5912 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5913 case SystemZ::ATOMIC_LOAD_OILH64: 5914 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5915 case SystemZ::ATOMIC_LOAD_OIHL64: 5916 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5917 case SystemZ::ATOMIC_LOAD_OIHH64: 5918 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5919 case SystemZ::ATOMIC_LOAD_OILF64: 5920 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5921 case SystemZ::ATOMIC_LOAD_OIHF64: 5922 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5923 5924 case SystemZ::ATOMIC_LOADW_XR: 5925 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5926 case SystemZ::ATOMIC_LOADW_XILF: 5927 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5928 case SystemZ::ATOMIC_LOAD_XR: 5929 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5930 case SystemZ::ATOMIC_LOAD_XILF: 5931 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5932 case SystemZ::ATOMIC_LOAD_XGR: 5933 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5934 case SystemZ::ATOMIC_LOAD_XILF64: 5935 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5936 case SystemZ::ATOMIC_LOAD_XIHF64: 5937 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5938 5939 case SystemZ::ATOMIC_LOADW_NRi: 5940 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5941 case SystemZ::ATOMIC_LOADW_NILHi: 5942 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5943 case SystemZ::ATOMIC_LOAD_NRi: 5944 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5945 case SystemZ::ATOMIC_LOAD_NILLi: 5946 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5947 case SystemZ::ATOMIC_LOAD_NILHi: 5948 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5949 case SystemZ::ATOMIC_LOAD_NILFi: 5950 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5951 case SystemZ::ATOMIC_LOAD_NGRi: 5952 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5953 case SystemZ::ATOMIC_LOAD_NILL64i: 5954 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5955 case SystemZ::ATOMIC_LOAD_NILH64i: 5956 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5957 case SystemZ::ATOMIC_LOAD_NIHL64i: 5958 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5959 case SystemZ::ATOMIC_LOAD_NIHH64i: 5960 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5961 case SystemZ::ATOMIC_LOAD_NILF64i: 5962 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5963 case SystemZ::ATOMIC_LOAD_NIHF64i: 5964 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5965 5966 case SystemZ::ATOMIC_LOADW_MIN: 5967 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5968 SystemZ::CCMASK_CMP_LE, 0); 5969 case SystemZ::ATOMIC_LOAD_MIN_32: 5970 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5971 SystemZ::CCMASK_CMP_LE, 32); 5972 case SystemZ::ATOMIC_LOAD_MIN_64: 5973 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5974 SystemZ::CCMASK_CMP_LE, 64); 5975 5976 case SystemZ::ATOMIC_LOADW_MAX: 5977 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5978 SystemZ::CCMASK_CMP_GE, 0); 5979 case SystemZ::ATOMIC_LOAD_MAX_32: 5980 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5981 SystemZ::CCMASK_CMP_GE, 32); 5982 case SystemZ::ATOMIC_LOAD_MAX_64: 5983 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5984 SystemZ::CCMASK_CMP_GE, 64); 5985 5986 case SystemZ::ATOMIC_LOADW_UMIN: 5987 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5988 SystemZ::CCMASK_CMP_LE, 0); 5989 case SystemZ::ATOMIC_LOAD_UMIN_32: 5990 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5991 SystemZ::CCMASK_CMP_LE, 32); 5992 case SystemZ::ATOMIC_LOAD_UMIN_64: 5993 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5994 SystemZ::CCMASK_CMP_LE, 64); 5995 5996 case SystemZ::ATOMIC_LOADW_UMAX: 5997 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5998 SystemZ::CCMASK_CMP_GE, 0); 5999 case SystemZ::ATOMIC_LOAD_UMAX_32: 6000 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6001 SystemZ::CCMASK_CMP_GE, 32); 6002 case SystemZ::ATOMIC_LOAD_UMAX_64: 6003 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6004 SystemZ::CCMASK_CMP_GE, 64); 6005 6006 case SystemZ::ATOMIC_CMP_SWAPW: 6007 return emitAtomicCmpSwapW(MI, MBB); 6008 case SystemZ::MVCSequence: 6009 case SystemZ::MVCLoop: 6010 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6011 case SystemZ::NCSequence: 6012 case SystemZ::NCLoop: 6013 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6014 case SystemZ::OCSequence: 6015 case SystemZ::OCLoop: 6016 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6017 case SystemZ::XCSequence: 6018 case SystemZ::XCLoop: 6019 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6020 case SystemZ::CLCSequence: 6021 case SystemZ::CLCLoop: 6022 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6023 case SystemZ::CLSTLoop: 6024 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6025 case SystemZ::MVSTLoop: 6026 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6027 case SystemZ::SRSTLoop: 6028 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6029 case SystemZ::TBEGIN: 6030 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6031 case SystemZ::TBEGIN_nofloat: 6032 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6033 case SystemZ::TBEGINC: 6034 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6035 case SystemZ::LTEBRCompare_VecPseudo: 6036 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6037 case SystemZ::LTDBRCompare_VecPseudo: 6038 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6039 case SystemZ::LTXBRCompare_VecPseudo: 6040 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6041 6042 default: 6043 llvm_unreachable("Unexpected instr type to insert"); 6044 } 6045 } 6046