1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (Subtarget.hasVector()) { 92 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 93 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 94 } else { 95 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 96 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 97 } 98 if (Subtarget.hasVectorEnhancements1()) 99 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 100 else 101 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 102 103 if (Subtarget.hasVector()) { 104 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 105 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 110 } 111 112 // Compute derived properties from the register classes 113 computeRegisterProperties(Subtarget.getRegisterInfo()); 114 115 // Set up special registers. 116 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 117 118 // TODO: It may be better to default to latency-oriented scheduling, however 119 // LLVM's current latency-oriented scheduler can't handle physreg definitions 120 // such as SystemZ has with CC, so set this to the register-pressure 121 // scheduler, because it can. 122 setSchedulingPreference(Sched::RegPressure); 123 124 setBooleanContents(ZeroOrOneBooleanContent); 125 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 126 127 // Instructions are strings of 2-byte aligned 2-byte values. 128 setMinFunctionAlignment(Align(2)); 129 // For performance reasons we prefer 16-byte alignment. 130 setPrefFunctionAlignment(Align(16)); 131 132 // Handle operations that are handled in a similar way for all types. 133 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 134 I <= MVT::LAST_FP_VALUETYPE; 135 ++I) { 136 MVT VT = MVT::SimpleValueType(I); 137 if (isTypeLegal(VT)) { 138 // Lower SET_CC into an IPM-based sequence. 139 setOperationAction(ISD::SETCC, VT, Custom); 140 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 141 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 142 143 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 144 setOperationAction(ISD::SELECT, VT, Expand); 145 146 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 147 setOperationAction(ISD::SELECT_CC, VT, Custom); 148 setOperationAction(ISD::BR_CC, VT, Custom); 149 } 150 } 151 152 // Expand jump table branches as address arithmetic followed by an 153 // indirect jump. 154 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 155 156 // Expand BRCOND into a BR_CC (see above). 157 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 158 159 // Handle integer types. 160 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 161 I <= MVT::LAST_INTEGER_VALUETYPE; 162 ++I) { 163 MVT VT = MVT::SimpleValueType(I); 164 if (isTypeLegal(VT)) { 165 // Expand individual DIV and REMs into DIVREMs. 166 setOperationAction(ISD::SDIV, VT, Expand); 167 setOperationAction(ISD::UDIV, VT, Expand); 168 setOperationAction(ISD::SREM, VT, Expand); 169 setOperationAction(ISD::UREM, VT, Expand); 170 setOperationAction(ISD::SDIVREM, VT, Custom); 171 setOperationAction(ISD::UDIVREM, VT, Custom); 172 173 // Support addition/subtraction with overflow. 174 setOperationAction(ISD::SADDO, VT, Custom); 175 setOperationAction(ISD::SSUBO, VT, Custom); 176 177 // Support addition/subtraction with carry. 178 setOperationAction(ISD::UADDO, VT, Custom); 179 setOperationAction(ISD::USUBO, VT, Custom); 180 181 // Support carry in as value rather than glue. 182 setOperationAction(ISD::ADDCARRY, VT, Custom); 183 setOperationAction(ISD::SUBCARRY, VT, Custom); 184 185 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 186 // stores, putting a serialization instruction after the stores. 187 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 188 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 189 190 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 191 // available, or if the operand is constant. 192 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 193 194 // Use POPCNT on z196 and above. 195 if (Subtarget.hasPopulationCount()) 196 setOperationAction(ISD::CTPOP, VT, Custom); 197 else 198 setOperationAction(ISD::CTPOP, VT, Expand); 199 200 // No special instructions for these. 201 setOperationAction(ISD::CTTZ, VT, Expand); 202 setOperationAction(ISD::ROTR, VT, Expand); 203 204 // Use *MUL_LOHI where possible instead of MULH*. 205 setOperationAction(ISD::MULHS, VT, Expand); 206 setOperationAction(ISD::MULHU, VT, Expand); 207 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 208 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 209 210 // Only z196 and above have native support for conversions to unsigned. 211 // On z10, promoting to i64 doesn't generate an inexact condition for 212 // values that are outside the i32 range but in the i64 range, so use 213 // the default expansion. 214 if (!Subtarget.hasFPExtension()) 215 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 216 217 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 218 // default to Expand, so need to be modified to Legal where appropriate. 219 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 220 if (Subtarget.hasFPExtension()) 221 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 222 } 223 } 224 225 // Type legalization will convert 8- and 16-bit atomic operations into 226 // forms that operate on i32s (but still keeping the original memory VT). 227 // Lower them into full i32 operations. 228 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 229 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 230 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 231 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 232 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 233 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 234 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 235 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 239 240 // Even though i128 is not a legal type, we still need to custom lower 241 // the atomic operations in order to exploit SystemZ instructions. 242 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 243 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 244 245 // We can use the CC result of compare-and-swap to implement 246 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 247 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 248 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 249 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 250 251 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 252 253 // Traps are legal, as we will convert them to "j .+2". 254 setOperationAction(ISD::TRAP, MVT::Other, Legal); 255 256 // z10 has instructions for signed but not unsigned FP conversion. 257 // Handle unsigned 32-bit types as signed 64-bit types. 258 if (!Subtarget.hasFPExtension()) { 259 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 260 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 261 } 262 263 // We have native support for a 64-bit CTLZ, via FLOGR. 264 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 265 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 266 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 267 268 // On z15 we have native support for a 64-bit CTPOP. 269 if (Subtarget.hasMiscellaneousExtensions3()) { 270 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 271 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 272 } 273 274 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 275 setOperationAction(ISD::OR, MVT::i64, Custom); 276 277 // FIXME: Can we support these natively? 278 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 279 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 280 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 281 282 // We have native instructions for i8, i16 and i32 extensions, but not i1. 283 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 284 for (MVT VT : MVT::integer_valuetypes()) { 285 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 286 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 287 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 288 } 289 290 // Handle the various types of symbolic address. 291 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 292 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 293 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 294 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 295 setOperationAction(ISD::JumpTable, PtrVT, Custom); 296 297 // We need to handle dynamic allocations specially because of the 298 // 160-byte area at the bottom of the stack. 299 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 300 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 301 302 // Use custom expanders so that we can force the function to use 303 // a frame pointer. 304 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 305 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 306 307 // Handle prefetches with PFD or PFDRL. 308 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 309 310 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 311 // Assume by default that all vector operations need to be expanded. 312 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 313 if (getOperationAction(Opcode, VT) == Legal) 314 setOperationAction(Opcode, VT, Expand); 315 316 // Likewise all truncating stores and extending loads. 317 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 318 setTruncStoreAction(VT, InnerVT, Expand); 319 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 320 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 321 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 322 } 323 324 if (isTypeLegal(VT)) { 325 // These operations are legal for anything that can be stored in a 326 // vector register, even if there is no native support for the format 327 // as such. In particular, we can do these for v4f32 even though there 328 // are no specific instructions for that format. 329 setOperationAction(ISD::LOAD, VT, Legal); 330 setOperationAction(ISD::STORE, VT, Legal); 331 setOperationAction(ISD::VSELECT, VT, Legal); 332 setOperationAction(ISD::BITCAST, VT, Legal); 333 setOperationAction(ISD::UNDEF, VT, Legal); 334 335 // Likewise, except that we need to replace the nodes with something 336 // more specific. 337 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 338 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 339 } 340 } 341 342 // Handle integer vector types. 343 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 344 if (isTypeLegal(VT)) { 345 // These operations have direct equivalents. 346 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 347 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 348 setOperationAction(ISD::ADD, VT, Legal); 349 setOperationAction(ISD::SUB, VT, Legal); 350 if (VT != MVT::v2i64) 351 setOperationAction(ISD::MUL, VT, Legal); 352 setOperationAction(ISD::AND, VT, Legal); 353 setOperationAction(ISD::OR, VT, Legal); 354 setOperationAction(ISD::XOR, VT, Legal); 355 if (Subtarget.hasVectorEnhancements1()) 356 setOperationAction(ISD::CTPOP, VT, Legal); 357 else 358 setOperationAction(ISD::CTPOP, VT, Custom); 359 setOperationAction(ISD::CTTZ, VT, Legal); 360 setOperationAction(ISD::CTLZ, VT, Legal); 361 362 // Convert a GPR scalar to a vector by inserting it into element 0. 363 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 364 365 // Use a series of unpacks for extensions. 366 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 367 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 368 369 // Detect shifts by a scalar amount and convert them into 370 // V*_BY_SCALAR. 371 setOperationAction(ISD::SHL, VT, Custom); 372 setOperationAction(ISD::SRA, VT, Custom); 373 setOperationAction(ISD::SRL, VT, Custom); 374 375 // At present ROTL isn't matched by DAGCombiner. ROTR should be 376 // converted into ROTL. 377 setOperationAction(ISD::ROTL, VT, Expand); 378 setOperationAction(ISD::ROTR, VT, Expand); 379 380 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 381 // and inverting the result as necessary. 382 setOperationAction(ISD::SETCC, VT, Custom); 383 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 384 if (Subtarget.hasVectorEnhancements1()) 385 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 386 } 387 } 388 389 if (Subtarget.hasVector()) { 390 // There should be no need to check for float types other than v2f64 391 // since <2 x f32> isn't a legal type. 392 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 393 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 394 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 395 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 396 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 397 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 398 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 399 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 400 401 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 405 } 406 407 if (Subtarget.hasVectorEnhancements2()) { 408 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 409 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 410 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 411 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 412 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 413 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 414 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 415 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 416 417 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 418 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 419 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 421 } 422 423 // Handle floating-point types. 424 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 425 I <= MVT::LAST_FP_VALUETYPE; 426 ++I) { 427 MVT VT = MVT::SimpleValueType(I); 428 if (isTypeLegal(VT)) { 429 // We can use FI for FRINT. 430 setOperationAction(ISD::FRINT, VT, Legal); 431 432 // We can use the extended form of FI for other rounding operations. 433 if (Subtarget.hasFPExtension()) { 434 setOperationAction(ISD::FNEARBYINT, VT, Legal); 435 setOperationAction(ISD::FFLOOR, VT, Legal); 436 setOperationAction(ISD::FCEIL, VT, Legal); 437 setOperationAction(ISD::FTRUNC, VT, Legal); 438 setOperationAction(ISD::FROUND, VT, Legal); 439 } 440 441 // No special instructions for these. 442 setOperationAction(ISD::FSIN, VT, Expand); 443 setOperationAction(ISD::FCOS, VT, Expand); 444 setOperationAction(ISD::FSINCOS, VT, Expand); 445 setOperationAction(ISD::FREM, VT, Expand); 446 setOperationAction(ISD::FPOW, VT, Expand); 447 448 // Handle constrained floating-point operations. 449 setOperationAction(ISD::STRICT_FADD, VT, Legal); 450 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 451 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 452 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 453 setOperationAction(ISD::STRICT_FMA, VT, Legal); 454 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 455 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 456 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 457 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 458 if (Subtarget.hasFPExtension()) { 459 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 460 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 461 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 462 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 463 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 464 } 465 } 466 } 467 468 // Handle floating-point vector types. 469 if (Subtarget.hasVector()) { 470 // Scalar-to-vector conversion is just a subreg. 471 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 472 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 473 474 // Some insertions and extractions can be done directly but others 475 // need to go via integers. 476 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 477 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 478 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 479 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 480 481 // These operations have direct equivalents. 482 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 483 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 484 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 485 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 486 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 487 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 488 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 489 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 490 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 491 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 492 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 493 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 494 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 495 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 496 497 // Handle constrained floating-point operations. 498 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 499 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 500 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 501 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 502 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 503 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 504 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 505 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 506 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 507 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 508 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 509 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 510 } 511 512 // The vector enhancements facility 1 has instructions for these. 513 if (Subtarget.hasVectorEnhancements1()) { 514 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 515 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 516 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 517 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 518 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 519 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 520 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 521 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 522 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 523 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 524 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 525 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 526 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 527 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 528 529 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 530 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 531 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 532 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 533 534 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 535 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 536 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 537 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 538 539 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 540 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 541 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 542 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 543 544 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 545 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 546 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 547 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 548 549 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 550 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 551 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 552 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 553 554 // Handle constrained floating-point operations. 555 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 556 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 557 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 558 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 559 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 560 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 561 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 562 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 563 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 564 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 565 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 566 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 567 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 568 MVT::v4f32, MVT::v2f64 }) { 569 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 570 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 571 } 572 } 573 574 // We only have fused f128 multiply-addition on vector registers. 575 if (!Subtarget.hasVectorEnhancements1()) { 576 setOperationAction(ISD::FMA, MVT::f128, Expand); 577 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 578 } 579 580 // We don't have a copysign instruction on vector registers. 581 if (Subtarget.hasVectorEnhancements1()) 582 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 583 584 // Needed so that we don't try to implement f128 constant loads using 585 // a load-and-extend of a f80 constant (in cases where the constant 586 // would fit in an f80). 587 for (MVT VT : MVT::fp_valuetypes()) 588 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 589 590 // We don't have extending load instruction on vector registers. 591 if (Subtarget.hasVectorEnhancements1()) { 592 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 593 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 594 } 595 596 // Floating-point truncation and stores need to be done separately. 597 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 598 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 599 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 600 601 // We have 64-bit FPR<->GPR moves, but need special handling for 602 // 32-bit forms. 603 if (!Subtarget.hasVector()) { 604 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 605 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 606 } 607 608 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 609 // structure, but VAEND is a no-op. 610 setOperationAction(ISD::VASTART, MVT::Other, Custom); 611 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 612 setOperationAction(ISD::VAEND, MVT::Other, Expand); 613 614 // Codes for which we want to perform some z-specific combinations. 615 setTargetDAGCombine(ISD::ZERO_EXTEND); 616 setTargetDAGCombine(ISD::SIGN_EXTEND); 617 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 618 setTargetDAGCombine(ISD::LOAD); 619 setTargetDAGCombine(ISD::STORE); 620 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 621 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 622 setTargetDAGCombine(ISD::FP_ROUND); 623 setTargetDAGCombine(ISD::FP_EXTEND); 624 setTargetDAGCombine(ISD::BSWAP); 625 setTargetDAGCombine(ISD::SDIV); 626 setTargetDAGCombine(ISD::UDIV); 627 setTargetDAGCombine(ISD::SREM); 628 setTargetDAGCombine(ISD::UREM); 629 630 // Handle intrinsics. 631 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 632 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 633 634 // We want to use MVC in preference to even a single load/store pair. 635 MaxStoresPerMemcpy = 0; 636 MaxStoresPerMemcpyOptSize = 0; 637 638 // The main memset sequence is a byte store followed by an MVC. 639 // Two STC or MV..I stores win over that, but the kind of fused stores 640 // generated by target-independent code don't when the byte value is 641 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 642 // than "STC;MVC". Handle the choice in target-specific code instead. 643 MaxStoresPerMemset = 0; 644 MaxStoresPerMemsetOptSize = 0; 645 646 // Default to having -disable-strictnode-mutation on 647 IsStrictFPEnabled = true; 648 } 649 650 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 651 LLVMContext &, EVT VT) const { 652 if (!VT.isVector()) 653 return MVT::i32; 654 return VT.changeVectorElementTypeToInteger(); 655 } 656 657 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 658 const MachineFunction &MF, EVT VT) const { 659 VT = VT.getScalarType(); 660 661 if (!VT.isSimple()) 662 return false; 663 664 switch (VT.getSimpleVT().SimpleTy) { 665 case MVT::f32: 666 case MVT::f64: 667 return true; 668 case MVT::f128: 669 return Subtarget.hasVectorEnhancements1(); 670 default: 671 break; 672 } 673 674 return false; 675 } 676 677 // Return true if the constant can be generated with a vector instruction, 678 // such as VGM, VGMB or VREPI. 679 bool SystemZVectorConstantInfo::isVectorConstantLegal( 680 const SystemZSubtarget &Subtarget) { 681 const SystemZInstrInfo *TII = 682 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 683 if (!Subtarget.hasVector() || 684 (isFP128 && !Subtarget.hasVectorEnhancements1())) 685 return false; 686 687 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 688 // preferred way of creating all-zero and all-one vectors so give it 689 // priority over other methods below. 690 unsigned Mask = 0; 691 unsigned I = 0; 692 for (; I < SystemZ::VectorBytes; ++I) { 693 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 694 if (Byte == 0xff) 695 Mask |= 1ULL << I; 696 else if (Byte != 0) 697 break; 698 } 699 if (I == SystemZ::VectorBytes) { 700 Opcode = SystemZISD::BYTE_MASK; 701 OpVals.push_back(Mask); 702 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 703 return true; 704 } 705 706 if (SplatBitSize > 64) 707 return false; 708 709 auto tryValue = [&](uint64_t Value) -> bool { 710 // Try VECTOR REPLICATE IMMEDIATE 711 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 712 if (isInt<16>(SignedValue)) { 713 OpVals.push_back(((unsigned) SignedValue)); 714 Opcode = SystemZISD::REPLICATE; 715 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 716 SystemZ::VectorBits / SplatBitSize); 717 return true; 718 } 719 // Try VECTOR GENERATE MASK 720 unsigned Start, End; 721 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 722 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 723 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 724 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 725 OpVals.push_back(Start - (64 - SplatBitSize)); 726 OpVals.push_back(End - (64 - SplatBitSize)); 727 Opcode = SystemZISD::ROTATE_MASK; 728 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 729 SystemZ::VectorBits / SplatBitSize); 730 return true; 731 } 732 return false; 733 }; 734 735 // First try assuming that any undefined bits above the highest set bit 736 // and below the lowest set bit are 1s. This increases the likelihood of 737 // being able to use a sign-extended element value in VECTOR REPLICATE 738 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 739 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 740 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 741 uint64_t Lower = 742 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 743 uint64_t Upper = 744 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 745 if (tryValue(SplatBitsZ | Upper | Lower)) 746 return true; 747 748 // Now try assuming that any undefined bits between the first and 749 // last defined set bits are set. This increases the chances of 750 // using a non-wraparound mask. 751 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 752 return tryValue(SplatBitsZ | Middle); 753 } 754 755 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 756 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 757 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 758 759 // Find the smallest splat. 760 SplatBits = FPImm.bitcastToAPInt(); 761 unsigned Width = SplatBits.getBitWidth(); 762 while (Width > 8) { 763 unsigned HalfSize = Width / 2; 764 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 765 APInt LowValue = SplatBits.trunc(HalfSize); 766 767 // If the two halves do not match, stop here. 768 if (HighValue != LowValue || 8 > HalfSize) 769 break; 770 771 SplatBits = HighValue; 772 Width = HalfSize; 773 } 774 SplatUndef = 0; 775 SplatBitSize = Width; 776 } 777 778 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 779 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 780 bool HasAnyUndefs; 781 782 // Get IntBits by finding the 128 bit splat. 783 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 784 true); 785 786 // Get SplatBits by finding the 8 bit or greater splat. 787 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 788 true); 789 } 790 791 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 792 bool ForCodeSize) const { 793 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 794 if (Imm.isZero() || Imm.isNegZero()) 795 return true; 796 797 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 798 } 799 800 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 801 // We can use CGFI or CLGFI. 802 return isInt<32>(Imm) || isUInt<32>(Imm); 803 } 804 805 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 806 // We can use ALGFI or SLGFI. 807 return isUInt<32>(Imm) || isUInt<32>(-Imm); 808 } 809 810 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 811 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 812 // Unaligned accesses should never be slower than the expanded version. 813 // We check specifically for aligned accesses in the few cases where 814 // they are required. 815 if (Fast) 816 *Fast = true; 817 return true; 818 } 819 820 // Information about the addressing mode for a memory access. 821 struct AddressingMode { 822 // True if a long displacement is supported. 823 bool LongDisplacement; 824 825 // True if use of index register is supported. 826 bool IndexReg; 827 828 AddressingMode(bool LongDispl, bool IdxReg) : 829 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 830 }; 831 832 // Return the desired addressing mode for a Load which has only one use (in 833 // the same block) which is a Store. 834 static AddressingMode getLoadStoreAddrMode(bool HasVector, 835 Type *Ty) { 836 // With vector support a Load->Store combination may be combined to either 837 // an MVC or vector operations and it seems to work best to allow the 838 // vector addressing mode. 839 if (HasVector) 840 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 841 842 // Otherwise only the MVC case is special. 843 bool MVC = Ty->isIntegerTy(8); 844 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 845 } 846 847 // Return the addressing mode which seems most desirable given an LLVM 848 // Instruction pointer. 849 static AddressingMode 850 supportedAddressingMode(Instruction *I, bool HasVector) { 851 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 852 switch (II->getIntrinsicID()) { 853 default: break; 854 case Intrinsic::memset: 855 case Intrinsic::memmove: 856 case Intrinsic::memcpy: 857 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 858 } 859 } 860 861 if (isa<LoadInst>(I) && I->hasOneUse()) { 862 auto *SingleUser = cast<Instruction>(*I->user_begin()); 863 if (SingleUser->getParent() == I->getParent()) { 864 if (isa<ICmpInst>(SingleUser)) { 865 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 866 if (C->getBitWidth() <= 64 && 867 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 868 // Comparison of memory with 16 bit signed / unsigned immediate 869 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 870 } else if (isa<StoreInst>(SingleUser)) 871 // Load->Store 872 return getLoadStoreAddrMode(HasVector, I->getType()); 873 } 874 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 875 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 876 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 877 // Load->Store 878 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 879 } 880 881 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 882 883 // * Use LDE instead of LE/LEY for z13 to avoid partial register 884 // dependencies (LDE only supports small offsets). 885 // * Utilize the vector registers to hold floating point 886 // values (vector load / store instructions only support small 887 // offsets). 888 889 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 890 I->getOperand(0)->getType()); 891 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 892 bool IsVectorAccess = MemAccessTy->isVectorTy(); 893 894 // A store of an extracted vector element will be combined into a VSTE type 895 // instruction. 896 if (!IsVectorAccess && isa<StoreInst>(I)) { 897 Value *DataOp = I->getOperand(0); 898 if (isa<ExtractElementInst>(DataOp)) 899 IsVectorAccess = true; 900 } 901 902 // A load which gets inserted into a vector element will be combined into a 903 // VLE type instruction. 904 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 905 User *LoadUser = *I->user_begin(); 906 if (isa<InsertElementInst>(LoadUser)) 907 IsVectorAccess = true; 908 } 909 910 if (IsFPAccess || IsVectorAccess) 911 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 912 } 913 914 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 915 } 916 917 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 918 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 919 // Punt on globals for now, although they can be used in limited 920 // RELATIVE LONG cases. 921 if (AM.BaseGV) 922 return false; 923 924 // Require a 20-bit signed offset. 925 if (!isInt<20>(AM.BaseOffs)) 926 return false; 927 928 AddressingMode SupportedAM(true, true); 929 if (I != nullptr) 930 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 931 932 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 933 return false; 934 935 if (!SupportedAM.IndexReg) 936 // No indexing allowed. 937 return AM.Scale == 0; 938 else 939 // Indexing is OK but no scale factor can be applied. 940 return AM.Scale == 0 || AM.Scale == 1; 941 } 942 943 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 944 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 945 return false; 946 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 947 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 948 return FromBits > ToBits; 949 } 950 951 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 952 if (!FromVT.isInteger() || !ToVT.isInteger()) 953 return false; 954 unsigned FromBits = FromVT.getSizeInBits(); 955 unsigned ToBits = ToVT.getSizeInBits(); 956 return FromBits > ToBits; 957 } 958 959 //===----------------------------------------------------------------------===// 960 // Inline asm support 961 //===----------------------------------------------------------------------===// 962 963 TargetLowering::ConstraintType 964 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 965 if (Constraint.size() == 1) { 966 switch (Constraint[0]) { 967 case 'a': // Address register 968 case 'd': // Data register (equivalent to 'r') 969 case 'f': // Floating-point register 970 case 'h': // High-part register 971 case 'r': // General-purpose register 972 case 'v': // Vector register 973 return C_RegisterClass; 974 975 case 'Q': // Memory with base and unsigned 12-bit displacement 976 case 'R': // Likewise, plus an index 977 case 'S': // Memory with base and signed 20-bit displacement 978 case 'T': // Likewise, plus an index 979 case 'm': // Equivalent to 'T'. 980 return C_Memory; 981 982 case 'I': // Unsigned 8-bit constant 983 case 'J': // Unsigned 12-bit constant 984 case 'K': // Signed 16-bit constant 985 case 'L': // Signed 20-bit displacement (on all targets we support) 986 case 'M': // 0x7fffffff 987 return C_Immediate; 988 989 default: 990 break; 991 } 992 } 993 return TargetLowering::getConstraintType(Constraint); 994 } 995 996 TargetLowering::ConstraintWeight SystemZTargetLowering:: 997 getSingleConstraintMatchWeight(AsmOperandInfo &info, 998 const char *constraint) const { 999 ConstraintWeight weight = CW_Invalid; 1000 Value *CallOperandVal = info.CallOperandVal; 1001 // If we don't have a value, we can't do a match, 1002 // but allow it at the lowest weight. 1003 if (!CallOperandVal) 1004 return CW_Default; 1005 Type *type = CallOperandVal->getType(); 1006 // Look at the constraint type. 1007 switch (*constraint) { 1008 default: 1009 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1010 break; 1011 1012 case 'a': // Address register 1013 case 'd': // Data register (equivalent to 'r') 1014 case 'h': // High-part register 1015 case 'r': // General-purpose register 1016 if (CallOperandVal->getType()->isIntegerTy()) 1017 weight = CW_Register; 1018 break; 1019 1020 case 'f': // Floating-point register 1021 if (type->isFloatingPointTy()) 1022 weight = CW_Register; 1023 break; 1024 1025 case 'v': // Vector register 1026 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1027 Subtarget.hasVector()) 1028 weight = CW_Register; 1029 break; 1030 1031 case 'I': // Unsigned 8-bit constant 1032 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1033 if (isUInt<8>(C->getZExtValue())) 1034 weight = CW_Constant; 1035 break; 1036 1037 case 'J': // Unsigned 12-bit constant 1038 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1039 if (isUInt<12>(C->getZExtValue())) 1040 weight = CW_Constant; 1041 break; 1042 1043 case 'K': // Signed 16-bit constant 1044 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1045 if (isInt<16>(C->getSExtValue())) 1046 weight = CW_Constant; 1047 break; 1048 1049 case 'L': // Signed 20-bit displacement (on all targets we support) 1050 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1051 if (isInt<20>(C->getSExtValue())) 1052 weight = CW_Constant; 1053 break; 1054 1055 case 'M': // 0x7fffffff 1056 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1057 if (C->getZExtValue() == 0x7fffffff) 1058 weight = CW_Constant; 1059 break; 1060 } 1061 return weight; 1062 } 1063 1064 // Parse a "{tNNN}" register constraint for which the register type "t" 1065 // has already been verified. MC is the class associated with "t" and 1066 // Map maps 0-based register numbers to LLVM register numbers. 