1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       // Expand individual DIV and REMs into DIVREMs.
168       setOperationAction(ISD::SDIV, VT, Expand);
169       setOperationAction(ISD::UDIV, VT, Expand);
170       setOperationAction(ISD::SREM, VT, Expand);
171       setOperationAction(ISD::UREM, VT, Expand);
172       setOperationAction(ISD::SDIVREM, VT, Custom);
173       setOperationAction(ISD::UDIVREM, VT, Custom);
174 
175       // Support addition/subtraction with overflow.
176       setOperationAction(ISD::SADDO, VT, Custom);
177       setOperationAction(ISD::SSUBO, VT, Custom);
178 
179       // Support addition/subtraction with carry.
180       setOperationAction(ISD::UADDO, VT, Custom);
181       setOperationAction(ISD::USUBO, VT, Custom);
182 
183       // Support carry in as value rather than glue.
184       setOperationAction(ISD::ADDCARRY, VT, Custom);
185       setOperationAction(ISD::SUBCARRY, VT, Custom);
186 
187       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
188       // stores, putting a serialization instruction after the stores.
189       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
190       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
191 
192       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
193       // available, or if the operand is constant.
194       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
195 
196       // Use POPCNT on z196 and above.
197       if (Subtarget.hasPopulationCount())
198         setOperationAction(ISD::CTPOP, VT, Custom);
199       else
200         setOperationAction(ISD::CTPOP, VT, Expand);
201 
202       // No special instructions for these.
203       setOperationAction(ISD::CTTZ,            VT, Expand);
204       setOperationAction(ISD::ROTR,            VT, Expand);
205 
206       // Use *MUL_LOHI where possible instead of MULH*.
207       setOperationAction(ISD::MULHS, VT, Expand);
208       setOperationAction(ISD::MULHU, VT, Expand);
209       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
210       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
211 
212       // Only z196 and above have native support for conversions to unsigned.
213       // On z10, promoting to i64 doesn't generate an inexact condition for
214       // values that are outside the i32 range but in the i64 range, so use
215       // the default expansion.
216       if (!Subtarget.hasFPExtension())
217         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
218 
219       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
220       // default to Expand, so need to be modified to Legal where appropriate.
221       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
222       if (Subtarget.hasFPExtension())
223         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
224 
225       // And similarly for STRICT_[SU]INT_TO_FP.
226       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
227       if (Subtarget.hasFPExtension())
228         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
229     }
230   }
231 
232   // Type legalization will convert 8- and 16-bit atomic operations into
233   // forms that operate on i32s (but still keeping the original memory VT).
234   // Lower them into full i32 operations.
235   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
246 
247   // Even though i128 is not a legal type, we still need to custom lower
248   // the atomic operations in order to exploit SystemZ instructions.
249   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
250   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
251 
252   // We can use the CC result of compare-and-swap to implement
253   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
255   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
257 
258   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
259 
260   // Traps are legal, as we will convert them to "j .+2".
261   setOperationAction(ISD::TRAP, MVT::Other, Legal);
262 
263   // z10 has instructions for signed but not unsigned FP conversion.
264   // Handle unsigned 32-bit types as signed 64-bit types.
265   if (!Subtarget.hasFPExtension()) {
266     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
268     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
270   }
271 
272   // We have native support for a 64-bit CTLZ, via FLOGR.
273   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
274   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
275   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
276 
277   // On z15 we have native support for a 64-bit CTPOP.
278   if (Subtarget.hasMiscellaneousExtensions3()) {
279     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
280     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
281   }
282 
283   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
284   setOperationAction(ISD::OR, MVT::i64, Custom);
285 
286   // FIXME: Can we support these natively?
287   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
288   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
289   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
290 
291   // We have native instructions for i8, i16 and i32 extensions, but not i1.
292   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
293   for (MVT VT : MVT::integer_valuetypes()) {
294     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
295     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
296     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
297   }
298 
299   // Handle the various types of symbolic address.
300   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
301   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
302   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
303   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
304   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
305 
306   // We need to handle dynamic allocations specially because of the
307   // 160-byte area at the bottom of the stack.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
309   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
310 
311   // Use custom expanders so that we can force the function to use
312   // a frame pointer.
313   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
314   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
315 
316   // Handle prefetches with PFD or PFDRL.
317   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
318 
319   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
320     // Assume by default that all vector operations need to be expanded.
321     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
322       if (getOperationAction(Opcode, VT) == Legal)
323         setOperationAction(Opcode, VT, Expand);
324 
325     // Likewise all truncating stores and extending loads.
326     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
327       setTruncStoreAction(VT, InnerVT, Expand);
328       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
329       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
330       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
331     }
332 
333     if (isTypeLegal(VT)) {
334       // These operations are legal for anything that can be stored in a
335       // vector register, even if there is no native support for the format
336       // as such.  In particular, we can do these for v4f32 even though there
337       // are no specific instructions for that format.
338       setOperationAction(ISD::LOAD, VT, Legal);
339       setOperationAction(ISD::STORE, VT, Legal);
340       setOperationAction(ISD::VSELECT, VT, Legal);
341       setOperationAction(ISD::BITCAST, VT, Legal);
342       setOperationAction(ISD::UNDEF, VT, Legal);
343 
344       // Likewise, except that we need to replace the nodes with something
345       // more specific.
346       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
348     }
349   }
350 
351   // Handle integer vector types.
352   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
353     if (isTypeLegal(VT)) {
354       // These operations have direct equivalents.
355       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
356       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
357       setOperationAction(ISD::ADD, VT, Legal);
358       setOperationAction(ISD::SUB, VT, Legal);
359       if (VT != MVT::v2i64)
360         setOperationAction(ISD::MUL, VT, Legal);
361       setOperationAction(ISD::AND, VT, Legal);
362       setOperationAction(ISD::OR, VT, Legal);
363       setOperationAction(ISD::XOR, VT, Legal);
364       if (Subtarget.hasVectorEnhancements1())
365         setOperationAction(ISD::CTPOP, VT, Legal);
366       else
367         setOperationAction(ISD::CTPOP, VT, Custom);
368       setOperationAction(ISD::CTTZ, VT, Legal);
369       setOperationAction(ISD::CTLZ, VT, Legal);
370 
371       // Convert a GPR scalar to a vector by inserting it into element 0.
372       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
373 
374       // Use a series of unpacks for extensions.
375       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
376       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
377 
378       // Detect shifts by a scalar amount and convert them into
379       // V*_BY_SCALAR.
380       setOperationAction(ISD::SHL, VT, Custom);
381       setOperationAction(ISD::SRA, VT, Custom);
382       setOperationAction(ISD::SRL, VT, Custom);
383 
384       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
385       // converted into ROTL.
386       setOperationAction(ISD::ROTL, VT, Expand);
387       setOperationAction(ISD::ROTR, VT, Expand);
388 
389       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
390       // and inverting the result as necessary.
391       setOperationAction(ISD::SETCC, VT, Custom);
392       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
393       if (Subtarget.hasVectorEnhancements1())
394         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
395     }
396   }
397 
398   if (Subtarget.hasVector()) {
399     // There should be no need to check for float types other than v2f64
400     // since <2 x f32> isn't a legal type.
401     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
404     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
407     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
408     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
409 
410     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
418   }
419 
420   if (Subtarget.hasVectorEnhancements2()) {
421     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
424     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
425     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
427     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
429 
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
438   }
439 
440   // Handle floating-point types.
441   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
442        I <= MVT::LAST_FP_VALUETYPE;
443        ++I) {
444     MVT VT = MVT::SimpleValueType(I);
445     if (isTypeLegal(VT)) {
446       // We can use FI for FRINT.
447       setOperationAction(ISD::FRINT, VT, Legal);
448 
449       // We can use the extended form of FI for other rounding operations.
450       if (Subtarget.hasFPExtension()) {
451         setOperationAction(ISD::FNEARBYINT, VT, Legal);
452         setOperationAction(ISD::FFLOOR, VT, Legal);
453         setOperationAction(ISD::FCEIL, VT, Legal);
454         setOperationAction(ISD::FTRUNC, VT, Legal);
455         setOperationAction(ISD::FROUND, VT, Legal);
456       }
457 
458       // No special instructions for these.
459       setOperationAction(ISD::FSIN, VT, Expand);
460       setOperationAction(ISD::FCOS, VT, Expand);
461       setOperationAction(ISD::FSINCOS, VT, Expand);
462       setOperationAction(ISD::FREM, VT, Expand);
463       setOperationAction(ISD::FPOW, VT, Expand);
464 
465       // Handle constrained floating-point operations.
466       setOperationAction(ISD::STRICT_FADD, VT, Legal);
467       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
468       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
469       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
470       setOperationAction(ISD::STRICT_FMA, VT, Legal);
471       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
472       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
473       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
474       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
475       if (Subtarget.hasFPExtension()) {
476         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
477         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
478         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
479         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
480         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
481       }
482     }
483   }
484 
485   // Handle floating-point vector types.
486   if (Subtarget.hasVector()) {
487     // Scalar-to-vector conversion is just a subreg.
488     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
489     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
490 
491     // Some insertions and extractions can be done directly but others
492     // need to go via integers.
493     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
495     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
496     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
497 
498     // These operations have direct equivalents.
499     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
500     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
501     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
502     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
503     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
504     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
505     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
506     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
512     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
513 
514     // Handle constrained floating-point operations.
515     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
527   }
528 
529   // The vector enhancements facility 1 has instructions for these.
530   if (Subtarget.hasVectorEnhancements1()) {
531     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
532     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
533     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
536     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
537     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
538     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
540     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
541     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
542     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
543     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
544     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
545 
546     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
548     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
549     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
550 
551     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
555 
556     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
558     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
559     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
560 
561     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
563     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
564     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
565 
566     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
568     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
569     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
570 
571     // Handle constrained floating-point operations.
572     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
584     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
585                      MVT::v4f32, MVT::v2f64 }) {
586       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
588       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
589       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
590     }
591   }
592 
593   // We only have fused f128 multiply-addition on vector registers.
594   if (!Subtarget.hasVectorEnhancements1()) {
595     setOperationAction(ISD::FMA, MVT::f128, Expand);
596     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
597   }
598 
599   // We don't have a copysign instruction on vector registers.
600   if (Subtarget.hasVectorEnhancements1())
601     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
602 
603   // Needed so that we don't try to implement f128 constant loads using
604   // a load-and-extend of a f80 constant (in cases where the constant
605   // would fit in an f80).
606   for (MVT VT : MVT::fp_valuetypes())
607     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
608 
609   // We don't have extending load instruction on vector registers.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
612     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
613   }
614 
615   // Floating-point truncation and stores need to be done separately.
616   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
619 
620   // We have 64-bit FPR<->GPR moves, but need special handling for
621   // 32-bit forms.
622   if (!Subtarget.hasVector()) {
623     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
624     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
625   }
626 
627   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
628   // structure, but VAEND is a no-op.
629   setOperationAction(ISD::VASTART, MVT::Other, Custom);
630   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
631   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
632 
633   // Codes for which we want to perform some z-specific combinations.
634   setTargetDAGCombine(ISD::ZERO_EXTEND);
635   setTargetDAGCombine(ISD::SIGN_EXTEND);
636   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
637   setTargetDAGCombine(ISD::LOAD);
638   setTargetDAGCombine(ISD::STORE);
639   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
641   setTargetDAGCombine(ISD::FP_ROUND);
642   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
643   setTargetDAGCombine(ISD::FP_EXTEND);
644   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
645   setTargetDAGCombine(ISD::BSWAP);
646   setTargetDAGCombine(ISD::SDIV);
647   setTargetDAGCombine(ISD::UDIV);
648   setTargetDAGCombine(ISD::SREM);
649   setTargetDAGCombine(ISD::UREM);
650 
651   // Handle intrinsics.
652   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
653   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
654 
655   // We want to use MVC in preference to even a single load/store pair.
656   MaxStoresPerMemcpy = 0;
657   MaxStoresPerMemcpyOptSize = 0;
658 
659   // The main memset sequence is a byte store followed by an MVC.
660   // Two STC or MV..I stores win over that, but the kind of fused stores
661   // generated by target-independent code don't when the byte value is
662   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
663   // than "STC;MVC".  Handle the choice in target-specific code instead.
664   MaxStoresPerMemset = 0;
665   MaxStoresPerMemsetOptSize = 0;
666 
667   // Default to having -disable-strictnode-mutation on
668   IsStrictFPEnabled = true;
669 }
670 
671 bool SystemZTargetLowering::useSoftFloat() const {
672   return Subtarget.hasSoftFloat();
673 }
674 
675 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
676                                               LLVMContext &, EVT VT) const {
677   if (!VT.isVector())
678     return MVT::i32;
679   return VT.changeVectorElementTypeToInteger();
680 }
681 
682 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
683     const MachineFunction &MF, EVT VT) const {
684   VT = VT.getScalarType();
685 
686   if (!VT.isSimple())
687     return false;
688 
689   switch (VT.getSimpleVT().SimpleTy) {
690   case MVT::f32:
691   case MVT::f64:
692     return true;
693   case MVT::f128:
694     return Subtarget.hasVectorEnhancements1();
695   default:
696     break;
697   }
698 
699   return false;
700 }
701 
702 // Return true if the constant can be generated with a vector instruction,
703 // such as VGM, VGMB or VREPI.
704 bool SystemZVectorConstantInfo::isVectorConstantLegal(
705     const SystemZSubtarget &Subtarget) {
706   const SystemZInstrInfo *TII =
707       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
708   if (!Subtarget.hasVector() ||
709       (isFP128 && !Subtarget.hasVectorEnhancements1()))
710     return false;
711 
712   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
713   // preferred way of creating all-zero and all-one vectors so give it
714   // priority over other methods below.
715   unsigned Mask = 0;
716   unsigned I = 0;
717   for (; I < SystemZ::VectorBytes; ++I) {
718     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
719     if (Byte == 0xff)
720       Mask |= 1ULL << I;
721     else if (Byte != 0)
722       break;
723   }
724   if (I == SystemZ::VectorBytes) {
725     Opcode = SystemZISD::BYTE_MASK;
726     OpVals.push_back(Mask);
727     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
728     return true;
729   }
730 
731   if (SplatBitSize > 64)
732     return false;
733 
734   auto tryValue = [&](uint64_t Value) -> bool {
735     // Try VECTOR REPLICATE IMMEDIATE
736     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
737     if (isInt<16>(SignedValue)) {
738       OpVals.push_back(((unsigned) SignedValue));
739       Opcode = SystemZISD::REPLICATE;
740       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
741                                SystemZ::VectorBits / SplatBitSize);
742       return true;
743     }
744     // Try VECTOR GENERATE MASK
745     unsigned Start, End;
746     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
747       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
748       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
749       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
750       OpVals.push_back(Start - (64 - SplatBitSize));
751       OpVals.push_back(End - (64 - SplatBitSize));
752       Opcode = SystemZISD::ROTATE_MASK;
753       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
754                                SystemZ::VectorBits / SplatBitSize);
755       return true;
756     }
757     return false;
758   };
759 
760   // First try assuming that any undefined bits above the highest set bit
761   // and below the lowest set bit are 1s.  This increases the likelihood of
762   // being able to use a sign-extended element value in VECTOR REPLICATE
763   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
764   uint64_t SplatBitsZ = SplatBits.getZExtValue();
765   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
766   uint64_t Lower =
767       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
768   uint64_t Upper =
769       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
770   if (tryValue(SplatBitsZ | Upper | Lower))
771     return true;
772 
773   // Now try assuming that any undefined bits between the first and
774   // last defined set bits are set.  This increases the chances of
775   // using a non-wraparound mask.
776   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
777   return tryValue(SplatBitsZ | Middle);
778 }
779 
780 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
781   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
782   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
783 
784   // Find the smallest splat.
785   SplatBits = FPImm.bitcastToAPInt();
786   unsigned Width = SplatBits.getBitWidth();
787   while (Width > 8) {
788     unsigned HalfSize = Width / 2;
789     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
790     APInt LowValue = SplatBits.trunc(HalfSize);
791 
792     // If the two halves do not match, stop here.
793     if (HighValue != LowValue || 8 > HalfSize)
794       break;
795 
796     SplatBits = HighValue;
797     Width = HalfSize;
798   }
799   SplatUndef = 0;
800   SplatBitSize = Width;
801 }
802 
803 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
804   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
805   bool HasAnyUndefs;
806 
807   // Get IntBits by finding the 128 bit splat.
808   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
809                        true);
810 
811   // Get SplatBits by finding the 8 bit or greater splat.
812   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
813                        true);
814 }
815 
816 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
817                                          bool ForCodeSize) const {
818   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
819   if (Imm.isZero() || Imm.isNegZero())
820     return true;
821 
822   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
823 }
824 
825 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
826   // We can use CGFI or CLGFI.
827   return isInt<32>(Imm) || isUInt<32>(Imm);
828 }
829 
830 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
831   // We can use ALGFI or SLGFI.
832   return isUInt<32>(Imm) || isUInt<32>(-Imm);
833 }
834 
835 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
836     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
837   // Unaligned accesses should never be slower than the expanded version.
838   // We check specifically for aligned accesses in the few cases where
839   // they are required.
840   if (Fast)
841     *Fast = true;
842   return true;
843 }
844 
845 // Information about the addressing mode for a memory access.
846 struct AddressingMode {
847   // True if a long displacement is supported.
848   bool LongDisplacement;
849 
850   // True if use of index register is supported.
851   bool IndexReg;
852 
853   AddressingMode(bool LongDispl, bool IdxReg) :
854     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
855 };
856 
857 // Return the desired addressing mode for a Load which has only one use (in
858 // the same block) which is a Store.
859 static AddressingMode getLoadStoreAddrMode(bool HasVector,
860                                           Type *Ty) {
861   // With vector support a Load->Store combination may be combined to either
862   // an MVC or vector operations and it seems to work best to allow the
863   // vector addressing mode.
864   if (HasVector)
865     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
866 
867   // Otherwise only the MVC case is special.
868   bool MVC = Ty->isIntegerTy(8);
869   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
870 }
871 
872 // Return the addressing mode which seems most desirable given an LLVM
873 // Instruction pointer.
874 static AddressingMode
875 supportedAddressingMode(Instruction *I, bool HasVector) {
876   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
877     switch (II->getIntrinsicID()) {
878     default: break;
879     case Intrinsic::memset:
880     case Intrinsic::memmove:
881     case Intrinsic::memcpy:
882       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
883     }
884   }
885 
886   if (isa<LoadInst>(I) && I->hasOneUse()) {
887     auto *SingleUser = cast<Instruction>(*I->user_begin());
888     if (SingleUser->getParent() == I->getParent()) {
889       if (isa<ICmpInst>(SingleUser)) {
890         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
891           if (C->getBitWidth() <= 64 &&
892               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
893             // Comparison of memory with 16 bit signed / unsigned immediate
894             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
895       } else if (isa<StoreInst>(SingleUser))
896         // Load->Store
897         return getLoadStoreAddrMode(HasVector, I->getType());
898     }
899   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
900     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
901       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
902         // Load->Store
903         return getLoadStoreAddrMode(HasVector, LoadI->getType());
904   }
905 
906   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
907 
908     // * Use LDE instead of LE/LEY for z13 to avoid partial register
909     //   dependencies (LDE only supports small offsets).
910     // * Utilize the vector registers to hold floating point
911     //   values (vector load / store instructions only support small
912     //   offsets).
913 
914     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
915                          I->getOperand(0)->getType());
916     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
917     bool IsVectorAccess = MemAccessTy->isVectorTy();
918 
919     // A store of an extracted vector element will be combined into a VSTE type
920     // instruction.
921     if (!IsVectorAccess && isa<StoreInst>(I)) {
922       Value *DataOp = I->getOperand(0);
923       if (isa<ExtractElementInst>(DataOp))
924         IsVectorAccess = true;
925     }
926 
927     // A load which gets inserted into a vector element will be combined into a
928     // VLE type instruction.
929     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
930       User *LoadUser = *I->user_begin();
931       if (isa<InsertElementInst>(LoadUser))
932         IsVectorAccess = true;
933     }
934 
935     if (IsFPAccess || IsVectorAccess)
936       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
937   }
938 
939   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
940 }
941 
942 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
943        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
944   // Punt on globals for now, although they can be used in limited
945   // RELATIVE LONG cases.
946   if (AM.BaseGV)
947     return false;
948 
949   // Require a 20-bit signed offset.
950   if (!isInt<20>(AM.BaseOffs))
951     return false;
952 
953   AddressingMode SupportedAM(true, true);
954   if (I != nullptr)
955     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
956 
957   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
958     return false;
959 
960   if (!SupportedAM.IndexReg)
961     // No indexing allowed.
962     return AM.Scale == 0;
963   else
964     // Indexing is OK but no scale factor can be applied.
965     return AM.Scale == 0 || AM.Scale == 1;
966 }
967 
968 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
969   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
970     return false;
971   unsigned FromBits = FromType->getPrimitiveSizeInBits();
972   unsigned ToBits = ToType->getPrimitiveSizeInBits();
973   return FromBits > ToBits;
974 }
975 
976 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
977   if (!FromVT.isInteger() || !ToVT.isInteger())
978     return false;
979   unsigned FromBits = FromVT.getSizeInBits();
980   unsigned ToBits = ToVT.getSizeInBits();
981   return FromBits > ToBits;
982 }
983 
984 //===----------------------------------------------------------------------===//
985 // Inline asm support
986 //===----------------------------------------------------------------------===//
987 
988 TargetLowering::ConstraintType
989 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
990   if (Constraint.size() == 1) {
991     switch (Constraint[0]) {
992     case 'a': // Address register
993     case 'd': // Data register (equivalent to 'r')
994     case 'f': // Floating-point register
995     case 'h': // High-part register
996     case 'r': // General-purpose register
997     case 'v': // Vector register
998       return C_RegisterClass;
999 
1000     case 'Q': // Memory with base and unsigned 12-bit displacement
1001     case 'R': // Likewise, plus an index
1002     case 'S': // Memory with base and signed 20-bit displacement
1003     case 'T': // Likewise, plus an index
1004     case 'm': // Equivalent to 'T'.
1005       return C_Memory;
1006 
1007     case 'I': // Unsigned 8-bit constant
1008     case 'J': // Unsigned 12-bit constant
1009     case 'K': // Signed 16-bit constant
1010     case 'L': // Signed 20-bit displacement (on all targets we support)
1011     case 'M': // 0x7fffffff
1012       return C_Immediate;
1013 
1014     default:
1015       break;
1016     }
1017   }
1018   return TargetLowering::getConstraintType(Constraint);
1019 }
1020 
1021 TargetLowering::ConstraintWeight SystemZTargetLowering::
1022 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1023                                const char *constraint) const {
1024   ConstraintWeight weight = CW_Invalid;
1025   Value *CallOperandVal = info.CallOperandVal;
1026   // If we don't have a value, we can't do a match,
1027   // but allow it at the lowest weight.
1028   if (!CallOperandVal)
1029     return CW_Default;
1030   Type *type = CallOperandVal->getType();
1031   // Look at the constraint type.
1032   switch (*constraint) {
1033   default:
1034     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1035     break;
1036 
1037   case 'a': // Address register
1038   case 'd': // Data register (equivalent to 'r')
1039   case 'h': // High-part register
1040   case 'r': // General-purpose register
1041     if (CallOperandVal->getType()->isIntegerTy())
1042       weight = CW_Register;
1043     break;
1044 
1045   case 'f': // Floating-point register
1046     if (type->isFloatingPointTy())
1047       weight = CW_Register;
1048     break;
1049 
1050   case 'v': // Vector register
1051     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1052         Subtarget.hasVector())
1053       weight = CW_Register;
1054     break;
1055 
1056   case 'I': // Unsigned 8-bit constant
1057     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1058       if (isUInt<8>(C->getZExtValue()))
1059         weight = CW_Constant;
1060     break;
1061 
1062   case 'J': // Unsigned 12-bit constant
1063     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1064       if (isUInt<12>(C->getZExtValue()))
1065         weight = CW_Constant;
1066     break;
1067 
1068   case 'K': // Signed 16-bit constant
1069     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1070       if (isInt<16>(C->getSExtValue()))
1071         weight = CW_Constant;
1072     break;
1073 
1074   case 'L': // Signed 20-bit displacement (on all targets we support)
1075     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1076       if (isInt<20>(C->getSExtValue()))
1077         weight = CW_Constant;
1078     break;
1079 
1080   case 'M': // 0x7fffffff
1081     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1082       if (C->getZExtValue() == 0x7fffffff)
1083         weight = CW_Constant;
1084     break;
1085   }
1086   return weight;
1087 }
1088 
1089 // Parse a "{tNNN}" register constraint for which the register type "t"
1090 // has already been verified.  MC is the class associated with "t" and
1091 // Map maps 0-based register numbers to LLVM register numbers.
1092 static std::pair<unsigned, const TargetRegisterClass *>
1093 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1094                     const unsigned *Map, unsigned Size) {
1095   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1096   if (isdigit(Constraint[2])) {
1097     unsigned Index;
1098     bool Failed =
1099         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1100     if (!Failed && Index < Size && Map[Index])
1101       return std::make_pair(Map[Index], RC);
1102   }
1103   return std::make_pair(0U, nullptr);
1104 }
1105 
1106 std::pair<unsigned, const TargetRegisterClass *>
1107 SystemZTargetLowering::getRegForInlineAsmConstraint(
1108     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1109   if (Constraint.size() == 1) {
1110     // GCC Constraint Letters
1111     switch (Constraint[0]) {
1112     default: break;
1113     case 'd': // Data register (equivalent to 'r')
1114     case 'r': // General-purpose register
1115       if (VT == MVT::i64)
1116         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1117       else if (VT == MVT::i128)
1118         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1119       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1120 
1121     case 'a': // Address register
1122       if (VT == MVT::i64)
1123         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1124       else if (VT == MVT::i128)
1125         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1126       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1127 
1128     case 'h': // High-part register (an LLVM extension)
1129       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1130 
1131     case 'f': // Floating-point register
1132       if (!useSoftFloat()) {
1133         if (VT == MVT::f64)
1134           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1135         else if (VT == MVT::f128)
1136           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1137         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1138       }
1139       break;
1140     case 'v': // Vector register
1141       if (Subtarget.hasVector()) {
1142         if (VT == MVT::f32)
1143           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1144         if (VT == MVT::f64)
1145           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1146         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1147       }
1148       break;
1149     }
1150   }
1151   if (Constraint.size() > 0 && Constraint[0] == '{') {
1152     // We need to override the default register parsing for GPRs and FPRs
1153     // because the interpretation depends on VT.  The internal names of
1154     // the registers are also different from the external names
1155     // (F0D and F0S instead of F0, etc.).
1156     if (Constraint[1] == 'r') {
1157       if (VT == MVT::i32)
1158         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1159                                    SystemZMC::GR32Regs, 16);
1160       if (VT == MVT::i128)
1161         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1162                                    SystemZMC::GR128Regs, 16);
1163       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1164                                  SystemZMC::GR64Regs, 16);
1165     }
1166     if (Constraint[1] == 'f') {
1167       if (useSoftFloat())
1168         return std::make_pair(
1169             0u, static_cast<const TargetRegisterClass *>(nullptr));
1170       if (VT == MVT::f32)
1171         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1172                                    SystemZMC::FP32Regs, 16);
1173       if (VT == MVT::f128)
1174         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1175                                    SystemZMC::FP128Regs, 16);
1176       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1177                                  SystemZMC::FP64Regs, 16);
1178     }
1179     if (Constraint[1] == 'v') {
1180       if (!Subtarget.hasVector())
1181         return std::make_pair(
1182             0u, static_cast<const TargetRegisterClass *>(nullptr));
1183       if (VT == MVT::f32)
1184         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1185                                    SystemZMC::VR32Regs, 32);
1186       if (VT == MVT::f64)
1187         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1188                                    SystemZMC::VR64Regs, 32);
1189       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1190                                  SystemZMC::VR128Regs, 32);
1191     }
1192   }
1193   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1194 }
1195 
1196 void SystemZTargetLowering::
1197 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1198                              std::vector<SDValue> &Ops,
1199                              SelectionDAG &DAG) const {
1200   // Only support length 1 constraints for now.
