1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In)
37     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38 
39   // The operands to the comparison.
40   SDValue Op0, Op1;
41 
42   // The opcode that should be used to compare Op0 and Op1.
43   unsigned Opcode;
44 
45   // A SystemZICMP value.  Only used for integer comparisons.
46   unsigned ICmpType;
47 
48   // The mask of CC values that Opcode can produce.
49   unsigned CCValid;
50 
51   // The mask of CC values for which the original condition is true.
52   unsigned CCMask;
53 };
54 } // end anonymous namespace
55 
56 // Classify VT as either 32 or 64 bit.
57 static bool is32Bit(EVT VT) {
58   switch (VT.getSimpleVT().SimpleTy) {
59   case MVT::i32:
60     return true;
61   case MVT::i64:
62     return false;
63   default:
64     llvm_unreachable("Unsupported type");
65   }
66 }
67 
68 // Return a version of MachineOperand that can be safely used before the
69 // final use.
70 static MachineOperand earlyUseOperand(MachineOperand Op) {
71   if (Op.isReg())
72     Op.setIsKill(false);
73   return Op;
74 }
75 
76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
77                                              const SystemZSubtarget &STI)
78     : TargetLowering(TM), Subtarget(STI) {
79   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
80 
81   // Set up the register classes.
82   if (Subtarget.hasHighWord())
83     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
84   else
85     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
86   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
87   if (Subtarget.hasVector()) {
88     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
89     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
90   } else {
91     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
92     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93   }
94   if (Subtarget.hasVectorEnhancements1())
95     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
96   else
97     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98 
99   if (Subtarget.hasVector()) {
100     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
105     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
106   }
107 
108   // Compute derived properties from the register classes
109   computeRegisterProperties(Subtarget.getRegisterInfo());
110 
111   // Set up special registers.
112   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113 
114   // TODO: It may be better to default to latency-oriented scheduling, however
115   // LLVM's current latency-oriented scheduler can't handle physreg definitions
116   // such as SystemZ has with CC, so set this to the register-pressure
117   // scheduler, because it can.
118   setSchedulingPreference(Sched::RegPressure);
119 
120   setBooleanContents(ZeroOrOneBooleanContent);
121   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122 
123   // Instructions are strings of 2-byte aligned 2-byte values.
124   setMinFunctionAlignment(2);
125 
126   // Handle operations that are handled in a similar way for all types.
127   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
128        I <= MVT::LAST_FP_VALUETYPE;
129        ++I) {
130     MVT VT = MVT::SimpleValueType(I);
131     if (isTypeLegal(VT)) {
132       // Lower SET_CC into an IPM-based sequence.
133       setOperationAction(ISD::SETCC, VT, Custom);
134 
135       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
136       setOperationAction(ISD::SELECT, VT, Expand);
137 
138       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
139       setOperationAction(ISD::SELECT_CC, VT, Custom);
140       setOperationAction(ISD::BR_CC,     VT, Custom);
141     }
142   }
143 
144   // Expand jump table branches as address arithmetic followed by an
145   // indirect jump.
146   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
147 
148   // Expand BRCOND into a BR_CC (see above).
149   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
150 
151   // Handle integer types.
152   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
153        I <= MVT::LAST_INTEGER_VALUETYPE;
154        ++I) {
155     MVT VT = MVT::SimpleValueType(I);
156     if (isTypeLegal(VT)) {
157       // Expand individual DIV and REMs into DIVREMs.
158       setOperationAction(ISD::SDIV, VT, Expand);
159       setOperationAction(ISD::UDIV, VT, Expand);
160       setOperationAction(ISD::SREM, VT, Expand);
161       setOperationAction(ISD::UREM, VT, Expand);
162       setOperationAction(ISD::SDIVREM, VT, Custom);
163       setOperationAction(ISD::UDIVREM, VT, Custom);
164 
165       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
166       // stores, putting a serialization instruction after the stores.
167       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
168       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
169 
170       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
171       // available, or if the operand is constant.
172       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
173 
174       // Use POPCNT on z196 and above.
175       if (Subtarget.hasPopulationCount())
176         setOperationAction(ISD::CTPOP, VT, Custom);
177       else
178         setOperationAction(ISD::CTPOP, VT, Expand);
179 
180       // No special instructions for these.
181       setOperationAction(ISD::CTTZ,            VT, Expand);
182       setOperationAction(ISD::ROTR,            VT, Expand);
183 
184       // Use *MUL_LOHI where possible instead of MULH*.
185       setOperationAction(ISD::MULHS, VT, Expand);
186       setOperationAction(ISD::MULHU, VT, Expand);
187       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
188       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
189 
190       // Only z196 and above have native support for conversions to unsigned.
191       // On z10, promoting to i64 doesn't generate an inexact condition for
192       // values that are outside the i32 range but in the i64 range, so use
193       // the default expansion.
194       if (!Subtarget.hasFPExtension())
195         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
196     }
197   }
198 
199   // Type legalization will convert 8- and 16-bit atomic operations into
200   // forms that operate on i32s (but still keeping the original memory VT).
201   // Lower them into full i32 operations.
202   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
203   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
204   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
205   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
206   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
207   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
208   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
209   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
210   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
211   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
212   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
213 
214   // Even though i128 is not a legal type, we still need to custom lower
215   // the atomic operations in order to exploit SystemZ instructions.
216   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
217   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
218 
219   // We can use the CC result of compare-and-swap to implement
220   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
221   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
223   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
224 
225   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
226 
227   // Traps are legal, as we will convert them to "j .+2".
228   setOperationAction(ISD::TRAP, MVT::Other, Legal);
229 
230   // z10 has instructions for signed but not unsigned FP conversion.
231   // Handle unsigned 32-bit types as signed 64-bit types.
232   if (!Subtarget.hasFPExtension()) {
233     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
234     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
235   }
236 
237   // We have native support for a 64-bit CTLZ, via FLOGR.
238   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
239   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
240 
241   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
242   setOperationAction(ISD::OR, MVT::i64, Custom);
243 
244   // FIXME: Can we support these natively?
245   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
246   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
247   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
248 
249   // We have native instructions for i8, i16 and i32 extensions, but not i1.
250   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
251   for (MVT VT : MVT::integer_valuetypes()) {
252     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
253     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
254     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
255   }
256 
257   // Handle the various types of symbolic address.
258   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
259   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
260   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
261   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
262   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
263 
264   // We need to handle dynamic allocations specially because of the
265   // 160-byte area at the bottom of the stack.
266   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
267   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
268 
269   // Use custom expanders so that we can force the function to use
270   // a frame pointer.
271   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
272   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
273 
274   // Handle prefetches with PFD or PFDRL.
275   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
276 
277   for (MVT VT : MVT::vector_valuetypes()) {
278     // Assume by default that all vector operations need to be expanded.
279     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
280       if (getOperationAction(Opcode, VT) == Legal)
281         setOperationAction(Opcode, VT, Expand);
282 
283     // Likewise all truncating stores and extending loads.
284     for (MVT InnerVT : MVT::vector_valuetypes()) {
285       setTruncStoreAction(VT, InnerVT, Expand);
286       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
287       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
288       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
289     }
290 
291     if (isTypeLegal(VT)) {
292       // These operations are legal for anything that can be stored in a
293       // vector register, even if there is no native support for the format
294       // as such.  In particular, we can do these for v4f32 even though there
295       // are no specific instructions for that format.
296       setOperationAction(ISD::LOAD, VT, Legal);
297       setOperationAction(ISD::STORE, VT, Legal);
298       setOperationAction(ISD::VSELECT, VT, Legal);
299       setOperationAction(ISD::BITCAST, VT, Legal);
300       setOperationAction(ISD::UNDEF, VT, Legal);
301 
302       // Likewise, except that we need to replace the nodes with something
303       // more specific.
304       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
305       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
306     }
307   }
308 
309   // Handle integer vector types.
310   for (MVT VT : MVT::integer_vector_valuetypes()) {
311     if (isTypeLegal(VT)) {
312       // These operations have direct equivalents.
313       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
314       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
315       setOperationAction(ISD::ADD, VT, Legal);
316       setOperationAction(ISD::SUB, VT, Legal);
317       if (VT != MVT::v2i64)
318         setOperationAction(ISD::MUL, VT, Legal);
319       setOperationAction(ISD::AND, VT, Legal);
320       setOperationAction(ISD::OR, VT, Legal);
321       setOperationAction(ISD::XOR, VT, Legal);
322       if (Subtarget.hasVectorEnhancements1())
323         setOperationAction(ISD::CTPOP, VT, Legal);
324       else
325         setOperationAction(ISD::CTPOP, VT, Custom);
326       setOperationAction(ISD::CTTZ, VT, Legal);
327       setOperationAction(ISD::CTLZ, VT, Legal);
328 
329       // Convert a GPR scalar to a vector by inserting it into element 0.
330       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
331 
332       // Use a series of unpacks for extensions.
333       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
334       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
335 
336       // Detect shifts by a scalar amount and convert them into
337       // V*_BY_SCALAR.
338       setOperationAction(ISD::SHL, VT, Custom);
339       setOperationAction(ISD::SRA, VT, Custom);
340       setOperationAction(ISD::SRL, VT, Custom);
341 
342       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
343       // converted into ROTL.
344       setOperationAction(ISD::ROTL, VT, Expand);
345       setOperationAction(ISD::ROTR, VT, Expand);
346 
347       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
348       // and inverting the result as necessary.
349       setOperationAction(ISD::SETCC, VT, Custom);
350     }
351   }
352 
353   if (Subtarget.hasVector()) {
354     // There should be no need to check for float types other than v2f64
355     // since <2 x f32> isn't a legal type.
356     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
357     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
358     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
359     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
360     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
361     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
362     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
363     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
364   }
365 
366   // Handle floating-point types.
367   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
368        I <= MVT::LAST_FP_VALUETYPE;
369        ++I) {
370     MVT VT = MVT::SimpleValueType(I);
371     if (isTypeLegal(VT)) {
372       // We can use FI for FRINT.
373       setOperationAction(ISD::FRINT, VT, Legal);
374 
375       // We can use the extended form of FI for other rounding operations.
376       if (Subtarget.hasFPExtension()) {
377         setOperationAction(ISD::FNEARBYINT, VT, Legal);
378         setOperationAction(ISD::FFLOOR, VT, Legal);
379         setOperationAction(ISD::FCEIL, VT, Legal);
380         setOperationAction(ISD::FTRUNC, VT, Legal);
381         setOperationAction(ISD::FROUND, VT, Legal);
382       }
383 
384       // No special instructions for these.
385       setOperationAction(ISD::FSIN, VT, Expand);
386       setOperationAction(ISD::FCOS, VT, Expand);
387       setOperationAction(ISD::FSINCOS, VT, Expand);
388       setOperationAction(ISD::FREM, VT, Expand);
389       setOperationAction(ISD::FPOW, VT, Expand);
390     }
391   }
392 
393   // Handle floating-point vector types.
394   if (Subtarget.hasVector()) {
395     // Scalar-to-vector conversion is just a subreg.
396     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
397     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
398 
399     // Some insertions and extractions can be done directly but others
400     // need to go via integers.
401     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
402     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
403     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
404     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
405 
406     // These operations have direct equivalents.
407     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
408     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
409     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
410     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
411     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
412     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
413     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
414     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
415     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
416     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
417     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
418     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
419     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
420     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
421   }
422 
423   // The vector enhancements facility 1 has instructions for these.
424   if (Subtarget.hasVectorEnhancements1()) {
425     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
426     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
427     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
428     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
429     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
430     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
431     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
432     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
433     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
435     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
436     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
437     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
438     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
439 
440     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
441     setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
442     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
443     setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
444 
445     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
446     setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
447     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
448     setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
449 
450     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
451     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
452     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
453     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
454 
455     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
456     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
457     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
458     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
459 
460     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
461     setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
462     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
463     setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
464   }
465 
466   // We have fused multiply-addition for f32 and f64 but not f128.
467   setOperationAction(ISD::FMA, MVT::f32,  Legal);
468   setOperationAction(ISD::FMA, MVT::f64,  Legal);
469   if (Subtarget.hasVectorEnhancements1())
470     setOperationAction(ISD::FMA, MVT::f128, Legal);
471   else
472     setOperationAction(ISD::FMA, MVT::f128, Expand);
473 
474   // We don't have a copysign instruction on vector registers.
475   if (Subtarget.hasVectorEnhancements1())
476     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
477 
478   // Needed so that we don't try to implement f128 constant loads using
479   // a load-and-extend of a f80 constant (in cases where the constant
480   // would fit in an f80).
481   for (MVT VT : MVT::fp_valuetypes())
482     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
483 
484   // We don't have extending load instruction on vector registers.
485   if (Subtarget.hasVectorEnhancements1()) {
486     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
487     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
488   }
489 
490   // Floating-point truncation and stores need to be done separately.
491   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
492   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
493   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
494 
495   // We have 64-bit FPR<->GPR moves, but need special handling for
496   // 32-bit forms.
497   if (!Subtarget.hasVector()) {
498     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
499     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
500   }
501 
502   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
503   // structure, but VAEND is a no-op.
504   setOperationAction(ISD::VASTART, MVT::Other, Custom);
505   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
506   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
507 
508   // Codes for which we want to perform some z-specific combinations.
509   setTargetDAGCombine(ISD::ZERO_EXTEND);
510   setTargetDAGCombine(ISD::SIGN_EXTEND);
511   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
512   setTargetDAGCombine(ISD::STORE);
513   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
514   setTargetDAGCombine(ISD::FP_ROUND);
515   setTargetDAGCombine(ISD::BSWAP);
516   setTargetDAGCombine(ISD::SHL);
517   setTargetDAGCombine(ISD::SRA);
518   setTargetDAGCombine(ISD::SRL);
519   setTargetDAGCombine(ISD::ROTL);
520 
521   // Handle intrinsics.
522   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
523   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
524 
525   // We want to use MVC in preference to even a single load/store pair.
526   MaxStoresPerMemcpy = 0;
527   MaxStoresPerMemcpyOptSize = 0;
528 
529   // The main memset sequence is a byte store followed by an MVC.
530   // Two STC or MV..I stores win over that, but the kind of fused stores
531   // generated by target-independent code don't when the byte value is
532   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
533   // than "STC;MVC".  Handle the choice in target-specific code instead.
534   MaxStoresPerMemset = 0;
535   MaxStoresPerMemsetOptSize = 0;
536 }
537 
538 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
539                                               LLVMContext &, EVT VT) const {
540   if (!VT.isVector())
541     return MVT::i32;
542   return VT.changeVectorElementTypeToInteger();
543 }
544 
545 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
546   VT = VT.getScalarType();
547 
548   if (!VT.isSimple())
549     return false;
550 
551   switch (VT.getSimpleVT().SimpleTy) {
552   case MVT::f32:
553   case MVT::f64:
554     return true;
555   case MVT::f128:
556     return Subtarget.hasVectorEnhancements1();
557   default:
558     break;
559   }
560 
561   return false;
562 }
563 
564 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
565   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
566   return Imm.isZero() || Imm.isNegZero();
567 }
568 
569 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
570   // We can use CGFI or CLGFI.
571   return isInt<32>(Imm) || isUInt<32>(Imm);
572 }
573 
574 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
575   // We can use ALGFI or SLGFI.
576   return isUInt<32>(Imm) || isUInt<32>(-Imm);
577 }
578 
579 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
580                                                            unsigned,
581                                                            unsigned,
582                                                            bool *Fast) const {
583   // Unaligned accesses should never be slower than the expanded version.
584   // We check specifically for aligned accesses in the few cases where
585   // they are required.
586   if (Fast)
587     *Fast = true;
588   return true;
589 }
590 
591 // Information about the addressing mode for a memory access.
592 struct AddressingMode {
593   // True if a long displacement is supported.
594   bool LongDisplacement;
595 
596   // True if use of index register is supported.
597   bool IndexReg;
598 
599   AddressingMode(bool LongDispl, bool IdxReg) :
600     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
601 };
602 
603 // Return the desired addressing mode for a Load which has only one use (in
604 // the same block) which is a Store.
605 static AddressingMode getLoadStoreAddrMode(bool HasVector,
606                                           Type *Ty) {
607   // With vector support a Load->Store combination may be combined to either
608   // an MVC or vector operations and it seems to work best to allow the
609   // vector addressing mode.
610   if (HasVector)
611     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
612 
613   // Otherwise only the MVC case is special.
614   bool MVC = Ty->isIntegerTy(8);
615   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
616 }
617 
618 // Return the addressing mode which seems most desirable given an LLVM
619 // Instruction pointer.
620 static AddressingMode
621 supportedAddressingMode(Instruction *I, bool HasVector) {
622   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
623     switch (II->getIntrinsicID()) {
624     default: break;
625     case Intrinsic::memset:
626     case Intrinsic::memmove:
627     case Intrinsic::memcpy:
628       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
629     }
630   }
631 
632   if (isa<LoadInst>(I) && I->hasOneUse()) {
633     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
634     if (SingleUser->getParent() == I->getParent()) {
635       if (isa<ICmpInst>(SingleUser)) {
636         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
637           if (C->getBitWidth() <= 64 &&
638               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
639             // Comparison of memory with 16 bit signed / unsigned immediate
640             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
641       } else if (isa<StoreInst>(SingleUser))
642         // Load->Store
643         return getLoadStoreAddrMode(HasVector, I->getType());
644     }
645   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
646     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
647       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
648         // Load->Store
649         return getLoadStoreAddrMode(HasVector, LoadI->getType());
650   }
651 
652   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
653 
654     // * Use LDE instead of LE/LEY for z13 to avoid partial register
655     //   dependencies (LDE only supports small offsets).
656     // * Utilize the vector registers to hold floating point
657     //   values (vector load / store instructions only support small
658     //   offsets).
659 
660     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
661                          I->getOperand(0)->getType());
662     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
663     bool IsVectorAccess = MemAccessTy->isVectorTy();
664 
665     // A store of an extracted vector element will be combined into a VSTE type
666     // instruction.
667     if (!IsVectorAccess && isa<StoreInst>(I)) {
668       Value *DataOp = I->getOperand(0);
669       if (isa<ExtractElementInst>(DataOp))
670         IsVectorAccess = true;
671     }
672 
673     // A load which gets inserted into a vector element will be combined into a
674     // VLE type instruction.
675     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
676       User *LoadUser = *I->user_begin();
677       if (isa<InsertElementInst>(LoadUser))
678         IsVectorAccess = true;
679     }
680 
681     if (IsFPAccess || IsVectorAccess)
682       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
683   }
684 
685   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
686 }
687 
688 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
689        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
690   // Punt on globals for now, although they can be used in limited
691   // RELATIVE LONG cases.
692   if (AM.BaseGV)
693     return false;
694 
695   // Require a 20-bit signed offset.
696   if (!isInt<20>(AM.BaseOffs))
697     return false;
698 
699   AddressingMode SupportedAM(true, true);
700   if (I != nullptr)
701     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
702 
703   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
704     return false;
705 
706   if (!SupportedAM.IndexReg)
707     // No indexing allowed.
708     return AM.Scale == 0;
709   else
710     // Indexing is OK but no scale factor can be applied.
711     return AM.Scale == 0 || AM.Scale == 1;
712 }
713 
714 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
715   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
716     return false;
717   unsigned FromBits = FromType->getPrimitiveSizeInBits();
718   unsigned ToBits = ToType->getPrimitiveSizeInBits();
719   return FromBits > ToBits;
720 }
721 
722 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
723   if (!FromVT.isInteger() || !ToVT.isInteger())
724     return false;
725   unsigned FromBits = FromVT.getSizeInBits();
726   unsigned ToBits = ToVT.getSizeInBits();
727   return FromBits > ToBits;
728 }
729 
730 //===----------------------------------------------------------------------===//
731 // Inline asm support
732 //===----------------------------------------------------------------------===//
733 
734 TargetLowering::ConstraintType
735 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
736   if (Constraint.size() == 1) {
737     switch (Constraint[0]) {
738     case 'a': // Address register
739     case 'd': // Data register (equivalent to 'r')
740     case 'f': // Floating-point register
741     case 'h': // High-part register
742     case 'r': // General-purpose register
743     case 'v': // Vector register
744       return C_RegisterClass;
745 
746     case 'Q': // Memory with base and unsigned 12-bit displacement
747     case 'R': // Likewise, plus an index
748     case 'S': // Memory with base and signed 20-bit displacement
749     case 'T': // Likewise, plus an index
750     case 'm': // Equivalent to 'T'.
751       return C_Memory;
752 
753     case 'I': // Unsigned 8-bit constant
754     case 'J': // Unsigned 12-bit constant
755     case 'K': // Signed 16-bit constant
756     case 'L': // Signed 20-bit displacement (on all targets we support)
757     case 'M': // 0x7fffffff
758       return C_Other;
759 
760     default:
761       break;
762     }
763   }
764   return TargetLowering::getConstraintType(Constraint);
765 }
766 
767 TargetLowering::ConstraintWeight SystemZTargetLowering::
768 getSingleConstraintMatchWeight(AsmOperandInfo &info,
769                                const char *constraint) const {
770   ConstraintWeight weight = CW_Invalid;
771   Value *CallOperandVal = info.CallOperandVal;
772   // If we don't have a value, we can't do a match,
773   // but allow it at the lowest weight.
774   if (!CallOperandVal)
775     return CW_Default;
776   Type *type = CallOperandVal->getType();
777   // Look at the constraint type.
778   switch (*constraint) {
779   default:
780     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
781     break;
782 
783   case 'a': // Address register
784   case 'd': // Data register (equivalent to 'r')
785   case 'h': // High-part register
786   case 'r': // General-purpose register
787     if (CallOperandVal->getType()->isIntegerTy())
788       weight = CW_Register;
789     break;
790 
791   case 'f': // Floating-point register
792     if (type->isFloatingPointTy())
793       weight = CW_Register;
794     break;
795 
796   case 'v': // Vector register
797     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
798         Subtarget.hasVector())
799       weight = CW_Register;
800     break;
801 
802   case 'I': // Unsigned 8-bit constant
803     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
804       if (isUInt<8>(C->getZExtValue()))
805         weight = CW_Constant;
806     break;
807 
808   case 'J': // Unsigned 12-bit constant
809     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
810       if (isUInt<12>(C->getZExtValue()))
811         weight = CW_Constant;
812     break;
813 
814   case 'K': // Signed 16-bit constant
815     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
816       if (isInt<16>(C->getSExtValue()))
817         weight = CW_Constant;
818     break;
819 
820   case 'L': // Signed 20-bit displacement (on all targets we support)
821     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
822       if (isInt<20>(C->getSExtValue()))
823         weight = CW_Constant;
824     break;
825 
826   case 'M': // 0x7fffffff
827     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
828       if (C->getZExtValue() == 0x7fffffff)
829         weight = CW_Constant;
830     break;
831   }
832   return weight;
833 }
834 
835 // Parse a "{tNNN}" register constraint for which the register type "t"
836 // has already been verified.  MC is the class associated with "t" and
837 // Map maps 0-based register numbers to LLVM register numbers.
838 static std::pair<unsigned, const TargetRegisterClass *>
839 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
840                     const unsigned *Map, unsigned Size) {
841   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
842   if (isdigit(Constraint[2])) {
843     unsigned Index;
844     bool Failed =
845         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
846     if (!Failed && Index < Size && Map[Index])
847       return std::make_pair(Map[Index], RC);
848   }
849   return std::make_pair(0U, nullptr);
850 }
851 
852 std::pair<unsigned, const TargetRegisterClass *>
853 SystemZTargetLowering::getRegForInlineAsmConstraint(
854     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
855   if (Constraint.size() == 1) {
856     // GCC Constraint Letters
857     switch (Constraint[0]) {
858     default: break;
859     case 'd': // Data register (equivalent to 'r')
860     case 'r': // General-purpose register
861       if (VT == MVT::i64)
862         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
863       else if (VT == MVT::i128)
864         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
865       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
866 
867     case 'a': // Address register
868       if (VT == MVT::i64)
869         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
870       else if (VT == MVT::i128)
871         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
872       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
873 
874     case 'h': // High-part register (an LLVM extension)
875       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
876 
877     case 'f': // Floating-point register
878       if (VT == MVT::f64)
879         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
880       else if (VT == MVT::f128)
881         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
882       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
883 
884     case 'v': // Vector register
885       if (Subtarget.hasVector()) {
886         if (VT == MVT::f32)
887           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
888         if (VT == MVT::f64)
889           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
890         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
891       }
892       break;
893     }
894   }
895   if (Constraint.size() > 0 && Constraint[0] == '{') {
896     // We need to override the default register parsing for GPRs and FPRs
897     // because the interpretation depends on VT.  The internal names of
898     // the registers are also different from the external names
899     // (F0D and F0S instead of F0, etc.).
900     if (Constraint[1] == 'r') {
901       if (VT == MVT::i32)
902         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
903                                    SystemZMC::GR32Regs, 16);
904       if (VT == MVT::i128)
905         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
906                                    SystemZMC::GR128Regs, 16);
907       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
908                                  SystemZMC::GR64Regs, 16);
909     }
910     if (Constraint[1] == 'f') {
911       if (VT == MVT::f32)
912         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
913                                    SystemZMC::FP32Regs, 16);
914       if (VT == MVT::f128)
915         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
916                                    SystemZMC::FP128Regs, 16);
917       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
918                                  SystemZMC::FP64Regs, 16);
919     }
920     if (Constraint[1] == 'v') {
921       if (VT == MVT::f32)
922         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
923                                    SystemZMC::VR32Regs, 32);
924       if (VT == MVT::f64)
925         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
926                                    SystemZMC::VR64Regs, 32);
927       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
928                                  SystemZMC::VR128Regs, 32);
929     }
930   }
931   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
932 }
933 
934 void SystemZTargetLowering::
935 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
936                              std::vector<SDValue> &Ops,
937                              SelectionDAG &DAG) const {
938   // Only support length 1 constraints for now.
939   if (Constraint.length() == 1) {
940     switch (Constraint[0]) {
941     case 'I': // Unsigned 8-bit constant
942       if (auto *C = dyn_cast<ConstantSDNode>(Op))
943         if (isUInt<8>(C->getZExtValue()))
944           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
945                                               Op.getValueType()));
946       return;
947 
948     case 'J': // Unsigned 12-bit constant
949       if (auto *C = dyn_cast<ConstantSDNode>(Op))
950         if (isUInt<12>(C->getZExtValue()))
951           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
952                                               Op.getValueType()));
953       return;
954 
955     case 'K': // Signed 16-bit constant
956       if (auto *C = dyn_cast<ConstantSDNode>(Op))
957         if (isInt<16>(C->getSExtValue()))
958           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
959                                               Op.getValueType()));
960       return;
961 
962     case 'L': // Signed 20-bit displacement (on all targets we support)
963       if (auto *C = dyn_cast<ConstantSDNode>(Op))
964         if (isInt<20>(C->getSExtValue()))
965           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
966                                               Op.getValueType()));
967       return;
968 
969     case 'M': // 0x7fffffff
970       if (auto *C = dyn_cast<ConstantSDNode>(Op))
971         if (C->getZExtValue() == 0x7fffffff)
972           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
973                                               Op.getValueType()));
974       return;
975     }
976   }
977   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
978 }
979 
980 //===----------------------------------------------------------------------===//
981 // Calling conventions
982 //===----------------------------------------------------------------------===//
983 
984 #include "SystemZGenCallingConv.inc"
985 
986 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
987   CallingConv::ID) const {
988   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
989                                            SystemZ::R14D, 0 };
990   return ScratchRegs;
991 }
992 
993 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
994                                                      Type *ToType) const {
995   return isTruncateFree(FromType, ToType);
996 }
997 
998 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
999   return CI->isTailCall();
1000 }
1001 
1002 // We do not yet support 128-bit single-element vector types.  If the user
1003 // attempts to use such types as function argument or return type, prefer
1004 // to error out instead of emitting code violating the ABI.
