1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Special treatment.
475       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
476 
477       // Handle constrained floating-point operations.
478       setOperationAction(ISD::STRICT_FADD, VT, Legal);
479       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
480       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
481       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
482       setOperationAction(ISD::STRICT_FMA, VT, Legal);
483       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
484       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
485       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
486       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
487       if (Subtarget.hasFPExtension()) {
488         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
489         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
490         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
491         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
492         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
493       }
494     }
495   }
496 
497   // Handle floating-point vector types.
498   if (Subtarget.hasVector()) {
499     // Scalar-to-vector conversion is just a subreg.
500     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
501     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
502 
503     // Some insertions and extractions can be done directly but others
504     // need to go via integers.
505     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
506     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
507     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
508     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
509 
510     // These operations have direct equivalents.
511     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
512     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
513     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
514     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
515     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
516     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
517     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
518     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
519     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
520     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
521     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
522     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
523     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
524     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
525 
526     // Handle constrained floating-point operations.
527     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
536     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
537     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
538     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
539   }
540 
541   // The vector enhancements facility 1 has instructions for these.
542   if (Subtarget.hasVectorEnhancements1()) {
543     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
544     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
545     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
546     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
547     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
548     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
549     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
550     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
551     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
553     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
554     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
555     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
556     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
557 
558     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
559     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
560     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
561     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
562 
563     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
564     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
565     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
566     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
567 
568     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
569     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
570     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
571     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
572 
573     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
574     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
575     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
576     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
577 
578     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
579     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
580     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
581     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
582 
583     // Handle constrained floating-point operations.
584     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
593     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
594     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
595     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
596     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
597                      MVT::v4f32, MVT::v2f64 }) {
598       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
599       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
600       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
601       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
602     }
603   }
604 
605   // We only have fused f128 multiply-addition on vector registers.
606   if (!Subtarget.hasVectorEnhancements1()) {
607     setOperationAction(ISD::FMA, MVT::f128, Expand);
608     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
609   }
610 
611   // We don't have a copysign instruction on vector registers.
612   if (Subtarget.hasVectorEnhancements1())
613     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
614 
615   // Needed so that we don't try to implement f128 constant loads using
616   // a load-and-extend of a f80 constant (in cases where the constant
617   // would fit in an f80).
618   for (MVT VT : MVT::fp_valuetypes())
619     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
620 
621   // We don't have extending load instruction on vector registers.
622   if (Subtarget.hasVectorEnhancements1()) {
623     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
624     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
625   }
626 
627   // Floating-point truncation and stores need to be done separately.
628   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
629   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
630   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
631 
632   // We have 64-bit FPR<->GPR moves, but need special handling for
633   // 32-bit forms.
634   if (!Subtarget.hasVector()) {
635     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
636     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
637   }
638 
639   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
640   // structure, but VAEND is a no-op.
641   setOperationAction(ISD::VASTART, MVT::Other, Custom);
642   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
643   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
644 
645   // Codes for which we want to perform some z-specific combinations.
646   setTargetDAGCombine({ISD::ZERO_EXTEND,
647                        ISD::SIGN_EXTEND,
648                        ISD::SIGN_EXTEND_INREG,
649                        ISD::LOAD,
650                        ISD::STORE,
651                        ISD::VECTOR_SHUFFLE,
652                        ISD::EXTRACT_VECTOR_ELT,
653                        ISD::FP_ROUND,
654                        ISD::STRICT_FP_ROUND,
655                        ISD::FP_EXTEND,
656                        ISD::SINT_TO_FP,
657                        ISD::UINT_TO_FP,
658                        ISD::STRICT_FP_EXTEND,
659                        ISD::BSWAP,
660                        ISD::SDIV,
661                        ISD::UDIV,
662                        ISD::SREM,
663                        ISD::UREM,
664                        ISD::INTRINSIC_VOID,
665                        ISD::INTRINSIC_W_CHAIN});
666 
667   // Handle intrinsics.
668   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
669   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
670 
671   // We want to use MVC in preference to even a single load/store pair.
672   MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
673   MaxStoresPerMemcpyOptSize = 0;
674 
675   // The main memset sequence is a byte store followed by an MVC.
676   // Two STC or MV..I stores win over that, but the kind of fused stores
677   // generated by target-independent code don't when the byte value is
678   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
679   // than "STC;MVC".  Handle the choice in target-specific code instead.
680   MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
681   MaxStoresPerMemsetOptSize = 0;
682 
683   // Default to having -disable-strictnode-mutation on
684   IsStrictFPEnabled = true;
685 }
686 
687 bool SystemZTargetLowering::useSoftFloat() const {
688   return Subtarget.hasSoftFloat();
689 }
690 
691 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
692                                               LLVMContext &, EVT VT) const {
693   if (!VT.isVector())
694     return MVT::i32;
695   return VT.changeVectorElementTypeToInteger();
696 }
697 
698 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
699     const MachineFunction &MF, EVT VT) const {
700   VT = VT.getScalarType();
701 
702   if (!VT.isSimple())
703     return false;
704 
705   switch (VT.getSimpleVT().SimpleTy) {
706   case MVT::f32:
707   case MVT::f64:
708     return true;
709   case MVT::f128:
710     return Subtarget.hasVectorEnhancements1();
711   default:
712     break;
713   }
714 
715   return false;
716 }
717 
718 // Return true if the constant can be generated with a vector instruction,
719 // such as VGM, VGMB or VREPI.
720 bool SystemZVectorConstantInfo::isVectorConstantLegal(
721     const SystemZSubtarget &Subtarget) {
722   const SystemZInstrInfo *TII =
723       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
724   if (!Subtarget.hasVector() ||
725       (isFP128 && !Subtarget.hasVectorEnhancements1()))
726     return false;
727 
728   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
729   // preferred way of creating all-zero and all-one vectors so give it
730   // priority over other methods below.
731   unsigned Mask = 0;
732   unsigned I = 0;
733   for (; I < SystemZ::VectorBytes; ++I) {
734     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
735     if (Byte == 0xff)
736       Mask |= 1ULL << I;
737     else if (Byte != 0)
738       break;
739   }
740   if (I == SystemZ::VectorBytes) {
741     Opcode = SystemZISD::BYTE_MASK;
742     OpVals.push_back(Mask);
743     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
744     return true;
745   }
746 
747   if (SplatBitSize > 64)
748     return false;
749 
750   auto tryValue = [&](uint64_t Value) -> bool {
751     // Try VECTOR REPLICATE IMMEDIATE
752     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
753     if (isInt<16>(SignedValue)) {
754       OpVals.push_back(((unsigned) SignedValue));
755       Opcode = SystemZISD::REPLICATE;
756       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
757                                SystemZ::VectorBits / SplatBitSize);
758       return true;
759     }
760     // Try VECTOR GENERATE MASK
761     unsigned Start, End;
762     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
763       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
764       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
765       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
766       OpVals.push_back(Start - (64 - SplatBitSize));
767       OpVals.push_back(End - (64 - SplatBitSize));
768       Opcode = SystemZISD::ROTATE_MASK;
769       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
770                                SystemZ::VectorBits / SplatBitSize);
771       return true;
772     }
773     return false;
774   };
775 
776   // First try assuming that any undefined bits above the highest set bit
777   // and below the lowest set bit are 1s.  This increases the likelihood of
778   // being able to use a sign-extended element value in VECTOR REPLICATE
779   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
780   uint64_t SplatBitsZ = SplatBits.getZExtValue();
781   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
782   uint64_t Lower =
783       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
784   uint64_t Upper =
785       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
786   if (tryValue(SplatBitsZ | Upper | Lower))
787     return true;
788 
789   // Now try assuming that any undefined bits between the first and
790   // last defined set bits are set.  This increases the chances of
791   // using a non-wraparound mask.
792   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
793   return tryValue(SplatBitsZ | Middle);
794 }
795 
796 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
797   if (IntImm.isSingleWord()) {
798     IntBits = APInt(128, IntImm.getZExtValue());
799     IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
800   } else
801     IntBits = IntImm;
802   assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
803 
804   // Find the smallest splat.
805   SplatBits = IntImm;
806   unsigned Width = SplatBits.getBitWidth();
807   while (Width > 8) {
808     unsigned HalfSize = Width / 2;
809     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
810     APInt LowValue = SplatBits.trunc(HalfSize);
811 
812     // If the two halves do not match, stop here.
813     if (HighValue != LowValue || 8 > HalfSize)
814       break;
815 
816     SplatBits = HighValue;
817     Width = HalfSize;
818   }
819   SplatUndef = 0;
820   SplatBitSize = Width;
821 }
822 
823 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
824   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
825   bool HasAnyUndefs;
826 
827   // Get IntBits by finding the 128 bit splat.
828   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
829                        true);
830 
831   // Get SplatBits by finding the 8 bit or greater splat.
832   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
833                        true);
834 }
835 
836 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
837                                          bool ForCodeSize) const {
838   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
839   if (Imm.isZero() || Imm.isNegZero())
840     return true;
841 
842   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
843 }
844 
845 /// Returns true if stack probing through inline assembly is requested.
846 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
847   // If the function specifically requests inline stack probes, emit them.
848   if (MF.getFunction().hasFnAttribute("probe-stack"))
849     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
850            "inline-asm";
851   return false;
852 }
853 
854 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
855   // We can use CGFI or CLGFI.
856   return isInt<32>(Imm) || isUInt<32>(Imm);
857 }
858 
859 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
860   // We can use ALGFI or SLGFI.
861   return isUInt<32>(Imm) || isUInt<32>(-Imm);
862 }
863 
864 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
865     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
866   // Unaligned accesses should never be slower than the expanded version.
867   // We check specifically for aligned accesses in the few cases where
868   // they are required.
869   if (Fast)
870     *Fast = true;
871   return true;
872 }
873 
874 // Information about the addressing mode for a memory access.
875 struct AddressingMode {
876   // True if a long displacement is supported.
877   bool LongDisplacement;
878 
879   // True if use of index register is supported.
880   bool IndexReg;
881 
882   AddressingMode(bool LongDispl, bool IdxReg) :
883     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
884 };
885 
886 // Return the desired addressing mode for a Load which has only one use (in
887 // the same block) which is a Store.
888 static AddressingMode getLoadStoreAddrMode(bool HasVector,
889                                           Type *Ty) {
890   // With vector support a Load->Store combination may be combined to either
891   // an MVC or vector operations and it seems to work best to allow the
892   // vector addressing mode.
893   if (HasVector)
894     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
895 
896   // Otherwise only the MVC case is special.
897   bool MVC = Ty->isIntegerTy(8);
898   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
899 }
900 
901 // Return the addressing mode which seems most desirable given an LLVM
902 // Instruction pointer.
903 static AddressingMode
904 supportedAddressingMode(Instruction *I, bool HasVector) {
905   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
906     switch (II->getIntrinsicID()) {
907     default: break;
908     case Intrinsic::memset:
909     case Intrinsic::memmove:
910     case Intrinsic::memcpy:
911       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
912     }
913   }
914 
915   if (isa<LoadInst>(I) && I->hasOneUse()) {
916     auto *SingleUser = cast<Instruction>(*I->user_begin());
917     if (SingleUser->getParent() == I->getParent()) {
918       if (isa<ICmpInst>(SingleUser)) {
919         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
920           if (C->getBitWidth() <= 64 &&
921               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
922             // Comparison of memory with 16 bit signed / unsigned immediate
923             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
924       } else if (isa<StoreInst>(SingleUser))
925         // Load->Store
926         return getLoadStoreAddrMode(HasVector, I->getType());
927     }
928   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
929     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
930       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
931         // Load->Store
932         return getLoadStoreAddrMode(HasVector, LoadI->getType());
933   }
934 
935   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
936 
937     // * Use LDE instead of LE/LEY for z13 to avoid partial register
938     //   dependencies (LDE only supports small offsets).
939     // * Utilize the vector registers to hold floating point
940     //   values (vector load / store instructions only support small
941     //   offsets).
942 
943     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
944                          I->getOperand(0)->getType());
945     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
946     bool IsVectorAccess = MemAccessTy->isVectorTy();
947 
948     // A store of an extracted vector element will be combined into a VSTE type
949     // instruction.
950     if (!IsVectorAccess && isa<StoreInst>(I)) {
951       Value *DataOp = I->getOperand(0);
952       if (isa<ExtractElementInst>(DataOp))
953         IsVectorAccess = true;
954     }
955 
956     // A load which gets inserted into a vector element will be combined into a
957     // VLE type instruction.
958     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
959       User *LoadUser = *I->user_begin();
960       if (isa<InsertElementInst>(LoadUser))
961         IsVectorAccess = true;
962     }
963 
964     if (IsFPAccess || IsVectorAccess)
965       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
966   }
967 
968   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
969 }
970 
971 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
972        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
973   // Punt on globals for now, although they can be used in limited
974   // RELATIVE LONG cases.
975   if (AM.BaseGV)
976     return false;
977 
978   // Require a 20-bit signed offset.
979   if (!isInt<20>(AM.BaseOffs))
980     return false;
981 
982   bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy();
983   AddressingMode SupportedAM(!RequireD12, true);
984   if (I != nullptr)
985     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
986 
987   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
988     return false;
989 
990   if (!SupportedAM.IndexReg)
991     // No indexing allowed.
992     return AM.Scale == 0;
993   else
994     // Indexing is OK but no scale factor can be applied.
995     return AM.Scale == 0 || AM.Scale == 1;
996 }
997 
998 bool SystemZTargetLowering::findOptimalMemOpLowering(
999     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1000     unsigned SrcAS, const AttributeList &FuncAttributes) const {
1001   const int MVCFastLen = 16;
1002 
1003   // Don't expand Op into scalar loads/stores in these cases:
1004   if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1005     return false;  // Small memcpy: Use MVC
1006   if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1007     return false;  // Small memset (first byte with STC/MVI): Use MVC
1008   if (Op.isZeroMemset())
1009     return false;  // Memset zero: Use XC
1010 
1011   return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1012                                                   SrcAS, FuncAttributes);
1013 }
1014 
1015 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1016                                    const AttributeList &FuncAttributes) const {
1017   return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1018 }
1019 
1020 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1021   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1022     return false;
1023   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
1024   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
1025   return FromBits > ToBits;
1026 }
1027 
1028 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1029   if (!FromVT.isInteger() || !ToVT.isInteger())
1030     return false;
1031   unsigned FromBits = FromVT.getFixedSizeInBits();
1032   unsigned ToBits = ToVT.getFixedSizeInBits();
1033   return FromBits > ToBits;
1034 }
1035 
1036 //===----------------------------------------------------------------------===//
1037 // Inline asm support
1038 //===----------------------------------------------------------------------===//
1039 
1040 TargetLowering::ConstraintType
1041 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1042   if (Constraint.size() == 1) {
1043     switch (Constraint[0]) {
1044     case 'a': // Address register
1045     case 'd': // Data register (equivalent to 'r')
1046     case 'f': // Floating-point register
1047     case 'h': // High-part register
1048     case 'r': // General-purpose register
1049     case 'v': // Vector register
1050       return C_RegisterClass;
1051 
1052     case 'Q': // Memory with base and unsigned 12-bit displacement
1053     case 'R': // Likewise, plus an index
1054     case 'S': // Memory with base and signed 20-bit displacement
1055     case 'T': // Likewise, plus an index
1056     case 'm': // Equivalent to 'T'.
1057       return C_Memory;
1058 
1059     case 'I': // Unsigned 8-bit constant
1060     case 'J': // Unsigned 12-bit constant
1061     case 'K': // Signed 16-bit constant
1062     case 'L': // Signed 20-bit displacement (on all targets we support)
1063     case 'M': // 0x7fffffff
1064       return C_Immediate;
1065 
1066     default:
1067       break;
1068     }
1069   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1070     switch (Constraint[1]) {
1071     case 'Q': // Address with base and unsigned 12-bit displacement
1072     case 'R': // Likewise, plus an index
1073     case 'S': // Address with base and signed 20-bit displacement
1074     case 'T': // Likewise, plus an index
1075       return C_Address;
1076 
1077     default:
1078       break;
1079     }
1080   }
1081   return TargetLowering::getConstraintType(Constraint);
1082 }
1083 
1084 TargetLowering::ConstraintWeight SystemZTargetLowering::
1085 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1086                                const char *constraint) const {
1087   ConstraintWeight weight = CW_Invalid;
1088   Value *CallOperandVal = info.CallOperandVal;
1089   // If we don't have a value, we can't do a match,
1090   // but allow it at the lowest weight.
1091   if (!CallOperandVal)
1092     return CW_Default;
1093   Type *type = CallOperandVal->getType();
1094   // Look at the constraint type.
1095   switch (*constraint) {
1096   default:
1097     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1098     break;
1099 
1100   case 'a': // Address register
1101   case 'd': // Data register (equivalent to 'r')
1102   case 'h': // High-part register
1103   case 'r': // General-purpose register
1104     if (CallOperandVal->getType()->isIntegerTy())
1105       weight = CW_Register;
1106     break;
1107 
1108   case 'f': // Floating-point register
1109     if (type->isFloatingPointTy())
1110       weight = CW_Register;
1111     break;
1112 
1113   case 'v': // Vector register
1114     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1115         Subtarget.hasVector())
1116       weight = CW_Register;
1117     break;
1118 
1119   case 'I': // Unsigned 8-bit constant
1120     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1121       if (isUInt<8>(C->getZExtValue()))
1122         weight = CW_Constant;
1123     break;
1124 
1125   case 'J': // Unsigned 12-bit constant
1126     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1127       if (isUInt<12>(C->getZExtValue()))
1128         weight = CW_Constant;
1129     break;
1130 
1131   case 'K': // Signed 16-bit constant
1132     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1133       if (isInt<16>(C->getSExtValue()))
1134         weight = CW_Constant;
1135     break;
1136 
1137   case 'L': // Signed 20-bit displacement (on all targets we support)
1138     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1139       if (isInt<20>(C->getSExtValue()))
1140         weight = CW_Constant;
1141     break;
1142 
1143   case 'M': // 0x7fffffff
1144     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1145       if (C->getZExtValue() == 0x7fffffff)
1146         weight = CW_Constant;
1147     break;
1148   }
1149   return weight;
1150 }
1151 
1152 // Parse a "{tNNN}" register constraint for which the register type "t"
1153 // has already been verified.  MC is the class associated with "t" and
1154 // Map maps 0-based register numbers to LLVM register numbers.
1155 static std::pair<unsigned, const TargetRegisterClass *>
1156 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1157                     const unsigned *Map, unsigned Size) {
1158   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1159   if (isdigit(Constraint[2])) {
1160     unsigned Index;
1161     bool Failed =
1162         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1163     if (!Failed && Index < Size && Map[Index])
1164       return std::make_pair(Map[Index], RC);
1165   }
1166   return std::make_pair(0U, nullptr);
1167 }
1168 
1169 std::pair<unsigned, const TargetRegisterClass *>
1170 SystemZTargetLowering::getRegForInlineAsmConstraint(
1171     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1172   if (Constraint.size() == 1) {
1173     // GCC Constraint Letters
1174     switch (Constraint[0]) {
1175     default: break;
1176     case 'd': // Data register (equivalent to 'r')
1177     case 'r': // General-purpose register
1178       if (VT == MVT::i64)
1179         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1180       else if (VT == MVT::i128)
1181         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1182       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1183 
1184     case 'a': // Address register
1185       if (VT == MVT::i64)
1186         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1187       else if (VT == MVT::i128)
1188         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1189       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1190 
1191     case 'h': // High-part register (an LLVM extension)
1192       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1193 
1194     case 'f': // Floating-point register
1195       if (!useSoftFloat()) {
1196         if (VT == MVT::f64)
1197           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1198         else if (VT == MVT::f128)
1199           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1200         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1201       }
1202       break;
1203     case 'v': // Vector register
1204       if (Subtarget.hasVector()) {
1205         if (VT == MVT::f32)
1206           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1207         if (VT == MVT::f64)
1208           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1209         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1210       }
1211       break;
1212     }
1213   }
1214   if (Constraint.size() > 0 && Constraint[0] == '{') {
1215     // We need to override the default register parsing for GPRs and FPRs
1216     // because the interpretation depends on VT.  The internal names of
1217     // the registers are also different from the external names
1218     // (F0D and F0S instead of F0, etc.).
1219     if (Constraint[1] == 'r') {
1220       if (VT == MVT::i32)
1221         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1222                                    SystemZMC::GR32Regs, 16);
1223       if (VT == MVT::i128)
1224         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1225                                    SystemZMC::GR128Regs, 16);
1226       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1227                                  SystemZMC::GR64Regs, 16);
1228     }
1229     if (Constraint[1] == 'f') {
1230       if (useSoftFloat())
1231         return std::make_pair(
1232             0u, static_cast<const TargetRegisterClass *>(nullptr));
1233       if (VT == MVT::f32)
1234         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1235                                    SystemZMC::FP32Regs, 16);
1236       if (VT == MVT::f128)
1237         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1238                                    SystemZMC::FP128Regs, 16);
1239       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1240                                  SystemZMC::FP64Regs, 16);
1241     }
1242     if (Constraint[1] == 'v') {
1243       if (!Subtarget.hasVector())
1244         return std::make_pair(
1245             0u, static_cast<const TargetRegisterClass *>(nullptr));
1246       if (VT == MVT::f32)
1247         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1248                                    SystemZMC::VR32Regs, 32);
1249       if (VT == MVT::f64)
1250         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1251                                    SystemZMC::VR64Regs, 32);
1252       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1253                                  SystemZMC::VR128Regs, 32);
1254     }
1255   }
1256   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1257 }
1258 
1259 // FIXME? Maybe this could be a TableGen attribute on some registers and
1260 // this table could be generated automatically from RegInfo.
1261 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1262                                                   const MachineFunction &MF) const {
1263 
1264   Register Reg = StringSwitch<Register>(RegName)
1265                    .Case("r15", SystemZ::R15D)
1266                    .Default(0);
1267   if (Reg)
1268     return Reg;
1269   report_fatal_error("Invalid register name global variable");
1270 }
1271 
1272 void SystemZTargetLowering::
1273 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1274                              std::vector<SDValue> &Ops,
1275                              SelectionDAG &DAG) const {
1276   // Only support length 1 constraints for now.
1277   if (Constraint.length() == 1) {
1278     switch (Constraint[0]) {
1279     case 'I': // Unsigned 8-bit constant
1280       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1281         if (isUInt<8>(C->getZExtValue()))
1282           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1283                                               Op.getValueType()));
1284       return;
1285 
1286     case 'J': // Unsigned 12-bit constant
1287       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1288         if (isUInt<12>(C->getZExtValue()))
1289           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1290                                               Op.getValueType()));
1291       return;
1292 
1293     case 'K': // Signed 16-bit constant
1294       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1295         if (isInt<16>(C->getSExtValue()))
1296           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1297                                               Op.getValueType()));
1298       return;
1299 
1300     case 'L': // Signed 20-bit displacement (on all targets we support)
1301       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1302         if (isInt<20>(C->getSExtValue()))
1303           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1304                                               Op.getValueType()));
1305       return;
1306 
1307     case 'M': // 0x7fffffff
1308       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1309         if (C->getZExtValue() == 0x7fffffff)
1310           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1311                                               Op.getValueType()));
1312       return;
1313     }
1314   }
1315   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1316 }
1317 
1318 //===----------------------------------------------------------------------===//
1319 // Calling conventions
1320 //===----------------------------------------------------------------------===//
1321 
1322 #include "SystemZGenCallingConv.inc"
1323 
1324 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1325   CallingConv::ID) const {
1326   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1327                                            SystemZ::R14D, 0 };
1328   return ScratchRegs;
1329 }
1330 
1331 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1332                                                      Type *ToType) const {
1333   return isTruncateFree(FromType, ToType);
1334 }
1335 
1336 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1337   return CI->isTailCall();
1338 }
1339 
1340 // We do not yet support 128-bit single-element vector types.  If the user
1341 // attempts to use such types as function argument or return type, prefer
1342 // to error out instead of emitting code violating the ABI.
1343 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1344   if (ArgVT.isVector() && !VT.isVector())
1345     report_fatal_error("Unsupported vector argument or return type");
1346 }
1347 
1348 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1349   for (unsigned i = 0; i < Ins.size(); ++i)
1350     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1351 }
1352 
1353 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1354   for (unsigned i = 0; i < Outs.size(); ++i)
1355     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1356 }
1357 
1358 // Value is a value that has been passed to us in the location described by VA
1359 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1360 // any loads onto Chain.
1361 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1362                                    CCValAssign &VA, SDValue Chain,
1363                                    SDValue Value) {
1364   // If the argument has been promoted from a smaller type, insert an
1365   // assertion to capture this.
1366   if (VA.getLocInfo() == CCValAssign::SExt)
1367     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1368                         DAG.getValueType(VA.getValVT()));
1369   else if (VA.getLocInfo() == CCValAssign::ZExt)
1370     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1371                         DAG.getValueType(VA.getValVT()));
1372 
1373   if (VA.isExtInLoc())
1374     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1375   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1376     // If this is a short vector argument loaded from the stack,
1377     // extend from i64 to full vector size and then bitcast.
1378     assert(VA.getLocVT() == MVT::i64);
1379     assert(VA.getValVT().isVector());
1380     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1381     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1382   } else
1383     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1384   return Value;
1385 }
1386 
1387 // Value is a value of type VA.getValVT() that we need to copy into
1388 // the location described by VA.  Return a copy of Value converted to
1389 // VA.getValVT().  The caller is responsible for handling indirect values.
1390 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1391                                    CCValAssign &VA, SDValue Value) {
1392   switch (VA.getLocInfo()) {
1393   case CCValAssign::SExt:
1394     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1395   case CCValAssign::ZExt:
1396     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1397   case CCValAssign::AExt:
1398     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1399   case CCValAssign::BCvt: {
1400     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1401     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1402            VA.getValVT() == MVT::f128);
1403     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1404                             ? MVT::v2i64
1405                             : VA.getLocVT();
1406     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1407     // For ELF, this is a short vector argument to be stored to the stack,
1408     // bitcast to v2i64 and then extract first element.
1409     if (BitCastToType == MVT::v2i64)
1410       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1411                          DAG.getConstant(0, DL, MVT::i32));
1412     return Value;
1413   }
1414   case CCValAssign::Full:
1415     return Value;
1416   default:
1417     llvm_unreachable("Unhandled getLocInfo()");
1418   }
1419 }
1420 
1421 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1422   SDLoc DL(In);
1423   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1424                            DAG.getIntPtrConstant(0, DL));
1425   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1426                            DAG.getIntPtrConstant(1, DL));
1427   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1428                                     MVT::Untyped, Hi, Lo);
1429   return SDValue(Pair, 0);
1430 }
1431 
1432 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1433   SDLoc DL(In);
1434   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1435                                           DL, MVT::i64, In);
1436   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1437                                           DL, MVT::i64, In);
1438   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1439 }
1440 
1441 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1442     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1443     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1444   EVT ValueVT = Val.getValueType();
1445   assert((ValueVT != MVT::i128 ||
1446           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1447            (NumParts == 2 && PartVT == MVT::i64))) &&
1448          "Unknown handling of i128 value.");
1449   if (ValueVT == MVT::i128 && NumParts == 1) {
1450     // Inline assembly operand.
1451     Parts[0] = lowerI128ToGR128(DAG, Val);
1452     return true;
1453   }
1454   return false;
1455 }
1456 
1457 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1458     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1459     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1460   assert((ValueVT != MVT::i128 ||
1461           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1462            (NumParts == 2 && PartVT == MVT::i64))) &&
1463          "Unknown handling of i128 value.");
1464   if (ValueVT == MVT::i128 && NumParts == 1)
1465     // Inline assembly operand.
1466     return lowerGR128ToI128(DAG, Parts[0]);
1467   return SDValue();
1468 }
1469 
1470 SDValue SystemZTargetLowering::LowerFormalArguments(
1471     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1472     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1473     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1474   MachineFunction &MF = DAG.getMachineFunction();
1475   MachineFrameInfo &MFI = MF.getFrameInfo();
1476   MachineRegisterInfo &MRI = MF.getRegInfo();
1477   SystemZMachineFunctionInfo *FuncInfo =
1478       MF.getInfo<SystemZMachineFunctionInfo>();
1479   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1480   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1481 
1482   // Detect unsupported vector argument types.
1483   if (Subtarget.hasVector())
1484     VerifyVectorTypes(Ins);
1485 
1486   // Assign locations to all of the incoming arguments.
1487   SmallVector<CCValAssign, 16> ArgLocs;
1488   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1489   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1490 
1491   unsigned NumFixedGPRs = 0;
1492   unsigned NumFixedFPRs = 0;
1493   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1494     SDValue ArgValue;
1495     CCValAssign &VA = ArgLocs[I];
1496     EVT LocVT = VA.getLocVT();
1497     if (VA.isRegLoc()) {
1498       // Arguments passed in registers
1499       const TargetRegisterClass *RC;
1500       switch (LocVT.getSimpleVT().SimpleTy) {
1501       default:
1502         // Integers smaller than i64 should be promoted to i64.
1503         llvm_unreachable("Unexpected argument type");
1504       case MVT::i32:
1505         NumFixedGPRs += 1;
1506         RC = &SystemZ::GR32BitRegClass;
1507         break;
1508       case MVT::i64:
1509         NumFixedGPRs += 1;
1510         RC = &SystemZ::GR64BitRegClass;
1511         break;
1512       case MVT::f32:
1513         NumFixedFPRs += 1;
1514         RC = &SystemZ::FP32BitRegClass;
1515         break;
1516       case MVT::f64:
1517         NumFixedFPRs += 1;
1518         RC = &SystemZ::FP64BitRegClass;
1519         break;
1520       case MVT::f128:
1521         NumFixedFPRs += 2;
1522         RC = &SystemZ::FP128BitRegClass;
1523         break;
1524       case MVT::v16i8:
1525       case MVT::v8i16:
1526       case MVT::v4i32:
1527       case MVT::v2i64:
1528       case MVT::v4f32:
1529       case MVT::v2f64:
1530         RC = &SystemZ::VR128BitRegClass;
1531         break;
1532       }
1533 
1534       Register VReg = MRI.createVirtualRegister(RC);
1535       MRI.addLiveIn(VA.getLocReg(), VReg);
1536       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1537     } else {
1538       assert(VA.isMemLoc() && "Argument not register or memory");
1539 
1540       // Create the frame index object for this incoming parameter.
1541       // FIXME: Pre-include call frame size in the offset, should not
1542       // need to manually add it here.
1543       int64_t ArgSPOffset = VA.getLocMemOffset();
1544       if (Subtarget.isTargetXPLINK64()) {
1545         auto &XPRegs =
1546             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1547         ArgSPOffset += XPRegs.getCallFrameSize();
1548       }
1549       int FI =
1550           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1551 
1552       // Create the SelectionDAG nodes corresponding to a load
1553       // from this parameter.  Unpromoted ints and floats are
1554       // passed as right-justified 8-byte values.
1555       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1556       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1557         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1558                           DAG.getIntPtrConstant(4, DL));
1559       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1560                              MachinePointerInfo::getFixedStack(MF, FI));
1561     }
1562 
1563     // Convert the value of the argument register into the value that's
1564     // being passed.
1565     if (VA.getLocInfo() == CCValAssign::Indirect) {
1566       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1567                                    MachinePointerInfo()));
1568       // If the original argument was split (e.g. i128), we need
1569       // to load all parts of it here (using the same address).
1570       unsigned ArgIndex = Ins[I].OrigArgIndex;
1571       assert (Ins[I].PartOffset == 0);
1572       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1573         CCValAssign &PartVA = ArgLocs[I + 1];
1574         unsigned PartOffset = Ins[I + 1].PartOffset;
1575         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1576                                       DAG.getIntPtrConstant(PartOffset, DL));
1577         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1578                                      MachinePointerInfo()));
1579         ++I;
1580       }
1581     } else
1582       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1583   }
1584 
1585   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1586   if (IsVarArg && Subtarget.isTargetELF()) {
1587     // Save the number of non-varargs registers for later use by va_start, etc.
1588     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1589     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1590 
1591     // Likewise the address (in the form of a frame index) of where the
1592     // first stack vararg would be.  The 1-byte size here is arbitrary.
1593     int64_t StackSize = CCInfo.getNextStackOffset();
1594     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1595 
1596     // ...and a similar frame index for the caller-allocated save area
1597     // that will be used to store the incoming registers.
1598     int64_t RegSaveOffset =
1599       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1600     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1601     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1602 
1603     // Store the FPR varargs in the reserved frame slots.  (We store the
1604     // GPRs as part of the prologue.)
1605     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1606       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1607       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1608         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1609         int FI =
1610           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1611         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1612         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1613                                      &SystemZ::FP64BitRegClass);
1614         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1615         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1616                                  MachinePointerInfo::getFixedStack(MF, FI));
1617       }
1618       // Join the stores, which are independent of one another.
1619       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1620                           makeArrayRef(&MemOps[NumFixedFPRs],
1621                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1622     }
1623   }
1624 
1625   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1626   // register (R5)
1627   return Chain;
1628 }
1629 
1630 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1631                               SmallVectorImpl<CCValAssign> &ArgLocs,
1632                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1633   // Punt if there are any indirect or stack arguments, or if the call
1634   // needs the callee-saved argument register R6, or if the call uses
1635   // the callee-saved register arguments SwiftSelf and SwiftError.