1067 static std::pair<unsigned, const TargetRegisterClass *> 1068 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1069 const unsigned *Map, unsigned Size) { 1070 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1071 if (isdigit(Constraint[2])) { 1072 unsigned Index; 1073 bool Failed = 1074 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1075 if (!Failed && Index < Size && Map[Index]) 1076 return std::make_pair(Map[Index], RC); 1077 } 1078 return std::make_pair(0U, nullptr); 1079 } 1080 1081 std::pair<unsigned, const TargetRegisterClass *> 1082 SystemZTargetLowering::getRegForInlineAsmConstraint( 1083 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1084 if (Constraint.size() == 1) { 1085 // GCC Constraint Letters 1086 switch (Constraint[0]) { 1087 default: break; 1088 case 'd': // Data register (equivalent to 'r') 1089 case 'r': // General-purpose register 1090 if (VT == MVT::i64) 1091 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1092 else if (VT == MVT::i128) 1093 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1094 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1095 1096 case 'a': // Address register 1097 if (VT == MVT::i64) 1098 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1099 else if (VT == MVT::i128) 1100 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1101 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1102 1103 case 'h': // High-part register (an LLVM extension) 1104 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1105 1106 case 'f': // Floating-point register 1107 if (VT == MVT::f64) 1108 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1109 else if (VT == MVT::f128) 1110 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1111 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1112 1113 case 'v': // Vector register 1114 if (Subtarget.hasVector()) { 1115 if (VT == MVT::f32) 1116 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1117 if (VT == MVT::f64) 1118 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1119 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1120 } 1121 break; 1122 } 1123 } 1124 if (Constraint.size() > 0 && Constraint[0] == '{') { 1125 // We need to override the default register parsing for GPRs and FPRs 1126 // because the interpretation depends on VT. The internal names of 1127 // the registers are also different from the external names 1128 // (F0D and F0S instead of F0, etc.). 1129 if (Constraint[1] == 'r') { 1130 if (VT == MVT::i32) 1131 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1132 SystemZMC::GR32Regs, 16); 1133 if (VT == MVT::i128) 1134 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1135 SystemZMC::GR128Regs, 16); 1136 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1137 SystemZMC::GR64Regs, 16); 1138 } 1139 if (Constraint[1] == 'f') { 1140 if (VT == MVT::f32) 1141 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1142 SystemZMC::FP32Regs, 16); 1143 if (VT == MVT::f128) 1144 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1145 SystemZMC::FP128Regs, 16); 1146 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1147 SystemZMC::FP64Regs, 16); 1148 } 1149 if (Constraint[1] == 'v') { 1150 if (VT == MVT::f32) 1151 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1152 SystemZMC::VR32Regs, 32); 1153 if (VT == MVT::f64) 1154 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1155 SystemZMC::VR64Regs, 32); 1156 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1157 SystemZMC::VR128Regs, 32); 1158 } 1159 } 1160 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1161 } 1162 1163 void SystemZTargetLowering:: 1164 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1165 std::vector<SDValue> &Ops, 1166 SelectionDAG &DAG) const { 1167 // Only support length 1 constraints for now. 1168 if (Constraint.length() == 1) { 1169 switch (Constraint[0]) { 1170 case 'I': // Unsigned 8-bit constant 1171 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1172 if (isUInt<8>(C->getZExtValue())) 1173 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1174 Op.getValueType())); 1175 return; 1176 1177 case 'J': // Unsigned 12-bit constant 1178 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1179 if (isUInt<12>(C->getZExtValue())) 1180 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1181 Op.getValueType())); 1182 return; 1183 1184 case 'K': // Signed 16-bit constant 1185 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1186 if (isInt<16>(C->getSExtValue())) 1187 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1188 Op.getValueType())); 1189 return; 1190 1191 case 'L': // Signed 20-bit displacement (on all targets we support) 1192 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1193 if (isInt<20>(C->getSExtValue())) 1194 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1195 Op.getValueType())); 1196 return; 1197 1198 case 'M': // 0x7fffffff 1199 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1200 if (C->getZExtValue() == 0x7fffffff) 1201 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1202 Op.getValueType())); 1203 return; 1204 } 1205 } 1206 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1207 } 1208 1209 //===----------------------------------------------------------------------===// 1210 // Calling conventions 1211 //===----------------------------------------------------------------------===// 1212 1213 #include "SystemZGenCallingConv.inc" 1214 1215 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1216 CallingConv::ID) const { 1217 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1218 SystemZ::R14D, 0 }; 1219 return ScratchRegs; 1220 } 1221 1222 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1223 Type *ToType) const { 1224 return isTruncateFree(FromType, ToType); 1225 } 1226 1227 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1228 return CI->isTailCall(); 1229 } 1230 1231 // We do not yet support 128-bit single-element vector types. If the user 1232 // attempts to use such types as function argument or return type, prefer 1233 // to error out instead of emitting code violating the ABI. 1234 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1235 if (ArgVT.isVector() && !VT.isVector()) 1236 report_fatal_error("Unsupported vector argument or return type"); 1237 } 1238 1239 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1240 for (unsigned i = 0; i < Ins.size(); ++i) 1241 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1242 } 1243 1244 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1245 for (unsigned i = 0; i < Outs.size(); ++i) 1246 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1247 } 1248 1249 // Value is a value that has been passed to us in the location described by VA 1250 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1251 // any loads onto Chain. 1252 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1253 CCValAssign &VA, SDValue Chain, 1254 SDValue Value) { 1255 // If the argument has been promoted from a smaller type, insert an 1256 // assertion to capture this. 1257 if (VA.getLocInfo() == CCValAssign::SExt) 1258 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1259 DAG.getValueType(VA.getValVT())); 1260 else if (VA.getLocInfo() == CCValAssign::ZExt) 1261 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1262 DAG.getValueType(VA.getValVT())); 1263 1264 if (VA.isExtInLoc()) 1265 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1266 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1267 // If this is a short vector argument loaded from the stack, 1268 // extend from i64 to full vector size and then bitcast. 1269 assert(VA.getLocVT() == MVT::i64); 1270 assert(VA.getValVT().isVector()); 1271 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1272 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1273 } else 1274 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1275 return Value; 1276 } 1277 1278 // Value is a value of type VA.getValVT() that we need to copy into 1279 // the location described by VA. Return a copy of Value converted to 1280 // VA.getValVT(). The caller is responsible for handling indirect values. 1281 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1282 CCValAssign &VA, SDValue Value) { 1283 switch (VA.getLocInfo()) { 1284 case CCValAssign::SExt: 1285 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1286 case CCValAssign::ZExt: 1287 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1288 case CCValAssign::AExt: 1289 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1290 case CCValAssign::BCvt: 1291 // If this is a short vector argument to be stored to the stack, 1292 // bitcast to v2i64 and then extract first element. 1293 assert(VA.getLocVT() == MVT::i64); 1294 assert(VA.getValVT().isVector()); 1295 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1296 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1297 DAG.getConstant(0, DL, MVT::i32)); 1298 case CCValAssign::Full: 1299 return Value; 1300 default: 1301 llvm_unreachable("Unhandled getLocInfo()"); 1302 } 1303 } 1304 1305 SDValue SystemZTargetLowering::LowerFormalArguments( 1306 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1307 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1308 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1309 MachineFunction &MF = DAG.getMachineFunction(); 1310 MachineFrameInfo &MFI = MF.getFrameInfo(); 1311 MachineRegisterInfo &MRI = MF.getRegInfo(); 1312 SystemZMachineFunctionInfo *FuncInfo = 1313 MF.getInfo<SystemZMachineFunctionInfo>(); 1314 auto *TFL = 1315 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1316 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1317 1318 // Detect unsupported vector argument types. 1319 if (Subtarget.hasVector()) 1320 VerifyVectorTypes(Ins); 1321 1322 // Assign locations to all of the incoming arguments. 1323 SmallVector<CCValAssign, 16> ArgLocs; 1324 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1325 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1326 1327 unsigned NumFixedGPRs = 0; 1328 unsigned NumFixedFPRs = 0; 1329 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1330 SDValue ArgValue; 1331 CCValAssign &VA = ArgLocs[I]; 1332 EVT LocVT = VA.getLocVT(); 1333 if (VA.isRegLoc()) { 1334 // Arguments passed in registers 1335 const TargetRegisterClass *RC; 1336 switch (LocVT.getSimpleVT().SimpleTy) { 1337 default: 1338 // Integers smaller than i64 should be promoted to i64. 1339 llvm_unreachable("Unexpected argument type"); 1340 case MVT::i32: 1341 NumFixedGPRs += 1; 1342 RC = &SystemZ::GR32BitRegClass; 1343 break; 1344 case MVT::i64: 1345 NumFixedGPRs += 1; 1346 RC = &SystemZ::GR64BitRegClass; 1347 break; 1348 case MVT::f32: 1349 NumFixedFPRs += 1; 1350 RC = &SystemZ::FP32BitRegClass; 1351 break; 1352 case MVT::f64: 1353 NumFixedFPRs += 1; 1354 RC = &SystemZ::FP64BitRegClass; 1355 break; 1356 case MVT::v16i8: 1357 case MVT::v8i16: 1358 case MVT::v4i32: 1359 case MVT::v2i64: 1360 case MVT::v4f32: 1361 case MVT::v2f64: 1362 RC = &SystemZ::VR128BitRegClass; 1363 break; 1364 } 1365 1366 Register VReg = MRI.createVirtualRegister(RC); 1367 MRI.addLiveIn(VA.getLocReg(), VReg); 1368 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1369 } else { 1370 assert(VA.isMemLoc() && "Argument not register or memory"); 1371 1372 // Create the frame index object for this incoming parameter. 1373 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1374 VA.getLocMemOffset(), true); 1375 1376 // Create the SelectionDAG nodes corresponding to a load 1377 // from this parameter. Unpromoted ints and floats are 1378 // passed as right-justified 8-byte values. 1379 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1380 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1381 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1382 DAG.getIntPtrConstant(4, DL)); 1383 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1384 MachinePointerInfo::getFixedStack(MF, FI)); 1385 } 1386 1387 // Convert the value of the argument register into the value that's 1388 // being passed. 1389 if (VA.getLocInfo() == CCValAssign::Indirect) { 1390 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1391 MachinePointerInfo())); 1392 // If the original argument was split (e.g. i128), we need 1393 // to load all parts of it here (using the same address). 1394 unsigned ArgIndex = Ins[I].OrigArgIndex; 1395 assert (Ins[I].PartOffset == 0); 1396 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1397 CCValAssign &PartVA = ArgLocs[I + 1]; 1398 unsigned PartOffset = Ins[I + 1].PartOffset; 1399 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1400 DAG.getIntPtrConstant(PartOffset, DL)); 1401 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1402 MachinePointerInfo())); 1403 ++I; 1404 } 1405 } else 1406 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1407 } 1408 1409 if (IsVarArg) { 1410 // Save the number of non-varargs registers for later use by va_start, etc. 1411 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1412 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1413 1414 // Likewise the address (in the form of a frame index) of where the 1415 // first stack vararg would be. The 1-byte size here is arbitrary. 1416 int64_t StackSize = CCInfo.getNextStackOffset(); 1417 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1418 1419 // ...and a similar frame index for the caller-allocated save area 1420 // that will be used to store the incoming registers. 1421 int64_t RegSaveOffset = -SystemZMC::CallFrameSize; 1422 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1423 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1424 1425 // Store the FPR varargs in the reserved frame slots. (We store the 1426 // GPRs as part of the prologue.) 1427 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1428 SDValue MemOps[SystemZ::NumArgFPRs]; 1429 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1430 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1431 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1432 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1433 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1434 &SystemZ::FP64BitRegClass); 1435 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1436 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1437 MachinePointerInfo::getFixedStack(MF, FI)); 1438 } 1439 // Join the stores, which are independent of one another. 1440 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1441 makeArrayRef(&MemOps[NumFixedFPRs], 1442 SystemZ::NumArgFPRs-NumFixedFPRs)); 1443 } 1444 } 1445 1446 return Chain; 1447 } 1448 1449 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1450 SmallVectorImpl<CCValAssign> &ArgLocs, 1451 SmallVectorImpl<ISD::OutputArg> &Outs) { 1452 // Punt if there are any indirect or stack arguments, or if the call 1453 // needs the callee-saved argument register R6, or if the call uses 1454 // the callee-saved register arguments SwiftSelf and SwiftError. 1455 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1456 CCValAssign &VA = ArgLocs[I]; 1457 if (VA.getLocInfo() == CCValAssign::Indirect) 1458 return false; 1459 if (!VA.isRegLoc()) 1460 return false; 1461 Register Reg = VA.getLocReg(); 1462 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1463 return false; 1464 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1465 return false; 1466 } 1467 return true; 1468 } 1469 1470 SDValue 1471 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1472 SmallVectorImpl<SDValue> &InVals) const { 1473 SelectionDAG &DAG = CLI.DAG; 1474 SDLoc &DL = CLI.DL; 1475 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1476 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1477 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1478 SDValue Chain = CLI.Chain; 1479 SDValue Callee = CLI.Callee; 1480 bool &IsTailCall = CLI.IsTailCall; 1481 CallingConv::ID CallConv = CLI.CallConv; 1482 bool IsVarArg = CLI.IsVarArg; 1483 MachineFunction &MF = DAG.getMachineFunction(); 1484 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1485 1486 // Detect unsupported vector argument and return types. 1487 if (Subtarget.hasVector()) { 1488 VerifyVectorTypes(Outs); 1489 VerifyVectorTypes(Ins); 1490 } 1491 1492 // Analyze the operands of the call, assigning locations to each operand. 1493 SmallVector<CCValAssign, 16> ArgLocs; 1494 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1495 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1496 1497 // We don't support GuaranteedTailCallOpt, only automatically-detected 1498 // sibling calls. 1499 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1500 IsTailCall = false; 1501 1502 // Get a count of how many bytes are to be pushed on the stack. 1503 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1504 1505 // Mark the start of the call. 1506 if (!IsTailCall) 1507 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1508 1509 // Copy argument values to their designated locations. 1510 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1511 SmallVector<SDValue, 8> MemOpChains; 1512 SDValue StackPtr; 1513 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1514 CCValAssign &VA = ArgLocs[I]; 1515 SDValue ArgValue = OutVals[I]; 1516 1517 if (VA.getLocInfo() == CCValAssign::Indirect) { 1518 // Store the argument in a stack slot and pass its address. 1519 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1520 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1521 MemOpChains.push_back( 1522 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1523 MachinePointerInfo::getFixedStack(MF, FI))); 1524 // If the original argument was split (e.g. i128), we need 1525 // to store all parts of it here (and pass just one address). 1526 unsigned ArgIndex = Outs[I].OrigArgIndex; 1527 assert (Outs[I].PartOffset == 0); 1528 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1529 SDValue PartValue = OutVals[I + 1]; 1530 unsigned PartOffset = Outs[I + 1].PartOffset; 1531 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1532 DAG.getIntPtrConstant(PartOffset, DL)); 1533 MemOpChains.push_back( 1534 DAG.getStore(Chain, DL, PartValue, Address, 1535 MachinePointerInfo::getFixedStack(MF, FI))); 1536 ++I; 1537 } 1538 ArgValue = SpillSlot; 1539 } else 1540 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1541 1542 if (VA.isRegLoc()) 1543 // Queue up the argument copies and emit them at the end. 1544 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1545 else { 1546 assert(VA.isMemLoc() && "Argument not register or memory"); 1547 1548 // Work out the address of the stack slot. Unpromoted ints and 1549 // floats are passed as right-justified 8-byte values. 1550 if (!StackPtr.getNode()) 1551 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1552 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1553 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1554 Offset += 4; 1555 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1556 DAG.getIntPtrConstant(Offset, DL)); 1557 1558 // Emit the store. 1559 MemOpChains.push_back( 1560 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1561 } 1562 } 1563 1564 // Join the stores, which are independent of one another. 1565 if (!MemOpChains.empty()) 1566 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1567 1568 // Accept direct calls by converting symbolic call addresses to the 1569 // associated Target* opcodes. Force %r1 to be used for indirect 1570 // tail calls. 1571 SDValue Glue; 1572 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1573 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1574 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1575 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1576 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1577 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1578 } else if (IsTailCall) { 1579 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1580 Glue = Chain.getValue(1); 1581 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1582 } 1583 1584 // Build a sequence of copy-to-reg nodes, chained and glued together. 1585 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1586 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1587 RegsToPass[I].second, Glue); 1588 Glue = Chain.getValue(1); 1589 } 1590 1591 // The first call operand is the chain and the second is the target address. 1592 SmallVector<SDValue, 8> Ops; 1593 Ops.push_back(Chain); 1594 Ops.push_back(Callee); 1595 1596 // Add argument registers to the end of the list so that they are 1597 // known live into the call. 1598 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1599 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1600 RegsToPass[I].second.getValueType())); 1601 1602 // Add a register mask operand representing the call-preserved registers. 1603 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1604 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1605 assert(Mask && "Missing call preserved mask for calling convention"); 1606 Ops.push_back(DAG.getRegisterMask(Mask)); 1607 1608 // Glue the call to the argument copies, if any. 1609 if (Glue.getNode()) 1610 Ops.push_back(Glue); 1611 1612 // Emit the call. 1613 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1614 if (IsTailCall) 1615 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1616 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1617 Glue = Chain.getValue(1); 1618 1619 // Mark the end of the call, which is glued to the call itself. 1620 Chain = DAG.getCALLSEQ_END(Chain, 1621 DAG.getConstant(NumBytes, DL, PtrVT, true), 1622 DAG.getConstant(0, DL, PtrVT, true), 1623 Glue, DL); 1624 Glue = Chain.getValue(1); 1625 1626 // Assign locations to each value returned by this call. 1627 SmallVector<CCValAssign, 16> RetLocs; 1628 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1629 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1630 1631 // Copy all of the result registers out of their specified physreg. 1632 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1633 CCValAssign &VA = RetLocs[I]; 1634 1635 // Copy the value out, gluing the copy to the end of the call sequence. 1636 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1637 VA.getLocVT(), Glue); 1638 Chain = RetValue.getValue(1); 1639 Glue = RetValue.getValue(2); 1640 1641 // Convert the value of the return register into the value that's 1642 // being returned. 1643 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1644 } 1645 1646 return Chain; 1647 } 1648 1649 bool SystemZTargetLowering:: 1650 CanLowerReturn(CallingConv::ID CallConv, 1651 MachineFunction &MF, bool isVarArg, 1652 const SmallVectorImpl<ISD::OutputArg> &Outs, 1653 LLVMContext &Context) const { 1654 // Detect unsupported vector return types. 1655 if (Subtarget.hasVector()) 1656 VerifyVectorTypes(Outs); 1657 1658 // Special case that we cannot easily detect in RetCC_SystemZ since 1659 // i128 is not a legal type. 1660 for (auto &Out : Outs) 1661 if (Out.ArgVT == MVT::i128) 1662 return false; 1663 1664 SmallVector<CCValAssign, 16> RetLocs; 1665 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1666 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1667 } 1668 1669 SDValue 1670 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1671 bool IsVarArg, 1672 const SmallVectorImpl<ISD::OutputArg> &Outs, 1673 const SmallVectorImpl<SDValue> &OutVals, 1674 const SDLoc &DL, SelectionDAG &DAG) const { 1675 MachineFunction &MF = DAG.getMachineFunction(); 1676 1677 // Detect unsupported vector return types. 1678 if (Subtarget.hasVector()) 1679 VerifyVectorTypes(Outs); 1680 1681 // Assign locations to each returned value. 1682 SmallVector<CCValAssign, 16> RetLocs; 1683 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1684 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1685 1686 // Quick exit for void returns 1687 if (RetLocs.empty()) 1688 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1689 1690 if (CallConv == CallingConv::GHC) 1691 report_fatal_error("GHC functions return void only"); 1692 1693 // Copy the result values into the output registers. 1694 SDValue Glue; 1695 SmallVector<SDValue, 4> RetOps; 1696 RetOps.push_back(Chain); 1697 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1698 CCValAssign &VA = RetLocs[I]; 1699 SDValue RetValue = OutVals[I]; 1700 1701 // Make the return register live on exit. 1702 assert(VA.isRegLoc() && "Can only return in registers!"); 1703 1704 // Promote the value as required. 1705 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1706 1707 // Chain and glue the copies together. 1708 Register Reg = VA.getLocReg(); 1709 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1710 Glue = Chain.getValue(1); 1711 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1712 } 1713 1714 // Update chain and glue. 1715 RetOps[0] = Chain; 1716 if (Glue.getNode()) 1717 RetOps.push_back(Glue); 1718 1719 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1720 } 1721 1722 // Return true if Op is an intrinsic node with chain that returns the CC value 1723 // as its only (other) argument. Provide the associated SystemZISD opcode and 1724 // the mask of valid CC values if so. 1725 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1726 unsigned &CCValid) { 1727 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1728 switch (Id) { 1729 case Intrinsic::s390_tbegin: 1730 Opcode = SystemZISD::TBEGIN; 1731 CCValid = SystemZ::CCMASK_TBEGIN; 1732 return true; 1733 1734 case Intrinsic::s390_tbegin_nofloat: 1735 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1736 CCValid = SystemZ::CCMASK_TBEGIN; 1737 return true; 1738 1739 case Intrinsic::s390_tend: 1740 Opcode = SystemZISD::TEND; 1741 CCValid = SystemZ::CCMASK_TEND; 1742 return true; 1743 1744 default: 1745 return false; 1746 } 1747 } 1748 1749 // Return true if Op is an intrinsic node without chain that returns the 1750 // CC value as its final argument. Provide the associated SystemZISD 1751 // opcode and the mask of valid CC values if so. 1752 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1753 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1754 switch (Id) { 1755 case Intrinsic::s390_vpkshs: 1756 case Intrinsic::s390_vpksfs: 1757 case Intrinsic::s390_vpksgs: 1758 Opcode = SystemZISD::PACKS_CC; 1759 CCValid = SystemZ::CCMASK_VCMP; 1760 return true; 1761 1762 case Intrinsic::s390_vpklshs: 1763 case Intrinsic::s390_vpklsfs: 1764 case Intrinsic::s390_vpklsgs: 1765 Opcode = SystemZISD::PACKLS_CC; 1766 CCValid = SystemZ::CCMASK_VCMP; 1767 return true; 1768 1769 case Intrinsic::s390_vceqbs: 1770 case Intrinsic::s390_vceqhs: 1771 case Intrinsic::s390_vceqfs: 1772 case Intrinsic::s390_vceqgs: 1773 Opcode = SystemZISD::VICMPES; 1774 CCValid = SystemZ::CCMASK_VCMP; 1775 return true; 1776 1777 case Intrinsic::s390_vchbs: 1778 case Intrinsic::s390_vchhs: 1779 case Intrinsic::s390_vchfs: 1780 case Intrinsic::s390_vchgs: 1781 Opcode = SystemZISD::VICMPHS; 1782 CCValid = SystemZ::CCMASK_VCMP; 1783 return true; 1784 1785 case Intrinsic::s390_vchlbs: 1786 case Intrinsic::s390_vchlhs: 1787 case Intrinsic::s390_vchlfs: 1788 case Intrinsic::s390_vchlgs: 1789 Opcode = SystemZISD::VICMPHLS; 1790 CCValid = SystemZ::CCMASK_VCMP; 1791 return true; 1792 1793 case Intrinsic::s390_vtm: 1794 Opcode = SystemZISD::VTM; 1795 CCValid = SystemZ::CCMASK_VCMP; 1796 return true; 1797 1798 case Intrinsic::s390_vfaebs: 1799 case Intrinsic::s390_vfaehs: 1800 case Intrinsic::s390_vfaefs: 1801 Opcode = SystemZISD::VFAE_CC; 1802 CCValid = SystemZ::CCMASK_ANY; 1803 return true; 1804 1805 case Intrinsic::s390_vfaezbs: 1806 case Intrinsic::s390_vfaezhs: 1807 case Intrinsic::s390_vfaezfs: 1808 Opcode = SystemZISD::VFAEZ_CC; 1809 CCValid = SystemZ::CCMASK_ANY; 1810 return true; 1811 1812 case Intrinsic::s390_vfeebs: 1813 case Intrinsic::s390_vfeehs: 1814 case Intrinsic::s390_vfeefs: 1815 Opcode = SystemZISD::VFEE_CC; 1816 CCValid = SystemZ::CCMASK_ANY; 1817 return true; 1818 1819 case Intrinsic::s390_vfeezbs: 1820 case Intrinsic::s390_vfeezhs: 1821 case Intrinsic::s390_vfeezfs: 1822 Opcode = SystemZISD::VFEEZ_CC; 1823 CCValid = SystemZ::CCMASK_ANY; 1824 return true; 1825 1826 case Intrinsic::s390_vfenebs: 1827 case Intrinsic::s390_vfenehs: 1828 case Intrinsic::s390_vfenefs: 1829 Opcode = SystemZISD::VFENE_CC; 1830 CCValid = SystemZ::CCMASK_ANY; 1831 return true; 1832 1833 case Intrinsic::s390_vfenezbs: 1834 case Intrinsic::s390_vfenezhs: 1835 case Intrinsic::s390_vfenezfs: 1836 Opcode = SystemZISD::VFENEZ_CC; 1837 CCValid = SystemZ::CCMASK_ANY; 1838 return true; 1839 1840 case Intrinsic::s390_vistrbs: 1841 case Intrinsic::s390_vistrhs: 1842 case Intrinsic::s390_vistrfs: 1843 Opcode = SystemZISD::VISTR_CC; 1844 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1845 return true; 1846 1847 case Intrinsic::s390_vstrcbs: 1848 case Intrinsic::s390_vstrchs: 1849 case Intrinsic::s390_vstrcfs: 1850 Opcode = SystemZISD::VSTRC_CC; 1851 CCValid = SystemZ::CCMASK_ANY; 1852 return true; 1853 1854 case Intrinsic::s390_vstrczbs: 1855 case Intrinsic::s390_vstrczhs: 1856 case Intrinsic::s390_vstrczfs: 1857 Opcode = SystemZISD::VSTRCZ_CC; 1858 CCValid = SystemZ::CCMASK_ANY; 1859 return true; 1860 1861 case Intrinsic::s390_vstrsb: 1862 case Intrinsic::s390_vstrsh: 1863 case Intrinsic::s390_vstrsf: 1864 Opcode = SystemZISD::VSTRS_CC; 1865 CCValid = SystemZ::CCMASK_ANY; 1866 return true; 1867 1868 case Intrinsic::s390_vstrszb: 1869 case Intrinsic::s390_vstrszh: 1870 case Intrinsic::s390_vstrszf: 1871 Opcode = SystemZISD::VSTRSZ_CC; 1872 CCValid = SystemZ::CCMASK_ANY; 1873 return true; 1874 1875 case Intrinsic::s390_vfcedbs: 1876 case Intrinsic::s390_vfcesbs: 1877 Opcode = SystemZISD::VFCMPES; 1878 CCValid = SystemZ::CCMASK_VCMP; 1879 return true; 1880 1881 case Intrinsic::s390_vfchdbs: 1882 case Intrinsic::s390_vfchsbs: 1883 Opcode = SystemZISD::VFCMPHS; 1884 CCValid = SystemZ::CCMASK_VCMP; 1885 return true; 1886 1887 case Intrinsic::s390_vfchedbs: 1888 case Intrinsic::s390_vfchesbs: 1889 Opcode = SystemZISD::VFCMPHES; 1890 CCValid = SystemZ::CCMASK_VCMP; 1891 return true; 1892 1893 case Intrinsic::s390_vftcidb: 1894 case Intrinsic::s390_vftcisb: 1895 Opcode = SystemZISD::VFTCI; 1896 CCValid = SystemZ::CCMASK_VCMP; 1897 return true; 1898 1899 case Intrinsic::s390_tdc: 1900 Opcode = SystemZISD::TDC; 1901 CCValid = SystemZ::CCMASK_TDC; 1902 return true; 1903 1904 default: 1905 return false; 1906 } 1907 } 1908 1909 // Emit an intrinsic with chain and an explicit CC register result. 1910 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1911 unsigned Opcode) { 1912 // Copy all operands except the intrinsic ID. 1913 unsigned NumOps = Op.getNumOperands(); 1914 SmallVector<SDValue, 6> Ops; 1915 Ops.reserve(NumOps - 1); 1916 Ops.push_back(Op.getOperand(0)); 1917 for (unsigned I = 2; I < NumOps; ++I) 1918 Ops.push_back(Op.getOperand(I)); 1919 1920 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1921 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1922 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1923 SDValue OldChain = SDValue(Op.getNode(), 1); 1924 SDValue NewChain = SDValue(Intr.getNode(), 1); 1925 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1926 return Intr.getNode(); 1927 } 1928 1929 // Emit an intrinsic with an explicit CC register result. 1930 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1931 unsigned Opcode) { 1932 // Copy all operands except the intrinsic ID. 1933 unsigned NumOps = Op.getNumOperands(); 1934 SmallVector<SDValue, 6> Ops; 1935 Ops.reserve(NumOps - 1); 1936 for (unsigned I = 1; I < NumOps; ++I) 1937 Ops.push_back(Op.getOperand(I)); 1938 1939 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1940 return Intr.getNode(); 1941 } 1942 1943 // CC is a comparison that will be implemented using an integer or 1944 // floating-point comparison. Return the condition code mask for 1945 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1946 // unsigned comparisons and clear for signed ones. In the floating-point 1947 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1948 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1949 #define CONV(X) \ 1950 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1951 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1952 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1953 1954 switch (CC) { 1955 default: 1956 llvm_unreachable("Invalid integer condition!"); 1957 1958 CONV(EQ); 1959 CONV(NE); 1960 CONV(GT); 1961 CONV(GE); 1962 CONV(LT); 1963 CONV(LE); 1964 1965 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1966 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1967 } 1968 #undef CONV 1969 } 1970 1971 // If C can be converted to a comparison against zero, adjust the operands 1972 // as necessary. 1973 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1974 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1975 return; 1976 1977 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1978 if (!ConstOp1) 1979 return; 1980 1981 int64_t Value = ConstOp1->getSExtValue(); 1982 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1983 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1984 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1985 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1986 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1987 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1988 } 1989 } 1990 1991 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1992 // adjust the operands as necessary. 1993 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1994 Comparison &C) { 1995 // For us to make any changes, it must a comparison between a single-use 1996 // load and a constant. 1997 if (!C.Op0.hasOneUse() || 1998 C.Op0.getOpcode() != ISD::LOAD || 1999 C.Op1.getOpcode() != ISD::Constant) 2000 return; 2001 2002 // We must have an 8- or 16-bit load. 2003 auto *Load = cast<LoadSDNode>(C.Op0); 2004 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 2005 if (NumBits != 8 && NumBits != 16) 2006 return; 2007 2008 // The load must be an extending one and the constant must be within the 2009 // range of the unextended value. 2010 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2011 uint64_t Value = ConstOp1->getZExtValue(); 2012 uint64_t Mask = (1 << NumBits) - 1; 2013 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2014 // Make sure that ConstOp1 is in range of C.Op0. 2015 int64_t SignedValue = ConstOp1->getSExtValue(); 2016 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2017 return; 2018 if (C.ICmpType != SystemZICMP::SignedOnly) { 2019 // Unsigned comparison between two sign-extended values is equivalent 2020 // to unsigned comparison between two zero-extended values. 2021 Value &= Mask; 2022 } else if (NumBits == 8) { 2023 // Try to treat the comparison as unsigned, so that we can use CLI. 2024 // Adjust CCMask and Value as necessary. 2025 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2026 // Test whether the high bit of the byte is set. 2027 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2028 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2029 // Test whether the high bit of the byte is clear. 2030 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2031 else 2032 // No instruction exists for this combination. 2033 return; 2034 C.ICmpType = SystemZICMP::UnsignedOnly; 2035 } 2036 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2037 if (Value > Mask) 2038 return; 2039 // If the constant is in range, we can use any comparison. 2040 C.ICmpType = SystemZICMP::Any; 2041 } else 2042 return; 2043 2044 // Make sure that the first operand is an i32 of the right extension type. 2045 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2046 ISD::SEXTLOAD : 2047 ISD::ZEXTLOAD); 2048 if (C.Op0.getValueType() != MVT::i32 || 2049 Load->getExtensionType() != ExtType) { 2050 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2051 Load->getBasePtr(), Load->getPointerInfo(), 2052 Load->getMemoryVT(), Load->getAlignment(), 2053 Load->getMemOperand()->getFlags()); 2054 // Update the chain uses. 2055 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2056 } 2057 2058 // Make sure that the second operand is an i32 with the right value. 