1005 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1006   if (ArgVT.isVector() && !VT.isVector())
1007     report_fatal_error("Unsupported vector argument or return type");
1008 }
1009 
1010 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1011   for (unsigned i = 0; i < Ins.size(); ++i)
1012     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1013 }
1014 
1015 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1016   for (unsigned i = 0; i < Outs.size(); ++i)
1017     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1018 }
1019 
1020 // Value is a value that has been passed to us in the location described by VA
1021 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1022 // any loads onto Chain.
1023 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1024                                    CCValAssign &VA, SDValue Chain,
1025                                    SDValue Value) {
1026   // If the argument has been promoted from a smaller type, insert an
1027   // assertion to capture this.
1028   if (VA.getLocInfo() == CCValAssign::SExt)
1029     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1030                         DAG.getValueType(VA.getValVT()));
1031   else if (VA.getLocInfo() == CCValAssign::ZExt)
1032     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1033                         DAG.getValueType(VA.getValVT()));
1034 
1035   if (VA.isExtInLoc())
1036     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1037   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1038     // If this is a short vector argument loaded from the stack,
1039     // extend from i64 to full vector size and then bitcast.
1040     assert(VA.getLocVT() == MVT::i64);
1041     assert(VA.getValVT().isVector());
1042     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1043     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1044   } else
1045     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1046   return Value;
1047 }
1048 
1049 // Value is a value of type VA.getValVT() that we need to copy into
1050 // the location described by VA.  Return a copy of Value converted to
1051 // VA.getValVT().  The caller is responsible for handling indirect values.
1052 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1053                                    CCValAssign &VA, SDValue Value) {
1054   switch (VA.getLocInfo()) {
1055   case CCValAssign::SExt:
1056     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1057   case CCValAssign::ZExt:
1058     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1059   case CCValAssign::AExt:
1060     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1061   case CCValAssign::BCvt:
1062     // If this is a short vector argument to be stored to the stack,
1063     // bitcast to v2i64 and then extract first element.
1064     assert(VA.getLocVT() == MVT::i64);
1065     assert(VA.getValVT().isVector());
1066     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1067     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1068                        DAG.getConstant(0, DL, MVT::i32));
1069   case CCValAssign::Full:
1070     return Value;
1071   default:
1072     llvm_unreachable("Unhandled getLocInfo()");
1073   }
1074 }
1075 
1076 SDValue SystemZTargetLowering::LowerFormalArguments(
1077     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1078     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1079     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1080   MachineFunction &MF = DAG.getMachineFunction();
1081   MachineFrameInfo &MFI = MF.getFrameInfo();
1082   MachineRegisterInfo &MRI = MF.getRegInfo();
1083   SystemZMachineFunctionInfo *FuncInfo =
1084       MF.getInfo<SystemZMachineFunctionInfo>();
1085   auto *TFL =
1086       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1087   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1088 
1089   // Detect unsupported vector argument types.
1090   if (Subtarget.hasVector())
1091     VerifyVectorTypes(Ins);
1092 
1093   // Assign locations to all of the incoming arguments.
1094   SmallVector<CCValAssign, 16> ArgLocs;
1095   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1096   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1097 
1098   unsigned NumFixedGPRs = 0;
1099   unsigned NumFixedFPRs = 0;
1100   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1101     SDValue ArgValue;
1102     CCValAssign &VA = ArgLocs[I];
1103     EVT LocVT = VA.getLocVT();
1104     if (VA.isRegLoc()) {
1105       // Arguments passed in registers
1106       const TargetRegisterClass *RC;
1107       switch (LocVT.getSimpleVT().SimpleTy) {
1108       default:
1109         // Integers smaller than i64 should be promoted to i64.
1110         llvm_unreachable("Unexpected argument type");
1111       case MVT::i32:
1112         NumFixedGPRs += 1;
1113         RC = &SystemZ::GR32BitRegClass;
1114         break;
1115       case MVT::i64:
1116         NumFixedGPRs += 1;
1117         RC = &SystemZ::GR64BitRegClass;
1118         break;
1119       case MVT::f32:
1120         NumFixedFPRs += 1;
1121         RC = &SystemZ::FP32BitRegClass;
1122         break;
1123       case MVT::f64:
1124         NumFixedFPRs += 1;
1125         RC = &SystemZ::FP64BitRegClass;
1126         break;
1127       case MVT::v16i8:
1128       case MVT::v8i16:
1129       case MVT::v4i32:
1130       case MVT::v2i64:
1131       case MVT::v4f32:
1132       case MVT::v2f64:
1133         RC = &SystemZ::VR128BitRegClass;
1134         break;
1135       }
1136 
1137       unsigned VReg = MRI.createVirtualRegister(RC);
1138       MRI.addLiveIn(VA.getLocReg(), VReg);
1139       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1140     } else {
1141       assert(VA.isMemLoc() && "Argument not register or memory");
1142 
1143       // Create the frame index object for this incoming parameter.
1144       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1145                                      VA.getLocMemOffset(), true);
1146 
1147       // Create the SelectionDAG nodes corresponding to a load
1148       // from this parameter.  Unpromoted ints and floats are
1149       // passed as right-justified 8-byte values.
1150       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1151       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1152         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1153                           DAG.getIntPtrConstant(4, DL));
1154       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1155                              MachinePointerInfo::getFixedStack(MF, FI));
1156     }
1157 
1158     // Convert the value of the argument register into the value that's
1159     // being passed.
1160     if (VA.getLocInfo() == CCValAssign::Indirect) {
1161       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1162                                    MachinePointerInfo()));
1163       // If the original argument was split (e.g. i128), we need
1164       // to load all parts of it here (using the same address).
1165       unsigned ArgIndex = Ins[I].OrigArgIndex;
1166       assert (Ins[I].PartOffset == 0);
1167       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1168         CCValAssign &PartVA = ArgLocs[I + 1];
1169         unsigned PartOffset = Ins[I + 1].PartOffset;
1170         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1171                                       DAG.getIntPtrConstant(PartOffset, DL));
1172         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1173                                      MachinePointerInfo()));
1174         ++I;
1175       }
1176     } else
1177       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1178   }
1179 
1180   if (IsVarArg) {
1181     // Save the number of non-varargs registers for later use by va_start, etc.
1182     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1183     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1184 
1185     // Likewise the address (in the form of a frame index) of where the
1186     // first stack vararg would be.  The 1-byte size here is arbitrary.
1187     int64_t StackSize = CCInfo.getNextStackOffset();
1188     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1189 
1190     // ...and a similar frame index for the caller-allocated save area
1191     // that will be used to store the incoming registers.
1192     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1193     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1194     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1195 
1196     // Store the FPR varargs in the reserved frame slots.  (We store the
1197     // GPRs as part of the prologue.)
1198     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1199       SDValue MemOps[SystemZ::NumArgFPRs];
1200       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1201         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1202         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1203         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1204         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1205                                      &SystemZ::FP64BitRegClass);
1206         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1207         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1208                                  MachinePointerInfo::getFixedStack(MF, FI));
1209       }
1210       // Join the stores, which are independent of one another.
1211       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1212                           makeArrayRef(&MemOps[NumFixedFPRs],
1213                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1214     }
1215   }
1216 
1217   return Chain;
1218 }
1219 
1220 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1221                               SmallVectorImpl<CCValAssign> &ArgLocs,
1222                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1223   // Punt if there are any indirect or stack arguments, or if the call
1224   // needs the callee-saved argument register R6, or if the call uses
1225   // the callee-saved register arguments SwiftSelf and SwiftError.
1226   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1227     CCValAssign &VA = ArgLocs[I];
1228     if (VA.getLocInfo() == CCValAssign::Indirect)
1229       return false;
1230     if (!VA.isRegLoc())
1231       return false;
1232     unsigned Reg = VA.getLocReg();
1233     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1234       return false;
1235     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1236       return false;
1237   }
1238   return true;
1239 }
1240 
1241 SDValue
1242 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1243                                  SmallVectorImpl<SDValue> &InVals) const {
1244   SelectionDAG &DAG = CLI.DAG;
1245   SDLoc &DL = CLI.DL;
1246   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1247   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1248   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1249   SDValue Chain = CLI.Chain;
1250   SDValue Callee = CLI.Callee;
1251   bool &IsTailCall = CLI.IsTailCall;
1252   CallingConv::ID CallConv = CLI.CallConv;
1253   bool IsVarArg = CLI.IsVarArg;
1254   MachineFunction &MF = DAG.getMachineFunction();
1255   EVT PtrVT = getPointerTy(MF.getDataLayout());
1256 
1257   // Detect unsupported vector argument and return types.
1258   if (Subtarget.hasVector()) {
1259     VerifyVectorTypes(Outs);
1260     VerifyVectorTypes(Ins);
1261   }
1262 
1263   // Analyze the operands of the call, assigning locations to each operand.
1264   SmallVector<CCValAssign, 16> ArgLocs;
1265   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1266   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1267 
1268   // We don't support GuaranteedTailCallOpt, only automatically-detected
1269   // sibling calls.
1270   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1271     IsTailCall = false;
1272 
1273   // Get a count of how many bytes are to be pushed on the stack.
1274   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1275 
1276   // Mark the start of the call.
1277   if (!IsTailCall)
1278     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1279 
1280   // Copy argument values to their designated locations.
1281   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1282   SmallVector<SDValue, 8> MemOpChains;
1283   SDValue StackPtr;
1284   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1285     CCValAssign &VA = ArgLocs[I];
1286     SDValue ArgValue = OutVals[I];
1287 
1288     if (VA.getLocInfo() == CCValAssign::Indirect) {
1289       // Store the argument in a stack slot and pass its address.
1290       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1291       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1292       MemOpChains.push_back(
1293           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1294                        MachinePointerInfo::getFixedStack(MF, FI)));
1295       // If the original argument was split (e.g. i128), we need
1296       // to store all parts of it here (and pass just one address).
1297       unsigned ArgIndex = Outs[I].OrigArgIndex;
1298       assert (Outs[I].PartOffset == 0);
1299       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1300         SDValue PartValue = OutVals[I + 1];
1301         unsigned PartOffset = Outs[I + 1].PartOffset;
1302         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1303                                       DAG.getIntPtrConstant(PartOffset, DL));
1304         MemOpChains.push_back(
1305             DAG.getStore(Chain, DL, PartValue, Address,
1306                          MachinePointerInfo::getFixedStack(MF, FI)));
1307         ++I;
1308       }
1309       ArgValue = SpillSlot;
1310     } else
1311       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1312 
1313     if (VA.isRegLoc())
1314       // Queue up the argument copies and emit them at the end.
1315       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1316     else {
1317       assert(VA.isMemLoc() && "Argument not register or memory");
1318 
1319       // Work out the address of the stack slot.  Unpromoted ints and
1320       // floats are passed as right-justified 8-byte values.
1321       if (!StackPtr.getNode())
1322         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1323       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1324       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1325         Offset += 4;
1326       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1327                                     DAG.getIntPtrConstant(Offset, DL));
1328 
1329       // Emit the store.
1330       MemOpChains.push_back(
1331           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1332     }
1333   }
1334 
1335   // Join the stores, which are independent of one another.
1336   if (!MemOpChains.empty())
1337     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1338 
1339   // Accept direct calls by converting symbolic call addresses to the
1340   // associated Target* opcodes.  Force %r1 to be used for indirect
1341   // tail calls.
1342   SDValue Glue;
1343   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1344     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1345     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1346   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1347     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1348     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1349   } else if (IsTailCall) {
1350     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1351     Glue = Chain.getValue(1);
1352     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1353   }
1354 
1355   // Build a sequence of copy-to-reg nodes, chained and glued together.
1356   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1357     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1358                              RegsToPass[I].second, Glue);
1359     Glue = Chain.getValue(1);
1360   }
1361 
1362   // The first call operand is the chain and the second is the target address.
1363   SmallVector<SDValue, 8> Ops;
1364   Ops.push_back(Chain);
1365   Ops.push_back(Callee);
1366 
1367   // Add argument registers to the end of the list so that they are
1368   // known live into the call.
1369   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1370     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1371                                   RegsToPass[I].second.getValueType()));
1372 
1373   // Add a register mask operand representing the call-preserved registers.
1374   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1375   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1376   assert(Mask && "Missing call preserved mask for calling convention");
1377   Ops.push_back(DAG.getRegisterMask(Mask));
1378 
1379   // Glue the call to the argument copies, if any.
1380   if (Glue.getNode())
1381     Ops.push_back(Glue);
1382 
1383   // Emit the call.
1384   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1385   if (IsTailCall)
1386     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1387   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1388   Glue = Chain.getValue(1);
1389 
1390   // Mark the end of the call, which is glued to the call itself.
1391   Chain = DAG.getCALLSEQ_END(Chain,
1392                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1393                              DAG.getConstant(0, DL, PtrVT, true),
1394                              Glue, DL);
1395   Glue = Chain.getValue(1);
1396 
1397   // Assign locations to each value returned by this call.
1398   SmallVector<CCValAssign, 16> RetLocs;
1399   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1400   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1401 
1402   // Copy all of the result registers out of their specified physreg.
1403   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1404     CCValAssign &VA = RetLocs[I];
1405 
1406     // Copy the value out, gluing the copy to the end of the call sequence.
1407     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1408                                           VA.getLocVT(), Glue);
1409     Chain = RetValue.getValue(1);
1410     Glue = RetValue.getValue(2);
1411 
1412     // Convert the value of the return register into the value that's
1413     // being returned.
1414     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1415   }
1416 
1417   return Chain;
1418 }
1419 
1420 bool SystemZTargetLowering::
1421 CanLowerReturn(CallingConv::ID CallConv,
1422                MachineFunction &MF, bool isVarArg,
1423                const SmallVectorImpl<ISD::OutputArg> &Outs,
1424                LLVMContext &Context) const {
1425   // Detect unsupported vector return types.
1426   if (Subtarget.hasVector())
1427     VerifyVectorTypes(Outs);
1428 
1429   // Special case that we cannot easily detect in RetCC_SystemZ since
1430   // i128 is not a legal type.
1431   for (auto &Out : Outs)
1432     if (Out.ArgVT == MVT::i128)
1433       return false;
1434 
1435   SmallVector<CCValAssign, 16> RetLocs;
1436   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1437   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1438 }
1439 
1440 SDValue
1441 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1442                                    bool IsVarArg,
1443                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1444                                    const SmallVectorImpl<SDValue> &OutVals,
1445                                    const SDLoc &DL, SelectionDAG &DAG) const {
1446   MachineFunction &MF = DAG.getMachineFunction();
1447 
1448   // Detect unsupported vector return types.
1449   if (Subtarget.hasVector())
1450     VerifyVectorTypes(Outs);
1451 
1452   // Assign locations to each returned value.
1453   SmallVector<CCValAssign, 16> RetLocs;
1454   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1455   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1456 
1457   // Quick exit for void returns
1458   if (RetLocs.empty())
1459     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1460 
1461   // Copy the result values into the output registers.
1462   SDValue Glue;
1463   SmallVector<SDValue, 4> RetOps;
1464   RetOps.push_back(Chain);
1465   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1466     CCValAssign &VA = RetLocs[I];
1467     SDValue RetValue = OutVals[I];
1468 
1469     // Make the return register live on exit.
1470     assert(VA.isRegLoc() && "Can only return in registers!");
1471 
1472     // Promote the value as required.
1473     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1474 
1475     // Chain and glue the copies together.
1476     unsigned Reg = VA.getLocReg();
1477     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1478     Glue = Chain.getValue(1);
1479     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1480   }
1481 
1482   // Update chain and glue.
1483   RetOps[0] = Chain;
1484   if (Glue.getNode())
1485     RetOps.push_back(Glue);
1486 
1487   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1488 }
1489 
1490 // Return true if Op is an intrinsic node with chain that returns the CC value
1491 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1492 // the mask of valid CC values if so.
1493 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1494                                       unsigned &CCValid) {
1495   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1496   switch (Id) {
1497   case Intrinsic::s390_tbegin:
1498     Opcode = SystemZISD::TBEGIN;
1499     CCValid = SystemZ::CCMASK_TBEGIN;
1500     return true;
1501 
1502   case Intrinsic::s390_tbegin_nofloat:
1503     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1504     CCValid = SystemZ::CCMASK_TBEGIN;
1505     return true;
1506 
1507   case Intrinsic::s390_tend:
1508     Opcode = SystemZISD::TEND;
1509     CCValid = SystemZ::CCMASK_TEND;
1510     return true;
1511 
1512   default:
1513     return false;
1514   }
1515 }
1516 
1517 // Return true if Op is an intrinsic node without chain that returns the
1518 // CC value as its final argument.  Provide the associated SystemZISD
1519 // opcode and the mask of valid CC values if so.
1520 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1521   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1522   switch (Id) {
1523   case Intrinsic::s390_vpkshs:
1524   case Intrinsic::s390_vpksfs:
1525   case Intrinsic::s390_vpksgs:
1526     Opcode = SystemZISD::PACKS_CC;
1527     CCValid = SystemZ::CCMASK_VCMP;
1528     return true;
1529 
1530   case Intrinsic::s390_vpklshs:
1531   case Intrinsic::s390_vpklsfs:
1532   case Intrinsic::s390_vpklsgs:
1533     Opcode = SystemZISD::PACKLS_CC;
1534     CCValid = SystemZ::CCMASK_VCMP;
1535     return true;
1536 
1537   case Intrinsic::s390_vceqbs:
1538   case Intrinsic::s390_vceqhs:
1539   case Intrinsic::s390_vceqfs:
1540   case Intrinsic::s390_vceqgs:
1541     Opcode = SystemZISD::VICMPES;
1542     CCValid = SystemZ::CCMASK_VCMP;
1543     return true;
1544 
1545   case Intrinsic::s390_vchbs:
1546   case Intrinsic::s390_vchhs:
1547   case Intrinsic::s390_vchfs:
1548   case Intrinsic::s390_vchgs:
1549     Opcode = SystemZISD::VICMPHS;
1550     CCValid = SystemZ::CCMASK_VCMP;
1551     return true;
1552 
1553   case Intrinsic::s390_vchlbs:
1554   case Intrinsic::s390_vchlhs:
1555   case Intrinsic::s390_vchlfs:
1556   case Intrinsic::s390_vchlgs:
1557     Opcode = SystemZISD::VICMPHLS;
1558     CCValid = SystemZ::CCMASK_VCMP;
1559     return true;
1560 
1561   case Intrinsic::s390_vtm:
1562     Opcode = SystemZISD::VTM;
1563     CCValid = SystemZ::CCMASK_VCMP;
1564     return true;
1565 
1566   case Intrinsic::s390_vfaebs:
1567   case Intrinsic::s390_vfaehs:
1568   case Intrinsic::s390_vfaefs:
1569     Opcode = SystemZISD::VFAE_CC;
1570     CCValid = SystemZ::CCMASK_ANY;
1571     return true;
1572 
1573   case Intrinsic::s390_vfaezbs:
1574   case Intrinsic::s390_vfaezhs:
1575   case Intrinsic::s390_vfaezfs:
1576     Opcode = SystemZISD::VFAEZ_CC;
1577     CCValid = SystemZ::CCMASK_ANY;
1578     return true;
1579 
1580   case Intrinsic::s390_vfeebs:
1581   case Intrinsic::s390_vfeehs:
1582   case Intrinsic::s390_vfeefs:
1583     Opcode = SystemZISD::VFEE_CC;
1584     CCValid = SystemZ::CCMASK_ANY;
1585     return true;
1586 
1587   case Intrinsic::s390_vfeezbs:
1588   case Intrinsic::s390_vfeezhs:
1589   case Intrinsic::s390_vfeezfs:
1590     Opcode = SystemZISD::VFEEZ_CC;
1591     CCValid = SystemZ::CCMASK_ANY;
1592     return true;
1593 
1594   case Intrinsic::s390_vfenebs:
1595   case Intrinsic::s390_vfenehs:
1596   case Intrinsic::s390_vfenefs:
1597     Opcode = SystemZISD::VFENE_CC;
1598     CCValid = SystemZ::CCMASK_ANY;
1599     return true;
1600 
1601   case Intrinsic::s390_vfenezbs:
1602   case Intrinsic::s390_vfenezhs:
1603   case Intrinsic::s390_vfenezfs:
1604     Opcode = SystemZISD::VFENEZ_CC;
1605     CCValid = SystemZ::CCMASK_ANY;
1606     return true;
1607 
1608   case Intrinsic::s390_vistrbs:
1609   case Intrinsic::s390_vistrhs:
1610   case Intrinsic::s390_vistrfs:
1611     Opcode = SystemZISD::VISTR_CC;
1612     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1613     return true;
1614 
1615   case Intrinsic::s390_vstrcbs:
1616   case Intrinsic::s390_vstrchs:
1617   case Intrinsic::s390_vstrcfs:
1618     Opcode = SystemZISD::VSTRC_CC;
1619     CCValid = SystemZ::CCMASK_ANY;
1620     return true;
1621 
1622   case Intrinsic::s390_vstrczbs:
1623   case Intrinsic::s390_vstrczhs:
1624   case Intrinsic::s390_vstrczfs:
1625     Opcode = SystemZISD::VSTRCZ_CC;
1626     CCValid = SystemZ::CCMASK_ANY;
1627     return true;
1628 
1629   case Intrinsic::s390_vfcedbs:
1630   case Intrinsic::s390_vfcesbs:
1631     Opcode = SystemZISD::VFCMPES;
1632     CCValid = SystemZ::CCMASK_VCMP;
1633     return true;
1634 
1635   case Intrinsic::s390_vfchdbs:
1636   case Intrinsic::s390_vfchsbs:
1637     Opcode = SystemZISD::VFCMPHS;
1638     CCValid = SystemZ::CCMASK_VCMP;
1639     return true;
1640 
1641   case Intrinsic::s390_vfchedbs:
1642   case Intrinsic::s390_vfchesbs:
1643     Opcode = SystemZISD::VFCMPHES;
1644     CCValid = SystemZ::CCMASK_VCMP;
1645     return true;
1646 
1647   case Intrinsic::s390_vftcidb:
1648   case Intrinsic::s390_vftcisb:
1649     Opcode = SystemZISD::VFTCI;
1650     CCValid = SystemZ::CCMASK_VCMP;
1651     return true;
1652 
1653   case Intrinsic::s390_tdc:
1654     Opcode = SystemZISD::TDC;
1655     CCValid = SystemZ::CCMASK_TDC;
1656     return true;
1657 
1658   default:
1659     return false;
1660   }
1661 }
1662 
1663 // Emit an intrinsic with chain with a glued value instead of its CC result.
1664 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1665                                              unsigned Opcode) {
1666   // Copy all operands except the intrinsic ID.
1667   unsigned NumOps = Op.getNumOperands();
1668   SmallVector<SDValue, 6> Ops;
1669   Ops.reserve(NumOps - 1);
1670   Ops.push_back(Op.getOperand(0));
1671   for (unsigned I = 2; I < NumOps; ++I)
1672     Ops.push_back(Op.getOperand(I));
1673 
1674   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1675   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1676   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1677   SDValue OldChain = SDValue(Op.getNode(), 1);
1678   SDValue NewChain = SDValue(Intr.getNode(), 0);
1679   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1680   return Intr;
1681 }
1682 
1683 // Emit an intrinsic with a glued value instead of its CC result.
1684 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1685                                      unsigned Opcode) {
1686   // Copy all operands except the intrinsic ID.
1687   unsigned NumOps = Op.getNumOperands();
1688   SmallVector<SDValue, 6> Ops;
1689   Ops.reserve(NumOps - 1);
1690   for (unsigned I = 1; I < NumOps; ++I)
1691     Ops.push_back(Op.getOperand(I));
1692 
1693   if (Op->getNumValues() == 1)
1694     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1695   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1696   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1697   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1698 }
1699 
1700 // CC is a comparison that will be implemented using an integer or
1701 // floating-point comparison.  Return the condition code mask for
1702 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1703 // unsigned comparisons and clear for signed ones.  In the floating-point
1704 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1705 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1706 #define CONV(X) \
1707   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1708   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1709   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1710 
1711   switch (CC) {
1712   default:
1713     llvm_unreachable("Invalid integer condition!");
1714 
1715   CONV(EQ);
1716   CONV(NE);
1717   CONV(GT);
1718   CONV(GE);
1719   CONV(LT);
1720   CONV(LE);
1721 
1722   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1723   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1724   }
1725 #undef CONV
1726 }
1727 
1728 // If C can be converted to a comparison against zero, adjust the operands
1729 // as necessary.
1730 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1731   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1732     return;
1733 
1734   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1735   if (!ConstOp1)
1736     return;
1737 
1738   int64_t Value = ConstOp1->getSExtValue();
1739   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1740       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1741       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1742       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1743     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1744     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1745   }
1746 }
1747 
1748 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1749 // adjust the operands as necessary.
1750 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1751                              Comparison &C) {
1752   // For us to make any changes, it must a comparison between a single-use
1753   // load and a constant.
1754   if (!C.Op0.hasOneUse() ||
1755       C.Op0.getOpcode() != ISD::LOAD ||
1756       C.Op1.getOpcode() != ISD::Constant)
1757     return;
1758 
1759   // We must have an 8- or 16-bit load.
1760   auto *Load = cast<LoadSDNode>(C.Op0);
1761   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1762   if (NumBits != 8 && NumBits != 16)
1763     return;
1764 
1765   // The load must be an extending one and the constant must be within the
1766   // range of the unextended value.
1767   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1768   uint64_t Value = ConstOp1->getZExtValue();
1769   uint64_t Mask = (1 << NumBits) - 1;
1770   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1771     // Make sure that ConstOp1 is in range of C.Op0.
1772     int64_t SignedValue = ConstOp1->getSExtValue();
1773     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1774       return;
1775     if (C.ICmpType != SystemZICMP::SignedOnly) {
1776       // Unsigned comparison between two sign-extended values is equivalent
1777       // to unsigned comparison between two zero-extended values.
1778       Value &= Mask;
1779     } else if (NumBits == 8) {
1780       // Try to treat the comparison as unsigned, so that we can use CLI.
1781       // Adjust CCMask and Value as necessary.
1782       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1783         // Test whether the high bit of the byte is set.
1784         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1785       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1786         // Test whether the high bit of the byte is clear.
1787         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1788       else
1789         // No instruction exists for this combination.
1790         return;
1791       C.ICmpType = SystemZICMP::UnsignedOnly;
1792     }
1793   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1794     if (Value > Mask)
1795       return;
1796     // If the constant is in range, we can use any comparison.
1797     C.ICmpType = SystemZICMP::Any;
1798   } else
1799     return;
1800 
1801   // Make sure that the first operand is an i32 of the right extension type.
1802   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1803                               ISD::SEXTLOAD :
1804                               ISD::ZEXTLOAD);
1805   if (C.Op0.getValueType() != MVT::i32 ||
1806       Load->getExtensionType() != ExtType) {
1807     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1808                            Load->getBasePtr(), Load->getPointerInfo(),
1809                            Load->getMemoryVT(), Load->getAlignment(),
1810                            Load->getMemOperand()->getFlags());
1811     // Update the chain uses.
1812     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1813   }
1814 
1815   // Make sure that the second operand is an i32 with the right value.
1816   if (C.Op1.getValueType() != MVT::i32 ||
1817       Value != ConstOp1->getZExtValue())
1818     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1819 }
1820 
1821 // Return true if Op is either an unextended load, or a load suitable
1822 // for integer register-memory comparisons of type ICmpType.
1823 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1824   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1825   if (Load) {
1826     // There are no instructions to compare a register with a memory byte.
1827     if (Load->getMemoryVT() == MVT::i8)
1828       return false;
1829     // Otherwise decide on extension type.
1830     switch (Load->getExtensionType()) {
1831     case ISD::NON_EXTLOAD:
1832       return true;
1833     case ISD::SEXTLOAD:
1834       return ICmpType != SystemZICMP::UnsignedOnly;
1835     case ISD::ZEXTLOAD:
1836       return ICmpType != SystemZICMP::SignedOnly;
1837     default:
1838       break;
1839     }
1840   }
1841   return false;
1842 }
1843 
1844 // Return true if it is better to swap the operands of C.
1845 static bool shouldSwapCmpOperands(const Comparison &C) {
1846   // Leave f128 comparisons alone, since they have no memory forms.