1201   if (Constraint.length() == 1) {
1202     switch (Constraint[0]) {
1203     case 'I': // Unsigned 8-bit constant
1204       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1205         if (isUInt<8>(C->getZExtValue()))
1206           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1207                                               Op.getValueType()));
1208       return;
1209 
1210     case 'J': // Unsigned 12-bit constant
1211       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1212         if (isUInt<12>(C->getZExtValue()))
1213           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1214                                               Op.getValueType()));
1215       return;
1216 
1217     case 'K': // Signed 16-bit constant
1218       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1219         if (isInt<16>(C->getSExtValue()))
1220           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1221                                               Op.getValueType()));
1222       return;
1223 
1224     case 'L': // Signed 20-bit displacement (on all targets we support)
1225       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1226         if (isInt<20>(C->getSExtValue()))
1227           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1228                                               Op.getValueType()));
1229       return;
1230 
1231     case 'M': // 0x7fffffff
1232       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1233         if (C->getZExtValue() == 0x7fffffff)
1234           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1235                                               Op.getValueType()));
1236       return;
1237     }
1238   }
1239   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1240 }
1241 
1242 //===----------------------------------------------------------------------===//
1243 // Calling conventions
1244 //===----------------------------------------------------------------------===//
1245 
1246 #include "SystemZGenCallingConv.inc"
1247 
1248 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1249   CallingConv::ID) const {
1250   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1251                                            SystemZ::R14D, 0 };
1252   return ScratchRegs;
1253 }
1254 
1255 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1256                                                      Type *ToType) const {
1257   return isTruncateFree(FromType, ToType);
1258 }
1259 
1260 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1261   return CI->isTailCall();
1262 }
1263 
1264 // We do not yet support 128-bit single-element vector types.  If the user
1265 // attempts to use such types as function argument or return type, prefer
1266 // to error out instead of emitting code violating the ABI.
1267 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1268   if (ArgVT.isVector() && !VT.isVector())
1269     report_fatal_error("Unsupported vector argument or return type");
1270 }
1271 
1272 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1273   for (unsigned i = 0; i < Ins.size(); ++i)
1274     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1275 }
1276 
1277 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1278   for (unsigned i = 0; i < Outs.size(); ++i)
1279     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1280 }
1281 
1282 // Value is a value that has been passed to us in the location described by VA
1283 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1284 // any loads onto Chain.
1285 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1286                                    CCValAssign &VA, SDValue Chain,
1287                                    SDValue Value) {
1288   // If the argument has been promoted from a smaller type, insert an
1289   // assertion to capture this.
1290   if (VA.getLocInfo() == CCValAssign::SExt)
1291     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1292                         DAG.getValueType(VA.getValVT()));
1293   else if (VA.getLocInfo() == CCValAssign::ZExt)
1294     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1295                         DAG.getValueType(VA.getValVT()));
1296 
1297   if (VA.isExtInLoc())
1298     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1299   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1300     // If this is a short vector argument loaded from the stack,
1301     // extend from i64 to full vector size and then bitcast.
1302     assert(VA.getLocVT() == MVT::i64);
1303     assert(VA.getValVT().isVector());
1304     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1305     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1306   } else
1307     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1308   return Value;
1309 }
1310 
1311 // Value is a value of type VA.getValVT() that we need to copy into
1312 // the location described by VA.  Return a copy of Value converted to
1313 // VA.getValVT().  The caller is responsible for handling indirect values.
1314 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1315                                    CCValAssign &VA, SDValue Value) {
1316   switch (VA.getLocInfo()) {
1317   case CCValAssign::SExt:
1318     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1319   case CCValAssign::ZExt:
1320     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1321   case CCValAssign::AExt:
1322     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1323   case CCValAssign::BCvt:
1324     // If this is a short vector argument to be stored to the stack,
1325     // bitcast to v2i64 and then extract first element.
1326     assert(VA.getLocVT() == MVT::i64);
1327     assert(VA.getValVT().isVector());
1328     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1329     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1330                        DAG.getConstant(0, DL, MVT::i32));
1331   case CCValAssign::Full:
1332     return Value;
1333   default:
1334     llvm_unreachable("Unhandled getLocInfo()");
1335   }
1336 }
1337 
1338 SDValue SystemZTargetLowering::LowerFormalArguments(
1339     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1340     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1341     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1342   MachineFunction &MF = DAG.getMachineFunction();
1343   MachineFrameInfo &MFI = MF.getFrameInfo();
1344   MachineRegisterInfo &MRI = MF.getRegInfo();
1345   SystemZMachineFunctionInfo *FuncInfo =
1346       MF.getInfo<SystemZMachineFunctionInfo>();
1347   auto *TFL =
1348       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1349   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1350 
1351   // Detect unsupported vector argument types.
1352   if (Subtarget.hasVector())
1353     VerifyVectorTypes(Ins);
1354 
1355   // Assign locations to all of the incoming arguments.
1356   SmallVector<CCValAssign, 16> ArgLocs;
1357   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1358   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1359 
1360   unsigned NumFixedGPRs = 0;
1361   unsigned NumFixedFPRs = 0;
1362   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1363     SDValue ArgValue;
1364     CCValAssign &VA = ArgLocs[I];
1365     EVT LocVT = VA.getLocVT();
1366     if (VA.isRegLoc()) {
1367       // Arguments passed in registers
1368       const TargetRegisterClass *RC;
1369       switch (LocVT.getSimpleVT().SimpleTy) {
1370       default:
1371         // Integers smaller than i64 should be promoted to i64.
1372         llvm_unreachable("Unexpected argument type");
1373       case MVT::i32:
1374         NumFixedGPRs += 1;
1375         RC = &SystemZ::GR32BitRegClass;
1376         break;
1377       case MVT::i64:
1378         NumFixedGPRs += 1;
1379         RC = &SystemZ::GR64BitRegClass;
1380         break;
1381       case MVT::f32:
1382         NumFixedFPRs += 1;
1383         RC = &SystemZ::FP32BitRegClass;
1384         break;
1385       case MVT::f64:
1386         NumFixedFPRs += 1;
1387         RC = &SystemZ::FP64BitRegClass;
1388         break;
1389       case MVT::v16i8:
1390       case MVT::v8i16:
1391       case MVT::v4i32:
1392       case MVT::v2i64:
1393       case MVT::v4f32:
1394       case MVT::v2f64:
1395         RC = &SystemZ::VR128BitRegClass;
1396         break;
1397       }
1398 
1399       Register VReg = MRI.createVirtualRegister(RC);
1400       MRI.addLiveIn(VA.getLocReg(), VReg);
1401       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1402     } else {
1403       assert(VA.isMemLoc() && "Argument not register or memory");
1404 
1405       // Create the frame index object for this incoming parameter.
1406       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1407                                      VA.getLocMemOffset(), true);
1408 
1409       // Create the SelectionDAG nodes corresponding to a load
1410       // from this parameter.  Unpromoted ints and floats are
1411       // passed as right-justified 8-byte values.
1412       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1413       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1414         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1415                           DAG.getIntPtrConstant(4, DL));
1416       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1417                              MachinePointerInfo::getFixedStack(MF, FI));
1418     }
1419 
1420     // Convert the value of the argument register into the value that's
1421     // being passed.
1422     if (VA.getLocInfo() == CCValAssign::Indirect) {
1423       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1424                                    MachinePointerInfo()));
1425       // If the original argument was split (e.g. i128), we need
1426       // to load all parts of it here (using the same address).
1427       unsigned ArgIndex = Ins[I].OrigArgIndex;
1428       assert (Ins[I].PartOffset == 0);
1429       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1430         CCValAssign &PartVA = ArgLocs[I + 1];
1431         unsigned PartOffset = Ins[I + 1].PartOffset;
1432         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1433                                       DAG.getIntPtrConstant(PartOffset, DL));
1434         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1435                                      MachinePointerInfo()));
1436         ++I;
1437       }
1438     } else
1439       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1440   }
1441 
1442   if (IsVarArg) {
1443     // Save the number of non-varargs registers for later use by va_start, etc.
1444     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1445     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1446 
1447     // Likewise the address (in the form of a frame index) of where the
1448     // first stack vararg would be.  The 1-byte size here is arbitrary.
1449     int64_t StackSize = CCInfo.getNextStackOffset();
1450     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1451 
1452     // ...and a similar frame index for the caller-allocated save area
1453     // that will be used to store the incoming registers.
1454     int64_t RegSaveOffset = -SystemZMC::CallFrameSize;
1455     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1456     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1457 
1458     // Store the FPR varargs in the reserved frame slots.  (We store the
1459     // GPRs as part of the prologue.)
1460     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1461       SDValue MemOps[SystemZ::NumArgFPRs];
1462       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1463         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1464         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1465         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1466         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1467                                      &SystemZ::FP64BitRegClass);
1468         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1469         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1470                                  MachinePointerInfo::getFixedStack(MF, FI));
1471       }
1472       // Join the stores, which are independent of one another.
1473       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1474                           makeArrayRef(&MemOps[NumFixedFPRs],
1475                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1476     }
1477   }
1478 
1479   return Chain;
1480 }
1481 
1482 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1483                               SmallVectorImpl<CCValAssign> &ArgLocs,
1484                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1485   // Punt if there are any indirect or stack arguments, or if the call
1486   // needs the callee-saved argument register R6, or if the call uses
1487   // the callee-saved register arguments SwiftSelf and SwiftError.
1488   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1489     CCValAssign &VA = ArgLocs[I];
1490     if (VA.getLocInfo() == CCValAssign::Indirect)
1491       return false;
1492     if (!VA.isRegLoc())
1493       return false;
1494     Register Reg = VA.getLocReg();
1495     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1496       return false;
1497     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1498       return false;
1499   }
1500   return true;
1501 }
1502 
1503 SDValue
1504 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1505                                  SmallVectorImpl<SDValue> &InVals) const {
1506   SelectionDAG &DAG = CLI.DAG;
1507   SDLoc &DL = CLI.DL;
1508   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1509   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1510   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1511   SDValue Chain = CLI.Chain;
1512   SDValue Callee = CLI.Callee;
1513   bool &IsTailCall = CLI.IsTailCall;
1514   CallingConv::ID CallConv = CLI.CallConv;
1515   bool IsVarArg = CLI.IsVarArg;
1516   MachineFunction &MF = DAG.getMachineFunction();
1517   EVT PtrVT = getPointerTy(MF.getDataLayout());
1518 
1519   // Detect unsupported vector argument and return types.
1520   if (Subtarget.hasVector()) {
1521     VerifyVectorTypes(Outs);
1522     VerifyVectorTypes(Ins);
1523   }
1524 
1525   // Analyze the operands of the call, assigning locations to each operand.
1526   SmallVector<CCValAssign, 16> ArgLocs;
1527   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1528   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1529 
1530   // We don't support GuaranteedTailCallOpt, only automatically-detected
1531   // sibling calls.
1532   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1533     IsTailCall = false;
1534 
1535   // Get a count of how many bytes are to be pushed on the stack.
1536   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1537 
1538   // Mark the start of the call.
1539   if (!IsTailCall)
1540     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1541 
1542   // Copy argument values to their designated locations.
1543   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1544   SmallVector<SDValue, 8> MemOpChains;
1545   SDValue StackPtr;
1546   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1547     CCValAssign &VA = ArgLocs[I];
1548     SDValue ArgValue = OutVals[I];
1549 
1550     if (VA.getLocInfo() == CCValAssign::Indirect) {
1551       // Store the argument in a stack slot and pass its address.
1552       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1553       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1554       MemOpChains.push_back(
1555           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1556                        MachinePointerInfo::getFixedStack(MF, FI)));
1557       // If the original argument was split (e.g. i128), we need
1558       // to store all parts of it here (and pass just one address).
1559       unsigned ArgIndex = Outs[I].OrigArgIndex;
1560       assert (Outs[I].PartOffset == 0);
1561       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1562         SDValue PartValue = OutVals[I + 1];
1563         unsigned PartOffset = Outs[I + 1].PartOffset;
1564         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1565                                       DAG.getIntPtrConstant(PartOffset, DL));
1566         MemOpChains.push_back(
1567             DAG.getStore(Chain, DL, PartValue, Address,
1568                          MachinePointerInfo::getFixedStack(MF, FI)));
1569         ++I;
1570       }
1571       ArgValue = SpillSlot;
1572     } else
1573       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1574 
1575     if (VA.isRegLoc())
1576       // Queue up the argument copies and emit them at the end.
1577       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1578     else {
1579       assert(VA.isMemLoc() && "Argument not register or memory");
1580 
1581       // Work out the address of the stack slot.  Unpromoted ints and
1582       // floats are passed as right-justified 8-byte values.
1583       if (!StackPtr.getNode())
1584         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1585       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1586       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1587         Offset += 4;
1588       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1589                                     DAG.getIntPtrConstant(Offset, DL));
1590 
1591       // Emit the store.
1592       MemOpChains.push_back(
1593           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1594     }
1595   }
1596 
1597   // Join the stores, which are independent of one another.
1598   if (!MemOpChains.empty())
1599     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1600 
1601   // Accept direct calls by converting symbolic call addresses to the
1602   // associated Target* opcodes.  Force %r1 to be used for indirect
1603   // tail calls.
1604   SDValue Glue;
1605   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1606     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1607     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1608   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1609     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1610     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1611   } else if (IsTailCall) {
1612     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1613     Glue = Chain.getValue(1);
1614     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1615   }
1616 
1617   // Build a sequence of copy-to-reg nodes, chained and glued together.
1618   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1619     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1620                              RegsToPass[I].second, Glue);
1621     Glue = Chain.getValue(1);
1622   }
1623 
1624   // The first call operand is the chain and the second is the target address.
1625   SmallVector<SDValue, 8> Ops;
1626   Ops.push_back(Chain);
1627   Ops.push_back(Callee);
1628 
1629   // Add argument registers to the end of the list so that they are
1630   // known live into the call.
1631   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1632     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1633                                   RegsToPass[I].second.getValueType()));
1634 
1635   // Add a register mask operand representing the call-preserved registers.
1636   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1637   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1638   assert(Mask && "Missing call preserved mask for calling convention");
1639   Ops.push_back(DAG.getRegisterMask(Mask));
1640 
1641   // Glue the call to the argument copies, if any.
1642   if (Glue.getNode())
1643     Ops.push_back(Glue);
1644 
1645   // Emit the call.
1646   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1647   if (IsTailCall)
1648     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1649   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1650   Glue = Chain.getValue(1);
1651 
1652   // Mark the end of the call, which is glued to the call itself.
1653   Chain = DAG.getCALLSEQ_END(Chain,
1654                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1655                              DAG.getConstant(0, DL, PtrVT, true),
1656                              Glue, DL);
1657   Glue = Chain.getValue(1);
1658 
1659   // Assign locations to each value returned by this call.
1660   SmallVector<CCValAssign, 16> RetLocs;
1661   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1662   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1663 
1664   // Copy all of the result registers out of their specified physreg.
1665   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1666     CCValAssign &VA = RetLocs[I];
1667 
1668     // Copy the value out, gluing the copy to the end of the call sequence.
1669     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1670                                           VA.getLocVT(), Glue);
1671     Chain = RetValue.getValue(1);
1672     Glue = RetValue.getValue(2);
1673 
1674     // Convert the value of the return register into the value that's
1675     // being returned.
1676     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1677   }
1678 
1679   return Chain;
1680 }
1681 
1682 bool SystemZTargetLowering::
1683 CanLowerReturn(CallingConv::ID CallConv,
1684                MachineFunction &MF, bool isVarArg,
1685                const SmallVectorImpl<ISD::OutputArg> &Outs,
1686                LLVMContext &Context) const {
1687   // Detect unsupported vector return types.
1688   if (Subtarget.hasVector())
1689     VerifyVectorTypes(Outs);
1690 
1691   // Special case that we cannot easily detect in RetCC_SystemZ since
1692   // i128 is not a legal type.
1693   for (auto &Out : Outs)
1694     if (Out.ArgVT == MVT::i128)
1695       return false;
1696 
1697   SmallVector<CCValAssign, 16> RetLocs;
1698   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1699   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1700 }
1701 
1702 SDValue
1703 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1704                                    bool IsVarArg,
1705                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1706                                    const SmallVectorImpl<SDValue> &OutVals,
1707                                    const SDLoc &DL, SelectionDAG &DAG) const {
1708   MachineFunction &MF = DAG.getMachineFunction();
1709 
1710   // Detect unsupported vector return types.
1711   if (Subtarget.hasVector())
1712     VerifyVectorTypes(Outs);
1713 
1714   // Assign locations to each returned value.
1715   SmallVector<CCValAssign, 16> RetLocs;
1716   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1717   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1718 
1719   // Quick exit for void returns
1720   if (RetLocs.empty())
1721     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1722 
1723   if (CallConv == CallingConv::GHC)
1724     report_fatal_error("GHC functions return void only");
1725 
1726   // Copy the result values into the output registers.
1727   SDValue Glue;
1728   SmallVector<SDValue, 4> RetOps;
1729   RetOps.push_back(Chain);
1730   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1731     CCValAssign &VA = RetLocs[I];
1732     SDValue RetValue = OutVals[I];
1733 
1734     // Make the return register live on exit.
1735     assert(VA.isRegLoc() && "Can only return in registers!");
1736 
1737     // Promote the value as required.
1738     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1739 
1740     // Chain and glue the copies together.
1741     Register Reg = VA.getLocReg();
1742     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1743     Glue = Chain.getValue(1);
1744     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1745   }
1746 
1747   // Update chain and glue.
1748   RetOps[0] = Chain;
1749   if (Glue.getNode())
1750     RetOps.push_back(Glue);
1751 
1752   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1753 }
1754 
1755 // Return true if Op is an intrinsic node with chain that returns the CC value
1756 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1757 // the mask of valid CC values if so.
1758 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1759                                       unsigned &CCValid) {
1760   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1761   switch (Id) {
1762   case Intrinsic::s390_tbegin:
1763     Opcode = SystemZISD::TBEGIN;
1764     CCValid = SystemZ::CCMASK_TBEGIN;
1765     return true;
1766 
1767   case Intrinsic::s390_tbegin_nofloat:
1768     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1769     CCValid = SystemZ::CCMASK_TBEGIN;
1770     return true;
1771 
1772   case Intrinsic::s390_tend:
1773     Opcode = SystemZISD::TEND;
1774     CCValid = SystemZ::CCMASK_TEND;
1775     return true;
1776 
1777   default:
1778     return false;
1779   }
1780 }
1781 
1782 // Return true if Op is an intrinsic node without chain that returns the
1783 // CC value as its final argument.  Provide the associated SystemZISD
1784 // opcode and the mask of valid CC values if so.
1785 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1786   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1787   switch (Id) {
1788   case Intrinsic::s390_vpkshs:
1789   case Intrinsic::s390_vpksfs:
1790   case Intrinsic::s390_vpksgs:
1791     Opcode = SystemZISD::PACKS_CC;
1792     CCValid = SystemZ::CCMASK_VCMP;
1793     return true;
1794 
1795   case Intrinsic::s390_vpklshs:
1796   case Intrinsic::s390_vpklsfs:
1797   case Intrinsic::s390_vpklsgs:
1798     Opcode = SystemZISD::PACKLS_CC;
1799     CCValid = SystemZ::CCMASK_VCMP;
1800     return true;
1801 
1802   case Intrinsic::s390_vceqbs:
1803   case Intrinsic::s390_vceqhs:
1804   case Intrinsic::s390_vceqfs:
1805   case Intrinsic::s390_vceqgs:
1806     Opcode = SystemZISD::VICMPES;
1807     CCValid = SystemZ::CCMASK_VCMP;
1808     return true;
1809 
1810   case Intrinsic::s390_vchbs:
1811   case Intrinsic::s390_vchhs:
1812   case Intrinsic::s390_vchfs:
1813   case Intrinsic::s390_vchgs:
1814     Opcode = SystemZISD::VICMPHS;
1815     CCValid = SystemZ::CCMASK_VCMP;
1816     return true;
1817 
1818   case Intrinsic::s390_vchlbs:
1819   case Intrinsic::s390_vchlhs:
1820   case Intrinsic::s390_vchlfs:
1821   case Intrinsic::s390_vchlgs:
1822     Opcode = SystemZISD::VICMPHLS;
1823     CCValid = SystemZ::CCMASK_VCMP;
1824     return true;
1825 
1826   case Intrinsic::s390_vtm:
1827     Opcode = SystemZISD::VTM;
1828     CCValid = SystemZ::CCMASK_VCMP;
1829     return true;
1830 
1831   case Intrinsic::s390_vfaebs:
1832   case Intrinsic::s390_vfaehs:
1833   case Intrinsic::s390_vfaefs:
1834     Opcode = SystemZISD::VFAE_CC;
1835     CCValid = SystemZ::CCMASK_ANY;
1836     return true;
1837 
1838   case Intrinsic::s390_vfaezbs:
1839   case Intrinsic::s390_vfaezhs:
1840   case Intrinsic::s390_vfaezfs:
1841     Opcode = SystemZISD::VFAEZ_CC;
1842     CCValid = SystemZ::CCMASK_ANY;
1843     return true;
1844 
1845   case Intrinsic::s390_vfeebs:
1846   case Intrinsic::s390_vfeehs:
1847   case Intrinsic::s390_vfeefs:
1848     Opcode = SystemZISD::VFEE_CC;
1849     CCValid = SystemZ::CCMASK_ANY;
1850     return true;
1851 
1852   case Intrinsic::s390_vfeezbs:
1853   case Intrinsic::s390_vfeezhs:
1854   case Intrinsic::s390_vfeezfs:
1855     Opcode = SystemZISD::VFEEZ_CC;
1856     CCValid = SystemZ::CCMASK_ANY;
1857     return true;
1858 
1859   case Intrinsic::s390_vfenebs:
1860   case Intrinsic::s390_vfenehs:
1861   case Intrinsic::s390_vfenefs:
1862     Opcode = SystemZISD::VFENE_CC;
1863     CCValid = SystemZ::CCMASK_ANY;
1864     return true;
1865 
1866   case Intrinsic::s390_vfenezbs:
1867   case Intrinsic::s390_vfenezhs:
1868   case Intrinsic::s390_vfenezfs:
1869     Opcode = SystemZISD::VFENEZ_CC;
1870     CCValid = SystemZ::CCMASK_ANY;
1871     return true;
1872 
1873   case Intrinsic::s390_vistrbs:
1874   case Intrinsic::s390_vistrhs:
1875   case Intrinsic::s390_vistrfs:
1876     Opcode = SystemZISD::VISTR_CC;
1877     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1878     return true;
1879 
1880   case Intrinsic::s390_vstrcbs:
1881   case Intrinsic::s390_vstrchs:
1882   case Intrinsic::s390_vstrcfs:
1883     Opcode = SystemZISD::VSTRC_CC;
1884     CCValid = SystemZ::CCMASK_ANY;
1885     return true;
1886 
1887   case Intrinsic::s390_vstrczbs:
1888   case Intrinsic::s390_vstrczhs:
1889   case Intrinsic::s390_vstrczfs:
1890     Opcode = SystemZISD::VSTRCZ_CC;
1891     CCValid = SystemZ::CCMASK_ANY;
1892     return true;
1893 
1894   case Intrinsic::s390_vstrsb:
1895   case Intrinsic::s390_vstrsh:
1896   case Intrinsic::s390_vstrsf:
1897     Opcode = SystemZISD::VSTRS_CC;
1898     CCValid = SystemZ::CCMASK_ANY;
1899     return true;
1900 
1901   case Intrinsic::s390_vstrszb:
1902   case Intrinsic::s390_vstrszh:
1903   case Intrinsic::s390_vstrszf:
1904     Opcode = SystemZISD::VSTRSZ_CC;
1905     CCValid = SystemZ::CCMASK_ANY;
1906     return true;
1907 
1908   case Intrinsic::s390_vfcedbs:
1909   case Intrinsic::s390_vfcesbs:
1910     Opcode = SystemZISD::VFCMPES;
1911     CCValid = SystemZ::CCMASK_VCMP;
1912     return true;
1913 
1914   case Intrinsic::s390_vfchdbs:
1915   case Intrinsic::s390_vfchsbs:
1916     Opcode = SystemZISD::VFCMPHS;
1917     CCValid = SystemZ::CCMASK_VCMP;
1918     return true;
1919 
1920   case Intrinsic::s390_vfchedbs:
1921   case Intrinsic::s390_vfchesbs:
1922     Opcode = SystemZISD::VFCMPHES;
1923     CCValid = SystemZ::CCMASK_VCMP;
1924     return true;
1925 
1926   case Intrinsic::s390_vftcidb:
1927   case Intrinsic::s390_vftcisb:
1928     Opcode = SystemZISD::VFTCI;
1929     CCValid = SystemZ::CCMASK_VCMP;
1930     return true;
1931 
1932   case Intrinsic::s390_tdc:
1933     Opcode = SystemZISD::TDC;
1934     CCValid = SystemZ::CCMASK_TDC;
1935     return true;
1936 
1937   default:
1938     return false;
1939   }
1940 }
1941 
1942 // Emit an intrinsic with chain and an explicit CC register result.
1943 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1944                                            unsigned Opcode) {
1945   // Copy all operands except the intrinsic ID.
1946   unsigned NumOps = Op.getNumOperands();
1947   SmallVector<SDValue, 6> Ops;
1948   Ops.reserve(NumOps - 1);
1949   Ops.push_back(Op.getOperand(0));
1950   for (unsigned I = 2; I < NumOps; ++I)
1951     Ops.push_back(Op.getOperand(I));
1952 
1953   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1954   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1955   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1956   SDValue OldChain = SDValue(Op.getNode(), 1);
1957   SDValue NewChain = SDValue(Intr.getNode(), 1);
1958   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1959   return Intr.getNode();
1960 }
1961 
1962 // Emit an intrinsic with an explicit CC register result.
1963 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1964                                    unsigned Opcode) {
1965   // Copy all operands except the intrinsic ID.
1966   unsigned NumOps = Op.getNumOperands();
1967   SmallVector<SDValue, 6> Ops;
1968   Ops.reserve(NumOps - 1);
1969   for (unsigned I = 1; I < NumOps; ++I)
1970     Ops.push_back(Op.getOperand(I));
1971 
1972   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1973   return Intr.getNode();
1974 }
1975 
1976 // CC is a comparison that will be implemented using an integer or
1977 // floating-point comparison.  Return the condition code mask for
1978 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1979 // unsigned comparisons and clear for signed ones.  In the floating-point
1980 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1981 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1982 #define CONV(X) \
1983   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1984   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1985   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1986 
1987   switch (CC) {
1988   default:
1989     llvm_unreachable("Invalid integer condition!");
1990 
1991   CONV(EQ);
1992   CONV(NE);
1993   CONV(GT);
1994   CONV(GE);
1995   CONV(LT);
1996   CONV(LE);
1997 
1998   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1999   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2000   }
2001 #undef CONV
2002 }
2003 
2004 // If C can be converted to a comparison against zero, adjust the operands
2005 // as necessary.
2006 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2007   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2008     return;
2009 
2010   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2011   if (!ConstOp1)
2012     return;
2013 
2014   int64_t Value = ConstOp1->getSExtValue();
2015   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2016       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2017       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2018       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2019     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2020     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2021   }
2022 }
2023 
2024 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2025 // adjust the operands as necessary.
2026 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2027                              Comparison &C) {
2028   // For us to make any changes, it must a comparison between a single-use
2029   // load and a constant.
2030   if (!C.Op0.hasOneUse() ||
2031       C.Op0.getOpcode() != ISD::LOAD ||
2032       C.Op1.getOpcode() != ISD::Constant)
2033     return;
2034 
2035   // We must have an 8- or 16-bit load.
2036   auto *Load = cast<LoadSDNode>(C.Op0);
2037   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
2038   if (NumBits != 8 && NumBits != 16)
2039     return;
2040 
2041   // The load must be an extending one and the constant must be within the
2042   // range of the unextended value.
2043   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2044   uint64_t Value = ConstOp1->getZExtValue();
2045   uint64_t Mask = (1 << NumBits) - 1;
2046   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2047     // Make sure that ConstOp1 is in range of C.Op0.
2048     int64_t SignedValue = ConstOp1->getSExtValue();
2049     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2050       return;
2051     if (C.ICmpType != SystemZICMP::SignedOnly) {
2052       // Unsigned comparison between two sign-extended values is equivalent
2053       // to unsigned comparison between two zero-extended values.
2054       Value &= Mask;
2055     } else if (NumBits == 8) {
2056       // Try to treat the comparison as unsigned, so that we can use CLI.
2057       // Adjust CCMask and Value as necessary.
2058       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2059         // Test whether the high bit of the byte is set.
2060         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2061       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2062         // Test whether the high bit of the byte is clear.
2063         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2064       else
2065         // No instruction exists for this combination.
2066         return;
2067       C.ICmpType = SystemZICMP::UnsignedOnly;
2068     }
2069   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2070     if (Value > Mask)
2071       return;
2072     // If the constant is in range, we can use any comparison.
2073     C.ICmpType = SystemZICMP::Any;
2074   } else
2075     return;
2076 
2077   // Make sure that the first operand is an i32 of the right extension type.
2078   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2079                               ISD::SEXTLOAD :
2080                               ISD::ZEXTLOAD);
2081   if (C.Op0.getValueType() != MVT::i32 ||
2082       Load->getExtensionType() != ExtType) {
2083     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2084                            Load->getBasePtr(), Load->getPointerInfo(),
2085                            Load->getMemoryVT(), Load->getAlignment(),
2086                            Load->getMemOperand()->getFlags());
2087     // Update the chain uses.
2088     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2089   }
2090 
2091   // Make sure that the second operand is an i32 with the right value.