1636   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1637     CCValAssign &VA = ArgLocs[I];
1638     if (VA.getLocInfo() == CCValAssign::Indirect)
1639       return false;
1640     if (!VA.isRegLoc())
1641       return false;
1642     Register Reg = VA.getLocReg();
1643     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1644       return false;
1645     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1646       return false;
1647   }
1648   return true;
1649 }
1650 
1651 SDValue
1652 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1653                                  SmallVectorImpl<SDValue> &InVals) const {
1654   SelectionDAG &DAG = CLI.DAG;
1655   SDLoc &DL = CLI.DL;
1656   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1657   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1658   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1659   SDValue Chain = CLI.Chain;
1660   SDValue Callee = CLI.Callee;
1661   bool &IsTailCall = CLI.IsTailCall;
1662   CallingConv::ID CallConv = CLI.CallConv;
1663   bool IsVarArg = CLI.IsVarArg;
1664   MachineFunction &MF = DAG.getMachineFunction();
1665   EVT PtrVT = getPointerTy(MF.getDataLayout());
1666   LLVMContext &Ctx = *DAG.getContext();
1667   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1668 
1669   // FIXME: z/OS support to be added in later.
1670   if (Subtarget.isTargetXPLINK64())
1671     IsTailCall = false;
1672 
1673   // Detect unsupported vector argument and return types.
1674   if (Subtarget.hasVector()) {
1675     VerifyVectorTypes(Outs);
1676     VerifyVectorTypes(Ins);
1677   }
1678 
1679   // Analyze the operands of the call, assigning locations to each operand.
1680   SmallVector<CCValAssign, 16> ArgLocs;
1681   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1682   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1683 
1684   // We don't support GuaranteedTailCallOpt, only automatically-detected
1685   // sibling calls.
1686   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1687     IsTailCall = false;
1688 
1689   // Get a count of how many bytes are to be pushed on the stack.
1690   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1691 
1692   if (Subtarget.isTargetXPLINK64())
1693     // Although the XPLINK specifications for AMODE64 state that minimum size
1694     // of the param area is minimum 32 bytes and no rounding is otherwise
1695     // specified, we round this area in 64 bytes increments to be compatible
1696     // with existing compilers.
1697     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1698 
1699   // Mark the start of the call.
1700   if (!IsTailCall)
1701     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1702 
1703   // Copy argument values to their designated locations.
1704   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1705   SmallVector<SDValue, 8> MemOpChains;
1706   SDValue StackPtr;
1707   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1708     CCValAssign &VA = ArgLocs[I];
1709     SDValue ArgValue = OutVals[I];
1710 
1711     if (VA.getLocInfo() == CCValAssign::Indirect) {
1712       // Store the argument in a stack slot and pass its address.
1713       unsigned ArgIndex = Outs[I].OrigArgIndex;
1714       EVT SlotVT;
1715       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1716         // Allocate the full stack space for a promoted (and split) argument.
1717         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1718         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1719         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1720         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1721         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1722       } else {
1723         SlotVT = Outs[I].ArgVT;
1724       }
1725       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1726       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1727       MemOpChains.push_back(
1728           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1729                        MachinePointerInfo::getFixedStack(MF, FI)));
1730       // If the original argument was split (e.g. i128), we need
1731       // to store all parts of it here (and pass just one address).
1732       assert (Outs[I].PartOffset == 0);
1733       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1734         SDValue PartValue = OutVals[I + 1];
1735         unsigned PartOffset = Outs[I + 1].PartOffset;
1736         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1737                                       DAG.getIntPtrConstant(PartOffset, DL));
1738         MemOpChains.push_back(
1739             DAG.getStore(Chain, DL, PartValue, Address,
1740                          MachinePointerInfo::getFixedStack(MF, FI)));
1741         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1742                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1743         ++I;
1744       }
1745       ArgValue = SpillSlot;
1746     } else
1747       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1748 
1749     if (VA.isRegLoc()) {
1750       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1751       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1752       // and low values.
1753       if (VA.getLocVT() == MVT::i128)
1754         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1755       // Queue up the argument copies and emit them at the end.
1756       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1757     } else {
1758       assert(VA.isMemLoc() && "Argument not register or memory");
1759 
1760       // Work out the address of the stack slot.  Unpromoted ints and
1761       // floats are passed as right-justified 8-byte values.
1762       if (!StackPtr.getNode())
1763         StackPtr = DAG.getCopyFromReg(Chain, DL,
1764                                       Regs->getStackPointerRegister(), PtrVT);
1765       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1766                         VA.getLocMemOffset();
1767       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1768         Offset += 4;
1769       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1770                                     DAG.getIntPtrConstant(Offset, DL));
1771 
1772       // Emit the store.
1773       MemOpChains.push_back(
1774           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1775 
1776       // Although long doubles or vectors are passed through the stack when
1777       // they are vararg (non-fixed arguments), if a long double or vector
1778       // occupies the third and fourth slot of the argument list GPR3 should
1779       // still shadow the third slot of the argument list.
1780       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1781         SDValue ShadowArgValue =
1782             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1783                         DAG.getIntPtrConstant(1, DL));
1784         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1785       }
1786     }
1787   }
1788 
1789   // Join the stores, which are independent of one another.
1790   if (!MemOpChains.empty())
1791     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1792 
1793   // Accept direct calls by converting symbolic call addresses to the
1794   // associated Target* opcodes.  Force %r1 to be used for indirect
1795   // tail calls.
1796   SDValue Glue;
1797   // FIXME: Add support for XPLINK using the ADA register.
1798   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1799     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1800     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1801   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1802     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1803     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1804   } else if (IsTailCall) {
1805     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1806     Glue = Chain.getValue(1);
1807     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1808   }
1809 
1810   // Build a sequence of copy-to-reg nodes, chained and glued together.
1811   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1812     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1813                              RegsToPass[I].second, Glue);
1814     Glue = Chain.getValue(1);
1815   }
1816 
1817   // The first call operand is the chain and the second is the target address.
1818   SmallVector<SDValue, 8> Ops;
1819   Ops.push_back(Chain);
1820   Ops.push_back(Callee);
1821 
1822   // Add argument registers to the end of the list so that they are
1823   // known live into the call.
1824   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1825     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1826                                   RegsToPass[I].second.getValueType()));
1827 
1828   // Add a register mask operand representing the call-preserved registers.
1829   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1830   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1831   assert(Mask && "Missing call preserved mask for calling convention");
1832   Ops.push_back(DAG.getRegisterMask(Mask));
1833 
1834   // Glue the call to the argument copies, if any.
1835   if (Glue.getNode())
1836     Ops.push_back(Glue);
1837 
1838   // Emit the call.
1839   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1840   if (IsTailCall)
1841     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1842   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1843   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1844   Glue = Chain.getValue(1);
1845 
1846   // Mark the end of the call, which is glued to the call itself.
1847   Chain = DAG.getCALLSEQ_END(Chain,
1848                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1849                              DAG.getConstant(0, DL, PtrVT, true),
1850                              Glue, DL);
1851   Glue = Chain.getValue(1);
1852 
1853   // Assign locations to each value returned by this call.
1854   SmallVector<CCValAssign, 16> RetLocs;
1855   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1856   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1857 
1858   // Copy all of the result registers out of their specified physreg.
1859   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1860     CCValAssign &VA = RetLocs[I];
1861 
1862     // Copy the value out, gluing the copy to the end of the call sequence.
1863     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1864                                           VA.getLocVT(), Glue);
1865     Chain = RetValue.getValue(1);
1866     Glue = RetValue.getValue(2);
1867 
1868     // Convert the value of the return register into the value that's
1869     // being returned.
1870     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1871   }
1872 
1873   return Chain;
1874 }
1875 
1876 // Generate a call taking the given operands as arguments and returning a
1877 // result of type RetVT.
1878 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
1879     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
1880     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
1881     bool DoesNotReturn, bool IsReturnValueUsed) const {
1882   TargetLowering::ArgListTy Args;
1883   Args.reserve(Ops.size());
1884 
1885   TargetLowering::ArgListEntry Entry;
1886   for (SDValue Op : Ops) {
1887     Entry.Node = Op;
1888     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1889     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1890     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1891     Args.push_back(Entry);
1892   }
1893 
1894   SDValue Callee =
1895       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
1896 
1897   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1898   TargetLowering::CallLoweringInfo CLI(DAG);
1899   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
1900   CLI.setDebugLoc(DL)
1901       .setChain(Chain)
1902       .setCallee(CallConv, RetTy, Callee, std::move(Args))
1903       .setNoReturn(DoesNotReturn)
1904       .setDiscardResult(!IsReturnValueUsed)
1905       .setSExtResult(SignExtend)
1906       .setZExtResult(!SignExtend);
1907   return LowerCallTo(CLI);
1908 }
1909 
1910 bool SystemZTargetLowering::
1911 CanLowerReturn(CallingConv::ID CallConv,
1912                MachineFunction &MF, bool isVarArg,
1913                const SmallVectorImpl<ISD::OutputArg> &Outs,
1914                LLVMContext &Context) const {
1915   // Detect unsupported vector return types.
1916   if (Subtarget.hasVector())
1917     VerifyVectorTypes(Outs);
1918 
1919   // Special case that we cannot easily detect in RetCC_SystemZ since
1920   // i128 is not a legal type.
1921   for (auto &Out : Outs)
1922     if (Out.ArgVT == MVT::i128)
1923       return false;
1924 
1925   SmallVector<CCValAssign, 16> RetLocs;
1926   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1927   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1928 }
1929 
1930 SDValue
1931 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1932                                    bool IsVarArg,
1933                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1934                                    const SmallVectorImpl<SDValue> &OutVals,
1935                                    const SDLoc &DL, SelectionDAG &DAG) const {
1936   MachineFunction &MF = DAG.getMachineFunction();
1937 
1938   // Detect unsupported vector return types.
1939   if (Subtarget.hasVector())
1940     VerifyVectorTypes(Outs);
1941 
1942   // Assign locations to each returned value.
1943   SmallVector<CCValAssign, 16> RetLocs;
1944   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1945   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1946 
1947   // Quick exit for void returns
1948   if (RetLocs.empty())
1949     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1950 
1951   if (CallConv == CallingConv::GHC)
1952     report_fatal_error("GHC functions return void only");
1953 
1954   // Copy the result values into the output registers.
1955   SDValue Glue;
1956   SmallVector<SDValue, 4> RetOps;
1957   RetOps.push_back(Chain);
1958   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1959     CCValAssign &VA = RetLocs[I];
1960     SDValue RetValue = OutVals[I];
1961 
1962     // Make the return register live on exit.
1963     assert(VA.isRegLoc() && "Can only return in registers!");
1964 
1965     // Promote the value as required.
1966     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1967 
1968     // Chain and glue the copies together.
1969     Register Reg = VA.getLocReg();
1970     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1971     Glue = Chain.getValue(1);
1972     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1973   }
1974 
1975   // Update chain and glue.
1976   RetOps[0] = Chain;
1977   if (Glue.getNode())
1978     RetOps.push_back(Glue);
1979 
1980   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1981 }
1982 
1983 // Return true if Op is an intrinsic node with chain that returns the CC value
1984 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1985 // the mask of valid CC values if so.
1986 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1987                                       unsigned &CCValid) {
1988   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1989   switch (Id) {
1990   case Intrinsic::s390_tbegin:
1991     Opcode = SystemZISD::TBEGIN;
1992     CCValid = SystemZ::CCMASK_TBEGIN;
1993     return true;
1994 
1995   case Intrinsic::s390_tbegin_nofloat:
1996     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1997     CCValid = SystemZ::CCMASK_TBEGIN;
1998     return true;
1999 
2000   case Intrinsic::s390_tend:
2001     Opcode = SystemZISD::TEND;
2002     CCValid = SystemZ::CCMASK_TEND;
2003     return true;
2004 
2005   default:
2006     return false;
2007   }
2008 }
2009 
2010 // Return true if Op is an intrinsic node without chain that returns the
2011 // CC value as its final argument.  Provide the associated SystemZISD
2012 // opcode and the mask of valid CC values if so.
2013 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2014   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2015   switch (Id) {
2016   case Intrinsic::s390_vpkshs:
2017   case Intrinsic::s390_vpksfs:
2018   case Intrinsic::s390_vpksgs:
2019     Opcode = SystemZISD::PACKS_CC;
2020     CCValid = SystemZ::CCMASK_VCMP;
2021     return true;
2022 
2023   case Intrinsic::s390_vpklshs:
2024   case Intrinsic::s390_vpklsfs:
2025   case Intrinsic::s390_vpklsgs:
2026     Opcode = SystemZISD::PACKLS_CC;
2027     CCValid = SystemZ::CCMASK_VCMP;
2028     return true;
2029 
2030   case Intrinsic::s390_vceqbs:
2031   case Intrinsic::s390_vceqhs:
2032   case Intrinsic::s390_vceqfs:
2033   case Intrinsic::s390_vceqgs:
2034     Opcode = SystemZISD::VICMPES;
2035     CCValid = SystemZ::CCMASK_VCMP;
2036     return true;
2037 
2038   case Intrinsic::s390_vchbs:
2039   case Intrinsic::s390_vchhs:
2040   case Intrinsic::s390_vchfs:
2041   case Intrinsic::s390_vchgs:
2042     Opcode = SystemZISD::VICMPHS;
2043     CCValid = SystemZ::CCMASK_VCMP;
2044     return true;
2045 
2046   case Intrinsic::s390_vchlbs:
2047   case Intrinsic::s390_vchlhs:
2048   case Intrinsic::s390_vchlfs:
2049   case Intrinsic::s390_vchlgs:
2050     Opcode = SystemZISD::VICMPHLS;
2051     CCValid = SystemZ::CCMASK_VCMP;
2052     return true;
2053 
2054   case Intrinsic::s390_vtm:
2055     Opcode = SystemZISD::VTM;
2056     CCValid = SystemZ::CCMASK_VCMP;
2057     return true;
2058 
2059   case Intrinsic::s390_vfaebs:
2060   case Intrinsic::s390_vfaehs:
2061   case Intrinsic::s390_vfaefs:
2062     Opcode = SystemZISD::VFAE_CC;
2063     CCValid = SystemZ::CCMASK_ANY;
2064     return true;
2065 
2066   case Intrinsic::s390_vfaezbs:
2067   case Intrinsic::s390_vfaezhs:
2068   case Intrinsic::s390_vfaezfs:
2069     Opcode = SystemZISD::VFAEZ_CC;
2070     CCValid = SystemZ::CCMASK_ANY;
2071     return true;
2072 
2073   case Intrinsic::s390_vfeebs:
2074   case Intrinsic::s390_vfeehs:
2075   case Intrinsic::s390_vfeefs:
2076     Opcode = SystemZISD::VFEE_CC;
2077     CCValid = SystemZ::CCMASK_ANY;
2078     return true;
2079 
2080   case Intrinsic::s390_vfeezbs:
2081   case Intrinsic::s390_vfeezhs:
2082   case Intrinsic::s390_vfeezfs:
2083     Opcode = SystemZISD::VFEEZ_CC;
2084     CCValid = SystemZ::CCMASK_ANY;
2085     return true;
2086 
2087   case Intrinsic::s390_vfenebs:
2088   case Intrinsic::s390_vfenehs:
2089   case Intrinsic::s390_vfenefs:
2090     Opcode = SystemZISD::VFENE_CC;
2091     CCValid = SystemZ::CCMASK_ANY;
2092     return true;
2093 
2094   case Intrinsic::s390_vfenezbs:
2095   case Intrinsic::s390_vfenezhs:
2096   case Intrinsic::s390_vfenezfs:
2097     Opcode = SystemZISD::VFENEZ_CC;
2098     CCValid = SystemZ::CCMASK_ANY;
2099     return true;
2100 
2101   case Intrinsic::s390_vistrbs:
2102   case Intrinsic::s390_vistrhs:
2103   case Intrinsic::s390_vistrfs:
2104     Opcode = SystemZISD::VISTR_CC;
2105     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2106     return true;
2107 
2108   case Intrinsic::s390_vstrcbs:
2109   case Intrinsic::s390_vstrchs:
2110   case Intrinsic::s390_vstrcfs:
2111     Opcode = SystemZISD::VSTRC_CC;
2112     CCValid = SystemZ::CCMASK_ANY;
2113     return true;
2114 
2115   case Intrinsic::s390_vstrczbs:
2116   case Intrinsic::s390_vstrczhs:
2117   case Intrinsic::s390_vstrczfs:
2118     Opcode = SystemZISD::VSTRCZ_CC;
2119     CCValid = SystemZ::CCMASK_ANY;
2120     return true;
2121 
2122   case Intrinsic::s390_vstrsb:
2123   case Intrinsic::s390_vstrsh:
2124   case Intrinsic::s390_vstrsf:
2125     Opcode = SystemZISD::VSTRS_CC;
2126     CCValid = SystemZ::CCMASK_ANY;
2127     return true;
2128 
2129   case Intrinsic::s390_vstrszb:
2130   case Intrinsic::s390_vstrszh:
2131   case Intrinsic::s390_vstrszf:
2132     Opcode = SystemZISD::VSTRSZ_CC;
2133     CCValid = SystemZ::CCMASK_ANY;
2134     return true;
2135 
2136   case Intrinsic::s390_vfcedbs:
2137   case Intrinsic::s390_vfcesbs:
2138     Opcode = SystemZISD::VFCMPES;
2139     CCValid = SystemZ::CCMASK_VCMP;
2140     return true;
2141 
2142   case Intrinsic::s390_vfchdbs:
2143   case Intrinsic::s390_vfchsbs:
2144     Opcode = SystemZISD::VFCMPHS;
2145     CCValid = SystemZ::CCMASK_VCMP;
2146     return true;
2147 
2148   case Intrinsic::s390_vfchedbs:
2149   case Intrinsic::s390_vfchesbs:
2150     Opcode = SystemZISD::VFCMPHES;
2151     CCValid = SystemZ::CCMASK_VCMP;
2152     return true;
2153 
2154   case Intrinsic::s390_vftcidb:
2155   case Intrinsic::s390_vftcisb:
2156     Opcode = SystemZISD::VFTCI;
2157     CCValid = SystemZ::CCMASK_VCMP;
2158     return true;
2159 
2160   case Intrinsic::s390_tdc:
2161     Opcode = SystemZISD::TDC;
2162     CCValid = SystemZ::CCMASK_TDC;
2163     return true;
2164 
2165   default:
2166     return false;
2167   }
2168 }
2169 
2170 // Emit an intrinsic with chain and an explicit CC register result.
2171 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2172                                            unsigned Opcode) {
2173   // Copy all operands except the intrinsic ID.
2174   unsigned NumOps = Op.getNumOperands();
2175   SmallVector<SDValue, 6> Ops;
2176   Ops.reserve(NumOps - 1);
2177   Ops.push_back(Op.getOperand(0));
2178   for (unsigned I = 2; I < NumOps; ++I)
2179     Ops.push_back(Op.getOperand(I));
2180 
2181   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2182   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2183   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2184   SDValue OldChain = SDValue(Op.getNode(), 1);
2185   SDValue NewChain = SDValue(Intr.getNode(), 1);
2186   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2187   return Intr.getNode();
2188 }
2189 
2190 // Emit an intrinsic with an explicit CC register result.
2191 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2192                                    unsigned Opcode) {
2193   // Copy all operands except the intrinsic ID.
2194   unsigned NumOps = Op.getNumOperands();
2195   SmallVector<SDValue, 6> Ops;
2196   Ops.reserve(NumOps - 1);
2197   for (unsigned I = 1; I < NumOps; ++I)
2198     Ops.push_back(Op.getOperand(I));
2199 
2200   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2201   return Intr.getNode();
2202 }
2203 
2204 // CC is a comparison that will be implemented using an integer or
2205 // floating-point comparison.  Return the condition code mask for
2206 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2207 // unsigned comparisons and clear for signed ones.  In the floating-point
2208 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2209 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2210 #define CONV(X) \
2211   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2212   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2213   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2214 
2215   switch (CC) {
2216   default:
2217     llvm_unreachable("Invalid integer condition!");
2218 
2219   CONV(EQ);
2220   CONV(NE);
2221   CONV(GT);
2222   CONV(GE);
2223   CONV(LT);
2224   CONV(LE);
2225 
2226   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2227   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2228   }
2229 #undef CONV
2230 }
2231 
2232 // If C can be converted to a comparison against zero, adjust the operands
2233 // as necessary.
2234 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2235   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2236     return;
2237 
2238   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2239   if (!ConstOp1)
2240     return;
2241 
2242   int64_t Value = ConstOp1->getSExtValue();
2243   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2244       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2245       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2246       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2247     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2248     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2249   }
2250 }
2251 
2252 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2253 // adjust the operands as necessary.
2254 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2255                              Comparison &C) {
2256   // For us to make any changes, it must a comparison between a single-use
2257   // load and a constant.
2258   if (!C.Op0.hasOneUse() ||
2259       C.Op0.getOpcode() != ISD::LOAD ||
2260       C.Op1.getOpcode() != ISD::Constant)
2261     return;
2262 
2263   // We must have an 8- or 16-bit load.
2264   auto *Load = cast<LoadSDNode>(C.Op0);
2265   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2266   if ((NumBits != 8 && NumBits != 16) ||
2267       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2268     return;
2269 
2270   // The load must be an extending one and the constant must be within the
2271   // range of the unextended value.
2272   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2273   uint64_t Value = ConstOp1->getZExtValue();
2274   uint64_t Mask = (1 << NumBits) - 1;
2275   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2276     // Make sure that ConstOp1 is in range of C.Op0.
2277     int64_t SignedValue = ConstOp1->getSExtValue();
2278     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2279       return;
2280     if (C.ICmpType != SystemZICMP::SignedOnly) {
2281       // Unsigned comparison between two sign-extended values is equivalent
2282       // to unsigned comparison between two zero-extended values.
2283       Value &= Mask;
2284     } else if (NumBits == 8) {
2285       // Try to treat the comparison as unsigned, so that we can use CLI.
2286       // Adjust CCMask and Value as necessary.
2287       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2288         // Test whether the high bit of the byte is set.
2289         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2290       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2291         // Test whether the high bit of the byte is clear.
2292         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2293       else
2294         // No instruction exists for this combination.
2295         return;
2296       C.ICmpType = SystemZICMP::UnsignedOnly;
2297     }
2298   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2299     if (Value > Mask)
2300       return;
2301     // If the constant is in range, we can use any comparison.
2302     C.ICmpType = SystemZICMP::Any;
2303   } else
2304     return;
2305 
2306   // Make sure that the first operand is an i32 of the right extension type.
2307   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2308                               ISD::SEXTLOAD :
2309                               ISD::ZEXTLOAD);
2310   if (C.Op0.getValueType() != MVT::i32 ||
2311       Load->getExtensionType() != ExtType) {
2312     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2313                            Load->getBasePtr(), Load->getPointerInfo(),
2314                            Load->getMemoryVT(), Load->getAlignment(),
2315                            Load->getMemOperand()->getFlags());
2316     // Update the chain uses.
2317     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2318   }
2319 
2320   // Make sure that the second operand is an i32 with the right value.
2321   if (C.Op1.getValueType() != MVT::i32 ||
2322       Value != ConstOp1->getZExtValue())
2323     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2324 }
2325 
2326 // Return true if Op is either an unextended load, or a load suitable
2327 // for integer register-memory comparisons of type ICmpType.
2328 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2329   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2330   if (Load) {
2331     // There are no instructions to compare a register with a memory byte.
2332     if (Load->getMemoryVT() == MVT::i8)
2333       return false;
2334     // Otherwise decide on extension type.
2335     switch (Load->getExtensionType()) {
2336     case ISD::NON_EXTLOAD:
2337       return true;
2338     case ISD::SEXTLOAD:
2339       return ICmpType != SystemZICMP::UnsignedOnly;
2340     case ISD::ZEXTLOAD:
2341       return ICmpType != SystemZICMP::SignedOnly;
2342     default:
2343       break;
2344     }
2345   }
2346   return false;
2347 }
2348 
2349 // Return true if it is better to swap the operands of C.
2350 static bool shouldSwapCmpOperands(const Comparison &C) {
2351   // Leave f128 comparisons alone, since they have no memory forms.
2352   if (C.Op0.getValueType() == MVT::f128)
2353     return false;
2354 
2355   // Always keep a floating-point constant second, since comparisons with
2356   // zero can use LOAD TEST and comparisons with other constants make a
2357   // natural memory operand.
2358   if (isa<ConstantFPSDNode>(C.Op1))
2359     return false;
2360 
2361   // Never swap comparisons with zero since there are many ways to optimize
2362   // those later.
2363   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2364   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2365     return false;
2366 
2367   // Also keep natural memory operands second if the loaded value is
2368   // only used here.  Several comparisons have memory forms.
2369   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2370     return false;
2371 
2372   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2373   // In that case we generally prefer the memory to be second.
2374   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2375     // The only exceptions are when the second operand is a constant and
2376     // we can use things like CHHSI.
2377     if (!ConstOp1)
2378       return true;
2379     // The unsigned memory-immediate instructions can handle 16-bit
2380     // unsigned integers.
2381     if (C.ICmpType != SystemZICMP::SignedOnly &&
2382         isUInt<16>(ConstOp1->getZExtValue()))
2383       return false;
2384     // The signed memory-immediate instructions can handle 16-bit
2385     // signed integers.
2386     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2387         isInt<16>(ConstOp1->getSExtValue()))
2388       return false;
2389     return true;
2390   }
2391 
2392   // Try to promote the use of CGFR and CLGFR.
2393   unsigned Opcode0 = C.Op0.getOpcode();
2394   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2395     return true;
2396   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2397     return true;
2398   if (C.ICmpType != SystemZICMP::SignedOnly &&
2399       Opcode0 == ISD::AND &&
2400       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2401       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2402     return true;
2403 
2404   return false;
2405 }
2406 
2407 // Check whether C tests for equality between X and Y and whether X - Y
2408 // or Y - X is also computed.  In that case it's better to compare the
2409 // result of the subtraction against zero.
2410 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2411                                  Comparison &C) {
2412   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2413       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2414     for (SDNode *N : C.Op0->uses()) {
2415       if (N->getOpcode() == ISD::SUB &&
2416           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2417            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2418         C.Op0 = SDValue(N, 0);
2419         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2420         return;
2421       }
2422     }
2423   }
2424 }
2425 
2426 // Check whether C compares a floating-point value with zero and if that
2427 // floating-point value is also negated.  In this case we can use the
2428 // negation to set CC, so avoiding separate LOAD AND TEST and
2429 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2430 static void adjustForFNeg(Comparison &C) {
2431   // This optimization is invalid for strict comparisons, since FNEG
2432   // does not raise any exceptions.
2433   if (C.Chain)
2434     return;
2435   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2436   if (C1 && C1->isZero()) {
2437     for (SDNode *N : C.Op0->uses()) {
2438       if (N->getOpcode() == ISD::FNEG) {
2439         C.Op0 = SDValue(N, 0);
2440         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2441         return;
2442       }
2443     }
2444   }
2445 }
2446 
2447 // Check whether C compares (shl X, 32) with 0 and whether X is
2448 // also sign-extended.  In that case it is better to test the result
2449 // of the sign extension using LTGFR.
2450 //
2451 // This case is important because InstCombine transforms a comparison
2452 // with (sext (trunc X)) into a comparison with (shl X, 32).
2453 static void adjustForLTGFR(Comparison &C) {
2454   // Check for a comparison between (shl X, 32) and 0.
2455   if (C.Op0.getOpcode() == ISD::SHL &&
2456       C.Op0.getValueType() == MVT::i64 &&
2457       C.Op1.getOpcode() == ISD::Constant &&
2458       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2459     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2460     if (C1 && C1->getZExtValue() == 32) {
2461       SDValue ShlOp0 = C.Op0.getOperand(0);
2462       // See whether X has any SIGN_EXTEND_INREG uses.
2463       for (SDNode *N : ShlOp0->uses()) {
2464         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2465             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2466           C.Op0 = SDValue(N, 0);
2467           return;
2468         }
2469       }
2470     }
2471   }
2472 }
2473 
2474 // If C compares the truncation of an extending load, try to compare
2475 // the untruncated value instead.  This exposes more opportunities to
2476 // reuse CC.
2477 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2478                                Comparison &C) {
2479   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2480       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2481       C.Op1.getOpcode() == ISD::Constant &&
2482       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2483     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2484     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2485         C.Op0.getValueSizeInBits().getFixedSize()) {
2486       unsigned Type = L->getExtensionType();
2487       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2488           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2489         C.Op0 = C.Op0.getOperand(0);
2490         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2491       }
2492     }
2493   }
2494 }
2495 
2496 // Return true if shift operation N has an in-range constant shift value.
2497 // Store it in ShiftVal if so.
2498 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2499   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2500   if (!Shift)
2501     return false;
2502 
2503   uint64_t Amount = Shift->getZExtValue();
2504   if (Amount >= N.getValueSizeInBits())
2505     return false;
2506 
2507   ShiftVal = Amount;
2508   return true;
2509 }
2510 
2511 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2512 // instruction and whether the CC value is descriptive enough to handle
2513 // a comparison of type Opcode between the AND result and CmpVal.
2514 // CCMask says which comparison result is being tested and BitSize is
2515 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2516 // return the corresponding CC mask, otherwise return 0.
2517 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2518                                      uint64_t Mask, uint64_t CmpVal,
2519                                      unsigned ICmpType) {
2520   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2521 
2522   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2523   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2524       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2525     return 0;
2526 
2527   // Work out the masks for the lowest and highest bits.
2528   unsigned HighShift = 63 - countLeadingZeros(Mask);
2529   uint64_t High = uint64_t(1) << HighShift;
2530   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2531 
2532   // Signed ordered comparisons are effectively unsigned if the sign
2533   // bit is dropped.
2534   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2535 
2536   // Check for equality comparisons with 0, or the equivalent.
2537   if (CmpVal == 0) {
2538     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2539       return SystemZ::CCMASK_TM_ALL_0;
2540     if (CCMask == SystemZ::CCMASK_CMP_NE)
2541       return SystemZ::CCMASK_TM_SOME_1;
2542   }
2543   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2544     if (CCMask == SystemZ::CCMASK_CMP_LT)
2545       return SystemZ::CCMASK_TM_ALL_0;
2546     if (CCMask == SystemZ::CCMASK_CMP_GE)
2547       return SystemZ::CCMASK_TM_SOME_1;
2548   }
2549   if (EffectivelyUnsigned && CmpVal < Low) {
2550     if (CCMask == SystemZ::CCMASK_CMP_LE)
2551       return SystemZ::CCMASK_TM_ALL_0;
2552     if (CCMask == SystemZ::CCMASK_CMP_GT)
2553       return SystemZ::CCMASK_TM_SOME_1;
2554   }
2555 
2556   // Check for equality comparisons with the mask, or the equivalent.
2557   if (CmpVal == Mask) {
2558     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2559       return SystemZ::CCMASK_TM_ALL_1;
2560     if (CCMask == SystemZ::CCMASK_CMP_NE)
2561       return SystemZ::CCMASK_TM_SOME_0;
2562   }
2563   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2564     if (CCMask == SystemZ::CCMASK_CMP_GT)
2565       return SystemZ::CCMASK_TM_ALL_1;
2566     if (CCMask == SystemZ::CCMASK_CMP_LE)
2567       return SystemZ::CCMASK_TM_SOME_0;
2568   }
2569   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2570     if (CCMask == SystemZ::CCMASK_CMP_GE)
2571       return SystemZ::CCMASK_TM_ALL_1;
2572     if (CCMask == SystemZ::CCMASK_CMP_LT)
2573       return SystemZ::CCMASK_TM_SOME_0;
2574   }
2575 
2576   // Check for ordered comparisons with the top bit.
2577   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2578     if (CCMask == SystemZ::CCMASK_CMP_LE)
2579       return SystemZ::CCMASK_TM_MSB_0;
2580     if (CCMask == SystemZ::CCMASK_CMP_GT)
2581       return SystemZ::CCMASK_TM_MSB_1;
2582   }
2583   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2584     if (CCMask == SystemZ::CCMASK_CMP_LT)
2585       return SystemZ::CCMASK_TM_MSB_0;
2586     if (CCMask == SystemZ::CCMASK_CMP_GE)
2587       return SystemZ::CCMASK_TM_MSB_1;
2588   }
2589 
2590   // If there are just two bits, we can do equality checks for Low and High
2591   // as well.
2592   if (Mask == Low + High) {
2593     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2594       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2595     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2596       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2597     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2598       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2599     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2600       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2601   }
2602 
2603   // Looks like we've exhausted our options.
2604   return 0;
2605 }
2606 
2607 // See whether C can be implemented as a TEST UNDER MASK instruction.
2608 // Update the arguments with the TM version if so.
2609 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2610                                    Comparison &C) {
2611   // Check that we have a comparison with a constant.
2612   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2613   if (!ConstOp1)
2614     return;
2615   uint64_t CmpVal = ConstOp1->getZExtValue();
2616 
2617   // Check whether the nonconstant input is an AND with a constant mask.
2618   Comparison NewC(C);
2619   uint64_t MaskVal;
2620   ConstantSDNode *Mask = nullptr;
2621   if (C.Op0.getOpcode() == ISD::AND) {
2622     NewC.Op0 = C.Op0.getOperand(0);
2623     NewC.Op1 = C.Op0.getOperand(1);
2624     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2625     if (!Mask)
2626       return;
2627     MaskVal = Mask->getZExtValue();
2628   } else {
2629     // There is no instruction to compare with a 64-bit immediate
2630     // so use TMHH instead if possible.  We need an unsigned ordered
2631     // comparison with an i64 immediate.
2632     if (NewC.Op0.getValueType() != MVT::i64 ||
2633         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2634         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2635         NewC.ICmpType == SystemZICMP::SignedOnly)
2636       return;
2637     // Convert LE and GT comparisons into LT and GE.