1847   if (C.Op0.getValueType() == MVT::f128)
1848     return false;
1849 
1850   // Always keep a floating-point constant second, since comparisons with
1851   // zero can use LOAD TEST and comparisons with other constants make a
1852   // natural memory operand.
1853   if (isa<ConstantFPSDNode>(C.Op1))
1854     return false;
1855 
1856   // Never swap comparisons with zero since there are many ways to optimize
1857   // those later.
1858   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1859   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1860     return false;
1861 
1862   // Also keep natural memory operands second if the loaded value is
1863   // only used here.  Several comparisons have memory forms.
1864   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1865     return false;
1866 
1867   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1868   // In that case we generally prefer the memory to be second.
1869   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1870     // The only exceptions are when the second operand is a constant and
1871     // we can use things like CHHSI.
1872     if (!ConstOp1)
1873       return true;
1874     // The unsigned memory-immediate instructions can handle 16-bit
1875     // unsigned integers.
1876     if (C.ICmpType != SystemZICMP::SignedOnly &&
1877         isUInt<16>(ConstOp1->getZExtValue()))
1878       return false;
1879     // The signed memory-immediate instructions can handle 16-bit
1880     // signed integers.
1881     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1882         isInt<16>(ConstOp1->getSExtValue()))
1883       return false;
1884     return true;
1885   }
1886 
1887   // Try to promote the use of CGFR and CLGFR.
1888   unsigned Opcode0 = C.Op0.getOpcode();
1889   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1890     return true;
1891   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1892     return true;
1893   if (C.ICmpType != SystemZICMP::SignedOnly &&
1894       Opcode0 == ISD::AND &&
1895       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1896       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1897     return true;
1898 
1899   return false;
1900 }
1901 
1902 // Return a version of comparison CC mask CCMask in which the LT and GT
1903 // actions are swapped.
1904 static unsigned reverseCCMask(unsigned CCMask) {
1905   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1906           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1907           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1908           (CCMask & SystemZ::CCMASK_CMP_UO));
1909 }
1910 
1911 // Check whether C tests for equality between X and Y and whether X - Y
1912 // or Y - X is also computed.  In that case it's better to compare the
1913 // result of the subtraction against zero.
1914 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1915                                  Comparison &C) {
1916   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1917       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1918     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1919       SDNode *N = *I;
1920       if (N->getOpcode() == ISD::SUB &&
1921           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1922            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1923         C.Op0 = SDValue(N, 0);
1924         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1925         return;
1926       }
1927     }
1928   }
1929 }
1930 
1931 // Check whether C compares a floating-point value with zero and if that
1932 // floating-point value is also negated.  In this case we can use the
1933 // negation to set CC, so avoiding separate LOAD AND TEST and
1934 // LOAD (NEGATIVE/COMPLEMENT) instructions.
1935 static void adjustForFNeg(Comparison &C) {
1936   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1937   if (C1 && C1->isZero()) {
1938     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1939       SDNode *N = *I;
1940       if (N->getOpcode() == ISD::FNEG) {
1941         C.Op0 = SDValue(N, 0);
1942         C.CCMask = reverseCCMask(C.CCMask);
1943         return;
1944       }
1945     }
1946   }
1947 }
1948 
1949 // Check whether C compares (shl X, 32) with 0 and whether X is
1950 // also sign-extended.  In that case it is better to test the result
1951 // of the sign extension using LTGFR.
1952 //
1953 // This case is important because InstCombine transforms a comparison
1954 // with (sext (trunc X)) into a comparison with (shl X, 32).
1955 static void adjustForLTGFR(Comparison &C) {
1956   // Check for a comparison between (shl X, 32) and 0.
1957   if (C.Op0.getOpcode() == ISD::SHL &&
1958       C.Op0.getValueType() == MVT::i64 &&
1959       C.Op1.getOpcode() == ISD::Constant &&
1960       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1961     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1962     if (C1 && C1->getZExtValue() == 32) {
1963       SDValue ShlOp0 = C.Op0.getOperand(0);
1964       // See whether X has any SIGN_EXTEND_INREG uses.
1965       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1966         SDNode *N = *I;
1967         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1968             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1969           C.Op0 = SDValue(N, 0);
1970           return;
1971         }
1972       }
1973     }
1974   }
1975 }
1976 
1977 // If C compares the truncation of an extending load, try to compare
1978 // the untruncated value instead.  This exposes more opportunities to
1979 // reuse CC.
1980 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1981                                Comparison &C) {
1982   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1983       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1984       C.Op1.getOpcode() == ISD::Constant &&
1985       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1986     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1987     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
1988       unsigned Type = L->getExtensionType();
1989       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1990           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1991         C.Op0 = C.Op0.getOperand(0);
1992         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
1993       }
1994     }
1995   }
1996 }
1997 
1998 // Return true if shift operation N has an in-range constant shift value.
1999 // Store it in ShiftVal if so.
2000 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2001   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2002   if (!Shift)
2003     return false;
2004 
2005   uint64_t Amount = Shift->getZExtValue();
2006   if (Amount >= N.getValueSizeInBits())
2007     return false;
2008 
2009   ShiftVal = Amount;
2010   return true;
2011 }
2012 
2013 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2014 // instruction and whether the CC value is descriptive enough to handle
2015 // a comparison of type Opcode between the AND result and CmpVal.
2016 // CCMask says which comparison result is being tested and BitSize is
2017 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2018 // return the corresponding CC mask, otherwise return 0.
2019 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2020                                      uint64_t Mask, uint64_t CmpVal,
2021                                      unsigned ICmpType) {
2022   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2023 
2024   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2025   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2026       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2027     return 0;
2028 
2029   // Work out the masks for the lowest and highest bits.
2030   unsigned HighShift = 63 - countLeadingZeros(Mask);
2031   uint64_t High = uint64_t(1) << HighShift;
2032   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2033 
2034   // Signed ordered comparisons are effectively unsigned if the sign
2035   // bit is dropped.
2036   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2037 
2038   // Check for equality comparisons with 0, or the equivalent.
2039   if (CmpVal == 0) {
2040     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2041       return SystemZ::CCMASK_TM_ALL_0;
2042     if (CCMask == SystemZ::CCMASK_CMP_NE)
2043       return SystemZ::CCMASK_TM_SOME_1;
2044   }
2045   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2046     if (CCMask == SystemZ::CCMASK_CMP_LT)
2047       return SystemZ::CCMASK_TM_ALL_0;
2048     if (CCMask == SystemZ::CCMASK_CMP_GE)
2049       return SystemZ::CCMASK_TM_SOME_1;
2050   }
2051   if (EffectivelyUnsigned && CmpVal < Low) {
2052     if (CCMask == SystemZ::CCMASK_CMP_LE)
2053       return SystemZ::CCMASK_TM_ALL_0;
2054     if (CCMask == SystemZ::CCMASK_CMP_GT)
2055       return SystemZ::CCMASK_TM_SOME_1;
2056   }
2057 
2058   // Check for equality comparisons with the mask, or the equivalent.
2059   if (CmpVal == Mask) {
2060     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2061       return SystemZ::CCMASK_TM_ALL_1;
2062     if (CCMask == SystemZ::CCMASK_CMP_NE)
2063       return SystemZ::CCMASK_TM_SOME_0;
2064   }
2065   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2066     if (CCMask == SystemZ::CCMASK_CMP_GT)
2067       return SystemZ::CCMASK_TM_ALL_1;
2068     if (CCMask == SystemZ::CCMASK_CMP_LE)
2069       return SystemZ::CCMASK_TM_SOME_0;
2070   }
2071   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2072     if (CCMask == SystemZ::CCMASK_CMP_GE)
2073       return SystemZ::CCMASK_TM_ALL_1;
2074     if (CCMask == SystemZ::CCMASK_CMP_LT)
2075       return SystemZ::CCMASK_TM_SOME_0;
2076   }
2077 
2078   // Check for ordered comparisons with the top bit.
2079   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2080     if (CCMask == SystemZ::CCMASK_CMP_LE)
2081       return SystemZ::CCMASK_TM_MSB_0;
2082     if (CCMask == SystemZ::CCMASK_CMP_GT)
2083       return SystemZ::CCMASK_TM_MSB_1;
2084   }
2085   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2086     if (CCMask == SystemZ::CCMASK_CMP_LT)
2087       return SystemZ::CCMASK_TM_MSB_0;
2088     if (CCMask == SystemZ::CCMASK_CMP_GE)
2089       return SystemZ::CCMASK_TM_MSB_1;
2090   }
2091 
2092   // If there are just two bits, we can do equality checks for Low and High
2093   // as well.
2094   if (Mask == Low + High) {
2095     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2096       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2097     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2098       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2099     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2100       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2101     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2102       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2103   }
2104 
2105   // Looks like we've exhausted our options.
2106   return 0;
2107 }
2108 
2109 // See whether C can be implemented as a TEST UNDER MASK instruction.
2110 // Update the arguments with the TM version if so.
2111 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2112                                    Comparison &C) {
2113   // Check that we have a comparison with a constant.
2114   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2115   if (!ConstOp1)
2116     return;
2117   uint64_t CmpVal = ConstOp1->getZExtValue();
2118 
2119   // Check whether the nonconstant input is an AND with a constant mask.
2120   Comparison NewC(C);
2121   uint64_t MaskVal;
2122   ConstantSDNode *Mask = nullptr;
2123   if (C.Op0.getOpcode() == ISD::AND) {
2124     NewC.Op0 = C.Op0.getOperand(0);
2125     NewC.Op1 = C.Op0.getOperand(1);
2126     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2127     if (!Mask)
2128       return;
2129     MaskVal = Mask->getZExtValue();
2130   } else {
2131     // There is no instruction to compare with a 64-bit immediate
2132     // so use TMHH instead if possible.  We need an unsigned ordered
2133     // comparison with an i64 immediate.
2134     if (NewC.Op0.getValueType() != MVT::i64 ||
2135         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2136         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2137         NewC.ICmpType == SystemZICMP::SignedOnly)
2138       return;
2139     // Convert LE and GT comparisons into LT and GE.
2140     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2141         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2142       if (CmpVal == uint64_t(-1))
2143         return;
2144       CmpVal += 1;
2145       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2146     }
2147     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2148     // be masked off without changing the result.
2149     MaskVal = -(CmpVal & -CmpVal);
2150     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2151   }
2152   if (!MaskVal)
2153     return;
2154 
2155   // Check whether the combination of mask, comparison value and comparison
2156   // type are suitable.
2157   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2158   unsigned NewCCMask, ShiftVal;
2159   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2160       NewC.Op0.getOpcode() == ISD::SHL &&
2161       isSimpleShift(NewC.Op0, ShiftVal) &&
2162       (MaskVal >> ShiftVal != 0) &&
2163       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2164       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2165                                         MaskVal >> ShiftVal,
2166                                         CmpVal >> ShiftVal,
2167                                         SystemZICMP::Any))) {
2168     NewC.Op0 = NewC.Op0.getOperand(0);
2169     MaskVal >>= ShiftVal;
2170   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2171              NewC.Op0.getOpcode() == ISD::SRL &&
2172              isSimpleShift(NewC.Op0, ShiftVal) &&
2173              (MaskVal << ShiftVal != 0) &&
2174              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2175              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2176                                                MaskVal << ShiftVal,
2177                                                CmpVal << ShiftVal,
2178                                                SystemZICMP::UnsignedOnly))) {
2179     NewC.Op0 = NewC.Op0.getOperand(0);
2180     MaskVal <<= ShiftVal;
2181   } else {
2182     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2183                                      NewC.ICmpType);
2184     if (!NewCCMask)
2185       return;
2186   }
2187 
2188   // Go ahead and make the change.
2189   C.Opcode = SystemZISD::TM;
2190   C.Op0 = NewC.Op0;
2191   if (Mask && Mask->getZExtValue() == MaskVal)
2192     C.Op1 = SDValue(Mask, 0);
2193   else
2194     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2195   C.CCValid = SystemZ::CCMASK_TM;
2196   C.CCMask = NewCCMask;
2197 }
2198 
2199 // See whether the comparison argument contains a redundant AND
2200 // and remove it if so.  This sometimes happens due to the generic
2201 // BRCOND expansion.
2202 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2203                                   Comparison &C) {
2204   if (C.Op0.getOpcode() != ISD::AND)
2205     return;
2206   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2207   if (!Mask)
2208     return;
2209   KnownBits Known;
2210   DAG.computeKnownBits(C.Op0.getOperand(0), Known);
2211   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2212     return;
2213 
2214   C.Op0 = C.Op0.getOperand(0);
2215 }
2216 
2217 // Return a Comparison that tests the condition-code result of intrinsic
2218 // node Call against constant integer CC using comparison code Cond.
2219 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2220 // and CCValid is the set of possible condition-code results.
2221 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2222                                   SDValue Call, unsigned CCValid, uint64_t CC,
2223                                   ISD::CondCode Cond) {
2224   Comparison C(Call, SDValue());
2225   C.Opcode = Opcode;
2226   C.CCValid = CCValid;
2227   if (Cond == ISD::SETEQ)
2228     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2229     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2230   else if (Cond == ISD::SETNE)
2231     // ...and the inverse of that.
2232     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2233   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2234     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2235     // always true for CC>3.
2236     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2237   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2238     // ...and the inverse of that.
2239     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2240   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2241     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2242     // always true for CC>3.
2243     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2244   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2245     // ...and the inverse of that.
2246     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2247   else
2248     llvm_unreachable("Unexpected integer comparison type");
2249   C.CCMask &= CCValid;
2250   return C;
2251 }
2252 
2253 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2254 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2255                          ISD::CondCode Cond, const SDLoc &DL) {
2256   if (CmpOp1.getOpcode() == ISD::Constant) {
2257     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2258     unsigned Opcode, CCValid;
2259     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2260         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2261         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2262       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2263     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2264         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2265         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2266       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2267   }
2268   Comparison C(CmpOp0, CmpOp1);
2269   C.CCMask = CCMaskForCondCode(Cond);
2270   if (C.Op0.getValueType().isFloatingPoint()) {
2271     C.CCValid = SystemZ::CCMASK_FCMP;
2272     C.Opcode = SystemZISD::FCMP;
2273     adjustForFNeg(C);
2274   } else {
2275     C.CCValid = SystemZ::CCMASK_ICMP;
2276     C.Opcode = SystemZISD::ICMP;
2277     // Choose the type of comparison.  Equality and inequality tests can
2278     // use either signed or unsigned comparisons.  The choice also doesn't
2279     // matter if both sign bits are known to be clear.  In those cases we
2280     // want to give the main isel code the freedom to choose whichever
2281     // form fits best.
2282     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2283         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2284         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2285       C.ICmpType = SystemZICMP::Any;
2286     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2287       C.ICmpType = SystemZICMP::UnsignedOnly;
2288     else
2289       C.ICmpType = SystemZICMP::SignedOnly;
2290     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2291     adjustForRedundantAnd(DAG, DL, C);
2292     adjustZeroCmp(DAG, DL, C);
2293     adjustSubwordCmp(DAG, DL, C);
2294     adjustForSubtraction(DAG, DL, C);
2295     adjustForLTGFR(C);
2296     adjustICmpTruncate(DAG, DL, C);
2297   }
2298 
2299   if (shouldSwapCmpOperands(C)) {
2300     std::swap(C.Op0, C.Op1);
2301     C.CCMask = reverseCCMask(C.CCMask);
2302   }
2303 
2304   adjustForTestUnderMask(DAG, DL, C);
2305   return C;
2306 }
2307 
2308 // Emit the comparison instruction described by C.
2309 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2310   if (!C.Op1.getNode()) {
2311     SDValue Op;
2312     switch (C.Op0.getOpcode()) {
2313     case ISD::INTRINSIC_W_CHAIN:
2314       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2315       break;
2316     case ISD::INTRINSIC_WO_CHAIN:
2317       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2318       break;
2319     default:
2320       llvm_unreachable("Invalid comparison operands");
2321     }
2322     return SDValue(Op.getNode(), Op->getNumValues() - 1);
2323   }
2324   if (C.Opcode == SystemZISD::ICMP)
2325     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2326                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2327   if (C.Opcode == SystemZISD::TM) {
2328     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2329                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2330     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2331                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2332   }
2333   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2334 }
2335 
2336 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2337 // 64 bits.  Extend is the extension type to use.  Store the high part
2338 // in Hi and the low part in Lo.
2339 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2340                             SDValue Op0, SDValue Op1, SDValue &Hi,
2341                             SDValue &Lo) {
2342   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2343   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2344   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2345   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2346                    DAG.getConstant(32, DL, MVT::i64));
2347   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2348   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2349 }
2350 
2351 // Lower a binary operation that produces two VT results, one in each
2352 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2353 // and Opcode performs the GR128 operation.  Store the even register result
2354 // in Even and the odd register result in Odd.
2355 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2356                              unsigned Opcode, SDValue Op0, SDValue Op1,
2357                              SDValue &Even, SDValue &Odd) {
2358   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2359   bool Is32Bit = is32Bit(VT);
2360   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2361   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2362 }
2363 
2364 // Return an i32 value that is 1 if the CC value produced by Glue is
2365 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2366 // in CCValid, so other values can be ignored.
2367 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2368                          unsigned CCValid, unsigned CCMask) {
2369   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2370                     DAG.getConstant(0, DL, MVT::i32),
2371                     DAG.getConstant(CCValid, DL, MVT::i32),
2372                     DAG.getConstant(CCMask, DL, MVT::i32), Glue };
2373   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2374 }
2375 
2376 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2377 // be done directly.  IsFP is true if CC is for a floating-point rather than
2378 // integer comparison.
2379 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2380   switch (CC) {
2381   case ISD::SETOEQ:
2382   case ISD::SETEQ:
2383     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2384 
2385   case ISD::SETOGE:
2386   case ISD::SETGE:
2387     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2388 
2389   case ISD::SETOGT:
2390   case ISD::SETGT:
2391     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2392 
2393   case ISD::SETUGT:
2394     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2395 
2396   default:
2397     return 0;
2398   }
2399 }
2400 
2401 // Return the SystemZISD vector comparison operation for CC or its inverse,
2402 // or 0 if neither can be done directly.  Indicate in Invert whether the
2403 // result is for the inverse of CC.  IsFP is true if CC is for a
2404 // floating-point rather than integer comparison.
2405 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2406                                             bool &Invert) {
2407   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2408     Invert = false;
2409     return Opcode;
2410   }
2411 
2412   CC = ISD::getSetCCInverse(CC, !IsFP);
2413   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2414     Invert = true;
2415     return Opcode;
2416   }
2417 
2418   return 0;
2419 }
2420 
2421 // Return a v2f64 that contains the extended form of elements Start and Start+1
2422 // of v4f32 value Op.
2423 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2424                                   SDValue Op) {
2425   int Mask[] = { Start, -1, Start + 1, -1 };
2426   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2427   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2428 }
2429 
2430 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2431 // producing a result of type VT.
2432 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2433                                             const SDLoc &DL, EVT VT,
2434                                             SDValue CmpOp0,
2435                                             SDValue CmpOp1) const {
2436   // There is no hardware support for v4f32 (unless we have the vector
2437   // enhancements facility 1), so extend the vector into two v2f64s
2438   // and compare those.
2439   if (CmpOp0.getValueType() == MVT::v4f32 &&
2440       !Subtarget.hasVectorEnhancements1()) {
2441     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2442     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2443     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2444     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2445     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2446     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2447     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2448   }
2449   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2450 }
2451 
2452 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2453 // an integer mask of type VT.
2454 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2455                                                 const SDLoc &DL, EVT VT,
2456                                                 ISD::CondCode CC,
2457                                                 SDValue CmpOp0,
2458                                                 SDValue CmpOp1) const {
2459   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2460   bool Invert = false;
2461   SDValue Cmp;
2462   switch (CC) {
2463     // Handle tests for order using (or (ogt y x) (oge x y)).
2464   case ISD::SETUO:
2465     Invert = true;
2466     LLVM_FALLTHROUGH;
2467   case ISD::SETO: {
2468     assert(IsFP && "Unexpected integer comparison");
2469     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2470     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2471     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2472     break;
2473   }
2474 
2475     // Handle <> tests using (or (ogt y x) (ogt x y)).
2476   case ISD::SETUEQ:
2477     Invert = true;
2478     LLVM_FALLTHROUGH;
2479   case ISD::SETONE: {
2480     assert(IsFP && "Unexpected integer comparison");
2481     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2482     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2483     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2484     break;
2485   }
2486 
2487     // Otherwise a single comparison is enough.  It doesn't really
2488     // matter whether we try the inversion or the swap first, since
2489     // there are no cases where both work.
2490   default:
2491     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2492       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2493     else {
2494       CC = ISD::getSetCCSwappedOperands(CC);
2495       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2496         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2497       else
2498         llvm_unreachable("Unhandled comparison");
2499     }
2500     break;
2501   }
2502   if (Invert) {
2503     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2504                                DAG.getConstant(65535, DL, MVT::i32));
2505     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2506     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2507   }
2508   return Cmp;
2509 }
2510 
2511 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2512                                           SelectionDAG &DAG) const {
2513   SDValue CmpOp0   = Op.getOperand(0);
2514   SDValue CmpOp1   = Op.getOperand(1);
2515   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2516   SDLoc DL(Op);
2517   EVT VT = Op.getValueType();
2518   if (VT.isVector())
2519     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2520 
2521   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2522   SDValue Glue = emitCmp(DAG, DL, C);
2523   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2524 }
2525 
2526 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2527   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2528   SDValue CmpOp0   = Op.getOperand(2);
2529   SDValue CmpOp1   = Op.getOperand(3);
2530   SDValue Dest     = Op.getOperand(4);
2531   SDLoc DL(Op);
2532 
2533   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2534   SDValue Glue = emitCmp(DAG, DL, C);
2535   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2536                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2537                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2538 }
2539 
2540 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2541 // allowing Pos and Neg to be wider than CmpOp.
2542 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2543   return (Neg.getOpcode() == ISD::SUB &&
2544           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2545           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2546           Neg.getOperand(1) == Pos &&
2547           (Pos == CmpOp ||
2548            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2549             Pos.getOperand(0) == CmpOp)));
2550 }
2551 
2552 // Return the absolute or negative absolute of Op; IsNegative decides which.
2553 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2554                            bool IsNegative) {
2555   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2556   if (IsNegative)
2557     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2558                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2559   return Op;
2560 }
2561 
2562 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2563                                               SelectionDAG &DAG) const {
2564   SDValue CmpOp0   = Op.getOperand(0);
2565   SDValue CmpOp1   = Op.getOperand(1);
2566   SDValue TrueOp   = Op.getOperand(2);
2567   SDValue FalseOp  = Op.getOperand(3);
2568   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2569   SDLoc DL(Op);
2570 
2571   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2572 
2573   // Check for absolute and negative-absolute selections, including those
2574   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2575   // This check supplements the one in DAGCombiner.
2576   if (C.Opcode == SystemZISD::ICMP &&
2577       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2578       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2579       C.Op1.getOpcode() == ISD::Constant &&
2580       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2581     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2582       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2583     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2584       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2585   }
2586 
2587   SDValue Glue = emitCmp(DAG, DL, C);
2588   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2589                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2590 
2591   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2592 }
2593 
2594 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2595                                                   SelectionDAG &DAG) const {
2596   SDLoc DL(Node);
2597   const GlobalValue *GV = Node->getGlobal();
2598   int64_t Offset = Node->getOffset();
2599   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2600   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2601 
2602   SDValue Result;
2603   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2604     // Assign anchors at 1<<12 byte boundaries.
2605     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2606     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2607     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2608 
2609     // The offset can be folded into the address if it is aligned to a halfword.
2610     Offset -= Anchor;
2611     if (Offset != 0 && (Offset & 1) == 0) {
2612       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2613       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2614       Offset = 0;
2615     }
2616   } else {
2617     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2618     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2619     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2620                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2621   }
2622 
2623   // If there was a non-zero offset that we didn't fold, create an explicit
2624   // addition for it.
2625   if (Offset != 0)
2626     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2627                          DAG.getConstant(Offset, DL, PtrVT));
2628 
2629   return Result;
2630 }
2631 
2632 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2633                                                  SelectionDAG &DAG,
2634                                                  unsigned Opcode,
2635                                                  SDValue GOTOffset) const {
2636   SDLoc DL(Node);
2637   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2638   SDValue Chain = DAG.getEntryNode();
2639   SDValue Glue;
2640 
2641   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2642   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2643   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2644   Glue = Chain.getValue(1);
2645   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2646   Glue = Chain.getValue(1);
2647 
2648   // The first call operand is the chain and the second is the TLS symbol.
2649   SmallVector<SDValue, 8> Ops;
2650   Ops.push_back(Chain);
2651   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2652                                            Node->getValueType(0),
2653                                            0, 0));
2654 
2655   // Add argument registers to the end of the list so that they are
2656   // known live into the call.
2657   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2658   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2659 
2660   // Add a register mask operand representing the call-preserved registers.
2661   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2662   const uint32_t *Mask =
2663       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2664   assert(Mask && "Missing call preserved mask for calling convention");
2665   Ops.push_back(DAG.getRegisterMask(Mask));
2666 
2667   // Glue the call to the argument copies.
2668   Ops.push_back(Glue);
2669 
2670   // Emit the call.
2671   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2672   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2673   Glue = Chain.getValue(1);
2674 
2675   // Copy the return value from %r2.
2676   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2677 }
2678 
2679 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2680                                                   SelectionDAG &DAG) const {
2681   SDValue Chain = DAG.getEntryNode();
2682   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2683 
2684   // The high part of the thread pointer is in access register 0.
2685   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2686   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2687 
2688   // The low part of the thread pointer is in access register 1.
2689   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2690   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2691 
2692   // Merge them into a single 64-bit address.
2693   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2694                                     DAG.getConstant(32, DL, PtrVT));
2695   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2696 }
2697 
2698 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2699                                                      SelectionDAG &DAG) const {
2700   if (DAG.getTarget().useEmulatedTLS())
2701     return LowerToTLSEmulatedModel(Node, DAG);
2702   SDLoc DL(Node);
2703   const GlobalValue *GV = Node->getGlobal();
2704   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2705   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2706 
2707   SDValue TP = lowerThreadPointer(DL, DAG);
2708 
2709   // Get the offset of GA from the thread pointer, based on the TLS model.
2710   SDValue Offset;
2711   switch (model) {
2712     case TLSModel::GeneralDynamic: {
2713       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2714       SystemZConstantPoolValue *CPV =
2715         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2716 
2717       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2718       Offset = DAG.getLoad(
2719           PtrVT, DL, DAG.getEntryNode(), Offset,
2720           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2721 
2722       // Call __tls_get_offset to retrieve the offset.
2723       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2724       break;
2725     }
2726 
2727     case TLSModel::LocalDynamic: {
2728       // Load the GOT offset of the module ID.
2729       SystemZConstantPoolValue *CPV =
2730         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2731 
2732       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2733       Offset = DAG.getLoad(
2734           PtrVT, DL, DAG.getEntryNode(), Offset,
2735           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2736 
2737       // Call __tls_get_offset to retrieve the module base offset.
2738       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2739 
2740       // Note: The SystemZLDCleanupPass will remove redundant computations
2741       // of the module base offset.  Count total number of local-dynamic
2742       // accesses to trigger execution of that pass.
2743       SystemZMachineFunctionInfo* MFI =
2744         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2745       MFI->incNumLocalDynamicTLSAccesses();
2746 
2747       // Add the per-symbol offset.
2748       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2749 
2750       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2751       DTPOffset = DAG.getLoad(
2752           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2753           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2754 
2755       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2756       break;
2757     }
2758 
2759     case TLSModel::InitialExec: {
2760       // Load the offset from the GOT.
2761       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2762                                           SystemZII::MO_INDNTPOFF);
2763       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2764       Offset =
2765           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2766                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2767       break;
2768     }
2769 
2770     case TLSModel::LocalExec: {
2771       // Force the offset into the constant pool and load it from there.
2772       SystemZConstantPoolValue *CPV =
2773         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2774 
2775       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2776       Offset = DAG.getLoad(
2777           PtrVT, DL, DAG.getEntryNode(), Offset,
2778           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2779       break;
2780     }
2781   }
2782 
2783   // Add the base and offset together.