2092   if (C.Op1.getValueType() != MVT::i32 ||
2093       Value != ConstOp1->getZExtValue())
2094     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2095 }
2096 
2097 // Return true if Op is either an unextended load, or a load suitable
2098 // for integer register-memory comparisons of type ICmpType.
2099 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2100   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2101   if (Load) {
2102     // There are no instructions to compare a register with a memory byte.
2103     if (Load->getMemoryVT() == MVT::i8)
2104       return false;
2105     // Otherwise decide on extension type.
2106     switch (Load->getExtensionType()) {
2107     case ISD::NON_EXTLOAD:
2108       return true;
2109     case ISD::SEXTLOAD:
2110       return ICmpType != SystemZICMP::UnsignedOnly;
2111     case ISD::ZEXTLOAD:
2112       return ICmpType != SystemZICMP::SignedOnly;
2113     default:
2114       break;
2115     }
2116   }
2117   return false;
2118 }
2119 
2120 // Return true if it is better to swap the operands of C.
2121 static bool shouldSwapCmpOperands(const Comparison &C) {
2122   // Leave f128 comparisons alone, since they have no memory forms.
2123   if (C.Op0.getValueType() == MVT::f128)
2124     return false;
2125 
2126   // Always keep a floating-point constant second, since comparisons with
2127   // zero can use LOAD TEST and comparisons with other constants make a
2128   // natural memory operand.
2129   if (isa<ConstantFPSDNode>(C.Op1))
2130     return false;
2131 
2132   // Never swap comparisons with zero since there are many ways to optimize
2133   // those later.
2134   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2135   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2136     return false;
2137 
2138   // Also keep natural memory operands second if the loaded value is
2139   // only used here.  Several comparisons have memory forms.
2140   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2141     return false;
2142 
2143   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2144   // In that case we generally prefer the memory to be second.
2145   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2146     // The only exceptions are when the second operand is a constant and
2147     // we can use things like CHHSI.
2148     if (!ConstOp1)
2149       return true;
2150     // The unsigned memory-immediate instructions can handle 16-bit
2151     // unsigned integers.
2152     if (C.ICmpType != SystemZICMP::SignedOnly &&
2153         isUInt<16>(ConstOp1->getZExtValue()))
2154       return false;
2155     // The signed memory-immediate instructions can handle 16-bit
2156     // signed integers.
2157     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2158         isInt<16>(ConstOp1->getSExtValue()))
2159       return false;
2160     return true;
2161   }
2162 
2163   // Try to promote the use of CGFR and CLGFR.
2164   unsigned Opcode0 = C.Op0.getOpcode();
2165   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2166     return true;
2167   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2168     return true;
2169   if (C.ICmpType != SystemZICMP::SignedOnly &&
2170       Opcode0 == ISD::AND &&
2171       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2172       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2173     return true;
2174 
2175   return false;
2176 }
2177 
2178 // Return a version of comparison CC mask CCMask in which the LT and GT
2179 // actions are swapped.
2180 static unsigned reverseCCMask(unsigned CCMask) {
2181   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2182           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2183           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2184           (CCMask & SystemZ::CCMASK_CMP_UO));
2185 }
2186 
2187 // Check whether C tests for equality between X and Y and whether X - Y
2188 // or Y - X is also computed.  In that case it's better to compare the
2189 // result of the subtraction against zero.
2190 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2191                                  Comparison &C) {
2192   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2193       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2194     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2195       SDNode *N = *I;
2196       if (N->getOpcode() == ISD::SUB &&
2197           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2198            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2199         C.Op0 = SDValue(N, 0);
2200         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2201         return;
2202       }
2203     }
2204   }
2205 }
2206 
2207 // Check whether C compares a floating-point value with zero and if that
2208 // floating-point value is also negated.  In this case we can use the
2209 // negation to set CC, so avoiding separate LOAD AND TEST and
2210 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2211 static void adjustForFNeg(Comparison &C) {
2212   // This optimization is invalid for strict comparisons, since FNEG
2213   // does not raise any exceptions.
2214   if (C.Chain)
2215     return;
2216   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2217   if (C1 && C1->isZero()) {
2218     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2219       SDNode *N = *I;
2220       if (N->getOpcode() == ISD::FNEG) {
2221         C.Op0 = SDValue(N, 0);
2222         C.CCMask = reverseCCMask(C.CCMask);
2223         return;
2224       }
2225     }
2226   }
2227 }
2228 
2229 // Check whether C compares (shl X, 32) with 0 and whether X is
2230 // also sign-extended.  In that case it is better to test the result
2231 // of the sign extension using LTGFR.
2232 //
2233 // This case is important because InstCombine transforms a comparison
2234 // with (sext (trunc X)) into a comparison with (shl X, 32).
2235 static void adjustForLTGFR(Comparison &C) {
2236   // Check for a comparison between (shl X, 32) and 0.
2237   if (C.Op0.getOpcode() == ISD::SHL &&
2238       C.Op0.getValueType() == MVT::i64 &&
2239       C.Op1.getOpcode() == ISD::Constant &&
2240       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2241     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2242     if (C1 && C1->getZExtValue() == 32) {
2243       SDValue ShlOp0 = C.Op0.getOperand(0);
2244       // See whether X has any SIGN_EXTEND_INREG uses.
2245       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2246         SDNode *N = *I;
2247         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2248             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2249           C.Op0 = SDValue(N, 0);
2250           return;
2251         }
2252       }
2253     }
2254   }
2255 }
2256 
2257 // If C compares the truncation of an extending load, try to compare
2258 // the untruncated value instead.  This exposes more opportunities to
2259 // reuse CC.
2260 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2261                                Comparison &C) {
2262   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2263       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2264       C.Op1.getOpcode() == ISD::Constant &&
2265       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2266     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2267     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2268       unsigned Type = L->getExtensionType();
2269       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2270           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2271         C.Op0 = C.Op0.getOperand(0);
2272         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2273       }
2274     }
2275   }
2276 }
2277 
2278 // Return true if shift operation N has an in-range constant shift value.
2279 // Store it in ShiftVal if so.
2280 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2281   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2282   if (!Shift)
2283     return false;
2284 
2285   uint64_t Amount = Shift->getZExtValue();
2286   if (Amount >= N.getValueSizeInBits())
2287     return false;
2288 
2289   ShiftVal = Amount;
2290   return true;
2291 }
2292 
2293 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2294 // instruction and whether the CC value is descriptive enough to handle
2295 // a comparison of type Opcode between the AND result and CmpVal.
2296 // CCMask says which comparison result is being tested and BitSize is
2297 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2298 // return the corresponding CC mask, otherwise return 0.
2299 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2300                                      uint64_t Mask, uint64_t CmpVal,
2301                                      unsigned ICmpType) {
2302   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2303 
2304   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2305   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2306       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2307     return 0;
2308 
2309   // Work out the masks for the lowest and highest bits.
2310   unsigned HighShift = 63 - countLeadingZeros(Mask);
2311   uint64_t High = uint64_t(1) << HighShift;
2312   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2313 
2314   // Signed ordered comparisons are effectively unsigned if the sign
2315   // bit is dropped.
2316   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2317 
2318   // Check for equality comparisons with 0, or the equivalent.
2319   if (CmpVal == 0) {
2320     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2321       return SystemZ::CCMASK_TM_ALL_0;
2322     if (CCMask == SystemZ::CCMASK_CMP_NE)
2323       return SystemZ::CCMASK_TM_SOME_1;
2324   }
2325   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2326     if (CCMask == SystemZ::CCMASK_CMP_LT)
2327       return SystemZ::CCMASK_TM_ALL_0;
2328     if (CCMask == SystemZ::CCMASK_CMP_GE)
2329       return SystemZ::CCMASK_TM_SOME_1;
2330   }
2331   if (EffectivelyUnsigned && CmpVal < Low) {
2332     if (CCMask == SystemZ::CCMASK_CMP_LE)
2333       return SystemZ::CCMASK_TM_ALL_0;
2334     if (CCMask == SystemZ::CCMASK_CMP_GT)
2335       return SystemZ::CCMASK_TM_SOME_1;
2336   }
2337 
2338   // Check for equality comparisons with the mask, or the equivalent.
2339   if (CmpVal == Mask) {
2340     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2341       return SystemZ::CCMASK_TM_ALL_1;
2342     if (CCMask == SystemZ::CCMASK_CMP_NE)
2343       return SystemZ::CCMASK_TM_SOME_0;
2344   }
2345   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2346     if (CCMask == SystemZ::CCMASK_CMP_GT)
2347       return SystemZ::CCMASK_TM_ALL_1;
2348     if (CCMask == SystemZ::CCMASK_CMP_LE)
2349       return SystemZ::CCMASK_TM_SOME_0;
2350   }
2351   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2352     if (CCMask == SystemZ::CCMASK_CMP_GE)
2353       return SystemZ::CCMASK_TM_ALL_1;
2354     if (CCMask == SystemZ::CCMASK_CMP_LT)
2355       return SystemZ::CCMASK_TM_SOME_0;
2356   }
2357 
2358   // Check for ordered comparisons with the top bit.
2359   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2360     if (CCMask == SystemZ::CCMASK_CMP_LE)
2361       return SystemZ::CCMASK_TM_MSB_0;
2362     if (CCMask == SystemZ::CCMASK_CMP_GT)
2363       return SystemZ::CCMASK_TM_MSB_1;
2364   }
2365   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2366     if (CCMask == SystemZ::CCMASK_CMP_LT)
2367       return SystemZ::CCMASK_TM_MSB_0;
2368     if (CCMask == SystemZ::CCMASK_CMP_GE)
2369       return SystemZ::CCMASK_TM_MSB_1;
2370   }
2371 
2372   // If there are just two bits, we can do equality checks for Low and High
2373   // as well.
2374   if (Mask == Low + High) {
2375     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2376       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2377     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2378       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2379     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2380       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2381     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2382       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2383   }
2384 
2385   // Looks like we've exhausted our options.
2386   return 0;
2387 }
2388 
2389 // See whether C can be implemented as a TEST UNDER MASK instruction.
2390 // Update the arguments with the TM version if so.
2391 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2392                                    Comparison &C) {
2393   // Check that we have a comparison with a constant.
2394   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2395   if (!ConstOp1)
2396     return;
2397   uint64_t CmpVal = ConstOp1->getZExtValue();
2398 
2399   // Check whether the nonconstant input is an AND with a constant mask.
2400   Comparison NewC(C);
2401   uint64_t MaskVal;
2402   ConstantSDNode *Mask = nullptr;
2403   if (C.Op0.getOpcode() == ISD::AND) {
2404     NewC.Op0 = C.Op0.getOperand(0);
2405     NewC.Op1 = C.Op0.getOperand(1);
2406     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2407     if (!Mask)
2408       return;
2409     MaskVal = Mask->getZExtValue();
2410   } else {
2411     // There is no instruction to compare with a 64-bit immediate
2412     // so use TMHH instead if possible.  We need an unsigned ordered
2413     // comparison with an i64 immediate.
2414     if (NewC.Op0.getValueType() != MVT::i64 ||
2415         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2416         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2417         NewC.ICmpType == SystemZICMP::SignedOnly)
2418       return;
2419     // Convert LE and GT comparisons into LT and GE.
2420     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2421         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2422       if (CmpVal == uint64_t(-1))
2423         return;
2424       CmpVal += 1;
2425       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2426     }
2427     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2428     // be masked off without changing the result.
2429     MaskVal = -(CmpVal & -CmpVal);
2430     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2431   }
2432   if (!MaskVal)
2433     return;
2434 
2435   // Check whether the combination of mask, comparison value and comparison
2436   // type are suitable.
2437   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2438   unsigned NewCCMask, ShiftVal;
2439   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2440       NewC.Op0.getOpcode() == ISD::SHL &&
2441       isSimpleShift(NewC.Op0, ShiftVal) &&
2442       (MaskVal >> ShiftVal != 0) &&
2443       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2444       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2445                                         MaskVal >> ShiftVal,
2446                                         CmpVal >> ShiftVal,
2447                                         SystemZICMP::Any))) {
2448     NewC.Op0 = NewC.Op0.getOperand(0);
2449     MaskVal >>= ShiftVal;
2450   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2451              NewC.Op0.getOpcode() == ISD::SRL &&
2452              isSimpleShift(NewC.Op0, ShiftVal) &&
2453              (MaskVal << ShiftVal != 0) &&
2454              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2455              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2456                                                MaskVal << ShiftVal,
2457                                                CmpVal << ShiftVal,
2458                                                SystemZICMP::UnsignedOnly))) {
2459     NewC.Op0 = NewC.Op0.getOperand(0);
2460     MaskVal <<= ShiftVal;
2461   } else {
2462     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2463                                      NewC.ICmpType);
2464     if (!NewCCMask)
2465       return;
2466   }
2467 
2468   // Go ahead and make the change.
2469   C.Opcode = SystemZISD::TM;
2470   C.Op0 = NewC.Op0;
2471   if (Mask && Mask->getZExtValue() == MaskVal)
2472     C.Op1 = SDValue(Mask, 0);
2473   else
2474     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2475   C.CCValid = SystemZ::CCMASK_TM;
2476   C.CCMask = NewCCMask;
2477 }
2478 
2479 // See whether the comparison argument contains a redundant AND
2480 // and remove it if so.  This sometimes happens due to the generic
2481 // BRCOND expansion.
2482 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2483                                   Comparison &C) {
2484   if (C.Op0.getOpcode() != ISD::AND)
2485     return;
2486   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2487   if (!Mask)
2488     return;
2489   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2490   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2491     return;
2492 
2493   C.Op0 = C.Op0.getOperand(0);
2494 }
2495 
2496 // Return a Comparison that tests the condition-code result of intrinsic
2497 // node Call against constant integer CC using comparison code Cond.
2498 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2499 // and CCValid is the set of possible condition-code results.
2500 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2501                                   SDValue Call, unsigned CCValid, uint64_t CC,
2502                                   ISD::CondCode Cond) {
2503   Comparison C(Call, SDValue(), SDValue());
2504   C.Opcode = Opcode;
2505   C.CCValid = CCValid;
2506   if (Cond == ISD::SETEQ)
2507     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2508     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2509   else if (Cond == ISD::SETNE)
2510     // ...and the inverse of that.
2511     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2512   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2513     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2514     // always true for CC>3.
2515     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2516   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2517     // ...and the inverse of that.
2518     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2519   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2520     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2521     // always true for CC>3.
2522     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2523   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2524     // ...and the inverse of that.
2525     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2526   else
2527     llvm_unreachable("Unexpected integer comparison type");
2528   C.CCMask &= CCValid;
2529   return C;
2530 }
2531 
2532 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2533 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2534                          ISD::CondCode Cond, const SDLoc &DL,
2535                          SDValue Chain = SDValue(),
2536                          bool IsSignaling = false) {
2537   if (CmpOp1.getOpcode() == ISD::Constant) {
2538     assert(!Chain);
2539     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2540     unsigned Opcode, CCValid;
2541     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2542         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2543         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2544       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2545     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2546         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2547         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2548       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2549   }
2550   Comparison C(CmpOp0, CmpOp1, Chain);
2551   C.CCMask = CCMaskForCondCode(Cond);
2552   if (C.Op0.getValueType().isFloatingPoint()) {
2553     C.CCValid = SystemZ::CCMASK_FCMP;
2554     if (!C.Chain)
2555       C.Opcode = SystemZISD::FCMP;
2556     else if (!IsSignaling)
2557       C.Opcode = SystemZISD::STRICT_FCMP;
2558     else
2559       C.Opcode = SystemZISD::STRICT_FCMPS;
2560     adjustForFNeg(C);
2561   } else {
2562     assert(!C.Chain);
2563     C.CCValid = SystemZ::CCMASK_ICMP;
2564     C.Opcode = SystemZISD::ICMP;
2565     // Choose the type of comparison.  Equality and inequality tests can
2566     // use either signed or unsigned comparisons.  The choice also doesn't
2567     // matter if both sign bits are known to be clear.  In those cases we
2568     // want to give the main isel code the freedom to choose whichever
2569     // form fits best.
2570     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2571         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2572         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2573       C.ICmpType = SystemZICMP::Any;
2574     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2575       C.ICmpType = SystemZICMP::UnsignedOnly;
2576     else
2577       C.ICmpType = SystemZICMP::SignedOnly;
2578     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2579     adjustForRedundantAnd(DAG, DL, C);
2580     adjustZeroCmp(DAG, DL, C);
2581     adjustSubwordCmp(DAG, DL, C);
2582     adjustForSubtraction(DAG, DL, C);
2583     adjustForLTGFR(C);
2584     adjustICmpTruncate(DAG, DL, C);
2585   }
2586 
2587   if (shouldSwapCmpOperands(C)) {
2588     std::swap(C.Op0, C.Op1);
2589     C.CCMask = reverseCCMask(C.CCMask);
2590   }
2591 
2592   adjustForTestUnderMask(DAG, DL, C);
2593   return C;
2594 }
2595 
2596 // Emit the comparison instruction described by C.
2597 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2598   if (!C.Op1.getNode()) {
2599     SDNode *Node;
2600     switch (C.Op0.getOpcode()) {
2601     case ISD::INTRINSIC_W_CHAIN:
2602       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2603       return SDValue(Node, 0);
2604     case ISD::INTRINSIC_WO_CHAIN:
2605       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2606       return SDValue(Node, Node->getNumValues() - 1);
2607     default:
2608       llvm_unreachable("Invalid comparison operands");
2609     }
2610   }
2611   if (C.Opcode == SystemZISD::ICMP)
2612     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2613                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2614   if (C.Opcode == SystemZISD::TM) {
2615     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2616                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2617     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2618                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2619   }
2620   if (C.Chain) {
2621     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2622     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2623   }
2624   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2625 }
2626 
2627 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2628 // 64 bits.  Extend is the extension type to use.  Store the high part
2629 // in Hi and the low part in Lo.
2630 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2631                             SDValue Op0, SDValue Op1, SDValue &Hi,
2632                             SDValue &Lo) {
2633   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2634   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2635   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2636   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2637                    DAG.getConstant(32, DL, MVT::i64));
2638   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2639   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2640 }
2641 
2642 // Lower a binary operation that produces two VT results, one in each
2643 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2644 // and Opcode performs the GR128 operation.  Store the even register result
2645 // in Even and the odd register result in Odd.
2646 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2647                              unsigned Opcode, SDValue Op0, SDValue Op1,
2648                              SDValue &Even, SDValue &Odd) {
2649   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2650   bool Is32Bit = is32Bit(VT);
2651   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2652   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2653 }
2654 
2655 // Return an i32 value that is 1 if the CC value produced by CCReg is
2656 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2657 // in CCValid, so other values can be ignored.
2658 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2659                          unsigned CCValid, unsigned CCMask) {
2660   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2661                    DAG.getConstant(0, DL, MVT::i32),
2662                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2663                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2664   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2665 }
2666 
2667 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2668 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2669 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2670 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2671 // floating-point comparisons.
2672 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2673 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2674   switch (CC) {
2675   case ISD::SETOEQ:
2676   case ISD::SETEQ:
2677     switch (Mode) {
2678     case CmpMode::Int:         return SystemZISD::VICMPE;
2679     case CmpMode::FP:          return SystemZISD::VFCMPE;
2680     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2681     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2682     }
2683     llvm_unreachable("Bad mode");
2684 
2685   case ISD::SETOGE:
2686   case ISD::SETGE:
2687     switch (Mode) {
2688     case CmpMode::Int:         return 0;
2689     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2690     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2691     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2692     }
2693     llvm_unreachable("Bad mode");
2694 
2695   case ISD::SETOGT:
2696   case ISD::SETGT:
2697     switch (Mode) {
2698     case CmpMode::Int:         return SystemZISD::VICMPH;
2699     case CmpMode::FP:          return SystemZISD::VFCMPH;
2700     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2701     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2702     }
2703     llvm_unreachable("Bad mode");
2704 
2705   case ISD::SETUGT:
2706     switch (Mode) {
2707     case CmpMode::Int:         return SystemZISD::VICMPHL;
2708     case CmpMode::FP:          return 0;
2709     case CmpMode::StrictFP:    return 0;
2710     case CmpMode::SignalingFP: return 0;
2711     }
2712     llvm_unreachable("Bad mode");
2713 
2714   default:
2715     return 0;
2716   }
2717 }
2718 
2719 // Return the SystemZISD vector comparison operation for CC or its inverse,
2720 // or 0 if neither can be done directly.  Indicate in Invert whether the
2721 // result is for the inverse of CC.  Mode is as above.
2722 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2723                                             bool &Invert) {
2724   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2725     Invert = false;
2726     return Opcode;
2727   }
2728 
2729   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2730   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2731     Invert = true;
2732     return Opcode;
2733   }
2734 
2735   return 0;
2736 }
2737 
2738 // Return a v2f64 that contains the extended form of elements Start and Start+1
2739 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2740 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2741                                   SDValue Op, SDValue Chain) {
2742   int Mask[] = { Start, -1, Start + 1, -1 };
2743   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2744   if (Chain) {
2745     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2746     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2747   }
2748   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2749 }
2750 
2751 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2752 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2753 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2754                                             const SDLoc &DL, EVT VT,
2755                                             SDValue CmpOp0,
2756                                             SDValue CmpOp1,
2757                                             SDValue Chain) const {
2758   // There is no hardware support for v4f32 (unless we have the vector
2759   // enhancements facility 1), so extend the vector into two v2f64s
2760   // and compare those.
2761   if (CmpOp0.getValueType() == MVT::v4f32 &&
2762       !Subtarget.hasVectorEnhancements1()) {
2763     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2764     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2765     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2766     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2767     if (Chain) {
2768       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2769       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2770       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2771       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2772       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2773                             H1.getValue(1), L1.getValue(1),
2774                             HRes.getValue(1), LRes.getValue(1) };
2775       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2776       SDValue Ops[2] = { Res, NewChain };
2777       return DAG.getMergeValues(Ops, DL);
2778     }
2779     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2780     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2781     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2782   }
2783   if (Chain) {
2784     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2785     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2786   }
2787   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2788 }
2789 
2790 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2791 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2792 // floating-point comparison.  If in addition IsSignaling is true, we have
2793 // a strict signaling floating-point comparison.
2794 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2795                                                 const SDLoc &DL, EVT VT,
2796                                                 ISD::CondCode CC,
2797                                                 SDValue CmpOp0,
2798                                                 SDValue CmpOp1,
2799                                                 SDValue Chain,
2800                                                 bool IsSignaling) const {
2801   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2802   assert (!Chain || IsFP);
2803   assert (!IsSignaling || Chain);
2804   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2805                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2806   bool Invert = false;
2807   SDValue Cmp;
2808   switch (CC) {
2809     // Handle tests for order using (or (ogt y x) (oge x y)).
2810   case ISD::SETUO:
2811     Invert = true;
2812     LLVM_FALLTHROUGH;
2813   case ISD::SETO: {
2814     assert(IsFP && "Unexpected integer comparison");
2815     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2816                               DL, VT, CmpOp1, CmpOp0, Chain);
2817     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2818                               DL, VT, CmpOp0, CmpOp1, Chain);
2819     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2820     if (Chain)
2821       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2822                           LT.getValue(1), GE.getValue(1));
2823     break;
2824   }
2825 
2826     // Handle <> tests using (or (ogt y x) (ogt x y)).
2827   case ISD::SETUEQ:
2828     Invert = true;
2829     LLVM_FALLTHROUGH;
2830   case ISD::SETONE: {
2831     assert(IsFP && "Unexpected integer comparison");
2832     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2833                               DL, VT, CmpOp1, CmpOp0, Chain);
2834     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2835                               DL, VT, CmpOp0, CmpOp1, Chain);
2836     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2837     if (Chain)
2838       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2839                           LT.getValue(1), GT.getValue(1));
2840     break;
2841   }
2842 
2843     // Otherwise a single comparison is enough.  It doesn't really
2844     // matter whether we try the inversion or the swap first, since
2845     // there are no cases where both work.
2846   default:
2847     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2848       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2849     else {
2850       CC = ISD::getSetCCSwappedOperands(CC);
2851       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2852         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2853       else
2854         llvm_unreachable("Unhandled comparison");
2855     }
2856     if (Chain)
2857       Chain = Cmp.getValue(1);
2858     break;
2859   }
2860   if (Invert) {
2861     SDValue Mask =
2862       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2863     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2864   }
2865   if (Chain && Chain.getNode() != Cmp.getNode()) {
2866     SDValue Ops[2] = { Cmp, Chain };
2867     Cmp = DAG.getMergeValues(Ops, DL);
2868   }
2869   return Cmp;
2870 }
2871 
2872 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2873                                           SelectionDAG &DAG) const {
2874   SDValue CmpOp0   = Op.getOperand(0);
2875   SDValue CmpOp1   = Op.getOperand(1);
2876   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2877   SDLoc DL(Op);
2878   EVT VT = Op.getValueType();
2879   if (VT.isVector())
2880     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2881 
2882   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2883   SDValue CCReg = emitCmp(DAG, DL, C);
2884   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2885 }
2886 
2887 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2888                                                   SelectionDAG &DAG,
2889                                                   bool IsSignaling) const {
2890   SDValue Chain    = Op.getOperand(0);
2891   SDValue CmpOp0   = Op.getOperand(1);
2892   SDValue CmpOp1   = Op.getOperand(2);
2893   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2894   SDLoc DL(Op);
2895   EVT VT = Op.getNode()->getValueType(0);
2896   if (VT.isVector()) {
2897     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2898                                    Chain, IsSignaling);
2899     return Res.getValue(Op.getResNo());
2900   }
2901 
2902   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2903   SDValue CCReg = emitCmp(DAG, DL, C);
2904   CCReg->setFlags(Op->getFlags());
2905   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2906   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2907   return DAG.getMergeValues(Ops, DL);
2908 }
2909 
2910 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2911   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2912   SDValue CmpOp0   = Op.getOperand(2);
2913   SDValue CmpOp1   = Op.getOperand(3);
2914   SDValue Dest     = Op.getOperand(4);
2915   SDLoc DL(Op);
2916 
2917   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2918   SDValue CCReg = emitCmp(DAG, DL, C);
2919   return DAG.getNode(
2920       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2921       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2922       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2923 }
2924 
2925 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2926 // allowing Pos and Neg to be wider than CmpOp.
2927 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2928   return (Neg.getOpcode() == ISD::SUB &&
2929           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2930           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2931           Neg.getOperand(1) == Pos &&
2932           (Pos == CmpOp ||
2933            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2934             Pos.getOperand(0) == CmpOp)));
2935 }
2936 
2937 // Return the absolute or negative absolute of Op; IsNegative decides which.
2938 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2939                            bool IsNegative) {
2940   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2941   if (IsNegative)
2942     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2943                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2944   return Op;
2945 }
2946 
2947 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2948                                               SelectionDAG &DAG) const {
2949   SDValue CmpOp0   = Op.getOperand(0);
2950   SDValue CmpOp1   = Op.getOperand(1);
2951   SDValue TrueOp   = Op.getOperand(2);
2952   SDValue FalseOp  = Op.getOperand(3);
2953   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2954   SDLoc DL(Op);
2955 
2956   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2957 
2958   // Check for absolute and negative-absolute selections, including those
2959   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2960   // This check supplements the one in DAGCombiner.
2961   if (C.Opcode == SystemZISD::ICMP &&
2962       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2963       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2964       C.Op1.getOpcode() == ISD::Constant &&
2965       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2966     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2967       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2968     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2969       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2970   }
2971 
2972   SDValue CCReg = emitCmp(DAG, DL, C);
2973   SDValue Ops[] = {TrueOp, FalseOp,
2974                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2975                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2976 
2977   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2978 }
2979 
2980 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2981                                                   SelectionDAG &DAG) const {
2982   SDLoc DL(Node);
2983   const GlobalValue *GV = Node->getGlobal();
2984   int64_t Offset = Node->getOffset();
2985   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2986   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2987 
2988   SDValue Result;
2989   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2990     if (isInt<32>(Offset)) {
2991       // Assign anchors at 1<<12 byte boundaries.
2992       uint64_t Anchor = Offset & ~uint64_t(0xfff);
2993       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2994       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2995 
2996       // The offset can be folded into the address if it is aligned to a
2997       // halfword.
2998       Offset -= Anchor;
2999       if (Offset != 0 && (Offset & 1) == 0) {
3000         SDValue Full =
3001           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3002         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3003         Offset = 0;
3004       }
3005     } else {
3006       // Conservatively load a constant offset greater than 32 bits into a
3007       // register below.
3008       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3009       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3010     }
3011   } else {
3012     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3013     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3014     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3015                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3016   }
3017 
3018   // If there was a non-zero offset that we didn't fold, create an explicit
3019   // addition for it.