2059 if (C.Op1.getValueType() != MVT::i32 || 2060 Value != ConstOp1->getZExtValue()) 2061 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2062 } 2063 2064 // Return true if Op is either an unextended load, or a load suitable 2065 // for integer register-memory comparisons of type ICmpType. 2066 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2067 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2068 if (Load) { 2069 // There are no instructions to compare a register with a memory byte. 2070 if (Load->getMemoryVT() == MVT::i8) 2071 return false; 2072 // Otherwise decide on extension type. 2073 switch (Load->getExtensionType()) { 2074 case ISD::NON_EXTLOAD: 2075 return true; 2076 case ISD::SEXTLOAD: 2077 return ICmpType != SystemZICMP::UnsignedOnly; 2078 case ISD::ZEXTLOAD: 2079 return ICmpType != SystemZICMP::SignedOnly; 2080 default: 2081 break; 2082 } 2083 } 2084 return false; 2085 } 2086 2087 // Return true if it is better to swap the operands of C. 2088 static bool shouldSwapCmpOperands(const Comparison &C) { 2089 // Leave f128 comparisons alone, since they have no memory forms. 2090 if (C.Op0.getValueType() == MVT::f128) 2091 return false; 2092 2093 // Always keep a floating-point constant second, since comparisons with 2094 // zero can use LOAD TEST and comparisons with other constants make a 2095 // natural memory operand. 2096 if (isa<ConstantFPSDNode>(C.Op1)) 2097 return false; 2098 2099 // Never swap comparisons with zero since there are many ways to optimize 2100 // those later. 2101 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2102 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2103 return false; 2104 2105 // Also keep natural memory operands second if the loaded value is 2106 // only used here. Several comparisons have memory forms. 2107 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2108 return false; 2109 2110 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2111 // In that case we generally prefer the memory to be second. 2112 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2113 // The only exceptions are when the second operand is a constant and 2114 // we can use things like CHHSI. 2115 if (!ConstOp1) 2116 return true; 2117 // The unsigned memory-immediate instructions can handle 16-bit 2118 // unsigned integers. 2119 if (C.ICmpType != SystemZICMP::SignedOnly && 2120 isUInt<16>(ConstOp1->getZExtValue())) 2121 return false; 2122 // The signed memory-immediate instructions can handle 16-bit 2123 // signed integers. 2124 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2125 isInt<16>(ConstOp1->getSExtValue())) 2126 return false; 2127 return true; 2128 } 2129 2130 // Try to promote the use of CGFR and CLGFR. 2131 unsigned Opcode0 = C.Op0.getOpcode(); 2132 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2133 return true; 2134 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2135 return true; 2136 if (C.ICmpType != SystemZICMP::SignedOnly && 2137 Opcode0 == ISD::AND && 2138 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2139 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2140 return true; 2141 2142 return false; 2143 } 2144 2145 // Return a version of comparison CC mask CCMask in which the LT and GT 2146 // actions are swapped. 2147 static unsigned reverseCCMask(unsigned CCMask) { 2148 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 2149 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 2150 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 2151 (CCMask & SystemZ::CCMASK_CMP_UO)); 2152 } 2153 2154 // Check whether C tests for equality between X and Y and whether X - Y 2155 // or Y - X is also computed. In that case it's better to compare the 2156 // result of the subtraction against zero. 2157 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2158 Comparison &C) { 2159 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2160 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2161 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2162 SDNode *N = *I; 2163 if (N->getOpcode() == ISD::SUB && 2164 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2165 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2166 C.Op0 = SDValue(N, 0); 2167 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2168 return; 2169 } 2170 } 2171 } 2172 } 2173 2174 // Check whether C compares a floating-point value with zero and if that 2175 // floating-point value is also negated. In this case we can use the 2176 // negation to set CC, so avoiding separate LOAD AND TEST and 2177 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2178 static void adjustForFNeg(Comparison &C) { 2179 // This optimization is invalid for strict comparisons, since FNEG 2180 // does not raise any exceptions. 2181 if (C.Chain) 2182 return; 2183 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2184 if (C1 && C1->isZero()) { 2185 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2186 SDNode *N = *I; 2187 if (N->getOpcode() == ISD::FNEG) { 2188 C.Op0 = SDValue(N, 0); 2189 C.CCMask = reverseCCMask(C.CCMask); 2190 return; 2191 } 2192 } 2193 } 2194 } 2195 2196 // Check whether C compares (shl X, 32) with 0 and whether X is 2197 // also sign-extended. In that case it is better to test the result 2198 // of the sign extension using LTGFR. 2199 // 2200 // This case is important because InstCombine transforms a comparison 2201 // with (sext (trunc X)) into a comparison with (shl X, 32). 2202 static void adjustForLTGFR(Comparison &C) { 2203 // Check for a comparison between (shl X, 32) and 0. 2204 if (C.Op0.getOpcode() == ISD::SHL && 2205 C.Op0.getValueType() == MVT::i64 && 2206 C.Op1.getOpcode() == ISD::Constant && 2207 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2208 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2209 if (C1 && C1->getZExtValue() == 32) { 2210 SDValue ShlOp0 = C.Op0.getOperand(0); 2211 // See whether X has any SIGN_EXTEND_INREG uses. 2212 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2213 SDNode *N = *I; 2214 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2215 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2216 C.Op0 = SDValue(N, 0); 2217 return; 2218 } 2219 } 2220 } 2221 } 2222 } 2223 2224 // If C compares the truncation of an extending load, try to compare 2225 // the untruncated value instead. This exposes more opportunities to 2226 // reuse CC. 2227 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2228 Comparison &C) { 2229 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2230 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2231 C.Op1.getOpcode() == ISD::Constant && 2232 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2233 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2234 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2235 unsigned Type = L->getExtensionType(); 2236 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2237 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2238 C.Op0 = C.Op0.getOperand(0); 2239 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2240 } 2241 } 2242 } 2243 } 2244 2245 // Return true if shift operation N has an in-range constant shift value. 2246 // Store it in ShiftVal if so. 2247 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2248 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2249 if (!Shift) 2250 return false; 2251 2252 uint64_t Amount = Shift->getZExtValue(); 2253 if (Amount >= N.getValueSizeInBits()) 2254 return false; 2255 2256 ShiftVal = Amount; 2257 return true; 2258 } 2259 2260 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2261 // instruction and whether the CC value is descriptive enough to handle 2262 // a comparison of type Opcode between the AND result and CmpVal. 2263 // CCMask says which comparison result is being tested and BitSize is 2264 // the number of bits in the operands. If TEST UNDER MASK can be used, 2265 // return the corresponding CC mask, otherwise return 0. 2266 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2267 uint64_t Mask, uint64_t CmpVal, 2268 unsigned ICmpType) { 2269 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2270 2271 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2272 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2273 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2274 return 0; 2275 2276 // Work out the masks for the lowest and highest bits. 2277 unsigned HighShift = 63 - countLeadingZeros(Mask); 2278 uint64_t High = uint64_t(1) << HighShift; 2279 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2280 2281 // Signed ordered comparisons are effectively unsigned if the sign 2282 // bit is dropped. 2283 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2284 2285 // Check for equality comparisons with 0, or the equivalent. 2286 if (CmpVal == 0) { 2287 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2288 return SystemZ::CCMASK_TM_ALL_0; 2289 if (CCMask == SystemZ::CCMASK_CMP_NE) 2290 return SystemZ::CCMASK_TM_SOME_1; 2291 } 2292 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2293 if (CCMask == SystemZ::CCMASK_CMP_LT) 2294 return SystemZ::CCMASK_TM_ALL_0; 2295 if (CCMask == SystemZ::CCMASK_CMP_GE) 2296 return SystemZ::CCMASK_TM_SOME_1; 2297 } 2298 if (EffectivelyUnsigned && CmpVal < Low) { 2299 if (CCMask == SystemZ::CCMASK_CMP_LE) 2300 return SystemZ::CCMASK_TM_ALL_0; 2301 if (CCMask == SystemZ::CCMASK_CMP_GT) 2302 return SystemZ::CCMASK_TM_SOME_1; 2303 } 2304 2305 // Check for equality comparisons with the mask, or the equivalent. 2306 if (CmpVal == Mask) { 2307 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2308 return SystemZ::CCMASK_TM_ALL_1; 2309 if (CCMask == SystemZ::CCMASK_CMP_NE) 2310 return SystemZ::CCMASK_TM_SOME_0; 2311 } 2312 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2313 if (CCMask == SystemZ::CCMASK_CMP_GT) 2314 return SystemZ::CCMASK_TM_ALL_1; 2315 if (CCMask == SystemZ::CCMASK_CMP_LE) 2316 return SystemZ::CCMASK_TM_SOME_0; 2317 } 2318 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2319 if (CCMask == SystemZ::CCMASK_CMP_GE) 2320 return SystemZ::CCMASK_TM_ALL_1; 2321 if (CCMask == SystemZ::CCMASK_CMP_LT) 2322 return SystemZ::CCMASK_TM_SOME_0; 2323 } 2324 2325 // Check for ordered comparisons with the top bit. 2326 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2327 if (CCMask == SystemZ::CCMASK_CMP_LE) 2328 return SystemZ::CCMASK_TM_MSB_0; 2329 if (CCMask == SystemZ::CCMASK_CMP_GT) 2330 return SystemZ::CCMASK_TM_MSB_1; 2331 } 2332 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2333 if (CCMask == SystemZ::CCMASK_CMP_LT) 2334 return SystemZ::CCMASK_TM_MSB_0; 2335 if (CCMask == SystemZ::CCMASK_CMP_GE) 2336 return SystemZ::CCMASK_TM_MSB_1; 2337 } 2338 2339 // If there are just two bits, we can do equality checks for Low and High 2340 // as well. 2341 if (Mask == Low + High) { 2342 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2343 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2344 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2345 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2346 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2347 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2348 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2349 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2350 } 2351 2352 // Looks like we've exhausted our options. 2353 return 0; 2354 } 2355 2356 // See whether C can be implemented as a TEST UNDER MASK instruction. 2357 // Update the arguments with the TM version if so. 2358 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2359 Comparison &C) { 2360 // Check that we have a comparison with a constant. 2361 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2362 if (!ConstOp1) 2363 return; 2364 uint64_t CmpVal = ConstOp1->getZExtValue(); 2365 2366 // Check whether the nonconstant input is an AND with a constant mask. 2367 Comparison NewC(C); 2368 uint64_t MaskVal; 2369 ConstantSDNode *Mask = nullptr; 2370 if (C.Op0.getOpcode() == ISD::AND) { 2371 NewC.Op0 = C.Op0.getOperand(0); 2372 NewC.Op1 = C.Op0.getOperand(1); 2373 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2374 if (!Mask) 2375 return; 2376 MaskVal = Mask->getZExtValue(); 2377 } else { 2378 // There is no instruction to compare with a 64-bit immediate 2379 // so use TMHH instead if possible. We need an unsigned ordered 2380 // comparison with an i64 immediate. 2381 if (NewC.Op0.getValueType() != MVT::i64 || 2382 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2383 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2384 NewC.ICmpType == SystemZICMP::SignedOnly) 2385 return; 2386 // Convert LE and GT comparisons into LT and GE. 2387 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2388 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2389 if (CmpVal == uint64_t(-1)) 2390 return; 2391 CmpVal += 1; 2392 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2393 } 2394 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2395 // be masked off without changing the result. 2396 MaskVal = -(CmpVal & -CmpVal); 2397 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2398 } 2399 if (!MaskVal) 2400 return; 2401 2402 // Check whether the combination of mask, comparison value and comparison 2403 // type are suitable. 2404 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2405 unsigned NewCCMask, ShiftVal; 2406 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2407 NewC.Op0.getOpcode() == ISD::SHL && 2408 isSimpleShift(NewC.Op0, ShiftVal) && 2409 (MaskVal >> ShiftVal != 0) && 2410 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2411 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2412 MaskVal >> ShiftVal, 2413 CmpVal >> ShiftVal, 2414 SystemZICMP::Any))) { 2415 NewC.Op0 = NewC.Op0.getOperand(0); 2416 MaskVal >>= ShiftVal; 2417 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2418 NewC.Op0.getOpcode() == ISD::SRL && 2419 isSimpleShift(NewC.Op0, ShiftVal) && 2420 (MaskVal << ShiftVal != 0) && 2421 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2422 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2423 MaskVal << ShiftVal, 2424 CmpVal << ShiftVal, 2425 SystemZICMP::UnsignedOnly))) { 2426 NewC.Op0 = NewC.Op0.getOperand(0); 2427 MaskVal <<= ShiftVal; 2428 } else { 2429 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2430 NewC.ICmpType); 2431 if (!NewCCMask) 2432 return; 2433 } 2434 2435 // Go ahead and make the change. 2436 C.Opcode = SystemZISD::TM; 2437 C.Op0 = NewC.Op0; 2438 if (Mask && Mask->getZExtValue() == MaskVal) 2439 C.Op1 = SDValue(Mask, 0); 2440 else 2441 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2442 C.CCValid = SystemZ::CCMASK_TM; 2443 C.CCMask = NewCCMask; 2444 } 2445 2446 // See whether the comparison argument contains a redundant AND 2447 // and remove it if so. This sometimes happens due to the generic 2448 // BRCOND expansion. 2449 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2450 Comparison &C) { 2451 if (C.Op0.getOpcode() != ISD::AND) 2452 return; 2453 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2454 if (!Mask) 2455 return; 2456 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2457 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2458 return; 2459 2460 C.Op0 = C.Op0.getOperand(0); 2461 } 2462 2463 // Return a Comparison that tests the condition-code result of intrinsic 2464 // node Call against constant integer CC using comparison code Cond. 2465 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2466 // and CCValid is the set of possible condition-code results. 2467 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2468 SDValue Call, unsigned CCValid, uint64_t CC, 2469 ISD::CondCode Cond) { 2470 Comparison C(Call, SDValue(), SDValue()); 2471 C.Opcode = Opcode; 2472 C.CCValid = CCValid; 2473 if (Cond == ISD::SETEQ) 2474 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2475 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2476 else if (Cond == ISD::SETNE) 2477 // ...and the inverse of that. 2478 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2479 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2480 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2481 // always true for CC>3. 2482 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2483 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2484 // ...and the inverse of that. 2485 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2486 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2487 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2488 // always true for CC>3. 2489 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2490 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2491 // ...and the inverse of that. 2492 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2493 else 2494 llvm_unreachable("Unexpected integer comparison type"); 2495 C.CCMask &= CCValid; 2496 return C; 2497 } 2498 2499 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2500 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2501 ISD::CondCode Cond, const SDLoc &DL, 2502 SDValue Chain = SDValue(), 2503 bool IsSignaling = false) { 2504 if (CmpOp1.getOpcode() == ISD::Constant) { 2505 assert(!Chain); 2506 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2507 unsigned Opcode, CCValid; 2508 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2509 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2510 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2511 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2512 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2513 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2514 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2515 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2516 } 2517 Comparison C(CmpOp0, CmpOp1, Chain); 2518 C.CCMask = CCMaskForCondCode(Cond); 2519 if (C.Op0.getValueType().isFloatingPoint()) { 2520 C.CCValid = SystemZ::CCMASK_FCMP; 2521 if (!C.Chain) 2522 C.Opcode = SystemZISD::FCMP; 2523 else if (!IsSignaling) 2524 C.Opcode = SystemZISD::STRICT_FCMP; 2525 else 2526 C.Opcode = SystemZISD::STRICT_FCMPS; 2527 adjustForFNeg(C); 2528 } else { 2529 assert(!C.Chain); 2530 C.CCValid = SystemZ::CCMASK_ICMP; 2531 C.Opcode = SystemZISD::ICMP; 2532 // Choose the type of comparison. Equality and inequality tests can 2533 // use either signed or unsigned comparisons. The choice also doesn't 2534 // matter if both sign bits are known to be clear. In those cases we 2535 // want to give the main isel code the freedom to choose whichever 2536 // form fits best. 2537 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2538 C.CCMask == SystemZ::CCMASK_CMP_NE || 2539 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2540 C.ICmpType = SystemZICMP::Any; 2541 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2542 C.ICmpType = SystemZICMP::UnsignedOnly; 2543 else 2544 C.ICmpType = SystemZICMP::SignedOnly; 2545 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2546 adjustForRedundantAnd(DAG, DL, C); 2547 adjustZeroCmp(DAG, DL, C); 2548 adjustSubwordCmp(DAG, DL, C); 2549 adjustForSubtraction(DAG, DL, C); 2550 adjustForLTGFR(C); 2551 adjustICmpTruncate(DAG, DL, C); 2552 } 2553 2554 if (shouldSwapCmpOperands(C)) { 2555 std::swap(C.Op0, C.Op1); 2556 C.CCMask = reverseCCMask(C.CCMask); 2557 } 2558 2559 adjustForTestUnderMask(DAG, DL, C); 2560 return C; 2561 } 2562 2563 // Emit the comparison instruction described by C. 2564 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2565 if (!C.Op1.getNode()) { 2566 SDNode *Node; 2567 switch (C.Op0.getOpcode()) { 2568 case ISD::INTRINSIC_W_CHAIN: 2569 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2570 return SDValue(Node, 0); 2571 case ISD::INTRINSIC_WO_CHAIN: 2572 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2573 return SDValue(Node, Node->getNumValues() - 1); 2574 default: 2575 llvm_unreachable("Invalid comparison operands"); 2576 } 2577 } 2578 if (C.Opcode == SystemZISD::ICMP) 2579 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2580 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2581 if (C.Opcode == SystemZISD::TM) { 2582 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2583 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2584 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2585 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2586 } 2587 if (C.Chain) { 2588 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2589 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2590 } 2591 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2592 } 2593 2594 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2595 // 64 bits. Extend is the extension type to use. Store the high part 2596 // in Hi and the low part in Lo. 2597 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2598 SDValue Op0, SDValue Op1, SDValue &Hi, 2599 SDValue &Lo) { 2600 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2601 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2602 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2603 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2604 DAG.getConstant(32, DL, MVT::i64)); 2605 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2606 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2607 } 2608 2609 // Lower a binary operation that produces two VT results, one in each 2610 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2611 // and Opcode performs the GR128 operation. Store the even register result 2612 // in Even and the odd register result in Odd. 2613 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2614 unsigned Opcode, SDValue Op0, SDValue Op1, 2615 SDValue &Even, SDValue &Odd) { 2616 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2617 bool Is32Bit = is32Bit(VT); 2618 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2619 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2620 } 2621 2622 // Return an i32 value that is 1 if the CC value produced by CCReg is 2623 // in the mask CCMask and 0 otherwise. CC is known to have a value 2624 // in CCValid, so other values can be ignored. 2625 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2626 unsigned CCValid, unsigned CCMask) { 2627 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2628 DAG.getConstant(0, DL, MVT::i32), 2629 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2630 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2631 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2632 } 2633 2634 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2635 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2636 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2637 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2638 // floating-point comparisons. 2639 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2640 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2641 switch (CC) { 2642 case ISD::SETOEQ: 2643 case ISD::SETEQ: 2644 switch (Mode) { 2645 case CmpMode::Int: return SystemZISD::VICMPE; 2646 case CmpMode::FP: return SystemZISD::VFCMPE; 2647 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2648 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2649 } 2650 llvm_unreachable("Bad mode"); 2651 2652 case ISD::SETOGE: 2653 case ISD::SETGE: 2654 switch (Mode) { 2655 case CmpMode::Int: return 0; 2656 case CmpMode::FP: return SystemZISD::VFCMPHE; 2657 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2658 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2659 } 2660 llvm_unreachable("Bad mode"); 2661 2662 case ISD::SETOGT: 2663 case ISD::SETGT: 2664 switch (Mode) { 2665 case CmpMode::Int: return SystemZISD::VICMPH; 2666 case CmpMode::FP: return SystemZISD::VFCMPH; 2667 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2668 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2669 } 2670 llvm_unreachable("Bad mode"); 2671 2672 case ISD::SETUGT: 2673 switch (Mode) { 2674 case CmpMode::Int: return SystemZISD::VICMPHL; 2675 case CmpMode::FP: return 0; 2676 case CmpMode::StrictFP: return 0; 2677 case CmpMode::SignalingFP: return 0; 2678 } 2679 llvm_unreachable("Bad mode"); 2680 2681 default: 2682 return 0; 2683 } 2684 } 2685 2686 // Return the SystemZISD vector comparison operation for CC or its inverse, 2687 // or 0 if neither can be done directly. Indicate in Invert whether the 2688 // result is for the inverse of CC. Mode is as above. 2689 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2690 bool &Invert) { 2691 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2692 Invert = false; 2693 return Opcode; 2694 } 2695 2696 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int); 2697 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2698 Invert = true; 2699 return Opcode; 2700 } 2701 2702 return 0; 2703 } 2704 2705 // Return a v2f64 that contains the extended form of elements Start and Start+1 2706 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2707 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2708 SDValue Op, SDValue Chain) { 2709 int Mask[] = { Start, -1, Start + 1, -1 }; 2710 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2711 if (Chain) { 2712 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2713 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2714 } 2715 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2716 } 2717 2718 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2719 // producing a result of type VT. If Chain is nonnull, return the strict form. 2720 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2721 const SDLoc &DL, EVT VT, 2722 SDValue CmpOp0, 2723 SDValue CmpOp1, 2724 SDValue Chain) const { 2725 // There is no hardware support for v4f32 (unless we have the vector 2726 // enhancements facility 1), so extend the vector into two v2f64s 2727 // and compare those. 2728 if (CmpOp0.getValueType() == MVT::v4f32 && 2729 !Subtarget.hasVectorEnhancements1()) { 2730 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2731 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2732 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2733 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2734 if (Chain) { 2735 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2736 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2737 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2738 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2739 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2740 H1.getValue(1), L1.getValue(1), 2741 HRes.getValue(1), LRes.getValue(1) }; 2742 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2743 SDValue Ops[2] = { Res, NewChain }; 2744 return DAG.getMergeValues(Ops, DL); 2745 } 2746 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2747 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2748 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2749 } 2750 if (Chain) { 2751 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2752 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2753 } 2754 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2755 } 2756 2757 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2758 // an integer mask of type VT. If Chain is nonnull, we have a strict 2759 // floating-point comparison. If in addition IsSignaling is true, we have 2760 // a strict signaling floating-point comparison. 2761 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2762 const SDLoc &DL, EVT VT, 2763 ISD::CondCode CC, 2764 SDValue CmpOp0, 2765 SDValue CmpOp1, 2766 SDValue Chain, 2767 bool IsSignaling) const { 2768 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2769 assert (!Chain || IsFP); 2770 assert (!IsSignaling || Chain); 2771 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2772 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2773 bool Invert = false; 2774 SDValue Cmp; 2775 switch (CC) { 2776 // Handle tests for order using (or (ogt y x) (oge x y)). 2777 case ISD::SETUO: 2778 Invert = true; 2779 LLVM_FALLTHROUGH; 2780 case ISD::SETO: { 2781 assert(IsFP && "Unexpected integer comparison"); 2782 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2783 DL, VT, CmpOp1, CmpOp0, Chain); 2784 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2785 DL, VT, CmpOp0, CmpOp1, Chain); 2786 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2787 if (Chain) 2788 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2789 LT.getValue(1), GE.getValue(1)); 2790 break; 2791 } 2792 2793 // Handle <> tests using (or (ogt y x) (ogt x y)). 2794 case ISD::SETUEQ: 2795 Invert = true; 2796 LLVM_FALLTHROUGH; 2797 case ISD::SETONE: { 2798 assert(IsFP && "Unexpected integer comparison"); 2799 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2800 DL, VT, CmpOp1, CmpOp0, Chain); 2801 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2802 DL, VT, CmpOp0, CmpOp1, Chain); 2803 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2804 if (Chain) 2805 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2806 LT.getValue(1), GT.getValue(1)); 2807 break; 2808 } 2809 2810 // Otherwise a single comparison is enough. It doesn't really 2811 // matter whether we try the inversion or the swap first, since 2812 // there are no cases where both work. 2813 default: 2814 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2815 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2816 else { 2817 CC = ISD::getSetCCSwappedOperands(CC); 2818 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2819 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2820 else 2821 llvm_unreachable("Unhandled comparison"); 2822 } 2823 if (Chain) 2824 Chain = Cmp.getValue(1); 2825 break; 2826 } 2827 if (Invert) { 2828 SDValue Mask = 2829 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2830 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2831 } 2832 if (Chain && Chain.getNode() != Cmp.getNode()) { 2833 SDValue Ops[2] = { Cmp, Chain }; 2834 Cmp = DAG.getMergeValues(Ops, DL); 2835 } 2836 return Cmp; 2837 } 2838 2839 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2840 SelectionDAG &DAG) const { 2841 SDValue CmpOp0 = Op.getOperand(0); 2842 SDValue CmpOp1 = Op.getOperand(1); 2843 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2844 SDLoc DL(Op); 2845 EVT VT = Op.getValueType(); 2846 if (VT.isVector()) 2847 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2848 2849 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2850 SDValue CCReg = emitCmp(DAG, DL, C); 2851 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2852 } 2853 2854 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2855 SelectionDAG &DAG, 2856 bool IsSignaling) const { 2857 SDValue Chain = Op.getOperand(0); 2858 SDValue CmpOp0 = Op.getOperand(1); 2859 SDValue CmpOp1 = Op.getOperand(2); 2860 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2861 SDLoc DL(Op); 2862 EVT VT = Op.getNode()->getValueType(0); 2863 if (VT.isVector()) { 2864 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2865 Chain, IsSignaling); 2866 return Res.getValue(Op.getResNo()); 2867 } 2868 2869 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2870 SDValue CCReg = emitCmp(DAG, DL, C); 2871 CCReg->setFlags(Op->getFlags()); 2872 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2873 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2874 return DAG.getMergeValues(Ops, DL); 2875 } 2876 2877 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2878 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2879 SDValue CmpOp0 = Op.getOperand(2); 2880 SDValue CmpOp1 = Op.getOperand(3); 2881 SDValue Dest = Op.getOperand(4); 2882 SDLoc DL(Op); 2883 2884 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2885 SDValue CCReg = emitCmp(DAG, DL, C); 2886 return DAG.getNode( 2887 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2888 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2889 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2890 } 2891 2892 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2893 // allowing Pos and Neg to be wider than CmpOp. 2894 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2895 return (Neg.getOpcode() == ISD::SUB && 2896 Neg.getOperand(0).getOpcode() == ISD::Constant && 2897 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2898 Neg.getOperand(1) == Pos && 2899 (Pos == CmpOp || 2900 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2901 Pos.getOperand(0) == CmpOp))); 2902 } 2903 2904 // Return the absolute or negative absolute of Op; IsNegative decides which. 2905 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2906 bool IsNegative) { 2907 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2908 if (IsNegative) 2909 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2910 DAG.getConstant(0, DL, Op.getValueType()), Op); 2911 return Op; 2912 } 2913 2914 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2915 SelectionDAG &DAG) const { 2916 SDValue CmpOp0 = Op.getOperand(0); 2917 SDValue CmpOp1 = Op.getOperand(1); 2918 SDValue TrueOp = Op.getOperand(2); 2919 SDValue FalseOp = Op.getOperand(3); 2920 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2921 SDLoc DL(Op); 2922 2923 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2924 2925 // Check for absolute and negative-absolute selections, including those 2926 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2927 // This check supplements the one in DAGCombiner. 2928 if (C.Opcode == SystemZISD::ICMP && 2929 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2930 C.CCMask != SystemZ::CCMASK_CMP_NE && 2931 C.Op1.getOpcode() == ISD::Constant && 2932 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2933 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2934 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2935 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2936 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2937 } 2938 2939 SDValue CCReg = emitCmp(DAG, DL, C); 2940 SDValue Ops[] = {TrueOp, FalseOp, 2941 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2942 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2943 2944 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2945 } 2946 2947 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2948 SelectionDAG &DAG) const { 2949 SDLoc DL(Node); 2950 const GlobalValue *GV = Node->getGlobal(); 2951 int64_t Offset = Node->getOffset(); 2952 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2953 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2954 2955 SDValue Result; 2956 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2957 if (isInt<32>(Offset)) { 2958 // Assign anchors at 1<<12 byte boundaries. 2959 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2960 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2961 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2962 2963 // The offset can be folded into the address if it is aligned to a 2964 // halfword. 2965 Offset -= Anchor; 2966 if (Offset != 0 && (Offset & 1) == 0) { 2967 SDValue Full = 2968 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2969 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2970 Offset = 0; 2971 } 2972 } else { 2973 // Conservatively load a constant offset greater than 32 bits into a 2974 // register below. 2975 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 2976 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2977 } 2978 } else { 2979 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2980 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2981 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2982 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2983 } 2984 2985 // If there was a non-zero offset that we didn't fold, create an explicit 2986 // addition for it. 2987 if (Offset != 0) 2988 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2989 DAG.getConstant(Offset, DL, PtrVT)); 2990 2991 return Result; 2992 } 2993 2994 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2995 SelectionDAG &DAG, 2996 unsigned Opcode, 2997 SDValue GOTOffset) const { 2998 SDLoc DL(Node); 2999 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3000 SDValue Chain = DAG.getEntryNode(); 3001 SDValue Glue; 3002 3003 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3004 CallingConv::GHC) 3005 report_fatal_error("In GHC calling convention TLS is not supported"); 3006 3007 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3008 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3009 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3010 Glue = Chain.getValue(1); 3011 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3012 Glue = Chain.getValue(1); 3013 3014 // The first call operand is the chain and the second is the TLS symbol. 3015 SmallVector<SDValue, 8> Ops; 3016 Ops.push_back(Chain); 3017 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3018 Node->getValueType(0), 3019 0, 0)); 3020 3021 // Add argument registers to the end of the list so that they are 3022 // known live into the call. 3023 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3024 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3025 3026 // Add a register mask operand representing the call-preserved registers. 