2784   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2785 }
2786 
2787 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2788                                                  SelectionDAG &DAG) const {
2789   SDLoc DL(Node);
2790   const BlockAddress *BA = Node->getBlockAddress();
2791   int64_t Offset = Node->getOffset();
2792   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2793 
2794   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2795   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2796   return Result;
2797 }
2798 
2799 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2800                                               SelectionDAG &DAG) const {
2801   SDLoc DL(JT);
2802   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2803   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2804 
2805   // Use LARL to load the address of the table.
2806   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2807 }
2808 
2809 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2810                                                  SelectionDAG &DAG) const {
2811   SDLoc DL(CP);
2812   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2813 
2814   SDValue Result;
2815   if (CP->isMachineConstantPoolEntry())
2816     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2817                                        CP->getAlignment());
2818   else
2819     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2820                                        CP->getAlignment(), CP->getOffset());
2821 
2822   // Use LARL to load the address of the constant pool entry.
2823   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2824 }
2825 
2826 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2827                                               SelectionDAG &DAG) const {
2828   MachineFunction &MF = DAG.getMachineFunction();
2829   MachineFrameInfo &MFI = MF.getFrameInfo();
2830   MFI.setFrameAddressIsTaken(true);
2831 
2832   SDLoc DL(Op);
2833   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2834   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2835 
2836   // If the back chain frame index has not been allocated yet, do so.
2837   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2838   int BackChainIdx = FI->getFramePointerSaveIndex();
2839   if (!BackChainIdx) {
2840     // By definition, the frame address is the address of the back chain.
2841     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2842     FI->setFramePointerSaveIndex(BackChainIdx);
2843   }
2844   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2845 
2846   // FIXME The frontend should detect this case.
2847   if (Depth > 0) {
2848     report_fatal_error("Unsupported stack frame traversal count");
2849   }
2850 
2851   return BackChain;
2852 }
2853 
2854 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2855                                                SelectionDAG &DAG) const {
2856   MachineFunction &MF = DAG.getMachineFunction();
2857   MachineFrameInfo &MFI = MF.getFrameInfo();
2858   MFI.setReturnAddressIsTaken(true);
2859 
2860   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2861     return SDValue();
2862 
2863   SDLoc DL(Op);
2864   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2865   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2866 
2867   // FIXME The frontend should detect this case.
2868   if (Depth > 0) {
2869     report_fatal_error("Unsupported stack frame traversal count");
2870   }
2871 
2872   // Return R14D, which has the return address. Mark it an implicit live-in.
2873   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2874   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2875 }
2876 
2877 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2878                                             SelectionDAG &DAG) const {
2879   SDLoc DL(Op);
2880   SDValue In = Op.getOperand(0);
2881   EVT InVT = In.getValueType();
2882   EVT ResVT = Op.getValueType();
2883 
2884   // Convert loads directly.  This is normally done by DAGCombiner,
2885   // but we need this case for bitcasts that are created during lowering
2886   // and which are then lowered themselves.
2887   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2888     if (ISD::isNormalLoad(LoadN)) {
2889       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2890                                     LoadN->getBasePtr(), LoadN->getMemOperand());
2891       // Update the chain uses.
2892       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2893       return NewLoad;
2894     }
2895 
2896   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2897     SDValue In64;
2898     if (Subtarget.hasHighWord()) {
2899       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2900                                        MVT::i64);
2901       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2902                                        MVT::i64, SDValue(U64, 0), In);
2903     } else {
2904       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2905       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2906                          DAG.getConstant(32, DL, MVT::i64));
2907     }
2908     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2909     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2910                                       DL, MVT::f32, Out64);
2911   }
2912   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2913     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2914     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2915                                              MVT::f64, SDValue(U64, 0), In);
2916     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2917     if (Subtarget.hasHighWord())
2918       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2919                                         MVT::i32, Out64);
2920     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2921                                 DAG.getConstant(32, DL, MVT::i64));
2922     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2923   }
2924   llvm_unreachable("Unexpected bitcast combination");
2925 }
2926 
2927 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2928                                             SelectionDAG &DAG) const {
2929   MachineFunction &MF = DAG.getMachineFunction();
2930   SystemZMachineFunctionInfo *FuncInfo =
2931     MF.getInfo<SystemZMachineFunctionInfo>();
2932   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2933 
2934   SDValue Chain   = Op.getOperand(0);
2935   SDValue Addr    = Op.getOperand(1);
2936   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2937   SDLoc DL(Op);
2938 
2939   // The initial values of each field.
2940   const unsigned NumFields = 4;
2941   SDValue Fields[NumFields] = {
2942     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2943     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2944     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2945     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2946   };
2947 
2948   // Store each field into its respective slot.
2949   SDValue MemOps[NumFields];
2950   unsigned Offset = 0;
2951   for (unsigned I = 0; I < NumFields; ++I) {
2952     SDValue FieldAddr = Addr;
2953     if (Offset != 0)
2954       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2955                               DAG.getIntPtrConstant(Offset, DL));
2956     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2957                              MachinePointerInfo(SV, Offset));
2958     Offset += 8;
2959   }
2960   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2961 }
2962 
2963 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2964                                            SelectionDAG &DAG) const {
2965   SDValue Chain      = Op.getOperand(0);
2966   SDValue DstPtr     = Op.getOperand(1);
2967   SDValue SrcPtr     = Op.getOperand(2);
2968   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2969   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2970   SDLoc DL(Op);
2971 
2972   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2973                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2974                        /*isTailCall*/false,
2975                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2976 }
2977 
2978 SDValue SystemZTargetLowering::
2979 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2980   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2981   MachineFunction &MF = DAG.getMachineFunction();
2982   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
2983   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
2984 
2985   SDValue Chain = Op.getOperand(0);
2986   SDValue Size  = Op.getOperand(1);
2987   SDValue Align = Op.getOperand(2);
2988   SDLoc DL(Op);
2989 
2990   // If user has set the no alignment function attribute, ignore
2991   // alloca alignments.
2992   uint64_t AlignVal = (RealignOpt ?
2993                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2994 
2995   uint64_t StackAlign = TFI->getStackAlignment();
2996   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2997   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2998 
2999   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3000   SDValue NeededSpace = Size;
3001 
3002   // Get a reference to the stack pointer.
3003   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3004 
3005   // If we need a backchain, save it now.
3006   SDValue Backchain;
3007   if (StoreBackchain)
3008     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3009 
3010   // Add extra space for alignment if needed.
3011   if (ExtraAlignSpace)
3012     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3013                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3014 
3015   // Get the new stack pointer value.
3016   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3017 
3018   // Copy the new stack pointer back.
3019   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3020 
3021   // The allocated data lives above the 160 bytes allocated for the standard
3022   // frame, plus any outgoing stack arguments.  We don't know how much that
3023   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3024   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3025   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3026 
3027   // Dynamically realign if needed.
3028   if (RequiredAlign > StackAlign) {
3029     Result =
3030       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3031                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3032     Result =
3033       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3034                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3035   }
3036 
3037   if (StoreBackchain)
3038     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3039 
3040   SDValue Ops[2] = { Result, Chain };
3041   return DAG.getMergeValues(Ops, DL);
3042 }
3043 
3044 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3045     SDValue Op, SelectionDAG &DAG) const {
3046   SDLoc DL(Op);
3047 
3048   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3049 }
3050 
3051 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3052                                               SelectionDAG &DAG) const {
3053   EVT VT = Op.getValueType();
3054   SDLoc DL(Op);
3055   SDValue Ops[2];
3056   if (is32Bit(VT))
3057     // Just do a normal 64-bit multiplication and extract the results.
3058     // We define this so that it can be used for constant division.
3059     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3060                     Op.getOperand(1), Ops[1], Ops[0]);
3061   else if (Subtarget.hasMiscellaneousExtensions2())
3062     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3063     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3064     // return the low half first, so the results are in reverse order.
3065     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3066                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3067   else {
3068     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3069     //
3070     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3071     //
3072     // but using the fact that the upper halves are either all zeros
3073     // or all ones:
3074     //
3075     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3076     //
3077     // and grouping the right terms together since they are quicker than the
3078     // multiplication:
3079     //
3080     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3081     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3082     SDValue LL = Op.getOperand(0);
3083     SDValue RL = Op.getOperand(1);
3084     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3085     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3086     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3087     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3088     // return the low half first, so the results are in reverse order.
3089     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3090                      LL, RL, Ops[1], Ops[0]);
3091     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3092     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3093     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3094     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3095   }
3096   return DAG.getMergeValues(Ops, DL);
3097 }
3098 
3099 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3100                                               SelectionDAG &DAG) const {
3101   EVT VT = Op.getValueType();
3102   SDLoc DL(Op);
3103   SDValue Ops[2];
3104   if (is32Bit(VT))
3105     // Just do a normal 64-bit multiplication and extract the results.
3106     // We define this so that it can be used for constant division.
3107     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3108                     Op.getOperand(1), Ops[1], Ops[0]);
3109   else
3110     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3111     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3112     // return the low half first, so the results are in reverse order.
3113     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3114                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3115   return DAG.getMergeValues(Ops, DL);
3116 }
3117 
3118 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3119                                             SelectionDAG &DAG) const {
3120   SDValue Op0 = Op.getOperand(0);
3121   SDValue Op1 = Op.getOperand(1);
3122   EVT VT = Op.getValueType();
3123   SDLoc DL(Op);
3124 
3125   // We use DSGF for 32-bit division.  This means the first operand must
3126   // always be 64-bit, and the second operand should be 32-bit whenever
3127   // that is possible, to improve performance.
3128   if (is32Bit(VT))
3129     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3130   else if (DAG.ComputeNumSignBits(Op1) > 32)
3131     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3132 
3133   // DSG(F) returns the remainder in the even register and the
3134   // quotient in the odd register.
3135   SDValue Ops[2];
3136   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3137   return DAG.getMergeValues(Ops, DL);
3138 }
3139 
3140 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3141                                             SelectionDAG &DAG) const {
3142   EVT VT = Op.getValueType();
3143   SDLoc DL(Op);
3144 
3145   // DL(G) returns the remainder in the even register and the
3146   // quotient in the odd register.
3147   SDValue Ops[2];
3148   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3149                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3150   return DAG.getMergeValues(Ops, DL);
3151 }
3152 
3153 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3154   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3155 
3156   // Get the known-zero masks for each operand.
3157   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3158   KnownBits Known[2];
3159   DAG.computeKnownBits(Ops[0], Known[0]);
3160   DAG.computeKnownBits(Ops[1], Known[1]);
3161 
3162   // See if the upper 32 bits of one operand and the lower 32 bits of the
3163   // other are known zero.  They are the low and high operands respectively.
3164   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3165                        Known[1].Zero.getZExtValue() };
3166   unsigned High, Low;
3167   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3168     High = 1, Low = 0;
3169   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3170     High = 0, Low = 1;
3171   else
3172     return Op;
3173 
3174   SDValue LowOp = Ops[Low];
3175   SDValue HighOp = Ops[High];
3176 
3177   // If the high part is a constant, we're better off using IILH.
3178   if (HighOp.getOpcode() == ISD::Constant)
3179     return Op;
3180 
3181   // If the low part is a constant that is outside the range of LHI,
3182   // then we're better off using IILF.
3183   if (LowOp.getOpcode() == ISD::Constant) {
3184     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3185     if (!isInt<16>(Value))
3186       return Op;
3187   }
3188 
3189   // Check whether the high part is an AND that doesn't change the
3190   // high 32 bits and just masks out low bits.  We can skip it if so.
3191   if (HighOp.getOpcode() == ISD::AND &&
3192       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3193     SDValue HighOp0 = HighOp.getOperand(0);
3194     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3195     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3196       HighOp = HighOp0;
3197   }
3198 
3199   // Take advantage of the fact that all GR32 operations only change the
3200   // low 32 bits by truncating Low to an i32 and inserting it directly
3201   // using a subreg.  The interesting cases are those where the truncation
3202   // can be folded.
3203   SDLoc DL(Op);
3204   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3205   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3206                                    MVT::i64, HighOp, Low32);
3207 }
3208 
3209 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3210                                           SelectionDAG &DAG) const {
3211   EVT VT = Op.getValueType();
3212   SDLoc DL(Op);
3213   Op = Op.getOperand(0);
3214 
3215   // Handle vector types via VPOPCT.
3216   if (VT.isVector()) {
3217     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3218     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3219     switch (VT.getScalarSizeInBits()) {
3220     case 8:
3221       break;
3222     case 16: {
3223       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3224       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3225       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3226       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3227       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3228       break;
3229     }
3230     case 32: {
3231       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3232                                 DAG.getConstant(0, DL, MVT::i32));
3233       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3234       break;
3235     }
3236     case 64: {
3237       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3238                                 DAG.getConstant(0, DL, MVT::i32));
3239       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3240       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3241       break;
3242     }
3243     default:
3244       llvm_unreachable("Unexpected type");
3245     }
3246     return Op;
3247   }
3248 
3249   // Get the known-zero mask for the operand.
3250   KnownBits Known;
3251   DAG.computeKnownBits(Op, Known);
3252   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3253   if (NumSignificantBits == 0)
3254     return DAG.getConstant(0, DL, VT);
3255 
3256   // Skip known-zero high parts of the operand.
3257   int64_t OrigBitSize = VT.getSizeInBits();
3258   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3259   BitSize = std::min(BitSize, OrigBitSize);
3260 
3261   // The POPCNT instruction counts the number of bits in each byte.
3262   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3263   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3264   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3265 
3266   // Add up per-byte counts in a binary tree.  All bits of Op at
3267   // position larger than BitSize remain zero throughout.
3268   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3269     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3270     if (BitSize != OrigBitSize)
3271       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3272                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3273     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3274   }
3275 
3276   // Extract overall result from high byte.
3277   if (BitSize > 8)
3278     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3279                      DAG.getConstant(BitSize - 8, DL, VT));
3280 
3281   return Op;
3282 }
3283 
3284 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3285                                                  SelectionDAG &DAG) const {
3286   SDLoc DL(Op);
3287   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3288     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3289   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3290     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3291 
3292   // The only fence that needs an instruction is a sequentially-consistent
3293   // cross-thread fence.
3294   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3295       FenceSSID == SyncScope::System) {
3296     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3297                                       Op.getOperand(0)),
3298                    0);
3299   }
3300 
3301   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3302   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3303 }
3304 
3305 // Op is an atomic load.  Lower it into a normal volatile load.
3306 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3307                                                 SelectionDAG &DAG) const {
3308   auto *Node = cast<AtomicSDNode>(Op.getNode());
3309   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3310                         Node->getChain(), Node->getBasePtr(),
3311                         Node->getMemoryVT(), Node->getMemOperand());
3312 }
3313 
3314 // Op is an atomic store.  Lower it into a normal volatile store.
3315 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3316                                                  SelectionDAG &DAG) const {
3317   auto *Node = cast<AtomicSDNode>(Op.getNode());
3318   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3319                                     Node->getBasePtr(), Node->getMemoryVT(),
3320                                     Node->getMemOperand());
3321   // We have to enforce sequential consistency by performing a
3322   // serialization operation after the store.
3323   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3324     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3325                                        MVT::Other, Chain), 0);
3326   return Chain;
3327 }
3328 
3329 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3330 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3331 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3332                                                    SelectionDAG &DAG,
3333                                                    unsigned Opcode) const {
3334   auto *Node = cast<AtomicSDNode>(Op.getNode());
3335 
3336   // 32-bit operations need no code outside the main loop.
3337   EVT NarrowVT = Node->getMemoryVT();
3338   EVT WideVT = MVT::i32;
3339   if (NarrowVT == WideVT)
3340     return Op;
3341 
3342   int64_t BitSize = NarrowVT.getSizeInBits();
3343   SDValue ChainIn = Node->getChain();
3344   SDValue Addr = Node->getBasePtr();
3345   SDValue Src2 = Node->getVal();
3346   MachineMemOperand *MMO = Node->getMemOperand();
3347   SDLoc DL(Node);
3348   EVT PtrVT = Addr.getValueType();
3349 
3350   // Convert atomic subtracts of constants into additions.
3351   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3352     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3353       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3354       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3355     }
3356 
3357   // Get the address of the containing word.
3358   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3359                                     DAG.getConstant(-4, DL, PtrVT));
3360 
3361   // Get the number of bits that the word must be rotated left in order
3362   // to bring the field to the top bits of a GR32.
3363   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3364                                  DAG.getConstant(3, DL, PtrVT));
3365   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3366 
3367   // Get the complementing shift amount, for rotating a field in the top
3368   // bits back to its proper position.
3369   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3370                                     DAG.getConstant(0, DL, WideVT), BitShift);
3371 
3372   // Extend the source operand to 32 bits and prepare it for the inner loop.
3373   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3374   // operations require the source to be shifted in advance.  (This shift
3375   // can be folded if the source is constant.)  For AND and NAND, the lower
3376   // bits must be set, while for other opcodes they should be left clear.
3377   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3378     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3379                        DAG.getConstant(32 - BitSize, DL, WideVT));
3380   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3381       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3382     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3383                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3384 
3385   // Construct the ATOMIC_LOADW_* node.
3386   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3387   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3388                     DAG.getConstant(BitSize, DL, WideVT) };
3389   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3390                                              NarrowVT, MMO);
3391 
3392   // Rotate the result of the final CS so that the field is in the lower
3393   // bits of a GR32, then truncate it.
3394   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3395                                     DAG.getConstant(BitSize, DL, WideVT));
3396   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3397 
3398   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3399   return DAG.getMergeValues(RetOps, DL);
3400 }
3401 
3402 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3403 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3404 // operations into additions.
3405 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3406                                                     SelectionDAG &DAG) const {
3407   auto *Node = cast<AtomicSDNode>(Op.getNode());
3408   EVT MemVT = Node->getMemoryVT();
3409   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3410     // A full-width operation.
3411     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3412     SDValue Src2 = Node->getVal();
3413     SDValue NegSrc2;
3414     SDLoc DL(Src2);
3415 
3416     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3417       // Use an addition if the operand is constant and either LAA(G) is
3418       // available or the negative value is in the range of A(G)FHI.
3419       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3420       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3421         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3422     } else if (Subtarget.hasInterlockedAccess1())
3423       // Use LAA(G) if available.
3424       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3425                             Src2);
3426 
3427     if (NegSrc2.getNode())
3428       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3429                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3430                            Node->getMemOperand());
3431 
3432     // Use the node as-is.
3433     return Op;
3434   }
3435 
3436   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3437 }
3438 
3439 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3440 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3441                                                     SelectionDAG &DAG) const {
3442   auto *Node = cast<AtomicSDNode>(Op.getNode());
3443   SDValue ChainIn = Node->getOperand(0);
3444   SDValue Addr = Node->getOperand(1);
3445   SDValue CmpVal = Node->getOperand(2);
3446   SDValue SwapVal = Node->getOperand(3);
3447   MachineMemOperand *MMO = Node->getMemOperand();
3448   SDLoc DL(Node);
3449 
3450   // We have native support for 32-bit and 64-bit compare and swap, but we
3451   // still need to expand extracting the "success" result from the CC.
3452   EVT NarrowVT = Node->getMemoryVT();
3453   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3454   if (NarrowVT == WideVT) {
3455     SDVTList Tys = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3456     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3457     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3458                                                DL, Tys, Ops, NarrowVT, MMO);
3459     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3460                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3461 
3462     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3463     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3464     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3465     return SDValue();
3466   }
3467 
3468   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3469   // via a fullword ATOMIC_CMP_SWAPW operation.
3470   int64_t BitSize = NarrowVT.getSizeInBits();
3471   EVT PtrVT = Addr.getValueType();
3472 
3473   // Get the address of the containing word.
3474   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3475                                     DAG.getConstant(-4, DL, PtrVT));
3476 
3477   // Get the number of bits that the word must be rotated left in order
3478   // to bring the field to the top bits of a GR32.
3479   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3480                                  DAG.getConstant(3, DL, PtrVT));
3481   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3482 
3483   // Get the complementing shift amount, for rotating a field in the top
3484   // bits back to its proper position.
3485   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3486                                     DAG.getConstant(0, DL, WideVT), BitShift);
3487 
3488   // Construct the ATOMIC_CMP_SWAPW node.
3489   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3490   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3491                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3492   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3493                                              VTList, Ops, NarrowVT, MMO);
3494   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3495                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3496 
3497   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3498   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3499   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3500   return SDValue();
3501 }
3502 
3503 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3504                                               SelectionDAG &DAG) const {
3505   MachineFunction &MF = DAG.getMachineFunction();
3506   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3507   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3508                             SystemZ::R15D, Op.getValueType());
3509 }
3510 
3511 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3512                                                  SelectionDAG &DAG) const {
3513   MachineFunction &MF = DAG.getMachineFunction();
3514   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3515   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3516 
3517   SDValue Chain = Op.getOperand(0);
3518   SDValue NewSP = Op.getOperand(1);
3519   SDValue Backchain;
3520   SDLoc DL(Op);
3521 
3522   if (StoreBackchain) {
3523     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3524     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3525   }
3526 
3527   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3528 
3529   if (StoreBackchain)
3530     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3531 
3532   return Chain;
3533 }
3534 
3535 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3536                                              SelectionDAG &DAG) const {
3537   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3538   if (!IsData)
3539     // Just preserve the chain.
3540     return Op.getOperand(0);
3541 
3542   SDLoc DL(Op);
3543   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3544   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3545   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3546   SDValue Ops[] = {
3547     Op.getOperand(0),
3548     DAG.getConstant(Code, DL, MVT::i32),
3549     Op.getOperand(1)
3550   };
3551   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3552                                  Node->getVTList(), Ops,
3553                                  Node->getMemoryVT(), Node->getMemOperand());
3554 }
3555 
3556 // Return an i32 that contains the value of CC immediately after After,
3557 // whose final operand must be MVT::Glue.
3558 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3559   SDLoc DL(After);
3560   SDValue Glue = SDValue(After, After->getNumValues() - 1);
3561   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3562   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3563                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3564 }
3565 
3566 SDValue
3567 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3568                                               SelectionDAG &DAG) const {
3569   unsigned Opcode, CCValid;
3570   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3571     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3572     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3573     SDValue CC = getCCResult(DAG, Glued.getNode());
3574     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3575     return SDValue();
3576   }
3577 
3578   return SDValue();
3579 }
3580 
3581 SDValue
3582 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3583                                                SelectionDAG &DAG) const {
3584   unsigned Opcode, CCValid;
3585   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3586     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3587     SDValue CC = getCCResult(DAG, Glued.getNode());
3588     if (Op->getNumValues() == 1)
3589       return CC;
3590     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3591     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3592                        CC);
3593   }
3594 
3595   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3596   switch (Id) {
3597   case Intrinsic::thread_pointer:
3598     return lowerThreadPointer(SDLoc(Op), DAG);
3599 
3600   case Intrinsic::s390_vpdi:
3601     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3602                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3603 
3604   case Intrinsic::s390_vperm:
3605     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3606                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3607 
3608   case Intrinsic::s390_vuphb:
3609   case Intrinsic::s390_vuphh:
3610   case Intrinsic::s390_vuphf:
3611     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3612                        Op.getOperand(1));
3613 
3614   case Intrinsic::s390_vuplhb:
3615   case Intrinsic::s390_vuplhh:
3616   case Intrinsic::s390_vuplhf:
3617     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3618                        Op.getOperand(1));
3619 
3620   case Intrinsic::s390_vuplb:
3621   case Intrinsic::s390_vuplhw:
3622   case Intrinsic::s390_vuplf:
3623     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3624                        Op.getOperand(1));
3625 
3626   case Intrinsic::s390_vupllb:
3627   case Intrinsic::s390_vupllh:
3628   case Intrinsic::s390_vupllf:
3629     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3630                        Op.getOperand(1));
3631 
3632   case Intrinsic::s390_vsumb:
3633   case Intrinsic::s390_vsumh:
3634   case Intrinsic::s390_vsumgh:
3635   case Intrinsic::s390_vsumgf:
3636   case Intrinsic::s390_vsumqf:
3637   case Intrinsic::s390_vsumqg:
3638     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3639                        Op.getOperand(1), Op.getOperand(2));
3640   }
3641 
3642   return SDValue();
3643 }
3644 
3645 namespace {
3646 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3647 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3648 // Operand is the constant third operand, otherwise it is the number of
3649 // bytes in each element of the result.
3650 struct Permute {
3651   unsigned Opcode;
3652   unsigned Operand;
3653   unsigned char Bytes[SystemZ::VectorBytes];
3654 };
3655 }
3656 
3657 static const Permute PermuteForms[] = {
3658   // VMRHG
3659   { SystemZISD::MERGE_HIGH, 8,
3660     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3661   // VMRHF
3662   { SystemZISD::MERGE_HIGH, 4,
3663     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3664   // VMRHH
3665   { SystemZISD::MERGE_HIGH, 2,
3666     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3667   // VMRHB
3668   { SystemZISD::MERGE_HIGH, 1,
3669     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3670   // VMRLG
3671   { SystemZISD::MERGE_LOW, 8,
3672     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3673   // VMRLF
3674   { SystemZISD::MERGE_LOW, 4,
3675     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3676   // VMRLH
3677   { SystemZISD::MERGE_LOW, 2,
3678     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3679   // VMRLB
3680   { SystemZISD::MERGE_LOW, 1,
3681     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3682   // VPKG
3683   { SystemZISD::PACK, 4,
3684     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3685   // VPKF
3686   { SystemZISD::PACK, 2,
3687     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3688   // VPKH
3689   { SystemZISD::PACK, 1,
3690     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3691   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3692   { SystemZISD::PERMUTE_DWORDS, 4,
3693     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3694   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3695   { SystemZISD::PERMUTE_DWORDS, 1,
3696     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3697 };
3698 
3699 // Called after matching a vector shuffle against a particular pattern.
3700 // Both the original shuffle and the pattern have two vector operands.
3701 // OpNos[0] is the operand of the original shuffle that should be used for
3702 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3703 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3704 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3705 // for operands 0 and 1 of the pattern.
3706 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3707   if (OpNos[0] < 0) {
3708     if (OpNos[1] < 0)
3709       return false;
3710     OpNo0 = OpNo1 = OpNos[1];
3711   } else if (OpNos[1] < 0) {
3712     OpNo0 = OpNo1 = OpNos[0];
3713   } else {
3714     OpNo0 = OpNos[0];
3715     OpNo1 = OpNos[1];
3716   }
3717   return true;
3718 }
3719 
3720 // Bytes is a VPERM-like permute vector, except that -1 is used for
3721 // undefined bytes.  Return true if the VPERM can be implemented using P.
3722 // When returning true set OpNo0 to the VPERM operand that should be
3723 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3724 //
3725 // For example, if swapping the VPERM operands allows P to match, OpNo0
3726 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3727 // operand, but rewriting it to use two duplicated operands allows it to
3728 // match P, then OpNo0 and OpNo1 will be the same.
3729 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3730                          unsigned &OpNo0, unsigned &OpNo1) {
3731   int OpNos[] = { -1, -1 };
3732   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3733     int Elt = Bytes[I];
3734     if (Elt >= 0) {
3735       // Make sure that the two permute vectors use the same suboperand
3736       // byte number.  Only the operand numbers (the high bits) are
3737       // allowed to differ.
3738       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3739         return false;
3740       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3741       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3742       // Make sure that the operand mappings are consistent with previous
3743       // elements.
3744       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3745         return false;
3746       OpNos[ModelOpNo] = RealOpNo;
3747     }
3748   }
3749   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3750 }
3751 
3752 // As above, but search for a matching permute.
3753 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3754                                    unsigned &OpNo0, unsigned &OpNo1) {
3755   for (auto &P : PermuteForms)
3756     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3757       return &P;
3758   return nullptr;
3759 }
3760 
3761 // Bytes is a VPERM-like permute vector, except that -1 is used for
3762 // undefined bytes.  This permute is an operand of an outer permute.
3763 // See whether redistributing the -1 bytes gives a shuffle that can be
3764 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3765 // that, when applied to the result of P, gives the original permute in Bytes.