3020   if (Offset != 0)
3021     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3022                          DAG.getConstant(Offset, DL, PtrVT));
3023 
3024   return Result;
3025 }
3026 
3027 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3028                                                  SelectionDAG &DAG,
3029                                                  unsigned Opcode,
3030                                                  SDValue GOTOffset) const {
3031   SDLoc DL(Node);
3032   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3033   SDValue Chain = DAG.getEntryNode();
3034   SDValue Glue;
3035 
3036   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3037       CallingConv::GHC)
3038     report_fatal_error("In GHC calling convention TLS is not supported");
3039 
3040   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3041   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3042   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3043   Glue = Chain.getValue(1);
3044   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3045   Glue = Chain.getValue(1);
3046 
3047   // The first call operand is the chain and the second is the TLS symbol.
3048   SmallVector<SDValue, 8> Ops;
3049   Ops.push_back(Chain);
3050   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3051                                            Node->getValueType(0),
3052                                            0, 0));
3053 
3054   // Add argument registers to the end of the list so that they are
3055   // known live into the call.
3056   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3057   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3058 
3059   // Add a register mask operand representing the call-preserved registers.
3060   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3061   const uint32_t *Mask =
3062       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3063   assert(Mask && "Missing call preserved mask for calling convention");
3064   Ops.push_back(DAG.getRegisterMask(Mask));
3065 
3066   // Glue the call to the argument copies.
3067   Ops.push_back(Glue);
3068 
3069   // Emit the call.
3070   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3071   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3072   Glue = Chain.getValue(1);
3073 
3074   // Copy the return value from %r2.
3075   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3076 }
3077 
3078 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3079                                                   SelectionDAG &DAG) const {
3080   SDValue Chain = DAG.getEntryNode();
3081   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3082 
3083   // The high part of the thread pointer is in access register 0.
3084   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3085   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3086 
3087   // The low part of the thread pointer is in access register 1.
3088   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3089   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3090 
3091   // Merge them into a single 64-bit address.
3092   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3093                                     DAG.getConstant(32, DL, PtrVT));
3094   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3095 }
3096 
3097 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3098                                                      SelectionDAG &DAG) const {
3099   if (DAG.getTarget().useEmulatedTLS())
3100     return LowerToTLSEmulatedModel(Node, DAG);
3101   SDLoc DL(Node);
3102   const GlobalValue *GV = Node->getGlobal();
3103   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3104   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3105 
3106   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3107       CallingConv::GHC)
3108     report_fatal_error("In GHC calling convention TLS is not supported");
3109 
3110   SDValue TP = lowerThreadPointer(DL, DAG);
3111 
3112   // Get the offset of GA from the thread pointer, based on the TLS model.
3113   SDValue Offset;
3114   switch (model) {
3115     case TLSModel::GeneralDynamic: {
3116       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3117       SystemZConstantPoolValue *CPV =
3118         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3119 
3120       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3121       Offset = DAG.getLoad(
3122           PtrVT, DL, DAG.getEntryNode(), Offset,
3123           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3124 
3125       // Call __tls_get_offset to retrieve the offset.
3126       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3127       break;
3128     }
3129 
3130     case TLSModel::LocalDynamic: {
3131       // Load the GOT offset of the module ID.
3132       SystemZConstantPoolValue *CPV =
3133         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3134 
3135       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3136       Offset = DAG.getLoad(
3137           PtrVT, DL, DAG.getEntryNode(), Offset,
3138           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3139 
3140       // Call __tls_get_offset to retrieve the module base offset.
3141       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3142 
3143       // Note: The SystemZLDCleanupPass will remove redundant computations
3144       // of the module base offset.  Count total number of local-dynamic
3145       // accesses to trigger execution of that pass.
3146       SystemZMachineFunctionInfo* MFI =
3147         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3148       MFI->incNumLocalDynamicTLSAccesses();
3149 
3150       // Add the per-symbol offset.
3151       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3152 
3153       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
3154       DTPOffset = DAG.getLoad(
3155           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3156           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3157 
3158       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3159       break;
3160     }
3161 
3162     case TLSModel::InitialExec: {
3163       // Load the offset from the GOT.
3164       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3165                                           SystemZII::MO_INDNTPOFF);
3166       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3167       Offset =
3168           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3169                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3170       break;
3171     }
3172 
3173     case TLSModel::LocalExec: {
3174       // Force the offset into the constant pool and load it from there.
3175       SystemZConstantPoolValue *CPV =
3176         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3177 
3178       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3179       Offset = DAG.getLoad(
3180           PtrVT, DL, DAG.getEntryNode(), Offset,
3181           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3182       break;
3183     }
3184   }
3185 
3186   // Add the base and offset together.
3187   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3188 }
3189 
3190 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3191                                                  SelectionDAG &DAG) const {
3192   SDLoc DL(Node);
3193   const BlockAddress *BA = Node->getBlockAddress();
3194   int64_t Offset = Node->getOffset();
3195   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3196 
3197   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3198   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3199   return Result;
3200 }
3201 
3202 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3203                                               SelectionDAG &DAG) const {
3204   SDLoc DL(JT);
3205   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3206   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3207 
3208   // Use LARL to load the address of the table.
3209   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3210 }
3211 
3212 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3213                                                  SelectionDAG &DAG) const {
3214   SDLoc DL(CP);
3215   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3216 
3217   SDValue Result;
3218   if (CP->isMachineConstantPoolEntry())
3219     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3220                                        CP->getAlignment());
3221   else
3222     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3223                                        CP->getAlignment(), CP->getOffset());
3224 
3225   // Use LARL to load the address of the constant pool entry.
3226   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3227 }
3228 
3229 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3230                                               SelectionDAG &DAG) const {
3231   MachineFunction &MF = DAG.getMachineFunction();
3232   MachineFrameInfo &MFI = MF.getFrameInfo();
3233   MFI.setFrameAddressIsTaken(true);
3234 
3235   SDLoc DL(Op);
3236   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3237   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3238 
3239   // By definition, the frame address is the address of the back chain.
3240   auto *TFL =
3241       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3242   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3243   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3244 
3245   // FIXME The frontend should detect this case.
3246   if (Depth > 0) {
3247     report_fatal_error("Unsupported stack frame traversal count");
3248   }
3249 
3250   return BackChain;
3251 }
3252 
3253 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3254                                                SelectionDAG &DAG) const {
3255   MachineFunction &MF = DAG.getMachineFunction();
3256   MachineFrameInfo &MFI = MF.getFrameInfo();
3257   MFI.setReturnAddressIsTaken(true);
3258 
3259   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3260     return SDValue();
3261 
3262   SDLoc DL(Op);
3263   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3264   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3265 
3266   // FIXME The frontend should detect this case.
3267   if (Depth > 0) {
3268     report_fatal_error("Unsupported stack frame traversal count");
3269   }
3270 
3271   // Return R14D, which has the return address. Mark it an implicit live-in.
3272   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3273   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3274 }
3275 
3276 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3277                                             SelectionDAG &DAG) const {
3278   SDLoc DL(Op);
3279   SDValue In = Op.getOperand(0);
3280   EVT InVT = In.getValueType();
3281   EVT ResVT = Op.getValueType();
3282 
3283   // Convert loads directly.  This is normally done by DAGCombiner,
3284   // but we need this case for bitcasts that are created during lowering
3285   // and which are then lowered themselves.
3286   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3287     if (ISD::isNormalLoad(LoadN)) {
3288       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3289                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3290       // Update the chain uses.
3291       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3292       return NewLoad;
3293     }
3294 
3295   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3296     SDValue In64;
3297     if (Subtarget.hasHighWord()) {
3298       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3299                                        MVT::i64);
3300       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3301                                        MVT::i64, SDValue(U64, 0), In);
3302     } else {
3303       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3304       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3305                          DAG.getConstant(32, DL, MVT::i64));
3306     }
3307     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3308     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3309                                       DL, MVT::f32, Out64);
3310   }
3311   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3312     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3313     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3314                                              MVT::f64, SDValue(U64, 0), In);
3315     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3316     if (Subtarget.hasHighWord())
3317       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3318                                         MVT::i32, Out64);
3319     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3320                                 DAG.getConstant(32, DL, MVT::i64));
3321     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3322   }
3323   llvm_unreachable("Unexpected bitcast combination");
3324 }
3325 
3326 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3327                                             SelectionDAG &DAG) const {
3328   MachineFunction &MF = DAG.getMachineFunction();
3329   SystemZMachineFunctionInfo *FuncInfo =
3330     MF.getInfo<SystemZMachineFunctionInfo>();
3331   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3332 
3333   SDValue Chain   = Op.getOperand(0);
3334   SDValue Addr    = Op.getOperand(1);
3335   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3336   SDLoc DL(Op);
3337 
3338   // The initial values of each field.
3339   const unsigned NumFields = 4;
3340   SDValue Fields[NumFields] = {
3341     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3342     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3343     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3344     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3345   };
3346 
3347   // Store each field into its respective slot.
3348   SDValue MemOps[NumFields];
3349   unsigned Offset = 0;
3350   for (unsigned I = 0; I < NumFields; ++I) {
3351     SDValue FieldAddr = Addr;
3352     if (Offset != 0)
3353       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3354                               DAG.getIntPtrConstant(Offset, DL));
3355     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3356                              MachinePointerInfo(SV, Offset));
3357     Offset += 8;
3358   }
3359   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3360 }
3361 
3362 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3363                                            SelectionDAG &DAG) const {
3364   SDValue Chain      = Op.getOperand(0);
3365   SDValue DstPtr     = Op.getOperand(1);
3366   SDValue SrcPtr     = Op.getOperand(2);
3367   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3368   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3369   SDLoc DL(Op);
3370 
3371   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3372                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3373                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3374                        MachinePointerInfo(SrcSV));
3375 }
3376 
3377 SDValue SystemZTargetLowering::
3378 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3379   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3380   MachineFunction &MF = DAG.getMachineFunction();
3381   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3382   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3383 
3384   SDValue Chain = Op.getOperand(0);
3385   SDValue Size  = Op.getOperand(1);
3386   SDValue Align = Op.getOperand(2);
3387   SDLoc DL(Op);
3388 
3389   // If user has set the no alignment function attribute, ignore
3390   // alloca alignments.
3391   uint64_t AlignVal = (RealignOpt ?
3392                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3393 
3394   uint64_t StackAlign = TFI->getStackAlignment();
3395   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3396   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3397 
3398   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3399   SDValue NeededSpace = Size;
3400 
3401   // Get a reference to the stack pointer.
3402   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3403 
3404   // If we need a backchain, save it now.
3405   SDValue Backchain;
3406   if (StoreBackchain)
3407     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3408 
3409   // Add extra space for alignment if needed.
3410   if (ExtraAlignSpace)
3411     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3412                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3413 
3414   // Get the new stack pointer value.
3415   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3416 
3417   // Copy the new stack pointer back.
3418   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3419 
3420   // The allocated data lives above the 160 bytes allocated for the standard
3421   // frame, plus any outgoing stack arguments.  We don't know how much that
3422   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3423   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3424   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3425 
3426   // Dynamically realign if needed.
3427   if (RequiredAlign > StackAlign) {
3428     Result =
3429       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3430                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3431     Result =
3432       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3433                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3434   }
3435 
3436   if (StoreBackchain)
3437     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3438 
3439   SDValue Ops[2] = { Result, Chain };
3440   return DAG.getMergeValues(Ops, DL);
3441 }
3442 
3443 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3444     SDValue Op, SelectionDAG &DAG) const {
3445   SDLoc DL(Op);
3446 
3447   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3448 }
3449 
3450 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3451                                               SelectionDAG &DAG) const {
3452   EVT VT = Op.getValueType();
3453   SDLoc DL(Op);
3454   SDValue Ops[2];
3455   if (is32Bit(VT))
3456     // Just do a normal 64-bit multiplication and extract the results.
3457     // We define this so that it can be used for constant division.
3458     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3459                     Op.getOperand(1), Ops[1], Ops[0]);
3460   else if (Subtarget.hasMiscellaneousExtensions2())
3461     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3462     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3463     // return the low half first, so the results are in reverse order.
3464     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3465                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3466   else {
3467     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3468     //
3469     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3470     //
3471     // but using the fact that the upper halves are either all zeros
3472     // or all ones:
3473     //
3474     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3475     //
3476     // and grouping the right terms together since they are quicker than the
3477     // multiplication:
3478     //
3479     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3480     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3481     SDValue LL = Op.getOperand(0);
3482     SDValue RL = Op.getOperand(1);
3483     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3484     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3485     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3486     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3487     // return the low half first, so the results are in reverse order.
3488     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3489                      LL, RL, Ops[1], Ops[0]);
3490     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3491     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3492     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3493     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3494   }
3495   return DAG.getMergeValues(Ops, DL);
3496 }
3497 
3498 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3499                                               SelectionDAG &DAG) const {
3500   EVT VT = Op.getValueType();
3501   SDLoc DL(Op);
3502   SDValue Ops[2];
3503   if (is32Bit(VT))
3504     // Just do a normal 64-bit multiplication and extract the results.
3505     // We define this so that it can be used for constant division.
3506     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3507                     Op.getOperand(1), Ops[1], Ops[0]);
3508   else
3509     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3510     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3511     // return the low half first, so the results are in reverse order.
3512     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3513                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3514   return DAG.getMergeValues(Ops, DL);
3515 }
3516 
3517 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3518                                             SelectionDAG &DAG) const {
3519   SDValue Op0 = Op.getOperand(0);
3520   SDValue Op1 = Op.getOperand(1);
3521   EVT VT = Op.getValueType();
3522   SDLoc DL(Op);
3523 
3524   // We use DSGF for 32-bit division.  This means the first operand must
3525   // always be 64-bit, and the second operand should be 32-bit whenever
3526   // that is possible, to improve performance.
3527   if (is32Bit(VT))
3528     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3529   else if (DAG.ComputeNumSignBits(Op1) > 32)
3530     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3531 
3532   // DSG(F) returns the remainder in the even register and the
3533   // quotient in the odd register.
3534   SDValue Ops[2];
3535   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3536   return DAG.getMergeValues(Ops, DL);
3537 }
3538 
3539 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3540                                             SelectionDAG &DAG) const {
3541   EVT VT = Op.getValueType();
3542   SDLoc DL(Op);
3543 
3544   // DL(G) returns the remainder in the even register and the
3545   // quotient in the odd register.
3546   SDValue Ops[2];
3547   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3548                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3549   return DAG.getMergeValues(Ops, DL);
3550 }
3551 
3552 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3553   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3554 
3555   // Get the known-zero masks for each operand.
3556   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3557   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3558                         DAG.computeKnownBits(Ops[1])};
3559 
3560   // See if the upper 32 bits of one operand and the lower 32 bits of the
3561   // other are known zero.  They are the low and high operands respectively.
3562   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3563                        Known[1].Zero.getZExtValue() };
3564   unsigned High, Low;
3565   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3566     High = 1, Low = 0;
3567   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3568     High = 0, Low = 1;
3569   else
3570     return Op;
3571 
3572   SDValue LowOp = Ops[Low];
3573   SDValue HighOp = Ops[High];
3574 
3575   // If the high part is a constant, we're better off using IILH.
3576   if (HighOp.getOpcode() == ISD::Constant)
3577     return Op;
3578 
3579   // If the low part is a constant that is outside the range of LHI,
3580   // then we're better off using IILF.
3581   if (LowOp.getOpcode() == ISD::Constant) {
3582     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3583     if (!isInt<16>(Value))
3584       return Op;
3585   }
3586 
3587   // Check whether the high part is an AND that doesn't change the
3588   // high 32 bits and just masks out low bits.  We can skip it if so.
3589   if (HighOp.getOpcode() == ISD::AND &&
3590       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3591     SDValue HighOp0 = HighOp.getOperand(0);
3592     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3593     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3594       HighOp = HighOp0;
3595   }
3596 
3597   // Take advantage of the fact that all GR32 operations only change the
3598   // low 32 bits by truncating Low to an i32 and inserting it directly
3599   // using a subreg.  The interesting cases are those where the truncation
3600   // can be folded.
3601   SDLoc DL(Op);
3602   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3603   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3604                                    MVT::i64, HighOp, Low32);
3605 }
3606 
3607 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3608 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3609                                           SelectionDAG &DAG) const {
3610   SDNode *N = Op.getNode();
3611   SDValue LHS = N->getOperand(0);
3612   SDValue RHS = N->getOperand(1);
3613   SDLoc DL(N);
3614   unsigned BaseOp = 0;
3615   unsigned CCValid = 0;
3616   unsigned CCMask = 0;
3617 
3618   switch (Op.getOpcode()) {
3619   default: llvm_unreachable("Unknown instruction!");
3620   case ISD::SADDO:
3621     BaseOp = SystemZISD::SADDO;
3622     CCValid = SystemZ::CCMASK_ARITH;
3623     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3624     break;
3625   case ISD::SSUBO:
3626     BaseOp = SystemZISD::SSUBO;
3627     CCValid = SystemZ::CCMASK_ARITH;
3628     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3629     break;
3630   case ISD::UADDO:
3631     BaseOp = SystemZISD::UADDO;
3632     CCValid = SystemZ::CCMASK_LOGICAL;
3633     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3634     break;
3635   case ISD::USUBO:
3636     BaseOp = SystemZISD::USUBO;
3637     CCValid = SystemZ::CCMASK_LOGICAL;
3638     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3639     break;
3640   }
3641 
3642   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3643   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3644 
3645   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3646   if (N->getValueType(1) == MVT::i1)
3647     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3648 
3649   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3650 }
3651 
3652 static bool isAddCarryChain(SDValue Carry) {
3653   while (Carry.getOpcode() == ISD::ADDCARRY)
3654     Carry = Carry.getOperand(2);
3655   return Carry.getOpcode() == ISD::UADDO;
3656 }
3657 
3658 static bool isSubBorrowChain(SDValue Carry) {
3659   while (Carry.getOpcode() == ISD::SUBCARRY)
3660     Carry = Carry.getOperand(2);
3661   return Carry.getOpcode() == ISD::USUBO;
3662 }
3663 
3664 // Lower ADDCARRY/SUBCARRY nodes.
3665 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3666                                                 SelectionDAG &DAG) const {
3667 
3668   SDNode *N = Op.getNode();
3669   MVT VT = N->getSimpleValueType(0);
3670 
3671   // Let legalize expand this if it isn't a legal type yet.
3672   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3673     return SDValue();
3674 
3675   SDValue LHS = N->getOperand(0);
3676   SDValue RHS = N->getOperand(1);
3677   SDValue Carry = Op.getOperand(2);
3678   SDLoc DL(N);
3679   unsigned BaseOp = 0;
3680   unsigned CCValid = 0;
3681   unsigned CCMask = 0;
3682 
3683   switch (Op.getOpcode()) {
3684   default: llvm_unreachable("Unknown instruction!");
3685   case ISD::ADDCARRY:
3686     if (!isAddCarryChain(Carry))
3687       return SDValue();
3688 
3689     BaseOp = SystemZISD::ADDCARRY;
3690     CCValid = SystemZ::CCMASK_LOGICAL;
3691     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3692     break;
3693   case ISD::SUBCARRY:
3694     if (!isSubBorrowChain(Carry))
3695       return SDValue();
3696 
3697     BaseOp = SystemZISD::SUBCARRY;
3698     CCValid = SystemZ::CCMASK_LOGICAL;
3699     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3700     break;
3701   }
3702 
3703   // Set the condition code from the carry flag.
3704   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3705                       DAG.getConstant(CCValid, DL, MVT::i32),
3706                       DAG.getConstant(CCMask, DL, MVT::i32));
3707 
3708   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3709   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3710 
3711   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3712   if (N->getValueType(1) == MVT::i1)
3713     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3714 
3715   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3716 }
3717 
3718 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3719                                           SelectionDAG &DAG) const {
3720   EVT VT = Op.getValueType();
3721   SDLoc DL(Op);
3722   Op = Op.getOperand(0);
3723 
3724   // Handle vector types via VPOPCT.
3725   if (VT.isVector()) {
3726     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3727     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3728     switch (VT.getScalarSizeInBits()) {
3729     case 8:
3730       break;
3731     case 16: {
3732       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3733       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3734       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3735       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3736       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3737       break;
3738     }
3739     case 32: {
3740       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3741                                             DAG.getConstant(0, DL, MVT::i32));
3742       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3743       break;
3744     }
3745     case 64: {
3746       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3747                                             DAG.getConstant(0, DL, MVT::i32));
3748       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3749       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3750       break;
3751     }
3752     default:
3753       llvm_unreachable("Unexpected type");
3754     }
3755     return Op;
3756   }
3757 
3758   // Get the known-zero mask for the operand.
3759   KnownBits Known = DAG.computeKnownBits(Op);
3760   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3761   if (NumSignificantBits == 0)
3762     return DAG.getConstant(0, DL, VT);
3763 
3764   // Skip known-zero high parts of the operand.
3765   int64_t OrigBitSize = VT.getSizeInBits();
3766   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3767   BitSize = std::min(BitSize, OrigBitSize);
3768 
3769   // The POPCNT instruction counts the number of bits in each byte.
3770   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3771   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3772   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3773 
3774   // Add up per-byte counts in a binary tree.  All bits of Op at
3775   // position larger than BitSize remain zero throughout.
3776   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3777     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3778     if (BitSize != OrigBitSize)
3779       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3780                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3781     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3782   }
3783 
3784   // Extract overall result from high byte.
3785   if (BitSize > 8)
3786     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3787                      DAG.getConstant(BitSize - 8, DL, VT));
3788 
3789   return Op;
3790 }
3791 
3792 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3793                                                  SelectionDAG &DAG) const {
3794   SDLoc DL(Op);
3795   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3796     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3797   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3798     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3799 
3800   // The only fence that needs an instruction is a sequentially-consistent
3801   // cross-thread fence.
3802   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3803       FenceSSID == SyncScope::System) {
3804     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3805                                       Op.getOperand(0)),
3806                    0);
3807   }
3808 
3809   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3810   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3811 }
3812 
3813 // Op is an atomic load.  Lower it into a normal volatile load.
3814 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3815                                                 SelectionDAG &DAG) const {
3816   auto *Node = cast<AtomicSDNode>(Op.getNode());
3817   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3818                         Node->getChain(), Node->getBasePtr(),
3819                         Node->getMemoryVT(), Node->getMemOperand());
3820 }
3821 
3822 // Op is an atomic store.  Lower it into a normal volatile store.
3823 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3824                                                  SelectionDAG &DAG) const {
3825   auto *Node = cast<AtomicSDNode>(Op.getNode());
3826   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3827                                     Node->getBasePtr(), Node->getMemoryVT(),
3828                                     Node->getMemOperand());
3829   // We have to enforce sequential consistency by performing a
3830   // serialization operation after the store.
3831   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3832     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3833                                        MVT::Other, Chain), 0);
3834   return Chain;
3835 }
3836 
3837 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3838 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3839 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3840                                                    SelectionDAG &DAG,
3841                                                    unsigned Opcode) const {
3842   auto *Node = cast<AtomicSDNode>(Op.getNode());
3843 
3844   // 32-bit operations need no code outside the main loop.
3845   EVT NarrowVT = Node->getMemoryVT();
3846   EVT WideVT = MVT::i32;
3847   if (NarrowVT == WideVT)
3848     return Op;
3849 
3850   int64_t BitSize = NarrowVT.getSizeInBits();
3851   SDValue ChainIn = Node->getChain();
3852   SDValue Addr = Node->getBasePtr();
3853   SDValue Src2 = Node->getVal();
3854   MachineMemOperand *MMO = Node->getMemOperand();
3855   SDLoc DL(Node);
3856   EVT PtrVT = Addr.getValueType();
3857 
3858   // Convert atomic subtracts of constants into additions.
3859   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3860     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3861       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3862       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3863     }
3864 
3865   // Get the address of the containing word.
3866   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3867                                     DAG.getConstant(-4, DL, PtrVT));
3868 
3869   // Get the number of bits that the word must be rotated left in order
3870   // to bring the field to the top bits of a GR32.
3871   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3872                                  DAG.getConstant(3, DL, PtrVT));
3873   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3874 
3875   // Get the complementing shift amount, for rotating a field in the top
3876   // bits back to its proper position.
3877   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3878                                     DAG.getConstant(0, DL, WideVT), BitShift);
3879 
3880   // Extend the source operand to 32 bits and prepare it for the inner loop.
3881   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3882   // operations require the source to be shifted in advance.  (This shift
3883   // can be folded if the source is constant.)  For AND and NAND, the lower
3884   // bits must be set, while for other opcodes they should be left clear.
3885   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3886     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3887                        DAG.getConstant(32 - BitSize, DL, WideVT));
3888   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3889       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3890     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3891                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3892 
3893   // Construct the ATOMIC_LOADW_* node.
3894   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3895   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3896                     DAG.getConstant(BitSize, DL, WideVT) };
3897   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3898                                              NarrowVT, MMO);
3899 
3900   // Rotate the result of the final CS so that the field is in the lower
3901   // bits of a GR32, then truncate it.
3902   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3903                                     DAG.getConstant(BitSize, DL, WideVT));
3904   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3905 
3906   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3907   return DAG.getMergeValues(RetOps, DL);
3908 }
3909 
3910 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3911 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3912 // operations into additions.
3913 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3914                                                     SelectionDAG &DAG) const {
3915   auto *Node = cast<AtomicSDNode>(Op.getNode());
3916   EVT MemVT = Node->getMemoryVT();
3917   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3918     // A full-width operation.
3919     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3920     SDValue Src2 = Node->getVal();
3921     SDValue NegSrc2;
3922     SDLoc DL(Src2);
3923 
3924     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3925       // Use an addition if the operand is constant and either LAA(G) is
3926       // available or the negative value is in the range of A(G)FHI.
3927       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3928       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3929         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3930     } else if (Subtarget.hasInterlockedAccess1())
3931       // Use LAA(G) if available.
3932       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3933                             Src2);
3934 
3935     if (NegSrc2.getNode())
3936       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3937                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3938                            Node->getMemOperand());
3939 
3940     // Use the node as-is.
3941     return Op;
3942   }
3943 
3944   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3945 }
3946 
3947 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3948 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3949                                                     SelectionDAG &DAG) const {
3950   auto *Node = cast<AtomicSDNode>(Op.getNode());
3951   SDValue ChainIn = Node->getOperand(0);
3952   SDValue Addr = Node->getOperand(1);
3953   SDValue CmpVal = Node->getOperand(2);
3954   SDValue SwapVal = Node->getOperand(3);
3955   MachineMemOperand *MMO = Node->getMemOperand();
3956   SDLoc DL(Node);
3957 
3958   // We have native support for 32-bit and 64-bit compare and swap, but we
3959   // still need to expand extracting the "success" result from the CC.
3960   EVT NarrowVT = Node->getMemoryVT();
3961   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3962   if (NarrowVT == WideVT) {
3963     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3964     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3965     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3966                                                DL, Tys, Ops, NarrowVT, MMO);
3967     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3968                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3969 
3970     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3971     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3972     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3973     return SDValue();
3974   }
3975 
3976   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3977   // via a fullword ATOMIC_CMP_SWAPW operation.
3978   int64_t BitSize = NarrowVT.getSizeInBits();
3979   EVT PtrVT = Addr.getValueType();
3980 
3981   // Get the address of the containing word.
3982   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3983                                     DAG.getConstant(-4, DL, PtrVT));
3984 
3985   // Get the number of bits that the word must be rotated left in order
3986   // to bring the field to the top bits of a GR32.
3987   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3988                                  DAG.getConstant(3, DL, PtrVT));
3989   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3990 
3991   // Get the complementing shift amount, for rotating a field in the top
3992   // bits back to its proper position.
3993   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3994                                     DAG.getConstant(0, DL, WideVT), BitShift);
3995 
3996   // Construct the ATOMIC_CMP_SWAPW node.
3997   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3998   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3999                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4000   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4001                                              VTList, Ops, NarrowVT, MMO);
4002   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4003                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4004 
4005   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4006   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4007   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4008   return SDValue();
4009 }
4010 
4011 MachineMemOperand::Flags
4012 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4013   // Because of how we convert atomic_load and atomic_store to normal loads and
4014   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4015   // since DAGCombine hasn't been updated to account for atomic, but non
4016   // volatile loads.  (See D57601)
4017   if (auto *SI = dyn_cast<StoreInst>(&I))
4018     if (SI->isAtomic())
4019       return MachineMemOperand::MOVolatile;
4020   if (auto *LI = dyn_cast<LoadInst>(&I))
4021     if (LI->isAtomic())
4022       return MachineMemOperand::MOVolatile;
4023   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4024     if (AI->isAtomic())
4025       return MachineMemOperand::MOVolatile;
4026   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4027     if (AI->isAtomic())
4028       return MachineMemOperand::MOVolatile;
4029   return MachineMemOperand::MONone;
4030 }
4031 
4032 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4033                                               SelectionDAG &DAG) const {
4034   MachineFunction &MF = DAG.getMachineFunction();
4035   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4036   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4037     report_fatal_error("Variable-sized stack allocations are not supported "
4038                        "in GHC calling convention");
4039   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4040                             SystemZ::R15D, Op.getValueType());
4041 }
4042 
4043 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4044                                                  SelectionDAG &DAG) const {
4045   MachineFunction &MF = DAG.getMachineFunction();
4046   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4047   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4048 
4049   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4050     report_fatal_error("Variable-sized stack allocations are not supported "
4051                        "in GHC calling convention");
4052 
4053   SDValue Chain = Op.getOperand(0);
4054   SDValue NewSP = Op.getOperand(1);
4055   SDValue Backchain;
4056   SDLoc DL(Op);
4057 
4058   if (StoreBackchain) {
4059     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4060     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4061   }
4062 
4063   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4064 
4065   if (StoreBackchain)
4066     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4067 
4068   return Chain;
4069 }
4070 
4071 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4072                                              SelectionDAG &DAG) const {
4073   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4074   if (!IsData)
4075     // Just preserve the chain.