2638     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2639         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2640       if (CmpVal == uint64_t(-1))
2641         return;
2642       CmpVal += 1;
2643       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2644     }
2645     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2646     // be masked off without changing the result.
2647     MaskVal = -(CmpVal & -CmpVal);
2648     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2649   }
2650   if (!MaskVal)
2651     return;
2652 
2653   // Check whether the combination of mask, comparison value and comparison
2654   // type are suitable.
2655   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2656   unsigned NewCCMask, ShiftVal;
2657   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2658       NewC.Op0.getOpcode() == ISD::SHL &&
2659       isSimpleShift(NewC.Op0, ShiftVal) &&
2660       (MaskVal >> ShiftVal != 0) &&
2661       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2662       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2663                                         MaskVal >> ShiftVal,
2664                                         CmpVal >> ShiftVal,
2665                                         SystemZICMP::Any))) {
2666     NewC.Op0 = NewC.Op0.getOperand(0);
2667     MaskVal >>= ShiftVal;
2668   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2669              NewC.Op0.getOpcode() == ISD::SRL &&
2670              isSimpleShift(NewC.Op0, ShiftVal) &&
2671              (MaskVal << ShiftVal != 0) &&
2672              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2673              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2674                                                MaskVal << ShiftVal,
2675                                                CmpVal << ShiftVal,
2676                                                SystemZICMP::UnsignedOnly))) {
2677     NewC.Op0 = NewC.Op0.getOperand(0);
2678     MaskVal <<= ShiftVal;
2679   } else {
2680     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2681                                      NewC.ICmpType);
2682     if (!NewCCMask)
2683       return;
2684   }
2685 
2686   // Go ahead and make the change.
2687   C.Opcode = SystemZISD::TM;
2688   C.Op0 = NewC.Op0;
2689   if (Mask && Mask->getZExtValue() == MaskVal)
2690     C.Op1 = SDValue(Mask, 0);
2691   else
2692     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2693   C.CCValid = SystemZ::CCMASK_TM;
2694   C.CCMask = NewCCMask;
2695 }
2696 
2697 // See whether the comparison argument contains a redundant AND
2698 // and remove it if so.  This sometimes happens due to the generic
2699 // BRCOND expansion.
2700 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2701                                   Comparison &C) {
2702   if (C.Op0.getOpcode() != ISD::AND)
2703     return;
2704   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2705   if (!Mask)
2706     return;
2707   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2708   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2709     return;
2710 
2711   C.Op0 = C.Op0.getOperand(0);
2712 }
2713 
2714 // Return a Comparison that tests the condition-code result of intrinsic
2715 // node Call against constant integer CC using comparison code Cond.
2716 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2717 // and CCValid is the set of possible condition-code results.
2718 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2719                                   SDValue Call, unsigned CCValid, uint64_t CC,
2720                                   ISD::CondCode Cond) {
2721   Comparison C(Call, SDValue(), SDValue());
2722   C.Opcode = Opcode;
2723   C.CCValid = CCValid;
2724   if (Cond == ISD::SETEQ)
2725     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2726     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2727   else if (Cond == ISD::SETNE)
2728     // ...and the inverse of that.
2729     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2730   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2731     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2732     // always true for CC>3.
2733     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2734   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2735     // ...and the inverse of that.
2736     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2737   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2738     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2739     // always true for CC>3.
2740     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2741   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2742     // ...and the inverse of that.
2743     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2744   else
2745     llvm_unreachable("Unexpected integer comparison type");
2746   C.CCMask &= CCValid;
2747   return C;
2748 }
2749 
2750 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2751 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2752                          ISD::CondCode Cond, const SDLoc &DL,
2753                          SDValue Chain = SDValue(),
2754                          bool IsSignaling = false) {
2755   if (CmpOp1.getOpcode() == ISD::Constant) {
2756     assert(!Chain);
2757     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2758     unsigned Opcode, CCValid;
2759     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2760         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2761         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2762       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2763     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2764         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2765         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2766       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2767   }
2768   Comparison C(CmpOp0, CmpOp1, Chain);
2769   C.CCMask = CCMaskForCondCode(Cond);
2770   if (C.Op0.getValueType().isFloatingPoint()) {
2771     C.CCValid = SystemZ::CCMASK_FCMP;
2772     if (!C.Chain)
2773       C.Opcode = SystemZISD::FCMP;
2774     else if (!IsSignaling)
2775       C.Opcode = SystemZISD::STRICT_FCMP;
2776     else
2777       C.Opcode = SystemZISD::STRICT_FCMPS;
2778     adjustForFNeg(C);
2779   } else {
2780     assert(!C.Chain);
2781     C.CCValid = SystemZ::CCMASK_ICMP;
2782     C.Opcode = SystemZISD::ICMP;
2783     // Choose the type of comparison.  Equality and inequality tests can
2784     // use either signed or unsigned comparisons.  The choice also doesn't
2785     // matter if both sign bits are known to be clear.  In those cases we
2786     // want to give the main isel code the freedom to choose whichever
2787     // form fits best.
2788     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2789         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2790         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2791       C.ICmpType = SystemZICMP::Any;
2792     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2793       C.ICmpType = SystemZICMP::UnsignedOnly;
2794     else
2795       C.ICmpType = SystemZICMP::SignedOnly;
2796     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2797     adjustForRedundantAnd(DAG, DL, C);
2798     adjustZeroCmp(DAG, DL, C);
2799     adjustSubwordCmp(DAG, DL, C);
2800     adjustForSubtraction(DAG, DL, C);
2801     adjustForLTGFR(C);
2802     adjustICmpTruncate(DAG, DL, C);
2803   }
2804 
2805   if (shouldSwapCmpOperands(C)) {
2806     std::swap(C.Op0, C.Op1);
2807     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2808   }
2809 
2810   adjustForTestUnderMask(DAG, DL, C);
2811   return C;
2812 }
2813 
2814 // Emit the comparison instruction described by C.
2815 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2816   if (!C.Op1.getNode()) {
2817     SDNode *Node;
2818     switch (C.Op0.getOpcode()) {
2819     case ISD::INTRINSIC_W_CHAIN:
2820       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2821       return SDValue(Node, 0);
2822     case ISD::INTRINSIC_WO_CHAIN:
2823       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2824       return SDValue(Node, Node->getNumValues() - 1);
2825     default:
2826       llvm_unreachable("Invalid comparison operands");
2827     }
2828   }
2829   if (C.Opcode == SystemZISD::ICMP)
2830     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2831                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2832   if (C.Opcode == SystemZISD::TM) {
2833     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2834                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2835     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2836                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2837   }
2838   if (C.Chain) {
2839     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2840     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2841   }
2842   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2843 }
2844 
2845 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2846 // 64 bits.  Extend is the extension type to use.  Store the high part
2847 // in Hi and the low part in Lo.
2848 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2849                             SDValue Op0, SDValue Op1, SDValue &Hi,
2850                             SDValue &Lo) {
2851   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2852   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2853   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2854   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2855                    DAG.getConstant(32, DL, MVT::i64));
2856   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2857   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2858 }
2859 
2860 // Lower a binary operation that produces two VT results, one in each
2861 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2862 // and Opcode performs the GR128 operation.  Store the even register result
2863 // in Even and the odd register result in Odd.
2864 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2865                              unsigned Opcode, SDValue Op0, SDValue Op1,
2866                              SDValue &Even, SDValue &Odd) {
2867   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2868   bool Is32Bit = is32Bit(VT);
2869   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2870   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2871 }
2872 
2873 // Return an i32 value that is 1 if the CC value produced by CCReg is
2874 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2875 // in CCValid, so other values can be ignored.
2876 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2877                          unsigned CCValid, unsigned CCMask) {
2878   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2879                    DAG.getConstant(0, DL, MVT::i32),
2880                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2881                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2882   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2883 }
2884 
2885 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2886 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2887 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2888 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2889 // floating-point comparisons.
2890 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2891 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2892   switch (CC) {
2893   case ISD::SETOEQ:
2894   case ISD::SETEQ:
2895     switch (Mode) {
2896     case CmpMode::Int:         return SystemZISD::VICMPE;
2897     case CmpMode::FP:          return SystemZISD::VFCMPE;
2898     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2899     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2900     }
2901     llvm_unreachable("Bad mode");
2902 
2903   case ISD::SETOGE:
2904   case ISD::SETGE:
2905     switch (Mode) {
2906     case CmpMode::Int:         return 0;
2907     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2908     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2909     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2910     }
2911     llvm_unreachable("Bad mode");
2912 
2913   case ISD::SETOGT:
2914   case ISD::SETGT:
2915     switch (Mode) {
2916     case CmpMode::Int:         return SystemZISD::VICMPH;
2917     case CmpMode::FP:          return SystemZISD::VFCMPH;
2918     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2919     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2920     }
2921     llvm_unreachable("Bad mode");
2922 
2923   case ISD::SETUGT:
2924     switch (Mode) {
2925     case CmpMode::Int:         return SystemZISD::VICMPHL;
2926     case CmpMode::FP:          return 0;
2927     case CmpMode::StrictFP:    return 0;
2928     case CmpMode::SignalingFP: return 0;
2929     }
2930     llvm_unreachable("Bad mode");
2931 
2932   default:
2933     return 0;
2934   }
2935 }
2936 
2937 // Return the SystemZISD vector comparison operation for CC or its inverse,
2938 // or 0 if neither can be done directly.  Indicate in Invert whether the
2939 // result is for the inverse of CC.  Mode is as above.
2940 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2941                                             bool &Invert) {
2942   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2943     Invert = false;
2944     return Opcode;
2945   }
2946 
2947   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2948   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2949     Invert = true;
2950     return Opcode;
2951   }
2952 
2953   return 0;
2954 }
2955 
2956 // Return a v2f64 that contains the extended form of elements Start and Start+1
2957 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2958 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2959                                   SDValue Op, SDValue Chain) {
2960   int Mask[] = { Start, -1, Start + 1, -1 };
2961   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2962   if (Chain) {
2963     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2964     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2965   }
2966   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2967 }
2968 
2969 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2970 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2971 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2972                                             const SDLoc &DL, EVT VT,
2973                                             SDValue CmpOp0,
2974                                             SDValue CmpOp1,
2975                                             SDValue Chain) const {
2976   // There is no hardware support for v4f32 (unless we have the vector
2977   // enhancements facility 1), so extend the vector into two v2f64s
2978   // and compare those.
2979   if (CmpOp0.getValueType() == MVT::v4f32 &&
2980       !Subtarget.hasVectorEnhancements1()) {
2981     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2982     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2983     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2984     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2985     if (Chain) {
2986       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2987       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2988       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2989       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2990       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2991                             H1.getValue(1), L1.getValue(1),
2992                             HRes.getValue(1), LRes.getValue(1) };
2993       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2994       SDValue Ops[2] = { Res, NewChain };
2995       return DAG.getMergeValues(Ops, DL);
2996     }
2997     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2998     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2999     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3000   }
3001   if (Chain) {
3002     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3003     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3004   }
3005   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3006 }
3007 
3008 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3009 // an integer mask of type VT.  If Chain is nonnull, we have a strict
3010 // floating-point comparison.  If in addition IsSignaling is true, we have
3011 // a strict signaling floating-point comparison.
3012 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3013                                                 const SDLoc &DL, EVT VT,
3014                                                 ISD::CondCode CC,
3015                                                 SDValue CmpOp0,
3016                                                 SDValue CmpOp1,
3017                                                 SDValue Chain,
3018                                                 bool IsSignaling) const {
3019   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3020   assert (!Chain || IsFP);
3021   assert (!IsSignaling || Chain);
3022   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3023                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3024   bool Invert = false;
3025   SDValue Cmp;
3026   switch (CC) {
3027     // Handle tests for order using (or (ogt y x) (oge x y)).
3028   case ISD::SETUO:
3029     Invert = true;
3030     LLVM_FALLTHROUGH;
3031   case ISD::SETO: {
3032     assert(IsFP && "Unexpected integer comparison");
3033     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3034                               DL, VT, CmpOp1, CmpOp0, Chain);
3035     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3036                               DL, VT, CmpOp0, CmpOp1, Chain);
3037     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3038     if (Chain)
3039       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3040                           LT.getValue(1), GE.getValue(1));
3041     break;
3042   }
3043 
3044     // Handle <> tests using (or (ogt y x) (ogt x y)).
3045   case ISD::SETUEQ:
3046     Invert = true;
3047     LLVM_FALLTHROUGH;
3048   case ISD::SETONE: {
3049     assert(IsFP && "Unexpected integer comparison");
3050     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3051                               DL, VT, CmpOp1, CmpOp0, Chain);
3052     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3053                               DL, VT, CmpOp0, CmpOp1, Chain);
3054     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3055     if (Chain)
3056       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3057                           LT.getValue(1), GT.getValue(1));
3058     break;
3059   }
3060 
3061     // Otherwise a single comparison is enough.  It doesn't really
3062     // matter whether we try the inversion or the swap first, since
3063     // there are no cases where both work.
3064   default:
3065     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3066       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3067     else {
3068       CC = ISD::getSetCCSwappedOperands(CC);
3069       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3070         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3071       else
3072         llvm_unreachable("Unhandled comparison");
3073     }
3074     if (Chain)
3075       Chain = Cmp.getValue(1);
3076     break;
3077   }
3078   if (Invert) {
3079     SDValue Mask =
3080       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3081     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3082   }
3083   if (Chain && Chain.getNode() != Cmp.getNode()) {
3084     SDValue Ops[2] = { Cmp, Chain };
3085     Cmp = DAG.getMergeValues(Ops, DL);
3086   }
3087   return Cmp;
3088 }
3089 
3090 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3091                                           SelectionDAG &DAG) const {
3092   SDValue CmpOp0   = Op.getOperand(0);
3093   SDValue CmpOp1   = Op.getOperand(1);
3094   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3095   SDLoc DL(Op);
3096   EVT VT = Op.getValueType();
3097   if (VT.isVector())
3098     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3099 
3100   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3101   SDValue CCReg = emitCmp(DAG, DL, C);
3102   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3103 }
3104 
3105 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3106                                                   SelectionDAG &DAG,
3107                                                   bool IsSignaling) const {
3108   SDValue Chain    = Op.getOperand(0);
3109   SDValue CmpOp0   = Op.getOperand(1);
3110   SDValue CmpOp1   = Op.getOperand(2);
3111   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3112   SDLoc DL(Op);
3113   EVT VT = Op.getNode()->getValueType(0);
3114   if (VT.isVector()) {
3115     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3116                                    Chain, IsSignaling);
3117     return Res.getValue(Op.getResNo());
3118   }
3119 
3120   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3121   SDValue CCReg = emitCmp(DAG, DL, C);
3122   CCReg->setFlags(Op->getFlags());
3123   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3124   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3125   return DAG.getMergeValues(Ops, DL);
3126 }
3127 
3128 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3129   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3130   SDValue CmpOp0   = Op.getOperand(2);
3131   SDValue CmpOp1   = Op.getOperand(3);
3132   SDValue Dest     = Op.getOperand(4);
3133   SDLoc DL(Op);
3134 
3135   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3136   SDValue CCReg = emitCmp(DAG, DL, C);
3137   return DAG.getNode(
3138       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3139       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3140       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3141 }
3142 
3143 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3144 // allowing Pos and Neg to be wider than CmpOp.
3145 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3146   return (Neg.getOpcode() == ISD::SUB &&
3147           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3148           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3149           Neg.getOperand(1) == Pos &&
3150           (Pos == CmpOp ||
3151            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3152             Pos.getOperand(0) == CmpOp)));
3153 }
3154 
3155 // Return the absolute or negative absolute of Op; IsNegative decides which.
3156 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3157                            bool IsNegative) {
3158   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3159   if (IsNegative)
3160     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3161                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3162   return Op;
3163 }
3164 
3165 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3166                                               SelectionDAG &DAG) const {
3167   SDValue CmpOp0   = Op.getOperand(0);
3168   SDValue CmpOp1   = Op.getOperand(1);
3169   SDValue TrueOp   = Op.getOperand(2);
3170   SDValue FalseOp  = Op.getOperand(3);
3171   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3172   SDLoc DL(Op);
3173 
3174   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3175 
3176   // Check for absolute and negative-absolute selections, including those
3177   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3178   // This check supplements the one in DAGCombiner.
3179   if (C.Opcode == SystemZISD::ICMP &&
3180       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3181       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3182       C.Op1.getOpcode() == ISD::Constant &&
3183       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3184     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3185       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3186     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3187       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3188   }
3189 
3190   SDValue CCReg = emitCmp(DAG, DL, C);
3191   SDValue Ops[] = {TrueOp, FalseOp,
3192                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3193                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3194 
3195   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3196 }
3197 
3198 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3199                                                   SelectionDAG &DAG) const {
3200   SDLoc DL(Node);
3201   const GlobalValue *GV = Node->getGlobal();
3202   int64_t Offset = Node->getOffset();
3203   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3204   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3205 
3206   SDValue Result;
3207   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3208     if (isInt<32>(Offset)) {
3209       // Assign anchors at 1<<12 byte boundaries.
3210       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3211       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3212       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3213 
3214       // The offset can be folded into the address if it is aligned to a
3215       // halfword.
3216       Offset -= Anchor;
3217       if (Offset != 0 && (Offset & 1) == 0) {
3218         SDValue Full =
3219           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3220         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3221         Offset = 0;
3222       }
3223     } else {
3224       // Conservatively load a constant offset greater than 32 bits into a
3225       // register below.
3226       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3227       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3228     }
3229   } else {
3230     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3231     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3232     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3233                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3234   }
3235 
3236   // If there was a non-zero offset that we didn't fold, create an explicit
3237   // addition for it.
3238   if (Offset != 0)
3239     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3240                          DAG.getConstant(Offset, DL, PtrVT));
3241 
3242   return Result;
3243 }
3244 
3245 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3246                                                  SelectionDAG &DAG,
3247                                                  unsigned Opcode,
3248                                                  SDValue GOTOffset) const {
3249   SDLoc DL(Node);
3250   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3251   SDValue Chain = DAG.getEntryNode();
3252   SDValue Glue;
3253 
3254   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3255       CallingConv::GHC)
3256     report_fatal_error("In GHC calling convention TLS is not supported");
3257 
3258   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3259   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3260   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3261   Glue = Chain.getValue(1);
3262   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3263   Glue = Chain.getValue(1);
3264 
3265   // The first call operand is the chain and the second is the TLS symbol.
3266   SmallVector<SDValue, 8> Ops;
3267   Ops.push_back(Chain);
3268   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3269                                            Node->getValueType(0),
3270                                            0, 0));
3271 
3272   // Add argument registers to the end of the list so that they are
3273   // known live into the call.
3274   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3275   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3276 
3277   // Add a register mask operand representing the call-preserved registers.
3278   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3279   const uint32_t *Mask =
3280       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3281   assert(Mask && "Missing call preserved mask for calling convention");
3282   Ops.push_back(DAG.getRegisterMask(Mask));
3283 
3284   // Glue the call to the argument copies.
3285   Ops.push_back(Glue);
3286 
3287   // Emit the call.
3288   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3289   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3290   Glue = Chain.getValue(1);
3291 
3292   // Copy the return value from %r2.
3293   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3294 }
3295 
3296 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3297                                                   SelectionDAG &DAG) const {
3298   SDValue Chain = DAG.getEntryNode();
3299   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3300 
3301   // The high part of the thread pointer is in access register 0.
3302   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3303   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3304 
3305   // The low part of the thread pointer is in access register 1.
3306   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3307   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3308 
3309   // Merge them into a single 64-bit address.
3310   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3311                                     DAG.getConstant(32, DL, PtrVT));
3312   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3313 }
3314 
3315 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3316                                                      SelectionDAG &DAG) const {
3317   if (DAG.getTarget().useEmulatedTLS())
3318     return LowerToTLSEmulatedModel(Node, DAG);
3319   SDLoc DL(Node);
3320   const GlobalValue *GV = Node->getGlobal();
3321   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3322   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3323 
3324   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3325       CallingConv::GHC)
3326     report_fatal_error("In GHC calling convention TLS is not supported");
3327 
3328   SDValue TP = lowerThreadPointer(DL, DAG);
3329 
3330   // Get the offset of GA from the thread pointer, based on the TLS model.
3331   SDValue Offset;
3332   switch (model) {
3333     case TLSModel::GeneralDynamic: {
3334       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3335       SystemZConstantPoolValue *CPV =
3336         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3337 
3338       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3339       Offset = DAG.getLoad(
3340           PtrVT, DL, DAG.getEntryNode(), Offset,
3341           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3342 
3343       // Call __tls_get_offset to retrieve the offset.
3344       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3345       break;
3346     }
3347 
3348     case TLSModel::LocalDynamic: {
3349       // Load the GOT offset of the module ID.
3350       SystemZConstantPoolValue *CPV =
3351         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3352 
3353       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3354       Offset = DAG.getLoad(
3355           PtrVT, DL, DAG.getEntryNode(), Offset,
3356           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3357 
3358       // Call __tls_get_offset to retrieve the module base offset.
3359       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3360 
3361       // Note: The SystemZLDCleanupPass will remove redundant computations
3362       // of the module base offset.  Count total number of local-dynamic
3363       // accesses to trigger execution of that pass.
3364       SystemZMachineFunctionInfo* MFI =
3365         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3366       MFI->incNumLocalDynamicTLSAccesses();
3367 
3368       // Add the per-symbol offset.
3369       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3370 
3371       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3372       DTPOffset = DAG.getLoad(
3373           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3374           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3375 
3376       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3377       break;
3378     }
3379 
3380     case TLSModel::InitialExec: {
3381       // Load the offset from the GOT.
3382       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3383                                           SystemZII::MO_INDNTPOFF);
3384       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3385       Offset =
3386           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3387                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3388       break;
3389     }
3390 
3391     case TLSModel::LocalExec: {
3392       // Force the offset into the constant pool and load it from there.
3393       SystemZConstantPoolValue *CPV =
3394         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3395 
3396       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3397       Offset = DAG.getLoad(
3398           PtrVT, DL, DAG.getEntryNode(), Offset,
3399           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3400       break;
3401     }
3402   }
3403 
3404   // Add the base and offset together.
3405   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3406 }
3407 
3408 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3409                                                  SelectionDAG &DAG) const {
3410   SDLoc DL(Node);
3411   const BlockAddress *BA = Node->getBlockAddress();
3412   int64_t Offset = Node->getOffset();
3413   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3414 
3415   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3416   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3417   return Result;
3418 }
3419 
3420 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3421                                               SelectionDAG &DAG) const {
3422   SDLoc DL(JT);
3423   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3424   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3425 
3426   // Use LARL to load the address of the table.
3427   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3428 }
3429 
3430 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3431                                                  SelectionDAG &DAG) const {
3432   SDLoc DL(CP);
3433   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3434 
3435   SDValue Result;
3436   if (CP->isMachineConstantPoolEntry())
3437     Result =
3438         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3439   else
3440     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3441                                        CP->getOffset());
3442 
3443   // Use LARL to load the address of the constant pool entry.
3444   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3445 }
3446 
3447 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3448                                               SelectionDAG &DAG) const {
3449   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3450   MachineFunction &MF = DAG.getMachineFunction();
3451   MachineFrameInfo &MFI = MF.getFrameInfo();
3452   MFI.setFrameAddressIsTaken(true);
3453 
3454   SDLoc DL(Op);
3455   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3456   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3457 
3458   // By definition, the frame address is the address of the back chain.  (In
3459   // the case of packed stack without backchain, return the address where the
3460   // backchain would have been stored. This will either be an unused space or
3461   // contain a saved register).
3462   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3463   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3464 
3465   // FIXME The frontend should detect this case.
3466   if (Depth > 0) {
3467     report_fatal_error("Unsupported stack frame traversal count");
3468   }
3469 
3470   return BackChain;
3471 }
3472 
3473 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3474                                                SelectionDAG &DAG) const {
3475   MachineFunction &MF = DAG.getMachineFunction();
3476   MachineFrameInfo &MFI = MF.getFrameInfo();
3477   MFI.setReturnAddressIsTaken(true);
3478 
3479   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3480     return SDValue();
3481 
3482   SDLoc DL(Op);
3483   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3484   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3485 
3486   // FIXME The frontend should detect this case.
3487   if (Depth > 0) {
3488     report_fatal_error("Unsupported stack frame traversal count");
3489   }
3490 
3491   // Return R14D, which has the return address. Mark it an implicit live-in.
3492   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3493   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3494 }
3495 
3496 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3497                                             SelectionDAG &DAG) const {
3498   SDLoc DL(Op);
3499   SDValue In = Op.getOperand(0);
3500   EVT InVT = In.getValueType();
3501   EVT ResVT = Op.getValueType();
3502 
3503   // Convert loads directly.  This is normally done by DAGCombiner,
3504   // but we need this case for bitcasts that are created during lowering
3505   // and which are then lowered themselves.
3506   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3507     if (ISD::isNormalLoad(LoadN)) {
3508       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3509                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3510       // Update the chain uses.
3511       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3512       return NewLoad;
3513     }
3514 
3515   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3516     SDValue In64;
3517     if (Subtarget.hasHighWord()) {
3518       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3519                                        MVT::i64);
3520       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3521                                        MVT::i64, SDValue(U64, 0), In);
3522     } else {
3523       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3524       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3525                          DAG.getConstant(32, DL, MVT::i64));
3526     }
3527     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3528     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3529                                       DL, MVT::f32, Out64);
3530   }
3531   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3532     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3533     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3534                                              MVT::f64, SDValue(U64, 0), In);
3535     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3536     if (Subtarget.hasHighWord())
3537       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3538                                         MVT::i32, Out64);
3539     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3540                                 DAG.getConstant(32, DL, MVT::i64));
3541     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3542   }
3543   llvm_unreachable("Unexpected bitcast combination");
3544 }
3545 
3546 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3547                                             SelectionDAG &DAG) const {
3548 
3549   if (Subtarget.isTargetXPLINK64())
3550     return lowerVASTART_XPLINK(Op, DAG);
3551   else
3552     return lowerVASTART_ELF(Op, DAG);
3553 }
3554 
3555 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3556                                                    SelectionDAG &DAG) const {
3557   MachineFunction &MF = DAG.getMachineFunction();
3558   SystemZMachineFunctionInfo *FuncInfo =
3559       MF.getInfo<SystemZMachineFunctionInfo>();
3560 
3561   SDLoc DL(Op);
3562 
3563   // vastart just stores the address of the VarArgsFrameIndex slot into the
3564   // memory location argument.
3565   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3566   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3567   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3568   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3569                       MachinePointerInfo(SV));
3570 }
3571 
3572 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3573                                                 SelectionDAG &DAG) const {
3574   MachineFunction &MF = DAG.getMachineFunction();
3575   SystemZMachineFunctionInfo *FuncInfo =
3576     MF.getInfo<SystemZMachineFunctionInfo>();
3577   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3578 
3579   SDValue Chain   = Op.getOperand(0);
3580   SDValue Addr    = Op.getOperand(1);
3581   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3582   SDLoc DL(Op);
3583 
3584   // The initial values of each field.
3585   const unsigned NumFields = 4;
3586   SDValue Fields[NumFields] = {
3587     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3588     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3589     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3590     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3591   };
3592 
3593   // Store each field into its respective slot.
3594   SDValue MemOps[NumFields];
3595   unsigned Offset = 0;
3596   for (unsigned I = 0; I < NumFields; ++I) {
3597     SDValue FieldAddr = Addr;
3598     if (Offset != 0)
3599       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3600                               DAG.getIntPtrConstant(Offset, DL));
3601     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3602                              MachinePointerInfo(SV, Offset));
3603     Offset += 8;
3604   }
3605   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3606 }
3607 
3608 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3609                                            SelectionDAG &DAG) const {
3610   SDValue Chain      = Op.getOperand(0);
3611   SDValue DstPtr     = Op.getOperand(1);
3612   SDValue SrcPtr     = Op.getOperand(2);
3613   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3614   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3615   SDLoc DL(Op);
3616 
3617   uint32_t Sz =
3618       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3619   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3620                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3621                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3622                        MachinePointerInfo(SrcSV));
3623 }
3624 
3625 SDValue
3626 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3627                                                SelectionDAG &DAG) const {
3628   if (Subtarget.isTargetXPLINK64())
3629     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3630   else
3631     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3632 }
3633 
3634 SDValue
3635 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3636                                                       SelectionDAG &DAG) const {
3637   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3638   MachineFunction &MF = DAG.getMachineFunction();
3639   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3640   SDValue Chain = Op.getOperand(0);
3641   SDValue Size = Op.getOperand(1);
3642   SDValue Align = Op.getOperand(2);
3643   SDLoc DL(Op);
3644 
3645   // If user has set the no alignment function attribute, ignore
3646   // alloca alignments.
3647   uint64_t AlignVal =
3648       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3649 
3650   uint64_t StackAlign = TFI->getStackAlignment();
3651   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3652   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3653 
3654   SDValue NeededSpace = Size;
3655 
3656   // Add extra space for alignment if needed.
3657   EVT PtrVT = getPointerTy(MF.getDataLayout());
3658   if (ExtraAlignSpace)
3659     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3660                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3661 
3662   bool IsSigned = false;
3663   bool DoesNotReturn = false;
3664   bool IsReturnValueUsed = false;
3665   EVT VT = Op.getValueType();
3666   SDValue AllocaCall =
3667       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace),
3668                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3669                        IsReturnValueUsed)
3670           .first;
3671 
3672   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3673   // to end of call in order to ensure it isn't broken up from the call
3674   // sequence.
3675   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3676   Register SPReg = Regs.getStackPointerRegister();
3677   Chain = AllocaCall.getValue(1);
3678   SDValue Glue = AllocaCall.getValue(2);
3679   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3680   Chain = NewSPRegNode.getValue(1);
3681 
3682   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3683   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3684   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3685 
3686   // Dynamically realign if needed.
3687   if (ExtraAlignSpace) {
3688     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3689                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3690     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3691                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3692   }
3693 
3694   SDValue Ops[2] = {Result, Chain};
3695   return DAG.getMergeValues(Ops, DL);
3696 }
3697 
3698 SDValue
3699 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
3700                                                    SelectionDAG &DAG) const {
3701   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3702   MachineFunction &MF = DAG.getMachineFunction();
3703   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3704   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3705 
3706   SDValue Chain = Op.getOperand(0);
3707   SDValue Size  = Op.getOperand(1);
3708   SDValue Align = Op.getOperand(2);
3709   SDLoc DL(Op);
3710 
3711   // If user has set the no alignment function attribute, ignore
3712   // alloca alignments.
3713   uint64_t AlignVal =
3714       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3715 
3716   uint64_t StackAlign = TFI->getStackAlignment();
3717   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3718   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3719 
3720   Register SPReg = getStackPointerRegisterToSaveRestore();
3721   SDValue NeededSpace = Size;
3722 
3723   // Get a reference to the stack pointer.
3724   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3725 
3726   // If we need a backchain, save it now.
3727   SDValue Backchain;
3728   if (StoreBackchain)
3729     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3730                             MachinePointerInfo());
3731 
3732   // Add extra space for alignment if needed.
3733   if (ExtraAlignSpace)
3734     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3735                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3736 
3737   // Get the new stack pointer value.
3738   SDValue NewSP;
3739   if (hasInlineStackProbe(MF)) {
3740     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3741                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3742     Chain = NewSP.getValue(1);
3743   }
3744   else {
3745     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3746     // Copy the new stack pointer back.
3747     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3748   }
3749 
3750   // The allocated data lives above the 160 bytes allocated for the standard
3751   // frame, plus any outgoing stack arguments.  We don't know how much that
3752   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3753   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3754   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3755 
3756   // Dynamically realign if needed.
3757   if (RequiredAlign > StackAlign) {
3758     Result =
3759       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3760                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3761     Result =
3762       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3763                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3764   }
3765 
3766   if (StoreBackchain)
3767     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3768                          MachinePointerInfo());
3769 
3770   SDValue Ops[2] = { Result, Chain };
3771   return DAG.getMergeValues(Ops, DL);
3772 }
3773 
3774 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3775     SDValue Op, SelectionDAG &DAG) const {
3776   SDLoc DL(Op);
3777 
3778   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3779 }
3780 
3781 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3782                                               SelectionDAG &DAG) const {
3783   EVT VT = Op.getValueType();
3784   SDLoc DL(Op);
3785   SDValue Ops[2];
3786   if (is32Bit(VT))
3787     // Just do a normal 64-bit multiplication and extract the results.
3788     // We define this so that it can be used for constant division.
3789     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3790                     Op.getOperand(1), Ops[1], Ops[0]);
3791   else if (Subtarget.hasMiscellaneousExtensions2())
3792     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3793     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3794     // return the low half first, so the results are in reverse order.
3795     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3796                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3797   else {
3798     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3799     //
3800     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3801     //
3802     // but using the fact that the upper halves are either all zeros
3803     // or all ones:
3804     //
3805     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3806     //
3807     // and grouping the right terms together since they are quicker than the
3808     // multiplication:
3809     //
3810     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3811     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3812     SDValue LL = Op.getOperand(0);
3813     SDValue RL = Op.getOperand(1);
3814     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3815     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3816     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3817     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3818     // return the low half first, so the results are in reverse order.
3819     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3820                      LL, RL, Ops[1], Ops[0]);
3821     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3822     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3823     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3824     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3825   }
3826   return DAG.getMergeValues(Ops, DL);
3827 }
3828 
3829 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3830                                               SelectionDAG &DAG) const {
3831   EVT VT = Op.getValueType();
3832   SDLoc DL(Op);
3833   SDValue Ops[2];
3834   if (is32Bit(VT))
3835     // Just do a normal 64-bit multiplication and extract the results.