3027 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3028 const uint32_t *Mask = 3029 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3030 assert(Mask && "Missing call preserved mask for calling convention"); 3031 Ops.push_back(DAG.getRegisterMask(Mask)); 3032 3033 // Glue the call to the argument copies. 3034 Ops.push_back(Glue); 3035 3036 // Emit the call. 3037 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3038 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3039 Glue = Chain.getValue(1); 3040 3041 // Copy the return value from %r2. 3042 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3043 } 3044 3045 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3046 SelectionDAG &DAG) const { 3047 SDValue Chain = DAG.getEntryNode(); 3048 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3049 3050 // The high part of the thread pointer is in access register 0. 3051 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3052 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3053 3054 // The low part of the thread pointer is in access register 1. 3055 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3056 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3057 3058 // Merge them into a single 64-bit address. 3059 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3060 DAG.getConstant(32, DL, PtrVT)); 3061 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3062 } 3063 3064 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3065 SelectionDAG &DAG) const { 3066 if (DAG.getTarget().useEmulatedTLS()) 3067 return LowerToTLSEmulatedModel(Node, DAG); 3068 SDLoc DL(Node); 3069 const GlobalValue *GV = Node->getGlobal(); 3070 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3071 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3072 3073 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3074 CallingConv::GHC) 3075 report_fatal_error("In GHC calling convention TLS is not supported"); 3076 3077 SDValue TP = lowerThreadPointer(DL, DAG); 3078 3079 // Get the offset of GA from the thread pointer, based on the TLS model. 3080 SDValue Offset; 3081 switch (model) { 3082 case TLSModel::GeneralDynamic: { 3083 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3084 SystemZConstantPoolValue *CPV = 3085 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3086 3087 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3088 Offset = DAG.getLoad( 3089 PtrVT, DL, DAG.getEntryNode(), Offset, 3090 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3091 3092 // Call __tls_get_offset to retrieve the offset. 3093 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3094 break; 3095 } 3096 3097 case TLSModel::LocalDynamic: { 3098 // Load the GOT offset of the module ID. 3099 SystemZConstantPoolValue *CPV = 3100 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3101 3102 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3103 Offset = DAG.getLoad( 3104 PtrVT, DL, DAG.getEntryNode(), Offset, 3105 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3106 3107 // Call __tls_get_offset to retrieve the module base offset. 3108 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3109 3110 // Note: The SystemZLDCleanupPass will remove redundant computations 3111 // of the module base offset. Count total number of local-dynamic 3112 // accesses to trigger execution of that pass. 3113 SystemZMachineFunctionInfo* MFI = 3114 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3115 MFI->incNumLocalDynamicTLSAccesses(); 3116 3117 // Add the per-symbol offset. 3118 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3119 3120 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 3121 DTPOffset = DAG.getLoad( 3122 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3123 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3124 3125 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3126 break; 3127 } 3128 3129 case TLSModel::InitialExec: { 3130 // Load the offset from the GOT. 3131 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3132 SystemZII::MO_INDNTPOFF); 3133 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3134 Offset = 3135 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3136 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3137 break; 3138 } 3139 3140 case TLSModel::LocalExec: { 3141 // Force the offset into the constant pool and load it from there. 3142 SystemZConstantPoolValue *CPV = 3143 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3144 3145 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3146 Offset = DAG.getLoad( 3147 PtrVT, DL, DAG.getEntryNode(), Offset, 3148 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3149 break; 3150 } 3151 } 3152 3153 // Add the base and offset together. 3154 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3155 } 3156 3157 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3158 SelectionDAG &DAG) const { 3159 SDLoc DL(Node); 3160 const BlockAddress *BA = Node->getBlockAddress(); 3161 int64_t Offset = Node->getOffset(); 3162 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3163 3164 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3165 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3166 return Result; 3167 } 3168 3169 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3170 SelectionDAG &DAG) const { 3171 SDLoc DL(JT); 3172 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3173 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3174 3175 // Use LARL to load the address of the table. 3176 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3177 } 3178 3179 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3180 SelectionDAG &DAG) const { 3181 SDLoc DL(CP); 3182 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3183 3184 SDValue Result; 3185 if (CP->isMachineConstantPoolEntry()) 3186 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3187 CP->getAlignment()); 3188 else 3189 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3190 CP->getAlignment(), CP->getOffset()); 3191 3192 // Use LARL to load the address of the constant pool entry. 3193 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3194 } 3195 3196 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3197 SelectionDAG &DAG) const { 3198 MachineFunction &MF = DAG.getMachineFunction(); 3199 MachineFrameInfo &MFI = MF.getFrameInfo(); 3200 MFI.setFrameAddressIsTaken(true); 3201 3202 SDLoc DL(Op); 3203 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3204 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3205 3206 // By definition, the frame address is the address of the back chain. 3207 auto *TFL = 3208 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3209 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3210 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3211 3212 // FIXME The frontend should detect this case. 3213 if (Depth > 0) { 3214 report_fatal_error("Unsupported stack frame traversal count"); 3215 } 3216 3217 return BackChain; 3218 } 3219 3220 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3221 SelectionDAG &DAG) const { 3222 MachineFunction &MF = DAG.getMachineFunction(); 3223 MachineFrameInfo &MFI = MF.getFrameInfo(); 3224 MFI.setReturnAddressIsTaken(true); 3225 3226 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3227 return SDValue(); 3228 3229 SDLoc DL(Op); 3230 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3231 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3232 3233 // FIXME The frontend should detect this case. 3234 if (Depth > 0) { 3235 report_fatal_error("Unsupported stack frame traversal count"); 3236 } 3237 3238 // Return R14D, which has the return address. Mark it an implicit live-in. 3239 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3240 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3241 } 3242 3243 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3244 SelectionDAG &DAG) const { 3245 SDLoc DL(Op); 3246 SDValue In = Op.getOperand(0); 3247 EVT InVT = In.getValueType(); 3248 EVT ResVT = Op.getValueType(); 3249 3250 // Convert loads directly. This is normally done by DAGCombiner, 3251 // but we need this case for bitcasts that are created during lowering 3252 // and which are then lowered themselves. 3253 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3254 if (ISD::isNormalLoad(LoadN)) { 3255 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3256 LoadN->getBasePtr(), LoadN->getMemOperand()); 3257 // Update the chain uses. 3258 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3259 return NewLoad; 3260 } 3261 3262 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3263 SDValue In64; 3264 if (Subtarget.hasHighWord()) { 3265 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3266 MVT::i64); 3267 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3268 MVT::i64, SDValue(U64, 0), In); 3269 } else { 3270 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3271 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3272 DAG.getConstant(32, DL, MVT::i64)); 3273 } 3274 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3275 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3276 DL, MVT::f32, Out64); 3277 } 3278 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3279 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3280 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3281 MVT::f64, SDValue(U64, 0), In); 3282 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3283 if (Subtarget.hasHighWord()) 3284 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3285 MVT::i32, Out64); 3286 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3287 DAG.getConstant(32, DL, MVT::i64)); 3288 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3289 } 3290 llvm_unreachable("Unexpected bitcast combination"); 3291 } 3292 3293 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3294 SelectionDAG &DAG) const { 3295 MachineFunction &MF = DAG.getMachineFunction(); 3296 SystemZMachineFunctionInfo *FuncInfo = 3297 MF.getInfo<SystemZMachineFunctionInfo>(); 3298 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3299 3300 SDValue Chain = Op.getOperand(0); 3301 SDValue Addr = Op.getOperand(1); 3302 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3303 SDLoc DL(Op); 3304 3305 // The initial values of each field. 3306 const unsigned NumFields = 4; 3307 SDValue Fields[NumFields] = { 3308 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3309 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3310 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3311 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3312 }; 3313 3314 // Store each field into its respective slot. 3315 SDValue MemOps[NumFields]; 3316 unsigned Offset = 0; 3317 for (unsigned I = 0; I < NumFields; ++I) { 3318 SDValue FieldAddr = Addr; 3319 if (Offset != 0) 3320 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3321 DAG.getIntPtrConstant(Offset, DL)); 3322 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3323 MachinePointerInfo(SV, Offset)); 3324 Offset += 8; 3325 } 3326 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3327 } 3328 3329 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3330 SelectionDAG &DAG) const { 3331 SDValue Chain = Op.getOperand(0); 3332 SDValue DstPtr = Op.getOperand(1); 3333 SDValue SrcPtr = Op.getOperand(2); 3334 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3335 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3336 SDLoc DL(Op); 3337 3338 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3339 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3340 /*isTailCall*/false, 3341 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3342 } 3343 3344 SDValue SystemZTargetLowering:: 3345 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3346 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3347 MachineFunction &MF = DAG.getMachineFunction(); 3348 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3349 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3350 3351 SDValue Chain = Op.getOperand(0); 3352 SDValue Size = Op.getOperand(1); 3353 SDValue Align = Op.getOperand(2); 3354 SDLoc DL(Op); 3355 3356 // If user has set the no alignment function attribute, ignore 3357 // alloca alignments. 3358 uint64_t AlignVal = (RealignOpt ? 3359 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3360 3361 uint64_t StackAlign = TFI->getStackAlignment(); 3362 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3363 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3364 3365 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3366 SDValue NeededSpace = Size; 3367 3368 // Get a reference to the stack pointer. 3369 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3370 3371 // If we need a backchain, save it now. 3372 SDValue Backchain; 3373 if (StoreBackchain) 3374 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3375 3376 // Add extra space for alignment if needed. 3377 if (ExtraAlignSpace) 3378 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3379 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3380 3381 // Get the new stack pointer value. 3382 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3383 3384 // Copy the new stack pointer back. 3385 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3386 3387 // The allocated data lives above the 160 bytes allocated for the standard 3388 // frame, plus any outgoing stack arguments. We don't know how much that 3389 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3390 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3391 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3392 3393 // Dynamically realign if needed. 3394 if (RequiredAlign > StackAlign) { 3395 Result = 3396 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3397 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3398 Result = 3399 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3400 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3401 } 3402 3403 if (StoreBackchain) 3404 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3405 3406 SDValue Ops[2] = { Result, Chain }; 3407 return DAG.getMergeValues(Ops, DL); 3408 } 3409 3410 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3411 SDValue Op, SelectionDAG &DAG) const { 3412 SDLoc DL(Op); 3413 3414 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3415 } 3416 3417 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3418 SelectionDAG &DAG) const { 3419 EVT VT = Op.getValueType(); 3420 SDLoc DL(Op); 3421 SDValue Ops[2]; 3422 if (is32Bit(VT)) 3423 // Just do a normal 64-bit multiplication and extract the results. 3424 // We define this so that it can be used for constant division. 3425 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3426 Op.getOperand(1), Ops[1], Ops[0]); 3427 else if (Subtarget.hasMiscellaneousExtensions2()) 3428 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3429 // the high result in the even register. ISD::SMUL_LOHI is defined to 3430 // return the low half first, so the results are in reverse order. 3431 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3432 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3433 else { 3434 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3435 // 3436 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3437 // 3438 // but using the fact that the upper halves are either all zeros 3439 // or all ones: 3440 // 3441 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3442 // 3443 // and grouping the right terms together since they are quicker than the 3444 // multiplication: 3445 // 3446 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3447 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3448 SDValue LL = Op.getOperand(0); 3449 SDValue RL = Op.getOperand(1); 3450 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3451 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3452 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3453 // the high result in the even register. ISD::SMUL_LOHI is defined to 3454 // return the low half first, so the results are in reverse order. 3455 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3456 LL, RL, Ops[1], Ops[0]); 3457 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3458 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3459 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3460 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3461 } 3462 return DAG.getMergeValues(Ops, DL); 3463 } 3464 3465 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3466 SelectionDAG &DAG) const { 3467 EVT VT = Op.getValueType(); 3468 SDLoc DL(Op); 3469 SDValue Ops[2]; 3470 if (is32Bit(VT)) 3471 // Just do a normal 64-bit multiplication and extract the results. 3472 // We define this so that it can be used for constant division. 3473 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3474 Op.getOperand(1), Ops[1], Ops[0]); 3475 else 3476 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3477 // the high result in the even register. ISD::UMUL_LOHI is defined to 3478 // return the low half first, so the results are in reverse order. 3479 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3480 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3481 return DAG.getMergeValues(Ops, DL); 3482 } 3483 3484 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3485 SelectionDAG &DAG) const { 3486 SDValue Op0 = Op.getOperand(0); 3487 SDValue Op1 = Op.getOperand(1); 3488 EVT VT = Op.getValueType(); 3489 SDLoc DL(Op); 3490 3491 // We use DSGF for 32-bit division. This means the first operand must 3492 // always be 64-bit, and the second operand should be 32-bit whenever 3493 // that is possible, to improve performance. 3494 if (is32Bit(VT)) 3495 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3496 else if (DAG.ComputeNumSignBits(Op1) > 32) 3497 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3498 3499 // DSG(F) returns the remainder in the even register and the 3500 // quotient in the odd register. 3501 SDValue Ops[2]; 3502 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3503 return DAG.getMergeValues(Ops, DL); 3504 } 3505 3506 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3507 SelectionDAG &DAG) const { 3508 EVT VT = Op.getValueType(); 3509 SDLoc DL(Op); 3510 3511 // DL(G) returns the remainder in the even register and the 3512 // quotient in the odd register. 3513 SDValue Ops[2]; 3514 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3515 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3516 return DAG.getMergeValues(Ops, DL); 3517 } 3518 3519 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3520 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3521 3522 // Get the known-zero masks for each operand. 3523 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3524 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3525 DAG.computeKnownBits(Ops[1])}; 3526 3527 // See if the upper 32 bits of one operand and the lower 32 bits of the 3528 // other are known zero. They are the low and high operands respectively. 3529 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3530 Known[1].Zero.getZExtValue() }; 3531 unsigned High, Low; 3532 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3533 High = 1, Low = 0; 3534 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3535 High = 0, Low = 1; 3536 else 3537 return Op; 3538 3539 SDValue LowOp = Ops[Low]; 3540 SDValue HighOp = Ops[High]; 3541 3542 // If the high part is a constant, we're better off using IILH. 3543 if (HighOp.getOpcode() == ISD::Constant) 3544 return Op; 3545 3546 // If the low part is a constant that is outside the range of LHI, 3547 // then we're better off using IILF. 3548 if (LowOp.getOpcode() == ISD::Constant) { 3549 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3550 if (!isInt<16>(Value)) 3551 return Op; 3552 } 3553 3554 // Check whether the high part is an AND that doesn't change the 3555 // high 32 bits and just masks out low bits. We can skip it if so. 3556 if (HighOp.getOpcode() == ISD::AND && 3557 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3558 SDValue HighOp0 = HighOp.getOperand(0); 3559 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3560 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3561 HighOp = HighOp0; 3562 } 3563 3564 // Take advantage of the fact that all GR32 operations only change the 3565 // low 32 bits by truncating Low to an i32 and inserting it directly 3566 // using a subreg. The interesting cases are those where the truncation 3567 // can be folded. 3568 SDLoc DL(Op); 3569 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3570 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3571 MVT::i64, HighOp, Low32); 3572 } 3573 3574 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3575 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3576 SelectionDAG &DAG) const { 3577 SDNode *N = Op.getNode(); 3578 SDValue LHS = N->getOperand(0); 3579 SDValue RHS = N->getOperand(1); 3580 SDLoc DL(N); 3581 unsigned BaseOp = 0; 3582 unsigned CCValid = 0; 3583 unsigned CCMask = 0; 3584 3585 switch (Op.getOpcode()) { 3586 default: llvm_unreachable("Unknown instruction!"); 3587 case ISD::SADDO: 3588 BaseOp = SystemZISD::SADDO; 3589 CCValid = SystemZ::CCMASK_ARITH; 3590 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3591 break; 3592 case ISD::SSUBO: 3593 BaseOp = SystemZISD::SSUBO; 3594 CCValid = SystemZ::CCMASK_ARITH; 3595 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3596 break; 3597 case ISD::UADDO: 3598 BaseOp = SystemZISD::UADDO; 3599 CCValid = SystemZ::CCMASK_LOGICAL; 3600 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3601 break; 3602 case ISD::USUBO: 3603 BaseOp = SystemZISD::USUBO; 3604 CCValid = SystemZ::CCMASK_LOGICAL; 3605 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3606 break; 3607 } 3608 3609 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3610 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3611 3612 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3613 if (N->getValueType(1) == MVT::i1) 3614 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3615 3616 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3617 } 3618 3619 static bool isAddCarryChain(SDValue Carry) { 3620 while (Carry.getOpcode() == ISD::ADDCARRY) 3621 Carry = Carry.getOperand(2); 3622 return Carry.getOpcode() == ISD::UADDO; 3623 } 3624 3625 static bool isSubBorrowChain(SDValue Carry) { 3626 while (Carry.getOpcode() == ISD::SUBCARRY) 3627 Carry = Carry.getOperand(2); 3628 return Carry.getOpcode() == ISD::USUBO; 3629 } 3630 3631 // Lower ADDCARRY/SUBCARRY nodes. 3632 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3633 SelectionDAG &DAG) const { 3634 3635 SDNode *N = Op.getNode(); 3636 MVT VT = N->getSimpleValueType(0); 3637 3638 // Let legalize expand this if it isn't a legal type yet. 3639 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3640 return SDValue(); 3641 3642 SDValue LHS = N->getOperand(0); 3643 SDValue RHS = N->getOperand(1); 3644 SDValue Carry = Op.getOperand(2); 3645 SDLoc DL(N); 3646 unsigned BaseOp = 0; 3647 unsigned CCValid = 0; 3648 unsigned CCMask = 0; 3649 3650 switch (Op.getOpcode()) { 3651 default: llvm_unreachable("Unknown instruction!"); 3652 case ISD::ADDCARRY: 3653 if (!isAddCarryChain(Carry)) 3654 return SDValue(); 3655 3656 BaseOp = SystemZISD::ADDCARRY; 3657 CCValid = SystemZ::CCMASK_LOGICAL; 3658 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3659 break; 3660 case ISD::SUBCARRY: 3661 if (!isSubBorrowChain(Carry)) 3662 return SDValue(); 3663 3664 BaseOp = SystemZISD::SUBCARRY; 3665 CCValid = SystemZ::CCMASK_LOGICAL; 3666 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3667 break; 3668 } 3669 3670 // Set the condition code from the carry flag. 3671 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3672 DAG.getConstant(CCValid, DL, MVT::i32), 3673 DAG.getConstant(CCMask, DL, MVT::i32)); 3674 3675 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3676 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3677 3678 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3679 if (N->getValueType(1) == MVT::i1) 3680 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3681 3682 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3683 } 3684 3685 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3686 SelectionDAG &DAG) const { 3687 EVT VT = Op.getValueType(); 3688 SDLoc DL(Op); 3689 Op = Op.getOperand(0); 3690 3691 // Handle vector types via VPOPCT. 3692 if (VT.isVector()) { 3693 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3694 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3695 switch (VT.getScalarSizeInBits()) { 3696 case 8: 3697 break; 3698 case 16: { 3699 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3700 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3701 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3702 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3703 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3704 break; 3705 } 3706 case 32: { 3707 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3708 DAG.getConstant(0, DL, MVT::i32)); 3709 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3710 break; 3711 } 3712 case 64: { 3713 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3714 DAG.getConstant(0, DL, MVT::i32)); 3715 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3716 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3717 break; 3718 } 3719 default: 3720 llvm_unreachable("Unexpected type"); 3721 } 3722 return Op; 3723 } 3724 3725 // Get the known-zero mask for the operand. 3726 KnownBits Known = DAG.computeKnownBits(Op); 3727 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3728 if (NumSignificantBits == 0) 3729 return DAG.getConstant(0, DL, VT); 3730 3731 // Skip known-zero high parts of the operand. 3732 int64_t OrigBitSize = VT.getSizeInBits(); 3733 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3734 BitSize = std::min(BitSize, OrigBitSize); 3735 3736 // The POPCNT instruction counts the number of bits in each byte. 3737 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3738 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3739 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3740 3741 // Add up per-byte counts in a binary tree. All bits of Op at 3742 // position larger than BitSize remain zero throughout. 3743 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3744 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3745 if (BitSize != OrigBitSize) 3746 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3747 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3748 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3749 } 3750 3751 // Extract overall result from high byte. 3752 if (BitSize > 8) 3753 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3754 DAG.getConstant(BitSize - 8, DL, VT)); 3755 3756 return Op; 3757 } 3758 3759 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3760 SelectionDAG &DAG) const { 3761 SDLoc DL(Op); 3762 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3763 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3764 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3765 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3766 3767 // The only fence that needs an instruction is a sequentially-consistent 3768 // cross-thread fence. 3769 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3770 FenceSSID == SyncScope::System) { 3771 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3772 Op.getOperand(0)), 3773 0); 3774 } 3775 3776 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3777 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3778 } 3779 3780 // Op is an atomic load. Lower it into a normal volatile load. 3781 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3782 SelectionDAG &DAG) const { 3783 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3784 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3785 Node->getChain(), Node->getBasePtr(), 3786 Node->getMemoryVT(), Node->getMemOperand()); 3787 } 3788 3789 // Op is an atomic store. Lower it into a normal volatile store. 3790 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3791 SelectionDAG &DAG) const { 3792 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3793 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3794 Node->getBasePtr(), Node->getMemoryVT(), 3795 Node->getMemOperand()); 3796 // We have to enforce sequential consistency by performing a 3797 // serialization operation after the store. 3798 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3799 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3800 MVT::Other, Chain), 0); 3801 return Chain; 3802 } 3803 3804 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3805 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3806 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3807 SelectionDAG &DAG, 3808 unsigned Opcode) const { 3809 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3810 3811 // 32-bit operations need no code outside the main loop. 3812 EVT NarrowVT = Node->getMemoryVT(); 3813 EVT WideVT = MVT::i32; 3814 if (NarrowVT == WideVT) 3815 return Op; 3816 3817 int64_t BitSize = NarrowVT.getSizeInBits(); 3818 SDValue ChainIn = Node->getChain(); 3819 SDValue Addr = Node->getBasePtr(); 3820 SDValue Src2 = Node->getVal(); 3821 MachineMemOperand *MMO = Node->getMemOperand(); 3822 SDLoc DL(Node); 3823 EVT PtrVT = Addr.getValueType(); 3824 3825 // Convert atomic subtracts of constants into additions. 3826 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3827 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3828 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3829 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3830 } 3831 3832 // Get the address of the containing word. 3833 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3834 DAG.getConstant(-4, DL, PtrVT)); 3835 3836 // Get the number of bits that the word must be rotated left in order 3837 // to bring the field to the top bits of a GR32. 3838 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3839 DAG.getConstant(3, DL, PtrVT)); 3840 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3841 3842 // Get the complementing shift amount, for rotating a field in the top 3843 // bits back to its proper position. 3844 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3845 DAG.getConstant(0, DL, WideVT), BitShift); 3846 3847 // Extend the source operand to 32 bits and prepare it for the inner loop. 3848 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3849 // operations require the source to be shifted in advance. (This shift 3850 // can be folded if the source is constant.) For AND and NAND, the lower 3851 // bits must be set, while for other opcodes they should be left clear. 3852 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3853 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3854 DAG.getConstant(32 - BitSize, DL, WideVT)); 3855 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3856 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3857 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3858 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3859 3860 // Construct the ATOMIC_LOADW_* node. 3861 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3862 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3863 DAG.getConstant(BitSize, DL, WideVT) }; 3864 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3865 NarrowVT, MMO); 3866 3867 // Rotate the result of the final CS so that the field is in the lower 3868 // bits of a GR32, then truncate it. 3869 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3870 DAG.getConstant(BitSize, DL, WideVT)); 3871 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3872 3873 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3874 return DAG.getMergeValues(RetOps, DL); 3875 } 3876 3877 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3878 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3879 // operations into additions. 3880 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3881 SelectionDAG &DAG) const { 3882 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3883 EVT MemVT = Node->getMemoryVT(); 3884 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3885 // A full-width operation. 3886 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3887 SDValue Src2 = Node->getVal(); 3888 SDValue NegSrc2; 3889 SDLoc DL(Src2); 3890 3891 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3892 // Use an addition if the operand is constant and either LAA(G) is 3893 // available or the negative value is in the range of A(G)FHI. 3894 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3895 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3896 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3897 } else if (Subtarget.hasInterlockedAccess1()) 3898 // Use LAA(G) if available. 3899 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3900 Src2); 3901 3902 if (NegSrc2.getNode()) 3903 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3904 Node->getChain(), Node->getBasePtr(), NegSrc2, 3905 Node->getMemOperand()); 3906 3907 // Use the node as-is. 3908 return Op; 3909 } 3910 3911 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3912 } 3913 3914 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3915 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3916 SelectionDAG &DAG) const { 3917 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3918 SDValue ChainIn = Node->getOperand(0); 3919 SDValue Addr = Node->getOperand(1); 3920 SDValue CmpVal = Node->getOperand(2); 3921 SDValue SwapVal = Node->getOperand(3); 3922 MachineMemOperand *MMO = Node->getMemOperand(); 3923 SDLoc DL(Node); 3924 3925 // We have native support for 32-bit and 64-bit compare and swap, but we 3926 // still need to expand extracting the "success" result from the CC. 3927 EVT NarrowVT = Node->getMemoryVT(); 3928 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3929 if (NarrowVT == WideVT) { 3930 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3931 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3932 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3933 DL, Tys, Ops, NarrowVT, MMO); 3934 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3935 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3936 3937 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3938 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3939 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3940 return SDValue(); 3941 } 3942 3943 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3944 // via a fullword ATOMIC_CMP_SWAPW operation. 3945 int64_t BitSize = NarrowVT.getSizeInBits(); 3946 EVT PtrVT = Addr.getValueType(); 3947 3948 // Get the address of the containing word. 3949 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3950 DAG.getConstant(-4, DL, PtrVT)); 3951 3952 // Get the number of bits that the word must be rotated left in order 3953 // to bring the field to the top bits of a GR32. 3954 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3955 DAG.getConstant(3, DL, PtrVT)); 3956 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3957 3958 // Get the complementing shift amount, for rotating a field in the top 3959 // bits back to its proper position. 