4076     return Op.getOperand(0);
4077 
4078   SDLoc DL(Op);
4079   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4080   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4081   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4082   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4083                    Op.getOperand(1)};
4084   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4085                                  Node->getVTList(), Ops,
4086                                  Node->getMemoryVT(), Node->getMemOperand());
4087 }
4088 
4089 // Convert condition code in CCReg to an i32 value.
4090 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4091   SDLoc DL(CCReg);
4092   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4093   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4094                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4095 }
4096 
4097 SDValue
4098 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4099                                               SelectionDAG &DAG) const {
4100   unsigned Opcode, CCValid;
4101   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4102     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4103     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4104     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4105     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4106     return SDValue();
4107   }
4108 
4109   return SDValue();
4110 }
4111 
4112 SDValue
4113 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4114                                                SelectionDAG &DAG) const {
4115   unsigned Opcode, CCValid;
4116   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4117     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4118     if (Op->getNumValues() == 1)
4119       return getCCResult(DAG, SDValue(Node, 0));
4120     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4121     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4122                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4123   }
4124 
4125   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4126   switch (Id) {
4127   case Intrinsic::thread_pointer:
4128     return lowerThreadPointer(SDLoc(Op), DAG);
4129 
4130   case Intrinsic::s390_vpdi:
4131     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4132                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4133 
4134   case Intrinsic::s390_vperm:
4135     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4136                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4137 
4138   case Intrinsic::s390_vuphb:
4139   case Intrinsic::s390_vuphh:
4140   case Intrinsic::s390_vuphf:
4141     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4142                        Op.getOperand(1));
4143 
4144   case Intrinsic::s390_vuplhb:
4145   case Intrinsic::s390_vuplhh:
4146   case Intrinsic::s390_vuplhf:
4147     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4148                        Op.getOperand(1));
4149 
4150   case Intrinsic::s390_vuplb:
4151   case Intrinsic::s390_vuplhw:
4152   case Intrinsic::s390_vuplf:
4153     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4154                        Op.getOperand(1));
4155 
4156   case Intrinsic::s390_vupllb:
4157   case Intrinsic::s390_vupllh:
4158   case Intrinsic::s390_vupllf:
4159     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4160                        Op.getOperand(1));
4161 
4162   case Intrinsic::s390_vsumb:
4163   case Intrinsic::s390_vsumh:
4164   case Intrinsic::s390_vsumgh:
4165   case Intrinsic::s390_vsumgf:
4166   case Intrinsic::s390_vsumqf:
4167   case Intrinsic::s390_vsumqg:
4168     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4169                        Op.getOperand(1), Op.getOperand(2));
4170   }
4171 
4172   return SDValue();
4173 }
4174 
4175 namespace {
4176 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4177 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4178 // Operand is the constant third operand, otherwise it is the number of
4179 // bytes in each element of the result.
4180 struct Permute {
4181   unsigned Opcode;
4182   unsigned Operand;
4183   unsigned char Bytes[SystemZ::VectorBytes];
4184 };
4185 }
4186 
4187 static const Permute PermuteForms[] = {
4188   // VMRHG
4189   { SystemZISD::MERGE_HIGH, 8,
4190     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4191   // VMRHF
4192   { SystemZISD::MERGE_HIGH, 4,
4193     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4194   // VMRHH
4195   { SystemZISD::MERGE_HIGH, 2,
4196     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4197   // VMRHB
4198   { SystemZISD::MERGE_HIGH, 1,
4199     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4200   // VMRLG
4201   { SystemZISD::MERGE_LOW, 8,
4202     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4203   // VMRLF
4204   { SystemZISD::MERGE_LOW, 4,
4205     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4206   // VMRLH
4207   { SystemZISD::MERGE_LOW, 2,
4208     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4209   // VMRLB
4210   { SystemZISD::MERGE_LOW, 1,
4211     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4212   // VPKG
4213   { SystemZISD::PACK, 4,
4214     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4215   // VPKF
4216   { SystemZISD::PACK, 2,
4217     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4218   // VPKH
4219   { SystemZISD::PACK, 1,
4220     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4221   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4222   { SystemZISD::PERMUTE_DWORDS, 4,
4223     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4224   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4225   { SystemZISD::PERMUTE_DWORDS, 1,
4226     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4227 };
4228 
4229 // Called after matching a vector shuffle against a particular pattern.
4230 // Both the original shuffle and the pattern have two vector operands.
4231 // OpNos[0] is the operand of the original shuffle that should be used for
4232 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4233 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4234 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4235 // for operands 0 and 1 of the pattern.
4236 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4237   if (OpNos[0] < 0) {
4238     if (OpNos[1] < 0)
4239       return false;
4240     OpNo0 = OpNo1 = OpNos[1];
4241   } else if (OpNos[1] < 0) {
4242     OpNo0 = OpNo1 = OpNos[0];
4243   } else {
4244     OpNo0 = OpNos[0];
4245     OpNo1 = OpNos[1];
4246   }
4247   return true;
4248 }
4249 
4250 // Bytes is a VPERM-like permute vector, except that -1 is used for
4251 // undefined bytes.  Return true if the VPERM can be implemented using P.
4252 // When returning true set OpNo0 to the VPERM operand that should be
4253 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4254 //
4255 // For example, if swapping the VPERM operands allows P to match, OpNo0
4256 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4257 // operand, but rewriting it to use two duplicated operands allows it to
4258 // match P, then OpNo0 and OpNo1 will be the same.
4259 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4260                          unsigned &OpNo0, unsigned &OpNo1) {
4261   int OpNos[] = { -1, -1 };
4262   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4263     int Elt = Bytes[I];
4264     if (Elt >= 0) {
4265       // Make sure that the two permute vectors use the same suboperand
4266       // byte number.  Only the operand numbers (the high bits) are
4267       // allowed to differ.
4268       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4269         return false;
4270       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4271       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4272       // Make sure that the operand mappings are consistent with previous
4273       // elements.
4274       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4275         return false;
4276       OpNos[ModelOpNo] = RealOpNo;
4277     }
4278   }
4279   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4280 }
4281 
4282 // As above, but search for a matching permute.
4283 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4284                                    unsigned &OpNo0, unsigned &OpNo1) {
4285   for (auto &P : PermuteForms)
4286     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4287       return &P;
4288   return nullptr;
4289 }
4290 
4291 // Bytes is a VPERM-like permute vector, except that -1 is used for
4292 // undefined bytes.  This permute is an operand of an outer permute.
4293 // See whether redistributing the -1 bytes gives a shuffle that can be
4294 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4295 // that, when applied to the result of P, gives the original permute in Bytes.
4296 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4297                                const Permute &P,
4298                                SmallVectorImpl<int> &Transform) {
4299   unsigned To = 0;
4300   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4301     int Elt = Bytes[From];
4302     if (Elt < 0)
4303       // Byte number From of the result is undefined.
4304       Transform[From] = -1;
4305     else {
4306       while (P.Bytes[To] != Elt) {
4307         To += 1;
4308         if (To == SystemZ::VectorBytes)
4309           return false;
4310       }
4311       Transform[From] = To;
4312     }
4313   }
4314   return true;
4315 }
4316 
4317 // As above, but search for a matching permute.
4318 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4319                                          SmallVectorImpl<int> &Transform) {
4320   for (auto &P : PermuteForms)
4321     if (matchDoublePermute(Bytes, P, Transform))
4322       return &P;
4323   return nullptr;
4324 }
4325 
4326 // Convert the mask of the given shuffle op into a byte-level mask,
4327 // as if it had type vNi8.
4328 static bool getVPermMask(SDValue ShuffleOp,
4329                          SmallVectorImpl<int> &Bytes) {
4330   EVT VT = ShuffleOp.getValueType();
4331   unsigned NumElements = VT.getVectorNumElements();
4332   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4333 
4334   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4335     Bytes.resize(NumElements * BytesPerElement, -1);
4336     for (unsigned I = 0; I < NumElements; ++I) {
4337       int Index = VSN->getMaskElt(I);
4338       if (Index >= 0)
4339         for (unsigned J = 0; J < BytesPerElement; ++J)
4340           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4341     }
4342     return true;
4343   }
4344   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4345       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4346     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4347     Bytes.resize(NumElements * BytesPerElement, -1);
4348     for (unsigned I = 0; I < NumElements; ++I)
4349       for (unsigned J = 0; J < BytesPerElement; ++J)
4350         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4351     return true;
4352   }
4353   return false;
4354 }
4355 
4356 // Bytes is a VPERM-like permute vector, except that -1 is used for
4357 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4358 // the result come from a contiguous sequence of bytes from one input.
4359 // Set Base to the selector for the first byte if so.
4360 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4361                             unsigned BytesPerElement, int &Base) {
4362   Base = -1;
4363   for (unsigned I = 0; I < BytesPerElement; ++I) {
4364     if (Bytes[Start + I] >= 0) {
4365       unsigned Elem = Bytes[Start + I];
4366       if (Base < 0) {
4367         Base = Elem - I;
4368         // Make sure the bytes would come from one input operand.
4369         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4370           return false;
4371       } else if (unsigned(Base) != Elem - I)
4372         return false;
4373     }
4374   }
4375   return true;
4376 }
4377 
4378 // Bytes is a VPERM-like permute vector, except that -1 is used for
4379 // undefined bytes.  Return true if it can be performed using VSLDI.
4380 // When returning true, set StartIndex to the shift amount and OpNo0
4381 // and OpNo1 to the VPERM operands that should be used as the first
4382 // and second shift operand respectively.
4383 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4384                                unsigned &StartIndex, unsigned &OpNo0,
4385                                unsigned &OpNo1) {
4386   int OpNos[] = { -1, -1 };
4387   int Shift = -1;
4388   for (unsigned I = 0; I < 16; ++I) {
4389     int Index = Bytes[I];
4390     if (Index >= 0) {
4391       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4392       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4393       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4394       if (Shift < 0)
4395         Shift = ExpectedShift;
4396       else if (Shift != ExpectedShift)
4397         return false;
4398       // Make sure that the operand mappings are consistent with previous
4399       // elements.
4400       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4401         return false;
4402       OpNos[ModelOpNo] = RealOpNo;
4403     }
4404   }
4405   StartIndex = Shift;
4406   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4407 }
4408 
4409 // Create a node that performs P on operands Op0 and Op1, casting the
4410 // operands to the appropriate type.  The type of the result is determined by P.
4411 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4412                               const Permute &P, SDValue Op0, SDValue Op1) {
4413   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4414   // elements of a PACK are twice as wide as the outputs.
4415   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4416                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4417                       P.Operand);
4418   // Cast both operands to the appropriate type.
4419   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4420                               SystemZ::VectorBytes / InBytes);
4421   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4422   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4423   SDValue Op;
4424   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4425     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4426     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4427   } else if (P.Opcode == SystemZISD::PACK) {
4428     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4429                                  SystemZ::VectorBytes / P.Operand);
4430     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4431   } else {
4432     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4433   }
4434   return Op;
4435 }
4436 
4437 // Bytes is a VPERM-like permute vector, except that -1 is used for
4438 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4439 // VSLDI or VPERM.
4440 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4441                                      SDValue *Ops,
4442                                      const SmallVectorImpl<int> &Bytes) {
4443   for (unsigned I = 0; I < 2; ++I)
4444     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4445 
4446   // First see whether VSLDI can be used.
4447   unsigned StartIndex, OpNo0, OpNo1;
4448   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4449     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4450                        Ops[OpNo1],
4451                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4452 
4453   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4454   SDValue IndexNodes[SystemZ::VectorBytes];
4455   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4456     if (Bytes[I] >= 0)
4457       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4458     else
4459       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4460   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4461   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4462 }
4463 
4464 namespace {
4465 // Describes a general N-operand vector shuffle.
4466 struct GeneralShuffle {
4467   GeneralShuffle(EVT vt) : VT(vt) {}
4468   void addUndef();
4469   bool add(SDValue, unsigned);
4470   SDValue getNode(SelectionDAG &, const SDLoc &);
4471 
4472   // The operands of the shuffle.
4473   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4474 
4475   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4476   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4477   // Bytes[I] / SystemZ::VectorBytes.
4478   SmallVector<int, SystemZ::VectorBytes> Bytes;
4479 
4480   // The type of the shuffle result.
4481   EVT VT;
4482 };
4483 }
4484 
4485 // Add an extra undefined element to the shuffle.
4486 void GeneralShuffle::addUndef() {
4487   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4488   for (unsigned I = 0; I < BytesPerElement; ++I)
4489     Bytes.push_back(-1);
4490 }
4491 
4492 // Add an extra element to the shuffle, taking it from element Elem of Op.
4493 // A null Op indicates a vector input whose value will be calculated later;
4494 // there is at most one such input per shuffle and it always has the same
4495 // type as the result. Aborts and returns false if the source vector elements
4496 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4497 // LLVM they become implicitly extended, but this is rare and not optimized.
4498 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4499   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4500 
4501   // The source vector can have wider elements than the result,
4502   // either through an explicit TRUNCATE or because of type legalization.
4503   // We want the least significant part.
4504   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4505   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4506 
4507   // Return false if the source elements are smaller than their destination
4508   // elements.
4509   if (FromBytesPerElement < BytesPerElement)
4510     return false;
4511 
4512   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4513                    (FromBytesPerElement - BytesPerElement));
4514 
4515   // Look through things like shuffles and bitcasts.
4516   while (Op.getNode()) {
4517     if (Op.getOpcode() == ISD::BITCAST)
4518       Op = Op.getOperand(0);
4519     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4520       // See whether the bytes we need come from a contiguous part of one
4521       // operand.
4522       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4523       if (!getVPermMask(Op, OpBytes))
4524         break;
4525       int NewByte;
4526       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4527         break;
4528       if (NewByte < 0) {
4529         addUndef();
4530         return true;
4531       }
4532       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4533       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4534     } else if (Op.isUndef()) {
4535       addUndef();
4536       return true;
4537     } else
4538       break;
4539   }
4540 
4541   // Make sure that the source of the extraction is in Ops.
4542   unsigned OpNo = 0;
4543   for (; OpNo < Ops.size(); ++OpNo)
4544     if (Ops[OpNo] == Op)
4545       break;
4546   if (OpNo == Ops.size())
4547     Ops.push_back(Op);
4548 
4549   // Add the element to Bytes.
4550   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4551   for (unsigned I = 0; I < BytesPerElement; ++I)
4552     Bytes.push_back(Base + I);
4553 
4554   return true;
4555 }
4556 
4557 // Return SDNodes for the completed shuffle.
4558 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4559   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4560 
4561   if (Ops.size() == 0)
4562     return DAG.getUNDEF(VT);
4563 
4564   // Make sure that there are at least two shuffle operands.
4565   if (Ops.size() == 1)
4566     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4567 
4568   // Create a tree of shuffles, deferring root node until after the loop.
4569   // Try to redistribute the undefined elements of non-root nodes so that
4570   // the non-root shuffles match something like a pack or merge, then adjust
4571   // the parent node's permute vector to compensate for the new order.
4572   // Among other things, this copes with vectors like <2 x i16> that were
4573   // padded with undefined elements during type legalization.
4574   //
4575   // In the best case this redistribution will lead to the whole tree
4576   // using packs and merges.  It should rarely be a loss in other cases.
4577   unsigned Stride = 1;
4578   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4579     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4580       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4581 
4582       // Create a mask for just these two operands.
4583       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4584       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4585         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4586         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4587         if (OpNo == I)
4588           NewBytes[J] = Byte;
4589         else if (OpNo == I + Stride)
4590           NewBytes[J] = SystemZ::VectorBytes + Byte;
4591         else
4592           NewBytes[J] = -1;
4593       }
4594       // See if it would be better to reorganize NewMask to avoid using VPERM.
4595       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4596       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4597         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4598         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4599         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4600           if (NewBytes[J] >= 0) {
4601             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4602                    "Invalid double permute");
4603             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4604           } else
4605             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4606         }
4607       } else {
4608         // Just use NewBytes on the operands.
4609         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4610         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4611           if (NewBytes[J] >= 0)
4612             Bytes[J] = I * SystemZ::VectorBytes + J;
4613       }
4614     }
4615   }
4616 
4617   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4618   if (Stride > 1) {
4619     Ops[1] = Ops[Stride];
4620     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4621       if (Bytes[I] >= int(SystemZ::VectorBytes))
4622         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4623   }
4624 
4625   // Look for an instruction that can do the permute without resorting
4626   // to VPERM.
4627   unsigned OpNo0, OpNo1;
4628   SDValue Op;
4629   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4630     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4631   else
4632     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4633   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4634 }
4635 
4636 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4637 static bool isScalarToVector(SDValue Op) {
4638   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4639     if (!Op.getOperand(I).isUndef())
4640       return false;
4641   return true;
4642 }
4643 
4644 // Return a vector of type VT that contains Value in the first element.
4645 // The other elements don't matter.
4646 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4647                                    SDValue Value) {
4648   // If we have a constant, replicate it to all elements and let the
4649   // BUILD_VECTOR lowering take care of it.
4650   if (Value.getOpcode() == ISD::Constant ||
4651       Value.getOpcode() == ISD::ConstantFP) {
4652     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4653     return DAG.getBuildVector(VT, DL, Ops);
4654   }
4655   if (Value.isUndef())
4656     return DAG.getUNDEF(VT);
4657   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4658 }
4659 
4660 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4661 // element 1.  Used for cases in which replication is cheap.
4662 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4663                                  SDValue Op0, SDValue Op1) {
4664   if (Op0.isUndef()) {
4665     if (Op1.isUndef())
4666       return DAG.getUNDEF(VT);
4667     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4668   }
4669   if (Op1.isUndef())
4670     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4671   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4672                      buildScalarToVector(DAG, DL, VT, Op0),
4673                      buildScalarToVector(DAG, DL, VT, Op1));
4674 }
4675 
4676 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4677 // vector for them.
4678 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4679                           SDValue Op1) {
4680   if (Op0.isUndef() && Op1.isUndef())
4681     return DAG.getUNDEF(MVT::v2i64);
4682   // If one of the two inputs is undefined then replicate the other one,
4683   // in order to avoid using another register unnecessarily.
4684   if (Op0.isUndef())
4685     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4686   else if (Op1.isUndef())
4687     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4688   else {
4689     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4690     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4691   }
4692   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4693 }
4694 
4695 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4696 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4697 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4698 // would benefit from this representation and return it if so.
4699 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4700                                      BuildVectorSDNode *BVN) {
4701   EVT VT = BVN->getValueType(0);
4702   unsigned NumElements = VT.getVectorNumElements();
4703 
4704   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4705   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4706   // need a BUILD_VECTOR, add an additional placeholder operand for that
4707   // BUILD_VECTOR and store its operands in ResidueOps.
4708   GeneralShuffle GS(VT);
4709   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4710   bool FoundOne = false;
4711   for (unsigned I = 0; I < NumElements; ++I) {
4712     SDValue Op = BVN->getOperand(I);
4713     if (Op.getOpcode() == ISD::TRUNCATE)
4714       Op = Op.getOperand(0);
4715     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4716         Op.getOperand(1).getOpcode() == ISD::Constant) {
4717       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4718       if (!GS.add(Op.getOperand(0), Elem))
4719         return SDValue();
4720       FoundOne = true;
4721     } else if (Op.isUndef()) {
4722       GS.addUndef();
4723     } else {
4724       if (!GS.add(SDValue(), ResidueOps.size()))
4725         return SDValue();
4726       ResidueOps.push_back(BVN->getOperand(I));
4727     }
4728   }
4729 
4730   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4731   if (!FoundOne)
4732     return SDValue();
4733 
4734   // Create the BUILD_VECTOR for the remaining elements, if any.
4735   if (!ResidueOps.empty()) {
4736     while (ResidueOps.size() < NumElements)
4737       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4738     for (auto &Op : GS.Ops) {
4739       if (!Op.getNode()) {
4740         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4741         break;
4742       }
4743     }
4744   }
4745   return GS.getNode(DAG, SDLoc(BVN));
4746 }
4747 
4748 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4749   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4750     return true;
4751   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4752     return true;
4753   return false;
4754 }
4755 
4756 // Combine GPR scalar values Elems into a vector of type VT.
4757 SDValue
4758 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4759                                    SmallVectorImpl<SDValue> &Elems) const {
4760   // See whether there is a single replicated value.
4761   SDValue Single;
4762   unsigned int NumElements = Elems.size();
4763   unsigned int Count = 0;
4764   for (auto Elem : Elems) {
4765     if (!Elem.isUndef()) {
4766       if (!Single.getNode())
4767         Single = Elem;
4768       else if (Elem != Single) {
4769         Single = SDValue();
4770         break;
4771       }
4772       Count += 1;
4773     }
4774   }
4775   // There are three cases here:
4776   //
4777   // - if the only defined element is a loaded one, the best sequence
4778   //   is a replicating load.
4779   //
4780   // - otherwise, if the only defined element is an i64 value, we will
4781   //   end up with the same VLVGP sequence regardless of whether we short-cut
4782   //   for replication or fall through to the later code.
4783   //
4784   // - otherwise, if the only defined element is an i32 or smaller value,
4785   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4786   //   This is only a win if the single defined element is used more than once.
4787   //   In other cases we're better off using a single VLVGx.
4788   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4789     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4790 
4791   // If all elements are loads, use VLREP/VLEs (below).
4792   bool AllLoads = true;
4793   for (auto Elem : Elems)
4794     if (!isVectorElementLoad(Elem)) {
4795       AllLoads = false;
4796       break;
4797     }
4798 
4799   // The best way of building a v2i64 from two i64s is to use VLVGP.
4800   if (VT == MVT::v2i64 && !AllLoads)
4801     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4802 
4803   // Use a 64-bit merge high to combine two doubles.
4804   if (VT == MVT::v2f64 && !AllLoads)
4805     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4806 
4807   // Build v4f32 values directly from the FPRs:
4808   //
4809   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4810   //         V              V         VMRHF
4811   //      <ABxx>         <CDxx>
4812   //                V                 VMRHG
4813   //              <ABCD>
4814   if (VT == MVT::v4f32 && !AllLoads) {
4815     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4816     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4817     // Avoid unnecessary undefs by reusing the other operand.
4818     if (Op01.isUndef())
4819       Op01 = Op23;
4820     else if (Op23.isUndef())
4821       Op23 = Op01;
4822     // Merging identical replications is a no-op.
4823     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4824       return Op01;
4825     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4826     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4827     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4828                              DL, MVT::v2i64, Op01, Op23);
4829     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4830   }
4831 
4832   // Collect the constant terms.
4833   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4834   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4835 
4836   unsigned NumConstants = 0;
4837   for (unsigned I = 0; I < NumElements; ++I) {
4838     SDValue Elem = Elems[I];
4839     if (Elem.getOpcode() == ISD::Constant ||
4840         Elem.getOpcode() == ISD::ConstantFP) {
4841       NumConstants += 1;
4842       Constants[I] = Elem;
4843       Done[I] = true;
4844     }
4845   }
4846   // If there was at least one constant, fill in the other elements of
4847   // Constants with undefs to get a full vector constant and use that
4848   // as the starting point.
4849   SDValue Result;
4850   SDValue ReplicatedVal;
4851   if (NumConstants > 0) {
4852     for (unsigned I = 0; I < NumElements; ++I)
4853       if (!Constants[I].getNode())
4854         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4855     Result = DAG.getBuildVector(VT, DL, Constants);
4856   } else {
4857     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4858     // avoid a false dependency on any previous contents of the vector
4859     // register.
4860 
4861     // Use a VLREP if at least one element is a load. Make sure to replicate
4862     // the load with the most elements having its value.
4863     std::map<const SDNode*, unsigned> UseCounts;
4864     SDNode *LoadMaxUses = nullptr;
4865     for (unsigned I = 0; I < NumElements; ++I)
4866       if (isVectorElementLoad(Elems[I])) {
4867         SDNode *Ld = Elems[I].getNode();
4868         UseCounts[Ld]++;
4869         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4870           LoadMaxUses = Ld;
4871       }
4872     if (LoadMaxUses != nullptr) {
4873       ReplicatedVal = SDValue(LoadMaxUses, 0);
4874       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4875     } else {
4876       // Try to use VLVGP.
4877       unsigned I1 = NumElements / 2 - 1;
4878       unsigned I2 = NumElements - 1;
4879       bool Def1 = !Elems[I1].isUndef();
4880       bool Def2 = !Elems[I2].isUndef();
4881       if (Def1 || Def2) {
4882         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4883         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4884         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4885                              joinDwords(DAG, DL, Elem1, Elem2));
4886         Done[I1] = true;
4887         Done[I2] = true;
4888       } else
4889         Result = DAG.getUNDEF(VT);
4890     }
4891   }
4892 
4893   // Use VLVGx to insert the other elements.
4894   for (unsigned I = 0; I < NumElements; ++I)
4895     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4896       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4897                            DAG.getConstant(I, DL, MVT::i32));
4898   return Result;
4899 }
4900 
4901 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4902                                                  SelectionDAG &DAG) const {
4903   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4904   SDLoc DL(Op);
4905   EVT VT = Op.getValueType();
4906 
4907   if (BVN->isConstant()) {
4908     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4909       return Op;
4910 
4911     // Fall back to loading it from memory.
4912     return SDValue();
4913   }
4914 
4915   // See if we should use shuffles to construct the vector from other vectors.
4916   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4917     return Res;
4918 
4919   // Detect SCALAR_TO_VECTOR conversions.
4920   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4921     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4922 
4923   // Otherwise use buildVector to build the vector up from GPRs.
4924   unsigned NumElements = Op.getNumOperands();
4925   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4926   for (unsigned I = 0; I < NumElements; ++I)
4927     Ops[I] = Op.getOperand(I);
4928   return buildVector(DAG, DL, VT, Ops);
4929 }
4930 
4931 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4932                                                    SelectionDAG &DAG) const {
4933   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4934   SDLoc DL(Op);
4935   EVT VT = Op.getValueType();
4936   unsigned NumElements = VT.getVectorNumElements();
4937 
4938   if (VSN->isSplat()) {
4939     SDValue Op0 = Op.getOperand(0);
4940     unsigned Index = VSN->getSplatIndex();
4941     assert(Index < VT.getVectorNumElements() &&
4942            "Splat index should be defined and in first operand");
4943     // See whether the value we're splatting is directly available as a scalar.
4944     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4945         Op0.getOpcode() == ISD::BUILD_VECTOR)
4946       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4947     // Otherwise keep it as a vector-to-vector operation.
4948     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4949                        DAG.getTargetConstant(Index, DL, MVT::i32));
4950   }
4951 
4952   GeneralShuffle GS(VT);
4953   for (unsigned I = 0; I < NumElements; ++I) {
4954     int Elt = VSN->getMaskElt(I);
4955     if (Elt < 0)
4956       GS.addUndef();
4957     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4958                      unsigned(Elt) % NumElements))
4959       return SDValue();
4960   }
4961   return GS.getNode(DAG, SDLoc(VSN));
4962 }
4963 
4964 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4965                                                      SelectionDAG &DAG) const {
4966   SDLoc DL(Op);
4967   // Just insert the scalar into element 0 of an undefined vector.
4968   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4969                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4970                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4971 }
4972 
4973 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4974                                                       SelectionDAG &DAG) const {
4975   // Handle insertions of floating-point values.
4976   SDLoc DL(Op);
4977   SDValue Op0 = Op.getOperand(0);
4978   SDValue Op1 = Op.getOperand(1);
4979   SDValue Op2 = Op.getOperand(2);
4980   EVT VT = Op.getValueType();
4981 
4982   // Insertions into constant indices of a v2f64 can be done using VPDI.
4983   // However, if the inserted value is a bitcast or a constant then it's
4984   // better to use GPRs, as below.
4985   if (VT == MVT::v2f64 &&
4986       Op1.getOpcode() != ISD::BITCAST &&
4987       Op1.getOpcode() != ISD::ConstantFP &&
4988       Op2.getOpcode() == ISD::Constant) {
4989     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4990     unsigned Mask = VT.getVectorNumElements() - 1;
4991     if (Index <= Mask)
4992       return Op;
4993   }
4994 
4995   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4996   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4997   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4998   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4999                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5000                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5001   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5002 }
5003 
5004 SDValue
5005 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5006                                                SelectionDAG &DAG) const {
5007   // Handle extractions of floating-point values.