3836     // We define this so that it can be used for constant division.
3837     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3838                     Op.getOperand(1), Ops[1], Ops[0]);
3839   else
3840     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3841     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3842     // return the low half first, so the results are in reverse order.
3843     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3844                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3845   return DAG.getMergeValues(Ops, DL);
3846 }
3847 
3848 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3849                                             SelectionDAG &DAG) const {
3850   SDValue Op0 = Op.getOperand(0);
3851   SDValue Op1 = Op.getOperand(1);
3852   EVT VT = Op.getValueType();
3853   SDLoc DL(Op);
3854 
3855   // We use DSGF for 32-bit division.  This means the first operand must
3856   // always be 64-bit, and the second operand should be 32-bit whenever
3857   // that is possible, to improve performance.
3858   if (is32Bit(VT))
3859     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3860   else if (DAG.ComputeNumSignBits(Op1) > 32)
3861     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3862 
3863   // DSG(F) returns the remainder in the even register and the
3864   // quotient in the odd register.
3865   SDValue Ops[2];
3866   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3867   return DAG.getMergeValues(Ops, DL);
3868 }
3869 
3870 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3871                                             SelectionDAG &DAG) const {
3872   EVT VT = Op.getValueType();
3873   SDLoc DL(Op);
3874 
3875   // DL(G) returns the remainder in the even register and the
3876   // quotient in the odd register.
3877   SDValue Ops[2];
3878   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3879                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3880   return DAG.getMergeValues(Ops, DL);
3881 }
3882 
3883 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3884   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3885 
3886   // Get the known-zero masks for each operand.
3887   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3888   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3889                         DAG.computeKnownBits(Ops[1])};
3890 
3891   // See if the upper 32 bits of one operand and the lower 32 bits of the
3892   // other are known zero.  They are the low and high operands respectively.
3893   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3894                        Known[1].Zero.getZExtValue() };
3895   unsigned High, Low;
3896   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3897     High = 1, Low = 0;
3898   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3899     High = 0, Low = 1;
3900   else
3901     return Op;
3902 
3903   SDValue LowOp = Ops[Low];
3904   SDValue HighOp = Ops[High];
3905 
3906   // If the high part is a constant, we're better off using IILH.
3907   if (HighOp.getOpcode() == ISD::Constant)
3908     return Op;
3909 
3910   // If the low part is a constant that is outside the range of LHI,
3911   // then we're better off using IILF.
3912   if (LowOp.getOpcode() == ISD::Constant) {
3913     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3914     if (!isInt<16>(Value))
3915       return Op;
3916   }
3917 
3918   // Check whether the high part is an AND that doesn't change the
3919   // high 32 bits and just masks out low bits.  We can skip it if so.
3920   if (HighOp.getOpcode() == ISD::AND &&
3921       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3922     SDValue HighOp0 = HighOp.getOperand(0);
3923     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3924     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3925       HighOp = HighOp0;
3926   }
3927 
3928   // Take advantage of the fact that all GR32 operations only change the
3929   // low 32 bits by truncating Low to an i32 and inserting it directly
3930   // using a subreg.  The interesting cases are those where the truncation
3931   // can be folded.
3932   SDLoc DL(Op);
3933   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3934   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3935                                    MVT::i64, HighOp, Low32);
3936 }
3937 
3938 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3939 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3940                                           SelectionDAG &DAG) const {
3941   SDNode *N = Op.getNode();
3942   SDValue LHS = N->getOperand(0);
3943   SDValue RHS = N->getOperand(1);
3944   SDLoc DL(N);
3945   unsigned BaseOp = 0;
3946   unsigned CCValid = 0;
3947   unsigned CCMask = 0;
3948 
3949   switch (Op.getOpcode()) {
3950   default: llvm_unreachable("Unknown instruction!");
3951   case ISD::SADDO:
3952     BaseOp = SystemZISD::SADDO;
3953     CCValid = SystemZ::CCMASK_ARITH;
3954     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3955     break;
3956   case ISD::SSUBO:
3957     BaseOp = SystemZISD::SSUBO;
3958     CCValid = SystemZ::CCMASK_ARITH;
3959     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3960     break;
3961   case ISD::UADDO:
3962     BaseOp = SystemZISD::UADDO;
3963     CCValid = SystemZ::CCMASK_LOGICAL;
3964     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3965     break;
3966   case ISD::USUBO:
3967     BaseOp = SystemZISD::USUBO;
3968     CCValid = SystemZ::CCMASK_LOGICAL;
3969     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3970     break;
3971   }
3972 
3973   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3974   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3975 
3976   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3977   if (N->getValueType(1) == MVT::i1)
3978     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3979 
3980   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3981 }
3982 
3983 static bool isAddCarryChain(SDValue Carry) {
3984   while (Carry.getOpcode() == ISD::ADDCARRY)
3985     Carry = Carry.getOperand(2);
3986   return Carry.getOpcode() == ISD::UADDO;
3987 }
3988 
3989 static bool isSubBorrowChain(SDValue Carry) {
3990   while (Carry.getOpcode() == ISD::SUBCARRY)
3991     Carry = Carry.getOperand(2);
3992   return Carry.getOpcode() == ISD::USUBO;
3993 }
3994 
3995 // Lower ADDCARRY/SUBCARRY nodes.
3996 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3997                                                 SelectionDAG &DAG) const {
3998 
3999   SDNode *N = Op.getNode();
4000   MVT VT = N->getSimpleValueType(0);
4001 
4002   // Let legalize expand this if it isn't a legal type yet.
4003   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4004     return SDValue();
4005 
4006   SDValue LHS = N->getOperand(0);
4007   SDValue RHS = N->getOperand(1);
4008   SDValue Carry = Op.getOperand(2);
4009   SDLoc DL(N);
4010   unsigned BaseOp = 0;
4011   unsigned CCValid = 0;
4012   unsigned CCMask = 0;
4013 
4014   switch (Op.getOpcode()) {
4015   default: llvm_unreachable("Unknown instruction!");
4016   case ISD::ADDCARRY:
4017     if (!isAddCarryChain(Carry))
4018       return SDValue();
4019 
4020     BaseOp = SystemZISD::ADDCARRY;
4021     CCValid = SystemZ::CCMASK_LOGICAL;
4022     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4023     break;
4024   case ISD::SUBCARRY:
4025     if (!isSubBorrowChain(Carry))
4026       return SDValue();
4027 
4028     BaseOp = SystemZISD::SUBCARRY;
4029     CCValid = SystemZ::CCMASK_LOGICAL;
4030     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4031     break;
4032   }
4033 
4034   // Set the condition code from the carry flag.
4035   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4036                       DAG.getConstant(CCValid, DL, MVT::i32),
4037                       DAG.getConstant(CCMask, DL, MVT::i32));
4038 
4039   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4040   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4041 
4042   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4043   if (N->getValueType(1) == MVT::i1)
4044     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4045 
4046   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4047 }
4048 
4049 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4050                                           SelectionDAG &DAG) const {
4051   EVT VT = Op.getValueType();
4052   SDLoc DL(Op);
4053   Op = Op.getOperand(0);
4054 
4055   // Handle vector types via VPOPCT.
4056   if (VT.isVector()) {
4057     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4058     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4059     switch (VT.getScalarSizeInBits()) {
4060     case 8:
4061       break;
4062     case 16: {
4063       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4064       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4065       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4066       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4067       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4068       break;
4069     }
4070     case 32: {
4071       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4072                                             DAG.getConstant(0, DL, MVT::i32));
4073       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4074       break;
4075     }
4076     case 64: {
4077       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4078                                             DAG.getConstant(0, DL, MVT::i32));
4079       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4080       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4081       break;
4082     }
4083     default:
4084       llvm_unreachable("Unexpected type");
4085     }
4086     return Op;
4087   }
4088 
4089   // Get the known-zero mask for the operand.
4090   KnownBits Known = DAG.computeKnownBits(Op);
4091   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4092   if (NumSignificantBits == 0)
4093     return DAG.getConstant(0, DL, VT);
4094 
4095   // Skip known-zero high parts of the operand.
4096   int64_t OrigBitSize = VT.getSizeInBits();
4097   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
4098   BitSize = std::min(BitSize, OrigBitSize);
4099 
4100   // The POPCNT instruction counts the number of bits in each byte.
4101   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4102   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4103   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4104 
4105   // Add up per-byte counts in a binary tree.  All bits of Op at
4106   // position larger than BitSize remain zero throughout.
4107   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4108     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4109     if (BitSize != OrigBitSize)
4110       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4111                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4112     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4113   }
4114 
4115   // Extract overall result from high byte.
4116   if (BitSize > 8)
4117     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4118                      DAG.getConstant(BitSize - 8, DL, VT));
4119 
4120   return Op;
4121 }
4122 
4123 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4124                                                  SelectionDAG &DAG) const {
4125   SDLoc DL(Op);
4126   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
4127     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
4128   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
4129     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
4130 
4131   // The only fence that needs an instruction is a sequentially-consistent
4132   // cross-thread fence.
4133   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4134       FenceSSID == SyncScope::System) {
4135     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4136                                       Op.getOperand(0)),
4137                    0);
4138   }
4139 
4140   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4141   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4142 }
4143 
4144 // Op is an atomic load.  Lower it into a normal volatile load.
4145 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4146                                                 SelectionDAG &DAG) const {
4147   auto *Node = cast<AtomicSDNode>(Op.getNode());
4148   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4149                         Node->getChain(), Node->getBasePtr(),
4150                         Node->getMemoryVT(), Node->getMemOperand());
4151 }
4152 
4153 // Op is an atomic store.  Lower it into a normal volatile store.
4154 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4155                                                  SelectionDAG &DAG) const {
4156   auto *Node = cast<AtomicSDNode>(Op.getNode());
4157   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4158                                     Node->getBasePtr(), Node->getMemoryVT(),
4159                                     Node->getMemOperand());
4160   // We have to enforce sequential consistency by performing a
4161   // serialization operation after the store.
4162   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4163     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4164                                        MVT::Other, Chain), 0);
4165   return Chain;
4166 }
4167 
4168 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4169 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4170 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4171                                                    SelectionDAG &DAG,
4172                                                    unsigned Opcode) const {
4173   auto *Node = cast<AtomicSDNode>(Op.getNode());
4174 
4175   // 32-bit operations need no code outside the main loop.
4176   EVT NarrowVT = Node->getMemoryVT();
4177   EVT WideVT = MVT::i32;
4178   if (NarrowVT == WideVT)
4179     return Op;
4180 
4181   int64_t BitSize = NarrowVT.getSizeInBits();
4182   SDValue ChainIn = Node->getChain();
4183   SDValue Addr = Node->getBasePtr();
4184   SDValue Src2 = Node->getVal();
4185   MachineMemOperand *MMO = Node->getMemOperand();
4186   SDLoc DL(Node);
4187   EVT PtrVT = Addr.getValueType();
4188 
4189   // Convert atomic subtracts of constants into additions.
4190   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4191     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4192       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4193       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4194     }
4195 
4196   // Get the address of the containing word.
4197   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4198                                     DAG.getConstant(-4, DL, PtrVT));
4199 
4200   // Get the number of bits that the word must be rotated left in order
4201   // to bring the field to the top bits of a GR32.
4202   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4203                                  DAG.getConstant(3, DL, PtrVT));
4204   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4205 
4206   // Get the complementing shift amount, for rotating a field in the top
4207   // bits back to its proper position.
4208   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4209                                     DAG.getConstant(0, DL, WideVT), BitShift);
4210 
4211   // Extend the source operand to 32 bits and prepare it for the inner loop.
4212   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4213   // operations require the source to be shifted in advance.  (This shift
4214   // can be folded if the source is constant.)  For AND and NAND, the lower
4215   // bits must be set, while for other opcodes they should be left clear.
4216   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4217     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4218                        DAG.getConstant(32 - BitSize, DL, WideVT));
4219   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4220       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4221     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4222                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4223 
4224   // Construct the ATOMIC_LOADW_* node.
4225   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4226   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4227                     DAG.getConstant(BitSize, DL, WideVT) };
4228   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4229                                              NarrowVT, MMO);
4230 
4231   // Rotate the result of the final CS so that the field is in the lower
4232   // bits of a GR32, then truncate it.
4233   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4234                                     DAG.getConstant(BitSize, DL, WideVT));
4235   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4236 
4237   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4238   return DAG.getMergeValues(RetOps, DL);
4239 }
4240 
4241 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4242 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4243 // operations into additions.
4244 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4245                                                     SelectionDAG &DAG) const {
4246   auto *Node = cast<AtomicSDNode>(Op.getNode());
4247   EVT MemVT = Node->getMemoryVT();
4248   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4249     // A full-width operation.
4250     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4251     SDValue Src2 = Node->getVal();
4252     SDValue NegSrc2;
4253     SDLoc DL(Src2);
4254 
4255     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4256       // Use an addition if the operand is constant and either LAA(G) is
4257       // available or the negative value is in the range of A(G)FHI.
4258       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4259       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4260         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4261     } else if (Subtarget.hasInterlockedAccess1())
4262       // Use LAA(G) if available.
4263       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4264                             Src2);
4265 
4266     if (NegSrc2.getNode())
4267       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4268                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4269                            Node->getMemOperand());
4270 
4271     // Use the node as-is.
4272     return Op;
4273   }
4274 
4275   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4276 }
4277 
4278 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4279 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4280                                                     SelectionDAG &DAG) const {
4281   auto *Node = cast<AtomicSDNode>(Op.getNode());
4282   SDValue ChainIn = Node->getOperand(0);
4283   SDValue Addr = Node->getOperand(1);
4284   SDValue CmpVal = Node->getOperand(2);
4285   SDValue SwapVal = Node->getOperand(3);
4286   MachineMemOperand *MMO = Node->getMemOperand();
4287   SDLoc DL(Node);
4288 
4289   // We have native support for 32-bit and 64-bit compare and swap, but we
4290   // still need to expand extracting the "success" result from the CC.
4291   EVT NarrowVT = Node->getMemoryVT();
4292   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4293   if (NarrowVT == WideVT) {
4294     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4295     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4296     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4297                                                DL, Tys, Ops, NarrowVT, MMO);
4298     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4299                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4300 
4301     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4302     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4303     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4304     return SDValue();
4305   }
4306 
4307   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4308   // via a fullword ATOMIC_CMP_SWAPW operation.
4309   int64_t BitSize = NarrowVT.getSizeInBits();
4310   EVT PtrVT = Addr.getValueType();
4311 
4312   // Get the address of the containing word.
4313   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4314                                     DAG.getConstant(-4, DL, PtrVT));
4315 
4316   // Get the number of bits that the word must be rotated left in order
4317   // to bring the field to the top bits of a GR32.
4318   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4319                                  DAG.getConstant(3, DL, PtrVT));
4320   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4321 
4322   // Get the complementing shift amount, for rotating a field in the top
4323   // bits back to its proper position.
4324   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4325                                     DAG.getConstant(0, DL, WideVT), BitShift);
4326 
4327   // Construct the ATOMIC_CMP_SWAPW node.
4328   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4329   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4330                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4331   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4332                                              VTList, Ops, NarrowVT, MMO);
4333   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4334                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4335 
4336   // emitAtomicCmpSwapW() will zero extend the result (original value).
4337   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4338                                 DAG.getValueType(NarrowVT));
4339   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4340   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4341   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4342   return SDValue();
4343 }
4344 
4345 MachineMemOperand::Flags
4346 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4347   // Because of how we convert atomic_load and atomic_store to normal loads and
4348   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4349   // since DAGCombine hasn't been updated to account for atomic, but non
4350   // volatile loads.  (See D57601)
4351   if (auto *SI = dyn_cast<StoreInst>(&I))
4352     if (SI->isAtomic())
4353       return MachineMemOperand::MOVolatile;
4354   if (auto *LI = dyn_cast<LoadInst>(&I))
4355     if (LI->isAtomic())
4356       return MachineMemOperand::MOVolatile;
4357   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4358     if (AI->isAtomic())
4359       return MachineMemOperand::MOVolatile;
4360   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4361     if (AI->isAtomic())
4362       return MachineMemOperand::MOVolatile;
4363   return MachineMemOperand::MONone;
4364 }
4365 
4366 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4367                                               SelectionDAG &DAG) const {
4368   MachineFunction &MF = DAG.getMachineFunction();
4369   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4370   auto *Regs = Subtarget->getSpecialRegisters();
4371   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4372     report_fatal_error("Variable-sized stack allocations are not supported "
4373                        "in GHC calling convention");
4374   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4375                             Regs->getStackPointerRegister(), Op.getValueType());
4376 }
4377 
4378 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4379                                                  SelectionDAG &DAG) const {
4380   MachineFunction &MF = DAG.getMachineFunction();
4381   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4382   auto *Regs = Subtarget->getSpecialRegisters();
4383   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4384 
4385   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4386     report_fatal_error("Variable-sized stack allocations are not supported "
4387                        "in GHC calling convention");
4388 
4389   SDValue Chain = Op.getOperand(0);
4390   SDValue NewSP = Op.getOperand(1);
4391   SDValue Backchain;
4392   SDLoc DL(Op);
4393 
4394   if (StoreBackchain) {
4395     SDValue OldSP = DAG.getCopyFromReg(
4396         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4397     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4398                             MachinePointerInfo());
4399   }
4400 
4401   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4402 
4403   if (StoreBackchain)
4404     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4405                          MachinePointerInfo());
4406 
4407   return Chain;
4408 }
4409 
4410 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4411                                              SelectionDAG &DAG) const {
4412   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4413   if (!IsData)
4414     // Just preserve the chain.
4415     return Op.getOperand(0);
4416 
4417   SDLoc DL(Op);
4418   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4419   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4420   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4421   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4422                    Op.getOperand(1)};
4423   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4424                                  Node->getVTList(), Ops,
4425                                  Node->getMemoryVT(), Node->getMemOperand());
4426 }
4427 
4428 // Convert condition code in CCReg to an i32 value.
4429 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4430   SDLoc DL(CCReg);
4431   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4432   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4433                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4434 }
4435 
4436 SDValue
4437 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4438                                               SelectionDAG &DAG) const {
4439   unsigned Opcode, CCValid;
4440   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4441     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4442     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4443     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4444     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4445     return SDValue();
4446   }
4447 
4448   return SDValue();
4449 }
4450 
4451 SDValue
4452 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4453                                                SelectionDAG &DAG) const {
4454   unsigned Opcode, CCValid;
4455   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4456     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4457     if (Op->getNumValues() == 1)
4458       return getCCResult(DAG, SDValue(Node, 0));
4459     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4460     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4461                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4462   }
4463 
4464   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4465   switch (Id) {
4466   case Intrinsic::thread_pointer:
4467     return lowerThreadPointer(SDLoc(Op), DAG);
4468 
4469   case Intrinsic::s390_vpdi:
4470     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4471                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4472 
4473   case Intrinsic::s390_vperm:
4474     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4475                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4476 
4477   case Intrinsic::s390_vuphb:
4478   case Intrinsic::s390_vuphh:
4479   case Intrinsic::s390_vuphf:
4480     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4481                        Op.getOperand(1));
4482 
4483   case Intrinsic::s390_vuplhb:
4484   case Intrinsic::s390_vuplhh:
4485   case Intrinsic::s390_vuplhf:
4486     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4487                        Op.getOperand(1));
4488 
4489   case Intrinsic::s390_vuplb:
4490   case Intrinsic::s390_vuplhw:
4491   case Intrinsic::s390_vuplf:
4492     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4493                        Op.getOperand(1));
4494 
4495   case Intrinsic::s390_vupllb:
4496   case Intrinsic::s390_vupllh:
4497   case Intrinsic::s390_vupllf:
4498     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4499                        Op.getOperand(1));
4500 
4501   case Intrinsic::s390_vsumb:
4502   case Intrinsic::s390_vsumh:
4503   case Intrinsic::s390_vsumgh:
4504   case Intrinsic::s390_vsumgf:
4505   case Intrinsic::s390_vsumqf:
4506   case Intrinsic::s390_vsumqg:
4507     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4508                        Op.getOperand(1), Op.getOperand(2));
4509   }
4510 
4511   return SDValue();
4512 }
4513 
4514 namespace {
4515 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4516 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4517 // Operand is the constant third operand, otherwise it is the number of
4518 // bytes in each element of the result.
4519 struct Permute {
4520   unsigned Opcode;
4521   unsigned Operand;
4522   unsigned char Bytes[SystemZ::VectorBytes];
4523 };
4524 }
4525 
4526 static const Permute PermuteForms[] = {
4527   // VMRHG
4528   { SystemZISD::MERGE_HIGH, 8,
4529     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4530   // VMRHF
4531   { SystemZISD::MERGE_HIGH, 4,
4532     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4533   // VMRHH
4534   { SystemZISD::MERGE_HIGH, 2,
4535     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4536   // VMRHB
4537   { SystemZISD::MERGE_HIGH, 1,
4538     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4539   // VMRLG
4540   { SystemZISD::MERGE_LOW, 8,
4541     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4542   // VMRLF
4543   { SystemZISD::MERGE_LOW, 4,
4544     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4545   // VMRLH
4546   { SystemZISD::MERGE_LOW, 2,
4547     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4548   // VMRLB
4549   { SystemZISD::MERGE_LOW, 1,
4550     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4551   // VPKG
4552   { SystemZISD::PACK, 4,
4553     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4554   // VPKF
4555   { SystemZISD::PACK, 2,
4556     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4557   // VPKH
4558   { SystemZISD::PACK, 1,
4559     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4560   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4561   { SystemZISD::PERMUTE_DWORDS, 4,
4562     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4563   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4564   { SystemZISD::PERMUTE_DWORDS, 1,
4565     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4566 };
4567 
4568 // Called after matching a vector shuffle against a particular pattern.
4569 // Both the original shuffle and the pattern have two vector operands.
4570 // OpNos[0] is the operand of the original shuffle that should be used for
4571 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4572 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4573 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4574 // for operands 0 and 1 of the pattern.
4575 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4576   if (OpNos[0] < 0) {
4577     if (OpNos[1] < 0)
4578       return false;
4579     OpNo0 = OpNo1 = OpNos[1];
4580   } else if (OpNos[1] < 0) {
4581     OpNo0 = OpNo1 = OpNos[0];
4582   } else {
4583     OpNo0 = OpNos[0];
4584     OpNo1 = OpNos[1];
4585   }
4586   return true;
4587 }
4588 
4589 // Bytes is a VPERM-like permute vector, except that -1 is used for
4590 // undefined bytes.  Return true if the VPERM can be implemented using P.
4591 // When returning true set OpNo0 to the VPERM operand that should be
4592 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4593 //
4594 // For example, if swapping the VPERM operands allows P to match, OpNo0
4595 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4596 // operand, but rewriting it to use two duplicated operands allows it to
4597 // match P, then OpNo0 and OpNo1 will be the same.
4598 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4599                          unsigned &OpNo0, unsigned &OpNo1) {
4600   int OpNos[] = { -1, -1 };
4601   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4602     int Elt = Bytes[I];
4603     if (Elt >= 0) {
4604       // Make sure that the two permute vectors use the same suboperand
4605       // byte number.  Only the operand numbers (the high bits) are
4606       // allowed to differ.
4607       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4608         return false;
4609       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4610       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4611       // Make sure that the operand mappings are consistent with previous
4612       // elements.
4613       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4614         return false;
4615       OpNos[ModelOpNo] = RealOpNo;
4616     }
4617   }
4618   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4619 }
4620 
4621 // As above, but search for a matching permute.
4622 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4623                                    unsigned &OpNo0, unsigned &OpNo1) {
4624   for (auto &P : PermuteForms)
4625     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4626       return &P;
4627   return nullptr;
4628 }
4629 
4630 // Bytes is a VPERM-like permute vector, except that -1 is used for
4631 // undefined bytes.  This permute is an operand of an outer permute.
4632 // See whether redistributing the -1 bytes gives a shuffle that can be
4633 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4634 // that, when applied to the result of P, gives the original permute in Bytes.
4635 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4636                                const Permute &P,
4637                                SmallVectorImpl<int> &Transform) {
4638   unsigned To = 0;
4639   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4640     int Elt = Bytes[From];
4641     if (Elt < 0)
4642       // Byte number From of the result is undefined.
4643       Transform[From] = -1;
4644     else {
4645       while (P.Bytes[To] != Elt) {
4646         To += 1;
4647         if (To == SystemZ::VectorBytes)
4648           return false;
4649       }
4650       Transform[From] = To;
4651     }
4652   }
4653   return true;
4654 }
4655 
4656 // As above, but search for a matching permute.
4657 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4658                                          SmallVectorImpl<int> &Transform) {
4659   for (auto &P : PermuteForms)
4660     if (matchDoublePermute(Bytes, P, Transform))
4661       return &P;
4662   return nullptr;
4663 }
4664 
4665 // Convert the mask of the given shuffle op into a byte-level mask,
4666 // as if it had type vNi8.
4667 static bool getVPermMask(SDValue ShuffleOp,
4668                          SmallVectorImpl<int> &Bytes) {
4669   EVT VT = ShuffleOp.getValueType();
4670   unsigned NumElements = VT.getVectorNumElements();
4671   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4672 
4673   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4674     Bytes.resize(NumElements * BytesPerElement, -1);
4675     for (unsigned I = 0; I < NumElements; ++I) {
4676       int Index = VSN->getMaskElt(I);
4677       if (Index >= 0)
4678         for (unsigned J = 0; J < BytesPerElement; ++J)
4679           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4680     }
4681     return true;
4682   }
4683   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4684       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4685     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4686     Bytes.resize(NumElements * BytesPerElement, -1);
4687     for (unsigned I = 0; I < NumElements; ++I)
4688       for (unsigned J = 0; J < BytesPerElement; ++J)
4689         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4690     return true;
4691   }
4692   return false;
4693 }
4694 
4695 // Bytes is a VPERM-like permute vector, except that -1 is used for
4696 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4697 // the result come from a contiguous sequence of bytes from one input.
4698 // Set Base to the selector for the first byte if so.
4699 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4700                             unsigned BytesPerElement, int &Base) {
4701   Base = -1;
4702   for (unsigned I = 0; I < BytesPerElement; ++I) {
4703     if (Bytes[Start + I] >= 0) {
4704       unsigned Elem = Bytes[Start + I];
4705       if (Base < 0) {
4706         Base = Elem - I;
4707         // Make sure the bytes would come from one input operand.
4708         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4709           return false;
4710       } else if (unsigned(Base) != Elem - I)
4711         return false;
4712     }
4713   }
4714   return true;
4715 }
4716 
4717 // Bytes is a VPERM-like permute vector, except that -1 is used for
4718 // undefined bytes.  Return true if it can be performed using VSLDB.
4719 // When returning true, set StartIndex to the shift amount and OpNo0
4720 // and OpNo1 to the VPERM operands that should be used as the first
4721 // and second shift operand respectively.
4722 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4723                                unsigned &StartIndex, unsigned &OpNo0,
4724                                unsigned &OpNo1) {
4725   int OpNos[] = { -1, -1 };
4726   int Shift = -1;
4727   for (unsigned I = 0; I < 16; ++I) {
4728     int Index = Bytes[I];
4729     if (Index >= 0) {
4730       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4731       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4732       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4733       if (Shift < 0)
4734         Shift = ExpectedShift;
4735       else if (Shift != ExpectedShift)
4736         return false;
4737       // Make sure that the operand mappings are consistent with previous
4738       // elements.
4739       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4740         return false;
4741       OpNos[ModelOpNo] = RealOpNo;
4742     }
4743   }
4744   StartIndex = Shift;
4745   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4746 }
4747 
4748 // Create a node that performs P on operands Op0 and Op1, casting the
4749 // operands to the appropriate type.  The type of the result is determined by P.
4750 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4751                               const Permute &P, SDValue Op0, SDValue Op1) {
4752   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4753   // elements of a PACK are twice as wide as the outputs.
4754   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4755                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4756                       P.Operand);
4757   // Cast both operands to the appropriate type.
4758   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4759                               SystemZ::VectorBytes / InBytes);
4760   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4761   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4762   SDValue Op;
4763   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4764     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4765     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4766   } else if (P.Opcode == SystemZISD::PACK) {
4767     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4768                                  SystemZ::VectorBytes / P.Operand);
4769     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4770   } else {
4771     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4772   }
4773   return Op;
4774 }
4775 
4776 static bool isZeroVector(SDValue N) {
4777   if (N->getOpcode() == ISD::BITCAST)
4778     N = N->getOperand(0);
4779   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4780     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4781       return Op->getZExtValue() == 0;
4782   return ISD::isBuildVectorAllZeros(N.getNode());
4783 }
4784 
4785 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4786 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4787   for (unsigned I = 0; I < Num ; I++)
4788     if (isZeroVector(Ops[I]))
4789       return I;
4790   return UINT32_MAX;
4791 }
4792 
4793 // Bytes is a VPERM-like permute vector, except that -1 is used for
4794 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4795 // VSLDB or VPERM.
4796 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4797                                      SDValue *Ops,
4798                                      const SmallVectorImpl<int> &Bytes) {
4799   for (unsigned I = 0; I < 2; ++I)
4800     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4801 
4802   // First see whether VSLDB can be used.
4803   unsigned StartIndex, OpNo0, OpNo1;
4804   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4805     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4806                        Ops[OpNo1],
4807                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4808 
4809   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4810   // eliminate a zero vector by reusing any zero index in the permute vector.
4811   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4812   if (ZeroVecIdx != UINT32_MAX) {
4813     bool MaskFirst = true;
4814     int ZeroIdx = -1;
4815     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4816       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4817       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4818       if (OpNo == ZeroVecIdx && I == 0) {
4819         // If the first byte is zero, use mask as first operand.
4820         ZeroIdx = 0;
4821         break;
4822       }
4823       if (OpNo != ZeroVecIdx && Byte == 0) {
4824         // If mask contains a zero, use it by placing that vector first.
4825         ZeroIdx = I + SystemZ::VectorBytes;
4826         MaskFirst = false;
4827         break;
4828       }
4829     }
4830     if (ZeroIdx != -1) {
4831       SDValue IndexNodes[SystemZ::VectorBytes];
4832       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4833         if (Bytes[I] >= 0) {
4834           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4835           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4836           if (OpNo == ZeroVecIdx)
4837             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4838           else {
4839             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4840             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4841           }
4842         } else
4843           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4844       }
4845       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4846       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4847       if (MaskFirst)
4848         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4849                            Mask);
4850       else
4851         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4852                            Mask);
4853     }
4854   }
4855 
4856   SDValue IndexNodes[SystemZ::VectorBytes];
4857   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4858     if (Bytes[I] >= 0)
4859       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4860     else
4861       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4862   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4863   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4864                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4865 }
4866 
4867 namespace {
4868 // Describes a general N-operand vector shuffle.
4869 struct GeneralShuffle {
4870   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4871   void addUndef();
4872   bool add(SDValue, unsigned);
4873   SDValue getNode(SelectionDAG &, const SDLoc &);
4874   void tryPrepareForUnpack();
4875   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4876   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4877 
4878   // The operands of the shuffle.
4879   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4880 
4881   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4882   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4883   // Bytes[I] / SystemZ::VectorBytes.
4884   SmallVector<int, SystemZ::VectorBytes> Bytes;
4885 
4886   // The type of the shuffle result.
4887   EVT VT;
4888 
4889   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4890   unsigned UnpackFromEltSize;
4891 };
4892 }
4893 
4894 // Add an extra undefined element to the shuffle.
4895 void GeneralShuffle::addUndef() {
4896   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4897   for (unsigned I = 0; I < BytesPerElement; ++I)
4898     Bytes.push_back(-1);
4899 }
4900 
4901 // Add an extra element to the shuffle, taking it from element Elem of Op.
4902 // A null Op indicates a vector input whose value will be calculated later;
4903 // there is at most one such input per shuffle and it always has the same
4904 // type as the result. Aborts and returns false if the source vector elements
4905 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4906 // LLVM they become implicitly extended, but this is rare and not optimized.
4907 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4908   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4909 
4910   // The source vector can have wider elements than the result,
4911   // either through an explicit TRUNCATE or because of type legalization.
4912   // We want the least significant part.
4913   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4914   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4915 
4916   // Return false if the source elements are smaller than their destination
4917   // elements.
4918   if (FromBytesPerElement < BytesPerElement)
4919     return false;
4920 
4921   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4922                    (FromBytesPerElement - BytesPerElement));
4923 
4924   // Look through things like shuffles and bitcasts.
4925   while (Op.getNode()) {
4926     if (Op.getOpcode() == ISD::BITCAST)
4927       Op = Op.getOperand(0);
4928     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4929       // See whether the bytes we need come from a contiguous part of one
4930       // operand.
4931       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4932       if (!getVPermMask(Op, OpBytes))
4933         break;
4934       int NewByte;
4935       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4936         break;
4937       if (NewByte < 0) {
4938         addUndef();
4939         return true;
4940       }
4941       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4942       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4943     } else if (Op.isUndef()) {
4944       addUndef();
4945       return true;
4946     } else
4947       break;
4948   }
4949 
4950   // Make sure that the source of the extraction is in Ops.
4951   unsigned OpNo = 0;
4952   for (; OpNo < Ops.size(); ++OpNo)
4953     if (Ops[OpNo] == Op)
4954       break;
4955   if (OpNo == Ops.size())
4956     Ops.push_back(Op);
4957 
4958   // Add the element to Bytes.
4959   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4960   for (unsigned I = 0; I < BytesPerElement; ++I)
4961     Bytes.push_back(Base + I);
4962 
4963   return true;
4964 }
4965 
4966 // Return SDNodes for the completed shuffle.