3960 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3961 DAG.getConstant(0, DL, WideVT), BitShift); 3962 3963 // Construct the ATOMIC_CMP_SWAPW node. 3964 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3965 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3966 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3967 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3968 VTList, Ops, NarrowVT, MMO); 3969 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3970 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3971 3972 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3973 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3974 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3975 return SDValue(); 3976 } 3977 3978 MachineMemOperand::Flags 3979 SystemZTargetLowering::getMMOFlags(const Instruction &I) const { 3980 // Because of how we convert atomic_load and atomic_store to normal loads and 3981 // stores in the DAG, we need to ensure that the MMOs are marked volatile 3982 // since DAGCombine hasn't been updated to account for atomic, but non 3983 // volatile loads. (See D57601) 3984 if (auto *SI = dyn_cast<StoreInst>(&I)) 3985 if (SI->isAtomic()) 3986 return MachineMemOperand::MOVolatile; 3987 if (auto *LI = dyn_cast<LoadInst>(&I)) 3988 if (LI->isAtomic()) 3989 return MachineMemOperand::MOVolatile; 3990 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 3991 if (AI->isAtomic()) 3992 return MachineMemOperand::MOVolatile; 3993 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 3994 if (AI->isAtomic()) 3995 return MachineMemOperand::MOVolatile; 3996 return MachineMemOperand::MONone; 3997 } 3998 3999 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4000 SelectionDAG &DAG) const { 4001 MachineFunction &MF = DAG.getMachineFunction(); 4002 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4003 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4004 report_fatal_error("Variable-sized stack allocations are not supported " 4005 "in GHC calling convention"); 4006 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4007 SystemZ::R15D, Op.getValueType()); 4008 } 4009 4010 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4011 SelectionDAG &DAG) const { 4012 MachineFunction &MF = DAG.getMachineFunction(); 4013 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4014 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4015 4016 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4017 report_fatal_error("Variable-sized stack allocations are not supported " 4018 "in GHC calling convention"); 4019 4020 SDValue Chain = Op.getOperand(0); 4021 SDValue NewSP = Op.getOperand(1); 4022 SDValue Backchain; 4023 SDLoc DL(Op); 4024 4025 if (StoreBackchain) { 4026 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4027 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4028 } 4029 4030 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4031 4032 if (StoreBackchain) 4033 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4034 4035 return Chain; 4036 } 4037 4038 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4039 SelectionDAG &DAG) const { 4040 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4041 if (!IsData) 4042 // Just preserve the chain. 4043 return Op.getOperand(0); 4044 4045 SDLoc DL(Op); 4046 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4047 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4048 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4049 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4050 Op.getOperand(1)}; 4051 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4052 Node->getVTList(), Ops, 4053 Node->getMemoryVT(), Node->getMemOperand()); 4054 } 4055 4056 // Convert condition code in CCReg to an i32 value. 4057 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4058 SDLoc DL(CCReg); 4059 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4060 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4061 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4062 } 4063 4064 SDValue 4065 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4066 SelectionDAG &DAG) const { 4067 unsigned Opcode, CCValid; 4068 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4069 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4070 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4071 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4072 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4073 return SDValue(); 4074 } 4075 4076 return SDValue(); 4077 } 4078 4079 SDValue 4080 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4081 SelectionDAG &DAG) const { 4082 unsigned Opcode, CCValid; 4083 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4084 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4085 if (Op->getNumValues() == 1) 4086 return getCCResult(DAG, SDValue(Node, 0)); 4087 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4088 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4089 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4090 } 4091 4092 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4093 switch (Id) { 4094 case Intrinsic::thread_pointer: 4095 return lowerThreadPointer(SDLoc(Op), DAG); 4096 4097 case Intrinsic::s390_vpdi: 4098 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4099 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4100 4101 case Intrinsic::s390_vperm: 4102 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4103 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4104 4105 case Intrinsic::s390_vuphb: 4106 case Intrinsic::s390_vuphh: 4107 case Intrinsic::s390_vuphf: 4108 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4109 Op.getOperand(1)); 4110 4111 case Intrinsic::s390_vuplhb: 4112 case Intrinsic::s390_vuplhh: 4113 case Intrinsic::s390_vuplhf: 4114 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4115 Op.getOperand(1)); 4116 4117 case Intrinsic::s390_vuplb: 4118 case Intrinsic::s390_vuplhw: 4119 case Intrinsic::s390_vuplf: 4120 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4121 Op.getOperand(1)); 4122 4123 case Intrinsic::s390_vupllb: 4124 case Intrinsic::s390_vupllh: 4125 case Intrinsic::s390_vupllf: 4126 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4127 Op.getOperand(1)); 4128 4129 case Intrinsic::s390_vsumb: 4130 case Intrinsic::s390_vsumh: 4131 case Intrinsic::s390_vsumgh: 4132 case Intrinsic::s390_vsumgf: 4133 case Intrinsic::s390_vsumqf: 4134 case Intrinsic::s390_vsumqg: 4135 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4136 Op.getOperand(1), Op.getOperand(2)); 4137 } 4138 4139 return SDValue(); 4140 } 4141 4142 namespace { 4143 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4144 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4145 // Operand is the constant third operand, otherwise it is the number of 4146 // bytes in each element of the result. 4147 struct Permute { 4148 unsigned Opcode; 4149 unsigned Operand; 4150 unsigned char Bytes[SystemZ::VectorBytes]; 4151 }; 4152 } 4153 4154 static const Permute PermuteForms[] = { 4155 // VMRHG 4156 { SystemZISD::MERGE_HIGH, 8, 4157 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4158 // VMRHF 4159 { SystemZISD::MERGE_HIGH, 4, 4160 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4161 // VMRHH 4162 { SystemZISD::MERGE_HIGH, 2, 4163 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4164 // VMRHB 4165 { SystemZISD::MERGE_HIGH, 1, 4166 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4167 // VMRLG 4168 { SystemZISD::MERGE_LOW, 8, 4169 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4170 // VMRLF 4171 { SystemZISD::MERGE_LOW, 4, 4172 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4173 // VMRLH 4174 { SystemZISD::MERGE_LOW, 2, 4175 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4176 // VMRLB 4177 { SystemZISD::MERGE_LOW, 1, 4178 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4179 // VPKG 4180 { SystemZISD::PACK, 4, 4181 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4182 // VPKF 4183 { SystemZISD::PACK, 2, 4184 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4185 // VPKH 4186 { SystemZISD::PACK, 1, 4187 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4188 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4189 { SystemZISD::PERMUTE_DWORDS, 4, 4190 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4191 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4192 { SystemZISD::PERMUTE_DWORDS, 1, 4193 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4194 }; 4195 4196 // Called after matching a vector shuffle against a particular pattern. 4197 // Both the original shuffle and the pattern have two vector operands. 4198 // OpNos[0] is the operand of the original shuffle that should be used for 4199 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4200 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4201 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4202 // for operands 0 and 1 of the pattern. 4203 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4204 if (OpNos[0] < 0) { 4205 if (OpNos[1] < 0) 4206 return false; 4207 OpNo0 = OpNo1 = OpNos[1]; 4208 } else if (OpNos[1] < 0) { 4209 OpNo0 = OpNo1 = OpNos[0]; 4210 } else { 4211 OpNo0 = OpNos[0]; 4212 OpNo1 = OpNos[1]; 4213 } 4214 return true; 4215 } 4216 4217 // Bytes is a VPERM-like permute vector, except that -1 is used for 4218 // undefined bytes. Return true if the VPERM can be implemented using P. 4219 // When returning true set OpNo0 to the VPERM operand that should be 4220 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4221 // 4222 // For example, if swapping the VPERM operands allows P to match, OpNo0 4223 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4224 // operand, but rewriting it to use two duplicated operands allows it to 4225 // match P, then OpNo0 and OpNo1 will be the same. 4226 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4227 unsigned &OpNo0, unsigned &OpNo1) { 4228 int OpNos[] = { -1, -1 }; 4229 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4230 int Elt = Bytes[I]; 4231 if (Elt >= 0) { 4232 // Make sure that the two permute vectors use the same suboperand 4233 // byte number. Only the operand numbers (the high bits) are 4234 // allowed to differ. 4235 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4236 return false; 4237 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4238 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4239 // Make sure that the operand mappings are consistent with previous 4240 // elements. 4241 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4242 return false; 4243 OpNos[ModelOpNo] = RealOpNo; 4244 } 4245 } 4246 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4247 } 4248 4249 // As above, but search for a matching permute. 4250 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4251 unsigned &OpNo0, unsigned &OpNo1) { 4252 for (auto &P : PermuteForms) 4253 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4254 return &P; 4255 return nullptr; 4256 } 4257 4258 // Bytes is a VPERM-like permute vector, except that -1 is used for 4259 // undefined bytes. This permute is an operand of an outer permute. 4260 // See whether redistributing the -1 bytes gives a shuffle that can be 4261 // implemented using P. If so, set Transform to a VPERM-like permute vector 4262 // that, when applied to the result of P, gives the original permute in Bytes. 4263 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4264 const Permute &P, 4265 SmallVectorImpl<int> &Transform) { 4266 unsigned To = 0; 4267 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4268 int Elt = Bytes[From]; 4269 if (Elt < 0) 4270 // Byte number From of the result is undefined. 4271 Transform[From] = -1; 4272 else { 4273 while (P.Bytes[To] != Elt) { 4274 To += 1; 4275 if (To == SystemZ::VectorBytes) 4276 return false; 4277 } 4278 Transform[From] = To; 4279 } 4280 } 4281 return true; 4282 } 4283 4284 // As above, but search for a matching permute. 4285 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4286 SmallVectorImpl<int> &Transform) { 4287 for (auto &P : PermuteForms) 4288 if (matchDoublePermute(Bytes, P, Transform)) 4289 return &P; 4290 return nullptr; 4291 } 4292 4293 // Convert the mask of the given shuffle op into a byte-level mask, 4294 // as if it had type vNi8. 4295 static bool getVPermMask(SDValue ShuffleOp, 4296 SmallVectorImpl<int> &Bytes) { 4297 EVT VT = ShuffleOp.getValueType(); 4298 unsigned NumElements = VT.getVectorNumElements(); 4299 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4300 4301 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4302 Bytes.resize(NumElements * BytesPerElement, -1); 4303 for (unsigned I = 0; I < NumElements; ++I) { 4304 int Index = VSN->getMaskElt(I); 4305 if (Index >= 0) 4306 for (unsigned J = 0; J < BytesPerElement; ++J) 4307 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4308 } 4309 return true; 4310 } 4311 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4312 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4313 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4314 Bytes.resize(NumElements * BytesPerElement, -1); 4315 for (unsigned I = 0; I < NumElements; ++I) 4316 for (unsigned J = 0; J < BytesPerElement; ++J) 4317 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4318 return true; 4319 } 4320 return false; 4321 } 4322 4323 // Bytes is a VPERM-like permute vector, except that -1 is used for 4324 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4325 // the result come from a contiguous sequence of bytes from one input. 4326 // Set Base to the selector for the first byte if so. 4327 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4328 unsigned BytesPerElement, int &Base) { 4329 Base = -1; 4330 for (unsigned I = 0; I < BytesPerElement; ++I) { 4331 if (Bytes[Start + I] >= 0) { 4332 unsigned Elem = Bytes[Start + I]; 4333 if (Base < 0) { 4334 Base = Elem - I; 4335 // Make sure the bytes would come from one input operand. 4336 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4337 return false; 4338 } else if (unsigned(Base) != Elem - I) 4339 return false; 4340 } 4341 } 4342 return true; 4343 } 4344 4345 // Bytes is a VPERM-like permute vector, except that -1 is used for 4346 // undefined bytes. Return true if it can be performed using VSLDI. 4347 // When returning true, set StartIndex to the shift amount and OpNo0 4348 // and OpNo1 to the VPERM operands that should be used as the first 4349 // and second shift operand respectively. 4350 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4351 unsigned &StartIndex, unsigned &OpNo0, 4352 unsigned &OpNo1) { 4353 int OpNos[] = { -1, -1 }; 4354 int Shift = -1; 4355 for (unsigned I = 0; I < 16; ++I) { 4356 int Index = Bytes[I]; 4357 if (Index >= 0) { 4358 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4359 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4360 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4361 if (Shift < 0) 4362 Shift = ExpectedShift; 4363 else if (Shift != ExpectedShift) 4364 return false; 4365 // Make sure that the operand mappings are consistent with previous 4366 // elements. 4367 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4368 return false; 4369 OpNos[ModelOpNo] = RealOpNo; 4370 } 4371 } 4372 StartIndex = Shift; 4373 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4374 } 4375 4376 // Create a node that performs P on operands Op0 and Op1, casting the 4377 // operands to the appropriate type. The type of the result is determined by P. 4378 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4379 const Permute &P, SDValue Op0, SDValue Op1) { 4380 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4381 // elements of a PACK are twice as wide as the outputs. 4382 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4383 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4384 P.Operand); 4385 // Cast both operands to the appropriate type. 4386 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4387 SystemZ::VectorBytes / InBytes); 4388 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4389 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4390 SDValue Op; 4391 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4392 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4393 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4394 } else if (P.Opcode == SystemZISD::PACK) { 4395 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4396 SystemZ::VectorBytes / P.Operand); 4397 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4398 } else { 4399 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4400 } 4401 return Op; 4402 } 4403 4404 // Bytes is a VPERM-like permute vector, except that -1 is used for 4405 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4406 // VSLDI or VPERM. 4407 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4408 SDValue *Ops, 4409 const SmallVectorImpl<int> &Bytes) { 4410 for (unsigned I = 0; I < 2; ++I) 4411 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4412 4413 // First see whether VSLDI can be used. 4414 unsigned StartIndex, OpNo0, OpNo1; 4415 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4416 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4417 Ops[OpNo1], 4418 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4419 4420 // Fall back on VPERM. Construct an SDNode for the permute vector. 4421 SDValue IndexNodes[SystemZ::VectorBytes]; 4422 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4423 if (Bytes[I] >= 0) 4424 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4425 else 4426 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4427 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4428 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4429 } 4430 4431 namespace { 4432 // Describes a general N-operand vector shuffle. 4433 struct GeneralShuffle { 4434 GeneralShuffle(EVT vt) : VT(vt) {} 4435 void addUndef(); 4436 bool add(SDValue, unsigned); 4437 SDValue getNode(SelectionDAG &, const SDLoc &); 4438 4439 // The operands of the shuffle. 4440 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4441 4442 // Index I is -1 if byte I of the result is undefined. Otherwise the 4443 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4444 // Bytes[I] / SystemZ::VectorBytes. 4445 SmallVector<int, SystemZ::VectorBytes> Bytes; 4446 4447 // The type of the shuffle result. 4448 EVT VT; 4449 }; 4450 } 4451 4452 // Add an extra undefined element to the shuffle. 4453 void GeneralShuffle::addUndef() { 4454 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4455 for (unsigned I = 0; I < BytesPerElement; ++I) 4456 Bytes.push_back(-1); 4457 } 4458 4459 // Add an extra element to the shuffle, taking it from element Elem of Op. 4460 // A null Op indicates a vector input whose value will be calculated later; 4461 // there is at most one such input per shuffle and it always has the same 4462 // type as the result. Aborts and returns false if the source vector elements 4463 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4464 // LLVM they become implicitly extended, but this is rare and not optimized. 4465 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4466 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4467 4468 // The source vector can have wider elements than the result, 4469 // either through an explicit TRUNCATE or because of type legalization. 4470 // We want the least significant part. 4471 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4472 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4473 4474 // Return false if the source elements are smaller than their destination 4475 // elements. 4476 if (FromBytesPerElement < BytesPerElement) 4477 return false; 4478 4479 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4480 (FromBytesPerElement - BytesPerElement)); 4481 4482 // Look through things like shuffles and bitcasts. 4483 while (Op.getNode()) { 4484 if (Op.getOpcode() == ISD::BITCAST) 4485 Op = Op.getOperand(0); 4486 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4487 // See whether the bytes we need come from a contiguous part of one 4488 // operand. 4489 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4490 if (!getVPermMask(Op, OpBytes)) 4491 break; 4492 int NewByte; 4493 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4494 break; 4495 if (NewByte < 0) { 4496 addUndef(); 4497 return true; 4498 } 4499 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4500 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4501 } else if (Op.isUndef()) { 4502 addUndef(); 4503 return true; 4504 } else 4505 break; 4506 } 4507 4508 // Make sure that the source of the extraction is in Ops. 4509 unsigned OpNo = 0; 4510 for (; OpNo < Ops.size(); ++OpNo) 4511 if (Ops[OpNo] == Op) 4512 break; 4513 if (OpNo == Ops.size()) 4514 Ops.push_back(Op); 4515 4516 // Add the element to Bytes. 4517 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4518 for (unsigned I = 0; I < BytesPerElement; ++I) 4519 Bytes.push_back(Base + I); 4520 4521 return true; 4522 } 4523 4524 // Return SDNodes for the completed shuffle. 4525 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4526 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4527 4528 if (Ops.size() == 0) 4529 return DAG.getUNDEF(VT); 4530 4531 // Make sure that there are at least two shuffle operands. 4532 if (Ops.size() == 1) 4533 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4534 4535 // Create a tree of shuffles, deferring root node until after the loop. 4536 // Try to redistribute the undefined elements of non-root nodes so that 4537 // the non-root shuffles match something like a pack or merge, then adjust 4538 // the parent node's permute vector to compensate for the new order. 4539 // Among other things, this copes with vectors like <2 x i16> that were 4540 // padded with undefined elements during type legalization. 4541 // 4542 // In the best case this redistribution will lead to the whole tree 4543 // using packs and merges. It should rarely be a loss in other cases. 4544 unsigned Stride = 1; 4545 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4546 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4547 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4548 4549 // Create a mask for just these two operands. 4550 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4551 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4552 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4553 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4554 if (OpNo == I) 4555 NewBytes[J] = Byte; 4556 else if (OpNo == I + Stride) 4557 NewBytes[J] = SystemZ::VectorBytes + Byte; 4558 else 4559 NewBytes[J] = -1; 4560 } 4561 // See if it would be better to reorganize NewMask to avoid using VPERM. 4562 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4563 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4564 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4565 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4566 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4567 if (NewBytes[J] >= 0) { 4568 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4569 "Invalid double permute"); 4570 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4571 } else 4572 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4573 } 4574 } else { 4575 // Just use NewBytes on the operands. 4576 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4577 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4578 if (NewBytes[J] >= 0) 4579 Bytes[J] = I * SystemZ::VectorBytes + J; 4580 } 4581 } 4582 } 4583 4584 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4585 if (Stride > 1) { 4586 Ops[1] = Ops[Stride]; 4587 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4588 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4589 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4590 } 4591 4592 // Look for an instruction that can do the permute without resorting 4593 // to VPERM. 4594 unsigned OpNo0, OpNo1; 4595 SDValue Op; 4596 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4597 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4598 else 4599 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4600 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4601 } 4602 4603 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4604 static bool isScalarToVector(SDValue Op) { 4605 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4606 if (!Op.getOperand(I).isUndef()) 4607 return false; 4608 return true; 4609 } 4610 4611 // Return a vector of type VT that contains Value in the first element. 4612 // The other elements don't matter. 4613 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4614 SDValue Value) { 4615 // If we have a constant, replicate it to all elements and let the 4616 // BUILD_VECTOR lowering take care of it. 4617 if (Value.getOpcode() == ISD::Constant || 4618 Value.getOpcode() == ISD::ConstantFP) { 4619 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4620 return DAG.getBuildVector(VT, DL, Ops); 4621 } 4622 if (Value.isUndef()) 4623 return DAG.getUNDEF(VT); 4624 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4625 } 4626 4627 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4628 // element 1. Used for cases in which replication is cheap. 4629 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4630 SDValue Op0, SDValue Op1) { 4631 if (Op0.isUndef()) { 4632 if (Op1.isUndef()) 4633 return DAG.getUNDEF(VT); 4634 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4635 } 4636 if (Op1.isUndef()) 4637 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4638 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4639 buildScalarToVector(DAG, DL, VT, Op0), 4640 buildScalarToVector(DAG, DL, VT, Op1)); 4641 } 4642 4643 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4644 // vector for them. 4645 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4646 SDValue Op1) { 4647 if (Op0.isUndef() && Op1.isUndef()) 4648 return DAG.getUNDEF(MVT::v2i64); 4649 // If one of the two inputs is undefined then replicate the other one, 4650 // in order to avoid using another register unnecessarily. 4651 if (Op0.isUndef()) 4652 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4653 else if (Op1.isUndef()) 4654 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4655 else { 4656 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4657 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4658 } 4659 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4660 } 4661 4662 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4663 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4664 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4665 // would benefit from this representation and return it if so. 4666 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4667 BuildVectorSDNode *BVN) { 4668 EVT VT = BVN->getValueType(0); 4669 unsigned NumElements = VT.getVectorNumElements(); 4670 4671 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4672 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4673 // need a BUILD_VECTOR, add an additional placeholder operand for that 4674 // BUILD_VECTOR and store its operands in ResidueOps. 4675 GeneralShuffle GS(VT); 4676 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4677 bool FoundOne = false; 4678 for (unsigned I = 0; I < NumElements; ++I) { 4679 SDValue Op = BVN->getOperand(I); 4680 if (Op.getOpcode() == ISD::TRUNCATE) 4681 Op = Op.getOperand(0); 4682 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4683 Op.getOperand(1).getOpcode() == ISD::Constant) { 4684 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4685 if (!GS.add(Op.getOperand(0), Elem)) 4686 return SDValue(); 4687 FoundOne = true; 4688 } else if (Op.isUndef()) { 4689 GS.addUndef(); 4690 } else { 4691 if (!GS.add(SDValue(), ResidueOps.size())) 4692 return SDValue(); 4693 ResidueOps.push_back(BVN->getOperand(I)); 4694 } 4695 } 4696 4697 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4698 if (!FoundOne) 4699 return SDValue(); 4700 4701 // Create the BUILD_VECTOR for the remaining elements, if any. 4702 if (!ResidueOps.empty()) { 4703 while (ResidueOps.size() < NumElements) 4704 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4705 for (auto &Op : GS.Ops) { 4706 if (!Op.getNode()) { 4707 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4708 break; 4709 } 4710 } 4711 } 4712 return GS.getNode(DAG, SDLoc(BVN)); 4713 } 4714 4715 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4716 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4717 return true; 4718 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4719 return true; 4720 return false; 4721 } 4722 4723 // Combine GPR scalar values Elems into a vector of type VT. 4724 SDValue 4725 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4726 SmallVectorImpl<SDValue> &Elems) const { 4727 // See whether there is a single replicated value. 4728 SDValue Single; 4729 unsigned int NumElements = Elems.size(); 4730 unsigned int Count = 0; 4731 for (auto Elem : Elems) { 4732 if (!Elem.isUndef()) { 4733 if (!Single.getNode()) 4734 Single = Elem; 4735 else if (Elem != Single) { 4736 Single = SDValue(); 4737 break; 4738 } 4739 Count += 1; 4740 } 4741 } 4742 // There are three cases here: 4743 // 4744 // - if the only defined element is a loaded one, the best sequence 4745 // is a replicating load. 4746 // 4747 // - otherwise, if the only defined element is an i64 value, we will 4748 // end up with the same VLVGP sequence regardless of whether we short-cut 4749 // for replication or fall through to the later code. 4750 // 4751 // - otherwise, if the only defined element is an i32 or smaller value, 4752 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4753 // This is only a win if the single defined element is used more than once. 4754 // In other cases we're better off using a single VLVGx. 4755 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4756 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4757 4758 // If all elements are loads, use VLREP/VLEs (below). 4759 bool AllLoads = true; 4760 for (auto Elem : Elems) 4761 if (!isVectorElementLoad(Elem)) { 4762 AllLoads = false; 4763 break; 4764 } 4765 4766 // The best way of building a v2i64 from two i64s is to use VLVGP. 4767 if (VT == MVT::v2i64 && !AllLoads) 4768 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4769 4770 // Use a 64-bit merge high to combine two doubles. 4771 if (VT == MVT::v2f64 && !AllLoads) 4772 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4773 4774 // Build v4f32 values directly from the FPRs: 4775 // 4776 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4777 // V V VMRHF 4778 // <ABxx> <CDxx> 4779 // V VMRHG 4780 // <ABCD> 4781 if (VT == MVT::v4f32 && !AllLoads) { 4782 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4783 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4784 // Avoid unnecessary undefs by reusing the other operand. 4785 if (Op01.isUndef()) 4786 Op01 = Op23; 4787 else if (Op23.isUndef()) 4788 Op23 = Op01; 4789 // Merging identical replications is a no-op. 4790 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4791 return Op01; 4792 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4793 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4794 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4795 DL, MVT::v2i64, Op01, Op23); 4796 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4797 } 4798 4799 // Collect the constant terms. 4800 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4801 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4802 4803 unsigned NumConstants = 0; 4804 for (unsigned I = 0; I < NumElements; ++I) { 4805 SDValue Elem = Elems[I]; 4806 if (Elem.getOpcode() == ISD::Constant || 4807 Elem.getOpcode() == ISD::ConstantFP) { 4808 NumConstants += 1; 4809 Constants[I] = Elem; 4810 Done[I] = true; 4811 } 4812 } 4813 // If there was at least one constant, fill in the other elements of 4814 // Constants with undefs to get a full vector constant and use that 4815 // as the starting point. 4816 SDValue Result; 4817 SDValue ReplicatedVal; 4818 if (NumConstants > 0) { 4819 for (unsigned I = 0; I < NumElements; ++I) 4820 if (!Constants[I].getNode()) 4821 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4822 Result = DAG.getBuildVector(VT, DL, Constants); 4823 } else { 4824 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4825 // avoid a false dependency on any previous contents of the vector 4826 // register. 4827 4828 // Use a VLREP if at least one element is a load. Make sure to replicate 4829 // the load with the most elements having its value. 4830 std::map<const SDNode*, unsigned> UseCounts; 4831 SDNode *LoadMaxUses = nullptr; 4832 for (unsigned I = 0; I < NumElements; ++I) 4833 if (isVectorElementLoad(Elems[I])) { 4834 SDNode *Ld = Elems[I].getNode(); 4835 UseCounts[Ld]++; 4836 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4837 LoadMaxUses = Ld; 4838 } 4839 if (LoadMaxUses != nullptr) { 4840 ReplicatedVal = SDValue(LoadMaxUses, 0); 4841 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4842 } else { 4843 // Try to use VLVGP. 4844 unsigned I1 = NumElements / 2 - 1; 4845 unsigned I2 = NumElements - 1; 4846 bool Def1 = !Elems[I1].isUndef(); 4847 bool Def2 = !Elems[I2].isUndef(); 4848 if (Def1 || Def2) { 4849 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4850 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4851 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4852 joinDwords(DAG, DL, Elem1, Elem2)); 4853 Done[I1] = true; 4854 Done[I2] = true; 4855 } else 4856 Result = DAG.getUNDEF(VT); 4857 } 4858 } 4859 4860 // Use VLVGx to insert the other elements. 4861 for (unsigned I = 0; I < NumElements; ++I) 4862 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4863 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4864 DAG.getConstant(I, DL, MVT::i32)); 4865 return Result; 4866 } 4867 4868 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4869 SelectionDAG &DAG) const { 4870 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4871 SDLoc DL(Op); 4872 EVT VT = Op.getValueType(); 4873 4874 if (BVN->isConstant()) { 4875 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4876 return Op; 4877 4878 // Fall back to loading it from memory. 4879 return SDValue(); 4880 } 4881 4882 // See if we should use shuffles to construct the vector from other vectors. 4883 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4884 return Res; 4885 4886 // Detect SCALAR_TO_VECTOR conversions. 4887 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4888 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4889 4890 // Otherwise use buildVector to build the vector up from GPRs. 4891 unsigned NumElements = Op.getNumOperands(); 4892 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4893 for (unsigned I = 0; I < NumElements; ++I) 4894 Ops[I] = Op.getOperand(I); 4895 return buildVector(DAG, DL, VT, Ops); 4896 } 4897 4898 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4899 SelectionDAG &DAG) const { 4900 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4901 SDLoc DL(Op); 4902 EVT VT = Op.getValueType(); 4903 unsigned NumElements = VT.getVectorNumElements(); 4904 4905 if (VSN->isSplat()) { 4906 SDValue Op0 = Op.getOperand(0); 4907 unsigned Index = VSN->getSplatIndex(); 4908 assert(Index < VT.getVectorNumElements() && 4909 "Splat index should be defined and in first operand"); 4910 // See whether the value we're splatting is directly available as a scalar. 4911 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4912 Op0.getOpcode() == ISD::BUILD_VECTOR) 4913 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4914 // Otherwise keep it as a vector-to-vector operation. 4915 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4916 DAG.getTargetConstant(Index, DL, MVT::i32)); 4917 } 4918 4919 GeneralShuffle GS(VT); 4920 for (unsigned I = 0; I < NumElements; ++I) { 4921 int Elt = VSN->getMaskElt(I); 4922 if (Elt < 0) 4923 GS.addUndef(); 4924 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4925 unsigned(Elt) % NumElements)) 4926 return SDValue(); 4927 } 4928 return GS.getNode(DAG, SDLoc(VSN)); 4929 } 4930 4931 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4932 SelectionDAG &DAG) const { 4933 SDLoc DL(Op); 4934 // Just insert the scalar into element 0 of an undefined vector. 4935 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4936 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4937 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4938 } 4939 4940 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4941 SelectionDAG &DAG) const { 4942 // Handle insertions of floating-point values. 4943 SDLoc DL(Op); 4944 SDValue Op0 = Op.getOperand(0); 4945 SDValue Op1 = Op.getOperand(1); 4946 SDValue Op2 = Op.getOperand(2); 4947 EVT VT = Op.getValueType(); 4948 4949 // Insertions into constant indices of a v2f64 can be done using VPDI. 4950 // However, if the inserted value is a bitcast or a constant then it's 4951 // better to use GPRs, as below. 4952 if (VT == MVT::v2f64 && 4953 Op1.getOpcode() != ISD::BITCAST && 4954 Op1.getOpcode() != ISD::ConstantFP && 4955 Op2.getOpcode() == ISD::Constant) { 4956 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4957 unsigned Mask = VT.getVectorNumElements() - 1; 4958 if (Index <= Mask) 4959 return Op; 4960 } 4961 4962 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4963 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4964 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4965 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4966 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4967 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4968 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4969 } 4970 4971 SDValue 4972 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4973 SelectionDAG &DAG) const { 4974 // Handle extractions of floating-point values. 4975 SDLoc DL(Op); 4976 SDValue Op0 = Op.getOperand(0); 4977 SDValue Op1 = Op.getOperand(1); 4978 EVT VT = Op.getValueType(); 4979 EVT VecVT = Op0.getValueType(); 4980 4981 // Extractions of constant indices can be done directly. 