5008   SDLoc DL(Op);
5009   SDValue Op0 = Op.getOperand(0);
5010   SDValue Op1 = Op.getOperand(1);
5011   EVT VT = Op.getValueType();
5012   EVT VecVT = Op0.getValueType();
5013 
5014   // Extractions of constant indices can be done directly.
5015   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5016     uint64_t Index = CIndexN->getZExtValue();
5017     unsigned Mask = VecVT.getVectorNumElements() - 1;
5018     if (Index <= Mask)
5019       return Op;
5020   }
5021 
5022   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5023   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5024   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5025   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5026                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5027   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5028 }
5029 
5030 SDValue
5031 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
5032                                               unsigned UnpackHigh) const {
5033   SDValue PackedOp = Op.getOperand(0);
5034   EVT OutVT = Op.getValueType();
5035   EVT InVT = PackedOp.getValueType();
5036   unsigned ToBits = OutVT.getScalarSizeInBits();
5037   unsigned FromBits = InVT.getScalarSizeInBits();
5038   do {
5039     FromBits *= 2;
5040     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5041                                  SystemZ::VectorBits / FromBits);
5042     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
5043   } while (FromBits != ToBits);
5044   return PackedOp;
5045 }
5046 
5047 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5048                                           unsigned ByScalar) const {
5049   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5050   SDValue Op0 = Op.getOperand(0);
5051   SDValue Op1 = Op.getOperand(1);
5052   SDLoc DL(Op);
5053   EVT VT = Op.getValueType();
5054   unsigned ElemBitSize = VT.getScalarSizeInBits();
5055 
5056   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5057   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5058     APInt SplatBits, SplatUndef;
5059     unsigned SplatBitSize;
5060     bool HasAnyUndefs;
5061     // Check for constant splats.  Use ElemBitSize as the minimum element
5062     // width and reject splats that need wider elements.
5063     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5064                              ElemBitSize, true) &&
5065         SplatBitSize == ElemBitSize) {
5066       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5067                                       DL, MVT::i32);
5068       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5069     }
5070     // Check for variable splats.
5071     BitVector UndefElements;
5072     SDValue Splat = BVN->getSplatValue(&UndefElements);
5073     if (Splat) {
5074       // Since i32 is the smallest legal type, we either need a no-op
5075       // or a truncation.
5076       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5077       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5078     }
5079   }
5080 
5081   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5082   // and the shift amount is directly available in a GPR.
5083   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5084     if (VSN->isSplat()) {
5085       SDValue VSNOp0 = VSN->getOperand(0);
5086       unsigned Index = VSN->getSplatIndex();
5087       assert(Index < VT.getVectorNumElements() &&
5088              "Splat index should be defined and in first operand");
5089       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5090           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5091         // Since i32 is the smallest legal type, we either need a no-op
5092         // or a truncation.
5093         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5094                                     VSNOp0.getOperand(Index));
5095         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5096       }
5097     }
5098   }
5099 
5100   // Otherwise just treat the current form as legal.
5101   return Op;
5102 }
5103 
5104 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5105                                               SelectionDAG &DAG) const {
5106   switch (Op.getOpcode()) {
5107   case ISD::FRAMEADDR:
5108     return lowerFRAMEADDR(Op, DAG);
5109   case ISD::RETURNADDR:
5110     return lowerRETURNADDR(Op, DAG);
5111   case ISD::BR_CC:
5112     return lowerBR_CC(Op, DAG);
5113   case ISD::SELECT_CC:
5114     return lowerSELECT_CC(Op, DAG);
5115   case ISD::SETCC:
5116     return lowerSETCC(Op, DAG);
5117   case ISD::STRICT_FSETCC:
5118     return lowerSTRICT_FSETCC(Op, DAG, false);
5119   case ISD::STRICT_FSETCCS:
5120     return lowerSTRICT_FSETCC(Op, DAG, true);
5121   case ISD::GlobalAddress:
5122     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5123   case ISD::GlobalTLSAddress:
5124     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5125   case ISD::BlockAddress:
5126     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5127   case ISD::JumpTable:
5128     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5129   case ISD::ConstantPool:
5130     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5131   case ISD::BITCAST:
5132     return lowerBITCAST(Op, DAG);
5133   case ISD::VASTART:
5134     return lowerVASTART(Op, DAG);
5135   case ISD::VACOPY:
5136     return lowerVACOPY(Op, DAG);
5137   case ISD::DYNAMIC_STACKALLOC:
5138     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5139   case ISD::GET_DYNAMIC_AREA_OFFSET:
5140     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5141   case ISD::SMUL_LOHI:
5142     return lowerSMUL_LOHI(Op, DAG);
5143   case ISD::UMUL_LOHI:
5144     return lowerUMUL_LOHI(Op, DAG);
5145   case ISD::SDIVREM:
5146     return lowerSDIVREM(Op, DAG);
5147   case ISD::UDIVREM:
5148     return lowerUDIVREM(Op, DAG);
5149   case ISD::SADDO:
5150   case ISD::SSUBO:
5151   case ISD::UADDO:
5152   case ISD::USUBO:
5153     return lowerXALUO(Op, DAG);
5154   case ISD::ADDCARRY:
5155   case ISD::SUBCARRY:
5156     return lowerADDSUBCARRY(Op, DAG);
5157   case ISD::OR:
5158     return lowerOR(Op, DAG);
5159   case ISD::CTPOP:
5160     return lowerCTPOP(Op, DAG);
5161   case ISD::ATOMIC_FENCE:
5162     return lowerATOMIC_FENCE(Op, DAG);
5163   case ISD::ATOMIC_SWAP:
5164     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5165   case ISD::ATOMIC_STORE:
5166     return lowerATOMIC_STORE(Op, DAG);
5167   case ISD::ATOMIC_LOAD:
5168     return lowerATOMIC_LOAD(Op, DAG);
5169   case ISD::ATOMIC_LOAD_ADD:
5170     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5171   case ISD::ATOMIC_LOAD_SUB:
5172     return lowerATOMIC_LOAD_SUB(Op, DAG);
5173   case ISD::ATOMIC_LOAD_AND:
5174     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5175   case ISD::ATOMIC_LOAD_OR:
5176     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5177   case ISD::ATOMIC_LOAD_XOR:
5178     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5179   case ISD::ATOMIC_LOAD_NAND:
5180     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5181   case ISD::ATOMIC_LOAD_MIN:
5182     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5183   case ISD::ATOMIC_LOAD_MAX:
5184     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5185   case ISD::ATOMIC_LOAD_UMIN:
5186     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5187   case ISD::ATOMIC_LOAD_UMAX:
5188     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5189   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5190     return lowerATOMIC_CMP_SWAP(Op, DAG);
5191   case ISD::STACKSAVE:
5192     return lowerSTACKSAVE(Op, DAG);
5193   case ISD::STACKRESTORE:
5194     return lowerSTACKRESTORE(Op, DAG);
5195   case ISD::PREFETCH:
5196     return lowerPREFETCH(Op, DAG);
5197   case ISD::INTRINSIC_W_CHAIN:
5198     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5199   case ISD::INTRINSIC_WO_CHAIN:
5200     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5201   case ISD::BUILD_VECTOR:
5202     return lowerBUILD_VECTOR(Op, DAG);
5203   case ISD::VECTOR_SHUFFLE:
5204     return lowerVECTOR_SHUFFLE(Op, DAG);
5205   case ISD::SCALAR_TO_VECTOR:
5206     return lowerSCALAR_TO_VECTOR(Op, DAG);
5207   case ISD::INSERT_VECTOR_ELT:
5208     return lowerINSERT_VECTOR_ELT(Op, DAG);
5209   case ISD::EXTRACT_VECTOR_ELT:
5210     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5211   case ISD::SIGN_EXTEND_VECTOR_INREG:
5212     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5213   case ISD::ZERO_EXTEND_VECTOR_INREG:
5214     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5215   case ISD::SHL:
5216     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5217   case ISD::SRL:
5218     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5219   case ISD::SRA:
5220     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5221   default:
5222     llvm_unreachable("Unexpected node to lower");
5223   }
5224 }
5225 
5226 // Lower operations with invalid operand or result types (currently used
5227 // only for 128-bit integer types).
5228 
5229 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5230   SDLoc DL(In);
5231   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5232                            DAG.getIntPtrConstant(0, DL));
5233   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5234                            DAG.getIntPtrConstant(1, DL));
5235   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5236                                     MVT::Untyped, Hi, Lo);
5237   return SDValue(Pair, 0);
5238 }
5239 
5240 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5241   SDLoc DL(In);
5242   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5243                                           DL, MVT::i64, In);
5244   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5245                                           DL, MVT::i64, In);
5246   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5247 }
5248 
5249 void
5250 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5251                                              SmallVectorImpl<SDValue> &Results,
5252                                              SelectionDAG &DAG) const {
5253   switch (N->getOpcode()) {
5254   case ISD::ATOMIC_LOAD: {
5255     SDLoc DL(N);
5256     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5257     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5258     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5259     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5260                                           DL, Tys, Ops, MVT::i128, MMO);
5261     Results.push_back(lowerGR128ToI128(DAG, Res));
5262     Results.push_back(Res.getValue(1));
5263     break;
5264   }
5265   case ISD::ATOMIC_STORE: {
5266     SDLoc DL(N);
5267     SDVTList Tys = DAG.getVTList(MVT::Other);
5268     SDValue Ops[] = { N->getOperand(0),
5269                       lowerI128ToGR128(DAG, N->getOperand(2)),
5270                       N->getOperand(1) };
5271     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5272     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5273                                           DL, Tys, Ops, MVT::i128, MMO);
5274     // We have to enforce sequential consistency by performing a
5275     // serialization operation after the store.
5276     if (cast<AtomicSDNode>(N)->getOrdering() ==
5277         AtomicOrdering::SequentiallyConsistent)
5278       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5279                                        MVT::Other, Res), 0);
5280     Results.push_back(Res);
5281     break;
5282   }
5283   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5284     SDLoc DL(N);
5285     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5286     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5287                       lowerI128ToGR128(DAG, N->getOperand(2)),
5288                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5289     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5290     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5291                                           DL, Tys, Ops, MVT::i128, MMO);
5292     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5293                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5294     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5295     Results.push_back(lowerGR128ToI128(DAG, Res));
5296     Results.push_back(Success);
5297     Results.push_back(Res.getValue(2));
5298     break;
5299   }
5300   default:
5301     llvm_unreachable("Unexpected node to lower");
5302   }
5303 }
5304 
5305 void
5306 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5307                                           SmallVectorImpl<SDValue> &Results,
5308                                           SelectionDAG &DAG) const {
5309   return LowerOperationWrapper(N, Results, DAG);
5310 }
5311 
5312 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5313 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5314   switch ((SystemZISD::NodeType)Opcode) {
5315     case SystemZISD::FIRST_NUMBER: break;
5316     OPCODE(RET_FLAG);
5317     OPCODE(CALL);
5318     OPCODE(SIBCALL);
5319     OPCODE(TLS_GDCALL);
5320     OPCODE(TLS_LDCALL);
5321     OPCODE(PCREL_WRAPPER);
5322     OPCODE(PCREL_OFFSET);
5323     OPCODE(IABS);
5324     OPCODE(ICMP);
5325     OPCODE(FCMP);
5326     OPCODE(STRICT_FCMP);
5327     OPCODE(STRICT_FCMPS);
5328     OPCODE(TM);
5329     OPCODE(BR_CCMASK);
5330     OPCODE(SELECT_CCMASK);
5331     OPCODE(ADJDYNALLOC);
5332     OPCODE(POPCNT);
5333     OPCODE(SMUL_LOHI);
5334     OPCODE(UMUL_LOHI);
5335     OPCODE(SDIVREM);
5336     OPCODE(UDIVREM);
5337     OPCODE(SADDO);
5338     OPCODE(SSUBO);
5339     OPCODE(UADDO);
5340     OPCODE(USUBO);
5341     OPCODE(ADDCARRY);
5342     OPCODE(SUBCARRY);
5343     OPCODE(GET_CCMASK);
5344     OPCODE(MVC);
5345     OPCODE(MVC_LOOP);
5346     OPCODE(NC);
5347     OPCODE(NC_LOOP);
5348     OPCODE(OC);
5349     OPCODE(OC_LOOP);
5350     OPCODE(XC);
5351     OPCODE(XC_LOOP);
5352     OPCODE(CLC);
5353     OPCODE(CLC_LOOP);
5354     OPCODE(STPCPY);
5355     OPCODE(STRCMP);
5356     OPCODE(SEARCH_STRING);
5357     OPCODE(IPM);
5358     OPCODE(MEMBARRIER);
5359     OPCODE(TBEGIN);
5360     OPCODE(TBEGIN_NOFLOAT);
5361     OPCODE(TEND);
5362     OPCODE(BYTE_MASK);
5363     OPCODE(ROTATE_MASK);
5364     OPCODE(REPLICATE);
5365     OPCODE(JOIN_DWORDS);
5366     OPCODE(SPLAT);
5367     OPCODE(MERGE_HIGH);
5368     OPCODE(MERGE_LOW);
5369     OPCODE(SHL_DOUBLE);
5370     OPCODE(PERMUTE_DWORDS);
5371     OPCODE(PERMUTE);
5372     OPCODE(PACK);
5373     OPCODE(PACKS_CC);
5374     OPCODE(PACKLS_CC);
5375     OPCODE(UNPACK_HIGH);
5376     OPCODE(UNPACKL_HIGH);
5377     OPCODE(UNPACK_LOW);
5378     OPCODE(UNPACKL_LOW);
5379     OPCODE(VSHL_BY_SCALAR);
5380     OPCODE(VSRL_BY_SCALAR);
5381     OPCODE(VSRA_BY_SCALAR);
5382     OPCODE(VSUM);
5383     OPCODE(VICMPE);
5384     OPCODE(VICMPH);
5385     OPCODE(VICMPHL);
5386     OPCODE(VICMPES);
5387     OPCODE(VICMPHS);
5388     OPCODE(VICMPHLS);
5389     OPCODE(VFCMPE);
5390     OPCODE(STRICT_VFCMPE);
5391     OPCODE(STRICT_VFCMPES);
5392     OPCODE(VFCMPH);
5393     OPCODE(STRICT_VFCMPH);
5394     OPCODE(STRICT_VFCMPHS);
5395     OPCODE(VFCMPHE);
5396     OPCODE(STRICT_VFCMPHE);
5397     OPCODE(STRICT_VFCMPHES);
5398     OPCODE(VFCMPES);
5399     OPCODE(VFCMPHS);
5400     OPCODE(VFCMPHES);
5401     OPCODE(VFTCI);
5402     OPCODE(VEXTEND);
5403     OPCODE(STRICT_VEXTEND);
5404     OPCODE(VROUND);
5405     OPCODE(STRICT_VROUND);
5406     OPCODE(VTM);
5407     OPCODE(VFAE_CC);
5408     OPCODE(VFAEZ_CC);
5409     OPCODE(VFEE_CC);
5410     OPCODE(VFEEZ_CC);
5411     OPCODE(VFENE_CC);
5412     OPCODE(VFENEZ_CC);
5413     OPCODE(VISTR_CC);
5414     OPCODE(VSTRC_CC);
5415     OPCODE(VSTRCZ_CC);
5416     OPCODE(VSTRS_CC);
5417     OPCODE(VSTRSZ_CC);
5418     OPCODE(TDC);
5419     OPCODE(ATOMIC_SWAPW);
5420     OPCODE(ATOMIC_LOADW_ADD);
5421     OPCODE(ATOMIC_LOADW_SUB);
5422     OPCODE(ATOMIC_LOADW_AND);
5423     OPCODE(ATOMIC_LOADW_OR);
5424     OPCODE(ATOMIC_LOADW_XOR);
5425     OPCODE(ATOMIC_LOADW_NAND);
5426     OPCODE(ATOMIC_LOADW_MIN);
5427     OPCODE(ATOMIC_LOADW_MAX);
5428     OPCODE(ATOMIC_LOADW_UMIN);
5429     OPCODE(ATOMIC_LOADW_UMAX);
5430     OPCODE(ATOMIC_CMP_SWAPW);
5431     OPCODE(ATOMIC_CMP_SWAP);
5432     OPCODE(ATOMIC_LOAD_128);
5433     OPCODE(ATOMIC_STORE_128);
5434     OPCODE(ATOMIC_CMP_SWAP_128);
5435     OPCODE(LRV);
5436     OPCODE(STRV);
5437     OPCODE(VLER);
5438     OPCODE(VSTER);
5439     OPCODE(PREFETCH);
5440   }
5441   return nullptr;
5442 #undef OPCODE
5443 }
5444 
5445 // Return true if VT is a vector whose elements are a whole number of bytes
5446 // in width. Also check for presence of vector support.
5447 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5448   if (!Subtarget.hasVector())
5449     return false;
5450 
5451   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5452 }
5453 
5454 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5455 // producing a result of type ResVT.  Op is a possibly bitcast version
5456 // of the input vector and Index is the index (based on type VecVT) that
5457 // should be extracted.  Return the new extraction if a simplification
5458 // was possible or if Force is true.
5459 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5460                                               EVT VecVT, SDValue Op,
5461                                               unsigned Index,
5462                                               DAGCombinerInfo &DCI,
5463                                               bool Force) const {
5464   SelectionDAG &DAG = DCI.DAG;
5465 
5466   // The number of bytes being extracted.
5467   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5468 
5469   for (;;) {
5470     unsigned Opcode = Op.getOpcode();
5471     if (Opcode == ISD::BITCAST)
5472       // Look through bitcasts.
5473       Op = Op.getOperand(0);
5474     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5475              canTreatAsByteVector(Op.getValueType())) {
5476       // Get a VPERM-like permute mask and see whether the bytes covered
5477       // by the extracted element are a contiguous sequence from one
5478       // source operand.
5479       SmallVector<int, SystemZ::VectorBytes> Bytes;
5480       if (!getVPermMask(Op, Bytes))
5481         break;
5482       int First;
5483       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5484                            BytesPerElement, First))
5485         break;
5486       if (First < 0)
5487         return DAG.getUNDEF(ResVT);
5488       // Make sure the contiguous sequence starts at a multiple of the
5489       // original element size.
5490       unsigned Byte = unsigned(First) % Bytes.size();
5491       if (Byte % BytesPerElement != 0)
5492         break;
5493       // We can get the extracted value directly from an input.
5494       Index = Byte / BytesPerElement;
5495       Op = Op.getOperand(unsigned(First) / Bytes.size());
5496       Force = true;
5497     } else if (Opcode == ISD::BUILD_VECTOR &&
5498                canTreatAsByteVector(Op.getValueType())) {
5499       // We can only optimize this case if the BUILD_VECTOR elements are
5500       // at least as wide as the extracted value.
5501       EVT OpVT = Op.getValueType();
5502       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5503       if (OpBytesPerElement < BytesPerElement)
5504         break;
5505       // Make sure that the least-significant bit of the extracted value
5506       // is the least significant bit of an input.
5507       unsigned End = (Index + 1) * BytesPerElement;
5508       if (End % OpBytesPerElement != 0)
5509         break;
5510       // We're extracting the low part of one operand of the BUILD_VECTOR.
5511       Op = Op.getOperand(End / OpBytesPerElement - 1);
5512       if (!Op.getValueType().isInteger()) {
5513         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5514         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5515         DCI.AddToWorklist(Op.getNode());
5516       }
5517       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5518       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5519       if (VT != ResVT) {
5520         DCI.AddToWorklist(Op.getNode());
5521         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5522       }
5523       return Op;
5524     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5525                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5526                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5527                canTreatAsByteVector(Op.getValueType()) &&
5528                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5529       // Make sure that only the unextended bits are significant.
5530       EVT ExtVT = Op.getValueType();
5531       EVT OpVT = Op.getOperand(0).getValueType();
5532       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5533       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5534       unsigned Byte = Index * BytesPerElement;
5535       unsigned SubByte = Byte % ExtBytesPerElement;
5536       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5537       if (SubByte < MinSubByte ||
5538           SubByte + BytesPerElement > ExtBytesPerElement)
5539         break;
5540       // Get the byte offset of the unextended element
5541       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5542       // ...then add the byte offset relative to that element.
5543       Byte += SubByte - MinSubByte;
5544       if (Byte % BytesPerElement != 0)
5545         break;
5546       Op = Op.getOperand(0);
5547       Index = Byte / BytesPerElement;
5548       Force = true;
5549     } else
5550       break;
5551   }
5552   if (Force) {
5553     if (Op.getValueType() != VecVT) {
5554       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5555       DCI.AddToWorklist(Op.getNode());
5556     }
5557     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5558                        DAG.getConstant(Index, DL, MVT::i32));
5559   }
5560   return SDValue();
5561 }
5562 
5563 // Optimize vector operations in scalar value Op on the basis that Op
5564 // is truncated to TruncVT.
5565 SDValue SystemZTargetLowering::combineTruncateExtract(
5566     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5567   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5568   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5569   // of type TruncVT.
5570   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5571       TruncVT.getSizeInBits() % 8 == 0) {
5572     SDValue Vec = Op.getOperand(0);
5573     EVT VecVT = Vec.getValueType();
5574     if (canTreatAsByteVector(VecVT)) {
5575       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5576         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5577         unsigned TruncBytes = TruncVT.getStoreSize();
5578         if (BytesPerElement % TruncBytes == 0) {
5579           // Calculate the value of Y' in the above description.  We are
5580           // splitting the original elements into Scale equal-sized pieces
5581           // and for truncation purposes want the last (least-significant)
5582           // of these pieces for IndexN.  This is easiest to do by calculating
5583           // the start index of the following element and then subtracting 1.
5584           unsigned Scale = BytesPerElement / TruncBytes;
5585           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5586 
5587           // Defer the creation of the bitcast from X to combineExtract,
5588           // which might be able to optimize the extraction.
5589           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5590                                    VecVT.getStoreSize() / TruncBytes);
5591           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5592           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5593         }
5594       }
5595     }
5596   }
5597   return SDValue();
5598 }
5599 
5600 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5601     SDNode *N, DAGCombinerInfo &DCI) const {
5602   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5603   SelectionDAG &DAG = DCI.DAG;
5604   SDValue N0 = N->getOperand(0);
5605   EVT VT = N->getValueType(0);
5606   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5607     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5608     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5609     if (TrueOp && FalseOp) {
5610       SDLoc DL(N0);
5611       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5612                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5613                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5614       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5615       // If N0 has multiple uses, change other uses as well.
5616       if (!N0.hasOneUse()) {
5617         SDValue TruncSelect =
5618           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5619         DCI.CombineTo(N0.getNode(), TruncSelect);
5620       }
5621       return NewSelect;
5622     }
5623   }
5624   return SDValue();
5625 }
5626 
5627 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5628     SDNode *N, DAGCombinerInfo &DCI) const {
5629   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5630   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5631   // into (select_cc LHS, RHS, -1, 0, COND)
5632   SelectionDAG &DAG = DCI.DAG;
5633   SDValue N0 = N->getOperand(0);
5634   EVT VT = N->getValueType(0);
5635   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5636   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5637     N0 = N0.getOperand(0);
5638   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5639     SDLoc DL(N0);
5640     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5641                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5642                       N0.getOperand(2) };
5643     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5644   }
5645   return SDValue();
5646 }
5647 
5648 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5649     SDNode *N, DAGCombinerInfo &DCI) const {
5650   // Convert (sext (ashr (shl X, C1), C2)) to
5651   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5652   // cheap as narrower ones.
5653   SelectionDAG &DAG = DCI.DAG;
5654   SDValue N0 = N->getOperand(0);
5655   EVT VT = N->getValueType(0);
5656   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5657     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5658     SDValue Inner = N0.getOperand(0);
5659     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5660       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5661         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5662         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5663         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5664         EVT ShiftVT = N0.getOperand(1).getValueType();
5665         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5666                                   Inner.getOperand(0));
5667         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5668                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5669                                                   ShiftVT));
5670         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5671                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5672       }
5673     }
5674   }
5675   return SDValue();
5676 }
5677 
5678 SDValue SystemZTargetLowering::combineMERGE(
5679     SDNode *N, DAGCombinerInfo &DCI) const {
5680   SelectionDAG &DAG = DCI.DAG;
5681   unsigned Opcode = N->getOpcode();
5682   SDValue Op0 = N->getOperand(0);
5683   SDValue Op1 = N->getOperand(1);
5684   if (Op0.getOpcode() == ISD::BITCAST)
5685     Op0 = Op0.getOperand(0);
5686   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5687     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5688     // for v4f32.
5689     if (Op1 == N->getOperand(0))
5690       return Op1;
5691     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5692     EVT VT = Op1.getValueType();
5693     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5694     if (ElemBytes <= 4) {
5695       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5696                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5697       EVT InVT = VT.changeVectorElementTypeToInteger();
5698       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5699                                    SystemZ::VectorBytes / ElemBytes / 2);
5700       if (VT != InVT) {
5701         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5702         DCI.AddToWorklist(Op1.getNode());
5703       }
5704       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5705       DCI.AddToWorklist(Op.getNode());
5706       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5707     }
5708   }
5709   return SDValue();
5710 }
5711 
5712 SDValue SystemZTargetLowering::combineLOAD(
5713     SDNode *N, DAGCombinerInfo &DCI) const {
5714   SelectionDAG &DAG = DCI.DAG;
5715   EVT LdVT = N->getValueType(0);
5716   if (LdVT.isVector() || LdVT.isInteger())
5717     return SDValue();
5718   // Transform a scalar load that is REPLICATEd as well as having other
5719   // use(s) to the form where the other use(s) use the first element of the
5720   // REPLICATE instead of the load. Otherwise instruction selection will not
5721   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5722   // point loads.
5723 
5724   SDValue Replicate;
5725   SmallVector<SDNode*, 8> OtherUses;
5726   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5727        UI != UE; ++UI) {
5728     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5729       if (Replicate)
5730         return SDValue(); // Should never happen
5731       Replicate = SDValue(*UI, 0);
5732     }
5733     else if (UI.getUse().getResNo() == 0)
5734       OtherUses.push_back(*UI);
5735   }
5736   if (!Replicate || OtherUses.empty())
5737     return SDValue();
5738 
5739   SDLoc DL(N);
5740   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5741                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5742   // Update uses of the loaded Value while preserving old chains.
5743   for (SDNode *U : OtherUses) {
5744     SmallVector<SDValue, 8> Ops;
5745     for (SDValue Op : U->ops())
5746       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5747     DAG.UpdateNodeOperands(U, Ops);
5748   }
5749   return SDValue(N, 0);
5750 }
5751 
5752 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5753   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5754     return true;
5755   if (Subtarget.hasVectorEnhancements2())
5756     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5757       return true;
5758   return false;
5759 }
5760 
5761 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5762   if (!VT.isVector() || !VT.isSimple() ||
5763       VT.getSizeInBits() != 128 ||
5764       VT.getScalarSizeInBits() % 8 != 0)
5765     return false;
5766 
5767   unsigned NumElts = VT.getVectorNumElements();
5768   for (unsigned i = 0; i < NumElts; ++i) {
5769     if (M[i] < 0) continue; // ignore UNDEF indices
5770     if ((unsigned) M[i] != NumElts - 1 - i)
5771       return false;
5772   }
5773 
5774   return true;
5775 }
5776 
5777 SDValue SystemZTargetLowering::combineSTORE(
5778     SDNode *N, DAGCombinerInfo &DCI) const {
5779   SelectionDAG &DAG = DCI.DAG;
5780   auto *SN = cast<StoreSDNode>(N);
5781   auto &Op1 = N->getOperand(1);
5782   EVT MemVT = SN->getMemoryVT();
5783   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5784   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5785   // If X has wider elements then convert it to:
5786   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5787   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5788     if (SDValue Value =
5789             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5790       DCI.AddToWorklist(Value.getNode());
5791 
5792       // Rewrite the store with the new form of stored value.
5793       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5794                                SN->getBasePtr(), SN->getMemoryVT(),
5795                                SN->getMemOperand());
5796     }
5797   }
5798   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5799   if (!SN->isTruncatingStore() &&
5800       Op1.getOpcode() == ISD::BSWAP &&
5801       Op1.getNode()->hasOneUse() &&
5802       canLoadStoreByteSwapped(Op1.getValueType())) {
5803 
5804       SDValue BSwapOp = Op1.getOperand(0);
5805 
5806       if (BSwapOp.getValueType() == MVT::i16)
5807         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5808 
5809       SDValue Ops[] = {
5810         N->getOperand(0), BSwapOp, N->getOperand(2)
5811       };
5812 
5813       return
5814         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5815                                 Ops, MemVT, SN->getMemOperand());
5816     }
5817   // Combine STORE (element-swap) into VSTER
5818   if (!SN->isTruncatingStore() &&
5819       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5820       Op1.getNode()->hasOneUse() &&
5821       Subtarget.hasVectorEnhancements2()) {
5822     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5823     ArrayRef<int> ShuffleMask = SVN->getMask();
5824     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5825       SDValue Ops[] = {
5826         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5827       };
5828 
5829       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5830                                      DAG.getVTList(MVT::Other),
5831                                      Ops, MemVT, SN->getMemOperand());
5832     }
5833   }
5834 
5835   return SDValue();
5836 }
5837 
5838 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5839     SDNode *N, DAGCombinerInfo &DCI) const {
5840   SelectionDAG &DAG = DCI.DAG;
5841   // Combine element-swap (LOAD) into VLER
5842   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5843       N->getOperand(0).hasOneUse() &&
5844       Subtarget.hasVectorEnhancements2()) {
5845     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5846     ArrayRef<int> ShuffleMask = SVN->getMask();
5847     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5848       SDValue Load = N->getOperand(0);
5849       LoadSDNode *LD = cast<LoadSDNode>(Load);
5850 
5851       // Create the element-swapping load.