4967 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4968   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4969 
4970   if (Ops.size() == 0)
4971     return DAG.getUNDEF(VT);
4972 
4973   // Use a single unpack if possible as the last operation.
4974   tryPrepareForUnpack();
4975 
4976   // Make sure that there are at least two shuffle operands.
4977   if (Ops.size() == 1)
4978     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4979 
4980   // Create a tree of shuffles, deferring root node until after the loop.
4981   // Try to redistribute the undefined elements of non-root nodes so that
4982   // the non-root shuffles match something like a pack or merge, then adjust
4983   // the parent node's permute vector to compensate for the new order.
4984   // Among other things, this copes with vectors like <2 x i16> that were
4985   // padded with undefined elements during type legalization.
4986   //
4987   // In the best case this redistribution will lead to the whole tree
4988   // using packs and merges.  It should rarely be a loss in other cases.
4989   unsigned Stride = 1;
4990   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4991     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4992       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4993 
4994       // Create a mask for just these two operands.
4995       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4996       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4997         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4998         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4999         if (OpNo == I)
5000           NewBytes[J] = Byte;
5001         else if (OpNo == I + Stride)
5002           NewBytes[J] = SystemZ::VectorBytes + Byte;
5003         else
5004           NewBytes[J] = -1;
5005       }
5006       // See if it would be better to reorganize NewMask to avoid using VPERM.
5007       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5008       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5009         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5010         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5011         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5012           if (NewBytes[J] >= 0) {
5013             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5014                    "Invalid double permute");
5015             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5016           } else
5017             assert(NewBytesMap[J] < 0 && "Invalid double permute");
5018         }
5019       } else {
5020         // Just use NewBytes on the operands.
5021         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5022         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5023           if (NewBytes[J] >= 0)
5024             Bytes[J] = I * SystemZ::VectorBytes + J;
5025       }
5026     }
5027   }
5028 
5029   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5030   if (Stride > 1) {
5031     Ops[1] = Ops[Stride];
5032     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5033       if (Bytes[I] >= int(SystemZ::VectorBytes))
5034         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5035   }
5036 
5037   // Look for an instruction that can do the permute without resorting
5038   // to VPERM.
5039   unsigned OpNo0, OpNo1;
5040   SDValue Op;
5041   if (unpackWasPrepared() && Ops[1].isUndef())
5042     Op = Ops[0];
5043   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5044     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5045   else
5046     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5047 
5048   Op = insertUnpackIfPrepared(DAG, DL, Op);
5049 
5050   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5051 }
5052 
5053 #ifndef NDEBUG
5054 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5055   dbgs() << Msg.c_str() << " { ";
5056   for (unsigned i = 0; i < Bytes.size(); i++)
5057     dbgs() << Bytes[i] << " ";
5058   dbgs() << "}\n";
5059 }
5060 #endif
5061 
5062 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5063 // after all else by removing the zero vector and the effect of the unpack on
5064 // Bytes.
5065 void GeneralShuffle::tryPrepareForUnpack() {
5066   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5067   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5068     return;
5069 
5070   // Only do this if removing the zero vector reduces the depth, otherwise
5071   // the critical path will increase with the final unpack.
5072   if (Ops.size() > 2 &&
5073       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5074     return;
5075 
5076   // Find an unpack that would allow removing the zero vector from Ops.
5077   UnpackFromEltSize = 1;
5078   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5079     bool MatchUnpack = true;
5080     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5081     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5082       unsigned ToEltSize = UnpackFromEltSize * 2;
5083       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5084       if (!IsZextByte)
5085         SrcBytes.push_back(Bytes[Elt]);
5086       if (Bytes[Elt] != -1) {
5087         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5088         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5089           MatchUnpack = false;
5090           break;
5091         }
5092       }
5093     }
5094     if (MatchUnpack) {
5095       if (Ops.size() == 2) {
5096         // Don't use unpack if a single source operand needs rearrangement.
5097         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5098           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5099             UnpackFromEltSize = UINT_MAX;
5100             return;
5101           }
5102       }
5103       break;
5104     }
5105   }
5106   if (UnpackFromEltSize > 4)
5107     return;
5108 
5109   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5110              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5111              << ".\n";
5112              dumpBytes(Bytes, "Original Bytes vector:"););
5113 
5114   // Apply the unpack in reverse to the Bytes array.
5115   unsigned B = 0;
5116   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5117     Elt += UnpackFromEltSize;
5118     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5119       Bytes[B] = Bytes[Elt];
5120   }
5121   while (B < SystemZ::VectorBytes)
5122     Bytes[B++] = -1;
5123 
5124   // Remove the zero vector from Ops
5125   Ops.erase(&Ops[ZeroVecOpNo]);
5126   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5127     if (Bytes[I] >= 0) {
5128       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5129       if (OpNo > ZeroVecOpNo)
5130         Bytes[I] -= SystemZ::VectorBytes;
5131     }
5132 
5133   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5134              dbgs() << "\n";);
5135 }
5136 
5137 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5138                                                const SDLoc &DL,
5139                                                SDValue Op) {
5140   if (!unpackWasPrepared())
5141     return Op;
5142   unsigned InBits = UnpackFromEltSize * 8;
5143   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5144                                 SystemZ::VectorBits / InBits);
5145   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5146   unsigned OutBits = InBits * 2;
5147   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5148                                SystemZ::VectorBits / OutBits);
5149   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5150 }
5151 
5152 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5153 static bool isScalarToVector(SDValue Op) {
5154   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5155     if (!Op.getOperand(I).isUndef())
5156       return false;
5157   return true;
5158 }
5159 
5160 // Return a vector of type VT that contains Value in the first element.
5161 // The other elements don't matter.
5162 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5163                                    SDValue Value) {
5164   // If we have a constant, replicate it to all elements and let the
5165   // BUILD_VECTOR lowering take care of it.
5166   if (Value.getOpcode() == ISD::Constant ||
5167       Value.getOpcode() == ISD::ConstantFP) {
5168     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5169     return DAG.getBuildVector(VT, DL, Ops);
5170   }
5171   if (Value.isUndef())
5172     return DAG.getUNDEF(VT);
5173   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5174 }
5175 
5176 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5177 // element 1.  Used for cases in which replication is cheap.
5178 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5179                                  SDValue Op0, SDValue Op1) {
5180   if (Op0.isUndef()) {
5181     if (Op1.isUndef())
5182       return DAG.getUNDEF(VT);
5183     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5184   }
5185   if (Op1.isUndef())
5186     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5187   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5188                      buildScalarToVector(DAG, DL, VT, Op0),
5189                      buildScalarToVector(DAG, DL, VT, Op1));
5190 }
5191 
5192 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5193 // vector for them.
5194 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5195                           SDValue Op1) {
5196   if (Op0.isUndef() && Op1.isUndef())
5197     return DAG.getUNDEF(MVT::v2i64);
5198   // If one of the two inputs is undefined then replicate the other one,
5199   // in order to avoid using another register unnecessarily.
5200   if (Op0.isUndef())
5201     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5202   else if (Op1.isUndef())
5203     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5204   else {
5205     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5206     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5207   }
5208   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5209 }
5210 
5211 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5212 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5213 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5214 // would benefit from this representation and return it if so.
5215 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5216                                      BuildVectorSDNode *BVN) {
5217   EVT VT = BVN->getValueType(0);
5218   unsigned NumElements = VT.getVectorNumElements();
5219 
5220   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5221   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5222   // need a BUILD_VECTOR, add an additional placeholder operand for that
5223   // BUILD_VECTOR and store its operands in ResidueOps.
5224   GeneralShuffle GS(VT);
5225   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5226   bool FoundOne = false;
5227   for (unsigned I = 0; I < NumElements; ++I) {
5228     SDValue Op = BVN->getOperand(I);
5229     if (Op.getOpcode() == ISD::TRUNCATE)
5230       Op = Op.getOperand(0);
5231     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5232         Op.getOperand(1).getOpcode() == ISD::Constant) {
5233       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5234       if (!GS.add(Op.getOperand(0), Elem))
5235         return SDValue();
5236       FoundOne = true;
5237     } else if (Op.isUndef()) {
5238       GS.addUndef();
5239     } else {
5240       if (!GS.add(SDValue(), ResidueOps.size()))
5241         return SDValue();
5242       ResidueOps.push_back(BVN->getOperand(I));
5243     }
5244   }
5245 
5246   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5247   if (!FoundOne)
5248     return SDValue();
5249 
5250   // Create the BUILD_VECTOR for the remaining elements, if any.
5251   if (!ResidueOps.empty()) {
5252     while (ResidueOps.size() < NumElements)
5253       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5254     for (auto &Op : GS.Ops) {
5255       if (!Op.getNode()) {
5256         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5257         break;
5258       }
5259     }
5260   }
5261   return GS.getNode(DAG, SDLoc(BVN));
5262 }
5263 
5264 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5265   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5266     return true;
5267   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5268     return true;
5269   return false;
5270 }
5271 
5272 // Combine GPR scalar values Elems into a vector of type VT.
5273 SDValue
5274 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5275                                    SmallVectorImpl<SDValue> &Elems) const {
5276   // See whether there is a single replicated value.
5277   SDValue Single;
5278   unsigned int NumElements = Elems.size();
5279   unsigned int Count = 0;
5280   for (auto Elem : Elems) {
5281     if (!Elem.isUndef()) {
5282       if (!Single.getNode())
5283         Single = Elem;
5284       else if (Elem != Single) {
5285         Single = SDValue();
5286         break;
5287       }
5288       Count += 1;
5289     }
5290   }
5291   // There are three cases here:
5292   //
5293   // - if the only defined element is a loaded one, the best sequence
5294   //   is a replicating load.
5295   //
5296   // - otherwise, if the only defined element is an i64 value, we will
5297   //   end up with the same VLVGP sequence regardless of whether we short-cut
5298   //   for replication or fall through to the later code.
5299   //
5300   // - otherwise, if the only defined element is an i32 or smaller value,
5301   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5302   //   This is only a win if the single defined element is used more than once.
5303   //   In other cases we're better off using a single VLVGx.
5304   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5305     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5306 
5307   // If all elements are loads, use VLREP/VLEs (below).
5308   bool AllLoads = true;
5309   for (auto Elem : Elems)
5310     if (!isVectorElementLoad(Elem)) {
5311       AllLoads = false;
5312       break;
5313     }
5314 
5315   // The best way of building a v2i64 from two i64s is to use VLVGP.
5316   if (VT == MVT::v2i64 && !AllLoads)
5317     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5318 
5319   // Use a 64-bit merge high to combine two doubles.
5320   if (VT == MVT::v2f64 && !AllLoads)
5321     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5322 
5323   // Build v4f32 values directly from the FPRs:
5324   //
5325   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5326   //         V              V         VMRHF
5327   //      <ABxx>         <CDxx>
5328   //                V                 VMRHG
5329   //              <ABCD>
5330   if (VT == MVT::v4f32 && !AllLoads) {
5331     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5332     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5333     // Avoid unnecessary undefs by reusing the other operand.
5334     if (Op01.isUndef())
5335       Op01 = Op23;
5336     else if (Op23.isUndef())
5337       Op23 = Op01;
5338     // Merging identical replications is a no-op.
5339     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5340       return Op01;
5341     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5342     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5343     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5344                              DL, MVT::v2i64, Op01, Op23);
5345     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5346   }
5347 
5348   // Collect the constant terms.
5349   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5350   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5351 
5352   unsigned NumConstants = 0;
5353   for (unsigned I = 0; I < NumElements; ++I) {
5354     SDValue Elem = Elems[I];
5355     if (Elem.getOpcode() == ISD::Constant ||
5356         Elem.getOpcode() == ISD::ConstantFP) {
5357       NumConstants += 1;
5358       Constants[I] = Elem;
5359       Done[I] = true;
5360     }
5361   }
5362   // If there was at least one constant, fill in the other elements of
5363   // Constants with undefs to get a full vector constant and use that
5364   // as the starting point.
5365   SDValue Result;
5366   SDValue ReplicatedVal;
5367   if (NumConstants > 0) {
5368     for (unsigned I = 0; I < NumElements; ++I)
5369       if (!Constants[I].getNode())
5370         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5371     Result = DAG.getBuildVector(VT, DL, Constants);
5372   } else {
5373     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5374     // avoid a false dependency on any previous contents of the vector
5375     // register.
5376 
5377     // Use a VLREP if at least one element is a load. Make sure to replicate
5378     // the load with the most elements having its value.
5379     std::map<const SDNode*, unsigned> UseCounts;
5380     SDNode *LoadMaxUses = nullptr;
5381     for (unsigned I = 0; I < NumElements; ++I)
5382       if (isVectorElementLoad(Elems[I])) {
5383         SDNode *Ld = Elems[I].getNode();
5384         UseCounts[Ld]++;
5385         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5386           LoadMaxUses = Ld;
5387       }
5388     if (LoadMaxUses != nullptr) {
5389       ReplicatedVal = SDValue(LoadMaxUses, 0);
5390       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5391     } else {
5392       // Try to use VLVGP.
5393       unsigned I1 = NumElements / 2 - 1;
5394       unsigned I2 = NumElements - 1;
5395       bool Def1 = !Elems[I1].isUndef();
5396       bool Def2 = !Elems[I2].isUndef();
5397       if (Def1 || Def2) {
5398         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5399         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5400         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5401                              joinDwords(DAG, DL, Elem1, Elem2));
5402         Done[I1] = true;
5403         Done[I2] = true;
5404       } else
5405         Result = DAG.getUNDEF(VT);
5406     }
5407   }
5408 
5409   // Use VLVGx to insert the other elements.
5410   for (unsigned I = 0; I < NumElements; ++I)
5411     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5412       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5413                            DAG.getConstant(I, DL, MVT::i32));
5414   return Result;
5415 }
5416 
5417 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5418                                                  SelectionDAG &DAG) const {
5419   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5420   SDLoc DL(Op);
5421   EVT VT = Op.getValueType();
5422 
5423   if (BVN->isConstant()) {
5424     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5425       return Op;
5426 
5427     // Fall back to loading it from memory.
5428     return SDValue();
5429   }
5430 
5431   // See if we should use shuffles to construct the vector from other vectors.
5432   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5433     return Res;
5434 
5435   // Detect SCALAR_TO_VECTOR conversions.
5436   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5437     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5438 
5439   // Otherwise use buildVector to build the vector up from GPRs.
5440   unsigned NumElements = Op.getNumOperands();
5441   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5442   for (unsigned I = 0; I < NumElements; ++I)
5443     Ops[I] = Op.getOperand(I);
5444   return buildVector(DAG, DL, VT, Ops);
5445 }
5446 
5447 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5448                                                    SelectionDAG &DAG) const {
5449   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5450   SDLoc DL(Op);
5451   EVT VT = Op.getValueType();
5452   unsigned NumElements = VT.getVectorNumElements();
5453 
5454   if (VSN->isSplat()) {
5455     SDValue Op0 = Op.getOperand(0);
5456     unsigned Index = VSN->getSplatIndex();
5457     assert(Index < VT.getVectorNumElements() &&
5458            "Splat index should be defined and in first operand");
5459     // See whether the value we're splatting is directly available as a scalar.
5460     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5461         Op0.getOpcode() == ISD::BUILD_VECTOR)
5462       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5463     // Otherwise keep it as a vector-to-vector operation.
5464     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5465                        DAG.getTargetConstant(Index, DL, MVT::i32));
5466   }
5467 
5468   GeneralShuffle GS(VT);
5469   for (unsigned I = 0; I < NumElements; ++I) {
5470     int Elt = VSN->getMaskElt(I);
5471     if (Elt < 0)
5472       GS.addUndef();
5473     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5474                      unsigned(Elt) % NumElements))
5475       return SDValue();
5476   }
5477   return GS.getNode(DAG, SDLoc(VSN));
5478 }
5479 
5480 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5481                                                      SelectionDAG &DAG) const {
5482   SDLoc DL(Op);
5483   // Just insert the scalar into element 0 of an undefined vector.
5484   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5485                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5486                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5487 }
5488 
5489 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5490                                                       SelectionDAG &DAG) const {
5491   // Handle insertions of floating-point values.
5492   SDLoc DL(Op);
5493   SDValue Op0 = Op.getOperand(0);
5494   SDValue Op1 = Op.getOperand(1);
5495   SDValue Op2 = Op.getOperand(2);
5496   EVT VT = Op.getValueType();
5497 
5498   // Insertions into constant indices of a v2f64 can be done using VPDI.
5499   // However, if the inserted value is a bitcast or a constant then it's
5500   // better to use GPRs, as below.
5501   if (VT == MVT::v2f64 &&
5502       Op1.getOpcode() != ISD::BITCAST &&
5503       Op1.getOpcode() != ISD::ConstantFP &&
5504       Op2.getOpcode() == ISD::Constant) {
5505     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5506     unsigned Mask = VT.getVectorNumElements() - 1;
5507     if (Index <= Mask)
5508       return Op;
5509   }
5510 
5511   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5512   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5513   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5514   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5515                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5516                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5517   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5518 }
5519 
5520 SDValue
5521 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5522                                                SelectionDAG &DAG) const {
5523   // Handle extractions of floating-point values.
5524   SDLoc DL(Op);
5525   SDValue Op0 = Op.getOperand(0);
5526   SDValue Op1 = Op.getOperand(1);
5527   EVT VT = Op.getValueType();
5528   EVT VecVT = Op0.getValueType();
5529 
5530   // Extractions of constant indices can be done directly.
5531   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5532     uint64_t Index = CIndexN->getZExtValue();
5533     unsigned Mask = VecVT.getVectorNumElements() - 1;
5534     if (Index <= Mask)
5535       return Op;
5536   }
5537 
5538   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5539   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5540   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5541   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5542                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5543   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5544 }
5545 
5546 SDValue SystemZTargetLowering::
5547 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5548   SDValue PackedOp = Op.getOperand(0);
5549   EVT OutVT = Op.getValueType();
5550   EVT InVT = PackedOp.getValueType();
5551   unsigned ToBits = OutVT.getScalarSizeInBits();
5552   unsigned FromBits = InVT.getScalarSizeInBits();
5553   do {
5554     FromBits *= 2;
5555     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5556                                  SystemZ::VectorBits / FromBits);
5557     PackedOp =
5558       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5559   } while (FromBits != ToBits);
5560   return PackedOp;
5561 }
5562 
5563 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5564 SDValue SystemZTargetLowering::
5565 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5566   SDValue PackedOp = Op.getOperand(0);
5567   SDLoc DL(Op);
5568   EVT OutVT = Op.getValueType();
5569   EVT InVT = PackedOp.getValueType();
5570   unsigned InNumElts = InVT.getVectorNumElements();
5571   unsigned OutNumElts = OutVT.getVectorNumElements();
5572   unsigned NumInPerOut = InNumElts / OutNumElts;
5573 
5574   SDValue ZeroVec =
5575     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5576 
5577   SmallVector<int, 16> Mask(InNumElts);
5578   unsigned ZeroVecElt = InNumElts;
5579   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5580     unsigned MaskElt = PackedElt * NumInPerOut;
5581     unsigned End = MaskElt + NumInPerOut - 1;
5582     for (; MaskElt < End; MaskElt++)
5583       Mask[MaskElt] = ZeroVecElt++;
5584     Mask[MaskElt] = PackedElt;
5585   }
5586   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5587   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5588 }
5589 
5590 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5591                                           unsigned ByScalar) const {
5592   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5593   SDValue Op0 = Op.getOperand(0);
5594   SDValue Op1 = Op.getOperand(1);
5595   SDLoc DL(Op);
5596   EVT VT = Op.getValueType();
5597   unsigned ElemBitSize = VT.getScalarSizeInBits();
5598 
5599   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5600   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5601     APInt SplatBits, SplatUndef;
5602     unsigned SplatBitSize;
5603     bool HasAnyUndefs;
5604     // Check for constant splats.  Use ElemBitSize as the minimum element
5605     // width and reject splats that need wider elements.
5606     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5607                              ElemBitSize, true) &&
5608         SplatBitSize == ElemBitSize) {
5609       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5610                                       DL, MVT::i32);
5611       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5612     }
5613     // Check for variable splats.
5614     BitVector UndefElements;
5615     SDValue Splat = BVN->getSplatValue(&UndefElements);
5616     if (Splat) {
5617       // Since i32 is the smallest legal type, we either need a no-op
5618       // or a truncation.
5619       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5620       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5621     }
5622   }
5623 
5624   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5625   // and the shift amount is directly available in a GPR.
5626   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5627     if (VSN->isSplat()) {
5628       SDValue VSNOp0 = VSN->getOperand(0);
5629       unsigned Index = VSN->getSplatIndex();
5630       assert(Index < VT.getVectorNumElements() &&
5631              "Splat index should be defined and in first operand");
5632       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5633           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5634         // Since i32 is the smallest legal type, we either need a no-op
5635         // or a truncation.
5636         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5637                                     VSNOp0.getOperand(Index));
5638         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5639       }
5640     }
5641   }
5642 
5643   // Otherwise just treat the current form as legal.
5644   return Op;
5645 }
5646 
5647 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
5648                                                SelectionDAG &DAG) const {
5649   SDLoc DL(Op);
5650   MVT ResultVT = Op.getSimpleValueType();
5651   SDValue Arg = Op.getOperand(0);
5652   auto CNode = cast<ConstantSDNode>(Op.getOperand(1));
5653   unsigned Check = CNode->getZExtValue();
5654 
5655   unsigned TDCMask = 0;
5656   if (Check & fcSNan)
5657     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
5658   if (Check & fcQNan)
5659     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
5660   if (Check & fcPosInf)
5661     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
5662   if (Check & fcNegInf)
5663     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
5664   if (Check & fcPosNormal)
5665     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
5666   if (Check & fcNegNormal)
5667     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
5668   if (Check & fcPosSubnormal)
5669     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
5670   if (Check & fcNegSubnormal)
5671     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
5672   if (Check & fcPosZero)
5673     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
5674   if (Check & fcNegZero)
5675     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
5676   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
5677 
5678   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
5679   return getCCResult(DAG, Intr);
5680 }
5681 
5682 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5683                                               SelectionDAG &DAG) const {
5684   switch (Op.getOpcode()) {
5685   case ISD::FRAMEADDR:
5686     return lowerFRAMEADDR(Op, DAG);
5687   case ISD::RETURNADDR:
5688     return lowerRETURNADDR(Op, DAG);
5689   case ISD::BR_CC:
5690     return lowerBR_CC(Op, DAG);
5691   case ISD::SELECT_CC:
5692     return lowerSELECT_CC(Op, DAG);
5693   case ISD::SETCC:
5694     return lowerSETCC(Op, DAG);
5695   case ISD::STRICT_FSETCC:
5696     return lowerSTRICT_FSETCC(Op, DAG, false);
5697   case ISD::STRICT_FSETCCS:
5698     return lowerSTRICT_FSETCC(Op, DAG, true);
5699   case ISD::GlobalAddress:
5700     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5701   case ISD::GlobalTLSAddress:
5702     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5703   case ISD::BlockAddress:
5704     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5705   case ISD::JumpTable:
5706     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5707   case ISD::ConstantPool:
5708     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5709   case ISD::BITCAST:
5710     return lowerBITCAST(Op, DAG);
5711   case ISD::VASTART:
5712     return lowerVASTART(Op, DAG);
5713   case ISD::VACOPY:
5714     return lowerVACOPY(Op, DAG);
5715   case ISD::DYNAMIC_STACKALLOC:
5716     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5717   case ISD::GET_DYNAMIC_AREA_OFFSET:
5718     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5719   case ISD::SMUL_LOHI:
5720     return lowerSMUL_LOHI(Op, DAG);
5721   case ISD::UMUL_LOHI:
5722     return lowerUMUL_LOHI(Op, DAG);
5723   case ISD::SDIVREM:
5724     return lowerSDIVREM(Op, DAG);
5725   case ISD::UDIVREM:
5726     return lowerUDIVREM(Op, DAG);
5727   case ISD::SADDO:
5728   case ISD::SSUBO:
5729   case ISD::UADDO:
5730   case ISD::USUBO:
5731     return lowerXALUO(Op, DAG);
5732   case ISD::ADDCARRY:
5733   case ISD::SUBCARRY:
5734     return lowerADDSUBCARRY(Op, DAG);
5735   case ISD::OR:
5736     return lowerOR(Op, DAG);
5737   case ISD::CTPOP:
5738     return lowerCTPOP(Op, DAG);
5739   case ISD::ATOMIC_FENCE:
5740     return lowerATOMIC_FENCE(Op, DAG);
5741   case ISD::ATOMIC_SWAP:
5742     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5743   case ISD::ATOMIC_STORE:
5744     return lowerATOMIC_STORE(Op, DAG);
5745   case ISD::ATOMIC_LOAD:
5746     return lowerATOMIC_LOAD(Op, DAG);
5747   case ISD::ATOMIC_LOAD_ADD:
5748     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5749   case ISD::ATOMIC_LOAD_SUB:
5750     return lowerATOMIC_LOAD_SUB(Op, DAG);
5751   case ISD::ATOMIC_LOAD_AND:
5752     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5753   case ISD::ATOMIC_LOAD_OR:
5754     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5755   case ISD::ATOMIC_LOAD_XOR:
5756     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5757   case ISD::ATOMIC_LOAD_NAND:
5758     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5759   case ISD::ATOMIC_LOAD_MIN:
5760     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5761   case ISD::ATOMIC_LOAD_MAX:
5762     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5763   case ISD::ATOMIC_LOAD_UMIN:
5764     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5765   case ISD::ATOMIC_LOAD_UMAX:
5766     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5767   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5768     return lowerATOMIC_CMP_SWAP(Op, DAG);
5769   case ISD::STACKSAVE:
5770     return lowerSTACKSAVE(Op, DAG);
5771   case ISD::STACKRESTORE:
5772     return lowerSTACKRESTORE(Op, DAG);
5773   case ISD::PREFETCH:
5774     return lowerPREFETCH(Op, DAG);
5775   case ISD::INTRINSIC_W_CHAIN:
5776     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5777   case ISD::INTRINSIC_WO_CHAIN:
5778     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5779   case ISD::BUILD_VECTOR:
5780     return lowerBUILD_VECTOR(Op, DAG);
5781   case ISD::VECTOR_SHUFFLE:
5782     return lowerVECTOR_SHUFFLE(Op, DAG);
5783   case ISD::SCALAR_TO_VECTOR:
5784     return lowerSCALAR_TO_VECTOR(Op, DAG);
5785   case ISD::INSERT_VECTOR_ELT:
5786     return lowerINSERT_VECTOR_ELT(Op, DAG);
5787   case ISD::EXTRACT_VECTOR_ELT:
5788     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5789   case ISD::SIGN_EXTEND_VECTOR_INREG:
5790     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5791   case ISD::ZERO_EXTEND_VECTOR_INREG:
5792     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5793   case ISD::SHL:
5794     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5795   case ISD::SRL:
5796     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5797   case ISD::SRA:
5798     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5799   case ISD::IS_FPCLASS:
5800     return lowerIS_FPCLASS(Op, DAG);
5801   default:
5802     llvm_unreachable("Unexpected node to lower");
5803   }
5804 }
5805 
5806 // Lower operations with invalid operand or result types (currently used
5807 // only for 128-bit integer types).
5808 void
5809 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5810                                              SmallVectorImpl<SDValue> &Results,
5811                                              SelectionDAG &DAG) const {
5812   switch (N->getOpcode()) {
5813   case ISD::ATOMIC_LOAD: {
5814     SDLoc DL(N);
5815     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5816     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5817     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5818     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5819                                           DL, Tys, Ops, MVT::i128, MMO);
5820     Results.push_back(lowerGR128ToI128(DAG, Res));
5821     Results.push_back(Res.getValue(1));
5822     break;
5823   }
5824   case ISD::ATOMIC_STORE: {
5825     SDLoc DL(N);
5826     SDVTList Tys = DAG.getVTList(MVT::Other);
5827     SDValue Ops[] = { N->getOperand(0),
5828                       lowerI128ToGR128(DAG, N->getOperand(2)),
5829                       N->getOperand(1) };
5830     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5831     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5832                                           DL, Tys, Ops, MVT::i128, MMO);
5833     // We have to enforce sequential consistency by performing a
5834     // serialization operation after the store.
5835     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5836         AtomicOrdering::SequentiallyConsistent)
5837       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5838                                        MVT::Other, Res), 0);
5839     Results.push_back(Res);
5840     break;
5841   }
5842   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5843     SDLoc DL(N);
5844     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5845     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5846                       lowerI128ToGR128(DAG, N->getOperand(2)),
5847                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5848     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5849     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5850                                           DL, Tys, Ops, MVT::i128, MMO);
5851     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5852                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5853     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5854     Results.push_back(lowerGR128ToI128(DAG, Res));
5855     Results.push_back(Success);
5856     Results.push_back(Res.getValue(2));
5857     break;
5858   }
5859   case ISD::BITCAST: {
5860     SDValue Src = N->getOperand(0);
5861     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5862         !useSoftFloat()) {
5863       SDLoc DL(N);
5864       SDValue Lo, Hi;
5865       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5866         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5867         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5868                          DAG.getConstant(1, DL, MVT::i32));
5869         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5870                          DAG.getConstant(0, DL, MVT::i32));
5871       } else {
5872         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5873                "Unrecognized register class for f128.");
5874         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5875                                                   DL, MVT::f64, Src);
5876         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5877                                                   DL, MVT::f64, Src);
5878         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5879         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5880       }
5881       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5882     }
5883     break;
5884   }
5885   default:
5886     llvm_unreachable("Unexpected node to lower");
5887   }
5888 }
5889 
5890 void
5891 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5892                                           SmallVectorImpl<SDValue> &Results,
5893                                           SelectionDAG &DAG) const {
5894   return LowerOperationWrapper(N, Results, DAG);
5895 }
5896 
5897 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5898 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5899   switch ((SystemZISD::NodeType)Opcode) {
5900     case SystemZISD::FIRST_NUMBER: break;
5901     OPCODE(RET_FLAG);
5902     OPCODE(CALL);
5903     OPCODE(SIBCALL);
5904     OPCODE(TLS_GDCALL);
5905     OPCODE(TLS_LDCALL);
5906     OPCODE(PCREL_WRAPPER);
5907     OPCODE(PCREL_OFFSET);
5908     OPCODE(ICMP);
5909     OPCODE(FCMP);
5910     OPCODE(STRICT_FCMP);
5911     OPCODE(STRICT_FCMPS);
5912     OPCODE(TM);
5913     OPCODE(BR_CCMASK);
5914     OPCODE(SELECT_CCMASK);
5915     OPCODE(ADJDYNALLOC);
5916     OPCODE(PROBED_ALLOCA);
5917     OPCODE(POPCNT);
5918     OPCODE(SMUL_LOHI);
5919     OPCODE(UMUL_LOHI);
5920     OPCODE(SDIVREM);
5921     OPCODE(UDIVREM);
5922     OPCODE(SADDO);
5923     OPCODE(SSUBO);
5924     OPCODE(UADDO);
5925     OPCODE(USUBO);
5926     OPCODE(ADDCARRY);
5927     OPCODE(SUBCARRY);
5928     OPCODE(GET_CCMASK);
5929     OPCODE(MVC);
5930     OPCODE(NC);
5931     OPCODE(OC);
5932     OPCODE(XC);
5933     OPCODE(CLC);
5934     OPCODE(MEMSET_MVC);
5935     OPCODE(STPCPY);
5936     OPCODE(STRCMP);
5937     OPCODE(SEARCH_STRING);
5938     OPCODE(IPM);
5939     OPCODE(MEMBARRIER);
5940     OPCODE(TBEGIN);
5941     OPCODE(TBEGIN_NOFLOAT);
5942     OPCODE(TEND);
5943     OPCODE(BYTE_MASK);
5944     OPCODE(ROTATE_MASK);
5945     OPCODE(REPLICATE);
5946     OPCODE(JOIN_DWORDS);
5947     OPCODE(SPLAT);
5948     OPCODE(MERGE_HIGH);
5949     OPCODE(MERGE_LOW);
5950     OPCODE(SHL_DOUBLE);
5951     OPCODE(PERMUTE_DWORDS);
5952     OPCODE(PERMUTE);
5953     OPCODE(PACK);
5954     OPCODE(PACKS_CC);
5955     OPCODE(PACKLS_CC);
5956     OPCODE(UNPACK_HIGH);
5957     OPCODE(UNPACKL_HIGH);
5958     OPCODE(UNPACK_LOW);
5959     OPCODE(UNPACKL_LOW);
5960     OPCODE(VSHL_BY_SCALAR);
5961     OPCODE(VSRL_BY_SCALAR);
5962     OPCODE(VSRA_BY_SCALAR);
5963     OPCODE(VSUM);
5964     OPCODE(VICMPE);
5965     OPCODE(VICMPH);
5966     OPCODE(VICMPHL);
5967     OPCODE(VICMPES);
5968     OPCODE(VICMPHS);
5969     OPCODE(VICMPHLS);
5970     OPCODE(VFCMPE);
5971     OPCODE(STRICT_VFCMPE);
5972     OPCODE(STRICT_VFCMPES);
5973     OPCODE(VFCMPH);
5974     OPCODE(STRICT_VFCMPH);
5975     OPCODE(STRICT_VFCMPHS);
5976     OPCODE(VFCMPHE);
5977     OPCODE(STRICT_VFCMPHE);
5978     OPCODE(STRICT_VFCMPHES);
5979     OPCODE(VFCMPES);
5980     OPCODE(VFCMPHS);
5981     OPCODE(VFCMPHES);
5982     OPCODE(VFTCI);
5983     OPCODE(VEXTEND);
5984     OPCODE(STRICT_VEXTEND);
5985     OPCODE(VROUND);
5986     OPCODE(STRICT_VROUND);
5987     OPCODE(VTM);
5988     OPCODE(VFAE_CC);
5989     OPCODE(VFAEZ_CC);
5990     OPCODE(VFEE_CC);
5991     OPCODE(VFEEZ_CC);
5992     OPCODE(VFENE_CC);
5993     OPCODE(VFENEZ_CC);
5994     OPCODE(VISTR_CC);
5995     OPCODE(VSTRC_CC);
5996     OPCODE(VSTRCZ_CC);
5997     OPCODE(VSTRS_CC);
5998     OPCODE(VSTRSZ_CC);
5999     OPCODE(TDC);
6000     OPCODE(ATOMIC_SWAPW);
6001     OPCODE(ATOMIC_LOADW_ADD);
6002     OPCODE(ATOMIC_LOADW_SUB);
6003     OPCODE(ATOMIC_LOADW_AND);
6004     OPCODE(ATOMIC_LOADW_OR);
6005     OPCODE(ATOMIC_LOADW_XOR);
6006     OPCODE(ATOMIC_LOADW_NAND);
6007     OPCODE(ATOMIC_LOADW_MIN);
6008     OPCODE(ATOMIC_LOADW_MAX);
6009     OPCODE(ATOMIC_LOADW_UMIN);
6010     OPCODE(ATOMIC_LOADW_UMAX);
6011     OPCODE(ATOMIC_CMP_SWAPW);
6012     OPCODE(ATOMIC_CMP_SWAP);
6013     OPCODE(ATOMIC_LOAD_128);
6014     OPCODE(ATOMIC_STORE_128);
6015     OPCODE(ATOMIC_CMP_SWAP_128);
6016     OPCODE(LRV);
6017     OPCODE(STRV);
6018     OPCODE(VLER);
6019     OPCODE(VSTER);
6020     OPCODE(PREFETCH);
6021   }
6022   return nullptr;
6023 #undef OPCODE
6024 }
6025 
6026 // Return true if VT is a vector whose elements are a whole number of bytes
6027 // in width. Also check for presence of vector support.