4982 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4983 uint64_t Index = CIndexN->getZExtValue(); 4984 unsigned Mask = VecVT.getVectorNumElements() - 1; 4985 if (Index <= Mask) 4986 return Op; 4987 } 4988 4989 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4990 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4991 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4992 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4993 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4994 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4995 } 4996 4997 SDValue 4998 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4999 unsigned UnpackHigh) const { 5000 SDValue PackedOp = Op.getOperand(0); 5001 EVT OutVT = Op.getValueType(); 5002 EVT InVT = PackedOp.getValueType(); 5003 unsigned ToBits = OutVT.getScalarSizeInBits(); 5004 unsigned FromBits = InVT.getScalarSizeInBits(); 5005 do { 5006 FromBits *= 2; 5007 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5008 SystemZ::VectorBits / FromBits); 5009 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 5010 } while (FromBits != ToBits); 5011 return PackedOp; 5012 } 5013 5014 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5015 unsigned ByScalar) const { 5016 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5017 SDValue Op0 = Op.getOperand(0); 5018 SDValue Op1 = Op.getOperand(1); 5019 SDLoc DL(Op); 5020 EVT VT = Op.getValueType(); 5021 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5022 5023 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5024 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5025 APInt SplatBits, SplatUndef; 5026 unsigned SplatBitSize; 5027 bool HasAnyUndefs; 5028 // Check for constant splats. Use ElemBitSize as the minimum element 5029 // width and reject splats that need wider elements. 5030 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5031 ElemBitSize, true) && 5032 SplatBitSize == ElemBitSize) { 5033 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5034 DL, MVT::i32); 5035 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5036 } 5037 // Check for variable splats. 5038 BitVector UndefElements; 5039 SDValue Splat = BVN->getSplatValue(&UndefElements); 5040 if (Splat) { 5041 // Since i32 is the smallest legal type, we either need a no-op 5042 // or a truncation. 5043 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5044 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5045 } 5046 } 5047 5048 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5049 // and the shift amount is directly available in a GPR. 5050 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5051 if (VSN->isSplat()) { 5052 SDValue VSNOp0 = VSN->getOperand(0); 5053 unsigned Index = VSN->getSplatIndex(); 5054 assert(Index < VT.getVectorNumElements() && 5055 "Splat index should be defined and in first operand"); 5056 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5057 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5058 // Since i32 is the smallest legal type, we either need a no-op 5059 // or a truncation. 5060 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5061 VSNOp0.getOperand(Index)); 5062 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5063 } 5064 } 5065 } 5066 5067 // Otherwise just treat the current form as legal. 5068 return Op; 5069 } 5070 5071 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5072 SelectionDAG &DAG) const { 5073 switch (Op.getOpcode()) { 5074 case ISD::FRAMEADDR: 5075 return lowerFRAMEADDR(Op, DAG); 5076 case ISD::RETURNADDR: 5077 return lowerRETURNADDR(Op, DAG); 5078 case ISD::BR_CC: 5079 return lowerBR_CC(Op, DAG); 5080 case ISD::SELECT_CC: 5081 return lowerSELECT_CC(Op, DAG); 5082 case ISD::SETCC: 5083 return lowerSETCC(Op, DAG); 5084 case ISD::STRICT_FSETCC: 5085 return lowerSTRICT_FSETCC(Op, DAG, false); 5086 case ISD::STRICT_FSETCCS: 5087 return lowerSTRICT_FSETCC(Op, DAG, true); 5088 case ISD::GlobalAddress: 5089 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5090 case ISD::GlobalTLSAddress: 5091 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5092 case ISD::BlockAddress: 5093 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5094 case ISD::JumpTable: 5095 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5096 case ISD::ConstantPool: 5097 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5098 case ISD::BITCAST: 5099 return lowerBITCAST(Op, DAG); 5100 case ISD::VASTART: 5101 return lowerVASTART(Op, DAG); 5102 case ISD::VACOPY: 5103 return lowerVACOPY(Op, DAG); 5104 case ISD::DYNAMIC_STACKALLOC: 5105 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5106 case ISD::GET_DYNAMIC_AREA_OFFSET: 5107 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5108 case ISD::SMUL_LOHI: 5109 return lowerSMUL_LOHI(Op, DAG); 5110 case ISD::UMUL_LOHI: 5111 return lowerUMUL_LOHI(Op, DAG); 5112 case ISD::SDIVREM: 5113 return lowerSDIVREM(Op, DAG); 5114 case ISD::UDIVREM: 5115 return lowerUDIVREM(Op, DAG); 5116 case ISD::SADDO: 5117 case ISD::SSUBO: 5118 case ISD::UADDO: 5119 case ISD::USUBO: 5120 return lowerXALUO(Op, DAG); 5121 case ISD::ADDCARRY: 5122 case ISD::SUBCARRY: 5123 return lowerADDSUBCARRY(Op, DAG); 5124 case ISD::OR: 5125 return lowerOR(Op, DAG); 5126 case ISD::CTPOP: 5127 return lowerCTPOP(Op, DAG); 5128 case ISD::ATOMIC_FENCE: 5129 return lowerATOMIC_FENCE(Op, DAG); 5130 case ISD::ATOMIC_SWAP: 5131 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5132 case ISD::ATOMIC_STORE: 5133 return lowerATOMIC_STORE(Op, DAG); 5134 case ISD::ATOMIC_LOAD: 5135 return lowerATOMIC_LOAD(Op, DAG); 5136 case ISD::ATOMIC_LOAD_ADD: 5137 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5138 case ISD::ATOMIC_LOAD_SUB: 5139 return lowerATOMIC_LOAD_SUB(Op, DAG); 5140 case ISD::ATOMIC_LOAD_AND: 5141 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5142 case ISD::ATOMIC_LOAD_OR: 5143 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5144 case ISD::ATOMIC_LOAD_XOR: 5145 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5146 case ISD::ATOMIC_LOAD_NAND: 5147 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5148 case ISD::ATOMIC_LOAD_MIN: 5149 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5150 case ISD::ATOMIC_LOAD_MAX: 5151 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5152 case ISD::ATOMIC_LOAD_UMIN: 5153 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5154 case ISD::ATOMIC_LOAD_UMAX: 5155 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5156 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5157 return lowerATOMIC_CMP_SWAP(Op, DAG); 5158 case ISD::STACKSAVE: 5159 return lowerSTACKSAVE(Op, DAG); 5160 case ISD::STACKRESTORE: 5161 return lowerSTACKRESTORE(Op, DAG); 5162 case ISD::PREFETCH: 5163 return lowerPREFETCH(Op, DAG); 5164 case ISD::INTRINSIC_W_CHAIN: 5165 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5166 case ISD::INTRINSIC_WO_CHAIN: 5167 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5168 case ISD::BUILD_VECTOR: 5169 return lowerBUILD_VECTOR(Op, DAG); 5170 case ISD::VECTOR_SHUFFLE: 5171 return lowerVECTOR_SHUFFLE(Op, DAG); 5172 case ISD::SCALAR_TO_VECTOR: 5173 return lowerSCALAR_TO_VECTOR(Op, DAG); 5174 case ISD::INSERT_VECTOR_ELT: 5175 return lowerINSERT_VECTOR_ELT(Op, DAG); 5176 case ISD::EXTRACT_VECTOR_ELT: 5177 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5178 case ISD::SIGN_EXTEND_VECTOR_INREG: 5179 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5180 case ISD::ZERO_EXTEND_VECTOR_INREG: 5181 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5182 case ISD::SHL: 5183 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5184 case ISD::SRL: 5185 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5186 case ISD::SRA: 5187 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5188 default: 5189 llvm_unreachable("Unexpected node to lower"); 5190 } 5191 } 5192 5193 // Lower operations with invalid operand or result types (currently used 5194 // only for 128-bit integer types). 5195 5196 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5197 SDLoc DL(In); 5198 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5199 DAG.getIntPtrConstant(0, DL)); 5200 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5201 DAG.getIntPtrConstant(1, DL)); 5202 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5203 MVT::Untyped, Hi, Lo); 5204 return SDValue(Pair, 0); 5205 } 5206 5207 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5208 SDLoc DL(In); 5209 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5210 DL, MVT::i64, In); 5211 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5212 DL, MVT::i64, In); 5213 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5214 } 5215 5216 void 5217 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5218 SmallVectorImpl<SDValue> &Results, 5219 SelectionDAG &DAG) const { 5220 switch (N->getOpcode()) { 5221 case ISD::ATOMIC_LOAD: { 5222 SDLoc DL(N); 5223 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5224 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5225 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5226 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5227 DL, Tys, Ops, MVT::i128, MMO); 5228 Results.push_back(lowerGR128ToI128(DAG, Res)); 5229 Results.push_back(Res.getValue(1)); 5230 break; 5231 } 5232 case ISD::ATOMIC_STORE: { 5233 SDLoc DL(N); 5234 SDVTList Tys = DAG.getVTList(MVT::Other); 5235 SDValue Ops[] = { N->getOperand(0), 5236 lowerI128ToGR128(DAG, N->getOperand(2)), 5237 N->getOperand(1) }; 5238 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5239 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5240 DL, Tys, Ops, MVT::i128, MMO); 5241 // We have to enforce sequential consistency by performing a 5242 // serialization operation after the store. 5243 if (cast<AtomicSDNode>(N)->getOrdering() == 5244 AtomicOrdering::SequentiallyConsistent) 5245 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5246 MVT::Other, Res), 0); 5247 Results.push_back(Res); 5248 break; 5249 } 5250 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5251 SDLoc DL(N); 5252 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5253 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5254 lowerI128ToGR128(DAG, N->getOperand(2)), 5255 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5256 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5257 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5258 DL, Tys, Ops, MVT::i128, MMO); 5259 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5260 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5261 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5262 Results.push_back(lowerGR128ToI128(DAG, Res)); 5263 Results.push_back(Success); 5264 Results.push_back(Res.getValue(2)); 5265 break; 5266 } 5267 default: 5268 llvm_unreachable("Unexpected node to lower"); 5269 } 5270 } 5271 5272 void 5273 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5274 SmallVectorImpl<SDValue> &Results, 5275 SelectionDAG &DAG) const { 5276 return LowerOperationWrapper(N, Results, DAG); 5277 } 5278 5279 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5280 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5281 switch ((SystemZISD::NodeType)Opcode) { 5282 case SystemZISD::FIRST_NUMBER: break; 5283 OPCODE(RET_FLAG); 5284 OPCODE(CALL); 5285 OPCODE(SIBCALL); 5286 OPCODE(TLS_GDCALL); 5287 OPCODE(TLS_LDCALL); 5288 OPCODE(PCREL_WRAPPER); 5289 OPCODE(PCREL_OFFSET); 5290 OPCODE(IABS); 5291 OPCODE(ICMP); 5292 OPCODE(FCMP); 5293 OPCODE(STRICT_FCMP); 5294 OPCODE(STRICT_FCMPS); 5295 OPCODE(TM); 5296 OPCODE(BR_CCMASK); 5297 OPCODE(SELECT_CCMASK); 5298 OPCODE(ADJDYNALLOC); 5299 OPCODE(POPCNT); 5300 OPCODE(SMUL_LOHI); 5301 OPCODE(UMUL_LOHI); 5302 OPCODE(SDIVREM); 5303 OPCODE(UDIVREM); 5304 OPCODE(SADDO); 5305 OPCODE(SSUBO); 5306 OPCODE(UADDO); 5307 OPCODE(USUBO); 5308 OPCODE(ADDCARRY); 5309 OPCODE(SUBCARRY); 5310 OPCODE(GET_CCMASK); 5311 OPCODE(MVC); 5312 OPCODE(MVC_LOOP); 5313 OPCODE(NC); 5314 OPCODE(NC_LOOP); 5315 OPCODE(OC); 5316 OPCODE(OC_LOOP); 5317 OPCODE(XC); 5318 OPCODE(XC_LOOP); 5319 OPCODE(CLC); 5320 OPCODE(CLC_LOOP); 5321 OPCODE(STPCPY); 5322 OPCODE(STRCMP); 5323 OPCODE(SEARCH_STRING); 5324 OPCODE(IPM); 5325 OPCODE(MEMBARRIER); 5326 OPCODE(TBEGIN); 5327 OPCODE(TBEGIN_NOFLOAT); 5328 OPCODE(TEND); 5329 OPCODE(BYTE_MASK); 5330 OPCODE(ROTATE_MASK); 5331 OPCODE(REPLICATE); 5332 OPCODE(JOIN_DWORDS); 5333 OPCODE(SPLAT); 5334 OPCODE(MERGE_HIGH); 5335 OPCODE(MERGE_LOW); 5336 OPCODE(SHL_DOUBLE); 5337 OPCODE(PERMUTE_DWORDS); 5338 OPCODE(PERMUTE); 5339 OPCODE(PACK); 5340 OPCODE(PACKS_CC); 5341 OPCODE(PACKLS_CC); 5342 OPCODE(UNPACK_HIGH); 5343 OPCODE(UNPACKL_HIGH); 5344 OPCODE(UNPACK_LOW); 5345 OPCODE(UNPACKL_LOW); 5346 OPCODE(VSHL_BY_SCALAR); 5347 OPCODE(VSRL_BY_SCALAR); 5348 OPCODE(VSRA_BY_SCALAR); 5349 OPCODE(VSUM); 5350 OPCODE(VICMPE); 5351 OPCODE(VICMPH); 5352 OPCODE(VICMPHL); 5353 OPCODE(VICMPES); 5354 OPCODE(VICMPHS); 5355 OPCODE(VICMPHLS); 5356 OPCODE(VFCMPE); 5357 OPCODE(STRICT_VFCMPE); 5358 OPCODE(STRICT_VFCMPES); 5359 OPCODE(VFCMPH); 5360 OPCODE(STRICT_VFCMPH); 5361 OPCODE(STRICT_VFCMPHS); 5362 OPCODE(VFCMPHE); 5363 OPCODE(STRICT_VFCMPHE); 5364 OPCODE(STRICT_VFCMPHES); 5365 OPCODE(VFCMPES); 5366 OPCODE(VFCMPHS); 5367 OPCODE(VFCMPHES); 5368 OPCODE(VFTCI); 5369 OPCODE(VEXTEND); 5370 OPCODE(STRICT_VEXTEND); 5371 OPCODE(VROUND); 5372 OPCODE(VTM); 5373 OPCODE(VFAE_CC); 5374 OPCODE(VFAEZ_CC); 5375 OPCODE(VFEE_CC); 5376 OPCODE(VFEEZ_CC); 5377 OPCODE(VFENE_CC); 5378 OPCODE(VFENEZ_CC); 5379 OPCODE(VISTR_CC); 5380 OPCODE(VSTRC_CC); 5381 OPCODE(VSTRCZ_CC); 5382 OPCODE(VSTRS_CC); 5383 OPCODE(VSTRSZ_CC); 5384 OPCODE(TDC); 5385 OPCODE(ATOMIC_SWAPW); 5386 OPCODE(ATOMIC_LOADW_ADD); 5387 OPCODE(ATOMIC_LOADW_SUB); 5388 OPCODE(ATOMIC_LOADW_AND); 5389 OPCODE(ATOMIC_LOADW_OR); 5390 OPCODE(ATOMIC_LOADW_XOR); 5391 OPCODE(ATOMIC_LOADW_NAND); 5392 OPCODE(ATOMIC_LOADW_MIN); 5393 OPCODE(ATOMIC_LOADW_MAX); 5394 OPCODE(ATOMIC_LOADW_UMIN); 5395 OPCODE(ATOMIC_LOADW_UMAX); 5396 OPCODE(ATOMIC_CMP_SWAPW); 5397 OPCODE(ATOMIC_CMP_SWAP); 5398 OPCODE(ATOMIC_LOAD_128); 5399 OPCODE(ATOMIC_STORE_128); 5400 OPCODE(ATOMIC_CMP_SWAP_128); 5401 OPCODE(LRV); 5402 OPCODE(STRV); 5403 OPCODE(VLER); 5404 OPCODE(VSTER); 5405 OPCODE(PREFETCH); 5406 } 5407 return nullptr; 5408 #undef OPCODE 5409 } 5410 5411 // Return true if VT is a vector whose elements are a whole number of bytes 5412 // in width. Also check for presence of vector support. 5413 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5414 if (!Subtarget.hasVector()) 5415 return false; 5416 5417 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5418 } 5419 5420 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5421 // producing a result of type ResVT. Op is a possibly bitcast version 5422 // of the input vector and Index is the index (based on type VecVT) that 5423 // should be extracted. Return the new extraction if a simplification 5424 // was possible or if Force is true. 5425 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5426 EVT VecVT, SDValue Op, 5427 unsigned Index, 5428 DAGCombinerInfo &DCI, 5429 bool Force) const { 5430 SelectionDAG &DAG = DCI.DAG; 5431 5432 // The number of bytes being extracted. 5433 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5434 5435 for (;;) { 5436 unsigned Opcode = Op.getOpcode(); 5437 if (Opcode == ISD::BITCAST) 5438 // Look through bitcasts. 5439 Op = Op.getOperand(0); 5440 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5441 canTreatAsByteVector(Op.getValueType())) { 5442 // Get a VPERM-like permute mask and see whether the bytes covered 5443 // by the extracted element are a contiguous sequence from one 5444 // source operand. 5445 SmallVector<int, SystemZ::VectorBytes> Bytes; 5446 if (!getVPermMask(Op, Bytes)) 5447 break; 5448 int First; 5449 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5450 BytesPerElement, First)) 5451 break; 5452 if (First < 0) 5453 return DAG.getUNDEF(ResVT); 5454 // Make sure the contiguous sequence starts at a multiple of the 5455 // original element size. 5456 unsigned Byte = unsigned(First) % Bytes.size(); 5457 if (Byte % BytesPerElement != 0) 5458 break; 5459 // We can get the extracted value directly from an input. 5460 Index = Byte / BytesPerElement; 5461 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5462 Force = true; 5463 } else if (Opcode == ISD::BUILD_VECTOR && 5464 canTreatAsByteVector(Op.getValueType())) { 5465 // We can only optimize this case if the BUILD_VECTOR elements are 5466 // at least as wide as the extracted value. 5467 EVT OpVT = Op.getValueType(); 5468 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5469 if (OpBytesPerElement < BytesPerElement) 5470 break; 5471 // Make sure that the least-significant bit of the extracted value 5472 // is the least significant bit of an input. 5473 unsigned End = (Index + 1) * BytesPerElement; 5474 if (End % OpBytesPerElement != 0) 5475 break; 5476 // We're extracting the low part of one operand of the BUILD_VECTOR. 5477 Op = Op.getOperand(End / OpBytesPerElement - 1); 5478 if (!Op.getValueType().isInteger()) { 5479 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5480 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5481 DCI.AddToWorklist(Op.getNode()); 5482 } 5483 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5484 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5485 if (VT != ResVT) { 5486 DCI.AddToWorklist(Op.getNode()); 5487 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5488 } 5489 return Op; 5490 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5491 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5492 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5493 canTreatAsByteVector(Op.getValueType()) && 5494 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5495 // Make sure that only the unextended bits are significant. 5496 EVT ExtVT = Op.getValueType(); 5497 EVT OpVT = Op.getOperand(0).getValueType(); 5498 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5499 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5500 unsigned Byte = Index * BytesPerElement; 5501 unsigned SubByte = Byte % ExtBytesPerElement; 5502 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5503 if (SubByte < MinSubByte || 5504 SubByte + BytesPerElement > ExtBytesPerElement) 5505 break; 5506 // Get the byte offset of the unextended element 5507 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5508 // ...then add the byte offset relative to that element. 5509 Byte += SubByte - MinSubByte; 5510 if (Byte % BytesPerElement != 0) 5511 break; 5512 Op = Op.getOperand(0); 5513 Index = Byte / BytesPerElement; 5514 Force = true; 5515 } else 5516 break; 5517 } 5518 if (Force) { 5519 if (Op.getValueType() != VecVT) { 5520 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5521 DCI.AddToWorklist(Op.getNode()); 5522 } 5523 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5524 DAG.getConstant(Index, DL, MVT::i32)); 5525 } 5526 return SDValue(); 5527 } 5528 5529 // Optimize vector operations in scalar value Op on the basis that Op 5530 // is truncated to TruncVT. 5531 SDValue SystemZTargetLowering::combineTruncateExtract( 5532 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5533 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5534 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5535 // of type TruncVT. 5536 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5537 TruncVT.getSizeInBits() % 8 == 0) { 5538 SDValue Vec = Op.getOperand(0); 5539 EVT VecVT = Vec.getValueType(); 5540 if (canTreatAsByteVector(VecVT)) { 5541 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5542 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5543 unsigned TruncBytes = TruncVT.getStoreSize(); 5544 if (BytesPerElement % TruncBytes == 0) { 5545 // Calculate the value of Y' in the above description. We are 5546 // splitting the original elements into Scale equal-sized pieces 5547 // and for truncation purposes want the last (least-significant) 5548 // of these pieces for IndexN. This is easiest to do by calculating 5549 // the start index of the following element and then subtracting 1. 5550 unsigned Scale = BytesPerElement / TruncBytes; 5551 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5552 5553 // Defer the creation of the bitcast from X to combineExtract, 5554 // which might be able to optimize the extraction. 5555 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5556 VecVT.getStoreSize() / TruncBytes); 5557 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5558 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5559 } 5560 } 5561 } 5562 } 5563 return SDValue(); 5564 } 5565 5566 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5567 SDNode *N, DAGCombinerInfo &DCI) const { 5568 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5569 SelectionDAG &DAG = DCI.DAG; 5570 SDValue N0 = N->getOperand(0); 5571 EVT VT = N->getValueType(0); 5572 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5573 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5574 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5575 if (TrueOp && FalseOp) { 5576 SDLoc DL(N0); 5577 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5578 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5579 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5580 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5581 // If N0 has multiple uses, change other uses as well. 5582 if (!N0.hasOneUse()) { 5583 SDValue TruncSelect = 5584 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5585 DCI.CombineTo(N0.getNode(), TruncSelect); 5586 } 5587 return NewSelect; 5588 } 5589 } 5590 return SDValue(); 5591 } 5592 5593 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5594 SDNode *N, DAGCombinerInfo &DCI) const { 5595 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5596 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5597 // into (select_cc LHS, RHS, -1, 0, COND) 5598 SelectionDAG &DAG = DCI.DAG; 5599 SDValue N0 = N->getOperand(0); 5600 EVT VT = N->getValueType(0); 5601 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5602 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5603 N0 = N0.getOperand(0); 5604 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5605 SDLoc DL(N0); 5606 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5607 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5608 N0.getOperand(2) }; 5609 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5610 } 5611 return SDValue(); 5612 } 5613 5614 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5615 SDNode *N, DAGCombinerInfo &DCI) const { 5616 // Convert (sext (ashr (shl X, C1), C2)) to 5617 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5618 // cheap as narrower ones. 5619 SelectionDAG &DAG = DCI.DAG; 5620 SDValue N0 = N->getOperand(0); 5621 EVT VT = N->getValueType(0); 5622 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5623 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5624 SDValue Inner = N0.getOperand(0); 5625 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5626 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5627 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5628 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5629 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5630 EVT ShiftVT = N0.getOperand(1).getValueType(); 5631 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5632 Inner.getOperand(0)); 5633 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5634 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5635 ShiftVT)); 5636 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5637 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5638 } 5639 } 5640 } 5641 return SDValue(); 5642 } 5643 5644 SDValue SystemZTargetLowering::combineMERGE( 5645 SDNode *N, DAGCombinerInfo &DCI) const { 5646 SelectionDAG &DAG = DCI.DAG; 5647 unsigned Opcode = N->getOpcode(); 5648 SDValue Op0 = N->getOperand(0); 5649 SDValue Op1 = N->getOperand(1); 5650 if (Op0.getOpcode() == ISD::BITCAST) 5651 Op0 = Op0.getOperand(0); 5652 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5653 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5654 // for v4f32. 5655 if (Op1 == N->getOperand(0)) 5656 return Op1; 5657 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5658 EVT VT = Op1.getValueType(); 5659 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5660 if (ElemBytes <= 4) { 5661 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5662 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5663 EVT InVT = VT.changeVectorElementTypeToInteger(); 5664 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5665 SystemZ::VectorBytes / ElemBytes / 2); 5666 if (VT != InVT) { 5667 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5668 DCI.AddToWorklist(Op1.getNode()); 5669 } 5670 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5671 DCI.AddToWorklist(Op.getNode()); 5672 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5673 } 5674 } 5675 return SDValue(); 5676 } 5677 5678 SDValue SystemZTargetLowering::combineLOAD( 5679 SDNode *N, DAGCombinerInfo &DCI) const { 5680 SelectionDAG &DAG = DCI.DAG; 5681 EVT LdVT = N->getValueType(0); 5682 if (LdVT.isVector() || LdVT.isInteger()) 5683 return SDValue(); 5684 // Transform a scalar load that is REPLICATEd as well as having other 5685 // use(s) to the form where the other use(s) use the first element of the 5686 // REPLICATE instead of the load. Otherwise instruction selection will not 5687 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5688 // point loads. 5689 5690 SDValue Replicate; 5691 SmallVector<SDNode*, 8> OtherUses; 5692 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5693 UI != UE; ++UI) { 5694 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5695 if (Replicate) 5696 return SDValue(); // Should never happen 5697 Replicate = SDValue(*UI, 0); 5698 } 5699 else if (UI.getUse().getResNo() == 0) 5700 OtherUses.push_back(*UI); 5701 } 5702 if (!Replicate || OtherUses.empty()) 5703 return SDValue(); 5704 5705 SDLoc DL(N); 5706 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5707 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5708 // Update uses of the loaded Value while preserving old chains. 5709 for (SDNode *U : OtherUses) { 5710 SmallVector<SDValue, 8> Ops; 5711 for (SDValue Op : U->ops()) 5712 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5713 DAG.UpdateNodeOperands(U, Ops); 5714 } 5715 return SDValue(N, 0); 5716 } 5717 5718 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5719 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5720 return true; 5721 if (Subtarget.hasVectorEnhancements2()) 5722 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5723 return true; 5724 return false; 5725 } 5726 5727 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5728 if (!VT.isVector() || !VT.isSimple() || 5729 VT.getSizeInBits() != 128 || 5730 VT.getScalarSizeInBits() % 8 != 0) 5731 return false; 5732 5733 unsigned NumElts = VT.getVectorNumElements(); 5734 for (unsigned i = 0; i < NumElts; ++i) { 5735 if (M[i] < 0) continue; // ignore UNDEF indices 5736 if ((unsigned) M[i] != NumElts - 1 - i) 5737 return false; 5738 } 5739 5740 return true; 5741 } 5742 5743 SDValue SystemZTargetLowering::combineSTORE( 5744 SDNode *N, DAGCombinerInfo &DCI) const { 5745 SelectionDAG &DAG = DCI.DAG; 5746 auto *SN = cast<StoreSDNode>(N); 5747 auto &Op1 = N->getOperand(1); 5748 EVT MemVT = SN->getMemoryVT(); 5749 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5750 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5751 // If X has wider elements then convert it to: 5752 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5753 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5754 if (SDValue Value = 5755 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5756 DCI.AddToWorklist(Value.getNode()); 5757 5758 // Rewrite the store with the new form of stored value. 5759 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5760 SN->getBasePtr(), SN->getMemoryVT(), 5761 SN->getMemOperand()); 5762 } 5763 } 5764 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5765 if (!SN->isTruncatingStore() && 5766 Op1.getOpcode() == ISD::BSWAP && 5767 Op1.getNode()->hasOneUse() && 5768 canLoadStoreByteSwapped(Op1.getValueType())) { 5769 5770 SDValue BSwapOp = Op1.getOperand(0); 5771 5772 if (BSwapOp.getValueType() == MVT::i16) 5773 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5774 5775 SDValue Ops[] = { 5776 N->getOperand(0), BSwapOp, N->getOperand(2) 5777 }; 5778 5779 return 5780 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5781 Ops, MemVT, SN->getMemOperand()); 5782 } 5783 // Combine STORE (element-swap) into VSTER 5784 if (!SN->isTruncatingStore() && 5785 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5786 Op1.getNode()->hasOneUse() && 5787 Subtarget.hasVectorEnhancements2()) { 5788 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5789 ArrayRef<int> ShuffleMask = SVN->getMask(); 5790 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5791 SDValue Ops[] = { 5792 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5793 }; 5794 5795 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5796 DAG.getVTList(MVT::Other), 5797 Ops, MemVT, SN->getMemOperand()); 5798 } 5799 } 5800 5801 return SDValue(); 5802 } 5803 5804 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5805 SDNode *N, DAGCombinerInfo &DCI) const { 5806 SelectionDAG &DAG = DCI.DAG; 5807 // Combine element-swap (LOAD) into VLER 5808 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5809 N->getOperand(0).hasOneUse() && 5810 Subtarget.hasVectorEnhancements2()) { 5811 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5812 ArrayRef<int> ShuffleMask = SVN->getMask(); 5813 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5814 SDValue Load = N->getOperand(0); 5815 LoadSDNode *LD = cast<LoadSDNode>(Load); 5816 5817 // Create the element-swapping load. 5818 SDValue Ops[] = { 5819 LD->getChain(), // Chain 5820 LD->getBasePtr() // Ptr 5821 }; 5822 SDValue ESLoad = 5823 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5824 DAG.getVTList(LD->getValueType(0), MVT::Other), 5825 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5826 5827 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5828 // by the load dead. 5829 DCI.CombineTo(N, ESLoad); 5830 5831 // Next, combine the load away, we give it a bogus result value but a real 5832 // chain result. The result value is dead because the shuffle is dead. 5833 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5834 5835 // Return N so it doesn't get rechecked! 5836 return SDValue(N, 0); 5837 } 5838 } 5839 5840 return SDValue(); 5841 } 5842 5843 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5844 SDNode *N, DAGCombinerInfo &DCI) const { 5845 SelectionDAG &DAG = DCI.DAG; 5846 5847 if (!Subtarget.hasVector()) 5848 return SDValue(); 5849 5850 // Look through bitcasts that retain the number of vector elements. 5851 SDValue Op = N->getOperand(0); 5852 if (Op.getOpcode() == ISD::BITCAST && 5853 Op.getValueType().isVector() && 5854 Op.getOperand(0).getValueType().isVector() && 5855 Op.getValueType().getVectorNumElements() == 5856 Op.getOperand(0).getValueType().getVectorNumElements()) 5857 Op = Op.getOperand(0); 5858 5859 // Pull BSWAP out of a vector extraction. 5860 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5861 EVT VecVT = Op.getValueType(); 5862 EVT EltVT = VecVT.getVectorElementType(); 5863 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5864 Op.getOperand(0), N->getOperand(1)); 5865 DCI.AddToWorklist(Op.getNode()); 5866 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5867 if (EltVT != N->getValueType(0)) { 5868 DCI.AddToWorklist(Op.getNode()); 5869 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5870 } 5871 return Op; 5872 } 5873 5874 // Try to simplify a vector extraction. 5875 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5876 SDValue Op0 = N->getOperand(0); 5877 EVT VecVT = Op0.getValueType(); 5878 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5879 IndexN->getZExtValue(), DCI, false); 5880 } 5881 return SDValue(); 5882 } 5883 5884 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5885 SDNode *N, DAGCombinerInfo &DCI) const { 5886 SelectionDAG &DAG = DCI.DAG; 5887 // (join_dwords X, X) == (replicate X) 5888 if (N->getOperand(0) == N->getOperand(1)) 5889 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5890 N->getOperand(0)); 5891 return SDValue(); 5892 } 5893 5894 SDValue SystemZTargetLowering::combineFP_ROUND( 5895 SDNode *N, DAGCombinerInfo &DCI) const { 5896 5897 if (!Subtarget.hasVector()) 5898 return SDValue(); 5899 5900 // (fpround (extract_vector_elt X 0)) 5901 // (fpround (extract_vector_elt X 1)) -> 5902 // (extract_vector_elt (VROUND X) 0) 5903 // (extract_vector_elt (VROUND X) 2) 5904 // 5905 // This is a special case since the target doesn't really support v2f32s. 5906 SelectionDAG &DAG = DCI.DAG; 5907 SDValue Op0 = N->getOperand(0); 5908 if (N->getValueType(0) == MVT::f32 && 5909 Op0.hasOneUse() && 5910 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5911 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5912 Op0.getOperand(1).getOpcode() == ISD::Constant && 5913 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5914 SDValue Vec = Op0.getOperand(0); 5915 for (auto *U : Vec->uses()) { 5916 if (U != Op0.getNode() && 5917 U->hasOneUse() && 5918 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5919 U->getOperand(0) == Vec && 5920 U->getOperand(1).getOpcode() == ISD::Constant && 5921 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5922 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5923 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5924 OtherRound.getOperand(0) == SDValue(U, 0) && 5925 OtherRound.getValueType() == MVT::f32) { 5926 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5927 MVT::v4f32, Vec); 5928 DCI.AddToWorklist(VRound.getNode()); 5929 SDValue Extract1 = 5930 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5931 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5932 DCI.AddToWorklist(Extract1.getNode()); 5933 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5934 SDValue Extract0 = 5935 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5936 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5937 return Extract0; 5938 } 5939 } 5940 } 5941 } 5942 return SDValue(); 5943 } 5944 5945 SDValue SystemZTargetLowering::combineFP_EXTEND( 5946 SDNode *N, DAGCombinerInfo &DCI) const { 5947 5948 if (!Subtarget.hasVector()) 5949 return SDValue(); 5950 5951 // (fpextend (extract_vector_elt X 0)) 5952 // (fpextend (extract_vector_elt X 2)) -> 5953 // (extract_vector_elt (VEXTEND X) 0) 5954 // (extract_vector_elt (VEXTEND X) 1) 5955 // 5956 // This is a special case since the target doesn't really support v2f32s. 5957 SelectionDAG &DAG = DCI.DAG; 5958 SDValue Op0 = N->getOperand(0); 5959 if (N->getValueType(0) == MVT::f64 && 5960 Op0.hasOneUse() && 5961 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5962 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5963 Op0.getOperand(1).getOpcode() == ISD::Constant && 5964 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5965 SDValue Vec = Op0.getOperand(0); 5966 for (auto *U : Vec->uses()) { 5967 if (U != Op0.getNode() && 5968 U->hasOneUse() && 5969 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5970 U->getOperand(0) == Vec && 5971 U->getOperand(1).getOpcode() == ISD::Constant && 5972 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5973 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5974 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5975 OtherExtend.getOperand(0) == SDValue(U, 0) && 5976 OtherExtend.getValueType() == MVT::f64) { 5977 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5978 MVT::v2f64, Vec); 5979 DCI.AddToWorklist(VExtend.getNode()); 5980 SDValue Extract1 = 5981 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5982 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5983 DCI.AddToWorklist(Extract1.getNode()); 5984 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5985 SDValue Extract0 = 5986 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5987 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5988 return Extract0; 5989 } 5990 } 5991 } 5992 } 5993 return SDValue(); 5994 } 5995 5996 SDValue SystemZTargetLowering::combineBSWAP( 5997 SDNode *N, DAGCombinerInfo &DCI) const { 5998 SelectionDAG &DAG = DCI.DAG; 5999 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6000 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6001 N->getOperand(0).hasOneUse() && 6002 canLoadStoreByteSwapped(N->getValueType(0))) { 6003 SDValue Load = N->getOperand(0); 6004 LoadSDNode *LD = cast<LoadSDNode>(Load); 6005 6006 // Create the byte-swapping load. 6007 SDValue Ops[] = { 6008 LD->getChain(), // Chain 6009 LD->getBasePtr() // Ptr 6010 }; 6011 EVT LoadVT = N->getValueType(0); 6012 if (LoadVT == MVT::i16) 6013 LoadVT = MVT::i32; 6014 SDValue BSLoad = 6015 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6016 DAG.getVTList(LoadVT, MVT::Other), 6017 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6018 6019 // If this is an i16 load, insert the truncate. 