5852       SDValue Ops[] = {
5853         LD->getChain(),    // Chain
5854         LD->getBasePtr()   // Ptr
5855       };
5856       SDValue ESLoad =
5857         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5858                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
5859                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5860 
5861       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5862       // by the load dead.
5863       DCI.CombineTo(N, ESLoad);
5864 
5865       // Next, combine the load away, we give it a bogus result value but a real
5866       // chain result.  The result value is dead because the shuffle is dead.
5867       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5868 
5869       // Return N so it doesn't get rechecked!
5870       return SDValue(N, 0);
5871     }
5872   }
5873 
5874   return SDValue();
5875 }
5876 
5877 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5878     SDNode *N, DAGCombinerInfo &DCI) const {
5879   SelectionDAG &DAG = DCI.DAG;
5880 
5881   if (!Subtarget.hasVector())
5882     return SDValue();
5883 
5884   // Look through bitcasts that retain the number of vector elements.
5885   SDValue Op = N->getOperand(0);
5886   if (Op.getOpcode() == ISD::BITCAST &&
5887       Op.getValueType().isVector() &&
5888       Op.getOperand(0).getValueType().isVector() &&
5889       Op.getValueType().getVectorNumElements() ==
5890       Op.getOperand(0).getValueType().getVectorNumElements())
5891     Op = Op.getOperand(0);
5892 
5893   // Pull BSWAP out of a vector extraction.
5894   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5895     EVT VecVT = Op.getValueType();
5896     EVT EltVT = VecVT.getVectorElementType();
5897     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5898                      Op.getOperand(0), N->getOperand(1));
5899     DCI.AddToWorklist(Op.getNode());
5900     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5901     if (EltVT != N->getValueType(0)) {
5902       DCI.AddToWorklist(Op.getNode());
5903       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5904     }
5905     return Op;
5906   }
5907 
5908   // Try to simplify a vector extraction.
5909   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5910     SDValue Op0 = N->getOperand(0);
5911     EVT VecVT = Op0.getValueType();
5912     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5913                           IndexN->getZExtValue(), DCI, false);
5914   }
5915   return SDValue();
5916 }
5917 
5918 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5919     SDNode *N, DAGCombinerInfo &DCI) const {
5920   SelectionDAG &DAG = DCI.DAG;
5921   // (join_dwords X, X) == (replicate X)
5922   if (N->getOperand(0) == N->getOperand(1))
5923     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5924                        N->getOperand(0));
5925   return SDValue();
5926 }
5927 
5928 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
5929   SDValue Chain1 = N1->getOperand(0);
5930   SDValue Chain2 = N2->getOperand(0);
5931 
5932   // Trivial case: both nodes take the same chain.
5933   if (Chain1 == Chain2)
5934     return Chain1;
5935 
5936   // FIXME - we could handle more complex cases via TokenFactor,
5937   // assuming we can verify that this would not create a cycle.
5938   return SDValue();
5939 }
5940 
5941 SDValue SystemZTargetLowering::combineFP_ROUND(
5942     SDNode *N, DAGCombinerInfo &DCI) const {
5943 
5944   if (!Subtarget.hasVector())
5945     return SDValue();
5946 
5947   // (fpround (extract_vector_elt X 0))
5948   // (fpround (extract_vector_elt X 1)) ->
5949   // (extract_vector_elt (VROUND X) 0)
5950   // (extract_vector_elt (VROUND X) 2)
5951   //
5952   // This is a special case since the target doesn't really support v2f32s.
5953   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
5954   SelectionDAG &DAG = DCI.DAG;
5955   SDValue Op0 = N->getOperand(OpNo);
5956   if (N->getValueType(0) == MVT::f32 &&
5957       Op0.hasOneUse() &&
5958       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5959       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5960       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5961       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5962     SDValue Vec = Op0.getOperand(0);
5963     for (auto *U : Vec->uses()) {
5964       if (U != Op0.getNode() &&
5965           U->hasOneUse() &&
5966           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5967           U->getOperand(0) == Vec &&
5968           U->getOperand(1).getOpcode() == ISD::Constant &&
5969           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5970         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5971         if (OtherRound.getOpcode() == N->getOpcode() &&
5972             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
5973             OtherRound.getValueType() == MVT::f32) {
5974           SDValue VRound, Chain;
5975           if (N->isStrictFPOpcode()) {
5976             Chain = MergeInputChains(N, OtherRound.getNode());
5977             if (!Chain)
5978               continue;
5979             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
5980                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
5981             Chain = VRound.getValue(1);
5982           } else
5983             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5984                                  MVT::v4f32, Vec);
5985           DCI.AddToWorklist(VRound.getNode());
5986           SDValue Extract1 =
5987             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5988                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5989           DCI.AddToWorklist(Extract1.getNode());
5990           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5991           if (Chain)
5992             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
5993           SDValue Extract0 =
5994             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5995                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5996           if (Chain)
5997             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
5998                                N->getVTList(), Extract0, Chain);
5999           return Extract0;
6000         }
6001       }
6002     }
6003   }
6004   return SDValue();
6005 }
6006 
6007 SDValue SystemZTargetLowering::combineFP_EXTEND(
6008     SDNode *N, DAGCombinerInfo &DCI) const {
6009 
6010   if (!Subtarget.hasVector())
6011     return SDValue();
6012 
6013   // (fpextend (extract_vector_elt X 0))
6014   // (fpextend (extract_vector_elt X 2)) ->
6015   // (extract_vector_elt (VEXTEND X) 0)
6016   // (extract_vector_elt (VEXTEND X) 1)
6017   //
6018   // This is a special case since the target doesn't really support v2f32s.
6019   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6020   SelectionDAG &DAG = DCI.DAG;
6021   SDValue Op0 = N->getOperand(OpNo);
6022   if (N->getValueType(0) == MVT::f64 &&
6023       Op0.hasOneUse() &&
6024       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6025       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6026       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6027       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6028     SDValue Vec = Op0.getOperand(0);
6029     for (auto *U : Vec->uses()) {
6030       if (U != Op0.getNode() &&
6031           U->hasOneUse() &&
6032           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6033           U->getOperand(0) == Vec &&
6034           U->getOperand(1).getOpcode() == ISD::Constant &&
6035           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6036         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6037         if (OtherExtend.getOpcode() == N->getOpcode() &&
6038             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6039             OtherExtend.getValueType() == MVT::f64) {
6040           SDValue VExtend, Chain;
6041           if (N->isStrictFPOpcode()) {
6042             Chain = MergeInputChains(N, OtherExtend.getNode());
6043             if (!Chain)
6044               continue;
6045             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6046                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6047             Chain = VExtend.getValue(1);
6048           } else
6049             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6050                                   MVT::v2f64, Vec);
6051           DCI.AddToWorklist(VExtend.getNode());
6052           SDValue Extract1 =
6053             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6054                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6055           DCI.AddToWorklist(Extract1.getNode());
6056           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6057           if (Chain)
6058             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6059           SDValue Extract0 =
6060             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6061                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6062           if (Chain)
6063             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6064                                N->getVTList(), Extract0, Chain);
6065           return Extract0;
6066         }
6067       }
6068     }
6069   }
6070   return SDValue();
6071 }
6072 
6073 SDValue SystemZTargetLowering::combineBSWAP(
6074     SDNode *N, DAGCombinerInfo &DCI) const {
6075   SelectionDAG &DAG = DCI.DAG;
6076   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6077   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6078       N->getOperand(0).hasOneUse() &&
6079       canLoadStoreByteSwapped(N->getValueType(0))) {
6080       SDValue Load = N->getOperand(0);
6081       LoadSDNode *LD = cast<LoadSDNode>(Load);
6082 
6083       // Create the byte-swapping load.
6084       SDValue Ops[] = {
6085         LD->getChain(),    // Chain
6086         LD->getBasePtr()   // Ptr
6087       };
6088       EVT LoadVT = N->getValueType(0);
6089       if (LoadVT == MVT::i16)
6090         LoadVT = MVT::i32;
6091       SDValue BSLoad =
6092         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6093                                 DAG.getVTList(LoadVT, MVT::Other),
6094                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6095 
6096       // If this is an i16 load, insert the truncate.
6097       SDValue ResVal = BSLoad;
6098       if (N->getValueType(0) == MVT::i16)
6099         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6100 
6101       // First, combine the bswap away.  This makes the value produced by the
6102       // load dead.
6103       DCI.CombineTo(N, ResVal);
6104 
6105       // Next, combine the load away, we give it a bogus result value but a real
6106       // chain result.  The result value is dead because the bswap is dead.
6107       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6108 
6109       // Return N so it doesn't get rechecked!
6110       return SDValue(N, 0);
6111     }
6112 
6113   // Look through bitcasts that retain the number of vector elements.
6114   SDValue Op = N->getOperand(0);
6115   if (Op.getOpcode() == ISD::BITCAST &&
6116       Op.getValueType().isVector() &&
6117       Op.getOperand(0).getValueType().isVector() &&
6118       Op.getValueType().getVectorNumElements() ==
6119       Op.getOperand(0).getValueType().getVectorNumElements())
6120     Op = Op.getOperand(0);
6121 
6122   // Push BSWAP into a vector insertion if at least one side then simplifies.
6123   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6124     SDValue Vec = Op.getOperand(0);
6125     SDValue Elt = Op.getOperand(1);
6126     SDValue Idx = Op.getOperand(2);
6127 
6128     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6129         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6130         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6131         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6132         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6133          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6134       EVT VecVT = N->getValueType(0);
6135       EVT EltVT = N->getValueType(0).getVectorElementType();
6136       if (VecVT != Vec.getValueType()) {
6137         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6138         DCI.AddToWorklist(Vec.getNode());
6139       }
6140       if (EltVT != Elt.getValueType()) {
6141         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6142         DCI.AddToWorklist(Elt.getNode());
6143       }
6144       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6145       DCI.AddToWorklist(Vec.getNode());
6146       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6147       DCI.AddToWorklist(Elt.getNode());
6148       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6149                          Vec, Elt, Idx);
6150     }
6151   }
6152 
6153   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6154   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6155   if (SV && Op.hasOneUse()) {
6156     SDValue Op0 = Op.getOperand(0);
6157     SDValue Op1 = Op.getOperand(1);
6158 
6159     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6160         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6161         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6162         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6163       EVT VecVT = N->getValueType(0);
6164       if (VecVT != Op0.getValueType()) {
6165         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6166         DCI.AddToWorklist(Op0.getNode());
6167       }
6168       if (VecVT != Op1.getValueType()) {
6169         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6170         DCI.AddToWorklist(Op1.getNode());
6171       }
6172       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6173       DCI.AddToWorklist(Op0.getNode());
6174       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6175       DCI.AddToWorklist(Op1.getNode());
6176       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6177     }
6178   }
6179 
6180   return SDValue();
6181 }
6182 
6183 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6184   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6185   // set by the CCReg instruction using the CCValid / CCMask masks,
6186   // If the CCReg instruction is itself a ICMP testing the condition
6187   // code set by some other instruction, see whether we can directly
6188   // use that condition code.
6189 
6190   // Verify that we have an ICMP against some constant.
6191   if (CCValid != SystemZ::CCMASK_ICMP)
6192     return false;
6193   auto *ICmp = CCReg.getNode();
6194   if (ICmp->getOpcode() != SystemZISD::ICMP)
6195     return false;
6196   auto *CompareLHS = ICmp->getOperand(0).getNode();
6197   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6198   if (!CompareRHS)
6199     return false;
6200 
6201   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6202   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6203     // Verify that we have an appropriate mask for a EQ or NE comparison.
6204     bool Invert = false;
6205     if (CCMask == SystemZ::CCMASK_CMP_NE)
6206       Invert = !Invert;
6207     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6208       return false;
6209 
6210     // Verify that the ICMP compares against one of select values.
6211     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6212     if (!TrueVal)
6213       return false;
6214     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6215     if (!FalseVal)
6216       return false;
6217     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6218       Invert = !Invert;
6219     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6220       return false;
6221 
6222     // Compute the effective CC mask for the new branch or select.
6223     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6224     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6225     if (!NewCCValid || !NewCCMask)
6226       return false;
6227     CCValid = NewCCValid->getZExtValue();
6228     CCMask = NewCCMask->getZExtValue();
6229     if (Invert)
6230       CCMask ^= CCValid;
6231 
6232     // Return the updated CCReg link.
6233     CCReg = CompareLHS->getOperand(4);
6234     return true;
6235   }
6236 
6237   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6238   if (CompareLHS->getOpcode() == ISD::SRA) {
6239     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6240     if (!SRACount || SRACount->getZExtValue() != 30)
6241       return false;
6242     auto *SHL = CompareLHS->getOperand(0).getNode();
6243     if (SHL->getOpcode() != ISD::SHL)
6244       return false;
6245     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6246     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6247       return false;
6248     auto *IPM = SHL->getOperand(0).getNode();
6249     if (IPM->getOpcode() != SystemZISD::IPM)
6250       return false;
6251 
6252     // Avoid introducing CC spills (because SRA would clobber CC).
6253     if (!CompareLHS->hasOneUse())
6254       return false;
6255     // Verify that the ICMP compares against zero.
6256     if (CompareRHS->getZExtValue() != 0)
6257       return false;
6258 
6259     // Compute the effective CC mask for the new branch or select.
6260     switch (CCMask) {
6261     case SystemZ::CCMASK_CMP_EQ: break;
6262     case SystemZ::CCMASK_CMP_NE: break;
6263     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6264     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6265     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6266     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6267     default: return false;
6268     }
6269 
6270     // Return the updated CCReg link.
6271     CCReg = IPM->getOperand(0);
6272     return true;
6273   }
6274 
6275   return false;
6276 }
6277 
6278 SDValue SystemZTargetLowering::combineBR_CCMASK(
6279     SDNode *N, DAGCombinerInfo &DCI) const {
6280   SelectionDAG &DAG = DCI.DAG;
6281 
6282   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6283   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6284   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6285   if (!CCValid || !CCMask)
6286     return SDValue();
6287 
6288   int CCValidVal = CCValid->getZExtValue();
6289   int CCMaskVal = CCMask->getZExtValue();
6290   SDValue Chain = N->getOperand(0);
6291   SDValue CCReg = N->getOperand(4);
6292 
6293   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6294     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6295                        Chain,
6296                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6297                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6298                        N->getOperand(3), CCReg);
6299   return SDValue();
6300 }
6301 
6302 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6303     SDNode *N, DAGCombinerInfo &DCI) const {
6304   SelectionDAG &DAG = DCI.DAG;
6305 
6306   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6307   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6308   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6309   if (!CCValid || !CCMask)
6310     return SDValue();
6311 
6312   int CCValidVal = CCValid->getZExtValue();
6313   int CCMaskVal = CCMask->getZExtValue();
6314   SDValue CCReg = N->getOperand(4);
6315 
6316   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6317     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6318                        N->getOperand(0), N->getOperand(1),
6319                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6320                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6321                        CCReg);
6322   return SDValue();
6323 }
6324 
6325 
6326 SDValue SystemZTargetLowering::combineGET_CCMASK(
6327     SDNode *N, DAGCombinerInfo &DCI) const {
6328 
6329   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6330   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6331   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6332   if (!CCValid || !CCMask)
6333     return SDValue();
6334   int CCValidVal = CCValid->getZExtValue();
6335   int CCMaskVal = CCMask->getZExtValue();
6336 
6337   SDValue Select = N->getOperand(0);
6338   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6339     return SDValue();
6340 
6341   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6342   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6343   if (!SelectCCValid || !SelectCCMask)
6344     return SDValue();
6345   int SelectCCValidVal = SelectCCValid->getZExtValue();
6346   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6347 
6348   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6349   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6350   if (!TrueVal || !FalseVal)
6351     return SDValue();
6352   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6353     ;
6354   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6355     SelectCCMaskVal ^= SelectCCValidVal;
6356   else
6357     return SDValue();
6358 
6359   if (SelectCCValidVal & ~CCValidVal)
6360     return SDValue();
6361   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6362     return SDValue();
6363 
6364   return Select->getOperand(4);
6365 }
6366 
6367 SDValue SystemZTargetLowering::combineIntDIVREM(
6368     SDNode *N, DAGCombinerInfo &DCI) const {
6369   SelectionDAG &DAG = DCI.DAG;
6370   EVT VT = N->getValueType(0);
6371   // In the case where the divisor is a vector of constants a cheaper
6372   // sequence of instructions can replace the divide. BuildSDIV is called to
6373   // do this during DAG combining, but it only succeeds when it can build a
6374   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6375   // since it is not Legal but Custom it can only happen before
6376   // legalization. Therefore we must scalarize this early before Combine
6377   // 1. For widened vectors, this is already the result of type legalization.
6378   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6379       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6380     return DAG.UnrollVectorOp(N);
6381   return SDValue();
6382 }
6383 
6384 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6385   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6386     return N->getOperand(0);
6387   return N;
6388 }
6389 
6390 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6391                                                  DAGCombinerInfo &DCI) const {
6392   switch(N->getOpcode()) {
6393   default: break;
6394   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6395   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6396   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6397   case SystemZISD::MERGE_HIGH:
6398   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6399   case ISD::LOAD:               return combineLOAD(N, DCI);
6400   case ISD::STORE:              return combineSTORE(N, DCI);
6401   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6402   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6403   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6404   case ISD::STRICT_FP_ROUND:
6405   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6406   case ISD::STRICT_FP_EXTEND:
6407   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6408   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6409   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6410   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6411   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6412   case ISD::SDIV:
6413   case ISD::UDIV:
6414   case ISD::SREM:
6415   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6416   }
6417 
6418   return SDValue();
6419 }
6420 
6421 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6422 // are for Op.
6423 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6424                                     unsigned OpNo) {
6425   EVT VT = Op.getValueType();
6426   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6427   APInt SrcDemE;
6428   unsigned Opcode = Op.getOpcode();
6429   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6430     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6431     switch (Id) {
6432     case Intrinsic::s390_vpksh:   // PACKS
6433     case Intrinsic::s390_vpksf:
6434     case Intrinsic::s390_vpksg:
6435     case Intrinsic::s390_vpkshs:  // PACKS_CC
6436     case Intrinsic::s390_vpksfs:
6437     case Intrinsic::s390_vpksgs:
6438     case Intrinsic::s390_vpklsh:  // PACKLS
6439     case Intrinsic::s390_vpklsf:
6440     case Intrinsic::s390_vpklsg:
6441     case Intrinsic::s390_vpklshs: // PACKLS_CC
6442     case Intrinsic::s390_vpklsfs:
6443     case Intrinsic::s390_vpklsgs:
6444       // VECTOR PACK truncates the elements of two source vectors into one.
6445       SrcDemE = DemandedElts;
6446       if (OpNo == 2)
6447         SrcDemE.lshrInPlace(NumElts / 2);
6448       SrcDemE = SrcDemE.trunc(NumElts / 2);
6449       break;
6450       // VECTOR UNPACK extends half the elements of the source vector.
6451     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6452     case Intrinsic::s390_vuphh:
6453     case Intrinsic::s390_vuphf:
6454     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6455     case Intrinsic::s390_vuplhh:
6456     case Intrinsic::s390_vuplhf:
6457       SrcDemE = APInt(NumElts * 2, 0);
6458       SrcDemE.insertBits(DemandedElts, 0);
6459       break;
6460     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6461     case Intrinsic::s390_vuplhw:
6462     case Intrinsic::s390_vuplf:
6463     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6464     case Intrinsic::s390_vupllh:
6465     case Intrinsic::s390_vupllf:
6466       SrcDemE = APInt(NumElts * 2, 0);
6467       SrcDemE.insertBits(DemandedElts, NumElts);
6468       break;
6469     case Intrinsic::s390_vpdi: {
6470       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6471       SrcDemE = APInt(NumElts, 0);
6472       if (!DemandedElts[OpNo - 1])
6473         break;
6474       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6475       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6476       // Demand input element 0 or 1, given by the mask bit value.
6477       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6478       break;
6479     }
6480     case Intrinsic::s390_vsldb: {
6481       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6482       assert(VT == MVT::v16i8 && "Unexpected type.");
6483       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6484       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6485       unsigned NumSrc0Els = 16 - FirstIdx;
6486       SrcDemE = APInt(NumElts, 0);
6487       if (OpNo == 1) {
6488         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6489         SrcDemE.insertBits(DemEls, FirstIdx);
6490       } else {
6491         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6492         SrcDemE.insertBits(DemEls, 0);
6493       }
6494       break;
6495     }
6496     case Intrinsic::s390_vperm:
6497       SrcDemE = APInt(NumElts, 1);
6498       break;
6499     default:
6500       llvm_unreachable("Unhandled intrinsic.");
6501       break;
6502     }
6503   } else {
6504     switch (Opcode) {
6505     case SystemZISD::JOIN_DWORDS:
6506       // Scalar operand.
6507       SrcDemE = APInt(1, 1);
6508       break;
6509     case SystemZISD::SELECT_CCMASK:
6510       SrcDemE = DemandedElts;
6511       break;
6512     default:
6513       llvm_unreachable("Unhandled opcode.");
6514       break;
6515     }
6516   }
6517   return SrcDemE;
6518 }
6519 
6520 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6521                                   const APInt &DemandedElts,
6522                                   const SelectionDAG &DAG, unsigned Depth,
6523                                   unsigned OpNo) {
6524   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6525   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6526   KnownBits LHSKnown =
6527       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6528   KnownBits RHSKnown =
6529       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6530   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6531   Known.One = LHSKnown.One & RHSKnown.One;
6532 }
6533 
6534 void
6535 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6536                                                      KnownBits &Known,
6537                                                      const APInt &DemandedElts,
6538                                                      const SelectionDAG &DAG,
6539                                                      unsigned Depth) const {
6540   Known.resetAll();
6541 
6542   // Intrinsic CC result is returned in the two low bits.
6543   unsigned tmp0, tmp1; // not used
6544   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6545     Known.Zero.setBitsFrom(2);
6546     return;
6547   }
6548   EVT VT = Op.getValueType();
6549   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6550     return;
6551   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6552           "KnownBits does not match VT in bitwidth");
6553   assert ((!VT.isVector() ||
6554            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6555           "DemandedElts does not match VT number of elements");
6556   unsigned BitWidth = Known.getBitWidth();
6557   unsigned Opcode = Op.getOpcode();
6558   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6559     bool IsLogical = false;
6560     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6561     switch (Id) {
6562     case Intrinsic::s390_vpksh:   // PACKS
6563     case Intrinsic::s390_vpksf:
6564     case Intrinsic::s390_vpksg:
6565     case Intrinsic::s390_vpkshs:  // PACKS_CC
6566     case Intrinsic::s390_vpksfs:
6567     case Intrinsic::s390_vpksgs:
6568     case Intrinsic::s390_vpklsh:  // PACKLS
6569     case Intrinsic::s390_vpklsf:
6570     case Intrinsic::s390_vpklsg:
6571     case Intrinsic::s390_vpklshs: // PACKLS_CC
6572     case Intrinsic::s390_vpklsfs:
6573     case Intrinsic::s390_vpklsgs:
6574     case Intrinsic::s390_vpdi:
6575     case Intrinsic::s390_vsldb:
6576     case Intrinsic::s390_vperm:
6577       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6578       break;
6579     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6580     case Intrinsic::s390_vuplhh:
6581     case Intrinsic::s390_vuplhf:
6582     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6583     case Intrinsic::s390_vupllh:
6584     case Intrinsic::s390_vupllf:
6585       IsLogical = true;
6586       LLVM_FALLTHROUGH;
6587     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6588     case Intrinsic::s390_vuphh:
6589     case Intrinsic::s390_vuphf:
6590     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6591     case Intrinsic::s390_vuplhw:
6592     case Intrinsic::s390_vuplf: {
6593       SDValue SrcOp = Op.getOperand(1);
6594       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6595       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6596       if (IsLogical) {
6597         Known = Known.zext(BitWidth, true);
6598       } else
6599         Known = Known.sext(BitWidth);
6600       break;
6601     }
6602     default:
6603       break;
6604     }
6605   } else {
6606     switch (Opcode) {
6607     case SystemZISD::JOIN_DWORDS:
6608     case SystemZISD::SELECT_CCMASK:
6609       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6610       break;
6611     case SystemZISD::REPLICATE: {
6612       SDValue SrcOp = Op.getOperand(0);
6613       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6614       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6615         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6616       break;
6617     }
6618     default:
6619       break;
6620     }
6621   }
6622 
6623   // Known has the width of the source operand(s). Adjust if needed to match
6624   // the passed bitwidth.
6625   if (Known.getBitWidth() != BitWidth)
6626     Known = Known.zextOrTrunc(BitWidth, false);
6627 }
6628 
6629 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6630                                         const SelectionDAG &DAG, unsigned Depth,
6631                                         unsigned OpNo) {
6632   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6633   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6634   if (LHS == 1) return 1; // Early out.
6635   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6636   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6637   if (RHS == 1) return 1; // Early out.
6638   unsigned Common = std::min(LHS, RHS);
6639   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6640   EVT VT = Op.getValueType();
6641   unsigned VTBits = VT.getScalarSizeInBits();
6642   if (SrcBitWidth > VTBits) { // PACK
6643     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6644     if (Common > SrcExtraBits)
6645       return (Common - SrcExtraBits);
6646     return 1;
6647   }
6648   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6649   return Common;
6650 }
6651 
6652 unsigned
6653 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6654     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6655     unsigned Depth) const {
6656   if (Op.getResNo() != 0)
6657     return 1;
6658   unsigned Opcode = Op.getOpcode();
6659   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6660     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6661     switch (Id) {
6662     case Intrinsic::s390_vpksh:   // PACKS
6663     case Intrinsic::s390_vpksf:
6664     case Intrinsic::s390_vpksg:
6665     case Intrinsic::s390_vpkshs:  // PACKS_CC
6666     case Intrinsic::s390_vpksfs:
6667     case Intrinsic::s390_vpksgs:
6668     case Intrinsic::s390_vpklsh:  // PACKLS
6669     case Intrinsic::s390_vpklsf:
6670     case Intrinsic::s390_vpklsg:
6671     case Intrinsic::s390_vpklshs: // PACKLS_CC
6672     case Intrinsic::s390_vpklsfs:
6673     case Intrinsic::s390_vpklsgs:
6674     case Intrinsic::s390_vpdi:
6675     case Intrinsic::s390_vsldb:
6676     case Intrinsic::s390_vperm:
6677       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6678     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6679     case Intrinsic::s390_vuphh:
6680     case Intrinsic::s390_vuphf:
6681     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6682     case Intrinsic::s390_vuplhw:
6683     case Intrinsic::s390_vuplf: {
6684       SDValue PackedOp = Op.getOperand(1);
6685       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6686       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6687       EVT VT = Op.getValueType();
6688       unsigned VTBits = VT.getScalarSizeInBits();
6689       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6690       return Tmp;
6691     }
6692     default:
6693       break;
6694     }
6695   } else {
6696     switch (Opcode) {
6697     case SystemZISD::SELECT_CCMASK:
6698       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6699     default:
6700       break;
6701     }
6702   }
6703 
6704   return 1;
6705 }
6706 
6707 //===----------------------------------------------------------------------===//
6708 // Custom insertion
6709 //===----------------------------------------------------------------------===//
6710 
6711 // Create a new basic block after MBB.
6712 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6713   MachineFunction &MF = *MBB->getParent();
6714   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6715   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6716   return NewMBB;
6717 }
6718 
6719 // Split MBB after MI and return the new block (the one that contains
6720 // instructions after MI).
6721 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6722                                           MachineBasicBlock *MBB) {
6723   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6724   NewMBB->splice(NewMBB->begin(), MBB,
6725                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6726   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6727   return NewMBB;
6728 }
6729 
6730 // Split MBB before MI and return the new block (the one that contains MI).
6731 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6732                                            MachineBasicBlock *MBB) {
6733   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6734   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6735   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6736   return NewMBB;
6737 }
6738 
6739 // Force base value Base into a register before MI.  Return the register.