3766 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3767                                const Permute &P,
3768                                SmallVectorImpl<int> &Transform) {
3769   unsigned To = 0;
3770   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3771     int Elt = Bytes[From];
3772     if (Elt < 0)
3773       // Byte number From of the result is undefined.
3774       Transform[From] = -1;
3775     else {
3776       while (P.Bytes[To] != Elt) {
3777         To += 1;
3778         if (To == SystemZ::VectorBytes)
3779           return false;
3780       }
3781       Transform[From] = To;
3782     }
3783   }
3784   return true;
3785 }
3786 
3787 // As above, but search for a matching permute.
3788 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3789                                          SmallVectorImpl<int> &Transform) {
3790   for (auto &P : PermuteForms)
3791     if (matchDoublePermute(Bytes, P, Transform))
3792       return &P;
3793   return nullptr;
3794 }
3795 
3796 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3797 // as if it had type vNi8.
3798 static void getVPermMask(ShuffleVectorSDNode *VSN,
3799                          SmallVectorImpl<int> &Bytes) {
3800   EVT VT = VSN->getValueType(0);
3801   unsigned NumElements = VT.getVectorNumElements();
3802   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3803   Bytes.resize(NumElements * BytesPerElement, -1);
3804   for (unsigned I = 0; I < NumElements; ++I) {
3805     int Index = VSN->getMaskElt(I);
3806     if (Index >= 0)
3807       for (unsigned J = 0; J < BytesPerElement; ++J)
3808         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3809   }
3810 }
3811 
3812 // Bytes is a VPERM-like permute vector, except that -1 is used for
3813 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3814 // the result come from a contiguous sequence of bytes from one input.
3815 // Set Base to the selector for the first byte if so.
3816 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3817                             unsigned BytesPerElement, int &Base) {
3818   Base = -1;
3819   for (unsigned I = 0; I < BytesPerElement; ++I) {
3820     if (Bytes[Start + I] >= 0) {
3821       unsigned Elem = Bytes[Start + I];
3822       if (Base < 0) {
3823         Base = Elem - I;
3824         // Make sure the bytes would come from one input operand.
3825         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3826           return false;
3827       } else if (unsigned(Base) != Elem - I)
3828         return false;
3829     }
3830   }
3831   return true;
3832 }
3833 
3834 // Bytes is a VPERM-like permute vector, except that -1 is used for
3835 // undefined bytes.  Return true if it can be performed using VSLDI.
3836 // When returning true, set StartIndex to the shift amount and OpNo0
3837 // and OpNo1 to the VPERM operands that should be used as the first
3838 // and second shift operand respectively.
3839 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3840                                unsigned &StartIndex, unsigned &OpNo0,
3841                                unsigned &OpNo1) {
3842   int OpNos[] = { -1, -1 };
3843   int Shift = -1;
3844   for (unsigned I = 0; I < 16; ++I) {
3845     int Index = Bytes[I];
3846     if (Index >= 0) {
3847       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3848       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3849       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3850       if (Shift < 0)
3851         Shift = ExpectedShift;
3852       else if (Shift != ExpectedShift)
3853         return false;
3854       // Make sure that the operand mappings are consistent with previous
3855       // elements.
3856       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3857         return false;
3858       OpNos[ModelOpNo] = RealOpNo;
3859     }
3860   }
3861   StartIndex = Shift;
3862   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3863 }
3864 
3865 // Create a node that performs P on operands Op0 and Op1, casting the
3866 // operands to the appropriate type.  The type of the result is determined by P.
3867 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3868                               const Permute &P, SDValue Op0, SDValue Op1) {
3869   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3870   // elements of a PACK are twice as wide as the outputs.
3871   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3872                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3873                       P.Operand);
3874   // Cast both operands to the appropriate type.
3875   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3876                               SystemZ::VectorBytes / InBytes);
3877   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3878   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3879   SDValue Op;
3880   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3881     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3882     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3883   } else if (P.Opcode == SystemZISD::PACK) {
3884     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3885                                  SystemZ::VectorBytes / P.Operand);
3886     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3887   } else {
3888     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3889   }
3890   return Op;
3891 }
3892 
3893 // Bytes is a VPERM-like permute vector, except that -1 is used for
3894 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3895 // VSLDI or VPERM.
3896 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3897                                      SDValue *Ops,
3898                                      const SmallVectorImpl<int> &Bytes) {
3899   for (unsigned I = 0; I < 2; ++I)
3900     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3901 
3902   // First see whether VSLDI can be used.
3903   unsigned StartIndex, OpNo0, OpNo1;
3904   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3905     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3906                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3907 
3908   // Fall back on VPERM.  Construct an SDNode for the permute vector.
3909   SDValue IndexNodes[SystemZ::VectorBytes];
3910   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3911     if (Bytes[I] >= 0)
3912       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3913     else
3914       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3915   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3916   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3917 }
3918 
3919 namespace {
3920 // Describes a general N-operand vector shuffle.
3921 struct GeneralShuffle {
3922   GeneralShuffle(EVT vt) : VT(vt) {}
3923   void addUndef();
3924   bool add(SDValue, unsigned);
3925   SDValue getNode(SelectionDAG &, const SDLoc &);
3926 
3927   // The operands of the shuffle.
3928   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3929 
3930   // Index I is -1 if byte I of the result is undefined.  Otherwise the
3931   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3932   // Bytes[I] / SystemZ::VectorBytes.
3933   SmallVector<int, SystemZ::VectorBytes> Bytes;
3934 
3935   // The type of the shuffle result.
3936   EVT VT;
3937 };
3938 }
3939 
3940 // Add an extra undefined element to the shuffle.
3941 void GeneralShuffle::addUndef() {
3942   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3943   for (unsigned I = 0; I < BytesPerElement; ++I)
3944     Bytes.push_back(-1);
3945 }
3946 
3947 // Add an extra element to the shuffle, taking it from element Elem of Op.
3948 // A null Op indicates a vector input whose value will be calculated later;
3949 // there is at most one such input per shuffle and it always has the same
3950 // type as the result. Aborts and returns false if the source vector elements
3951 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
3952 // LLVM they become implicitly extended, but this is rare and not optimized.
3953 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
3954   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3955 
3956   // The source vector can have wider elements than the result,
3957   // either through an explicit TRUNCATE or because of type legalization.
3958   // We want the least significant part.
3959   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3960   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3961 
3962   // Return false if the source elements are smaller than their destination
3963   // elements.
3964   if (FromBytesPerElement < BytesPerElement)
3965     return false;
3966 
3967   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3968                    (FromBytesPerElement - BytesPerElement));
3969 
3970   // Look through things like shuffles and bitcasts.
3971   while (Op.getNode()) {
3972     if (Op.getOpcode() == ISD::BITCAST)
3973       Op = Op.getOperand(0);
3974     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3975       // See whether the bytes we need come from a contiguous part of one
3976       // operand.
3977       SmallVector<int, SystemZ::VectorBytes> OpBytes;
3978       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3979       int NewByte;
3980       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3981         break;
3982       if (NewByte < 0) {
3983         addUndef();
3984         return true;
3985       }
3986       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3987       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3988     } else if (Op.isUndef()) {
3989       addUndef();
3990       return true;
3991     } else
3992       break;
3993   }
3994 
3995   // Make sure that the source of the extraction is in Ops.
3996   unsigned OpNo = 0;
3997   for (; OpNo < Ops.size(); ++OpNo)
3998     if (Ops[OpNo] == Op)
3999       break;
4000   if (OpNo == Ops.size())
4001     Ops.push_back(Op);
4002 
4003   // Add the element to Bytes.
4004   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4005   for (unsigned I = 0; I < BytesPerElement; ++I)
4006     Bytes.push_back(Base + I);
4007 
4008   return true;
4009 }
4010 
4011 // Return SDNodes for the completed shuffle.
4012 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4013   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4014 
4015   if (Ops.size() == 0)
4016     return DAG.getUNDEF(VT);
4017 
4018   // Make sure that there are at least two shuffle operands.
4019   if (Ops.size() == 1)
4020     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4021 
4022   // Create a tree of shuffles, deferring root node until after the loop.
4023   // Try to redistribute the undefined elements of non-root nodes so that
4024   // the non-root shuffles match something like a pack or merge, then adjust
4025   // the parent node's permute vector to compensate for the new order.
4026   // Among other things, this copes with vectors like <2 x i16> that were
4027   // padded with undefined elements during type legalization.
4028   //
4029   // In the best case this redistribution will lead to the whole tree
4030   // using packs and merges.  It should rarely be a loss in other cases.
4031   unsigned Stride = 1;
4032   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4033     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4034       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4035 
4036       // Create a mask for just these two operands.
4037       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4038       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4039         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4040         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4041         if (OpNo == I)
4042           NewBytes[J] = Byte;
4043         else if (OpNo == I + Stride)
4044           NewBytes[J] = SystemZ::VectorBytes + Byte;
4045         else
4046           NewBytes[J] = -1;
4047       }
4048       // See if it would be better to reorganize NewMask to avoid using VPERM.
4049       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4050       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4051         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4052         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4053         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4054           if (NewBytes[J] >= 0) {
4055             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4056                    "Invalid double permute");
4057             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4058           } else
4059             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4060         }
4061       } else {
4062         // Just use NewBytes on the operands.
4063         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4064         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4065           if (NewBytes[J] >= 0)
4066             Bytes[J] = I * SystemZ::VectorBytes + J;
4067       }
4068     }
4069   }
4070 
4071   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4072   if (Stride > 1) {
4073     Ops[1] = Ops[Stride];
4074     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4075       if (Bytes[I] >= int(SystemZ::VectorBytes))
4076         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4077   }
4078 
4079   // Look for an instruction that can do the permute without resorting
4080   // to VPERM.
4081   unsigned OpNo0, OpNo1;
4082   SDValue Op;
4083   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4084     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4085   else
4086     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4087   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4088 }
4089 
4090 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4091 static bool isScalarToVector(SDValue Op) {
4092   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4093     if (!Op.getOperand(I).isUndef())
4094       return false;
4095   return true;
4096 }
4097 
4098 // Return a vector of type VT that contains Value in the first element.
4099 // The other elements don't matter.
4100 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4101                                    SDValue Value) {
4102   // If we have a constant, replicate it to all elements and let the
4103   // BUILD_VECTOR lowering take care of it.
4104   if (Value.getOpcode() == ISD::Constant ||
4105       Value.getOpcode() == ISD::ConstantFP) {
4106     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4107     return DAG.getBuildVector(VT, DL, Ops);
4108   }
4109   if (Value.isUndef())
4110     return DAG.getUNDEF(VT);
4111   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4112 }
4113 
4114 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4115 // element 1.  Used for cases in which replication is cheap.
4116 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4117                                  SDValue Op0, SDValue Op1) {
4118   if (Op0.isUndef()) {
4119     if (Op1.isUndef())
4120       return DAG.getUNDEF(VT);
4121     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4122   }
4123   if (Op1.isUndef())
4124     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4125   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4126                      buildScalarToVector(DAG, DL, VT, Op0),
4127                      buildScalarToVector(DAG, DL, VT, Op1));
4128 }
4129 
4130 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4131 // vector for them.
4132 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4133                           SDValue Op1) {
4134   if (Op0.isUndef() && Op1.isUndef())
4135     return DAG.getUNDEF(MVT::v2i64);
4136   // If one of the two inputs is undefined then replicate the other one,
4137   // in order to avoid using another register unnecessarily.
4138   if (Op0.isUndef())
4139     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4140   else if (Op1.isUndef())
4141     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4142   else {
4143     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4144     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4145   }
4146   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4147 }
4148 
4149 // Try to represent constant BUILD_VECTOR node BVN using a
4150 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4151 // on success.
4152 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4153   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4154   unsigned BytesPerElement = ElemVT.getStoreSize();
4155   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4156     SDValue Op = BVN->getOperand(I);
4157     if (!Op.isUndef()) {
4158       uint64_t Value;
4159       if (Op.getOpcode() == ISD::Constant)
4160         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4161       else if (Op.getOpcode() == ISD::ConstantFP)
4162         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4163                  .getZExtValue());
4164       else
4165         return false;
4166       for (unsigned J = 0; J < BytesPerElement; ++J) {
4167         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4168         if (Byte == 0xff)
4169           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4170         else if (Byte != 0)
4171           return false;
4172       }
4173     }
4174   }
4175   return true;
4176 }
4177 
4178 // Try to load a vector constant in which BitsPerElement-bit value Value
4179 // is replicated to fill the vector.  VT is the type of the resulting
4180 // constant, which may have elements of a different size from BitsPerElement.
4181 // Return the SDValue of the constant on success, otherwise return
4182 // an empty value.
4183 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4184                                        const SystemZInstrInfo *TII,
4185                                        const SDLoc &DL, EVT VT, uint64_t Value,
4186                                        unsigned BitsPerElement) {
4187   // Signed 16-bit values can be replicated using VREPI.
4188   // Mark the constants as opaque or DAGCombiner will convert back to
4189   // BUILD_VECTOR.
4190   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4191   if (isInt<16>(SignedValue)) {
4192     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4193                                  SystemZ::VectorBits / BitsPerElement);
4194     SDValue Op = DAG.getNode(
4195         SystemZISD::REPLICATE, DL, VecVT,
4196         DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/));
4197     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4198   }
4199   // See whether rotating the constant left some N places gives a value that
4200   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4201   // If so we can use VGM.
4202   unsigned Start, End;
4203   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4204     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4205     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4206     // bit numbers for an BitsPerElement value, so that 0 denotes
4207     // 1 << (BitsPerElement-1).
4208     Start -= 64 - BitsPerElement;
4209     End -= 64 - BitsPerElement;
4210     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4211                                  SystemZ::VectorBits / BitsPerElement);
4212     SDValue Op = DAG.getNode(
4213         SystemZISD::ROTATE_MASK, DL, VecVT,
4214         DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/),
4215         DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/));
4216     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4217   }
4218   return SDValue();
4219 }
4220 
4221 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4222 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4223 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4224 // would benefit from this representation and return it if so.
4225 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4226                                      BuildVectorSDNode *BVN) {
4227   EVT VT = BVN->getValueType(0);
4228   unsigned NumElements = VT.getVectorNumElements();
4229 
4230   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4231   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4232   // need a BUILD_VECTOR, add an additional placeholder operand for that
4233   // BUILD_VECTOR and store its operands in ResidueOps.
4234   GeneralShuffle GS(VT);
4235   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4236   bool FoundOne = false;
4237   for (unsigned I = 0; I < NumElements; ++I) {
4238     SDValue Op = BVN->getOperand(I);
4239     if (Op.getOpcode() == ISD::TRUNCATE)
4240       Op = Op.getOperand(0);
4241     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4242         Op.getOperand(1).getOpcode() == ISD::Constant) {
4243       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4244       if (!GS.add(Op.getOperand(0), Elem))
4245         return SDValue();
4246       FoundOne = true;
4247     } else if (Op.isUndef()) {
4248       GS.addUndef();
4249     } else {
4250       if (!GS.add(SDValue(), ResidueOps.size()))
4251         return SDValue();
4252       ResidueOps.push_back(BVN->getOperand(I));
4253     }
4254   }
4255 
4256   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4257   if (!FoundOne)
4258     return SDValue();
4259 
4260   // Create the BUILD_VECTOR for the remaining elements, if any.
4261   if (!ResidueOps.empty()) {
4262     while (ResidueOps.size() < NumElements)
4263       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4264     for (auto &Op : GS.Ops) {
4265       if (!Op.getNode()) {
4266         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4267         break;
4268       }
4269     }
4270   }
4271   return GS.getNode(DAG, SDLoc(BVN));
4272 }
4273 
4274 // Combine GPR scalar values Elems into a vector of type VT.
4275 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4276                            SmallVectorImpl<SDValue> &Elems) {
4277   // See whether there is a single replicated value.
4278   SDValue Single;
4279   unsigned int NumElements = Elems.size();
4280   unsigned int Count = 0;
4281   for (auto Elem : Elems) {
4282     if (!Elem.isUndef()) {
4283       if (!Single.getNode())
4284         Single = Elem;
4285       else if (Elem != Single) {
4286         Single = SDValue();
4287         break;
4288       }
4289       Count += 1;
4290     }
4291   }
4292   // There are three cases here:
4293   //
4294   // - if the only defined element is a loaded one, the best sequence
4295   //   is a replicating load.
4296   //
4297   // - otherwise, if the only defined element is an i64 value, we will
4298   //   end up with the same VLVGP sequence regardless of whether we short-cut
4299   //   for replication or fall through to the later code.
4300   //
4301   // - otherwise, if the only defined element is an i32 or smaller value,
4302   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4303   //   This is only a win if the single defined element is used more than once.
4304   //   In other cases we're better off using a single VLVGx.
4305   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4306     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4307 
4308   // If all elements are loads, use VLREP/VLEs (below).
4309   bool AllLoads = true;
4310   for (auto Elem : Elems)
4311     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4312       AllLoads = false;
4313       break;
4314     }
4315 
4316   // The best way of building a v2i64 from two i64s is to use VLVGP.
4317   if (VT == MVT::v2i64 && !AllLoads)
4318     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4319 
4320   // Use a 64-bit merge high to combine two doubles.
4321   if (VT == MVT::v2f64 && !AllLoads)
4322     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4323 
4324   // Build v4f32 values directly from the FPRs:
4325   //
4326   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4327   //         V              V         VMRHF
4328   //      <ABxx>         <CDxx>
4329   //                V                 VMRHG
4330   //              <ABCD>
4331   if (VT == MVT::v4f32 && !AllLoads) {
4332     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4333     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4334     // Avoid unnecessary undefs by reusing the other operand.
4335     if (Op01.isUndef())
4336       Op01 = Op23;
4337     else if (Op23.isUndef())
4338       Op23 = Op01;
4339     // Merging identical replications is a no-op.
4340     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4341       return Op01;
4342     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4343     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4344     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4345                              DL, MVT::v2i64, Op01, Op23);
4346     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4347   }
4348 
4349   // Collect the constant terms.
4350   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4351   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4352 
4353   unsigned NumConstants = 0;
4354   for (unsigned I = 0; I < NumElements; ++I) {
4355     SDValue Elem = Elems[I];
4356     if (Elem.getOpcode() == ISD::Constant ||
4357         Elem.getOpcode() == ISD::ConstantFP) {
4358       NumConstants += 1;
4359       Constants[I] = Elem;
4360       Done[I] = true;
4361     }
4362   }
4363   // If there was at least one constant, fill in the other elements of
4364   // Constants with undefs to get a full vector constant and use that
4365   // as the starting point.
4366   SDValue Result;
4367   if (NumConstants > 0) {
4368     for (unsigned I = 0; I < NumElements; ++I)
4369       if (!Constants[I].getNode())
4370         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4371     Result = DAG.getBuildVector(VT, DL, Constants);
4372   } else {
4373     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4374     // avoid a false dependency on any previous contents of the vector
4375     // register.
4376 
4377     // Use a VLREP if at least one element is a load.
4378     unsigned LoadElIdx = UINT_MAX;
4379     for (unsigned I = 0; I < NumElements; ++I)
4380       if (Elems[I].getOpcode() == ISD::LOAD &&
4381           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4382         LoadElIdx = I;
4383         break;
4384       }
4385     if (LoadElIdx != UINT_MAX) {
4386       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]);
4387       Done[LoadElIdx] = true;
4388     } else {
4389       // Try to use VLVGP.
4390       unsigned I1 = NumElements / 2 - 1;
4391       unsigned I2 = NumElements - 1;
4392       bool Def1 = !Elems[I1].isUndef();
4393       bool Def2 = !Elems[I2].isUndef();
4394       if (Def1 || Def2) {
4395         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4396         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4397         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4398                              joinDwords(DAG, DL, Elem1, Elem2));
4399         Done[I1] = true;
4400         Done[I2] = true;
4401       } else
4402         Result = DAG.getUNDEF(VT);
4403     }
4404   }
4405 
4406   // Use VLVGx to insert the other elements.
4407   for (unsigned I = 0; I < NumElements; ++I)
4408     if (!Done[I] && !Elems[I].isUndef())
4409       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4410                            DAG.getConstant(I, DL, MVT::i32));
4411   return Result;
4412 }
4413 
4414 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4415                                                  SelectionDAG &DAG) const {
4416   const SystemZInstrInfo *TII =
4417     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4418   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4419   SDLoc DL(Op);
4420   EVT VT = Op.getValueType();
4421 
4422   if (BVN->isConstant()) {
4423     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4424     // preferred way of creating all-zero and all-one vectors so give it
4425     // priority over other methods below.
4426     uint64_t Mask = 0;
4427     if (tryBuildVectorByteMask(BVN, Mask)) {
4428       SDValue Op = DAG.getNode(
4429           SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4430           DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/));
4431       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4432     }
4433 
4434     // Try using some form of replication.
4435     APInt SplatBits, SplatUndef;
4436     unsigned SplatBitSize;
4437     bool HasAnyUndefs;
4438     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4439                              8, true) &&
4440         SplatBitSize <= 64) {
4441       // First try assuming that any undefined bits above the highest set bit
4442       // and below the lowest set bit are 1s.  This increases the likelihood of
4443       // being able to use a sign-extended element value in VECTOR REPLICATE
4444       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4445       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4446       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4447       uint64_t Lower = (SplatUndefZ
4448                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4449       uint64_t Upper = (SplatUndefZ
4450                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4451       uint64_t Value = SplatBitsZ | Upper | Lower;
4452       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4453                                            SplatBitSize);
4454       if (Op.getNode())
4455         return Op;
4456 
4457       // Now try assuming that any undefined bits between the first and
4458       // last defined set bits are set.  This increases the chances of
4459       // using a non-wraparound mask.
4460       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4461       Value = SplatBitsZ | Middle;
4462       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4463       if (Op.getNode())
4464         return Op;
4465     }
4466 
4467     // Fall back to loading it from memory.
4468     return SDValue();
4469   }
4470 
4471   // See if we should use shuffles to construct the vector from other vectors.
4472   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4473     return Res;
4474 
4475   // Detect SCALAR_TO_VECTOR conversions.
4476   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4477     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4478 
4479   // Otherwise use buildVector to build the vector up from GPRs.
4480   unsigned NumElements = Op.getNumOperands();
4481   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4482   for (unsigned I = 0; I < NumElements; ++I)
4483     Ops[I] = Op.getOperand(I);
4484   return buildVector(DAG, DL, VT, Ops);
4485 }
4486 
4487 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4488                                                    SelectionDAG &DAG) const {
4489   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4490   SDLoc DL(Op);
4491   EVT VT = Op.getValueType();
4492   unsigned NumElements = VT.getVectorNumElements();
4493 
4494   if (VSN->isSplat()) {
4495     SDValue Op0 = Op.getOperand(0);
4496     unsigned Index = VSN->getSplatIndex();
4497     assert(Index < VT.getVectorNumElements() &&
4498            "Splat index should be defined and in first operand");
4499     // See whether the value we're splatting is directly available as a scalar.
4500     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4501         Op0.getOpcode() == ISD::BUILD_VECTOR)
4502       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4503     // Otherwise keep it as a vector-to-vector operation.
4504     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4505                        DAG.getConstant(Index, DL, MVT::i32));
4506   }
4507 
4508   GeneralShuffle GS(VT);
4509   for (unsigned I = 0; I < NumElements; ++I) {
4510     int Elt = VSN->getMaskElt(I);
4511     if (Elt < 0)
4512       GS.addUndef();
4513     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4514                      unsigned(Elt) % NumElements))
4515       return SDValue();
4516   }
4517   return GS.getNode(DAG, SDLoc(VSN));
4518 }
4519 
4520 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4521                                                      SelectionDAG &DAG) const {
4522   SDLoc DL(Op);
4523   // Just insert the scalar into element 0 of an undefined vector.
4524   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4525                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4526                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4527 }
4528 
4529 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4530                                                       SelectionDAG &DAG) const {
4531   // Handle insertions of floating-point values.
4532   SDLoc DL(Op);
4533   SDValue Op0 = Op.getOperand(0);
4534   SDValue Op1 = Op.getOperand(1);
4535   SDValue Op2 = Op.getOperand(2);
4536   EVT VT = Op.getValueType();
4537 
4538   // Insertions into constant indices of a v2f64 can be done using VPDI.
4539   // However, if the inserted value is a bitcast or a constant then it's
4540   // better to use GPRs, as below.
4541   if (VT == MVT::v2f64 &&
4542       Op1.getOpcode() != ISD::BITCAST &&
4543       Op1.getOpcode() != ISD::ConstantFP &&
4544       Op2.getOpcode() == ISD::Constant) {
4545     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4546     unsigned Mask = VT.getVectorNumElements() - 1;
4547     if (Index <= Mask)
4548       return Op;
4549   }
4550 
4551   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4552   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4553   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4554   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4555                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4556                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4557   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4558 }
4559 
4560 SDValue
4561 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4562                                                SelectionDAG &DAG) const {
4563   // Handle extractions of floating-point values.
4564   SDLoc DL(Op);
4565   SDValue Op0 = Op.getOperand(0);
4566   SDValue Op1 = Op.getOperand(1);
4567   EVT VT = Op.getValueType();
4568   EVT VecVT = Op0.getValueType();
4569 
4570   // Extractions of constant indices can be done directly.
4571   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4572     uint64_t Index = CIndexN->getZExtValue();
4573     unsigned Mask = VecVT.getVectorNumElements() - 1;
4574     if (Index <= Mask)
4575       return Op;
4576   }
4577 
4578   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4579   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4580   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4581   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4582                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4583   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4584 }
4585 
4586 SDValue
4587 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4588                                               unsigned UnpackHigh) const {
4589   SDValue PackedOp = Op.getOperand(0);
4590   EVT OutVT = Op.getValueType();
4591   EVT InVT = PackedOp.getValueType();
4592   unsigned ToBits = OutVT.getScalarSizeInBits();
4593   unsigned FromBits = InVT.getScalarSizeInBits();
4594   do {
4595     FromBits *= 2;
4596     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4597                                  SystemZ::VectorBits / FromBits);
4598     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4599   } while (FromBits != ToBits);
4600   return PackedOp;
4601 }
4602 
4603 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4604                                           unsigned ByScalar) const {
4605   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4606   SDValue Op0 = Op.getOperand(0);
4607   SDValue Op1 = Op.getOperand(1);
4608   SDLoc DL(Op);
4609   EVT VT = Op.getValueType();
4610   unsigned ElemBitSize = VT.getScalarSizeInBits();
4611 
4612   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4613   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4614     APInt SplatBits, SplatUndef;
4615     unsigned SplatBitSize;
4616     bool HasAnyUndefs;
4617     // Check for constant splats.  Use ElemBitSize as the minimum element
4618     // width and reject splats that need wider elements.
4619     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4620                              ElemBitSize, true) &&
4621         SplatBitSize == ElemBitSize) {
4622       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4623                                       DL, MVT::i32);
4624       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4625     }
4626     // Check for variable splats.
4627     BitVector UndefElements;
4628     SDValue Splat = BVN->getSplatValue(&UndefElements);
4629     if (Splat) {
4630       // Since i32 is the smallest legal type, we either need a no-op
4631       // or a truncation.
4632       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4633       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4634     }
4635   }
4636 
4637   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4638   // and the shift amount is directly available in a GPR.
4639   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4640     if (VSN->isSplat()) {
4641       SDValue VSNOp0 = VSN->getOperand(0);
4642       unsigned Index = VSN->getSplatIndex();
4643       assert(Index < VT.getVectorNumElements() &&
4644              "Splat index should be defined and in first operand");
4645       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4646           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4647         // Since i32 is the smallest legal type, we either need a no-op
4648         // or a truncation.
4649         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4650                                     VSNOp0.getOperand(Index));
4651         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4652       }
4653     }
4654   }
4655 
4656   // Otherwise just treat the current form as legal.