6028 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6029   if (!Subtarget.hasVector())
6030     return false;
6031 
6032   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6033 }
6034 
6035 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6036 // producing a result of type ResVT.  Op is a possibly bitcast version
6037 // of the input vector and Index is the index (based on type VecVT) that
6038 // should be extracted.  Return the new extraction if a simplification
6039 // was possible or if Force is true.
6040 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6041                                               EVT VecVT, SDValue Op,
6042                                               unsigned Index,
6043                                               DAGCombinerInfo &DCI,
6044                                               bool Force) const {
6045   SelectionDAG &DAG = DCI.DAG;
6046 
6047   // The number of bytes being extracted.
6048   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6049 
6050   for (;;) {
6051     unsigned Opcode = Op.getOpcode();
6052     if (Opcode == ISD::BITCAST)
6053       // Look through bitcasts.
6054       Op = Op.getOperand(0);
6055     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6056              canTreatAsByteVector(Op.getValueType())) {
6057       // Get a VPERM-like permute mask and see whether the bytes covered
6058       // by the extracted element are a contiguous sequence from one
6059       // source operand.
6060       SmallVector<int, SystemZ::VectorBytes> Bytes;
6061       if (!getVPermMask(Op, Bytes))
6062         break;
6063       int First;
6064       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6065                            BytesPerElement, First))
6066         break;
6067       if (First < 0)
6068         return DAG.getUNDEF(ResVT);
6069       // Make sure the contiguous sequence starts at a multiple of the
6070       // original element size.
6071       unsigned Byte = unsigned(First) % Bytes.size();
6072       if (Byte % BytesPerElement != 0)
6073         break;
6074       // We can get the extracted value directly from an input.
6075       Index = Byte / BytesPerElement;
6076       Op = Op.getOperand(unsigned(First) / Bytes.size());
6077       Force = true;
6078     } else if (Opcode == ISD::BUILD_VECTOR &&
6079                canTreatAsByteVector(Op.getValueType())) {
6080       // We can only optimize this case if the BUILD_VECTOR elements are
6081       // at least as wide as the extracted value.
6082       EVT OpVT = Op.getValueType();
6083       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6084       if (OpBytesPerElement < BytesPerElement)
6085         break;
6086       // Make sure that the least-significant bit of the extracted value
6087       // is the least significant bit of an input.
6088       unsigned End = (Index + 1) * BytesPerElement;
6089       if (End % OpBytesPerElement != 0)
6090         break;
6091       // We're extracting the low part of one operand of the BUILD_VECTOR.
6092       Op = Op.getOperand(End / OpBytesPerElement - 1);
6093       if (!Op.getValueType().isInteger()) {
6094         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6095         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6096         DCI.AddToWorklist(Op.getNode());
6097       }
6098       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6099       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6100       if (VT != ResVT) {
6101         DCI.AddToWorklist(Op.getNode());
6102         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6103       }
6104       return Op;
6105     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6106                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6107                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6108                canTreatAsByteVector(Op.getValueType()) &&
6109                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6110       // Make sure that only the unextended bits are significant.
6111       EVT ExtVT = Op.getValueType();
6112       EVT OpVT = Op.getOperand(0).getValueType();
6113       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6114       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6115       unsigned Byte = Index * BytesPerElement;
6116       unsigned SubByte = Byte % ExtBytesPerElement;
6117       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6118       if (SubByte < MinSubByte ||
6119           SubByte + BytesPerElement > ExtBytesPerElement)
6120         break;
6121       // Get the byte offset of the unextended element
6122       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6123       // ...then add the byte offset relative to that element.
6124       Byte += SubByte - MinSubByte;
6125       if (Byte % BytesPerElement != 0)
6126         break;
6127       Op = Op.getOperand(0);
6128       Index = Byte / BytesPerElement;
6129       Force = true;
6130     } else
6131       break;
6132   }
6133   if (Force) {
6134     if (Op.getValueType() != VecVT) {
6135       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6136       DCI.AddToWorklist(Op.getNode());
6137     }
6138     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6139                        DAG.getConstant(Index, DL, MVT::i32));
6140   }
6141   return SDValue();
6142 }
6143 
6144 // Optimize vector operations in scalar value Op on the basis that Op
6145 // is truncated to TruncVT.
6146 SDValue SystemZTargetLowering::combineTruncateExtract(
6147     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6148   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6149   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6150   // of type TruncVT.
6151   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6152       TruncVT.getSizeInBits() % 8 == 0) {
6153     SDValue Vec = Op.getOperand(0);
6154     EVT VecVT = Vec.getValueType();
6155     if (canTreatAsByteVector(VecVT)) {
6156       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6157         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6158         unsigned TruncBytes = TruncVT.getStoreSize();
6159         if (BytesPerElement % TruncBytes == 0) {
6160           // Calculate the value of Y' in the above description.  We are
6161           // splitting the original elements into Scale equal-sized pieces
6162           // and for truncation purposes want the last (least-significant)
6163           // of these pieces for IndexN.  This is easiest to do by calculating
6164           // the start index of the following element and then subtracting 1.
6165           unsigned Scale = BytesPerElement / TruncBytes;
6166           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6167 
6168           // Defer the creation of the bitcast from X to combineExtract,
6169           // which might be able to optimize the extraction.
6170           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6171                                    VecVT.getStoreSize() / TruncBytes);
6172           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6173           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6174         }
6175       }
6176     }
6177   }
6178   return SDValue();
6179 }
6180 
6181 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6182     SDNode *N, DAGCombinerInfo &DCI) const {
6183   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6184   SelectionDAG &DAG = DCI.DAG;
6185   SDValue N0 = N->getOperand(0);
6186   EVT VT = N->getValueType(0);
6187   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6188     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6189     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6190     if (TrueOp && FalseOp) {
6191       SDLoc DL(N0);
6192       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6193                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6194                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6195       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6196       // If N0 has multiple uses, change other uses as well.
6197       if (!N0.hasOneUse()) {
6198         SDValue TruncSelect =
6199           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6200         DCI.CombineTo(N0.getNode(), TruncSelect);
6201       }
6202       return NewSelect;
6203     }
6204   }
6205   return SDValue();
6206 }
6207 
6208 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6209     SDNode *N, DAGCombinerInfo &DCI) const {
6210   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6211   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6212   // into (select_cc LHS, RHS, -1, 0, COND)
6213   SelectionDAG &DAG = DCI.DAG;
6214   SDValue N0 = N->getOperand(0);
6215   EVT VT = N->getValueType(0);
6216   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6217   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6218     N0 = N0.getOperand(0);
6219   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6220     SDLoc DL(N0);
6221     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6222                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6223                       N0.getOperand(2) };
6224     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6225   }
6226   return SDValue();
6227 }
6228 
6229 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6230     SDNode *N, DAGCombinerInfo &DCI) const {
6231   // Convert (sext (ashr (shl X, C1), C2)) to
6232   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6233   // cheap as narrower ones.
6234   SelectionDAG &DAG = DCI.DAG;
6235   SDValue N0 = N->getOperand(0);
6236   EVT VT = N->getValueType(0);
6237   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6238     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6239     SDValue Inner = N0.getOperand(0);
6240     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6241       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6242         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6243         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6244         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6245         EVT ShiftVT = N0.getOperand(1).getValueType();
6246         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6247                                   Inner.getOperand(0));
6248         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6249                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6250                                                   ShiftVT));
6251         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6252                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6253       }
6254     }
6255   }
6256   return SDValue();
6257 }
6258 
6259 SDValue SystemZTargetLowering::combineMERGE(
6260     SDNode *N, DAGCombinerInfo &DCI) const {
6261   SelectionDAG &DAG = DCI.DAG;
6262   unsigned Opcode = N->getOpcode();
6263   SDValue Op0 = N->getOperand(0);
6264   SDValue Op1 = N->getOperand(1);
6265   if (Op0.getOpcode() == ISD::BITCAST)
6266     Op0 = Op0.getOperand(0);
6267   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6268     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6269     // for v4f32.
6270     if (Op1 == N->getOperand(0))
6271       return Op1;
6272     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6273     EVT VT = Op1.getValueType();
6274     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6275     if (ElemBytes <= 4) {
6276       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6277                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6278       EVT InVT = VT.changeVectorElementTypeToInteger();
6279       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6280                                    SystemZ::VectorBytes / ElemBytes / 2);
6281       if (VT != InVT) {
6282         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6283         DCI.AddToWorklist(Op1.getNode());
6284       }
6285       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6286       DCI.AddToWorklist(Op.getNode());
6287       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6288     }
6289   }
6290   return SDValue();
6291 }
6292 
6293 SDValue SystemZTargetLowering::combineLOAD(
6294     SDNode *N, DAGCombinerInfo &DCI) const {
6295   SelectionDAG &DAG = DCI.DAG;
6296   EVT LdVT = N->getValueType(0);
6297   if (LdVT.isVector() || LdVT.isInteger())
6298     return SDValue();
6299   // Transform a scalar load that is REPLICATEd as well as having other
6300   // use(s) to the form where the other use(s) use the first element of the
6301   // REPLICATE instead of the load. Otherwise instruction selection will not
6302   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6303   // point loads.
6304 
6305   SDValue Replicate;
6306   SmallVector<SDNode*, 8> OtherUses;
6307   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6308        UI != UE; ++UI) {
6309     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6310       if (Replicate)
6311         return SDValue(); // Should never happen
6312       Replicate = SDValue(*UI, 0);
6313     }
6314     else if (UI.getUse().getResNo() == 0)
6315       OtherUses.push_back(*UI);
6316   }
6317   if (!Replicate || OtherUses.empty())
6318     return SDValue();
6319 
6320   SDLoc DL(N);
6321   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6322                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6323   // Update uses of the loaded Value while preserving old chains.
6324   for (SDNode *U : OtherUses) {
6325     SmallVector<SDValue, 8> Ops;
6326     for (SDValue Op : U->ops())
6327       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6328     DAG.UpdateNodeOperands(U, Ops);
6329   }
6330   return SDValue(N, 0);
6331 }
6332 
6333 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6334   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6335     return true;
6336   if (Subtarget.hasVectorEnhancements2())
6337     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6338       return true;
6339   return false;
6340 }
6341 
6342 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6343   if (!VT.isVector() || !VT.isSimple() ||
6344       VT.getSizeInBits() != 128 ||
6345       VT.getScalarSizeInBits() % 8 != 0)
6346     return false;
6347 
6348   unsigned NumElts = VT.getVectorNumElements();
6349   for (unsigned i = 0; i < NumElts; ++i) {
6350     if (M[i] < 0) continue; // ignore UNDEF indices
6351     if ((unsigned) M[i] != NumElts - 1 - i)
6352       return false;
6353   }
6354 
6355   return true;
6356 }
6357 
6358 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6359   for (auto *U : StoredVal->uses()) {
6360     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6361       EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6362       if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6363         continue;
6364     } else if (isa<BuildVectorSDNode>(U)) {
6365       SDValue BuildVector = SDValue(U, 0);
6366       if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6367           isOnlyUsedByStores(BuildVector, DAG))
6368         continue;
6369     }
6370     return false;
6371   }
6372   return true;
6373 }
6374 
6375 SDValue SystemZTargetLowering::combineSTORE(
6376     SDNode *N, DAGCombinerInfo &DCI) const {
6377   SelectionDAG &DAG = DCI.DAG;
6378   auto *SN = cast<StoreSDNode>(N);
6379   auto &Op1 = N->getOperand(1);
6380   EVT MemVT = SN->getMemoryVT();
6381   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6382   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6383   // If X has wider elements then convert it to:
6384   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6385   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6386     if (SDValue Value =
6387             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6388       DCI.AddToWorklist(Value.getNode());
6389 
6390       // Rewrite the store with the new form of stored value.
6391       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6392                                SN->getBasePtr(), SN->getMemoryVT(),
6393                                SN->getMemOperand());
6394     }
6395   }
6396   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6397   if (!SN->isTruncatingStore() &&
6398       Op1.getOpcode() == ISD::BSWAP &&
6399       Op1.getNode()->hasOneUse() &&
6400       canLoadStoreByteSwapped(Op1.getValueType())) {
6401 
6402       SDValue BSwapOp = Op1.getOperand(0);
6403 
6404       if (BSwapOp.getValueType() == MVT::i16)
6405         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6406 
6407       SDValue Ops[] = {
6408         N->getOperand(0), BSwapOp, N->getOperand(2)
6409       };
6410 
6411       return
6412         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6413                                 Ops, MemVT, SN->getMemOperand());
6414     }
6415   // Combine STORE (element-swap) into VSTER
6416   if (!SN->isTruncatingStore() &&
6417       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6418       Op1.getNode()->hasOneUse() &&
6419       Subtarget.hasVectorEnhancements2()) {
6420     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6421     ArrayRef<int> ShuffleMask = SVN->getMask();
6422     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6423       SDValue Ops[] = {
6424         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6425       };
6426 
6427       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6428                                      DAG.getVTList(MVT::Other),
6429                                      Ops, MemVT, SN->getMemOperand());
6430     }
6431   }
6432 
6433   // Replicate a reg or immediate with VREP instead of scalar multiply or
6434   // immediate load. It seems best to do this during the first DAGCombine as
6435   // it is straight-forward to handle the zero-extend node in the initial
6436   // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
6437   // extracting an i16 element from a v16i8 vector).
6438   if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
6439       isOnlyUsedByStores(Op1, DAG)) {
6440     SDValue Word = SDValue();
6441     EVT WordVT;
6442 
6443     // Find a replicated immediate and return it if found in Word and its
6444     // type in WordVT.
6445     auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
6446       // Some constants are better handled with a scalar store.
6447       if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
6448           isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
6449         return;
6450       SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
6451       if (VCI.isVectorConstantLegal(Subtarget) &&
6452           VCI.Opcode == SystemZISD::REPLICATE) {
6453         Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
6454         WordVT = VCI.VecVT.getScalarType();
6455       }
6456     };
6457 
6458     // Find a replicated register and return it if found in Word and its type
6459     // in WordVT.
6460     auto FindReplicatedReg = [&](SDValue MulOp) {
6461       EVT MulVT = MulOp.getValueType();
6462       if (MulOp->getOpcode() == ISD::MUL &&
6463           (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
6464         // Find a zero extended value and its type.
6465         SDValue LHS = MulOp->getOperand(0);
6466         if (LHS->getOpcode() == ISD::ZERO_EXTEND)
6467           WordVT = LHS->getOperand(0).getValueType();
6468         else if (LHS->getOpcode() == ISD::AssertZext)
6469           WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
6470         else
6471           return;
6472         // Find a replicating constant, e.g. 0x00010001.
6473         if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
6474           SystemZVectorConstantInfo VCI(
6475               APInt(MulVT.getSizeInBits(), C->getZExtValue()));
6476           if (VCI.isVectorConstantLegal(Subtarget) &&
6477               VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
6478               WordVT == VCI.VecVT.getScalarType())
6479             Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
6480         }
6481       }
6482     };
6483 
6484     if (isa<BuildVectorSDNode>(Op1) &&
6485         DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
6486       SDValue SplatVal = Op1->getOperand(0);
6487       if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
6488         FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
6489       else
6490         FindReplicatedReg(SplatVal);
6491     } else {
6492       if (auto *C = dyn_cast<ConstantSDNode>(Op1))
6493         FindReplicatedImm(C, MemVT.getStoreSize());
6494       else
6495         FindReplicatedReg(Op1);
6496     }
6497 
6498     if (Word != SDValue()) {
6499       assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
6500              "Bad type handling");
6501       unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
6502       EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
6503       SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
6504       return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
6505                           SN->getBasePtr(), SN->getMemOperand());
6506     }
6507   }
6508 
6509   return SDValue();
6510 }
6511 
6512 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6513     SDNode *N, DAGCombinerInfo &DCI) const {
6514   SelectionDAG &DAG = DCI.DAG;
6515   // Combine element-swap (LOAD) into VLER
6516   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6517       N->getOperand(0).hasOneUse() &&
6518       Subtarget.hasVectorEnhancements2()) {
6519     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6520     ArrayRef<int> ShuffleMask = SVN->getMask();
6521     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6522       SDValue Load = N->getOperand(0);
6523       LoadSDNode *LD = cast<LoadSDNode>(Load);
6524 
6525       // Create the element-swapping load.
6526       SDValue Ops[] = {
6527         LD->getChain(),    // Chain
6528         LD->getBasePtr()   // Ptr
6529       };
6530       SDValue ESLoad =
6531         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6532                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6533                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6534 
6535       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6536       // by the load dead.
6537       DCI.CombineTo(N, ESLoad);
6538 
6539       // Next, combine the load away, we give it a bogus result value but a real
6540       // chain result.  The result value is dead because the shuffle is dead.
6541       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6542 
6543       // Return N so it doesn't get rechecked!
6544       return SDValue(N, 0);
6545     }
6546   }
6547 
6548   return SDValue();
6549 }
6550 
6551 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6552     SDNode *N, DAGCombinerInfo &DCI) const {
6553   SelectionDAG &DAG = DCI.DAG;
6554 
6555   if (!Subtarget.hasVector())
6556     return SDValue();
6557 
6558   // Look through bitcasts that retain the number of vector elements.
6559   SDValue Op = N->getOperand(0);
6560   if (Op.getOpcode() == ISD::BITCAST &&
6561       Op.getValueType().isVector() &&
6562       Op.getOperand(0).getValueType().isVector() &&
6563       Op.getValueType().getVectorNumElements() ==
6564       Op.getOperand(0).getValueType().getVectorNumElements())
6565     Op = Op.getOperand(0);
6566 
6567   // Pull BSWAP out of a vector extraction.
6568   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6569     EVT VecVT = Op.getValueType();
6570     EVT EltVT = VecVT.getVectorElementType();
6571     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6572                      Op.getOperand(0), N->getOperand(1));
6573     DCI.AddToWorklist(Op.getNode());
6574     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6575     if (EltVT != N->getValueType(0)) {
6576       DCI.AddToWorklist(Op.getNode());
6577       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6578     }
6579     return Op;
6580   }
6581 
6582   // Try to simplify a vector extraction.
6583   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6584     SDValue Op0 = N->getOperand(0);
6585     EVT VecVT = Op0.getValueType();
6586     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6587                           IndexN->getZExtValue(), DCI, false);
6588   }
6589   return SDValue();
6590 }
6591 
6592 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6593     SDNode *N, DAGCombinerInfo &DCI) const {
6594   SelectionDAG &DAG = DCI.DAG;
6595   // (join_dwords X, X) == (replicate X)
6596   if (N->getOperand(0) == N->getOperand(1))
6597     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6598                        N->getOperand(0));
6599   return SDValue();
6600 }
6601 
6602 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6603   SDValue Chain1 = N1->getOperand(0);
6604   SDValue Chain2 = N2->getOperand(0);
6605 
6606   // Trivial case: both nodes take the same chain.
6607   if (Chain1 == Chain2)
6608     return Chain1;
6609 
6610   // FIXME - we could handle more complex cases via TokenFactor,
6611   // assuming we can verify that this would not create a cycle.
6612   return SDValue();
6613 }
6614 
6615 SDValue SystemZTargetLowering::combineFP_ROUND(
6616     SDNode *N, DAGCombinerInfo &DCI) const {
6617 
6618   if (!Subtarget.hasVector())
6619     return SDValue();
6620 
6621   // (fpround (extract_vector_elt X 0))
6622   // (fpround (extract_vector_elt X 1)) ->
6623   // (extract_vector_elt (VROUND X) 0)
6624   // (extract_vector_elt (VROUND X) 2)
6625   //
6626   // This is a special case since the target doesn't really support v2f32s.
6627   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6628   SelectionDAG &DAG = DCI.DAG;
6629   SDValue Op0 = N->getOperand(OpNo);
6630   if (N->getValueType(0) == MVT::f32 &&
6631       Op0.hasOneUse() &&
6632       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6633       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6634       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6635       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6636     SDValue Vec = Op0.getOperand(0);
6637     for (auto *U : Vec->uses()) {
6638       if (U != Op0.getNode() &&
6639           U->hasOneUse() &&
6640           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6641           U->getOperand(0) == Vec &&
6642           U->getOperand(1).getOpcode() == ISD::Constant &&
6643           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6644         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6645         if (OtherRound.getOpcode() == N->getOpcode() &&
6646             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6647             OtherRound.getValueType() == MVT::f32) {
6648           SDValue VRound, Chain;
6649           if (N->isStrictFPOpcode()) {
6650             Chain = MergeInputChains(N, OtherRound.getNode());
6651             if (!Chain)
6652               continue;
6653             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6654                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6655             Chain = VRound.getValue(1);
6656           } else
6657             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6658                                  MVT::v4f32, Vec);
6659           DCI.AddToWorklist(VRound.getNode());
6660           SDValue Extract1 =
6661             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6662                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6663           DCI.AddToWorklist(Extract1.getNode());
6664           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6665           if (Chain)
6666             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6667           SDValue Extract0 =
6668             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6669                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6670           if (Chain)
6671             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6672                                N->getVTList(), Extract0, Chain);
6673           return Extract0;
6674         }
6675       }
6676     }
6677   }
6678   return SDValue();
6679 }
6680 
6681 SDValue SystemZTargetLowering::combineFP_EXTEND(
6682     SDNode *N, DAGCombinerInfo &DCI) const {
6683 
6684   if (!Subtarget.hasVector())
6685     return SDValue();
6686 
6687   // (fpextend (extract_vector_elt X 0))
6688   // (fpextend (extract_vector_elt X 2)) ->
6689   // (extract_vector_elt (VEXTEND X) 0)
6690   // (extract_vector_elt (VEXTEND X) 1)
6691   //
6692   // This is a special case since the target doesn't really support v2f32s.
6693   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6694   SelectionDAG &DAG = DCI.DAG;
6695   SDValue Op0 = N->getOperand(OpNo);
6696   if (N->getValueType(0) == MVT::f64 &&
6697       Op0.hasOneUse() &&
6698       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6699       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6700       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6701       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6702     SDValue Vec = Op0.getOperand(0);
6703     for (auto *U : Vec->uses()) {
6704       if (U != Op0.getNode() &&
6705           U->hasOneUse() &&
6706           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6707           U->getOperand(0) == Vec &&
6708           U->getOperand(1).getOpcode() == ISD::Constant &&
6709           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6710         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6711         if (OtherExtend.getOpcode() == N->getOpcode() &&
6712             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6713             OtherExtend.getValueType() == MVT::f64) {
6714           SDValue VExtend, Chain;
6715           if (N->isStrictFPOpcode()) {
6716             Chain = MergeInputChains(N, OtherExtend.getNode());
6717             if (!Chain)
6718               continue;
6719             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6720                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6721             Chain = VExtend.getValue(1);
6722           } else
6723             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6724                                   MVT::v2f64, Vec);
6725           DCI.AddToWorklist(VExtend.getNode());
6726           SDValue Extract1 =
6727             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6728                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6729           DCI.AddToWorklist(Extract1.getNode());
6730           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6731           if (Chain)
6732             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6733           SDValue Extract0 =
6734             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6735                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6736           if (Chain)
6737             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6738                                N->getVTList(), Extract0, Chain);
6739           return Extract0;
6740         }
6741       }
6742     }
6743   }
6744   return SDValue();
6745 }
6746 
6747 SDValue SystemZTargetLowering::combineINT_TO_FP(
6748     SDNode *N, DAGCombinerInfo &DCI) const {
6749   if (DCI.Level != BeforeLegalizeTypes)
6750     return SDValue();
6751   SelectionDAG &DAG = DCI.DAG;
6752   LLVMContext &Ctx = *DAG.getContext();
6753   unsigned Opcode = N->getOpcode();
6754   EVT OutVT = N->getValueType(0);
6755   Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
6756   SDValue Op = N->getOperand(0);
6757   unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
6758   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6759 
6760   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6761   // v2f64 = uint_to_fp v2i16
6762   // =>
6763   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6764   if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
6765       OutScalarBits <= 64) {
6766     unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
6767     EVT ExtVT = EVT::getVectorVT(
6768         Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
6769     unsigned ExtOpcode =
6770         (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6771     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6772     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6773   }
6774   return SDValue();
6775 }
6776 
6777 SDValue SystemZTargetLowering::combineBSWAP(
6778     SDNode *N, DAGCombinerInfo &DCI) const {
6779   SelectionDAG &DAG = DCI.DAG;
6780   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6781   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6782       N->getOperand(0).hasOneUse() &&
6783       canLoadStoreByteSwapped(N->getValueType(0))) {
6784       SDValue Load = N->getOperand(0);
6785       LoadSDNode *LD = cast<LoadSDNode>(Load);
6786 
6787       // Create the byte-swapping load.
6788       SDValue Ops[] = {
6789         LD->getChain(),    // Chain
6790         LD->getBasePtr()   // Ptr
6791       };
6792       EVT LoadVT = N->getValueType(0);
6793       if (LoadVT == MVT::i16)
6794         LoadVT = MVT::i32;
6795       SDValue BSLoad =
6796         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6797                                 DAG.getVTList(LoadVT, MVT::Other),
6798                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6799 
6800       // If this is an i16 load, insert the truncate.
6801       SDValue ResVal = BSLoad;
6802       if (N->getValueType(0) == MVT::i16)
6803         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6804 
6805       // First, combine the bswap away.  This makes the value produced by the
6806       // load dead.
6807       DCI.CombineTo(N, ResVal);
6808 
6809       // Next, combine the load away, we give it a bogus result value but a real
6810       // chain result.  The result value is dead because the bswap is dead.
6811       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6812 
6813       // Return N so it doesn't get rechecked!
6814       return SDValue(N, 0);
6815     }
6816 
6817   // Look through bitcasts that retain the number of vector elements.
6818   SDValue Op = N->getOperand(0);
6819   if (Op.getOpcode() == ISD::BITCAST &&
6820       Op.getValueType().isVector() &&
6821       Op.getOperand(0).getValueType().isVector() &&
6822       Op.getValueType().getVectorNumElements() ==
6823       Op.getOperand(0).getValueType().getVectorNumElements())
6824     Op = Op.getOperand(0);
6825 
6826   // Push BSWAP into a vector insertion if at least one side then simplifies.
6827   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6828     SDValue Vec = Op.getOperand(0);
6829     SDValue Elt = Op.getOperand(1);
6830     SDValue Idx = Op.getOperand(2);
6831 
6832     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6833         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6834         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6835         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6836         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6837          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6838       EVT VecVT = N->getValueType(0);
6839       EVT EltVT = N->getValueType(0).getVectorElementType();
6840       if (VecVT != Vec.getValueType()) {
6841         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6842         DCI.AddToWorklist(Vec.getNode());
6843       }
6844       if (EltVT != Elt.getValueType()) {
6845         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6846         DCI.AddToWorklist(Elt.getNode());
6847       }
6848       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6849       DCI.AddToWorklist(Vec.getNode());
6850       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6851       DCI.AddToWorklist(Elt.getNode());
6852       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6853                          Vec, Elt, Idx);
6854     }
6855   }
6856 
6857   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6858   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6859   if (SV && Op.hasOneUse()) {
6860     SDValue Op0 = Op.getOperand(0);
6861     SDValue Op1 = Op.getOperand(1);
6862 
6863     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6864         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6865         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6866         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6867       EVT VecVT = N->getValueType(0);
6868       if (VecVT != Op0.getValueType()) {
6869         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6870         DCI.AddToWorklist(Op0.getNode());
6871       }
6872       if (VecVT != Op1.getValueType()) {
6873         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6874         DCI.AddToWorklist(Op1.getNode());
6875       }
6876       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6877       DCI.AddToWorklist(Op0.getNode());
6878       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6879       DCI.AddToWorklist(Op1.getNode());
6880       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6881     }
6882   }
6883 
6884   return SDValue();
6885 }
6886 
6887 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6888   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6889   // set by the CCReg instruction using the CCValid / CCMask masks,
6890   // If the CCReg instruction is itself a ICMP testing the condition
6891   // code set by some other instruction, see whether we can directly
6892   // use that condition code.
6893 
6894   // Verify that we have an ICMP against some constant.
6895   if (CCValid != SystemZ::CCMASK_ICMP)
6896     return false;
6897   auto *ICmp = CCReg.getNode();
6898   if (ICmp->getOpcode() != SystemZISD::ICMP)
6899     return false;
6900   auto *CompareLHS = ICmp->getOperand(0).getNode();
6901   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6902   if (!CompareRHS)
6903     return false;
6904 
6905   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6906   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6907     // Verify that we have an appropriate mask for a EQ or NE comparison.
6908     bool Invert = false;
6909     if (CCMask == SystemZ::CCMASK_CMP_NE)
6910       Invert = !Invert;
6911     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6912       return false;
6913 
6914     // Verify that the ICMP compares against one of select values.
6915     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6916     if (!TrueVal)
6917       return false;
6918     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6919     if (!FalseVal)
6920       return false;
6921     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6922       Invert = !Invert;
6923     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6924       return false;
6925 
6926     // Compute the effective CC mask for the new branch or select.
6927     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6928     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6929     if (!NewCCValid || !NewCCMask)
6930       return false;
6931     CCValid = NewCCValid->getZExtValue();
6932     CCMask = NewCCMask->getZExtValue();
6933     if (Invert)
6934       CCMask ^= CCValid;
6935 
6936     // Return the updated CCReg link.
6937     CCReg = CompareLHS->getOperand(4);
6938     return true;
6939   }
6940 
6941   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6942   if (CompareLHS->getOpcode() == ISD::SRA) {
6943     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6944     if (!SRACount || SRACount->getZExtValue() != 30)
6945       return false;
6946     auto *SHL = CompareLHS->getOperand(0).getNode();
6947     if (SHL->getOpcode() != ISD::SHL)
6948       return false;
6949     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6950     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6951       return false;
6952     auto *IPM = SHL->getOperand(0).getNode();
6953     if (IPM->getOpcode() != SystemZISD::IPM)
6954       return false;
6955 
6956     // Avoid introducing CC spills (because SRA would clobber CC).
6957     if (!CompareLHS->hasOneUse())
6958       return false;
6959     // Verify that the ICMP compares against zero.
6960     if (CompareRHS->getZExtValue() != 0)
6961       return false;
6962 
6963     // Compute the effective CC mask for the new branch or select.
6964     CCMask = SystemZ::reverseCCMask(CCMask);
6965 
6966     // Return the updated CCReg link.