6020 SDValue ResVal = BSLoad; 6021 if (N->getValueType(0) == MVT::i16) 6022 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6023 6024 // First, combine the bswap away. This makes the value produced by the 6025 // load dead. 6026 DCI.CombineTo(N, ResVal); 6027 6028 // Next, combine the load away, we give it a bogus result value but a real 6029 // chain result. The result value is dead because the bswap is dead. 6030 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6031 6032 // Return N so it doesn't get rechecked! 6033 return SDValue(N, 0); 6034 } 6035 6036 // Look through bitcasts that retain the number of vector elements. 6037 SDValue Op = N->getOperand(0); 6038 if (Op.getOpcode() == ISD::BITCAST && 6039 Op.getValueType().isVector() && 6040 Op.getOperand(0).getValueType().isVector() && 6041 Op.getValueType().getVectorNumElements() == 6042 Op.getOperand(0).getValueType().getVectorNumElements()) 6043 Op = Op.getOperand(0); 6044 6045 // Push BSWAP into a vector insertion if at least one side then simplifies. 6046 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6047 SDValue Vec = Op.getOperand(0); 6048 SDValue Elt = Op.getOperand(1); 6049 SDValue Idx = Op.getOperand(2); 6050 6051 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6052 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6053 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6054 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6055 (canLoadStoreByteSwapped(N->getValueType(0)) && 6056 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6057 EVT VecVT = N->getValueType(0); 6058 EVT EltVT = N->getValueType(0).getVectorElementType(); 6059 if (VecVT != Vec.getValueType()) { 6060 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6061 DCI.AddToWorklist(Vec.getNode()); 6062 } 6063 if (EltVT != Elt.getValueType()) { 6064 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6065 DCI.AddToWorklist(Elt.getNode()); 6066 } 6067 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6068 DCI.AddToWorklist(Vec.getNode()); 6069 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6070 DCI.AddToWorklist(Elt.getNode()); 6071 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6072 Vec, Elt, Idx); 6073 } 6074 } 6075 6076 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6077 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6078 if (SV && Op.hasOneUse()) { 6079 SDValue Op0 = Op.getOperand(0); 6080 SDValue Op1 = Op.getOperand(1); 6081 6082 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6083 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6084 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6085 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6086 EVT VecVT = N->getValueType(0); 6087 if (VecVT != Op0.getValueType()) { 6088 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6089 DCI.AddToWorklist(Op0.getNode()); 6090 } 6091 if (VecVT != Op1.getValueType()) { 6092 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6093 DCI.AddToWorklist(Op1.getNode()); 6094 } 6095 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6096 DCI.AddToWorklist(Op0.getNode()); 6097 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6098 DCI.AddToWorklist(Op1.getNode()); 6099 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6100 } 6101 } 6102 6103 return SDValue(); 6104 } 6105 6106 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6107 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6108 // set by the CCReg instruction using the CCValid / CCMask masks, 6109 // If the CCReg instruction is itself a ICMP testing the condition 6110 // code set by some other instruction, see whether we can directly 6111 // use that condition code. 6112 6113 // Verify that we have an ICMP against some constant. 6114 if (CCValid != SystemZ::CCMASK_ICMP) 6115 return false; 6116 auto *ICmp = CCReg.getNode(); 6117 if (ICmp->getOpcode() != SystemZISD::ICMP) 6118 return false; 6119 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6120 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6121 if (!CompareRHS) 6122 return false; 6123 6124 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6125 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6126 // Verify that we have an appropriate mask for a EQ or NE comparison. 6127 bool Invert = false; 6128 if (CCMask == SystemZ::CCMASK_CMP_NE) 6129 Invert = !Invert; 6130 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6131 return false; 6132 6133 // Verify that the ICMP compares against one of select values. 6134 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6135 if (!TrueVal) 6136 return false; 6137 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6138 if (!FalseVal) 6139 return false; 6140 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6141 Invert = !Invert; 6142 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6143 return false; 6144 6145 // Compute the effective CC mask for the new branch or select. 6146 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6147 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6148 if (!NewCCValid || !NewCCMask) 6149 return false; 6150 CCValid = NewCCValid->getZExtValue(); 6151 CCMask = NewCCMask->getZExtValue(); 6152 if (Invert) 6153 CCMask ^= CCValid; 6154 6155 // Return the updated CCReg link. 6156 CCReg = CompareLHS->getOperand(4); 6157 return true; 6158 } 6159 6160 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6161 if (CompareLHS->getOpcode() == ISD::SRA) { 6162 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6163 if (!SRACount || SRACount->getZExtValue() != 30) 6164 return false; 6165 auto *SHL = CompareLHS->getOperand(0).getNode(); 6166 if (SHL->getOpcode() != ISD::SHL) 6167 return false; 6168 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6169 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6170 return false; 6171 auto *IPM = SHL->getOperand(0).getNode(); 6172 if (IPM->getOpcode() != SystemZISD::IPM) 6173 return false; 6174 6175 // Avoid introducing CC spills (because SRA would clobber CC). 6176 if (!CompareLHS->hasOneUse()) 6177 return false; 6178 // Verify that the ICMP compares against zero. 6179 if (CompareRHS->getZExtValue() != 0) 6180 return false; 6181 6182 // Compute the effective CC mask for the new branch or select. 6183 switch (CCMask) { 6184 case SystemZ::CCMASK_CMP_EQ: break; 6185 case SystemZ::CCMASK_CMP_NE: break; 6186 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 6187 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 6188 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 6189 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 6190 default: return false; 6191 } 6192 6193 // Return the updated CCReg link. 6194 CCReg = IPM->getOperand(0); 6195 return true; 6196 } 6197 6198 return false; 6199 } 6200 6201 SDValue SystemZTargetLowering::combineBR_CCMASK( 6202 SDNode *N, DAGCombinerInfo &DCI) const { 6203 SelectionDAG &DAG = DCI.DAG; 6204 6205 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6206 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6207 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6208 if (!CCValid || !CCMask) 6209 return SDValue(); 6210 6211 int CCValidVal = CCValid->getZExtValue(); 6212 int CCMaskVal = CCMask->getZExtValue(); 6213 SDValue Chain = N->getOperand(0); 6214 SDValue CCReg = N->getOperand(4); 6215 6216 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6217 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6218 Chain, 6219 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6220 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6221 N->getOperand(3), CCReg); 6222 return SDValue(); 6223 } 6224 6225 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6226 SDNode *N, DAGCombinerInfo &DCI) const { 6227 SelectionDAG &DAG = DCI.DAG; 6228 6229 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6230 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6231 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6232 if (!CCValid || !CCMask) 6233 return SDValue(); 6234 6235 int CCValidVal = CCValid->getZExtValue(); 6236 int CCMaskVal = CCMask->getZExtValue(); 6237 SDValue CCReg = N->getOperand(4); 6238 6239 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6240 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6241 N->getOperand(0), N->getOperand(1), 6242 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6243 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6244 CCReg); 6245 return SDValue(); 6246 } 6247 6248 6249 SDValue SystemZTargetLowering::combineGET_CCMASK( 6250 SDNode *N, DAGCombinerInfo &DCI) const { 6251 6252 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6253 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6254 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6255 if (!CCValid || !CCMask) 6256 return SDValue(); 6257 int CCValidVal = CCValid->getZExtValue(); 6258 int CCMaskVal = CCMask->getZExtValue(); 6259 6260 SDValue Select = N->getOperand(0); 6261 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6262 return SDValue(); 6263 6264 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6265 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6266 if (!SelectCCValid || !SelectCCMask) 6267 return SDValue(); 6268 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6269 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6270 6271 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6272 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6273 if (!TrueVal || !FalseVal) 6274 return SDValue(); 6275 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6276 ; 6277 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6278 SelectCCMaskVal ^= SelectCCValidVal; 6279 else 6280 return SDValue(); 6281 6282 if (SelectCCValidVal & ~CCValidVal) 6283 return SDValue(); 6284 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6285 return SDValue(); 6286 6287 return Select->getOperand(4); 6288 } 6289 6290 SDValue SystemZTargetLowering::combineIntDIVREM( 6291 SDNode *N, DAGCombinerInfo &DCI) const { 6292 SelectionDAG &DAG = DCI.DAG; 6293 EVT VT = N->getValueType(0); 6294 // In the case where the divisor is a vector of constants a cheaper 6295 // sequence of instructions can replace the divide. BuildSDIV is called to 6296 // do this during DAG combining, but it only succeeds when it can build a 6297 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6298 // since it is not Legal but Custom it can only happen before 6299 // legalization. Therefore we must scalarize this early before Combine 6300 // 1. For widened vectors, this is already the result of type legalization. 6301 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6302 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6303 return DAG.UnrollVectorOp(N); 6304 return SDValue(); 6305 } 6306 6307 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6308 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6309 return N->getOperand(0); 6310 return N; 6311 } 6312 6313 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6314 DAGCombinerInfo &DCI) const { 6315 switch(N->getOpcode()) { 6316 default: break; 6317 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6318 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6319 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6320 case SystemZISD::MERGE_HIGH: 6321 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6322 case ISD::LOAD: return combineLOAD(N, DCI); 6323 case ISD::STORE: return combineSTORE(N, DCI); 6324 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6325 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6326 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6327 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6328 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6329 case ISD::BSWAP: return combineBSWAP(N, DCI); 6330 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6331 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6332 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6333 case ISD::SDIV: 6334 case ISD::UDIV: 6335 case ISD::SREM: 6336 case ISD::UREM: return combineIntDIVREM(N, DCI); 6337 } 6338 6339 return SDValue(); 6340 } 6341 6342 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6343 // are for Op. 6344 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6345 unsigned OpNo) { 6346 EVT VT = Op.getValueType(); 6347 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6348 APInt SrcDemE; 6349 unsigned Opcode = Op.getOpcode(); 6350 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6351 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6352 switch (Id) { 6353 case Intrinsic::s390_vpksh: // PACKS 6354 case Intrinsic::s390_vpksf: 6355 case Intrinsic::s390_vpksg: 6356 case Intrinsic::s390_vpkshs: // PACKS_CC 6357 case Intrinsic::s390_vpksfs: 6358 case Intrinsic::s390_vpksgs: 6359 case Intrinsic::s390_vpklsh: // PACKLS 6360 case Intrinsic::s390_vpklsf: 6361 case Intrinsic::s390_vpklsg: 6362 case Intrinsic::s390_vpklshs: // PACKLS_CC 6363 case Intrinsic::s390_vpklsfs: 6364 case Intrinsic::s390_vpklsgs: 6365 // VECTOR PACK truncates the elements of two source vectors into one. 6366 SrcDemE = DemandedElts; 6367 if (OpNo == 2) 6368 SrcDemE.lshrInPlace(NumElts / 2); 6369 SrcDemE = SrcDemE.trunc(NumElts / 2); 6370 break; 6371 // VECTOR UNPACK extends half the elements of the source vector. 6372 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6373 case Intrinsic::s390_vuphh: 6374 case Intrinsic::s390_vuphf: 6375 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6376 case Intrinsic::s390_vuplhh: 6377 case Intrinsic::s390_vuplhf: 6378 SrcDemE = APInt(NumElts * 2, 0); 6379 SrcDemE.insertBits(DemandedElts, 0); 6380 break; 6381 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6382 case Intrinsic::s390_vuplhw: 6383 case Intrinsic::s390_vuplf: 6384 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6385 case Intrinsic::s390_vupllh: 6386 case Intrinsic::s390_vupllf: 6387 SrcDemE = APInt(NumElts * 2, 0); 6388 SrcDemE.insertBits(DemandedElts, NumElts); 6389 break; 6390 case Intrinsic::s390_vpdi: { 6391 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6392 SrcDemE = APInt(NumElts, 0); 6393 if (!DemandedElts[OpNo - 1]) 6394 break; 6395 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6396 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6397 // Demand input element 0 or 1, given by the mask bit value. 6398 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6399 break; 6400 } 6401 case Intrinsic::s390_vsldb: { 6402 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6403 assert(VT == MVT::v16i8 && "Unexpected type."); 6404 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6405 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6406 unsigned NumSrc0Els = 16 - FirstIdx; 6407 SrcDemE = APInt(NumElts, 0); 6408 if (OpNo == 1) { 6409 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6410 SrcDemE.insertBits(DemEls, FirstIdx); 6411 } else { 6412 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6413 SrcDemE.insertBits(DemEls, 0); 6414 } 6415 break; 6416 } 6417 case Intrinsic::s390_vperm: 6418 SrcDemE = APInt(NumElts, 1); 6419 break; 6420 default: 6421 llvm_unreachable("Unhandled intrinsic."); 6422 break; 6423 } 6424 } else { 6425 switch (Opcode) { 6426 case SystemZISD::JOIN_DWORDS: 6427 // Scalar operand. 6428 SrcDemE = APInt(1, 1); 6429 break; 6430 case SystemZISD::SELECT_CCMASK: 6431 SrcDemE = DemandedElts; 6432 break; 6433 default: 6434 llvm_unreachable("Unhandled opcode."); 6435 break; 6436 } 6437 } 6438 return SrcDemE; 6439 } 6440 6441 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6442 const APInt &DemandedElts, 6443 const SelectionDAG &DAG, unsigned Depth, 6444 unsigned OpNo) { 6445 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6446 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6447 KnownBits LHSKnown = 6448 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6449 KnownBits RHSKnown = 6450 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6451 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6452 Known.One = LHSKnown.One & RHSKnown.One; 6453 } 6454 6455 void 6456 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6457 KnownBits &Known, 6458 const APInt &DemandedElts, 6459 const SelectionDAG &DAG, 6460 unsigned Depth) const { 6461 Known.resetAll(); 6462 6463 // Intrinsic CC result is returned in the two low bits. 6464 unsigned tmp0, tmp1; // not used 6465 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6466 Known.Zero.setBitsFrom(2); 6467 return; 6468 } 6469 EVT VT = Op.getValueType(); 6470 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6471 return; 6472 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6473 "KnownBits does not match VT in bitwidth"); 6474 assert ((!VT.isVector() || 6475 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6476 "DemandedElts does not match VT number of elements"); 6477 unsigned BitWidth = Known.getBitWidth(); 6478 unsigned Opcode = Op.getOpcode(); 6479 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6480 bool IsLogical = false; 6481 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6482 switch (Id) { 6483 case Intrinsic::s390_vpksh: // PACKS 6484 case Intrinsic::s390_vpksf: 6485 case Intrinsic::s390_vpksg: 6486 case Intrinsic::s390_vpkshs: // PACKS_CC 6487 case Intrinsic::s390_vpksfs: 6488 case Intrinsic::s390_vpksgs: 6489 case Intrinsic::s390_vpklsh: // PACKLS 6490 case Intrinsic::s390_vpklsf: 6491 case Intrinsic::s390_vpklsg: 6492 case Intrinsic::s390_vpklshs: // PACKLS_CC 6493 case Intrinsic::s390_vpklsfs: 6494 case Intrinsic::s390_vpklsgs: 6495 case Intrinsic::s390_vpdi: 6496 case Intrinsic::s390_vsldb: 6497 case Intrinsic::s390_vperm: 6498 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6499 break; 6500 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6501 case Intrinsic::s390_vuplhh: 6502 case Intrinsic::s390_vuplhf: 6503 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6504 case Intrinsic::s390_vupllh: 6505 case Intrinsic::s390_vupllf: 6506 IsLogical = true; 6507 LLVM_FALLTHROUGH; 6508 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6509 case Intrinsic::s390_vuphh: 6510 case Intrinsic::s390_vuphf: 6511 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6512 case Intrinsic::s390_vuplhw: 6513 case Intrinsic::s390_vuplf: { 6514 SDValue SrcOp = Op.getOperand(1); 6515 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6516 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6517 if (IsLogical) { 6518 Known = Known.zext(BitWidth, true); 6519 } else 6520 Known = Known.sext(BitWidth); 6521 break; 6522 } 6523 default: 6524 break; 6525 } 6526 } else { 6527 switch (Opcode) { 6528 case SystemZISD::JOIN_DWORDS: 6529 case SystemZISD::SELECT_CCMASK: 6530 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6531 break; 6532 case SystemZISD::REPLICATE: { 6533 SDValue SrcOp = Op.getOperand(0); 6534 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6535 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6536 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6537 break; 6538 } 6539 default: 6540 break; 6541 } 6542 } 6543 6544 // Known has the width of the source operand(s). Adjust if needed to match 6545 // the passed bitwidth. 6546 if (Known.getBitWidth() != BitWidth) 6547 Known = Known.zextOrTrunc(BitWidth, false); 6548 } 6549 6550 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6551 const SelectionDAG &DAG, unsigned Depth, 6552 unsigned OpNo) { 6553 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6554 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6555 if (LHS == 1) return 1; // Early out. 6556 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6557 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6558 if (RHS == 1) return 1; // Early out. 6559 unsigned Common = std::min(LHS, RHS); 6560 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6561 EVT VT = Op.getValueType(); 6562 unsigned VTBits = VT.getScalarSizeInBits(); 6563 if (SrcBitWidth > VTBits) { // PACK 6564 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6565 if (Common > SrcExtraBits) 6566 return (Common - SrcExtraBits); 6567 return 1; 6568 } 6569 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6570 return Common; 6571 } 6572 6573 unsigned 6574 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6575 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6576 unsigned Depth) const { 6577 if (Op.getResNo() != 0) 6578 return 1; 6579 unsigned Opcode = Op.getOpcode(); 6580 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6581 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6582 switch (Id) { 6583 case Intrinsic::s390_vpksh: // PACKS 6584 case Intrinsic::s390_vpksf: 6585 case Intrinsic::s390_vpksg: 6586 case Intrinsic::s390_vpkshs: // PACKS_CC 6587 case Intrinsic::s390_vpksfs: 6588 case Intrinsic::s390_vpksgs: 6589 case Intrinsic::s390_vpklsh: // PACKLS 6590 case Intrinsic::s390_vpklsf: 6591 case Intrinsic::s390_vpklsg: 6592 case Intrinsic::s390_vpklshs: // PACKLS_CC 6593 case Intrinsic::s390_vpklsfs: 6594 case Intrinsic::s390_vpklsgs: 6595 case Intrinsic::s390_vpdi: 6596 case Intrinsic::s390_vsldb: 6597 case Intrinsic::s390_vperm: 6598 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6599 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6600 case Intrinsic::s390_vuphh: 6601 case Intrinsic::s390_vuphf: 6602 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6603 case Intrinsic::s390_vuplhw: 6604 case Intrinsic::s390_vuplf: { 6605 SDValue PackedOp = Op.getOperand(1); 6606 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6607 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6608 EVT VT = Op.getValueType(); 6609 unsigned VTBits = VT.getScalarSizeInBits(); 6610 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6611 return Tmp; 6612 } 6613 default: 6614 break; 6615 } 6616 } else { 6617 switch (Opcode) { 6618 case SystemZISD::SELECT_CCMASK: 6619 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6620 default: 6621 break; 6622 } 6623 } 6624 6625 return 1; 6626 } 6627 6628 //===----------------------------------------------------------------------===// 6629 // Custom insertion 6630 //===----------------------------------------------------------------------===// 6631 6632 // Create a new basic block after MBB. 6633 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6634 MachineFunction &MF = *MBB->getParent(); 6635 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6636 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6637 return NewMBB; 6638 } 6639 6640 // Split MBB after MI and return the new block (the one that contains 6641 // instructions after MI). 6642 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6643 MachineBasicBlock *MBB) { 6644 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6645 NewMBB->splice(NewMBB->begin(), MBB, 6646 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6647 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6648 return NewMBB; 6649 } 6650 6651 // Split MBB before MI and return the new block (the one that contains MI). 6652 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6653 MachineBasicBlock *MBB) { 6654 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6655 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6656 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6657 return NewMBB; 6658 } 6659 6660 // Force base value Base into a register before MI. Return the register. 6661 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6662 const SystemZInstrInfo *TII) { 6663 if (Base.isReg()) 6664 return Base.getReg(); 6665 6666 MachineBasicBlock *MBB = MI.getParent(); 6667 MachineFunction &MF = *MBB->getParent(); 6668 MachineRegisterInfo &MRI = MF.getRegInfo(); 6669 6670 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6671 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6672 .add(Base) 6673 .addImm(0) 6674 .addReg(0); 6675 return Reg; 6676 } 6677 6678 // The CC operand of MI might be missing a kill marker because there 6679 // were multiple uses of CC, and ISel didn't know which to mark. 6680 // Figure out whether MI should have had a kill marker. 6681 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6682 // Scan forward through BB for a use/def of CC. 6683 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6684 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6685 const MachineInstr& mi = *miI; 6686 if (mi.readsRegister(SystemZ::CC)) 6687 return false; 6688 if (mi.definesRegister(SystemZ::CC)) 6689 break; // Should have kill-flag - update below. 6690 } 6691 6692 // If we hit the end of the block, check whether CC is live into a 6693 // successor. 6694 if (miI == MBB->end()) { 6695 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6696 if ((*SI)->isLiveIn(SystemZ::CC)) 6697 return false; 6698 } 6699 6700 return true; 6701 } 6702 6703 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6704 // together with other Select pseudo-opcodes into a single basic-block with 6705 // a conditional jump around it. 6706 static bool isSelectPseudo(MachineInstr &MI) { 6707 switch (MI.getOpcode()) { 6708 case SystemZ::Select32: 6709 case SystemZ::Select64: 6710 case SystemZ::SelectF32: 6711 case SystemZ::SelectF64: 6712 case SystemZ::SelectF128: 6713 case SystemZ::SelectVR32: 6714 case SystemZ::SelectVR64: 6715 case SystemZ::SelectVR128: 6716 return true; 6717 6718 default: 6719 return false; 6720 } 6721 } 6722 6723 // Helper function, which inserts PHI functions into SinkMBB: 6724 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6725 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6726 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6727 MachineBasicBlock *TrueMBB, 6728 MachineBasicBlock *FalseMBB, 6729 MachineBasicBlock *SinkMBB) { 6730 MachineFunction *MF = TrueMBB->getParent(); 6731 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6732 6733 MachineInstr *FirstMI = Selects.front(); 6734 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6735 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6736 6737 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6738 6739 // As we are creating the PHIs, we have to be careful if there is more than 6740 // one. Later Selects may reference the results of earlier Selects, but later 6741 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6742 // That also means that PHI construction must work forward from earlier to 6743 // later, and that the code must maintain a mapping from earlier PHI's 6744 // destination registers, and the registers that went into the PHI. 6745 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6746 6747 for (auto MI : Selects) { 6748 Register DestReg = MI->getOperand(0).getReg(); 6749 Register TrueReg = MI->getOperand(1).getReg(); 6750 Register FalseReg = MI->getOperand(2).getReg(); 6751 6752 // If this Select we are generating is the opposite condition from 6753 // the jump we generated, then we have to swap the operands for the 6754 // PHI that is going to be generated. 6755 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6756 std::swap(TrueReg, FalseReg); 6757 6758 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6759 TrueReg = RegRewriteTable[TrueReg].first; 6760 6761 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6762 FalseReg = RegRewriteTable[FalseReg].second; 6763 6764 DebugLoc DL = MI->getDebugLoc(); 6765 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6766 .addReg(TrueReg).addMBB(TrueMBB) 6767 .addReg(FalseReg).addMBB(FalseMBB); 6768 6769 // Add this PHI to the rewrite table. 6770 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6771 } 6772 6773 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6774 } 6775 6776 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6777 MachineBasicBlock * 6778 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6779 MachineBasicBlock *MBB) const { 6780 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6781 const SystemZInstrInfo *TII = 6782 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6783 6784 unsigned CCValid = MI.getOperand(3).getImm(); 6785 unsigned CCMask = MI.getOperand(4).getImm(); 6786 6787 // If we have a sequence of Select* pseudo instructions using the 6788 // same condition code value, we want to expand all of them into 6789 // a single pair of basic blocks using the same condition. 6790 SmallVector<MachineInstr*, 8> Selects; 6791 SmallVector<MachineInstr*, 8> DbgValues; 6792 Selects.push_back(&MI); 6793 unsigned Count = 0; 6794 for (MachineBasicBlock::iterator NextMIIt = 6795 std::next(MachineBasicBlock::iterator(MI)); 6796 NextMIIt != MBB->end(); ++NextMIIt) { 6797 if (NextMIIt->definesRegister(SystemZ::CC)) 6798 break; 6799 if (isSelectPseudo(*NextMIIt)) { 6800 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6801 "Bad CCValid operands since CC was not redefined."); 6802 if (NextMIIt->getOperand(4).getImm() == CCMask || 6803 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6804 Selects.push_back(&*NextMIIt); 6805 continue; 6806 } 6807 break; 6808 } 6809 bool User = false; 6810 for (auto SelMI : Selects) 6811 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6812 User = true; 6813 break; 6814 } 6815 if (NextMIIt->isDebugInstr()) { 6816 if (User) { 6817 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6818 DbgValues.push_back(&*NextMIIt); 6819 } 6820 } 6821 else if (User || ++Count > 20) 6822 break; 6823 } 6824 6825 MachineInstr *LastMI = Selects.back(); 6826 bool CCKilled = 6827 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6828 MachineBasicBlock *StartMBB = MBB; 6829 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6830 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6831 6832 // Unless CC was killed in the last Select instruction, mark it as 6833 // live-in to both FalseMBB and JoinMBB. 6834 if (!CCKilled) { 6835 FalseMBB->addLiveIn(SystemZ::CC); 6836 JoinMBB->addLiveIn(SystemZ::CC); 6837 } 6838 6839 // StartMBB: 6840 // BRC CCMask, JoinMBB 6841 // # fallthrough to FalseMBB 6842 MBB = StartMBB; 6843 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6844 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6845 MBB->addSuccessor(JoinMBB); 6846 MBB->addSuccessor(FalseMBB); 6847 6848 // FalseMBB: 6849 // # fallthrough to JoinMBB 6850 MBB = FalseMBB; 6851 MBB->addSuccessor(JoinMBB); 6852 6853 // JoinMBB: 6854 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6855 // ... 6856 MBB = JoinMBB; 6857 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6858 for (auto SelMI : Selects) 6859 SelMI->eraseFromParent(); 6860 6861 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6862 for (auto DbgMI : DbgValues) 6863 MBB->splice(InsertPos, StartMBB, DbgMI); 6864 6865 return JoinMBB; 6866 } 6867 6868 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6869 // StoreOpcode is the store to use and Invert says whether the store should 6870 // happen when the condition is false rather than true. If a STORE ON 6871 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6872 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6873 MachineBasicBlock *MBB, 6874 unsigned StoreOpcode, 6875 unsigned STOCOpcode, 6876 bool Invert) const { 6877 const SystemZInstrInfo *TII = 6878 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6879 6880 Register SrcReg = MI.getOperand(0).getReg(); 6881 MachineOperand Base = MI.getOperand(1); 6882 int64_t Disp = MI.getOperand(2).getImm(); 6883 Register IndexReg = MI.getOperand(3).getReg(); 6884 unsigned CCValid = MI.getOperand(4).getImm(); 6885 unsigned CCMask = MI.getOperand(5).getImm(); 6886 DebugLoc DL = MI.getDebugLoc(); 6887 6888 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6889 6890 // Use STOCOpcode if possible. We could use different store patterns in 6891 // order to avoid matching the index register, but the performance trade-offs 6892 // might be more complicated in that case. 6893 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6894 if (Invert) 6895 CCMask ^= CCValid; 6896 6897 // ISel pattern matching also adds a load memory operand of the same 6898 // address, so take special care to find the storing memory operand. 6899 MachineMemOperand *MMO = nullptr; 6900 for (auto *I : MI.memoperands()) 6901 if (I->isStore()) { 6902 MMO = I; 6903 break; 6904 } 6905 6906 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6907 .addReg(SrcReg) 6908 .add(Base) 6909 .addImm(Disp) 6910 .addImm(CCValid) 6911 .addImm(CCMask) 6912 .addMemOperand(MMO); 6913 6914 MI.eraseFromParent(); 6915 return MBB; 6916 } 6917 6918 // Get the condition needed to branch around the store. 6919 if (!Invert) 6920 CCMask ^= CCValid; 6921 6922 MachineBasicBlock *StartMBB = MBB; 6923 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6924 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6925 6926 // Unless CC was killed in the CondStore instruction, mark it as 6927 // live-in to both FalseMBB and JoinMBB. 6928 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6929 FalseMBB->addLiveIn(SystemZ::CC); 6930 JoinMBB->addLiveIn(SystemZ::CC); 6931 } 6932 6933 // StartMBB: 6934 // BRC CCMask, JoinMBB 6935 // # fallthrough to FalseMBB 6936 MBB = StartMBB; 6937 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6938 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6939 MBB->addSuccessor(JoinMBB); 6940 MBB->addSuccessor(FalseMBB); 6941 6942 // FalseMBB: 6943 // store %SrcReg, %Disp(%Index,%Base) 6944 // # fallthrough to JoinMBB 6945 MBB = FalseMBB; 6946 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6947 .addReg(SrcReg) 6948 .add(Base) 6949 .addImm(Disp) 6950 .addReg(IndexReg); 6951 MBB->addSuccessor(JoinMBB); 6952 6953 MI.eraseFromParent(); 6954 return JoinMBB; 6955 } 6956 6957 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6958 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6959 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6960 // BitSize is the width of the field in bits, or 0 if this is a partword 6961 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6962 // is one of the operands. Invert says whether the field should be 6963 // inverted after performing BinOpcode (e.g. for NAND). 6964 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6965 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6966 unsigned BitSize, bool Invert) const { 6967 MachineFunction &MF = *MBB->getParent(); 6968 const SystemZInstrInfo *TII = 6969 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6970 MachineRegisterInfo &MRI = MF.getRegInfo(); 6971 bool IsSubWord = (BitSize < 32); 6972 6973 // Extract the operands. Base can be a register or a frame index. 6974 // Src2 can be a register or immediate. 6975 Register Dest = MI.getOperand(0).getReg(); 6976 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6977 int64_t Disp = MI.getOperand(2).getImm(); 6978 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6979 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 6980 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 6981 DebugLoc DL = MI.getDebugLoc(); 6982 if (IsSubWord) 6983 BitSize = MI.getOperand(6).getImm(); 6984 6985 // Subword operations use 32-bit registers. 6986 const TargetRegisterClass *RC = (BitSize <= 32 ? 6987 &SystemZ::GR32BitRegClass : 6988 &SystemZ::GR64BitRegClass); 6989 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6990 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6991 6992 // Get the right opcodes for the displacement. 6993 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6994 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6995 assert(LOpcode && CSOpcode && "Displacement out of range"); 6996 6997 // Create virtual registers for temporary results. 6998 Register OrigVal = MRI.createVirtualRegister(RC); 6999 Register OldVal = MRI.createVirtualRegister(RC); 7000 Register NewVal = (BinOpcode || IsSubWord ? 7001 MRI.createVirtualRegister(RC) : Src2.getReg()); 7002 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7003 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7004 7005 // Insert a basic block for the main loop. 7006 MachineBasicBlock *StartMBB = MBB; 7007 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7008 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7009 7010 // StartMBB: 7011 // ... 7012 // %OrigVal = L Disp(%Base) 7013 // # fall through to LoopMMB 7014 MBB = StartMBB; 7015 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7016 MBB->addSuccessor(LoopMBB); 7017 7018 // LoopMBB: 7019 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7020 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7021 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7022 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7023 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7024 // JNE LoopMBB 7025 // # fall through to DoneMMB 7026 MBB = LoopMBB; 7027 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7028 .addReg(OrigVal).addMBB(StartMBB) 7029 .addReg(Dest).addMBB(LoopMBB); 7030 if (IsSubWord) 7031 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7032 .addReg(OldVal).addReg(BitShift).addImm(0); 7033 if (Invert) { 7034 // Perform the operation normally and then invert every bit of the field. 