4657   return Op;
4658 }
4659 
4660 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4661                                               SelectionDAG &DAG) const {
4662   switch (Op.getOpcode()) {
4663   case ISD::FRAMEADDR:
4664     return lowerFRAMEADDR(Op, DAG);
4665   case ISD::RETURNADDR:
4666     return lowerRETURNADDR(Op, DAG);
4667   case ISD::BR_CC:
4668     return lowerBR_CC(Op, DAG);
4669   case ISD::SELECT_CC:
4670     return lowerSELECT_CC(Op, DAG);
4671   case ISD::SETCC:
4672     return lowerSETCC(Op, DAG);
4673   case ISD::GlobalAddress:
4674     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4675   case ISD::GlobalTLSAddress:
4676     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4677   case ISD::BlockAddress:
4678     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4679   case ISD::JumpTable:
4680     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4681   case ISD::ConstantPool:
4682     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4683   case ISD::BITCAST:
4684     return lowerBITCAST(Op, DAG);
4685   case ISD::VASTART:
4686     return lowerVASTART(Op, DAG);
4687   case ISD::VACOPY:
4688     return lowerVACOPY(Op, DAG);
4689   case ISD::DYNAMIC_STACKALLOC:
4690     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4691   case ISD::GET_DYNAMIC_AREA_OFFSET:
4692     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4693   case ISD::SMUL_LOHI:
4694     return lowerSMUL_LOHI(Op, DAG);
4695   case ISD::UMUL_LOHI:
4696     return lowerUMUL_LOHI(Op, DAG);
4697   case ISD::SDIVREM:
4698     return lowerSDIVREM(Op, DAG);
4699   case ISD::UDIVREM:
4700     return lowerUDIVREM(Op, DAG);
4701   case ISD::OR:
4702     return lowerOR(Op, DAG);
4703   case ISD::CTPOP:
4704     return lowerCTPOP(Op, DAG);
4705   case ISD::ATOMIC_FENCE:
4706     return lowerATOMIC_FENCE(Op, DAG);
4707   case ISD::ATOMIC_SWAP:
4708     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4709   case ISD::ATOMIC_STORE:
4710     return lowerATOMIC_STORE(Op, DAG);
4711   case ISD::ATOMIC_LOAD:
4712     return lowerATOMIC_LOAD(Op, DAG);
4713   case ISD::ATOMIC_LOAD_ADD:
4714     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4715   case ISD::ATOMIC_LOAD_SUB:
4716     return lowerATOMIC_LOAD_SUB(Op, DAG);
4717   case ISD::ATOMIC_LOAD_AND:
4718     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4719   case ISD::ATOMIC_LOAD_OR:
4720     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4721   case ISD::ATOMIC_LOAD_XOR:
4722     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4723   case ISD::ATOMIC_LOAD_NAND:
4724     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4725   case ISD::ATOMIC_LOAD_MIN:
4726     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4727   case ISD::ATOMIC_LOAD_MAX:
4728     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4729   case ISD::ATOMIC_LOAD_UMIN:
4730     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4731   case ISD::ATOMIC_LOAD_UMAX:
4732     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4733   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4734     return lowerATOMIC_CMP_SWAP(Op, DAG);
4735   case ISD::STACKSAVE:
4736     return lowerSTACKSAVE(Op, DAG);
4737   case ISD::STACKRESTORE:
4738     return lowerSTACKRESTORE(Op, DAG);
4739   case ISD::PREFETCH:
4740     return lowerPREFETCH(Op, DAG);
4741   case ISD::INTRINSIC_W_CHAIN:
4742     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4743   case ISD::INTRINSIC_WO_CHAIN:
4744     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4745   case ISD::BUILD_VECTOR:
4746     return lowerBUILD_VECTOR(Op, DAG);
4747   case ISD::VECTOR_SHUFFLE:
4748     return lowerVECTOR_SHUFFLE(Op, DAG);
4749   case ISD::SCALAR_TO_VECTOR:
4750     return lowerSCALAR_TO_VECTOR(Op, DAG);
4751   case ISD::INSERT_VECTOR_ELT:
4752     return lowerINSERT_VECTOR_ELT(Op, DAG);
4753   case ISD::EXTRACT_VECTOR_ELT:
4754     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4755   case ISD::SIGN_EXTEND_VECTOR_INREG:
4756     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4757   case ISD::ZERO_EXTEND_VECTOR_INREG:
4758     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4759   case ISD::SHL:
4760     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4761   case ISD::SRL:
4762     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4763   case ISD::SRA:
4764     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4765   default:
4766     llvm_unreachable("Unexpected node to lower");
4767   }
4768 }
4769 
4770 // Lower operations with invalid operand or result types (currently used
4771 // only for 128-bit integer types).
4772 
4773 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4774   SDLoc DL(In);
4775   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4776                            DAG.getIntPtrConstant(0, DL));
4777   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4778                            DAG.getIntPtrConstant(1, DL));
4779   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4780                                     MVT::Untyped, Hi, Lo);
4781   return SDValue(Pair, 0);
4782 }
4783 
4784 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4785   SDLoc DL(In);
4786   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4787                                           DL, MVT::i64, In);
4788   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4789                                           DL, MVT::i64, In);
4790   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4791 }
4792 
4793 void
4794 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4795                                              SmallVectorImpl<SDValue> &Results,
4796                                              SelectionDAG &DAG) const {
4797   switch (N->getOpcode()) {
4798   case ISD::ATOMIC_LOAD: {
4799     SDLoc DL(N);
4800     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4801     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4802     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4803     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4804                                           DL, Tys, Ops, MVT::i128, MMO);
4805     Results.push_back(lowerGR128ToI128(DAG, Res));
4806     Results.push_back(Res.getValue(1));
4807     break;
4808   }
4809   case ISD::ATOMIC_STORE: {
4810     SDLoc DL(N);
4811     SDVTList Tys = DAG.getVTList(MVT::Other);
4812     SDValue Ops[] = { N->getOperand(0),
4813                       lowerI128ToGR128(DAG, N->getOperand(2)),
4814                       N->getOperand(1) };
4815     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4816     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4817                                           DL, Tys, Ops, MVT::i128, MMO);
4818     // We have to enforce sequential consistency by performing a
4819     // serialization operation after the store.
4820     if (cast<AtomicSDNode>(N)->getOrdering() ==
4821         AtomicOrdering::SequentiallyConsistent)
4822       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4823                                        MVT::Other, Res), 0);
4824     Results.push_back(Res);
4825     break;
4826   }
4827   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4828     SDLoc DL(N);
4829     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other, MVT::Glue);
4830     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4831                       lowerI128ToGR128(DAG, N->getOperand(2)),
4832                       lowerI128ToGR128(DAG, N->getOperand(3)) };
4833     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4834     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4835                                           DL, Tys, Ops, MVT::i128, MMO);
4836     SDValue Success = emitSETCC(DAG, DL, Res.getValue(2),
4837                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4838     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4839     Results.push_back(lowerGR128ToI128(DAG, Res));
4840     Results.push_back(Success);
4841     Results.push_back(Res.getValue(1));
4842     break;
4843   }
4844   default:
4845     llvm_unreachable("Unexpected node to lower");
4846   }
4847 }
4848 
4849 void
4850 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4851                                           SmallVectorImpl<SDValue> &Results,
4852                                           SelectionDAG &DAG) const {
4853   return LowerOperationWrapper(N, Results, DAG);
4854 }
4855 
4856 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4857 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4858   switch ((SystemZISD::NodeType)Opcode) {
4859     case SystemZISD::FIRST_NUMBER: break;
4860     OPCODE(RET_FLAG);
4861     OPCODE(CALL);
4862     OPCODE(SIBCALL);
4863     OPCODE(TLS_GDCALL);
4864     OPCODE(TLS_LDCALL);
4865     OPCODE(PCREL_WRAPPER);
4866     OPCODE(PCREL_OFFSET);
4867     OPCODE(IABS);
4868     OPCODE(ICMP);
4869     OPCODE(FCMP);
4870     OPCODE(TM);
4871     OPCODE(BR_CCMASK);
4872     OPCODE(SELECT_CCMASK);
4873     OPCODE(ADJDYNALLOC);
4874     OPCODE(POPCNT);
4875     OPCODE(SMUL_LOHI);
4876     OPCODE(UMUL_LOHI);
4877     OPCODE(SDIVREM);
4878     OPCODE(UDIVREM);
4879     OPCODE(MVC);
4880     OPCODE(MVC_LOOP);
4881     OPCODE(NC);
4882     OPCODE(NC_LOOP);
4883     OPCODE(OC);
4884     OPCODE(OC_LOOP);
4885     OPCODE(XC);
4886     OPCODE(XC_LOOP);
4887     OPCODE(CLC);
4888     OPCODE(CLC_LOOP);
4889     OPCODE(STPCPY);
4890     OPCODE(STRCMP);
4891     OPCODE(SEARCH_STRING);
4892     OPCODE(IPM);
4893     OPCODE(MEMBARRIER);
4894     OPCODE(TBEGIN);
4895     OPCODE(TBEGIN_NOFLOAT);
4896     OPCODE(TEND);
4897     OPCODE(BYTE_MASK);
4898     OPCODE(ROTATE_MASK);
4899     OPCODE(REPLICATE);
4900     OPCODE(JOIN_DWORDS);
4901     OPCODE(SPLAT);
4902     OPCODE(MERGE_HIGH);
4903     OPCODE(MERGE_LOW);
4904     OPCODE(SHL_DOUBLE);
4905     OPCODE(PERMUTE_DWORDS);
4906     OPCODE(PERMUTE);
4907     OPCODE(PACK);
4908     OPCODE(PACKS_CC);
4909     OPCODE(PACKLS_CC);
4910     OPCODE(UNPACK_HIGH);
4911     OPCODE(UNPACKL_HIGH);
4912     OPCODE(UNPACK_LOW);
4913     OPCODE(UNPACKL_LOW);
4914     OPCODE(VSHL_BY_SCALAR);
4915     OPCODE(VSRL_BY_SCALAR);
4916     OPCODE(VSRA_BY_SCALAR);
4917     OPCODE(VSUM);
4918     OPCODE(VICMPE);
4919     OPCODE(VICMPH);
4920     OPCODE(VICMPHL);
4921     OPCODE(VICMPES);
4922     OPCODE(VICMPHS);
4923     OPCODE(VICMPHLS);
4924     OPCODE(VFCMPE);
4925     OPCODE(VFCMPH);
4926     OPCODE(VFCMPHE);
4927     OPCODE(VFCMPES);
4928     OPCODE(VFCMPHS);
4929     OPCODE(VFCMPHES);
4930     OPCODE(VFTCI);
4931     OPCODE(VEXTEND);
4932     OPCODE(VROUND);
4933     OPCODE(VTM);
4934     OPCODE(VFAE_CC);
4935     OPCODE(VFAEZ_CC);
4936     OPCODE(VFEE_CC);
4937     OPCODE(VFEEZ_CC);
4938     OPCODE(VFENE_CC);
4939     OPCODE(VFENEZ_CC);
4940     OPCODE(VISTR_CC);
4941     OPCODE(VSTRC_CC);
4942     OPCODE(VSTRCZ_CC);
4943     OPCODE(TDC);
4944     OPCODE(ATOMIC_SWAPW);
4945     OPCODE(ATOMIC_LOADW_ADD);
4946     OPCODE(ATOMIC_LOADW_SUB);
4947     OPCODE(ATOMIC_LOADW_AND);
4948     OPCODE(ATOMIC_LOADW_OR);
4949     OPCODE(ATOMIC_LOADW_XOR);
4950     OPCODE(ATOMIC_LOADW_NAND);
4951     OPCODE(ATOMIC_LOADW_MIN);
4952     OPCODE(ATOMIC_LOADW_MAX);
4953     OPCODE(ATOMIC_LOADW_UMIN);
4954     OPCODE(ATOMIC_LOADW_UMAX);
4955     OPCODE(ATOMIC_CMP_SWAPW);
4956     OPCODE(ATOMIC_CMP_SWAP);
4957     OPCODE(ATOMIC_LOAD_128);
4958     OPCODE(ATOMIC_STORE_128);
4959     OPCODE(ATOMIC_CMP_SWAP_128);
4960     OPCODE(LRV);
4961     OPCODE(STRV);
4962     OPCODE(PREFETCH);
4963   }
4964   return nullptr;
4965 #undef OPCODE
4966 }
4967 
4968 // Return true if VT is a vector whose elements are a whole number of bytes
4969 // in width. Also check for presence of vector support.
4970 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
4971   if (!Subtarget.hasVector())
4972     return false;
4973 
4974   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
4975 }
4976 
4977 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4978 // producing a result of type ResVT.  Op is a possibly bitcast version
4979 // of the input vector and Index is the index (based on type VecVT) that
4980 // should be extracted.  Return the new extraction if a simplification
4981 // was possible or if Force is true.
4982 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
4983                                               EVT VecVT, SDValue Op,
4984                                               unsigned Index,
4985                                               DAGCombinerInfo &DCI,
4986                                               bool Force) const {
4987   SelectionDAG &DAG = DCI.DAG;
4988 
4989   // The number of bytes being extracted.
4990   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4991 
4992   for (;;) {
4993     unsigned Opcode = Op.getOpcode();
4994     if (Opcode == ISD::BITCAST)
4995       // Look through bitcasts.
4996       Op = Op.getOperand(0);
4997     else if (Opcode == ISD::VECTOR_SHUFFLE &&
4998              canTreatAsByteVector(Op.getValueType())) {
4999       // Get a VPERM-like permute mask and see whether the bytes covered
5000       // by the extracted element are a contiguous sequence from one
5001       // source operand.
5002       SmallVector<int, SystemZ::VectorBytes> Bytes;
5003       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
5004       int First;
5005       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5006                            BytesPerElement, First))
5007         break;
5008       if (First < 0)
5009         return DAG.getUNDEF(ResVT);
5010       // Make sure the contiguous sequence starts at a multiple of the
5011       // original element size.
5012       unsigned Byte = unsigned(First) % Bytes.size();
5013       if (Byte % BytesPerElement != 0)
5014         break;
5015       // We can get the extracted value directly from an input.
5016       Index = Byte / BytesPerElement;
5017       Op = Op.getOperand(unsigned(First) / Bytes.size());
5018       Force = true;
5019     } else if (Opcode == ISD::BUILD_VECTOR &&
5020                canTreatAsByteVector(Op.getValueType())) {
5021       // We can only optimize this case if the BUILD_VECTOR elements are
5022       // at least as wide as the extracted value.
5023       EVT OpVT = Op.getValueType();
5024       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5025       if (OpBytesPerElement < BytesPerElement)
5026         break;
5027       // Make sure that the least-significant bit of the extracted value
5028       // is the least significant bit of an input.
5029       unsigned End = (Index + 1) * BytesPerElement;
5030       if (End % OpBytesPerElement != 0)
5031         break;
5032       // We're extracting the low part of one operand of the BUILD_VECTOR.
5033       Op = Op.getOperand(End / OpBytesPerElement - 1);
5034       if (!Op.getValueType().isInteger()) {
5035         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5036         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5037         DCI.AddToWorklist(Op.getNode());
5038       }
5039       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5040       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5041       if (VT != ResVT) {
5042         DCI.AddToWorklist(Op.getNode());
5043         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5044       }
5045       return Op;
5046     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5047                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5048                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5049                canTreatAsByteVector(Op.getValueType()) &&
5050                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5051       // Make sure that only the unextended bits are significant.
5052       EVT ExtVT = Op.getValueType();
5053       EVT OpVT = Op.getOperand(0).getValueType();
5054       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5055       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5056       unsigned Byte = Index * BytesPerElement;
5057       unsigned SubByte = Byte % ExtBytesPerElement;
5058       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5059       if (SubByte < MinSubByte ||
5060           SubByte + BytesPerElement > ExtBytesPerElement)
5061         break;
5062       // Get the byte offset of the unextended element
5063       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5064       // ...then add the byte offset relative to that element.
5065       Byte += SubByte - MinSubByte;
5066       if (Byte % BytesPerElement != 0)
5067         break;
5068       Op = Op.getOperand(0);
5069       Index = Byte / BytesPerElement;
5070       Force = true;
5071     } else
5072       break;
5073   }
5074   if (Force) {
5075     if (Op.getValueType() != VecVT) {
5076       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5077       DCI.AddToWorklist(Op.getNode());
5078     }
5079     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5080                        DAG.getConstant(Index, DL, MVT::i32));
5081   }
5082   return SDValue();
5083 }
5084 
5085 // Optimize vector operations in scalar value Op on the basis that Op
5086 // is truncated to TruncVT.
5087 SDValue SystemZTargetLowering::combineTruncateExtract(
5088     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5089   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5090   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5091   // of type TruncVT.
5092   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5093       TruncVT.getSizeInBits() % 8 == 0) {
5094     SDValue Vec = Op.getOperand(0);
5095     EVT VecVT = Vec.getValueType();
5096     if (canTreatAsByteVector(VecVT)) {
5097       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5098         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5099         unsigned TruncBytes = TruncVT.getStoreSize();
5100         if (BytesPerElement % TruncBytes == 0) {
5101           // Calculate the value of Y' in the above description.  We are
5102           // splitting the original elements into Scale equal-sized pieces
5103           // and for truncation purposes want the last (least-significant)
5104           // of these pieces for IndexN.  This is easiest to do by calculating
5105           // the start index of the following element and then subtracting 1.
5106           unsigned Scale = BytesPerElement / TruncBytes;
5107           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5108 
5109           // Defer the creation of the bitcast from X to combineExtract,
5110           // which might be able to optimize the extraction.
5111           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5112                                    VecVT.getStoreSize() / TruncBytes);
5113           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5114           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5115         }
5116       }
5117     }
5118   }
5119   return SDValue();
5120 }
5121 
5122 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5123     SDNode *N, DAGCombinerInfo &DCI) const {
5124   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5125   SelectionDAG &DAG = DCI.DAG;
5126   SDValue N0 = N->getOperand(0);
5127   EVT VT = N->getValueType(0);
5128   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5129     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5130     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5131     if (TrueOp && FalseOp) {
5132       SDLoc DL(N0);
5133       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5134                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5135                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5136       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5137       // If N0 has multiple uses, change other uses as well.
5138       if (!N0.hasOneUse()) {
5139         SDValue TruncSelect =
5140           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5141         DCI.CombineTo(N0.getNode(), TruncSelect);
5142       }
5143       return NewSelect;
5144     }
5145   }
5146   return SDValue();
5147 }
5148 
5149 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5150     SDNode *N, DAGCombinerInfo &DCI) const {
5151   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5152   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5153   // into (select_cc LHS, RHS, -1, 0, COND)
5154   SelectionDAG &DAG = DCI.DAG;
5155   SDValue N0 = N->getOperand(0);
5156   EVT VT = N->getValueType(0);
5157   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5158   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5159     N0 = N0.getOperand(0);
5160   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5161     SDLoc DL(N0);
5162     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5163                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5164                       N0.getOperand(2) };
5165     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5166   }
5167   return SDValue();
5168 }
5169 
5170 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5171     SDNode *N, DAGCombinerInfo &DCI) const {
5172   // Convert (sext (ashr (shl X, C1), C2)) to
5173   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5174   // cheap as narrower ones.
5175   SelectionDAG &DAG = DCI.DAG;
5176   SDValue N0 = N->getOperand(0);
5177   EVT VT = N->getValueType(0);
5178   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5179     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5180     SDValue Inner = N0.getOperand(0);
5181     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5182       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5183         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5184         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5185         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5186         EVT ShiftVT = N0.getOperand(1).getValueType();
5187         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5188                                   Inner.getOperand(0));
5189         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5190                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5191                                                   ShiftVT));
5192         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5193                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5194       }
5195     }
5196   }
5197   return SDValue();
5198 }
5199 
5200 SDValue SystemZTargetLowering::combineMERGE(
5201     SDNode *N, DAGCombinerInfo &DCI) const {
5202   SelectionDAG &DAG = DCI.DAG;
5203   unsigned Opcode = N->getOpcode();
5204   SDValue Op0 = N->getOperand(0);
5205   SDValue Op1 = N->getOperand(1);
5206   if (Op0.getOpcode() == ISD::BITCAST)
5207     Op0 = Op0.getOperand(0);
5208   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5209       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5210     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5211     // for v4f32.
5212     if (Op1 == N->getOperand(0))
5213       return Op1;
5214     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5215     EVT VT = Op1.getValueType();
5216     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5217     if (ElemBytes <= 4) {
5218       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5219                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5220       EVT InVT = VT.changeVectorElementTypeToInteger();
5221       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5222                                    SystemZ::VectorBytes / ElemBytes / 2);
5223       if (VT != InVT) {
5224         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5225         DCI.AddToWorklist(Op1.getNode());
5226       }
5227       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5228       DCI.AddToWorklist(Op.getNode());
5229       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5230     }
5231   }
5232   return SDValue();
5233 }
5234 
5235 SDValue SystemZTargetLowering::combineSTORE(
5236     SDNode *N, DAGCombinerInfo &DCI) const {
5237   SelectionDAG &DAG = DCI.DAG;
5238   auto *SN = cast<StoreSDNode>(N);
5239   auto &Op1 = N->getOperand(1);
5240   EVT MemVT = SN->getMemoryVT();
5241   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5242   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5243   // If X has wider elements then convert it to:
5244   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5245   if (MemVT.isInteger()) {
5246     if (SDValue Value =
5247             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5248       DCI.AddToWorklist(Value.getNode());
5249 
5250       // Rewrite the store with the new form of stored value.
5251       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5252                                SN->getBasePtr(), SN->getMemoryVT(),
5253                                SN->getMemOperand());
5254     }
5255   }
5256   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5257   if (!SN->isTruncatingStore() &&
5258       Op1.getOpcode() == ISD::BSWAP &&
5259       Op1.getNode()->hasOneUse() &&
5260       (Op1.getValueType() == MVT::i16 ||
5261        Op1.getValueType() == MVT::i32 ||
5262        Op1.getValueType() == MVT::i64)) {
5263 
5264       SDValue BSwapOp = Op1.getOperand(0);
5265 
5266       if (BSwapOp.getValueType() == MVT::i16)
5267         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5268 
5269       SDValue Ops[] = {
5270         N->getOperand(0), BSwapOp, N->getOperand(2),
5271         DAG.getValueType(Op1.getValueType())
5272       };
5273 
5274       return
5275         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5276                                 Ops, MemVT, SN->getMemOperand());
5277     }
5278   return SDValue();
5279 }
5280 
5281 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5282     SDNode *N, DAGCombinerInfo &DCI) const {
5283 
5284   if (!Subtarget.hasVector())
5285     return SDValue();
5286 
5287   // Try to simplify a vector extraction.
5288   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5289     SDValue Op0 = N->getOperand(0);
5290     EVT VecVT = Op0.getValueType();
5291     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5292                           IndexN->getZExtValue(), DCI, false);
5293   }
5294   return SDValue();
5295 }
5296 
5297 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5298     SDNode *N, DAGCombinerInfo &DCI) const {
5299   SelectionDAG &DAG = DCI.DAG;
5300   // (join_dwords X, X) == (replicate X)
5301   if (N->getOperand(0) == N->getOperand(1))
5302     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5303                        N->getOperand(0));
5304   return SDValue();
5305 }
5306 
5307 SDValue SystemZTargetLowering::combineFP_ROUND(
5308     SDNode *N, DAGCombinerInfo &DCI) const {
5309   // (fpround (extract_vector_elt X 0))
5310   // (fpround (extract_vector_elt X 1)) ->
5311   // (extract_vector_elt (VROUND X) 0)
5312   // (extract_vector_elt (VROUND X) 1)
5313   //
5314   // This is a special case since the target doesn't really support v2f32s.
5315   SelectionDAG &DAG = DCI.DAG;
5316   SDValue Op0 = N->getOperand(0);
5317   if (N->getValueType(0) == MVT::f32 &&
5318       Op0.hasOneUse() &&
5319       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5320       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5321       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5322       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5323     SDValue Vec = Op0.getOperand(0);
5324     for (auto *U : Vec->uses()) {
5325       if (U != Op0.getNode() &&
5326           U->hasOneUse() &&
5327           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5328           U->getOperand(0) == Vec &&
5329           U->getOperand(1).getOpcode() == ISD::Constant &&
5330           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5331         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5332         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5333             OtherRound.getOperand(0) == SDValue(U, 0) &&
5334             OtherRound.getValueType() == MVT::f32) {
5335           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5336                                        MVT::v4f32, Vec);
5337           DCI.AddToWorklist(VRound.getNode());
5338           SDValue Extract1 =
5339             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5340                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5341           DCI.AddToWorklist(Extract1.getNode());
5342           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5343           SDValue Extract0 =
5344             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5345                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5346           return Extract0;
5347         }
5348       }
5349     }
5350   }
5351   return SDValue();
5352 }
5353 
5354 SDValue SystemZTargetLowering::combineBSWAP(
5355     SDNode *N, DAGCombinerInfo &DCI) const {
5356   SelectionDAG &DAG = DCI.DAG;
5357   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5358   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5359       N->getOperand(0).hasOneUse() &&
5360       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5361        N->getValueType(0) == MVT::i64)) {
5362       SDValue Load = N->getOperand(0);
5363       LoadSDNode *LD = cast<LoadSDNode>(Load);
5364 
5365       // Create the byte-swapping load.
5366       SDValue Ops[] = {
5367         LD->getChain(),    // Chain
5368         LD->getBasePtr(),  // Ptr
5369         DAG.getValueType(N->getValueType(0)) // VT
5370       };
5371       SDValue BSLoad =
5372         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5373                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5374                                               MVT::i64 : MVT::i32, MVT::Other),
5375                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5376 
5377       // If this is an i16 load, insert the truncate.
5378       SDValue ResVal = BSLoad;
5379       if (N->getValueType(0) == MVT::i16)
5380         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5381 
5382       // First, combine the bswap away.  This makes the value produced by the
5383       // load dead.
5384       DCI.CombineTo(N, ResVal);
5385 
5386       // Next, combine the load away, we give it a bogus result value but a real
5387       // chain result.  The result value is dead because the bswap is dead.
5388       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5389 
5390       // Return N so it doesn't get rechecked!
5391       return SDValue(N, 0);
5392     }
5393   return SDValue();
5394 }
5395 
5396 SDValue SystemZTargetLowering::combineSHIFTROT(
5397     SDNode *N, DAGCombinerInfo &DCI) const {
5398 
5399   SelectionDAG &DAG = DCI.DAG;
5400 
5401   // Shift/rotate instructions only use the last 6 bits of the second operand
5402   // register. If the second operand is the result of an AND with an immediate
5403   // value that has its last 6 bits set, we can safely remove the AND operation.
5404   //
5405   // If the AND operation doesn't have the last 6 bits set, we can't remove it
5406   // entirely, but we can still truncate it to a 16-bit value. This prevents
5407   // us from ending up with a NILL with a signed operand, which will cause the
5408   // instruction printer to abort.
5409   SDValue N1 = N->getOperand(1);
5410   if (N1.getOpcode() == ISD::AND) {
5411     SDValue AndMaskOp = N1->getOperand(1);
5412     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
5413 
5414     // The AND mask is constant
5415     if (AndMask) {
5416       auto AmtVal = AndMask->getZExtValue();
5417 
5418       // Bottom 6 bits are set
5419       if ((AmtVal & 0x3f) == 0x3f) {
5420         SDValue AndOp = N1->getOperand(0);
5421 
5422         // This is the only use, so remove the node
5423         if (N1.hasOneUse()) {
5424           // Combine the AND away
5425           DCI.CombineTo(N1.getNode(), AndOp);
5426 
5427           // Return N so it isn't rechecked
5428           return SDValue(N, 0);
5429 
5430         // The node will be reused, so create a new node for this one use
5431         } else {
5432           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5433                                         N->getValueType(0), N->getOperand(0),
5434                                         AndOp);
5435           DCI.AddToWorklist(Replace.getNode());
5436 
5437           return Replace;
5438         }
5439 
5440       // We can't remove the AND, but we can use NILL here (normally we would
5441       // use NILF). Only keep the last 16 bits of the mask. The actual
5442       // transformation will be handled by .td definitions.