6967     CCReg = IPM->getOperand(0);
6968     return true;
6969   }
6970 
6971   return false;
6972 }
6973 
6974 SDValue SystemZTargetLowering::combineBR_CCMASK(
6975     SDNode *N, DAGCombinerInfo &DCI) const {
6976   SelectionDAG &DAG = DCI.DAG;
6977 
6978   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6979   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6980   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6981   if (!CCValid || !CCMask)
6982     return SDValue();
6983 
6984   int CCValidVal = CCValid->getZExtValue();
6985   int CCMaskVal = CCMask->getZExtValue();
6986   SDValue Chain = N->getOperand(0);
6987   SDValue CCReg = N->getOperand(4);
6988 
6989   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6990     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6991                        Chain,
6992                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6993                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6994                        N->getOperand(3), CCReg);
6995   return SDValue();
6996 }
6997 
6998 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6999     SDNode *N, DAGCombinerInfo &DCI) const {
7000   SelectionDAG &DAG = DCI.DAG;
7001 
7002   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7003   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7004   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7005   if (!CCValid || !CCMask)
7006     return SDValue();
7007 
7008   int CCValidVal = CCValid->getZExtValue();
7009   int CCMaskVal = CCMask->getZExtValue();
7010   SDValue CCReg = N->getOperand(4);
7011 
7012   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7013     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7014                        N->getOperand(0), N->getOperand(1),
7015                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7016                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7017                        CCReg);
7018   return SDValue();
7019 }
7020 
7021 
7022 SDValue SystemZTargetLowering::combineGET_CCMASK(
7023     SDNode *N, DAGCombinerInfo &DCI) const {
7024 
7025   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7026   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7027   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7028   if (!CCValid || !CCMask)
7029     return SDValue();
7030   int CCValidVal = CCValid->getZExtValue();
7031   int CCMaskVal = CCMask->getZExtValue();
7032 
7033   SDValue Select = N->getOperand(0);
7034   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7035     return SDValue();
7036 
7037   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7038   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7039   if (!SelectCCValid || !SelectCCMask)
7040     return SDValue();
7041   int SelectCCValidVal = SelectCCValid->getZExtValue();
7042   int SelectCCMaskVal = SelectCCMask->getZExtValue();
7043 
7044   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7045   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7046   if (!TrueVal || !FalseVal)
7047     return SDValue();
7048   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
7049     ;
7050   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
7051     SelectCCMaskVal ^= SelectCCValidVal;
7052   else
7053     return SDValue();
7054 
7055   if (SelectCCValidVal & ~CCValidVal)
7056     return SDValue();
7057   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7058     return SDValue();
7059 
7060   return Select->getOperand(4);
7061 }
7062 
7063 SDValue SystemZTargetLowering::combineIntDIVREM(
7064     SDNode *N, DAGCombinerInfo &DCI) const {
7065   SelectionDAG &DAG = DCI.DAG;
7066   EVT VT = N->getValueType(0);
7067   // In the case where the divisor is a vector of constants a cheaper
7068   // sequence of instructions can replace the divide. BuildSDIV is called to
7069   // do this during DAG combining, but it only succeeds when it can build a
7070   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7071   // since it is not Legal but Custom it can only happen before
7072   // legalization. Therefore we must scalarize this early before Combine
7073   // 1. For widened vectors, this is already the result of type legalization.
7074   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7075       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7076     return DAG.UnrollVectorOp(N);
7077   return SDValue();
7078 }
7079 
7080 SDValue SystemZTargetLowering::combineINTRINSIC(
7081     SDNode *N, DAGCombinerInfo &DCI) const {
7082   SelectionDAG &DAG = DCI.DAG;
7083 
7084   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7085   switch (Id) {
7086   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7087   // or larger is simply a vector load.
7088   case Intrinsic::s390_vll:
7089   case Intrinsic::s390_vlrl:
7090     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7091       if (C->getZExtValue() >= 15)
7092         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7093                            N->getOperand(3), MachinePointerInfo());
7094     break;
7095   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7096   case Intrinsic::s390_vstl:
7097   case Intrinsic::s390_vstrl:
7098     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7099       if (C->getZExtValue() >= 15)
7100         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7101                             N->getOperand(4), MachinePointerInfo());
7102     break;
7103   }
7104 
7105   return SDValue();
7106 }
7107 
7108 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7109   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7110     return N->getOperand(0);
7111   return N;
7112 }
7113 
7114 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7115                                                  DAGCombinerInfo &DCI) const {
7116   switch(N->getOpcode()) {
7117   default: break;
7118   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
7119   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
7120   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
7121   case SystemZISD::MERGE_HIGH:
7122   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7123   case ISD::LOAD:               return combineLOAD(N, DCI);
7124   case ISD::STORE:              return combineSTORE(N, DCI);
7125   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7126   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7127   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7128   case ISD::STRICT_FP_ROUND:
7129   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7130   case ISD::STRICT_FP_EXTEND:
7131   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7132   case ISD::SINT_TO_FP:
7133   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7134   case ISD::BSWAP:              return combineBSWAP(N, DCI);
7135   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7136   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7137   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7138   case ISD::SDIV:
7139   case ISD::UDIV:
7140   case ISD::SREM:
7141   case ISD::UREM:               return combineIntDIVREM(N, DCI);
7142   case ISD::INTRINSIC_W_CHAIN:
7143   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7144   }
7145 
7146   return SDValue();
7147 }
7148 
7149 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7150 // are for Op.
7151 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7152                                     unsigned OpNo) {
7153   EVT VT = Op.getValueType();
7154   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7155   APInt SrcDemE;
7156   unsigned Opcode = Op.getOpcode();
7157   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7158     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7159     switch (Id) {
7160     case Intrinsic::s390_vpksh:   // PACKS
7161     case Intrinsic::s390_vpksf:
7162     case Intrinsic::s390_vpksg:
7163     case Intrinsic::s390_vpkshs:  // PACKS_CC
7164     case Intrinsic::s390_vpksfs:
7165     case Intrinsic::s390_vpksgs:
7166     case Intrinsic::s390_vpklsh:  // PACKLS
7167     case Intrinsic::s390_vpklsf:
7168     case Intrinsic::s390_vpklsg:
7169     case Intrinsic::s390_vpklshs: // PACKLS_CC
7170     case Intrinsic::s390_vpklsfs:
7171     case Intrinsic::s390_vpklsgs:
7172       // VECTOR PACK truncates the elements of two source vectors into one.
7173       SrcDemE = DemandedElts;
7174       if (OpNo == 2)
7175         SrcDemE.lshrInPlace(NumElts / 2);
7176       SrcDemE = SrcDemE.trunc(NumElts / 2);
7177       break;
7178       // VECTOR UNPACK extends half the elements of the source vector.
7179     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7180     case Intrinsic::s390_vuphh:
7181     case Intrinsic::s390_vuphf:
7182     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7183     case Intrinsic::s390_vuplhh:
7184     case Intrinsic::s390_vuplhf:
7185       SrcDemE = APInt(NumElts * 2, 0);
7186       SrcDemE.insertBits(DemandedElts, 0);
7187       break;
7188     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7189     case Intrinsic::s390_vuplhw:
7190     case Intrinsic::s390_vuplf:
7191     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7192     case Intrinsic::s390_vupllh:
7193     case Intrinsic::s390_vupllf:
7194       SrcDemE = APInt(NumElts * 2, 0);
7195       SrcDemE.insertBits(DemandedElts, NumElts);
7196       break;
7197     case Intrinsic::s390_vpdi: {
7198       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7199       SrcDemE = APInt(NumElts, 0);
7200       if (!DemandedElts[OpNo - 1])
7201         break;
7202       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7203       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7204       // Demand input element 0 or 1, given by the mask bit value.
7205       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7206       break;
7207     }
7208     case Intrinsic::s390_vsldb: {
7209       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7210       assert(VT == MVT::v16i8 && "Unexpected type.");
7211       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7212       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7213       unsigned NumSrc0Els = 16 - FirstIdx;
7214       SrcDemE = APInt(NumElts, 0);
7215       if (OpNo == 1) {
7216         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7217         SrcDemE.insertBits(DemEls, FirstIdx);
7218       } else {
7219         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7220         SrcDemE.insertBits(DemEls, 0);
7221       }
7222       break;
7223     }
7224     case Intrinsic::s390_vperm:
7225       SrcDemE = APInt(NumElts, 1);
7226       break;
7227     default:
7228       llvm_unreachable("Unhandled intrinsic.");
7229       break;
7230     }
7231   } else {
7232     switch (Opcode) {
7233     case SystemZISD::JOIN_DWORDS:
7234       // Scalar operand.
7235       SrcDemE = APInt(1, 1);
7236       break;
7237     case SystemZISD::SELECT_CCMASK:
7238       SrcDemE = DemandedElts;
7239       break;
7240     default:
7241       llvm_unreachable("Unhandled opcode.");
7242       break;
7243     }
7244   }
7245   return SrcDemE;
7246 }
7247 
7248 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7249                                   const APInt &DemandedElts,
7250                                   const SelectionDAG &DAG, unsigned Depth,
7251                                   unsigned OpNo) {
7252   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7253   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7254   KnownBits LHSKnown =
7255       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7256   KnownBits RHSKnown =
7257       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7258   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
7259 }
7260 
7261 void
7262 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7263                                                      KnownBits &Known,
7264                                                      const APInt &DemandedElts,
7265                                                      const SelectionDAG &DAG,
7266                                                      unsigned Depth) const {
7267   Known.resetAll();
7268 
7269   // Intrinsic CC result is returned in the two low bits.
7270   unsigned tmp0, tmp1; // not used
7271   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7272     Known.Zero.setBitsFrom(2);
7273     return;
7274   }
7275   EVT VT = Op.getValueType();
7276   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7277     return;
7278   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7279           "KnownBits does not match VT in bitwidth");
7280   assert ((!VT.isVector() ||
7281            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7282           "DemandedElts does not match VT number of elements");
7283   unsigned BitWidth = Known.getBitWidth();
7284   unsigned Opcode = Op.getOpcode();
7285   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7286     bool IsLogical = false;
7287     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7288     switch (Id) {
7289     case Intrinsic::s390_vpksh:   // PACKS
7290     case Intrinsic::s390_vpksf:
7291     case Intrinsic::s390_vpksg:
7292     case Intrinsic::s390_vpkshs:  // PACKS_CC
7293     case Intrinsic::s390_vpksfs:
7294     case Intrinsic::s390_vpksgs:
7295     case Intrinsic::s390_vpklsh:  // PACKLS
7296     case Intrinsic::s390_vpklsf:
7297     case Intrinsic::s390_vpklsg:
7298     case Intrinsic::s390_vpklshs: // PACKLS_CC
7299     case Intrinsic::s390_vpklsfs:
7300     case Intrinsic::s390_vpklsgs:
7301     case Intrinsic::s390_vpdi:
7302     case Intrinsic::s390_vsldb:
7303     case Intrinsic::s390_vperm:
7304       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7305       break;
7306     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7307     case Intrinsic::s390_vuplhh:
7308     case Intrinsic::s390_vuplhf:
7309     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7310     case Intrinsic::s390_vupllh:
7311     case Intrinsic::s390_vupllf:
7312       IsLogical = true;
7313       LLVM_FALLTHROUGH;
7314     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7315     case Intrinsic::s390_vuphh:
7316     case Intrinsic::s390_vuphf:
7317     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7318     case Intrinsic::s390_vuplhw:
7319     case Intrinsic::s390_vuplf: {
7320       SDValue SrcOp = Op.getOperand(1);
7321       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7322       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7323       if (IsLogical) {
7324         Known = Known.zext(BitWidth);
7325       } else
7326         Known = Known.sext(BitWidth);
7327       break;
7328     }
7329     default:
7330       break;
7331     }
7332   } else {
7333     switch (Opcode) {
7334     case SystemZISD::JOIN_DWORDS:
7335     case SystemZISD::SELECT_CCMASK:
7336       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7337       break;
7338     case SystemZISD::REPLICATE: {
7339       SDValue SrcOp = Op.getOperand(0);
7340       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7341       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7342         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7343       break;
7344     }
7345     default:
7346       break;
7347     }
7348   }
7349 
7350   // Known has the width of the source operand(s). Adjust if needed to match
7351   // the passed bitwidth.
7352   if (Known.getBitWidth() != BitWidth)
7353     Known = Known.anyextOrTrunc(BitWidth);
7354 }
7355 
7356 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7357                                         const SelectionDAG &DAG, unsigned Depth,
7358                                         unsigned OpNo) {
7359   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7360   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7361   if (LHS == 1) return 1; // Early out.
7362   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7363   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7364   if (RHS == 1) return 1; // Early out.
7365   unsigned Common = std::min(LHS, RHS);
7366   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7367   EVT VT = Op.getValueType();
7368   unsigned VTBits = VT.getScalarSizeInBits();
7369   if (SrcBitWidth > VTBits) { // PACK
7370     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7371     if (Common > SrcExtraBits)
7372       return (Common - SrcExtraBits);
7373     return 1;
7374   }
7375   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7376   return Common;
7377 }
7378 
7379 unsigned
7380 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7381     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7382     unsigned Depth) const {
7383   if (Op.getResNo() != 0)
7384     return 1;
7385   unsigned Opcode = Op.getOpcode();
7386   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7387     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7388     switch (Id) {
7389     case Intrinsic::s390_vpksh:   // PACKS
7390     case Intrinsic::s390_vpksf:
7391     case Intrinsic::s390_vpksg:
7392     case Intrinsic::s390_vpkshs:  // PACKS_CC
7393     case Intrinsic::s390_vpksfs:
7394     case Intrinsic::s390_vpksgs:
7395     case Intrinsic::s390_vpklsh:  // PACKLS
7396     case Intrinsic::s390_vpklsf:
7397     case Intrinsic::s390_vpklsg:
7398     case Intrinsic::s390_vpklshs: // PACKLS_CC
7399     case Intrinsic::s390_vpklsfs:
7400     case Intrinsic::s390_vpklsgs:
7401     case Intrinsic::s390_vpdi:
7402     case Intrinsic::s390_vsldb:
7403     case Intrinsic::s390_vperm:
7404       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7405     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7406     case Intrinsic::s390_vuphh:
7407     case Intrinsic::s390_vuphf:
7408     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7409     case Intrinsic::s390_vuplhw:
7410     case Intrinsic::s390_vuplf: {
7411       SDValue PackedOp = Op.getOperand(1);
7412       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7413       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7414       EVT VT = Op.getValueType();
7415       unsigned VTBits = VT.getScalarSizeInBits();
7416       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7417       return Tmp;
7418     }
7419     default:
7420       break;
7421     }
7422   } else {
7423     switch (Opcode) {
7424     case SystemZISD::SELECT_CCMASK:
7425       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7426     default:
7427       break;
7428     }
7429   }
7430 
7431   return 1;
7432 }
7433 
7434 unsigned
7435 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7436   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7437   unsigned StackAlign = TFI->getStackAlignment();
7438   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7439          "Unexpected stack alignment");
7440   // The default stack probe size is 4096 if the function has no
7441   // stack-probe-size attribute.
7442   unsigned StackProbeSize = 4096;
7443   const Function &Fn = MF.getFunction();
7444   if (Fn.hasFnAttribute("stack-probe-size"))
7445     Fn.getFnAttribute("stack-probe-size")
7446         .getValueAsString()
7447         .getAsInteger(0, StackProbeSize);
7448   // Round down to the stack alignment.
7449   StackProbeSize &= ~(StackAlign - 1);
7450   return StackProbeSize ? StackProbeSize : StackAlign;
7451 }
7452 
7453 //===----------------------------------------------------------------------===//
7454 // Custom insertion
7455 //===----------------------------------------------------------------------===//
7456 
7457 // Force base value Base into a register before MI.  Return the register.
7458 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7459                          const SystemZInstrInfo *TII) {
7460   MachineBasicBlock *MBB = MI.getParent();
7461   MachineFunction &MF = *MBB->getParent();
7462   MachineRegisterInfo &MRI = MF.getRegInfo();
7463 
7464   if (Base.isReg()) {
7465     // Copy Base into a new virtual register to help register coalescing in
7466     // cases with multiple uses.
7467     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7468     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7469       .add(Base);
7470     return Reg;
7471   }
7472 
7473   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7474   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7475       .add(Base)
7476       .addImm(0)
7477       .addReg(0);
7478   return Reg;
7479 }
7480 
7481 // The CC operand of MI might be missing a kill marker because there
7482 // were multiple uses of CC, and ISel didn't know which to mark.
7483 // Figure out whether MI should have had a kill marker.
7484 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7485   // Scan forward through BB for a use/def of CC.
7486   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7487   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7488     const MachineInstr& mi = *miI;
7489     if (mi.readsRegister(SystemZ::CC))
7490       return false;
7491     if (mi.definesRegister(SystemZ::CC))
7492       break; // Should have kill-flag - update below.
7493   }
7494 
7495   // If we hit the end of the block, check whether CC is live into a
7496   // successor.
7497   if (miI == MBB->end()) {
7498     for (const MachineBasicBlock *Succ : MBB->successors())
7499       if (Succ->isLiveIn(SystemZ::CC))
7500         return false;
7501   }
7502 
7503   return true;
7504 }
7505 
7506 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7507 // together with other Select pseudo-opcodes into a single basic-block with
7508 // a conditional jump around it.
7509 static bool isSelectPseudo(MachineInstr &MI) {
7510   switch (MI.getOpcode()) {
7511   case SystemZ::Select32:
7512   case SystemZ::Select64:
7513   case SystemZ::SelectF32:
7514   case SystemZ::SelectF64:
7515   case SystemZ::SelectF128:
7516   case SystemZ::SelectVR32:
7517   case SystemZ::SelectVR64:
7518   case SystemZ::SelectVR128:
7519     return true;
7520 
7521   default:
7522     return false;
7523   }
7524 }
7525 
7526 // Helper function, which inserts PHI functions into SinkMBB:
7527 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7528 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7529 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7530                                  MachineBasicBlock *TrueMBB,
7531                                  MachineBasicBlock *FalseMBB,
7532                                  MachineBasicBlock *SinkMBB) {
7533   MachineFunction *MF = TrueMBB->getParent();
7534   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7535 
7536   MachineInstr *FirstMI = Selects.front();
7537   unsigned CCValid = FirstMI->getOperand(3).getImm();
7538   unsigned CCMask = FirstMI->getOperand(4).getImm();
7539 
7540   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7541 
7542   // As we are creating the PHIs, we have to be careful if there is more than
7543   // one.  Later Selects may reference the results of earlier Selects, but later
7544   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7545   // That also means that PHI construction must work forward from earlier to
7546   // later, and that the code must maintain a mapping from earlier PHI's
7547   // destination registers, and the registers that went into the PHI.
7548   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7549 
7550   for (auto MI : Selects) {
7551     Register DestReg = MI->getOperand(0).getReg();
7552     Register TrueReg = MI->getOperand(1).getReg();
7553     Register FalseReg = MI->getOperand(2).getReg();
7554 
7555     // If this Select we are generating is the opposite condition from
7556     // the jump we generated, then we have to swap the operands for the
7557     // PHI that is going to be generated.
7558     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7559       std::swap(TrueReg, FalseReg);
7560 
7561     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7562       TrueReg = RegRewriteTable[TrueReg].first;
7563 
7564     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7565       FalseReg = RegRewriteTable[FalseReg].second;
7566 
7567     DebugLoc DL = MI->getDebugLoc();
7568     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7569       .addReg(TrueReg).addMBB(TrueMBB)
7570       .addReg(FalseReg).addMBB(FalseMBB);
7571 
7572     // Add this PHI to the rewrite table.
7573     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7574   }
7575 
7576   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7577 }
7578 
7579 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7580 MachineBasicBlock *
7581 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7582                                   MachineBasicBlock *MBB) const {
7583   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7584   const SystemZInstrInfo *TII =
7585       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7586 
7587   unsigned CCValid = MI.getOperand(3).getImm();
7588   unsigned CCMask = MI.getOperand(4).getImm();
7589 
7590   // If we have a sequence of Select* pseudo instructions using the
7591   // same condition code value, we want to expand all of them into
7592   // a single pair of basic blocks using the same condition.
7593   SmallVector<MachineInstr*, 8> Selects;
7594   SmallVector<MachineInstr*, 8> DbgValues;
7595   Selects.push_back(&MI);
7596   unsigned Count = 0;
7597   for (MachineBasicBlock::iterator NextMIIt =
7598          std::next(MachineBasicBlock::iterator(MI));
7599        NextMIIt != MBB->end(); ++NextMIIt) {
7600     if (isSelectPseudo(*NextMIIt)) {
7601       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7602              "Bad CCValid operands since CC was not redefined.");
7603       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7604           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7605         Selects.push_back(&*NextMIIt);
7606         continue;
7607       }
7608       break;
7609     }
7610     if (NextMIIt->definesRegister(SystemZ::CC) ||
7611         NextMIIt->usesCustomInsertionHook())
7612       break;
7613     bool User = false;
7614     for (auto SelMI : Selects)
7615       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7616         User = true;
7617         break;
7618       }
7619     if (NextMIIt->isDebugInstr()) {
7620       if (User) {
7621         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7622         DbgValues.push_back(&*NextMIIt);
7623       }
7624     }
7625     else if (User || ++Count > 20)
7626       break;
7627   }
7628 
7629   MachineInstr *LastMI = Selects.back();
7630   bool CCKilled =
7631       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7632   MachineBasicBlock *StartMBB = MBB;
7633   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7634   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7635 
7636   // Unless CC was killed in the last Select instruction, mark it as
7637   // live-in to both FalseMBB and JoinMBB.
7638   if (!CCKilled) {
7639     FalseMBB->addLiveIn(SystemZ::CC);
7640     JoinMBB->addLiveIn(SystemZ::CC);
7641   }
7642 
7643   //  StartMBB:
7644   //   BRC CCMask, JoinMBB
7645   //   # fallthrough to FalseMBB
7646   MBB = StartMBB;
7647   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7648     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7649   MBB->addSuccessor(JoinMBB);
7650   MBB->addSuccessor(FalseMBB);
7651 
7652   //  FalseMBB:
7653   //   # fallthrough to JoinMBB
7654   MBB = FalseMBB;
7655   MBB->addSuccessor(JoinMBB);
7656 
7657   //  JoinMBB:
7658   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7659   //  ...
7660   MBB = JoinMBB;
7661   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7662   for (auto SelMI : Selects)
7663     SelMI->eraseFromParent();
7664 
7665   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7666   for (auto DbgMI : DbgValues)
7667     MBB->splice(InsertPos, StartMBB, DbgMI);
7668 
7669   return JoinMBB;
7670 }
7671 
7672 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7673 // StoreOpcode is the store to use and Invert says whether the store should
7674 // happen when the condition is false rather than true.  If a STORE ON
7675 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7676 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7677                                                         MachineBasicBlock *MBB,
7678                                                         unsigned StoreOpcode,
7679                                                         unsigned STOCOpcode,
7680                                                         bool Invert) const {
7681   const SystemZInstrInfo *TII =
7682       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7683 
7684   Register SrcReg = MI.getOperand(0).getReg();
7685   MachineOperand Base = MI.getOperand(1);
7686   int64_t Disp = MI.getOperand(2).getImm();
7687   Register IndexReg = MI.getOperand(3).getReg();
7688   unsigned CCValid = MI.getOperand(4).getImm();
7689   unsigned CCMask = MI.getOperand(5).getImm();
7690   DebugLoc DL = MI.getDebugLoc();
7691 
7692   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7693 
7694   // ISel pattern matching also adds a load memory operand of the same
7695   // address, so take special care to find the storing memory operand.
7696   MachineMemOperand *MMO = nullptr;
7697   for (auto *I : MI.memoperands())
7698     if (I->isStore()) {
7699       MMO = I;
7700       break;
7701     }
7702 
7703   // Use STOCOpcode if possible.  We could use different store patterns in
7704   // order to avoid matching the index register, but the performance trade-offs
7705   // might be more complicated in that case.
7706   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7707     if (Invert)
7708       CCMask ^= CCValid;
7709 
7710     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7711       .addReg(SrcReg)
7712       .add(Base)
7713       .addImm(Disp)
7714       .addImm(CCValid)
7715       .addImm(CCMask)
7716       .addMemOperand(MMO);
7717 
7718     MI.eraseFromParent();
7719     return MBB;
7720   }
7721 
7722   // Get the condition needed to branch around the store.
7723   if (!Invert)
7724     CCMask ^= CCValid;
7725 
7726   MachineBasicBlock *StartMBB = MBB;
7727   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7728   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7729 
7730   // Unless CC was killed in the CondStore instruction, mark it as
7731   // live-in to both FalseMBB and JoinMBB.
7732   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7733     FalseMBB->addLiveIn(SystemZ::CC);
7734     JoinMBB->addLiveIn(SystemZ::CC);
7735   }
7736 
7737   //  StartMBB:
7738   //   BRC CCMask, JoinMBB
7739   //   # fallthrough to FalseMBB
7740   MBB = StartMBB;
7741   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7742     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7743   MBB->addSuccessor(JoinMBB);
7744   MBB->addSuccessor(FalseMBB);
7745 
7746   //  FalseMBB:
7747   //   store %SrcReg, %Disp(%Index,%Base)
7748   //   # fallthrough to JoinMBB
7749   MBB = FalseMBB;
7750   BuildMI(MBB, DL, TII->get(StoreOpcode))
7751       .addReg(SrcReg)
7752       .add(Base)
7753       .addImm(Disp)
7754       .addReg(IndexReg)
7755       .addMemOperand(MMO);
7756   MBB->addSuccessor(JoinMBB);
7757 
7758   MI.eraseFromParent();
7759   return JoinMBB;
7760 }
7761 
7762 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7763 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7764 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7765 // BitSize is the width of the field in bits, or 0 if this is a partword
7766 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7767 // is one of the operands.  Invert says whether the field should be
7768 // inverted after performing BinOpcode (e.g. for NAND).
7769 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7770     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7771     unsigned BitSize, bool Invert) const {
7772   MachineFunction &MF = *MBB->getParent();
7773   const SystemZInstrInfo *TII =
7774       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7775   MachineRegisterInfo &MRI = MF.getRegInfo();
7776   bool IsSubWord = (BitSize < 32);
7777 
7778   // Extract the operands.  Base can be a register or a frame index.
7779   // Src2 can be a register or immediate.
7780   Register Dest = MI.getOperand(0).getReg();
7781   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7782   int64_t Disp = MI.getOperand(2).getImm();
7783   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7784   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7785   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7786   DebugLoc DL = MI.getDebugLoc();
7787   if (IsSubWord)
7788     BitSize = MI.getOperand(6).getImm();
7789 
7790   // Subword operations use 32-bit registers.
7791   const TargetRegisterClass *RC = (BitSize <= 32 ?
7792                                    &SystemZ::GR32BitRegClass :
7793                                    &SystemZ::GR64BitRegClass);
7794   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7795   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7796 
7797   // Get the right opcodes for the displacement.
7798   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7799   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7800   assert(LOpcode && CSOpcode && "Displacement out of range");
7801 
7802   // Create virtual registers for temporary results.
7803   Register OrigVal       = MRI.createVirtualRegister(RC);
7804   Register OldVal        = MRI.createVirtualRegister(RC);
7805   Register NewVal        = (BinOpcode || IsSubWord ?
7806                             MRI.createVirtualRegister(RC) : Src2.getReg());
7807   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7808   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7809 
7810   // Insert a basic block for the main loop.
7811   MachineBasicBlock *StartMBB = MBB;
7812   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7813   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7814 
7815   //  StartMBB:
7816   //   ...
7817   //   %OrigVal = L Disp(%Base)
7818   //   # fall through to LoopMBB
7819   MBB = StartMBB;
7820   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7821   MBB->addSuccessor(LoopMBB);
7822 
7823   //  LoopMBB:
7824   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7825   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7826   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7827   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7828   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7829   //   JNE LoopMBB
7830   //   # fall through to DoneMBB
7831   MBB = LoopMBB;
7832   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7833     .addReg(OrigVal).addMBB(StartMBB)
7834     .addReg(Dest).addMBB(LoopMBB);
7835   if (IsSubWord)
7836     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7837       .addReg(OldVal).addReg(BitShift).addImm(0);
7838   if (Invert) {
7839     // Perform the operation normally and then invert every bit of the field.
7840     Register Tmp = MRI.createVirtualRegister(RC);
7841     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7842     if (BitSize <= 32)
7843       // XILF with the upper BitSize bits set.
7844       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7845         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7846     else {
7847       // Use LCGR and add -1 to the result, which is more compact than
7848       // an XILF, XILH pair.
7849       Register Tmp2 = MRI.createVirtualRegister(RC);
7850       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7851       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7852         .addReg(Tmp2).addImm(-1);
7853     }
7854   } else if (BinOpcode)
7855     // A simply binary operation.
7856     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7857         .addReg(RotatedOldVal)
7858         .add(Src2);
7859   else if (IsSubWord)
7860     // Use RISBG to rotate Src2 into position and use it to replace the
7861     // field in RotatedOldVal.
7862     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7863       .addReg(RotatedOldVal).addReg(Src2.getReg())
7864       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7865   if (IsSubWord)
7866     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7867       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7868   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7869       .addReg(OldVal)
7870       .addReg(NewVal)
7871       .add(Base)
7872       .addImm(Disp);
7873   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7874     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7875   MBB->addSuccessor(LoopMBB);
7876   MBB->addSuccessor(DoneMBB);
7877 
7878   MI.eraseFromParent();
7879   return DoneMBB;
7880 }
7881 
7882 // Implement EmitInstrWithCustomInserter for pseudo
7883 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7884 // instruction that should be used to compare the current field with the
7885 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7886 // for when the current field should be kept.  BitSize is the width of
7887 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7888 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7889     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7890     unsigned KeepOldMask, unsigned BitSize) const {
7891   MachineFunction &MF = *MBB->getParent();
7892   const SystemZInstrInfo *TII =
7893       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7894   MachineRegisterInfo &MRI = MF.getRegInfo();
7895   bool IsSubWord = (BitSize < 32);
7896 
7897   // Extract the operands.  Base can be a register or a frame index.
7898   Register Dest = MI.getOperand(0).getReg();
7899   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7900   int64_t Disp = MI.getOperand(2).getImm();
7901   Register Src2 = MI.getOperand(3).getReg();
7902   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7903   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7904   DebugLoc DL = MI.getDebugLoc();
7905   if (IsSubWord)
7906     BitSize = MI.getOperand(6).getImm();
7907 
7908   // Subword operations use 32-bit registers.
7909   const TargetRegisterClass *RC = (BitSize <= 32 ?
7910                                    &SystemZ::GR32BitRegClass :
7911                                    &SystemZ::GR64BitRegClass);
7912   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7913   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7914 
7915   // Get the right opcodes for the displacement.
7916   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7917   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7918   assert(LOpcode && CSOpcode && "Displacement out of range");
7919 
7920   // Create virtual registers for temporary results.
7921   Register OrigVal       = MRI.createVirtualRegister(RC);
7922   Register OldVal        = MRI.createVirtualRegister(RC);
7923   Register NewVal        = MRI.createVirtualRegister(RC);
7924   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7925   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7926   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7927 
7928   // Insert 3 basic blocks for the loop.
7929   MachineBasicBlock *StartMBB  = MBB;
7930   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7931   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7932   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7933   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7934 
7935   //  StartMBB:
7936   //   ...
7937   //   %OrigVal     = L Disp(%Base)
7938   //   # fall through to LoopMBB
7939   MBB = StartMBB;
7940   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7941   MBB->addSuccessor(LoopMBB);
7942 
7943   //  LoopMBB:
7944   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7945   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7946   //   CompareOpcode %RotatedOldVal, %Src2
7947   //   BRC KeepOldMask, UpdateMBB
7948   MBB = LoopMBB;
7949   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7950     .addReg(OrigVal).addMBB(StartMBB)
7951     .addReg(Dest).addMBB(UpdateMBB);
7952   if (IsSubWord)
7953     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7954       .addReg(OldVal).addReg(BitShift).addImm(0);
7955   BuildMI(MBB, DL, TII->get(CompareOpcode))
7956     .addReg(RotatedOldVal).addReg(Src2);
7957   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7958     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7959   MBB->addSuccessor(UpdateMBB);
7960   MBB->addSuccessor(UseAltMBB);
7961 
7962   //  UseAltMBB:
7963   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7964   //   # fall through to UpdateMBB
7965   MBB = UseAltMBB;
7966   if (IsSubWord)
7967     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7968       .addReg(RotatedOldVal).addReg(Src2)
7969       .addImm(32).addImm(31 + BitSize).addImm(0);
7970   MBB->addSuccessor(UpdateMBB);
7971 
7972   //  UpdateMBB:
7973   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7974   //                        [ %RotatedAltVal, UseAltMBB ]
7975   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7976   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7977   //   JNE LoopMBB
7978   //   # fall through to DoneMBB
7979   MBB = UpdateMBB;
7980   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7981     .addReg(RotatedOldVal).addMBB(LoopMBB)
7982     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7983   if (IsSubWord)
7984     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7985       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7986   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7987       .addReg(OldVal)
7988       .addReg(NewVal)
7989       .add(Base)
7990       .addImm(Disp);
7991   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7992     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7993   MBB->addSuccessor(LoopMBB);
7994   MBB->addSuccessor(DoneMBB);
7995 
7996   MI.eraseFromParent();
7997   return DoneMBB;
7998 }
7999 
8000 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
8001 // instruction MI.
8002 MachineBasicBlock *
8003 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8004                                           MachineBasicBlock *MBB) const {
8005   MachineFunction &MF = *MBB->getParent();
8006   const SystemZInstrInfo *TII =
8007       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8008   MachineRegisterInfo &MRI = MF.getRegInfo();
8009 
8010   // Extract the operands.  Base can be a register or a frame index.
8011   Register Dest = MI.getOperand(0).getReg();
8012   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8013   int64_t Disp = MI.getOperand(2).getImm();
8014   Register CmpVal = MI.getOperand(3).getReg();
8015   Register OrigSwapVal = MI.getOperand(4).getReg();
8016   Register BitShift = MI.getOperand(5).getReg();
8017   Register NegBitShift = MI.getOperand(6).getReg();
8018   int64_t BitSize = MI.getOperand(7).getImm();
8019   DebugLoc DL = MI.getDebugLoc();
8020 
8021   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8022 
8023   // Get the right opcodes for the displacement and zero-extension.
8024   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8025   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8026   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8027   assert(LOpcode && CSOpcode && "Displacement out of range");
8028 
8029   // Create virtual registers for temporary results.
8030   Register OrigOldVal = MRI.createVirtualRegister(RC);
8031   Register OldVal = MRI.createVirtualRegister(RC);
8032   Register SwapVal = MRI.createVirtualRegister(RC);
8033   Register StoreVal = MRI.createVirtualRegister(RC);
8034   Register OldValRot = MRI.createVirtualRegister(RC);
8035   Register RetryOldVal = MRI.createVirtualRegister(RC);
8036   Register RetrySwapVal = MRI.createVirtualRegister(RC);
8037 
8038   // Insert 2 basic blocks for the loop.