7035 Register Tmp = MRI.createVirtualRegister(RC); 7036 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7037 if (BitSize <= 32) 7038 // XILF with the upper BitSize bits set. 7039 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7040 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7041 else { 7042 // Use LCGR and add -1 to the result, which is more compact than 7043 // an XILF, XILH pair. 7044 Register Tmp2 = MRI.createVirtualRegister(RC); 7045 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7046 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7047 .addReg(Tmp2).addImm(-1); 7048 } 7049 } else if (BinOpcode) 7050 // A simply binary operation. 7051 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7052 .addReg(RotatedOldVal) 7053 .add(Src2); 7054 else if (IsSubWord) 7055 // Use RISBG to rotate Src2 into position and use it to replace the 7056 // field in RotatedOldVal. 7057 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7058 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7059 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7060 if (IsSubWord) 7061 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7062 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7063 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7064 .addReg(OldVal) 7065 .addReg(NewVal) 7066 .add(Base) 7067 .addImm(Disp); 7068 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7069 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7070 MBB->addSuccessor(LoopMBB); 7071 MBB->addSuccessor(DoneMBB); 7072 7073 MI.eraseFromParent(); 7074 return DoneMBB; 7075 } 7076 7077 // Implement EmitInstrWithCustomInserter for pseudo 7078 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7079 // instruction that should be used to compare the current field with the 7080 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7081 // for when the current field should be kept. BitSize is the width of 7082 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7083 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7084 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7085 unsigned KeepOldMask, unsigned BitSize) const { 7086 MachineFunction &MF = *MBB->getParent(); 7087 const SystemZInstrInfo *TII = 7088 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7089 MachineRegisterInfo &MRI = MF.getRegInfo(); 7090 bool IsSubWord = (BitSize < 32); 7091 7092 // Extract the operands. Base can be a register or a frame index. 7093 Register Dest = MI.getOperand(0).getReg(); 7094 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7095 int64_t Disp = MI.getOperand(2).getImm(); 7096 Register Src2 = MI.getOperand(3).getReg(); 7097 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7098 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7099 DebugLoc DL = MI.getDebugLoc(); 7100 if (IsSubWord) 7101 BitSize = MI.getOperand(6).getImm(); 7102 7103 // Subword operations use 32-bit registers. 7104 const TargetRegisterClass *RC = (BitSize <= 32 ? 7105 &SystemZ::GR32BitRegClass : 7106 &SystemZ::GR64BitRegClass); 7107 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7108 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7109 7110 // Get the right opcodes for the displacement. 7111 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7112 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7113 assert(LOpcode && CSOpcode && "Displacement out of range"); 7114 7115 // Create virtual registers for temporary results. 7116 Register OrigVal = MRI.createVirtualRegister(RC); 7117 Register OldVal = MRI.createVirtualRegister(RC); 7118 Register NewVal = MRI.createVirtualRegister(RC); 7119 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7120 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7121 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7122 7123 // Insert 3 basic blocks for the loop. 7124 MachineBasicBlock *StartMBB = MBB; 7125 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7126 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7127 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7128 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7129 7130 // StartMBB: 7131 // ... 7132 // %OrigVal = L Disp(%Base) 7133 // # fall through to LoopMMB 7134 MBB = StartMBB; 7135 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7136 MBB->addSuccessor(LoopMBB); 7137 7138 // LoopMBB: 7139 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7140 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7141 // CompareOpcode %RotatedOldVal, %Src2 7142 // BRC KeepOldMask, UpdateMBB 7143 MBB = LoopMBB; 7144 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7145 .addReg(OrigVal).addMBB(StartMBB) 7146 .addReg(Dest).addMBB(UpdateMBB); 7147 if (IsSubWord) 7148 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7149 .addReg(OldVal).addReg(BitShift).addImm(0); 7150 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7151 .addReg(RotatedOldVal).addReg(Src2); 7152 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7153 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7154 MBB->addSuccessor(UpdateMBB); 7155 MBB->addSuccessor(UseAltMBB); 7156 7157 // UseAltMBB: 7158 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7159 // # fall through to UpdateMMB 7160 MBB = UseAltMBB; 7161 if (IsSubWord) 7162 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7163 .addReg(RotatedOldVal).addReg(Src2) 7164 .addImm(32).addImm(31 + BitSize).addImm(0); 7165 MBB->addSuccessor(UpdateMBB); 7166 7167 // UpdateMBB: 7168 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7169 // [ %RotatedAltVal, UseAltMBB ] 7170 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7171 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7172 // JNE LoopMBB 7173 // # fall through to DoneMMB 7174 MBB = UpdateMBB; 7175 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7176 .addReg(RotatedOldVal).addMBB(LoopMBB) 7177 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7178 if (IsSubWord) 7179 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7180 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7181 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7182 .addReg(OldVal) 7183 .addReg(NewVal) 7184 .add(Base) 7185 .addImm(Disp); 7186 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7187 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7188 MBB->addSuccessor(LoopMBB); 7189 MBB->addSuccessor(DoneMBB); 7190 7191 MI.eraseFromParent(); 7192 return DoneMBB; 7193 } 7194 7195 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7196 // instruction MI. 7197 MachineBasicBlock * 7198 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7199 MachineBasicBlock *MBB) const { 7200 7201 MachineFunction &MF = *MBB->getParent(); 7202 const SystemZInstrInfo *TII = 7203 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7204 MachineRegisterInfo &MRI = MF.getRegInfo(); 7205 7206 // Extract the operands. Base can be a register or a frame index. 7207 Register Dest = MI.getOperand(0).getReg(); 7208 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7209 int64_t Disp = MI.getOperand(2).getImm(); 7210 Register OrigCmpVal = MI.getOperand(3).getReg(); 7211 Register OrigSwapVal = MI.getOperand(4).getReg(); 7212 Register BitShift = MI.getOperand(5).getReg(); 7213 Register NegBitShift = MI.getOperand(6).getReg(); 7214 int64_t BitSize = MI.getOperand(7).getImm(); 7215 DebugLoc DL = MI.getDebugLoc(); 7216 7217 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7218 7219 // Get the right opcodes for the displacement. 7220 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7221 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7222 assert(LOpcode && CSOpcode && "Displacement out of range"); 7223 7224 // Create virtual registers for temporary results. 7225 Register OrigOldVal = MRI.createVirtualRegister(RC); 7226 Register OldVal = MRI.createVirtualRegister(RC); 7227 Register CmpVal = MRI.createVirtualRegister(RC); 7228 Register SwapVal = MRI.createVirtualRegister(RC); 7229 Register StoreVal = MRI.createVirtualRegister(RC); 7230 Register RetryOldVal = MRI.createVirtualRegister(RC); 7231 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7232 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7233 7234 // Insert 2 basic blocks for the loop. 7235 MachineBasicBlock *StartMBB = MBB; 7236 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7237 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7238 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7239 7240 // StartMBB: 7241 // ... 7242 // %OrigOldVal = L Disp(%Base) 7243 // # fall through to LoopMMB 7244 MBB = StartMBB; 7245 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7246 .add(Base) 7247 .addImm(Disp) 7248 .addReg(0); 7249 MBB->addSuccessor(LoopMBB); 7250 7251 // LoopMBB: 7252 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7253 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7254 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7255 // %Dest = RLL %OldVal, BitSize(%BitShift) 7256 // ^^ The low BitSize bits contain the field 7257 // of interest. 7258 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7259 // ^^ Replace the upper 32-BitSize bits of the 7260 // comparison value with those that we loaded, 7261 // so that we can use a full word comparison. 7262 // CR %Dest, %RetryCmpVal 7263 // JNE DoneMBB 7264 // # Fall through to SetMBB 7265 MBB = LoopMBB; 7266 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7267 .addReg(OrigOldVal).addMBB(StartMBB) 7268 .addReg(RetryOldVal).addMBB(SetMBB); 7269 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7270 .addReg(OrigCmpVal).addMBB(StartMBB) 7271 .addReg(RetryCmpVal).addMBB(SetMBB); 7272 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7273 .addReg(OrigSwapVal).addMBB(StartMBB) 7274 .addReg(RetrySwapVal).addMBB(SetMBB); 7275 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7276 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7277 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7278 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7279 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7280 .addReg(Dest).addReg(RetryCmpVal); 7281 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7282 .addImm(SystemZ::CCMASK_ICMP) 7283 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7284 MBB->addSuccessor(DoneMBB); 7285 MBB->addSuccessor(SetMBB); 7286 7287 // SetMBB: 7288 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7289 // ^^ Replace the upper 32-BitSize bits of the new 7290 // value with those that we loaded. 7291 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7292 // ^^ Rotate the new field to its proper position. 7293 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7294 // JNE LoopMBB 7295 // # fall through to ExitMMB 7296 MBB = SetMBB; 7297 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7298 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7299 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7300 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7301 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7302 .addReg(OldVal) 7303 .addReg(StoreVal) 7304 .add(Base) 7305 .addImm(Disp); 7306 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7307 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7308 MBB->addSuccessor(LoopMBB); 7309 MBB->addSuccessor(DoneMBB); 7310 7311 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7312 // to the block after the loop. At this point, CC may have been defined 7313 // either by the CR in LoopMBB or by the CS in SetMBB. 7314 if (!MI.registerDefIsDead(SystemZ::CC)) 7315 DoneMBB->addLiveIn(SystemZ::CC); 7316 7317 MI.eraseFromParent(); 7318 return DoneMBB; 7319 } 7320 7321 // Emit a move from two GR64s to a GR128. 7322 MachineBasicBlock * 7323 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7324 MachineBasicBlock *MBB) const { 7325 MachineFunction &MF = *MBB->getParent(); 7326 const SystemZInstrInfo *TII = 7327 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7328 MachineRegisterInfo &MRI = MF.getRegInfo(); 7329 DebugLoc DL = MI.getDebugLoc(); 7330 7331 Register Dest = MI.getOperand(0).getReg(); 7332 Register Hi = MI.getOperand(1).getReg(); 7333 Register Lo = MI.getOperand(2).getReg(); 7334 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7335 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7336 7337 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7338 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7339 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7340 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7341 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7342 7343 MI.eraseFromParent(); 7344 return MBB; 7345 } 7346 7347 // Emit an extension from a GR64 to a GR128. ClearEven is true 7348 // if the high register of the GR128 value must be cleared or false if 7349 // it's "don't care". 7350 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7351 MachineBasicBlock *MBB, 7352 bool ClearEven) const { 7353 MachineFunction &MF = *MBB->getParent(); 7354 const SystemZInstrInfo *TII = 7355 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7356 MachineRegisterInfo &MRI = MF.getRegInfo(); 7357 DebugLoc DL = MI.getDebugLoc(); 7358 7359 Register Dest = MI.getOperand(0).getReg(); 7360 Register Src = MI.getOperand(1).getReg(); 7361 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7362 7363 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7364 if (ClearEven) { 7365 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7366 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7367 7368 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7369 .addImm(0); 7370 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7371 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7372 In128 = NewIn128; 7373 } 7374 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7375 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7376 7377 MI.eraseFromParent(); 7378 return MBB; 7379 } 7380 7381 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7382 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7383 MachineFunction &MF = *MBB->getParent(); 7384 const SystemZInstrInfo *TII = 7385 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7386 MachineRegisterInfo &MRI = MF.getRegInfo(); 7387 DebugLoc DL = MI.getDebugLoc(); 7388 7389 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7390 uint64_t DestDisp = MI.getOperand(1).getImm(); 7391 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7392 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7393 uint64_t Length = MI.getOperand(4).getImm(); 7394 7395 // When generating more than one CLC, all but the last will need to 7396 // branch to the end when a difference is found. 7397 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7398 splitBlockAfter(MI, MBB) : nullptr); 7399 7400 // Check for the loop form, in which operand 5 is the trip count. 7401 if (MI.getNumExplicitOperands() > 5) { 7402 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7403 7404 Register StartCountReg = MI.getOperand(5).getReg(); 7405 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7406 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7407 forceReg(MI, DestBase, TII)); 7408 7409 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7410 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7411 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7412 MRI.createVirtualRegister(RC)); 7413 Register NextSrcReg = MRI.createVirtualRegister(RC); 7414 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7415 MRI.createVirtualRegister(RC)); 7416 7417 RC = &SystemZ::GR64BitRegClass; 7418 Register ThisCountReg = MRI.createVirtualRegister(RC); 7419 Register NextCountReg = MRI.createVirtualRegister(RC); 7420 7421 MachineBasicBlock *StartMBB = MBB; 7422 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7423 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7424 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7425 7426 // StartMBB: 7427 // # fall through to LoopMMB 7428 MBB->addSuccessor(LoopMBB); 7429 7430 // LoopMBB: 7431 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7432 // [ %NextDestReg, NextMBB ] 7433 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7434 // [ %NextSrcReg, NextMBB ] 7435 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7436 // [ %NextCountReg, NextMBB ] 7437 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7438 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7439 // ( JLH EndMBB ) 7440 // 7441 // The prefetch is used only for MVC. The JLH is used only for CLC. 7442 MBB = LoopMBB; 7443 7444 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7445 .addReg(StartDestReg).addMBB(StartMBB) 7446 .addReg(NextDestReg).addMBB(NextMBB); 7447 if (!HaveSingleBase) 7448 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7449 .addReg(StartSrcReg).addMBB(StartMBB) 7450 .addReg(NextSrcReg).addMBB(NextMBB); 7451 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7452 .addReg(StartCountReg).addMBB(StartMBB) 7453 .addReg(NextCountReg).addMBB(NextMBB); 7454 if (Opcode == SystemZ::MVC) 7455 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7456 .addImm(SystemZ::PFD_WRITE) 7457 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7458 BuildMI(MBB, DL, TII->get(Opcode)) 7459 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7460 .addReg(ThisSrcReg).addImm(SrcDisp); 7461 if (EndMBB) { 7462 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7463 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7464 .addMBB(EndMBB); 7465 MBB->addSuccessor(EndMBB); 7466 MBB->addSuccessor(NextMBB); 7467 } 7468 7469 // NextMBB: 7470 // %NextDestReg = LA 256(%ThisDestReg) 7471 // %NextSrcReg = LA 256(%ThisSrcReg) 7472 // %NextCountReg = AGHI %ThisCountReg, -1 7473 // CGHI %NextCountReg, 0 7474 // JLH LoopMBB 7475 // # fall through to DoneMMB 7476 // 7477 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7478 MBB = NextMBB; 7479 7480 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7481 .addReg(ThisDestReg).addImm(256).addReg(0); 7482 if (!HaveSingleBase) 7483 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7484 .addReg(ThisSrcReg).addImm(256).addReg(0); 7485 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7486 .addReg(ThisCountReg).addImm(-1); 7487 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7488 .addReg(NextCountReg).addImm(0); 7489 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7490 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7491 .addMBB(LoopMBB); 7492 MBB->addSuccessor(LoopMBB); 7493 MBB->addSuccessor(DoneMBB); 7494 7495 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7496 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7497 Length &= 255; 7498 if (EndMBB && !Length) 7499 // If the loop handled the whole CLC range, DoneMBB will be empty with 7500 // CC live-through into EndMBB, so add it as live-in. 7501 DoneMBB->addLiveIn(SystemZ::CC); 7502 MBB = DoneMBB; 7503 } 7504 // Handle any remaining bytes with straight-line code. 7505 while (Length > 0) { 7506 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7507 // The previous iteration might have created out-of-range displacements. 7508 // Apply them using LAY if so. 7509 if (!isUInt<12>(DestDisp)) { 7510 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7511 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7512 .add(DestBase) 7513 .addImm(DestDisp) 7514 .addReg(0); 7515 DestBase = MachineOperand::CreateReg(Reg, false); 7516 DestDisp = 0; 7517 } 7518 if (!isUInt<12>(SrcDisp)) { 7519 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7520 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7521 .add(SrcBase) 7522 .addImm(SrcDisp) 7523 .addReg(0); 7524 SrcBase = MachineOperand::CreateReg(Reg, false); 7525 SrcDisp = 0; 7526 } 7527 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7528 .add(DestBase) 7529 .addImm(DestDisp) 7530 .addImm(ThisLength) 7531 .add(SrcBase) 7532 .addImm(SrcDisp) 7533 .setMemRefs(MI.memoperands()); 7534 DestDisp += ThisLength; 7535 SrcDisp += ThisLength; 7536 Length -= ThisLength; 7537 // If there's another CLC to go, branch to the end if a difference 7538 // was found. 7539 if (EndMBB && Length > 0) { 7540 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7541 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7542 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7543 .addMBB(EndMBB); 7544 MBB->addSuccessor(EndMBB); 7545 MBB->addSuccessor(NextMBB); 7546 MBB = NextMBB; 7547 } 7548 } 7549 if (EndMBB) { 7550 MBB->addSuccessor(EndMBB); 7551 MBB = EndMBB; 7552 MBB->addLiveIn(SystemZ::CC); 7553 } 7554 7555 MI.eraseFromParent(); 7556 return MBB; 7557 } 7558 7559 // Decompose string pseudo-instruction MI into a loop that continually performs 7560 // Opcode until CC != 3. 7561 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7562 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7563 MachineFunction &MF = *MBB->getParent(); 7564 const SystemZInstrInfo *TII = 7565 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7566 MachineRegisterInfo &MRI = MF.getRegInfo(); 7567 DebugLoc DL = MI.getDebugLoc(); 7568 7569 uint64_t End1Reg = MI.getOperand(0).getReg(); 7570 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7571 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7572 uint64_t CharReg = MI.getOperand(3).getReg(); 7573 7574 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7575 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7576 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7577 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7578 7579 MachineBasicBlock *StartMBB = MBB; 7580 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7581 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7582 7583 // StartMBB: 7584 // # fall through to LoopMMB 7585 MBB->addSuccessor(LoopMBB); 7586 7587 // LoopMBB: 7588 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7589 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7590 // R0L = %CharReg 7591 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7592 // JO LoopMBB 7593 // # fall through to DoneMMB 7594 // 7595 // The load of R0L can be hoisted by post-RA LICM. 7596 MBB = LoopMBB; 7597 7598 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7599 .addReg(Start1Reg).addMBB(StartMBB) 7600 .addReg(End1Reg).addMBB(LoopMBB); 7601 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7602 .addReg(Start2Reg).addMBB(StartMBB) 7603 .addReg(End2Reg).addMBB(LoopMBB); 7604 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7605 BuildMI(MBB, DL, TII->get(Opcode)) 7606 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7607 .addReg(This1Reg).addReg(This2Reg); 7608 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7609 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7610 MBB->addSuccessor(LoopMBB); 7611 MBB->addSuccessor(DoneMBB); 7612 7613 DoneMBB->addLiveIn(SystemZ::CC); 7614 7615 MI.eraseFromParent(); 7616 return DoneMBB; 7617 } 7618 7619 // Update TBEGIN instruction with final opcode and register clobbers. 7620 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7621 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7622 bool NoFloat) const { 7623 MachineFunction &MF = *MBB->getParent(); 7624 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7625 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7626 7627 // Update opcode. 7628 MI.setDesc(TII->get(Opcode)); 7629 7630 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7631 // Make sure to add the corresponding GRSM bits if they are missing. 7632 uint64_t Control = MI.getOperand(2).getImm(); 7633 static const unsigned GPRControlBit[16] = { 7634 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7635 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7636 }; 7637 Control |= GPRControlBit[15]; 7638 if (TFI->hasFP(MF)) 7639 Control |= GPRControlBit[11]; 7640 MI.getOperand(2).setImm(Control); 7641 7642 // Add GPR clobbers. 7643 for (int I = 0; I < 16; I++) { 7644 if ((Control & GPRControlBit[I]) == 0) { 7645 unsigned Reg = SystemZMC::GR64Regs[I]; 7646 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7647 } 7648 } 7649 7650 // Add FPR/VR clobbers. 7651 if (!NoFloat && (Control & 4) != 0) { 7652 if (Subtarget.hasVector()) { 7653 for (int I = 0; I < 32; I++) { 7654 unsigned Reg = SystemZMC::VR128Regs[I]; 7655 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7656 } 7657 } else { 7658 for (int I = 0; I < 16; I++) { 7659 unsigned Reg = SystemZMC::FP64Regs[I]; 7660 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7661 } 7662 } 7663 } 7664 7665 return MBB; 7666 } 7667 7668 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7669 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7670 MachineFunction &MF = *MBB->getParent(); 7671 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7672 const SystemZInstrInfo *TII = 7673 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7674 DebugLoc DL = MI.getDebugLoc(); 7675 7676 Register SrcReg = MI.getOperand(0).getReg(); 7677 7678 // Create new virtual register of the same class as source. 7679 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7680 Register DstReg = MRI->createVirtualRegister(RC); 7681 7682 // Replace pseudo with a normal load-and-test that models the def as 7683 // well. 7684 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7685 .addReg(SrcReg) 7686 .setMIFlags(MI.getFlags()); 7687 MI.eraseFromParent(); 7688 7689 return MBB; 7690 } 7691 7692 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7693 MachineInstr &MI, MachineBasicBlock *MBB) const { 7694 switch (MI.getOpcode()) { 7695 case SystemZ::Select32: 7696 case SystemZ::Select64: 7697 case SystemZ::SelectF32: 7698 case SystemZ::SelectF64: 7699 case SystemZ::SelectF128: 7700 case SystemZ::SelectVR32: 7701 case SystemZ::SelectVR64: 7702 case SystemZ::SelectVR128: 7703 return emitSelect(MI, MBB); 7704 7705 case SystemZ::CondStore8Mux: 7706 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7707 case SystemZ::CondStore8MuxInv: 7708 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7709 case SystemZ::CondStore16Mux: 7710 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7711 case SystemZ::CondStore16MuxInv: 7712 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7713 case SystemZ::CondStore32Mux: 7714 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7715 case SystemZ::CondStore32MuxInv: 7716 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7717 case SystemZ::CondStore8: 7718 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7719 case SystemZ::CondStore8Inv: 7720 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7721 case SystemZ::CondStore16: 7722 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7723 case SystemZ::CondStore16Inv: 7724 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7725 case SystemZ::CondStore32: 7726 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7727 case SystemZ::CondStore32Inv: 7728 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7729 case SystemZ::CondStore64: 7730 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7731 case SystemZ::CondStore64Inv: 7732 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7733 case SystemZ::CondStoreF32: 7734 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7735 case SystemZ::CondStoreF32Inv: 7736 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7737 case SystemZ::CondStoreF64: 7738 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7739 case SystemZ::CondStoreF64Inv: 7740 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7741 7742 case SystemZ::PAIR128: 7743 return emitPair128(MI, MBB); 7744 case SystemZ::AEXT128: 7745 return emitExt128(MI, MBB, false); 7746 case SystemZ::ZEXT128: 7747 return emitExt128(MI, MBB, true); 7748 7749 case SystemZ::ATOMIC_SWAPW: 7750 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7751 case SystemZ::ATOMIC_SWAP_32: 7752 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7753 case SystemZ::ATOMIC_SWAP_64: 7754 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7755 7756 case SystemZ::ATOMIC_LOADW_AR: 7757 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7758 case SystemZ::ATOMIC_LOADW_AFI: 7759 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7760 case SystemZ::ATOMIC_LOAD_AR: 7761 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7762 case SystemZ::ATOMIC_LOAD_AHI: 7763 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7764 case SystemZ::ATOMIC_LOAD_AFI: 7765 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7766 case SystemZ::ATOMIC_LOAD_AGR: 7767 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7768 case SystemZ::ATOMIC_LOAD_AGHI: 7769 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7770 case SystemZ::ATOMIC_LOAD_AGFI: 7771 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7772 7773 case SystemZ::ATOMIC_LOADW_SR: 7774 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7775 case SystemZ::ATOMIC_LOAD_SR: 7776 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7777 case SystemZ::ATOMIC_LOAD_SGR: 7778 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7779 7780 case SystemZ::ATOMIC_LOADW_NR: 7781 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7782 case SystemZ::ATOMIC_LOADW_NILH: 7783 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7784 case SystemZ::ATOMIC_LOAD_NR: 7785 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7786 case SystemZ::ATOMIC_LOAD_NILL: 7787 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7788 case SystemZ::ATOMIC_LOAD_NILH: 7789 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7790 case SystemZ::ATOMIC_LOAD_NILF: 7791 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7792 case SystemZ::ATOMIC_LOAD_NGR: 7793 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7794 case SystemZ::ATOMIC_LOAD_NILL64: 7795 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7796 case SystemZ::ATOMIC_LOAD_NILH64: 7797 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7798 case SystemZ::ATOMIC_LOAD_NIHL64: 7799 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7800 case SystemZ::ATOMIC_LOAD_NIHH64: 7801 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7802 case SystemZ::ATOMIC_LOAD_NILF64: 7803 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7804 case SystemZ::ATOMIC_LOAD_NIHF64: 7805 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7806 7807 case SystemZ::ATOMIC_LOADW_OR: 7808 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7809 case SystemZ::ATOMIC_LOADW_OILH: 7810 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7811 case SystemZ::ATOMIC_LOAD_OR: 7812 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7813 case SystemZ::ATOMIC_LOAD_OILL: 7814 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7815 case SystemZ::ATOMIC_LOAD_OILH: 7816 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7817 case SystemZ::ATOMIC_LOAD_OILF: 7818 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7819 case SystemZ::ATOMIC_LOAD_OGR: 7820 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7821 case SystemZ::ATOMIC_LOAD_OILL64: 7822 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7823 case SystemZ::ATOMIC_LOAD_OILH64: 7824 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7825 case SystemZ::ATOMIC_LOAD_OIHL64: 7826 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7827 case SystemZ::ATOMIC_LOAD_OIHH64: 7828 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7829 case SystemZ::ATOMIC_LOAD_OILF64: 7830 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7831 case SystemZ::ATOMIC_LOAD_OIHF64: 7832 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7833 7834 case SystemZ::ATOMIC_LOADW_XR: 7835 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7836 case SystemZ::ATOMIC_LOADW_XILF: 7837 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7838 case SystemZ::ATOMIC_LOAD_XR: 7839 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7840 case SystemZ::ATOMIC_LOAD_XILF: 7841 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7842 case SystemZ::ATOMIC_LOAD_XGR: 7843 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7844 case SystemZ::ATOMIC_LOAD_XILF64: 7845 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7846 case SystemZ::ATOMIC_LOAD_XIHF64: 7847 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7848 7849 case SystemZ::ATOMIC_LOADW_NRi: 7850 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7851 case SystemZ::ATOMIC_LOADW_NILHi: 7852 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7853 case SystemZ::ATOMIC_LOAD_NRi: 7854 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7855 case SystemZ::ATOMIC_LOAD_NILLi: 7856 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7857 case SystemZ::ATOMIC_LOAD_NILHi: 7858 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7859 case SystemZ::ATOMIC_LOAD_NILFi: 7860 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7861 case SystemZ::ATOMIC_LOAD_NGRi: 7862 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7863 case SystemZ::ATOMIC_LOAD_NILL64i: 7864 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7865 case SystemZ::ATOMIC_LOAD_NILH64i: 7866 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7867 case SystemZ::ATOMIC_LOAD_NIHL64i: 7868 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7869 case SystemZ::ATOMIC_LOAD_NIHH64i: 7870 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7871 case SystemZ::ATOMIC_LOAD_NILF64i: 7872 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7873 case SystemZ::ATOMIC_LOAD_NIHF64i: 7874 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7875 7876 case SystemZ::ATOMIC_LOADW_MIN: 7877 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7878 SystemZ::CCMASK_CMP_LE, 0); 7879 case SystemZ::ATOMIC_LOAD_MIN_32: 7880 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7881 SystemZ::CCMASK_CMP_LE, 32); 7882 case SystemZ::ATOMIC_LOAD_MIN_64: 7883 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7884 SystemZ::CCMASK_CMP_LE, 64); 7885 7886 case SystemZ::ATOMIC_LOADW_MAX: 7887 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7888 SystemZ::CCMASK_CMP_GE, 0); 7889 case SystemZ::ATOMIC_LOAD_MAX_32: 7890 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7891 SystemZ::CCMASK_CMP_GE, 32); 7892 case SystemZ::ATOMIC_LOAD_MAX_64: 7893 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7894 SystemZ::CCMASK_CMP_GE, 64); 7895 7896 case SystemZ::ATOMIC_LOADW_UMIN: 7897 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7898 SystemZ::CCMASK_CMP_LE, 0); 7899 case SystemZ::ATOMIC_LOAD_UMIN_32: 7900 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7901 SystemZ::CCMASK_CMP_LE, 32); 7902 case SystemZ::ATOMIC_LOAD_UMIN_64: 7903 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7904 SystemZ::CCMASK_CMP_LE, 64); 7905 7906 case SystemZ::ATOMIC_LOADW_UMAX: 7907 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7908 SystemZ::CCMASK_CMP_GE, 0); 7909 case SystemZ::ATOMIC_LOAD_UMAX_32: 7910 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7911 SystemZ::CCMASK_CMP_GE, 32); 7912 case SystemZ::ATOMIC_LOAD_UMAX_64: 7913 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7914 SystemZ::CCMASK_CMP_GE, 64); 7915 7916 case SystemZ::ATOMIC_CMP_SWAPW: 7917 return emitAtomicCmpSwapW(MI, MBB); 7918 case SystemZ::MVCSequence: 7919 case SystemZ::MVCLoop: 7920 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7921 case SystemZ::NCSequence: 7922 case SystemZ::NCLoop: 7923 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7924 case SystemZ::OCSequence: 7925 case SystemZ::OCLoop: 7926 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7927 case SystemZ::XCSequence: 7928 case SystemZ::XCLoop: 7929 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7930 case SystemZ::CLCSequence: 7931 case SystemZ::CLCLoop: 7932 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7933 case SystemZ::CLSTLoop: 7934 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7935 case SystemZ::MVSTLoop: 7936 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7937 case SystemZ::SRSTLoop: 7938 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7939 case SystemZ::TBEGIN: 7940 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7941 case SystemZ::TBEGIN_nofloat: 7942 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7943 case SystemZ::TBEGINC: 7944 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7945 case SystemZ::LTEBRCompare_VecPseudo: 7946 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7947 case SystemZ::LTDBRCompare_VecPseudo: 7948 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7949 case SystemZ::LTXBRCompare_VecPseudo: 7950 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7951 7952 case TargetOpcode::STACKMAP: 7953 case TargetOpcode::PATCHPOINT: 7954 return emitPatchPoint(MI, MBB); 7955 7956 default: 7957 llvm_unreachable("Unexpected instr type to insert"); 7958 } 7959 } 7960 7961 // This is only used by the isel schedulers, and is needed only to prevent 7962 // compiler from crashing when list-ilp is used. 7963 const TargetRegisterClass * 7964 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7965 if (VT == MVT::Untyped) 7966 return &SystemZ::ADDR128BitRegClass; 7967 return TargetLowering::getRepRegClassFor(VT); 7968 } 7969