5443       } else if (AmtVal >> 16 != 0) {
5444         SDValue AndOp = N1->getOperand(0);
5445 
5446         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
5447                                        SDLoc(AndMaskOp),
5448                                        AndMaskOp.getValueType());
5449 
5450         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
5451                                   AndOp, NewMask);
5452 
5453         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5454                                       N->getValueType(0), N->getOperand(0),
5455                                       NewAnd);
5456         DCI.AddToWorklist(Replace.getNode());
5457 
5458         return Replace;
5459       }
5460     }
5461   }
5462 
5463   return SDValue();
5464 }
5465 
5466 static bool combineCCMask(SDValue &Glue, int &CCValid, int &CCMask) {
5467   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5468   // set by the glued instruction using the CCValid / CCMask masks,
5469   // If the glued instruction is itself a (ICMP (SELECT_CCMASK)) testing
5470   // the condition code set by some other instruction, see whether we
5471   // can directly use that condition code.
5472   bool Invert = false;
5473 
5474   // Verify that we have an appropriate mask for a EQ or NE comparison.
5475   if (CCValid != SystemZ::CCMASK_ICMP)
5476     return false;
5477   if (CCMask == SystemZ::CCMASK_CMP_NE)
5478     Invert = !Invert;
5479   else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5480     return false;
5481 
5482   // Verify that we have an ICMP that is the single user of a SELECT_CCMASK.
5483   SDNode *ICmp = Glue.getNode();
5484   if (ICmp->getOpcode() != SystemZISD::ICMP)
5485     return false;
5486   SDNode *Select = ICmp->getOperand(0).getNode();
5487   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5488     return false;
5489   if (!Select->hasOneUse())
5490     return false;
5491 
5492   // Verify that the ICMP compares against one of select values.
5493   auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5494   if (!CompareVal)
5495     return false;
5496   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5497   if (!TrueVal)
5498     return false;
5499   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5500   if (!FalseVal)
5501     return false;
5502   if (CompareVal->getZExtValue() == FalseVal->getZExtValue())
5503     Invert = !Invert;
5504   else if (CompareVal->getZExtValue() != TrueVal->getZExtValue())
5505     return false;
5506 
5507   // Compute the effective CC mask for the new branch or select.
5508   auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5509   auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5510   if (!NewCCValid || !NewCCMask)
5511     return false;
5512   CCValid = NewCCValid->getZExtValue();
5513   CCMask = NewCCMask->getZExtValue();
5514   if (Invert)
5515     CCMask ^= CCValid;
5516 
5517   // Return the updated Glue link.
5518   Glue = Select->getOperand(4);
5519   return true;
5520 }
5521 
5522 static bool combineMergeChains(SDValue &Chain, SDValue Glue) {
5523   // We are about to glue an instruction with input chain Chain to the
5524   // instruction Glue.  Verify that this would not create an invalid
5525   // topological sort due to intervening chain nodes.
5526 
5527   SDNode *Node = Glue.getNode();
5528   for (int ResNo = Node->getNumValues() - 1; ResNo >= 0; --ResNo)
5529     if (Node->getValueType(ResNo) == MVT::Other) {
5530       SDValue OutChain = SDValue(Node, ResNo);
5531       // FIXME: We should be able to at least handle an intervening
5532       // TokenFactor node by swapping chains around a bit ...
5533       return Chain == OutChain;
5534     }
5535 
5536   return true;
5537 }
5538 
5539 SDValue SystemZTargetLowering::combineBR_CCMASK(
5540     SDNode *N, DAGCombinerInfo &DCI) const {
5541   SelectionDAG &DAG = DCI.DAG;
5542 
5543   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5544   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5545   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5546   if (!CCValid || !CCMask)
5547     return SDValue();
5548 
5549   int CCValidVal = CCValid->getZExtValue();
5550   int CCMaskVal = CCMask->getZExtValue();
5551   SDValue Chain = N->getOperand(0);
5552   SDValue Glue = N->getOperand(4);
5553 
5554   if (combineCCMask(Glue, CCValidVal, CCMaskVal)
5555       && combineMergeChains(Chain, Glue))
5556     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5557                        Chain,
5558                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5559                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5560                        N->getOperand(3), Glue);
5561   return SDValue();
5562 }
5563 
5564 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5565     SDNode *N, DAGCombinerInfo &DCI) const {
5566   SelectionDAG &DAG = DCI.DAG;
5567 
5568   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5569   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5570   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5571   if (!CCValid || !CCMask)
5572     return SDValue();
5573 
5574   int CCValidVal = CCValid->getZExtValue();
5575   int CCMaskVal = CCMask->getZExtValue();
5576   SDValue Glue = N->getOperand(4);
5577 
5578   if (combineCCMask(Glue, CCValidVal, CCMaskVal))
5579     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5580                        N->getOperand(0),
5581                        N->getOperand(1),
5582                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5583                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5584                        Glue);
5585   return SDValue();
5586 }
5587 
5588 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5589                                                  DAGCombinerInfo &DCI) const {
5590   switch(N->getOpcode()) {
5591   default: break;
5592   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
5593   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5594   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
5595   case SystemZISD::MERGE_HIGH:
5596   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5597   case ISD::STORE:              return combineSTORE(N, DCI);
5598   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5599   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5600   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5601   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5602   case ISD::SHL:
5603   case ISD::SRA:
5604   case ISD::SRL:
5605   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5606   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
5607   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5608   }
5609 
5610   return SDValue();
5611 }
5612 
5613 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
5614 // are for Op.
5615 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
5616                                     unsigned OpNo) {
5617   EVT VT = Op.getValueType();
5618   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
5619   APInt SrcDemE;
5620   unsigned Opcode = Op.getOpcode();
5621   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5622     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5623     switch (Id) {
5624     case Intrinsic::s390_vpksh:   // PACKS
5625     case Intrinsic::s390_vpksf:
5626     case Intrinsic::s390_vpksg:
5627     case Intrinsic::s390_vpkshs:  // PACKS_CC
5628     case Intrinsic::s390_vpksfs:
5629     case Intrinsic::s390_vpksgs:
5630     case Intrinsic::s390_vpklsh:  // PACKLS
5631     case Intrinsic::s390_vpklsf:
5632     case Intrinsic::s390_vpklsg:
5633     case Intrinsic::s390_vpklshs: // PACKLS_CC
5634     case Intrinsic::s390_vpklsfs:
5635     case Intrinsic::s390_vpklsgs:
5636       // VECTOR PACK truncates the elements of two source vectors into one.
5637       SrcDemE = DemandedElts;
5638       if (OpNo == 2)
5639         SrcDemE.lshrInPlace(NumElts / 2);
5640       SrcDemE = SrcDemE.trunc(NumElts / 2);
5641       break;
5642       // VECTOR UNPACK extends half the elements of the source vector.
5643     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5644     case Intrinsic::s390_vuphh:
5645     case Intrinsic::s390_vuphf:
5646     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5647     case Intrinsic::s390_vuplhh:
5648     case Intrinsic::s390_vuplhf:
5649       SrcDemE = APInt(NumElts * 2, 0);
5650       SrcDemE.insertBits(DemandedElts, 0);
5651       break;
5652     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5653     case Intrinsic::s390_vuplhw:
5654     case Intrinsic::s390_vuplf:
5655     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5656     case Intrinsic::s390_vupllh:
5657     case Intrinsic::s390_vupllf:
5658       SrcDemE = APInt(NumElts * 2, 0);
5659       SrcDemE.insertBits(DemandedElts, NumElts);
5660       break;
5661     case Intrinsic::s390_vpdi: {
5662       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
5663       SrcDemE = APInt(NumElts, 0);
5664       if (!DemandedElts[OpNo - 1])
5665         break;
5666       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5667       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
5668       // Demand input element 0 or 1, given by the mask bit value.
5669       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
5670       break;
5671     }
5672     case Intrinsic::s390_vsldb: {
5673       // VECTOR SHIFT LEFT DOUBLE BY BYTE
5674       assert(VT == MVT::v16i8 && "Unexpected type.");
5675       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5676       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
5677       unsigned NumSrc0Els = 16 - FirstIdx;
5678       SrcDemE = APInt(NumElts, 0);
5679       if (OpNo == 1) {
5680         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
5681         SrcDemE.insertBits(DemEls, FirstIdx);
5682       } else {
5683         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
5684         SrcDemE.insertBits(DemEls, 0);
5685       }
5686       break;
5687     }
5688     case Intrinsic::s390_vperm:
5689       SrcDemE = APInt(NumElts, 1);
5690       break;
5691     default:
5692       llvm_unreachable("Unhandled intrinsic.");
5693       break;
5694     }
5695   } else {
5696     switch (Opcode) {
5697     case SystemZISD::JOIN_DWORDS:
5698       // Scalar operand.
5699       SrcDemE = APInt(1, 1);
5700       break;
5701     case SystemZISD::SELECT_CCMASK:
5702       SrcDemE = DemandedElts;
5703       break;
5704     default:
5705       llvm_unreachable("Unhandled opcode.");
5706       break;
5707     }
5708   }
5709   return SrcDemE;
5710 }
5711 
5712 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
5713                                   const APInt &DemandedElts,
5714                                   const SelectionDAG &DAG, unsigned Depth,
5715                                   unsigned OpNo) {
5716   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5717   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5718   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
5719   KnownBits LHSKnown(SrcBitWidth), RHSKnown(SrcBitWidth);
5720   DAG.computeKnownBits(Op.getOperand(OpNo), LHSKnown, Src0DemE, Depth + 1);
5721   DAG.computeKnownBits(Op.getOperand(OpNo + 1), RHSKnown, Src1DemE, Depth + 1);
5722   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
5723   Known.One = LHSKnown.One & RHSKnown.One;
5724 }
5725 
5726 void
5727 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5728                                                      KnownBits &Known,
5729                                                      const APInt &DemandedElts,
5730                                                      const SelectionDAG &DAG,
5731                                                      unsigned Depth) const {
5732   Known.resetAll();
5733 
5734   // Intrinsic CC result is returned in the two low bits.
5735   unsigned tmp0, tmp1; // not used
5736   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
5737     Known.Zero.setBitsFrom(2);
5738     return;
5739   }
5740   EVT VT = Op.getValueType();
5741   if (Op.getResNo() != 0 || VT == MVT::Untyped)
5742     return;
5743   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
5744           "KnownBits does not match VT in bitwidth");
5745   assert ((!VT.isVector() ||
5746            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
5747           "DemandedElts does not match VT number of elements");
5748   unsigned BitWidth = Known.getBitWidth();
5749   unsigned Opcode = Op.getOpcode();
5750   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5751     bool IsLogical = false;
5752     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5753     switch (Id) {
5754     case Intrinsic::s390_vpksh:   // PACKS
5755     case Intrinsic::s390_vpksf:
5756     case Intrinsic::s390_vpksg:
5757     case Intrinsic::s390_vpkshs:  // PACKS_CC
5758     case Intrinsic::s390_vpksfs:
5759     case Intrinsic::s390_vpksgs:
5760     case Intrinsic::s390_vpklsh:  // PACKLS
5761     case Intrinsic::s390_vpklsf:
5762     case Intrinsic::s390_vpklsg:
5763     case Intrinsic::s390_vpklshs: // PACKLS_CC
5764     case Intrinsic::s390_vpklsfs:
5765     case Intrinsic::s390_vpklsgs:
5766     case Intrinsic::s390_vpdi:
5767     case Intrinsic::s390_vsldb:
5768     case Intrinsic::s390_vperm:
5769       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
5770       break;
5771     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5772     case Intrinsic::s390_vuplhh:
5773     case Intrinsic::s390_vuplhf:
5774     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5775     case Intrinsic::s390_vupllh:
5776     case Intrinsic::s390_vupllf:
5777       IsLogical = true;
5778       LLVM_FALLTHROUGH;
5779     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5780     case Intrinsic::s390_vuphh:
5781     case Intrinsic::s390_vuphf:
5782     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5783     case Intrinsic::s390_vuplhw:
5784     case Intrinsic::s390_vuplf: {
5785       SDValue SrcOp = Op.getOperand(1);
5786       unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits();
5787       Known = KnownBits(SrcBitWidth);
5788       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
5789       DAG.computeKnownBits(SrcOp, Known, SrcDemE, Depth + 1);
5790       if (IsLogical) {
5791         Known = Known.zext(BitWidth);
5792         Known.Zero.setBitsFrom(SrcBitWidth);
5793       } else
5794         Known = Known.sext(BitWidth);
5795       break;
5796     }
5797     default:
5798       break;
5799     }
5800   } else {
5801     switch (Opcode) {
5802     case SystemZISD::JOIN_DWORDS:
5803     case SystemZISD::SELECT_CCMASK:
5804       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
5805       break;
5806     case SystemZISD::REPLICATE: {
5807       SDValue SrcOp = Op.getOperand(0);
5808       DAG.computeKnownBits(SrcOp, Known, Depth + 1);
5809       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
5810         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
5811       break;
5812     }
5813     default:
5814       break;
5815     }
5816   }
5817 
5818   // Known has the width of the source operand(s). Adjust if needed to match
5819   // the passed bitwidth.
5820   if (Known.getBitWidth() != BitWidth)
5821     Known = Known.zextOrTrunc(BitWidth);
5822 }
5823 
5824 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
5825                                         const SelectionDAG &DAG, unsigned Depth,
5826                                         unsigned OpNo) {
5827   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5828   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
5829   if (LHS == 1) return 1; // Early out.
5830   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5831   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
5832   if (RHS == 1) return 1; // Early out.
5833   unsigned Common = std::min(LHS, RHS);
5834   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
5835   EVT VT = Op.getValueType();
5836   unsigned VTBits = VT.getScalarSizeInBits();
5837   if (SrcBitWidth > VTBits) { // PACK
5838     unsigned SrcExtraBits = SrcBitWidth - VTBits;
5839     if (Common > SrcExtraBits)
5840       return (Common - SrcExtraBits);
5841     return 1;
5842   }
5843   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
5844   return Common;
5845 }
5846 
5847 unsigned
5848 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
5849     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
5850     unsigned Depth) const {
5851   if (Op.getResNo() != 0)
5852     return 1;
5853   unsigned Opcode = Op.getOpcode();
5854   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5855     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5856     switch (Id) {
5857     case Intrinsic::s390_vpksh:   // PACKS
5858     case Intrinsic::s390_vpksf:
5859     case Intrinsic::s390_vpksg:
5860     case Intrinsic::s390_vpkshs:  // PACKS_CC
5861     case Intrinsic::s390_vpksfs:
5862     case Intrinsic::s390_vpksgs:
5863     case Intrinsic::s390_vpklsh:  // PACKLS
5864     case Intrinsic::s390_vpklsf:
5865     case Intrinsic::s390_vpklsg:
5866     case Intrinsic::s390_vpklshs: // PACKLS_CC
5867     case Intrinsic::s390_vpklsfs:
5868     case Intrinsic::s390_vpklsgs:
5869     case Intrinsic::s390_vpdi:
5870     case Intrinsic::s390_vsldb:
5871     case Intrinsic::s390_vperm:
5872       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
5873     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5874     case Intrinsic::s390_vuphh:
5875     case Intrinsic::s390_vuphf:
5876     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5877     case Intrinsic::s390_vuplhw:
5878     case Intrinsic::s390_vuplf: {
5879       SDValue PackedOp = Op.getOperand(1);
5880       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
5881       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
5882       EVT VT = Op.getValueType();
5883       unsigned VTBits = VT.getScalarSizeInBits();
5884       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
5885       return Tmp;
5886     }
5887     default:
5888       break;
5889     }
5890   } else {
5891     switch (Opcode) {
5892     case SystemZISD::SELECT_CCMASK:
5893       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
5894     default:
5895       break;
5896     }
5897   }
5898 
5899   return 1;
5900 }
5901 
5902 //===----------------------------------------------------------------------===//
5903 // Custom insertion
5904 //===----------------------------------------------------------------------===//
5905 
5906 // Create a new basic block after MBB.
5907 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5908   MachineFunction &MF = *MBB->getParent();
5909   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5910   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5911   return NewMBB;
5912 }
5913 
5914 // Split MBB after MI and return the new block (the one that contains
5915 // instructions after MI).
5916 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5917                                           MachineBasicBlock *MBB) {
5918   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5919   NewMBB->splice(NewMBB->begin(), MBB,
5920                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5921   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5922   return NewMBB;
5923 }
5924 
5925 // Split MBB before MI and return the new block (the one that contains MI).
5926 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5927                                            MachineBasicBlock *MBB) {
5928   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5929   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5930   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5931   return NewMBB;
5932 }
5933 
5934 // Force base value Base into a register before MI.  Return the register.
5935 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5936                          const SystemZInstrInfo *TII) {
5937   if (Base.isReg())
5938     return Base.getReg();
5939 
5940   MachineBasicBlock *MBB = MI.getParent();
5941   MachineFunction &MF = *MBB->getParent();
5942   MachineRegisterInfo &MRI = MF.getRegInfo();
5943 
5944   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5945   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5946       .add(Base)
5947       .addImm(0)
5948       .addReg(0);
5949   return Reg;
5950 }
5951 
5952 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5953 MachineBasicBlock *
5954 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5955                                   MachineBasicBlock *MBB,
5956                                   unsigned LOCROpcode) const {
5957   const SystemZInstrInfo *TII =
5958       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5959 
5960   unsigned DestReg = MI.getOperand(0).getReg();
5961   unsigned TrueReg = MI.getOperand(1).getReg();
5962   unsigned FalseReg = MI.getOperand(2).getReg();
5963   unsigned CCValid = MI.getOperand(3).getImm();
5964   unsigned CCMask = MI.getOperand(4).getImm();
5965   DebugLoc DL = MI.getDebugLoc();
5966 
5967   // Use LOCROpcode if possible.
5968   if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) {
5969     BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg)
5970       .addReg(FalseReg).addReg(TrueReg)
5971       .addImm(CCValid).addImm(CCMask);
5972     MI.eraseFromParent();
5973     return MBB;
5974   }
5975 
5976   MachineBasicBlock *StartMBB = MBB;
5977   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5978   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5979 
5980   //  StartMBB:
5981   //   BRC CCMask, JoinMBB
5982   //   # fallthrough to FalseMBB
5983   MBB = StartMBB;
5984   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5985     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5986   MBB->addSuccessor(JoinMBB);
5987   MBB->addSuccessor(FalseMBB);
5988 
5989   //  FalseMBB:
5990   //   # fallthrough to JoinMBB
5991   MBB = FalseMBB;
5992   MBB->addSuccessor(JoinMBB);
5993 
5994   //  JoinMBB:
5995   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5996   //  ...
5997   MBB = JoinMBB;
5998   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5999     .addReg(TrueReg).addMBB(StartMBB)
6000     .addReg(FalseReg).addMBB(FalseMBB);
6001 
6002   MI.eraseFromParent();
6003   return JoinMBB;
6004 }
6005 
6006 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6007 // StoreOpcode is the store to use and Invert says whether the store should
6008 // happen when the condition is false rather than true.  If a STORE ON
6009 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6010 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6011                                                         MachineBasicBlock *MBB,
6012                                                         unsigned StoreOpcode,
6013                                                         unsigned STOCOpcode,
6014                                                         bool Invert) const {
6015   const SystemZInstrInfo *TII =
6016       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6017 
6018   unsigned SrcReg = MI.getOperand(0).getReg();
6019   MachineOperand Base = MI.getOperand(1);
6020   int64_t Disp = MI.getOperand(2).getImm();
6021   unsigned IndexReg = MI.getOperand(3).getReg();
6022   unsigned CCValid = MI.getOperand(4).getImm();
6023   unsigned CCMask = MI.getOperand(5).getImm();
6024   DebugLoc DL = MI.getDebugLoc();
6025 
6026   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6027 
6028   // Use STOCOpcode if possible.  We could use different store patterns in
6029   // order to avoid matching the index register, but the performance trade-offs
6030   // might be more complicated in that case.
6031   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6032     if (Invert)
6033       CCMask ^= CCValid;
6034 
6035     // ISel pattern matching also adds a load memory operand of the same
6036     // address, so take special care to find the storing memory operand.
6037     MachineMemOperand *MMO = nullptr;
6038     for (auto *I : MI.memoperands())
6039       if (I->isStore()) {
6040           MMO = I;
6041           break;
6042         }
6043 
6044     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6045       .addReg(SrcReg)
6046       .add(Base)
6047       .addImm(Disp)
6048       .addImm(CCValid)
6049       .addImm(CCMask)
6050       .addMemOperand(MMO);
6051 
6052     MI.eraseFromParent();
6053     return MBB;
6054   }
6055 
6056   // Get the condition needed to branch around the store.
6057   if (!Invert)
6058     CCMask ^= CCValid;
6059 
6060   MachineBasicBlock *StartMBB = MBB;
6061   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6062   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6063 
6064   //  StartMBB:
6065   //   BRC CCMask, JoinMBB
6066   //   # fallthrough to FalseMBB
6067   MBB = StartMBB;
6068   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6069     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6070   MBB->addSuccessor(JoinMBB);
6071   MBB->addSuccessor(FalseMBB);
6072 
6073   //  FalseMBB:
6074   //   store %SrcReg, %Disp(%Index,%Base)
6075   //   # fallthrough to JoinMBB
6076   MBB = FalseMBB;
6077   BuildMI(MBB, DL, TII->get(StoreOpcode))
6078       .addReg(SrcReg)
6079       .add(Base)
6080       .addImm(Disp)
6081       .addReg(IndexReg);
6082   MBB->addSuccessor(JoinMBB);
6083 
6084   MI.eraseFromParent();
6085   return JoinMBB;
6086 }
6087 
6088 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6089 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
6090 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6091 // BitSize is the width of the field in bits, or 0 if this is a partword
6092 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6093 // is one of the operands.  Invert says whether the field should be
6094 // inverted after performing BinOpcode (e.g. for NAND).
6095 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6096     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6097     unsigned BitSize, bool Invert) const {
6098   MachineFunction &MF = *MBB->getParent();
6099   const SystemZInstrInfo *TII =
6100       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6101   MachineRegisterInfo &MRI = MF.getRegInfo();
6102   bool IsSubWord = (BitSize < 32);
6103 
6104   // Extract the operands.  Base can be a register or a frame index.
6105   // Src2 can be a register or immediate.
6106   unsigned Dest = MI.getOperand(0).getReg();
6107   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6108   int64_t Disp = MI.getOperand(2).getImm();
6109   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6110   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6111   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6112   DebugLoc DL = MI.getDebugLoc();
6113   if (IsSubWord)
6114     BitSize = MI.getOperand(6).getImm();
6115 
6116   // Subword operations use 32-bit registers.
6117   const TargetRegisterClass *RC = (BitSize <= 32 ?
6118                                    &SystemZ::GR32BitRegClass :
6119                                    &SystemZ::GR64BitRegClass);
6120   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6121   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6122 
6123   // Get the right opcodes for the displacement.
6124   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6125   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6126   assert(LOpcode && CSOpcode && "Displacement out of range");
6127 
6128   // Create virtual registers for temporary results.
6129   unsigned OrigVal       = MRI.createVirtualRegister(RC);
6130   unsigned OldVal        = MRI.createVirtualRegister(RC);
6131   unsigned NewVal        = (BinOpcode || IsSubWord ?
6132                             MRI.createVirtualRegister(RC) : Src2.getReg());
6133   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6134   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6135 
6136   // Insert a basic block for the main loop.
6137   MachineBasicBlock *StartMBB = MBB;
6138   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6139   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6140 
6141   //  StartMBB:
6142   //   ...
6143   //   %OrigVal = L Disp(%Base)
6144   //   # fall through to LoopMMB
6145   MBB = StartMBB;
6146   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6147   MBB->addSuccessor(LoopMBB);
6148 
6149   //  LoopMBB:
6150   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6151   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6152   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
6153   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6154   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6155   //   JNE LoopMBB
6156   //   # fall through to DoneMMB
6157   MBB = LoopMBB;
6158   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6159     .addReg(OrigVal).addMBB(StartMBB)
6160     .addReg(Dest).addMBB(LoopMBB);
6161   if (IsSubWord)
6162     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6163       .addReg(OldVal).addReg(BitShift).addImm(0);
6164   if (Invert) {
6165     // Perform the operation normally and then invert every bit of the field.
6166     unsigned Tmp = MRI.createVirtualRegister(RC);
6167     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6168     if (BitSize <= 32)
6169       // XILF with the upper BitSize bits set.
6170       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6171         .addReg(Tmp).addImm(-1U << (32 - BitSize));
6172     else {
6173       // Use LCGR and add -1 to the result, which is more compact than
6174       // an XILF, XILH pair.
6175       unsigned Tmp2 = MRI.createVirtualRegister(RC);
6176       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6177       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6178         .addReg(Tmp2).addImm(-1);
6179     }
6180   } else if (BinOpcode)
6181     // A simply binary operation.
6182     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6183         .addReg(RotatedOldVal)
6184         .add(Src2);
6185   else if (IsSubWord)
6186     // Use RISBG to rotate Src2 into position and use it to replace the
6187     // field in RotatedOldVal.
6188     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6189       .addReg(RotatedOldVal).addReg(Src2.getReg())
6190       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6191   if (IsSubWord)
6192     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6193       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6194   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6195       .addReg(OldVal)
6196       .addReg(NewVal)
6197       .add(Base)
6198       .addImm(Disp);
6199   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6200     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6201   MBB->addSuccessor(LoopMBB);
6202   MBB->addSuccessor(DoneMBB);
6203 
6204   MI.eraseFromParent();
6205   return DoneMBB;
6206 }
6207 
6208 // Implement EmitInstrWithCustomInserter for pseudo
6209 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
6210 // instruction that should be used to compare the current field with the
6211 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
6212 // for when the current field should be kept.  BitSize is the width of
6213 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
6214 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6215     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6216     unsigned KeepOldMask, unsigned BitSize) const {
6217   MachineFunction &MF = *MBB->getParent();
6218   const SystemZInstrInfo *TII =
6219       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6220   MachineRegisterInfo &MRI = MF.getRegInfo();
6221   bool IsSubWord = (BitSize < 32);
6222 
6223   // Extract the operands.  Base can be a register or a frame index.
6224   unsigned Dest = MI.getOperand(0).getReg();
6225   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6226   int64_t Disp = MI.getOperand(2).getImm();
6227   unsigned Src2 = MI.getOperand(3).getReg();
6228   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6229   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6230   DebugLoc DL = MI.getDebugLoc();
6231   if (IsSubWord)
6232     BitSize = MI.getOperand(6).getImm();
6233 
6234   // Subword operations use 32-bit registers.
6235   const TargetRegisterClass *RC = (BitSize <= 32 ?
6236                                    &SystemZ::GR32BitRegClass :
6237                                    &SystemZ::GR64BitRegClass);
6238   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6239   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6240 
6241   // Get the right opcodes for the displacement.
6242   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6243   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6244   assert(LOpcode && CSOpcode && "Displacement out of range");
6245 
6246   // Create virtual registers for temporary results.
6247   unsigned OrigVal       = MRI.createVirtualRegister(RC);
6248   unsigned OldVal        = MRI.createVirtualRegister(RC);
6249   unsigned NewVal        = MRI.createVirtualRegister(RC);
6250   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6251   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6252   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6253 
6254   // Insert 3 basic blocks for the loop.
6255   MachineBasicBlock *StartMBB  = MBB;
6256   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
6257   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
6258   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6259   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6260 
6261   //  StartMBB:
6262   //   ...