8039   MachineBasicBlock *StartMBB = MBB;
8040   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8041   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8042   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
8043 
8044   //  StartMBB:
8045   //   ...
8046   //   %OrigOldVal     = L Disp(%Base)
8047   //   # fall through to LoopMBB
8048   MBB = StartMBB;
8049   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8050       .add(Base)
8051       .addImm(Disp)
8052       .addReg(0);
8053   MBB->addSuccessor(LoopMBB);
8054 
8055   //  LoopMBB:
8056   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8057   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8058   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
8059   //                      ^^ The low BitSize bits contain the field
8060   //                         of interest.
8061   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8062   //                      ^^ Replace the upper 32-BitSize bits of the
8063   //                         swap value with those that we loaded and rotated.
8064   //   %Dest = LL[CH] %OldValRot
8065   //   CR %Dest, %CmpVal
8066   //   JNE DoneMBB
8067   //   # Fall through to SetMBB
8068   MBB = LoopMBB;
8069   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8070     .addReg(OrigOldVal).addMBB(StartMBB)
8071     .addReg(RetryOldVal).addMBB(SetMBB);
8072   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8073     .addReg(OrigSwapVal).addMBB(StartMBB)
8074     .addReg(RetrySwapVal).addMBB(SetMBB);
8075   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8076     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8077   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8078     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8079   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8080     .addReg(OldValRot);
8081   BuildMI(MBB, DL, TII->get(SystemZ::CR))
8082     .addReg(Dest).addReg(CmpVal);
8083   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8084     .addImm(SystemZ::CCMASK_ICMP)
8085     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8086   MBB->addSuccessor(DoneMBB);
8087   MBB->addSuccessor(SetMBB);
8088 
8089   //  SetMBB:
8090   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8091   //                      ^^ Rotate the new field to its proper position.
8092   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
8093   //   JNE LoopMBB
8094   //   # fall through to ExitMBB
8095   MBB = SetMBB;
8096   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8097     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8098   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8099       .addReg(OldVal)
8100       .addReg(StoreVal)
8101       .add(Base)
8102       .addImm(Disp);
8103   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8104     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8105   MBB->addSuccessor(LoopMBB);
8106   MBB->addSuccessor(DoneMBB);
8107 
8108   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8109   // to the block after the loop.  At this point, CC may have been defined
8110   // either by the CR in LoopMBB or by the CS in SetMBB.
8111   if (!MI.registerDefIsDead(SystemZ::CC))
8112     DoneMBB->addLiveIn(SystemZ::CC);
8113 
8114   MI.eraseFromParent();
8115   return DoneMBB;
8116 }
8117 
8118 // Emit a move from two GR64s to a GR128.
8119 MachineBasicBlock *
8120 SystemZTargetLowering::emitPair128(MachineInstr &MI,
8121                                    MachineBasicBlock *MBB) const {
8122   MachineFunction &MF = *MBB->getParent();
8123   const SystemZInstrInfo *TII =
8124       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8125   MachineRegisterInfo &MRI = MF.getRegInfo();
8126   DebugLoc DL = MI.getDebugLoc();
8127 
8128   Register Dest = MI.getOperand(0).getReg();
8129   Register Hi = MI.getOperand(1).getReg();
8130   Register Lo = MI.getOperand(2).getReg();
8131   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8132   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8133 
8134   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
8135   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
8136     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
8137   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8138     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
8139 
8140   MI.eraseFromParent();
8141   return MBB;
8142 }
8143 
8144 // Emit an extension from a GR64 to a GR128.  ClearEven is true
8145 // if the high register of the GR128 value must be cleared or false if
8146 // it's "don't care".
8147 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8148                                                      MachineBasicBlock *MBB,
8149                                                      bool ClearEven) const {
8150   MachineFunction &MF = *MBB->getParent();
8151   const SystemZInstrInfo *TII =
8152       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8153   MachineRegisterInfo &MRI = MF.getRegInfo();
8154   DebugLoc DL = MI.getDebugLoc();
8155 
8156   Register Dest = MI.getOperand(0).getReg();
8157   Register Src = MI.getOperand(1).getReg();
8158   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8159 
8160   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8161   if (ClearEven) {
8162     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8163     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8164 
8165     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8166       .addImm(0);
8167     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8168       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8169     In128 = NewIn128;
8170   }
8171   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8172     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8173 
8174   MI.eraseFromParent();
8175   return MBB;
8176 }
8177 
8178 MachineBasicBlock *
8179 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8180                                          MachineBasicBlock *MBB,
8181                                          unsigned Opcode, bool IsMemset) const {
8182   MachineFunction &MF = *MBB->getParent();
8183   const SystemZInstrInfo *TII =
8184       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8185   MachineRegisterInfo &MRI = MF.getRegInfo();
8186   DebugLoc DL = MI.getDebugLoc();
8187 
8188   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8189   uint64_t DestDisp = MI.getOperand(1).getImm();
8190   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8191   uint64_t SrcDisp;
8192 
8193   // Fold the displacement Disp if it is out of range.
8194   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8195     if (!isUInt<12>(Disp)) {
8196       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8197       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8198       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8199         .add(Base).addImm(Disp).addReg(0);
8200       Base = MachineOperand::CreateReg(Reg, false);
8201       Disp = 0;
8202     }
8203   };
8204 
8205   if (!IsMemset) {
8206     SrcBase = earlyUseOperand(MI.getOperand(2));
8207     SrcDisp = MI.getOperand(3).getImm();
8208   } else {
8209     SrcBase = DestBase;
8210     SrcDisp = DestDisp++;
8211     foldDisplIfNeeded(DestBase, DestDisp);
8212   }
8213 
8214   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8215   bool IsImmForm = LengthMO.isImm();
8216   bool IsRegForm = !IsImmForm;
8217 
8218   // Build and insert one Opcode of Length, with special treatment for memset.
8219   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8220                             MachineBasicBlock::iterator InsPos,
8221                             MachineOperand DBase, uint64_t DDisp,
8222                             MachineOperand SBase, uint64_t SDisp,
8223                             unsigned Length) -> void {
8224     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8225     if (IsMemset) {
8226       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8227       if (ByteMO.isImm())
8228         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8229           .add(SBase).addImm(SDisp).add(ByteMO);
8230       else
8231         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8232           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8233       if (--Length == 0)
8234         return;
8235     }
8236     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8237       .add(DBase).addImm(DDisp).addImm(Length)
8238       .add(SBase).addImm(SDisp)
8239       .setMemRefs(MI.memoperands());
8240   };
8241 
8242   bool NeedsLoop = false;
8243   uint64_t ImmLength = 0;
8244   Register LenAdjReg = SystemZ::NoRegister;
8245   if (IsImmForm) {
8246     ImmLength = LengthMO.getImm();
8247     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8248     if (ImmLength == 0) {
8249       MI.eraseFromParent();
8250       return MBB;
8251     }
8252     if (Opcode == SystemZ::CLC) {
8253       if (ImmLength > 3 * 256)
8254         // A two-CLC sequence is a clear win over a loop, not least because
8255         // it needs only one branch.  A three-CLC sequence needs the same
8256         // number of branches as a loop (i.e. 2), but is shorter.  That
8257         // brings us to lengths greater than 768 bytes.  It seems relatively
8258         // likely that a difference will be found within the first 768 bytes,
8259         // so we just optimize for the smallest number of branch
8260         // instructions, in order to avoid polluting the prediction buffer
8261         // too much.
8262         NeedsLoop = true;
8263     } else if (ImmLength > 6 * 256)
8264       // The heuristic we use is to prefer loops for anything that would
8265       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8266       // to choose between straight-line code and looping code, since the
8267       // time will be dominated by the MVCs themselves.
8268       NeedsLoop = true;
8269   } else {
8270     NeedsLoop = true;
8271     LenAdjReg = LengthMO.getReg();
8272   }
8273 
8274   // When generating more than one CLC, all but the last will need to
8275   // branch to the end when a difference is found.
8276   MachineBasicBlock *EndMBB =
8277       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8278            ? SystemZ::splitBlockAfter(MI, MBB)
8279            : nullptr);
8280 
8281   if (NeedsLoop) {
8282     Register StartCountReg =
8283       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8284     if (IsImmForm) {
8285       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8286       ImmLength &= 255;
8287     } else {
8288       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8289         .addReg(LenAdjReg)
8290         .addReg(0)
8291         .addImm(8);
8292     }
8293 
8294     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8295     auto loadZeroAddress = [&]() -> MachineOperand {
8296       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8297       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8298       return MachineOperand::CreateReg(Reg, false);
8299     };
8300     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8301       DestBase = loadZeroAddress();
8302     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8303       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8304 
8305     MachineBasicBlock *StartMBB = nullptr;
8306     MachineBasicBlock *LoopMBB = nullptr;
8307     MachineBasicBlock *NextMBB = nullptr;
8308     MachineBasicBlock *DoneMBB = nullptr;
8309     MachineBasicBlock *AllDoneMBB = nullptr;
8310 
8311     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8312     Register StartDestReg =
8313         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8314 
8315     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8316     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8317     Register ThisDestReg =
8318         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8319     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8320     Register NextDestReg =
8321         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8322     RC = &SystemZ::GR64BitRegClass;
8323     Register ThisCountReg = MRI.createVirtualRegister(RC);
8324     Register NextCountReg = MRI.createVirtualRegister(RC);
8325 
8326     if (IsRegForm) {
8327       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8328       StartMBB = SystemZ::emitBlockAfter(MBB);
8329       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8330       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8331       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8332 
8333       //  MBB:
8334       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8335       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8336         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8337       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8338         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8339         .addMBB(AllDoneMBB);
8340       MBB->addSuccessor(AllDoneMBB);
8341       if (!IsMemset)
8342         MBB->addSuccessor(StartMBB);
8343       else {
8344         // MemsetOneCheckMBB:
8345         // # Jump to MemsetOneMBB for a memset of length 1, or
8346         // # fall thru to StartMBB.
8347         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8348         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8349         MBB->addSuccessor(MemsetOneCheckMBB);
8350         MBB = MemsetOneCheckMBB;
8351         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8352           .addReg(LenAdjReg).addImm(-1);
8353         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8354           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8355           .addMBB(MemsetOneMBB);
8356         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8357         MBB->addSuccessor(StartMBB, {90, 100});
8358 
8359         // MemsetOneMBB:
8360         // # Jump back to AllDoneMBB after a single MVI or STC.
8361         MBB = MemsetOneMBB;
8362         insertMemMemOp(MBB, MBB->end(),
8363                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8364                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8365                        1);
8366         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8367         MBB->addSuccessor(AllDoneMBB);
8368       }
8369 
8370       // StartMBB:
8371       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8372       MBB = StartMBB;
8373       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8374         .addReg(StartCountReg).addImm(0);
8375       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8376         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8377         .addMBB(DoneMBB);
8378       MBB->addSuccessor(DoneMBB);
8379       MBB->addSuccessor(LoopMBB);
8380     }
8381     else {
8382       StartMBB = MBB;
8383       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8384       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8385       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8386 
8387       //  StartMBB:
8388       //   # fall through to LoopMBB
8389       MBB->addSuccessor(LoopMBB);
8390 
8391       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8392       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8393       if (EndMBB && !ImmLength)
8394         // If the loop handled the whole CLC range, DoneMBB will be empty with
8395         // CC live-through into EndMBB, so add it as live-in.
8396         DoneMBB->addLiveIn(SystemZ::CC);
8397     }
8398 
8399     //  LoopMBB:
8400     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8401     //                      [ %NextDestReg, NextMBB ]
8402     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8403     //                     [ %NextSrcReg, NextMBB ]
8404     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8405     //                       [ %NextCountReg, NextMBB ]
8406     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8407     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8408     //   ( JLH EndMBB )
8409     //
8410     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8411     MBB = LoopMBB;
8412     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8413       .addReg(StartDestReg).addMBB(StartMBB)
8414       .addReg(NextDestReg).addMBB(NextMBB);
8415     if (!HaveSingleBase)
8416       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8417         .addReg(StartSrcReg).addMBB(StartMBB)
8418         .addReg(NextSrcReg).addMBB(NextMBB);
8419     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8420       .addReg(StartCountReg).addMBB(StartMBB)
8421       .addReg(NextCountReg).addMBB(NextMBB);
8422     if (Opcode == SystemZ::MVC)
8423       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8424         .addImm(SystemZ::PFD_WRITE)
8425         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8426     insertMemMemOp(MBB, MBB->end(),
8427                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8428                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8429     if (EndMBB) {
8430       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8431         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8432         .addMBB(EndMBB);
8433       MBB->addSuccessor(EndMBB);
8434       MBB->addSuccessor(NextMBB);
8435     }
8436 
8437     // NextMBB:
8438     //   %NextDestReg = LA 256(%ThisDestReg)
8439     //   %NextSrcReg = LA 256(%ThisSrcReg)
8440     //   %NextCountReg = AGHI %ThisCountReg, -1
8441     //   CGHI %NextCountReg, 0
8442     //   JLH LoopMBB
8443     //   # fall through to DoneMBB
8444     //
8445     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8446     MBB = NextMBB;
8447     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8448       .addReg(ThisDestReg).addImm(256).addReg(0);
8449     if (!HaveSingleBase)
8450       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8451         .addReg(ThisSrcReg).addImm(256).addReg(0);
8452     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8453       .addReg(ThisCountReg).addImm(-1);
8454     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8455       .addReg(NextCountReg).addImm(0);
8456     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8457       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8458       .addMBB(LoopMBB);
8459     MBB->addSuccessor(LoopMBB);
8460     MBB->addSuccessor(DoneMBB);
8461 
8462     MBB = DoneMBB;
8463     if (IsRegForm) {
8464       // DoneMBB:
8465       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8466       // # Use EXecute Relative Long for the remainder of the bytes. The target
8467       //   instruction of the EXRL will have a length field of 1 since 0 is an
8468       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8469       //   0xff) + 1.
8470       // # Fall through to AllDoneMBB.
8471       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8472       Register RemDestReg = HaveSingleBase ? RemSrcReg
8473         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8474       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8475         .addReg(StartDestReg).addMBB(StartMBB)
8476         .addReg(NextDestReg).addMBB(NextMBB);
8477       if (!HaveSingleBase)
8478         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8479           .addReg(StartSrcReg).addMBB(StartMBB)
8480           .addReg(NextSrcReg).addMBB(NextMBB);
8481       if (IsMemset)
8482         insertMemMemOp(MBB, MBB->end(),
8483                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
8484                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8485       MachineInstrBuilder EXRL_MIB =
8486         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8487           .addImm(Opcode)
8488           .addReg(LenAdjReg)
8489           .addReg(RemDestReg).addImm(DestDisp)
8490           .addReg(RemSrcReg).addImm(SrcDisp);
8491       MBB->addSuccessor(AllDoneMBB);
8492       MBB = AllDoneMBB;
8493       if (EndMBB) {
8494         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8495         MBB->addLiveIn(SystemZ::CC);
8496       }
8497     }
8498   }
8499 
8500   // Handle any remaining bytes with straight-line code.
8501   while (ImmLength > 0) {
8502     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8503     // The previous iteration might have created out-of-range displacements.
8504     // Apply them using LA/LAY if so.
8505     foldDisplIfNeeded(DestBase, DestDisp);
8506     foldDisplIfNeeded(SrcBase, SrcDisp);
8507     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
8508     DestDisp += ThisLength;
8509     SrcDisp += ThisLength;
8510     ImmLength -= ThisLength;
8511     // If there's another CLC to go, branch to the end if a difference
8512     // was found.
8513     if (EndMBB && ImmLength > 0) {
8514       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8515       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8516         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8517         .addMBB(EndMBB);
8518       MBB->addSuccessor(EndMBB);
8519       MBB->addSuccessor(NextMBB);
8520       MBB = NextMBB;
8521     }
8522   }
8523   if (EndMBB) {
8524     MBB->addSuccessor(EndMBB);
8525     MBB = EndMBB;
8526     MBB->addLiveIn(SystemZ::CC);
8527   }
8528 
8529   MI.eraseFromParent();
8530   return MBB;
8531 }
8532 
8533 // Decompose string pseudo-instruction MI into a loop that continually performs
8534 // Opcode until CC != 3.
8535 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8536     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8537   MachineFunction &MF = *MBB->getParent();
8538   const SystemZInstrInfo *TII =
8539       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8540   MachineRegisterInfo &MRI = MF.getRegInfo();
8541   DebugLoc DL = MI.getDebugLoc();
8542 
8543   uint64_t End1Reg = MI.getOperand(0).getReg();
8544   uint64_t Start1Reg = MI.getOperand(1).getReg();
8545   uint64_t Start2Reg = MI.getOperand(2).getReg();
8546   uint64_t CharReg = MI.getOperand(3).getReg();
8547 
8548   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8549   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8550   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8551   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8552 
8553   MachineBasicBlock *StartMBB = MBB;
8554   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8555   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8556 
8557   //  StartMBB:
8558   //   # fall through to LoopMBB
8559   MBB->addSuccessor(LoopMBB);
8560 
8561   //  LoopMBB:
8562   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8563   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8564   //   R0L = %CharReg
8565   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8566   //   JO LoopMBB
8567   //   # fall through to DoneMBB
8568   //
8569   // The load of R0L can be hoisted by post-RA LICM.
8570   MBB = LoopMBB;
8571 
8572   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8573     .addReg(Start1Reg).addMBB(StartMBB)
8574     .addReg(End1Reg).addMBB(LoopMBB);
8575   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8576     .addReg(Start2Reg).addMBB(StartMBB)
8577     .addReg(End2Reg).addMBB(LoopMBB);
8578   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8579   BuildMI(MBB, DL, TII->get(Opcode))
8580     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8581     .addReg(This1Reg).addReg(This2Reg);
8582   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8583     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8584   MBB->addSuccessor(LoopMBB);
8585   MBB->addSuccessor(DoneMBB);
8586 
8587   DoneMBB->addLiveIn(SystemZ::CC);
8588 
8589   MI.eraseFromParent();
8590   return DoneMBB;
8591 }
8592 
8593 // Update TBEGIN instruction with final opcode and register clobbers.
8594 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8595     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8596     bool NoFloat) const {
8597   MachineFunction &MF = *MBB->getParent();
8598   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8599   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8600 
8601   // Update opcode.
8602   MI.setDesc(TII->get(Opcode));
8603 
8604   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8605   // Make sure to add the corresponding GRSM bits if they are missing.
8606   uint64_t Control = MI.getOperand(2).getImm();
8607   static const unsigned GPRControlBit[16] = {
8608     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8609     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8610   };
8611   Control |= GPRControlBit[15];
8612   if (TFI->hasFP(MF))
8613     Control |= GPRControlBit[11];
8614   MI.getOperand(2).setImm(Control);
8615 
8616   // Add GPR clobbers.
8617   for (int I = 0; I < 16; I++) {
8618     if ((Control & GPRControlBit[I]) == 0) {
8619       unsigned Reg = SystemZMC::GR64Regs[I];
8620       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8621     }
8622   }
8623 
8624   // Add FPR/VR clobbers.
8625   if (!NoFloat && (Control & 4) != 0) {
8626     if (Subtarget.hasVector()) {
8627       for (unsigned Reg : SystemZMC::VR128Regs) {
8628         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8629       }
8630     } else {
8631       for (unsigned Reg : SystemZMC::FP64Regs) {
8632         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8633       }
8634     }
8635   }
8636 
8637   return MBB;
8638 }
8639 
8640 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8641     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8642   MachineFunction &MF = *MBB->getParent();
8643   MachineRegisterInfo *MRI = &MF.getRegInfo();
8644   const SystemZInstrInfo *TII =
8645       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8646   DebugLoc DL = MI.getDebugLoc();
8647 
8648   Register SrcReg = MI.getOperand(0).getReg();
8649 
8650   // Create new virtual register of the same class as source.
8651   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8652   Register DstReg = MRI->createVirtualRegister(RC);
8653 
8654   // Replace pseudo with a normal load-and-test that models the def as
8655   // well.
8656   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8657     .addReg(SrcReg)
8658     .setMIFlags(MI.getFlags());
8659   MI.eraseFromParent();
8660 
8661   return MBB;
8662 }
8663 
8664 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8665     MachineInstr &MI, MachineBasicBlock *MBB) const {
8666   MachineFunction &MF = *MBB->getParent();
8667   MachineRegisterInfo *MRI = &MF.getRegInfo();
8668   const SystemZInstrInfo *TII =
8669       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8670   DebugLoc DL = MI.getDebugLoc();
8671   const unsigned ProbeSize = getStackProbeSize(MF);
8672   Register DstReg = MI.getOperand(0).getReg();
8673   Register SizeReg = MI.getOperand(2).getReg();
8674 
8675   MachineBasicBlock *StartMBB = MBB;
8676   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8677   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8678   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8679   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8680   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8681 
8682   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8683     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8684 
8685   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8686   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8687 
8688   //  LoopTestMBB
8689   //  BRC TailTestMBB
8690   //  # fallthrough to LoopBodyMBB
8691   StartMBB->addSuccessor(LoopTestMBB);
8692   MBB = LoopTestMBB;
8693   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8694     .addReg(SizeReg)
8695     .addMBB(StartMBB)
8696     .addReg(IncReg)
8697     .addMBB(LoopBodyMBB);
8698   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8699     .addReg(PHIReg)
8700     .addImm(ProbeSize);
8701   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8702     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8703     .addMBB(TailTestMBB);
8704   MBB->addSuccessor(LoopBodyMBB);
8705   MBB->addSuccessor(TailTestMBB);
8706 
8707   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8708   //  J LoopTestMBB
8709   MBB = LoopBodyMBB;
8710   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8711     .addReg(PHIReg)
8712     .addImm(ProbeSize);
8713   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8714     .addReg(SystemZ::R15D)
8715     .addImm(ProbeSize);
8716   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8717     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8718     .setMemRefs(VolLdMMO);
8719   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8720   MBB->addSuccessor(LoopTestMBB);
8721 
8722   //  TailTestMBB
8723   //  BRC DoneMBB
8724   //  # fallthrough to TailMBB
8725   MBB = TailTestMBB;
8726   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8727     .addReg(PHIReg)
8728     .addImm(0);
8729   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8730     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8731     .addMBB(DoneMBB);
8732   MBB->addSuccessor(TailMBB);
8733   MBB->addSuccessor(DoneMBB);
8734 
8735   //  TailMBB
8736   //  # fallthrough to DoneMBB
8737   MBB = TailMBB;
8738   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8739     .addReg(SystemZ::R15D)
8740     .addReg(PHIReg);
8741   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8742     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8743     .setMemRefs(VolLdMMO);
8744   MBB->addSuccessor(DoneMBB);
8745 
8746   //  DoneMBB
8747   MBB = DoneMBB;
8748   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8749     .addReg(SystemZ::R15D);
8750 
8751   MI.eraseFromParent();
8752   return DoneMBB;
8753 }
8754 
8755 SDValue SystemZTargetLowering::
8756 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8757   MachineFunction &MF = DAG.getMachineFunction();
8758   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8759   SDLoc DL(SP);
8760   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8761                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8762 }
8763 
8764 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8765     MachineInstr &MI, MachineBasicBlock *MBB) const {
8766   switch (MI.getOpcode()) {
8767   case SystemZ::Select32:
8768   case SystemZ::Select64:
8769   case SystemZ::SelectF32:
8770   case SystemZ::SelectF64:
8771   case SystemZ::SelectF128:
8772   case SystemZ::SelectVR32:
8773   case SystemZ::SelectVR64:
8774   case SystemZ::SelectVR128:
8775     return emitSelect(MI, MBB);
8776 
8777   case SystemZ::CondStore8Mux:
8778     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8779   case SystemZ::CondStore8MuxInv:
8780     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8781   case SystemZ::CondStore16Mux:
8782     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8783   case SystemZ::CondStore16MuxInv:
8784     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8785   case SystemZ::CondStore32Mux:
8786     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8787   case SystemZ::CondStore32MuxInv:
8788     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8789   case SystemZ::CondStore8:
8790     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8791   case SystemZ::CondStore8Inv:
8792     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8793   case SystemZ::CondStore16:
8794     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8795   case SystemZ::CondStore16Inv:
8796     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8797   case SystemZ::CondStore32:
8798     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8799   case SystemZ::CondStore32Inv:
8800     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8801   case SystemZ::CondStore64:
8802     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8803   case SystemZ::CondStore64Inv:
8804     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8805   case SystemZ::CondStoreF32:
8806     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8807   case SystemZ::CondStoreF32Inv:
8808     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8809   case SystemZ::CondStoreF64:
8810     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8811   case SystemZ::CondStoreF64Inv:
8812     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8813 
8814   case SystemZ::PAIR128:
8815     return emitPair128(MI, MBB);
8816   case SystemZ::AEXT128:
8817     return emitExt128(MI, MBB, false);
8818   case SystemZ::ZEXT128:
8819     return emitExt128(MI, MBB, true);
8820 
8821   case SystemZ::ATOMIC_SWAPW:
8822     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8823   case SystemZ::ATOMIC_SWAP_32:
8824     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8825   case SystemZ::ATOMIC_SWAP_64:
8826     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8827 
8828   case SystemZ::ATOMIC_LOADW_AR:
8829     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8830   case SystemZ::ATOMIC_LOADW_AFI:
8831     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8832   case SystemZ::ATOMIC_LOAD_AR:
8833     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8834   case SystemZ::ATOMIC_LOAD_AHI:
8835     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8836   case SystemZ::ATOMIC_LOAD_AFI:
8837     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8838   case SystemZ::ATOMIC_LOAD_AGR:
8839     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8840   case SystemZ::ATOMIC_LOAD_AGHI:
8841     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8842   case SystemZ::ATOMIC_LOAD_AGFI:
8843     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8844 
8845   case SystemZ::ATOMIC_LOADW_SR:
8846     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8847   case SystemZ::ATOMIC_LOAD_SR:
8848     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8849   case SystemZ::ATOMIC_LOAD_SGR:
8850     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8851 
8852   case SystemZ::ATOMIC_LOADW_NR:
8853     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8854   case SystemZ::ATOMIC_LOADW_NILH:
8855     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8856   case SystemZ::ATOMIC_LOAD_NR:
8857     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8858   case SystemZ::ATOMIC_LOAD_NILL:
8859     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8860   case SystemZ::ATOMIC_LOAD_NILH:
8861     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8862   case SystemZ::ATOMIC_LOAD_NILF:
8863     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8864   case SystemZ::ATOMIC_LOAD_NGR:
8865     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8866   case SystemZ::ATOMIC_LOAD_NILL64:
8867     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8868   case SystemZ::ATOMIC_LOAD_NILH64:
8869     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8870   case SystemZ::ATOMIC_LOAD_NIHL64:
8871     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8872   case SystemZ::ATOMIC_LOAD_NIHH64:
8873     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8874   case SystemZ::ATOMIC_LOAD_NILF64:
8875     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8876   case SystemZ::ATOMIC_LOAD_NIHF64:
8877     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8878 
8879   case SystemZ::ATOMIC_LOADW_OR:
8880     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8881   case SystemZ::ATOMIC_LOADW_OILH:
8882     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8883   case SystemZ::ATOMIC_LOAD_OR:
8884     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8885   case SystemZ::ATOMIC_LOAD_OILL:
8886     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8887   case SystemZ::ATOMIC_LOAD_OILH:
8888     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8889   case SystemZ::ATOMIC_LOAD_OILF:
8890     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8891   case SystemZ::ATOMIC_LOAD_OGR:
8892     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8893   case SystemZ::ATOMIC_LOAD_OILL64:
8894     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8895   case SystemZ::ATOMIC_LOAD_OILH64:
8896     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8897   case SystemZ::ATOMIC_LOAD_OIHL64:
8898     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8899   case SystemZ::ATOMIC_LOAD_OIHH64:
8900     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8901   case SystemZ::ATOMIC_LOAD_OILF64:
8902     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8903   case SystemZ::ATOMIC_LOAD_OIHF64:
8904     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8905 
8906   case SystemZ::ATOMIC_LOADW_XR:
8907     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8908   case SystemZ::ATOMIC_LOADW_XILF:
8909     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8910   case SystemZ::ATOMIC_LOAD_XR:
8911     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8912   case SystemZ::ATOMIC_LOAD_XILF:
8913     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8914   case SystemZ::ATOMIC_LOAD_XGR:
8915     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8916   case SystemZ::ATOMIC_LOAD_XILF64:
8917     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8918   case SystemZ::ATOMIC_LOAD_XIHF64:
8919     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8920 
8921   case SystemZ::ATOMIC_LOADW_NRi:
8922     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8923   case SystemZ::ATOMIC_LOADW_NILHi:
8924     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8925   case SystemZ::ATOMIC_LOAD_NRi:
8926     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8927   case SystemZ::ATOMIC_LOAD_NILLi:
8928     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8929   case SystemZ::ATOMIC_LOAD_NILHi:
8930     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8931   case SystemZ::ATOMIC_LOAD_NILFi:
8932     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8933   case SystemZ::ATOMIC_LOAD_NGRi:
8934     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8935   case SystemZ::ATOMIC_LOAD_NILL64i:
8936     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8937   case SystemZ::ATOMIC_LOAD_NILH64i:
8938     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8939   case SystemZ::ATOMIC_LOAD_NIHL64i:
8940     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8941   case SystemZ::ATOMIC_LOAD_NIHH64i:
8942     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8943   case SystemZ::ATOMIC_LOAD_NILF64i:
8944     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8945   case SystemZ::ATOMIC_LOAD_NIHF64i:
8946     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8947 
8948   case SystemZ::ATOMIC_LOADW_MIN:
8949     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8950                                 SystemZ::CCMASK_CMP_LE, 0);
8951   case SystemZ::ATOMIC_LOAD_MIN_32:
8952     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8953                                 SystemZ::CCMASK_CMP_LE, 32);
8954   case SystemZ::ATOMIC_LOAD_MIN_64:
8955     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8956                                 SystemZ::CCMASK_CMP_LE, 64);
8957 
8958   case SystemZ::ATOMIC_LOADW_MAX:
8959     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8960                                 SystemZ::CCMASK_CMP_GE, 0);
8961   case SystemZ::ATOMIC_LOAD_MAX_32:
8962     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8963                                 SystemZ::CCMASK_CMP_GE, 32);
8964   case SystemZ::ATOMIC_LOAD_MAX_64:
8965     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8966                                 SystemZ::CCMASK_CMP_GE, 64);
8967 
8968   case SystemZ::ATOMIC_LOADW_UMIN:
8969     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8970                                 SystemZ::CCMASK_CMP_LE, 0);
8971   case SystemZ::ATOMIC_LOAD_UMIN_32:
8972     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8973                                 SystemZ::CCMASK_CMP_LE, 32);
8974   case SystemZ::ATOMIC_LOAD_UMIN_64:
8975     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8976                                 SystemZ::CCMASK_CMP_LE, 64);
8977 
8978   case SystemZ::ATOMIC_LOADW_UMAX:
8979     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8980                                 SystemZ::CCMASK_CMP_GE, 0);
8981   case SystemZ::ATOMIC_LOAD_UMAX_32:
8982     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8983                                 SystemZ::CCMASK_CMP_GE, 32);
8984   case SystemZ::ATOMIC_LOAD_UMAX_64:
8985     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8986                                 SystemZ::CCMASK_CMP_GE, 64);
8987 
8988   case SystemZ::ATOMIC_CMP_SWAPW:
8989     return emitAtomicCmpSwapW(MI, MBB);
8990   case SystemZ::MVCImm:
8991   case SystemZ::MVCReg:
8992     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8993   case SystemZ::NCImm:
8994     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8995   case SystemZ::OCImm:
8996     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8997   case SystemZ::XCImm:
8998   case SystemZ::XCReg:
8999     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9000   case SystemZ::CLCImm:
9001   case SystemZ::CLCReg:
9002     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9003   case SystemZ::MemsetImmImm:
9004   case SystemZ::MemsetImmReg:
9005   case SystemZ::MemsetRegImm:
9006   case SystemZ::MemsetRegReg:
9007     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9008   case SystemZ::CLSTLoop:
9009     return emitStringWrapper(MI, MBB, SystemZ::CLST);
9010   case SystemZ::MVSTLoop:
9011     return emitStringWrapper(MI, MBB, SystemZ::MVST);
9012   case SystemZ::SRSTLoop:
9013     return emitStringWrapper(MI, MBB, SystemZ::SRST);
9014   case SystemZ::TBEGIN:
9015     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9016   case SystemZ::TBEGIN_nofloat:
9017     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9018   case SystemZ::TBEGINC:
9019     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9020   case SystemZ::LTEBRCompare_VecPseudo:
9021     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9022   case SystemZ::LTDBRCompare_VecPseudo:
9023     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9024   case SystemZ::LTXBRCompare_VecPseudo:
9025     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9026 
9027   case SystemZ::PROBED_ALLOCA:
9028     return emitProbedAlloca(MI, MBB);
9029 
9030   case TargetOpcode::STACKMAP:
9031   case TargetOpcode::PATCHPOINT:
9032     return emitPatchPoint(MI, MBB);
9033 
9034   default:
9035     llvm_unreachable("Unexpected instr type to insert");
9036   }
9037 }
9038 
9039 // This is only used by the isel schedulers, and is needed only to prevent
9040 // compiler from crashing when list-ilp is used.
9041 const TargetRegisterClass *
9042 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9043   if (VT == MVT::Untyped)
9044     return &SystemZ::ADDR128BitRegClass;
9045   return TargetLowering::getRepRegClassFor(VT);
9046 }
9047