6263   //   %OrigVal     = L Disp(%Base)
6264   //   # fall through to LoopMMB
6265   MBB = StartMBB;
6266   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6267   MBB->addSuccessor(LoopMBB);
6268 
6269   //  LoopMBB:
6270   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6271   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6272   //   CompareOpcode %RotatedOldVal, %Src2
6273   //   BRC KeepOldMask, UpdateMBB
6274   MBB = LoopMBB;
6275   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6276     .addReg(OrigVal).addMBB(StartMBB)
6277     .addReg(Dest).addMBB(UpdateMBB);
6278   if (IsSubWord)
6279     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6280       .addReg(OldVal).addReg(BitShift).addImm(0);
6281   BuildMI(MBB, DL, TII->get(CompareOpcode))
6282     .addReg(RotatedOldVal).addReg(Src2);
6283   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6284     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6285   MBB->addSuccessor(UpdateMBB);
6286   MBB->addSuccessor(UseAltMBB);
6287 
6288   //  UseAltMBB:
6289   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6290   //   # fall through to UpdateMMB
6291   MBB = UseAltMBB;
6292   if (IsSubWord)
6293     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6294       .addReg(RotatedOldVal).addReg(Src2)
6295       .addImm(32).addImm(31 + BitSize).addImm(0);
6296   MBB->addSuccessor(UpdateMBB);
6297 
6298   //  UpdateMBB:
6299   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6300   //                        [ %RotatedAltVal, UseAltMBB ]
6301   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6302   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6303   //   JNE LoopMBB
6304   //   # fall through to DoneMMB
6305   MBB = UpdateMBB;
6306   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6307     .addReg(RotatedOldVal).addMBB(LoopMBB)
6308     .addReg(RotatedAltVal).addMBB(UseAltMBB);
6309   if (IsSubWord)
6310     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6311       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6312   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6313       .addReg(OldVal)
6314       .addReg(NewVal)
6315       .add(Base)
6316       .addImm(Disp);
6317   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6318     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6319   MBB->addSuccessor(LoopMBB);
6320   MBB->addSuccessor(DoneMBB);
6321 
6322   MI.eraseFromParent();
6323   return DoneMBB;
6324 }
6325 
6326 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6327 // instruction MI.
6328 MachineBasicBlock *
6329 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6330                                           MachineBasicBlock *MBB) const {
6331 
6332   MachineFunction &MF = *MBB->getParent();
6333   const SystemZInstrInfo *TII =
6334       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6335   MachineRegisterInfo &MRI = MF.getRegInfo();
6336 
6337   // Extract the operands.  Base can be a register or a frame index.
6338   unsigned Dest = MI.getOperand(0).getReg();
6339   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6340   int64_t Disp = MI.getOperand(2).getImm();
6341   unsigned OrigCmpVal = MI.getOperand(3).getReg();
6342   unsigned OrigSwapVal = MI.getOperand(4).getReg();
6343   unsigned BitShift = MI.getOperand(5).getReg();
6344   unsigned NegBitShift = MI.getOperand(6).getReg();
6345   int64_t BitSize = MI.getOperand(7).getImm();
6346   DebugLoc DL = MI.getDebugLoc();
6347 
6348   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6349 
6350   // Get the right opcodes for the displacement.
6351   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
6352   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6353   assert(LOpcode && CSOpcode && "Displacement out of range");
6354 
6355   // Create virtual registers for temporary results.
6356   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
6357   unsigned OldVal       = MRI.createVirtualRegister(RC);
6358   unsigned CmpVal       = MRI.createVirtualRegister(RC);
6359   unsigned SwapVal      = MRI.createVirtualRegister(RC);
6360   unsigned StoreVal     = MRI.createVirtualRegister(RC);
6361   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
6362   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
6363   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6364 
6365   // Insert 2 basic blocks for the loop.
6366   MachineBasicBlock *StartMBB = MBB;
6367   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6368   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6369   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
6370 
6371   //  StartMBB:
6372   //   ...
6373   //   %OrigOldVal     = L Disp(%Base)
6374   //   # fall through to LoopMMB
6375   MBB = StartMBB;
6376   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6377       .add(Base)
6378       .addImm(Disp)
6379       .addReg(0);
6380   MBB->addSuccessor(LoopMBB);
6381 
6382   //  LoopMBB:
6383   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6384   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6385   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6386   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
6387   //                      ^^ The low BitSize bits contain the field
6388   //                         of interest.
6389   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6390   //                      ^^ Replace the upper 32-BitSize bits of the
6391   //                         comparison value with those that we loaded,
6392   //                         so that we can use a full word comparison.
6393   //   CR %Dest, %RetryCmpVal
6394   //   JNE DoneMBB
6395   //   # Fall through to SetMBB
6396   MBB = LoopMBB;
6397   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6398     .addReg(OrigOldVal).addMBB(StartMBB)
6399     .addReg(RetryOldVal).addMBB(SetMBB);
6400   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6401     .addReg(OrigCmpVal).addMBB(StartMBB)
6402     .addReg(RetryCmpVal).addMBB(SetMBB);
6403   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6404     .addReg(OrigSwapVal).addMBB(StartMBB)
6405     .addReg(RetrySwapVal).addMBB(SetMBB);
6406   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6407     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6408   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6409     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6410   BuildMI(MBB, DL, TII->get(SystemZ::CR))
6411     .addReg(Dest).addReg(RetryCmpVal);
6412   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6413     .addImm(SystemZ::CCMASK_ICMP)
6414     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6415   MBB->addSuccessor(DoneMBB);
6416   MBB->addSuccessor(SetMBB);
6417 
6418   //  SetMBB:
6419   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6420   //                      ^^ Replace the upper 32-BitSize bits of the new
6421   //                         value with those that we loaded.
6422   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6423   //                      ^^ Rotate the new field to its proper position.
6424   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6425   //   JNE LoopMBB
6426   //   # fall through to ExitMMB
6427   MBB = SetMBB;
6428   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6429     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6430   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6431     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6432   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6433       .addReg(OldVal)
6434       .addReg(StoreVal)
6435       .add(Base)
6436       .addImm(Disp);
6437   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6438     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6439   MBB->addSuccessor(LoopMBB);
6440   MBB->addSuccessor(DoneMBB);
6441 
6442   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6443   // to the block after the loop.  At this point, CC may have been defined
6444   // either by the CR in LoopMBB or by the CS in SetMBB.
6445   if (!MI.registerDefIsDead(SystemZ::CC))
6446     DoneMBB->addLiveIn(SystemZ::CC);
6447 
6448   MI.eraseFromParent();
6449   return DoneMBB;
6450 }
6451 
6452 // Emit a move from two GR64s to a GR128.
6453 MachineBasicBlock *
6454 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6455                                    MachineBasicBlock *MBB) const {
6456   MachineFunction &MF = *MBB->getParent();
6457   const SystemZInstrInfo *TII =
6458       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6459   MachineRegisterInfo &MRI = MF.getRegInfo();
6460   DebugLoc DL = MI.getDebugLoc();
6461 
6462   unsigned Dest = MI.getOperand(0).getReg();
6463   unsigned Hi = MI.getOperand(1).getReg();
6464   unsigned Lo = MI.getOperand(2).getReg();
6465   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6466   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6467 
6468   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6469   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6470     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6471   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6472     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6473 
6474   MI.eraseFromParent();
6475   return MBB;
6476 }
6477 
6478 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6479 // if the high register of the GR128 value must be cleared or false if
6480 // it's "don't care".
6481 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6482                                                      MachineBasicBlock *MBB,
6483                                                      bool ClearEven) const {
6484   MachineFunction &MF = *MBB->getParent();
6485   const SystemZInstrInfo *TII =
6486       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6487   MachineRegisterInfo &MRI = MF.getRegInfo();
6488   DebugLoc DL = MI.getDebugLoc();
6489 
6490   unsigned Dest = MI.getOperand(0).getReg();
6491   unsigned Src = MI.getOperand(1).getReg();
6492   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6493 
6494   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6495   if (ClearEven) {
6496     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6497     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6498 
6499     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6500       .addImm(0);
6501     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6502       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6503     In128 = NewIn128;
6504   }
6505   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6506     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6507 
6508   MI.eraseFromParent();
6509   return MBB;
6510 }
6511 
6512 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6513     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6514   MachineFunction &MF = *MBB->getParent();
6515   const SystemZInstrInfo *TII =
6516       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6517   MachineRegisterInfo &MRI = MF.getRegInfo();
6518   DebugLoc DL = MI.getDebugLoc();
6519 
6520   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6521   uint64_t DestDisp = MI.getOperand(1).getImm();
6522   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6523   uint64_t SrcDisp = MI.getOperand(3).getImm();
6524   uint64_t Length = MI.getOperand(4).getImm();
6525 
6526   // When generating more than one CLC, all but the last will need to
6527   // branch to the end when a difference is found.
6528   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6529                                splitBlockAfter(MI, MBB) : nullptr);
6530 
6531   // Check for the loop form, in which operand 5 is the trip count.
6532   if (MI.getNumExplicitOperands() > 5) {
6533     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6534 
6535     uint64_t StartCountReg = MI.getOperand(5).getReg();
6536     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
6537     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
6538                               forceReg(MI, DestBase, TII));
6539 
6540     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6541     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
6542     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6543                             MRI.createVirtualRegister(RC));
6544     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
6545     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6546                             MRI.createVirtualRegister(RC));
6547 
6548     RC = &SystemZ::GR64BitRegClass;
6549     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6550     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6551 
6552     MachineBasicBlock *StartMBB = MBB;
6553     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6554     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6555     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6556 
6557     //  StartMBB:
6558     //   # fall through to LoopMMB
6559     MBB->addSuccessor(LoopMBB);
6560 
6561     //  LoopMBB:
6562     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6563     //                      [ %NextDestReg, NextMBB ]
6564     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6565     //                     [ %NextSrcReg, NextMBB ]
6566     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6567     //                       [ %NextCountReg, NextMBB ]
6568     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
6569     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6570     //   ( JLH EndMBB )
6571     //
6572     // The prefetch is used only for MVC.  The JLH is used only for CLC.
6573     MBB = LoopMBB;
6574 
6575     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6576       .addReg(StartDestReg).addMBB(StartMBB)
6577       .addReg(NextDestReg).addMBB(NextMBB);
6578     if (!HaveSingleBase)
6579       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6580         .addReg(StartSrcReg).addMBB(StartMBB)
6581         .addReg(NextSrcReg).addMBB(NextMBB);
6582     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6583       .addReg(StartCountReg).addMBB(StartMBB)
6584       .addReg(NextCountReg).addMBB(NextMBB);
6585     if (Opcode == SystemZ::MVC)
6586       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6587         .addImm(SystemZ::PFD_WRITE)
6588         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6589     BuildMI(MBB, DL, TII->get(Opcode))
6590       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6591       .addReg(ThisSrcReg).addImm(SrcDisp);
6592     if (EndMBB) {
6593       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6594         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6595         .addMBB(EndMBB);
6596       MBB->addSuccessor(EndMBB);
6597       MBB->addSuccessor(NextMBB);
6598     }
6599 
6600     // NextMBB:
6601     //   %NextDestReg = LA 256(%ThisDestReg)
6602     //   %NextSrcReg = LA 256(%ThisSrcReg)
6603     //   %NextCountReg = AGHI %ThisCountReg, -1
6604     //   CGHI %NextCountReg, 0
6605     //   JLH LoopMBB
6606     //   # fall through to DoneMMB
6607     //
6608     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6609     MBB = NextMBB;
6610 
6611     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6612       .addReg(ThisDestReg).addImm(256).addReg(0);
6613     if (!HaveSingleBase)
6614       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6615         .addReg(ThisSrcReg).addImm(256).addReg(0);
6616     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6617       .addReg(ThisCountReg).addImm(-1);
6618     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6619       .addReg(NextCountReg).addImm(0);
6620     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6621       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6622       .addMBB(LoopMBB);
6623     MBB->addSuccessor(LoopMBB);
6624     MBB->addSuccessor(DoneMBB);
6625 
6626     DestBase = MachineOperand::CreateReg(NextDestReg, false);
6627     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6628     Length &= 255;
6629     if (EndMBB && !Length)
6630       // If the loop handled the whole CLC range, DoneMBB will be empty with
6631       // CC live-through into EndMBB, so add it as live-in.
6632       DoneMBB->addLiveIn(SystemZ::CC);
6633     MBB = DoneMBB;
6634   }
6635   // Handle any remaining bytes with straight-line code.
6636   while (Length > 0) {
6637     uint64_t ThisLength = std::min(Length, uint64_t(256));
6638     // The previous iteration might have created out-of-range displacements.
6639     // Apply them using LAY if so.
6640     if (!isUInt<12>(DestDisp)) {
6641       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6642       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6643           .add(DestBase)
6644           .addImm(DestDisp)
6645           .addReg(0);
6646       DestBase = MachineOperand::CreateReg(Reg, false);
6647       DestDisp = 0;
6648     }
6649     if (!isUInt<12>(SrcDisp)) {
6650       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6651       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6652           .add(SrcBase)
6653           .addImm(SrcDisp)
6654           .addReg(0);
6655       SrcBase = MachineOperand::CreateReg(Reg, false);
6656       SrcDisp = 0;
6657     }
6658     BuildMI(*MBB, MI, DL, TII->get(Opcode))
6659         .add(DestBase)
6660         .addImm(DestDisp)
6661         .addImm(ThisLength)
6662         .add(SrcBase)
6663         .addImm(SrcDisp)
6664         ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
6665     DestDisp += ThisLength;
6666     SrcDisp += ThisLength;
6667     Length -= ThisLength;
6668     // If there's another CLC to go, branch to the end if a difference
6669     // was found.
6670     if (EndMBB && Length > 0) {
6671       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6672       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6673         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6674         .addMBB(EndMBB);
6675       MBB->addSuccessor(EndMBB);
6676       MBB->addSuccessor(NextMBB);
6677       MBB = NextMBB;
6678     }
6679   }
6680   if (EndMBB) {
6681     MBB->addSuccessor(EndMBB);
6682     MBB = EndMBB;
6683     MBB->addLiveIn(SystemZ::CC);
6684   }
6685 
6686   MI.eraseFromParent();
6687   return MBB;
6688 }
6689 
6690 // Decompose string pseudo-instruction MI into a loop that continually performs
6691 // Opcode until CC != 3.
6692 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
6693     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6694   MachineFunction &MF = *MBB->getParent();
6695   const SystemZInstrInfo *TII =
6696       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6697   MachineRegisterInfo &MRI = MF.getRegInfo();
6698   DebugLoc DL = MI.getDebugLoc();
6699 
6700   uint64_t End1Reg = MI.getOperand(0).getReg();
6701   uint64_t Start1Reg = MI.getOperand(1).getReg();
6702   uint64_t Start2Reg = MI.getOperand(2).getReg();
6703   uint64_t CharReg = MI.getOperand(3).getReg();
6704 
6705   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
6706   uint64_t This1Reg = MRI.createVirtualRegister(RC);
6707   uint64_t This2Reg = MRI.createVirtualRegister(RC);
6708   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
6709 
6710   MachineBasicBlock *StartMBB = MBB;
6711   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6712   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6713 
6714   //  StartMBB:
6715   //   # fall through to LoopMMB
6716   MBB->addSuccessor(LoopMBB);
6717 
6718   //  LoopMBB:
6719   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
6720   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
6721   //   R0L = %CharReg
6722   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
6723   //   JO LoopMBB
6724   //   # fall through to DoneMMB
6725   //
6726   // The load of R0L can be hoisted by post-RA LICM.
6727   MBB = LoopMBB;
6728 
6729   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
6730     .addReg(Start1Reg).addMBB(StartMBB)
6731     .addReg(End1Reg).addMBB(LoopMBB);
6732   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
6733     .addReg(Start2Reg).addMBB(StartMBB)
6734     .addReg(End2Reg).addMBB(LoopMBB);
6735   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
6736   BuildMI(MBB, DL, TII->get(Opcode))
6737     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
6738     .addReg(This1Reg).addReg(This2Reg);
6739   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6740     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
6741   MBB->addSuccessor(LoopMBB);
6742   MBB->addSuccessor(DoneMBB);
6743 
6744   DoneMBB->addLiveIn(SystemZ::CC);
6745 
6746   MI.eraseFromParent();
6747   return DoneMBB;
6748 }
6749 
6750 // Update TBEGIN instruction with final opcode and register clobbers.
6751 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
6752     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
6753     bool NoFloat) const {
6754   MachineFunction &MF = *MBB->getParent();
6755   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6756   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
6757 
6758   // Update opcode.
6759   MI.setDesc(TII->get(Opcode));
6760 
6761   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
6762   // Make sure to add the corresponding GRSM bits if they are missing.
6763   uint64_t Control = MI.getOperand(2).getImm();
6764   static const unsigned GPRControlBit[16] = {
6765     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
6766     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
6767   };
6768   Control |= GPRControlBit[15];
6769   if (TFI->hasFP(MF))
6770     Control |= GPRControlBit[11];
6771   MI.getOperand(2).setImm(Control);
6772 
6773   // Add GPR clobbers.
6774   for (int I = 0; I < 16; I++) {
6775     if ((Control & GPRControlBit[I]) == 0) {
6776       unsigned Reg = SystemZMC::GR64Regs[I];
6777       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6778     }
6779   }
6780 
6781   // Add FPR/VR clobbers.
6782   if (!NoFloat && (Control & 4) != 0) {
6783     if (Subtarget.hasVector()) {
6784       for (int I = 0; I < 32; I++) {
6785         unsigned Reg = SystemZMC::VR128Regs[I];
6786         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6787       }
6788     } else {
6789       for (int I = 0; I < 16; I++) {
6790         unsigned Reg = SystemZMC::FP64Regs[I];
6791         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6792       }
6793     }
6794   }
6795 
6796   return MBB;
6797 }
6798 
6799 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6800     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6801   MachineFunction &MF = *MBB->getParent();
6802   MachineRegisterInfo *MRI = &MF.getRegInfo();
6803   const SystemZInstrInfo *TII =
6804       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6805   DebugLoc DL = MI.getDebugLoc();
6806 
6807   unsigned SrcReg = MI.getOperand(0).getReg();
6808 
6809   // Create new virtual register of the same class as source.
6810   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
6811   unsigned DstReg = MRI->createVirtualRegister(RC);
6812 
6813   // Replace pseudo with a normal load-and-test that models the def as
6814   // well.
6815   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
6816     .addReg(SrcReg);
6817   MI.eraseFromParent();
6818 
6819   return MBB;
6820 }
6821 
6822 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
6823     MachineInstr &MI, MachineBasicBlock *MBB) const {
6824   switch (MI.getOpcode()) {
6825   case SystemZ::Select32Mux:
6826     return emitSelect(MI, MBB,
6827                       Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0);
6828   case SystemZ::Select32:
6829     return emitSelect(MI, MBB, SystemZ::LOCR);
6830   case SystemZ::Select64:
6831     return emitSelect(MI, MBB, SystemZ::LOCGR);
6832   case SystemZ::SelectF32:
6833   case SystemZ::SelectF64:
6834   case SystemZ::SelectF128:
6835   case SystemZ::SelectVR128:
6836     return emitSelect(MI, MBB, 0);
6837 
6838   case SystemZ::CondStore8Mux:
6839     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6840   case SystemZ::CondStore8MuxInv:
6841     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6842   case SystemZ::CondStore16Mux:
6843     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6844   case SystemZ::CondStore16MuxInv:
6845     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6846   case SystemZ::CondStore32Mux:
6847     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
6848   case SystemZ::CondStore32MuxInv:
6849     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
6850   case SystemZ::CondStore8:
6851     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6852   case SystemZ::CondStore8Inv:
6853     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6854   case SystemZ::CondStore16:
6855     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6856   case SystemZ::CondStore16Inv:
6857     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6858   case SystemZ::CondStore32:
6859     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6860   case SystemZ::CondStore32Inv:
6861     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6862   case SystemZ::CondStore64:
6863     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6864   case SystemZ::CondStore64Inv:
6865     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6866   case SystemZ::CondStoreF32:
6867     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6868   case SystemZ::CondStoreF32Inv:
6869     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6870   case SystemZ::CondStoreF64:
6871     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6872   case SystemZ::CondStoreF64Inv:
6873     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6874 
6875   case SystemZ::PAIR128:
6876     return emitPair128(MI, MBB);
6877   case SystemZ::AEXT128:
6878     return emitExt128(MI, MBB, false);
6879   case SystemZ::ZEXT128:
6880     return emitExt128(MI, MBB, true);
6881 
6882   case SystemZ::ATOMIC_SWAPW:
6883     return emitAtomicLoadBinary(MI, MBB, 0, 0);
6884   case SystemZ::ATOMIC_SWAP_32:
6885     return emitAtomicLoadBinary(MI, MBB, 0, 32);
6886   case SystemZ::ATOMIC_SWAP_64:
6887     return emitAtomicLoadBinary(MI, MBB, 0, 64);
6888 
6889   case SystemZ::ATOMIC_LOADW_AR:
6890     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6891   case SystemZ::ATOMIC_LOADW_AFI:
6892     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6893   case SystemZ::ATOMIC_LOAD_AR:
6894     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6895   case SystemZ::ATOMIC_LOAD_AHI:
6896     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6897   case SystemZ::ATOMIC_LOAD_AFI:
6898     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6899   case SystemZ::ATOMIC_LOAD_AGR:
6900     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6901   case SystemZ::ATOMIC_LOAD_AGHI:
6902     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6903   case SystemZ::ATOMIC_LOAD_AGFI:
6904     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6905 
6906   case SystemZ::ATOMIC_LOADW_SR:
6907     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6908   case SystemZ::ATOMIC_LOAD_SR:
6909     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6910   case SystemZ::ATOMIC_LOAD_SGR:
6911     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6912 
6913   case SystemZ::ATOMIC_LOADW_NR:
6914     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6915   case SystemZ::ATOMIC_LOADW_NILH:
6916     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6917   case SystemZ::ATOMIC_LOAD_NR:
6918     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6919   case SystemZ::ATOMIC_LOAD_NILL:
6920     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6921   case SystemZ::ATOMIC_LOAD_NILH:
6922     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6923   case SystemZ::ATOMIC_LOAD_NILF:
6924     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6925   case SystemZ::ATOMIC_LOAD_NGR:
6926     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6927   case SystemZ::ATOMIC_LOAD_NILL64:
6928     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6929   case SystemZ::ATOMIC_LOAD_NILH64:
6930     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6931   case SystemZ::ATOMIC_LOAD_NIHL64:
6932     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6933   case SystemZ::ATOMIC_LOAD_NIHH64:
6934     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6935   case SystemZ::ATOMIC_LOAD_NILF64:
6936     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6937   case SystemZ::ATOMIC_LOAD_NIHF64:
6938     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6939 
6940   case SystemZ::ATOMIC_LOADW_OR:
6941     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6942   case SystemZ::ATOMIC_LOADW_OILH:
6943     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6944   case SystemZ::ATOMIC_LOAD_OR:
6945     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6946   case SystemZ::ATOMIC_LOAD_OILL:
6947     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6948   case SystemZ::ATOMIC_LOAD_OILH:
6949     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6950   case SystemZ::ATOMIC_LOAD_OILF:
6951     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6952   case SystemZ::ATOMIC_LOAD_OGR:
6953     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6954   case SystemZ::ATOMIC_LOAD_OILL64:
6955     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6956   case SystemZ::ATOMIC_LOAD_OILH64:
6957     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6958   case SystemZ::ATOMIC_LOAD_OIHL64:
6959     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6960   case SystemZ::ATOMIC_LOAD_OIHH64:
6961     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6962   case SystemZ::ATOMIC_LOAD_OILF64:
6963     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6964   case SystemZ::ATOMIC_LOAD_OIHF64:
6965     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6966 
6967   case SystemZ::ATOMIC_LOADW_XR:
6968     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6969   case SystemZ::ATOMIC_LOADW_XILF:
6970     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6971   case SystemZ::ATOMIC_LOAD_XR:
6972     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6973   case SystemZ::ATOMIC_LOAD_XILF:
6974     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6975   case SystemZ::ATOMIC_LOAD_XGR:
6976     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6977   case SystemZ::ATOMIC_LOAD_XILF64:
6978     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6979   case SystemZ::ATOMIC_LOAD_XIHF64:
6980     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6981 
6982   case SystemZ::ATOMIC_LOADW_NRi:
6983     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6984   case SystemZ::ATOMIC_LOADW_NILHi:
6985     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6986   case SystemZ::ATOMIC_LOAD_NRi:
6987     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6988   case SystemZ::ATOMIC_LOAD_NILLi:
6989     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6990   case SystemZ::ATOMIC_LOAD_NILHi:
6991     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6992   case SystemZ::ATOMIC_LOAD_NILFi:
6993     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6994   case SystemZ::ATOMIC_LOAD_NGRi:
6995     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6996   case SystemZ::ATOMIC_LOAD_NILL64i:
6997     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6998   case SystemZ::ATOMIC_LOAD_NILH64i:
6999     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7000   case SystemZ::ATOMIC_LOAD_NIHL64i:
7001     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7002   case SystemZ::ATOMIC_LOAD_NIHH64i:
7003     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7004   case SystemZ::ATOMIC_LOAD_NILF64i:
7005     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7006   case SystemZ::ATOMIC_LOAD_NIHF64i:
7007     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7008 
7009   case SystemZ::ATOMIC_LOADW_MIN:
7010     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7011                                 SystemZ::CCMASK_CMP_LE, 0);
7012   case SystemZ::ATOMIC_LOAD_MIN_32:
7013     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7014                                 SystemZ::CCMASK_CMP_LE, 32);
7015   case SystemZ::ATOMIC_LOAD_MIN_64:
7016     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7017                                 SystemZ::CCMASK_CMP_LE, 64);
7018 
7019   case SystemZ::ATOMIC_LOADW_MAX:
7020     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7021                                 SystemZ::CCMASK_CMP_GE, 0);
7022   case SystemZ::ATOMIC_LOAD_MAX_32:
7023     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7024                                 SystemZ::CCMASK_CMP_GE, 32);
7025   case SystemZ::ATOMIC_LOAD_MAX_64:
7026     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7027                                 SystemZ::CCMASK_CMP_GE, 64);
7028 
7029   case SystemZ::ATOMIC_LOADW_UMIN:
7030     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7031                                 SystemZ::CCMASK_CMP_LE, 0);
7032   case SystemZ::ATOMIC_LOAD_UMIN_32:
7033     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7034                                 SystemZ::CCMASK_CMP_LE, 32);
7035   case SystemZ::ATOMIC_LOAD_UMIN_64:
7036     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7037                                 SystemZ::CCMASK_CMP_LE, 64);
7038 
7039   case SystemZ::ATOMIC_LOADW_UMAX:
7040     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7041                                 SystemZ::CCMASK_CMP_GE, 0);
7042   case SystemZ::ATOMIC_LOAD_UMAX_32:
7043     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7044                                 SystemZ::CCMASK_CMP_GE, 32);
7045   case SystemZ::ATOMIC_LOAD_UMAX_64:
7046     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7047                                 SystemZ::CCMASK_CMP_GE, 64);
7048 
7049   case SystemZ::ATOMIC_CMP_SWAPW:
7050     return emitAtomicCmpSwapW(MI, MBB);
7051   case SystemZ::MVCSequence:
7052   case SystemZ::MVCLoop:
7053     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7054   case SystemZ::NCSequence:
7055   case SystemZ::NCLoop:
7056     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7057   case SystemZ::OCSequence:
7058   case SystemZ::OCLoop:
7059     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7060   case SystemZ::XCSequence:
7061   case SystemZ::XCLoop:
7062     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7063   case SystemZ::CLCSequence:
7064   case SystemZ::CLCLoop:
7065     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7066   case SystemZ::CLSTLoop:
7067     return emitStringWrapper(MI, MBB, SystemZ::CLST);
7068   case SystemZ::MVSTLoop:
7069     return emitStringWrapper(MI, MBB, SystemZ::MVST);
7070   case SystemZ::SRSTLoop:
7071     return emitStringWrapper(MI, MBB, SystemZ::SRST);
7072   case SystemZ::TBEGIN:
7073     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7074   case SystemZ::TBEGIN_nofloat:
7075     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7076   case SystemZ::TBEGINC:
7077     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7078   case SystemZ::LTEBRCompare_VecPseudo:
7079     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7080   case SystemZ::LTDBRCompare_VecPseudo:
7081     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7082   case SystemZ::LTXBRCompare_VecPseudo:
7083     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7084 
7085   case TargetOpcode::STACKMAP:
7086   case TargetOpcode::PATCHPOINT:
7087     return emitPatchPoint(MI, MBB);
7088 
7089   default:
7090     llvm_unreachable("Unexpected instr type to insert");
7091   }
7092 }
7093 
7094 // This is only used by the isel schedulers, and is needed only to prevent
7095 // compiler from crashing when list-ilp is used.
7096 const TargetRegisterClass *
7097 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7098   if (VT == MVT::Untyped)
7099     return &SystemZ::ADDR128BitRegClass;
7100   return TargetLowering::getRepRegClassFor(VT);
7101 }
7102