6740 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6741                          const SystemZInstrInfo *TII) {
6742   if (Base.isReg())
6743     return Base.getReg();
6744 
6745   MachineBasicBlock *MBB = MI.getParent();
6746   MachineFunction &MF = *MBB->getParent();
6747   MachineRegisterInfo &MRI = MF.getRegInfo();
6748 
6749   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6750   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6751       .add(Base)
6752       .addImm(0)
6753       .addReg(0);
6754   return Reg;
6755 }
6756 
6757 // The CC operand of MI might be missing a kill marker because there
6758 // were multiple uses of CC, and ISel didn't know which to mark.
6759 // Figure out whether MI should have had a kill marker.
6760 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6761   // Scan forward through BB for a use/def of CC.
6762   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6763   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6764     const MachineInstr& mi = *miI;
6765     if (mi.readsRegister(SystemZ::CC))
6766       return false;
6767     if (mi.definesRegister(SystemZ::CC))
6768       break; // Should have kill-flag - update below.
6769   }
6770 
6771   // If we hit the end of the block, check whether CC is live into a
6772   // successor.
6773   if (miI == MBB->end()) {
6774     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6775       if ((*SI)->isLiveIn(SystemZ::CC))
6776         return false;
6777   }
6778 
6779   return true;
6780 }
6781 
6782 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6783 // together with other Select pseudo-opcodes into a single basic-block with
6784 // a conditional jump around it.
6785 static bool isSelectPseudo(MachineInstr &MI) {
6786   switch (MI.getOpcode()) {
6787   case SystemZ::Select32:
6788   case SystemZ::Select64:
6789   case SystemZ::SelectF32:
6790   case SystemZ::SelectF64:
6791   case SystemZ::SelectF128:
6792   case SystemZ::SelectVR32:
6793   case SystemZ::SelectVR64:
6794   case SystemZ::SelectVR128:
6795     return true;
6796 
6797   default:
6798     return false;
6799   }
6800 }
6801 
6802 // Helper function, which inserts PHI functions into SinkMBB:
6803 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6804 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
6805 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
6806                                  MachineBasicBlock *TrueMBB,
6807                                  MachineBasicBlock *FalseMBB,
6808                                  MachineBasicBlock *SinkMBB) {
6809   MachineFunction *MF = TrueMBB->getParent();
6810   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6811 
6812   MachineInstr *FirstMI = Selects.front();
6813   unsigned CCValid = FirstMI->getOperand(3).getImm();
6814   unsigned CCMask = FirstMI->getOperand(4).getImm();
6815 
6816   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6817 
6818   // As we are creating the PHIs, we have to be careful if there is more than
6819   // one.  Later Selects may reference the results of earlier Selects, but later
6820   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6821   // That also means that PHI construction must work forward from earlier to
6822   // later, and that the code must maintain a mapping from earlier PHI's
6823   // destination registers, and the registers that went into the PHI.
6824   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6825 
6826   for (auto MI : Selects) {
6827     Register DestReg = MI->getOperand(0).getReg();
6828     Register TrueReg = MI->getOperand(1).getReg();
6829     Register FalseReg = MI->getOperand(2).getReg();
6830 
6831     // If this Select we are generating is the opposite condition from
6832     // the jump we generated, then we have to swap the operands for the
6833     // PHI that is going to be generated.
6834     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
6835       std::swap(TrueReg, FalseReg);
6836 
6837     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6838       TrueReg = RegRewriteTable[TrueReg].first;
6839 
6840     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6841       FalseReg = RegRewriteTable[FalseReg].second;
6842 
6843     DebugLoc DL = MI->getDebugLoc();
6844     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6845       .addReg(TrueReg).addMBB(TrueMBB)
6846       .addReg(FalseReg).addMBB(FalseMBB);
6847 
6848     // Add this PHI to the rewrite table.
6849     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6850   }
6851 
6852   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6853 }
6854 
6855 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6856 MachineBasicBlock *
6857 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6858                                   MachineBasicBlock *MBB) const {
6859   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
6860   const SystemZInstrInfo *TII =
6861       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6862 
6863   unsigned CCValid = MI.getOperand(3).getImm();
6864   unsigned CCMask = MI.getOperand(4).getImm();
6865 
6866   // If we have a sequence of Select* pseudo instructions using the
6867   // same condition code value, we want to expand all of them into
6868   // a single pair of basic blocks using the same condition.
6869   SmallVector<MachineInstr*, 8> Selects;
6870   SmallVector<MachineInstr*, 8> DbgValues;
6871   Selects.push_back(&MI);
6872   unsigned Count = 0;
6873   for (MachineBasicBlock::iterator NextMIIt =
6874          std::next(MachineBasicBlock::iterator(MI));
6875        NextMIIt != MBB->end(); ++NextMIIt) {
6876     if (NextMIIt->definesRegister(SystemZ::CC))
6877       break;
6878     if (isSelectPseudo(*NextMIIt)) {
6879       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
6880              "Bad CCValid operands since CC was not redefined.");
6881       if (NextMIIt->getOperand(4).getImm() == CCMask ||
6882           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
6883         Selects.push_back(&*NextMIIt);
6884         continue;
6885       }
6886       break;
6887     }
6888     bool User = false;
6889     for (auto SelMI : Selects)
6890       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
6891         User = true;
6892         break;
6893       }
6894     if (NextMIIt->isDebugInstr()) {
6895       if (User) {
6896         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
6897         DbgValues.push_back(&*NextMIIt);
6898       }
6899     }
6900     else if (User || ++Count > 20)
6901       break;
6902   }
6903 
6904   MachineInstr *LastMI = Selects.back();
6905   bool CCKilled =
6906       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
6907   MachineBasicBlock *StartMBB = MBB;
6908   MachineBasicBlock *JoinMBB  = splitBlockAfter(LastMI, MBB);
6909   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6910 
6911   // Unless CC was killed in the last Select instruction, mark it as
6912   // live-in to both FalseMBB and JoinMBB.
6913   if (!CCKilled) {
6914     FalseMBB->addLiveIn(SystemZ::CC);
6915     JoinMBB->addLiveIn(SystemZ::CC);
6916   }
6917 
6918   //  StartMBB:
6919   //   BRC CCMask, JoinMBB
6920   //   # fallthrough to FalseMBB
6921   MBB = StartMBB;
6922   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
6923     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6924   MBB->addSuccessor(JoinMBB);
6925   MBB->addSuccessor(FalseMBB);
6926 
6927   //  FalseMBB:
6928   //   # fallthrough to JoinMBB
6929   MBB = FalseMBB;
6930   MBB->addSuccessor(JoinMBB);
6931 
6932   //  JoinMBB:
6933   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6934   //  ...
6935   MBB = JoinMBB;
6936   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
6937   for (auto SelMI : Selects)
6938     SelMI->eraseFromParent();
6939 
6940   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
6941   for (auto DbgMI : DbgValues)
6942     MBB->splice(InsertPos, StartMBB, DbgMI);
6943 
6944   return JoinMBB;
6945 }
6946 
6947 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6948 // StoreOpcode is the store to use and Invert says whether the store should
6949 // happen when the condition is false rather than true.  If a STORE ON
6950 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6951 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6952                                                         MachineBasicBlock *MBB,
6953                                                         unsigned StoreOpcode,
6954                                                         unsigned STOCOpcode,
6955                                                         bool Invert) const {
6956   const SystemZInstrInfo *TII =
6957       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6958 
6959   Register SrcReg = MI.getOperand(0).getReg();
6960   MachineOperand Base = MI.getOperand(1);
6961   int64_t Disp = MI.getOperand(2).getImm();
6962   Register IndexReg = MI.getOperand(3).getReg();
6963   unsigned CCValid = MI.getOperand(4).getImm();
6964   unsigned CCMask = MI.getOperand(5).getImm();
6965   DebugLoc DL = MI.getDebugLoc();
6966 
6967   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6968 
6969   // Use STOCOpcode if possible.  We could use different store patterns in
6970   // order to avoid matching the index register, but the performance trade-offs
6971   // might be more complicated in that case.
6972   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6973     if (Invert)
6974       CCMask ^= CCValid;
6975 
6976     // ISel pattern matching also adds a load memory operand of the same
6977     // address, so take special care to find the storing memory operand.
6978     MachineMemOperand *MMO = nullptr;
6979     for (auto *I : MI.memoperands())
6980       if (I->isStore()) {
6981           MMO = I;
6982           break;
6983         }
6984 
6985     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6986       .addReg(SrcReg)
6987       .add(Base)
6988       .addImm(Disp)
6989       .addImm(CCValid)
6990       .addImm(CCMask)
6991       .addMemOperand(MMO);
6992 
6993     MI.eraseFromParent();
6994     return MBB;
6995   }
6996 
6997   // Get the condition needed to branch around the store.
6998   if (!Invert)
6999     CCMask ^= CCValid;
7000 
7001   MachineBasicBlock *StartMBB = MBB;
7002   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
7003   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
7004 
7005   // Unless CC was killed in the CondStore instruction, mark it as
7006   // live-in to both FalseMBB and JoinMBB.
7007   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7008     FalseMBB->addLiveIn(SystemZ::CC);
7009     JoinMBB->addLiveIn(SystemZ::CC);
7010   }
7011 
7012   //  StartMBB:
7013   //   BRC CCMask, JoinMBB
7014   //   # fallthrough to FalseMBB
7015   MBB = StartMBB;
7016   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7017     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7018   MBB->addSuccessor(JoinMBB);
7019   MBB->addSuccessor(FalseMBB);
7020 
7021   //  FalseMBB:
7022   //   store %SrcReg, %Disp(%Index,%Base)
7023   //   # fallthrough to JoinMBB
7024   MBB = FalseMBB;
7025   BuildMI(MBB, DL, TII->get(StoreOpcode))
7026       .addReg(SrcReg)
7027       .add(Base)
7028       .addImm(Disp)
7029       .addReg(IndexReg);
7030   MBB->addSuccessor(JoinMBB);
7031 
7032   MI.eraseFromParent();
7033   return JoinMBB;
7034 }
7035 
7036 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7037 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7038 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7039 // BitSize is the width of the field in bits, or 0 if this is a partword
7040 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7041 // is one of the operands.  Invert says whether the field should be
7042 // inverted after performing BinOpcode (e.g. for NAND).
7043 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7044     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7045     unsigned BitSize, bool Invert) const {
7046   MachineFunction &MF = *MBB->getParent();
7047   const SystemZInstrInfo *TII =
7048       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7049   MachineRegisterInfo &MRI = MF.getRegInfo();
7050   bool IsSubWord = (BitSize < 32);
7051 
7052   // Extract the operands.  Base can be a register or a frame index.
7053   // Src2 can be a register or immediate.
7054   Register Dest = MI.getOperand(0).getReg();
7055   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7056   int64_t Disp = MI.getOperand(2).getImm();
7057   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7058   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7059   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7060   DebugLoc DL = MI.getDebugLoc();
7061   if (IsSubWord)
7062     BitSize = MI.getOperand(6).getImm();
7063 
7064   // Subword operations use 32-bit registers.
7065   const TargetRegisterClass *RC = (BitSize <= 32 ?
7066                                    &SystemZ::GR32BitRegClass :
7067                                    &SystemZ::GR64BitRegClass);
7068   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7069   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7070 
7071   // Get the right opcodes for the displacement.
7072   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7073   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7074   assert(LOpcode && CSOpcode && "Displacement out of range");
7075 
7076   // Create virtual registers for temporary results.
7077   Register OrigVal       = MRI.createVirtualRegister(RC);
7078   Register OldVal        = MRI.createVirtualRegister(RC);
7079   Register NewVal        = (BinOpcode || IsSubWord ?
7080                             MRI.createVirtualRegister(RC) : Src2.getReg());
7081   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7082   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7083 
7084   // Insert a basic block for the main loop.
7085   MachineBasicBlock *StartMBB = MBB;
7086   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7087   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7088 
7089   //  StartMBB:
7090   //   ...
7091   //   %OrigVal = L Disp(%Base)
7092   //   # fall through to LoopMMB
7093   MBB = StartMBB;
7094   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7095   MBB->addSuccessor(LoopMBB);
7096 
7097   //  LoopMBB:
7098   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7099   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7100   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7101   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7102   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7103   //   JNE LoopMBB
7104   //   # fall through to DoneMMB
7105   MBB = LoopMBB;
7106   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7107     .addReg(OrigVal).addMBB(StartMBB)
7108     .addReg(Dest).addMBB(LoopMBB);
7109   if (IsSubWord)
7110     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7111       .addReg(OldVal).addReg(BitShift).addImm(0);
7112   if (Invert) {
7113     // Perform the operation normally and then invert every bit of the field.
7114     Register Tmp = MRI.createVirtualRegister(RC);
7115     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7116     if (BitSize <= 32)
7117       // XILF with the upper BitSize bits set.
7118       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7119         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7120     else {
7121       // Use LCGR and add -1 to the result, which is more compact than
7122       // an XILF, XILH pair.
7123       Register Tmp2 = MRI.createVirtualRegister(RC);
7124       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7125       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7126         .addReg(Tmp2).addImm(-1);
7127     }
7128   } else if (BinOpcode)
7129     // A simply binary operation.
7130     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7131         .addReg(RotatedOldVal)
7132         .add(Src2);
7133   else if (IsSubWord)
7134     // Use RISBG to rotate Src2 into position and use it to replace the
7135     // field in RotatedOldVal.
7136     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7137       .addReg(RotatedOldVal).addReg(Src2.getReg())
7138       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7139   if (IsSubWord)
7140     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7141       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7142   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7143       .addReg(OldVal)
7144       .addReg(NewVal)
7145       .add(Base)
7146       .addImm(Disp);
7147   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7148     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7149   MBB->addSuccessor(LoopMBB);
7150   MBB->addSuccessor(DoneMBB);
7151 
7152   MI.eraseFromParent();
7153   return DoneMBB;
7154 }
7155 
7156 // Implement EmitInstrWithCustomInserter for pseudo
7157 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7158 // instruction that should be used to compare the current field with the
7159 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7160 // for when the current field should be kept.  BitSize is the width of
7161 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7162 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7163     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7164     unsigned KeepOldMask, unsigned BitSize) const {
7165   MachineFunction &MF = *MBB->getParent();
7166   const SystemZInstrInfo *TII =
7167       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7168   MachineRegisterInfo &MRI = MF.getRegInfo();
7169   bool IsSubWord = (BitSize < 32);
7170 
7171   // Extract the operands.  Base can be a register or a frame index.
7172   Register Dest = MI.getOperand(0).getReg();
7173   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7174   int64_t Disp = MI.getOperand(2).getImm();
7175   Register Src2 = MI.getOperand(3).getReg();
7176   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7177   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7178   DebugLoc DL = MI.getDebugLoc();
7179   if (IsSubWord)
7180     BitSize = MI.getOperand(6).getImm();
7181 
7182   // Subword operations use 32-bit registers.
7183   const TargetRegisterClass *RC = (BitSize <= 32 ?
7184                                    &SystemZ::GR32BitRegClass :
7185                                    &SystemZ::GR64BitRegClass);
7186   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7187   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7188 
7189   // Get the right opcodes for the displacement.
7190   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7191   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7192   assert(LOpcode && CSOpcode && "Displacement out of range");
7193 
7194   // Create virtual registers for temporary results.
7195   Register OrigVal       = MRI.createVirtualRegister(RC);
7196   Register OldVal        = MRI.createVirtualRegister(RC);
7197   Register NewVal        = MRI.createVirtualRegister(RC);
7198   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7199   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7200   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7201 
7202   // Insert 3 basic blocks for the loop.
7203   MachineBasicBlock *StartMBB  = MBB;
7204   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
7205   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
7206   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
7207   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
7208 
7209   //  StartMBB:
7210   //   ...
7211   //   %OrigVal     = L Disp(%Base)
7212   //   # fall through to LoopMMB
7213   MBB = StartMBB;
7214   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7215   MBB->addSuccessor(LoopMBB);
7216 
7217   //  LoopMBB:
7218   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7219   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7220   //   CompareOpcode %RotatedOldVal, %Src2
7221   //   BRC KeepOldMask, UpdateMBB
7222   MBB = LoopMBB;
7223   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7224     .addReg(OrigVal).addMBB(StartMBB)
7225     .addReg(Dest).addMBB(UpdateMBB);
7226   if (IsSubWord)
7227     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7228       .addReg(OldVal).addReg(BitShift).addImm(0);
7229   BuildMI(MBB, DL, TII->get(CompareOpcode))
7230     .addReg(RotatedOldVal).addReg(Src2);
7231   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7232     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7233   MBB->addSuccessor(UpdateMBB);
7234   MBB->addSuccessor(UseAltMBB);
7235 
7236   //  UseAltMBB:
7237   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7238   //   # fall through to UpdateMMB
7239   MBB = UseAltMBB;
7240   if (IsSubWord)
7241     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7242       .addReg(RotatedOldVal).addReg(Src2)
7243       .addImm(32).addImm(31 + BitSize).addImm(0);
7244   MBB->addSuccessor(UpdateMBB);
7245 
7246   //  UpdateMBB:
7247   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7248   //                        [ %RotatedAltVal, UseAltMBB ]
7249   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7250   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7251   //   JNE LoopMBB
7252   //   # fall through to DoneMMB
7253   MBB = UpdateMBB;
7254   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7255     .addReg(RotatedOldVal).addMBB(LoopMBB)
7256     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7257   if (IsSubWord)
7258     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7259       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7260   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7261       .addReg(OldVal)
7262       .addReg(NewVal)
7263       .add(Base)
7264       .addImm(Disp);
7265   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7266     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7267   MBB->addSuccessor(LoopMBB);
7268   MBB->addSuccessor(DoneMBB);
7269 
7270   MI.eraseFromParent();
7271   return DoneMBB;
7272 }
7273 
7274 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7275 // instruction MI.
7276 MachineBasicBlock *
7277 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7278                                           MachineBasicBlock *MBB) const {
7279 
7280   MachineFunction &MF = *MBB->getParent();
7281   const SystemZInstrInfo *TII =
7282       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7283   MachineRegisterInfo &MRI = MF.getRegInfo();
7284 
7285   // Extract the operands.  Base can be a register or a frame index.
7286   Register Dest = MI.getOperand(0).getReg();
7287   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7288   int64_t Disp = MI.getOperand(2).getImm();
7289   Register OrigCmpVal = MI.getOperand(3).getReg();
7290   Register OrigSwapVal = MI.getOperand(4).getReg();
7291   Register BitShift = MI.getOperand(5).getReg();
7292   Register NegBitShift = MI.getOperand(6).getReg();
7293   int64_t BitSize = MI.getOperand(7).getImm();
7294   DebugLoc DL = MI.getDebugLoc();
7295 
7296   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7297 
7298   // Get the right opcodes for the displacement.
7299   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7300   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7301   assert(LOpcode && CSOpcode && "Displacement out of range");
7302 
7303   // Create virtual registers for temporary results.
7304   Register OrigOldVal = MRI.createVirtualRegister(RC);
7305   Register OldVal = MRI.createVirtualRegister(RC);
7306   Register CmpVal = MRI.createVirtualRegister(RC);
7307   Register SwapVal = MRI.createVirtualRegister(RC);
7308   Register StoreVal = MRI.createVirtualRegister(RC);
7309   Register RetryOldVal = MRI.createVirtualRegister(RC);
7310   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7311   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7312 
7313   // Insert 2 basic blocks for the loop.
7314   MachineBasicBlock *StartMBB = MBB;
7315   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7316   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7317   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
7318 
7319   //  StartMBB:
7320   //   ...
7321   //   %OrigOldVal     = L Disp(%Base)
7322   //   # fall through to LoopMMB
7323   MBB = StartMBB;
7324   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7325       .add(Base)
7326       .addImm(Disp)
7327       .addReg(0);
7328   MBB->addSuccessor(LoopMBB);
7329 
7330   //  LoopMBB:
7331   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7332   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7333   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7334   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7335   //                      ^^ The low BitSize bits contain the field
7336   //                         of interest.
7337   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7338   //                      ^^ Replace the upper 32-BitSize bits of the
7339   //                         comparison value with those that we loaded,
7340   //                         so that we can use a full word comparison.
7341   //   CR %Dest, %RetryCmpVal
7342   //   JNE DoneMBB
7343   //   # Fall through to SetMBB
7344   MBB = LoopMBB;
7345   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7346     .addReg(OrigOldVal).addMBB(StartMBB)
7347     .addReg(RetryOldVal).addMBB(SetMBB);
7348   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7349     .addReg(OrigCmpVal).addMBB(StartMBB)
7350     .addReg(RetryCmpVal).addMBB(SetMBB);
7351   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7352     .addReg(OrigSwapVal).addMBB(StartMBB)
7353     .addReg(RetrySwapVal).addMBB(SetMBB);
7354   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7355     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7356   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7357     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7358   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7359     .addReg(Dest).addReg(RetryCmpVal);
7360   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7361     .addImm(SystemZ::CCMASK_ICMP)
7362     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7363   MBB->addSuccessor(DoneMBB);
7364   MBB->addSuccessor(SetMBB);
7365 
7366   //  SetMBB:
7367   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7368   //                      ^^ Replace the upper 32-BitSize bits of the new
7369   //                         value with those that we loaded.
7370   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7371   //                      ^^ Rotate the new field to its proper position.
7372   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7373   //   JNE LoopMBB
7374   //   # fall through to ExitMMB
7375   MBB = SetMBB;
7376   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7377     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7378   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7379     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7380   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7381       .addReg(OldVal)
7382       .addReg(StoreVal)
7383       .add(Base)
7384       .addImm(Disp);
7385   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7386     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7387   MBB->addSuccessor(LoopMBB);
7388   MBB->addSuccessor(DoneMBB);
7389 
7390   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7391   // to the block after the loop.  At this point, CC may have been defined
7392   // either by the CR in LoopMBB or by the CS in SetMBB.
7393   if (!MI.registerDefIsDead(SystemZ::CC))
7394     DoneMBB->addLiveIn(SystemZ::CC);
7395 
7396   MI.eraseFromParent();
7397   return DoneMBB;
7398 }
7399 
7400 // Emit a move from two GR64s to a GR128.
7401 MachineBasicBlock *
7402 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7403                                    MachineBasicBlock *MBB) const {
7404   MachineFunction &MF = *MBB->getParent();
7405   const SystemZInstrInfo *TII =
7406       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7407   MachineRegisterInfo &MRI = MF.getRegInfo();
7408   DebugLoc DL = MI.getDebugLoc();
7409 
7410   Register Dest = MI.getOperand(0).getReg();
7411   Register Hi = MI.getOperand(1).getReg();
7412   Register Lo = MI.getOperand(2).getReg();
7413   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7414   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7415 
7416   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7417   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7418     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7419   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7420     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7421 
7422   MI.eraseFromParent();
7423   return MBB;
7424 }
7425 
7426 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7427 // if the high register of the GR128 value must be cleared or false if
7428 // it's "don't care".
7429 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7430                                                      MachineBasicBlock *MBB,
7431                                                      bool ClearEven) const {
7432   MachineFunction &MF = *MBB->getParent();
7433   const SystemZInstrInfo *TII =
7434       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7435   MachineRegisterInfo &MRI = MF.getRegInfo();
7436   DebugLoc DL = MI.getDebugLoc();
7437 
7438   Register Dest = MI.getOperand(0).getReg();
7439   Register Src = MI.getOperand(1).getReg();
7440   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7441 
7442   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7443   if (ClearEven) {
7444     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7445     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7446 
7447     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7448       .addImm(0);
7449     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7450       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7451     In128 = NewIn128;
7452   }
7453   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7454     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7455 
7456   MI.eraseFromParent();
7457   return MBB;
7458 }
7459 
7460 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7461     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7462   MachineFunction &MF = *MBB->getParent();
7463   const SystemZInstrInfo *TII =
7464       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7465   MachineRegisterInfo &MRI = MF.getRegInfo();
7466   DebugLoc DL = MI.getDebugLoc();
7467 
7468   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7469   uint64_t DestDisp = MI.getOperand(1).getImm();
7470   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7471   uint64_t SrcDisp = MI.getOperand(3).getImm();
7472   uint64_t Length = MI.getOperand(4).getImm();
7473 
7474   // When generating more than one CLC, all but the last will need to
7475   // branch to the end when a difference is found.
7476   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7477                                splitBlockAfter(MI, MBB) : nullptr);
7478 
7479   // Check for the loop form, in which operand 5 is the trip count.
7480   if (MI.getNumExplicitOperands() > 5) {
7481     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7482 
7483     Register StartCountReg = MI.getOperand(5).getReg();
7484     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7485     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7486                               forceReg(MI, DestBase, TII));
7487 
7488     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7489     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7490     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7491                             MRI.createVirtualRegister(RC));
7492     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7493     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7494                             MRI.createVirtualRegister(RC));
7495 
7496     RC = &SystemZ::GR64BitRegClass;
7497     Register ThisCountReg = MRI.createVirtualRegister(RC);
7498     Register NextCountReg = MRI.createVirtualRegister(RC);
7499 
7500     MachineBasicBlock *StartMBB = MBB;
7501     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7502     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7503     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7504 
7505     //  StartMBB:
7506     //   # fall through to LoopMMB
7507     MBB->addSuccessor(LoopMBB);
7508 
7509     //  LoopMBB:
7510     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7511     //                      [ %NextDestReg, NextMBB ]
7512     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7513     //                     [ %NextSrcReg, NextMBB ]
7514     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7515     //                       [ %NextCountReg, NextMBB ]
7516     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7517     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7518     //   ( JLH EndMBB )
7519     //
7520     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7521     MBB = LoopMBB;
7522 
7523     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7524       .addReg(StartDestReg).addMBB(StartMBB)
7525       .addReg(NextDestReg).addMBB(NextMBB);
7526     if (!HaveSingleBase)
7527       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7528         .addReg(StartSrcReg).addMBB(StartMBB)
7529         .addReg(NextSrcReg).addMBB(NextMBB);
7530     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7531       .addReg(StartCountReg).addMBB(StartMBB)
7532       .addReg(NextCountReg).addMBB(NextMBB);
7533     if (Opcode == SystemZ::MVC)
7534       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7535         .addImm(SystemZ::PFD_WRITE)
7536         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7537     BuildMI(MBB, DL, TII->get(Opcode))
7538       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7539       .addReg(ThisSrcReg).addImm(SrcDisp);
7540     if (EndMBB) {
7541       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7542         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7543         .addMBB(EndMBB);
7544       MBB->addSuccessor(EndMBB);
7545       MBB->addSuccessor(NextMBB);
7546     }
7547 
7548     // NextMBB:
7549     //   %NextDestReg = LA 256(%ThisDestReg)
7550     //   %NextSrcReg = LA 256(%ThisSrcReg)
7551     //   %NextCountReg = AGHI %ThisCountReg, -1
7552     //   CGHI %NextCountReg, 0
7553     //   JLH LoopMBB
7554     //   # fall through to DoneMMB
7555     //
7556     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7557     MBB = NextMBB;
7558 
7559     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7560       .addReg(ThisDestReg).addImm(256).addReg(0);
7561     if (!HaveSingleBase)
7562       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7563         .addReg(ThisSrcReg).addImm(256).addReg(0);
7564     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7565       .addReg(ThisCountReg).addImm(-1);
7566     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7567       .addReg(NextCountReg).addImm(0);
7568     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7569       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7570       .addMBB(LoopMBB);
7571     MBB->addSuccessor(LoopMBB);
7572     MBB->addSuccessor(DoneMBB);
7573 
7574     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7575     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7576     Length &= 255;
7577     if (EndMBB && !Length)
7578       // If the loop handled the whole CLC range, DoneMBB will be empty with
7579       // CC live-through into EndMBB, so add it as live-in.
7580       DoneMBB->addLiveIn(SystemZ::CC);
7581     MBB = DoneMBB;
7582   }
7583   // Handle any remaining bytes with straight-line code.
7584   while (Length > 0) {
7585     uint64_t ThisLength = std::min(Length, uint64_t(256));
7586     // The previous iteration might have created out-of-range displacements.
7587     // Apply them using LAY if so.
7588     if (!isUInt<12>(DestDisp)) {
7589       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7590       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7591           .add(DestBase)
7592           .addImm(DestDisp)
7593           .addReg(0);
7594       DestBase = MachineOperand::CreateReg(Reg, false);
7595       DestDisp = 0;
7596     }
7597     if (!isUInt<12>(SrcDisp)) {
7598       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7599       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7600           .add(SrcBase)
7601           .addImm(SrcDisp)
7602           .addReg(0);
7603       SrcBase = MachineOperand::CreateReg(Reg, false);
7604       SrcDisp = 0;
7605     }
7606     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7607         .add(DestBase)
7608         .addImm(DestDisp)
7609         .addImm(ThisLength)
7610         .add(SrcBase)
7611         .addImm(SrcDisp)
7612         .setMemRefs(MI.memoperands());
7613     DestDisp += ThisLength;
7614     SrcDisp += ThisLength;
7615     Length -= ThisLength;
7616     // If there's another CLC to go, branch to the end if a difference
7617     // was found.
7618     if (EndMBB && Length > 0) {
7619       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7620       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7621         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7622         .addMBB(EndMBB);
7623       MBB->addSuccessor(EndMBB);
7624       MBB->addSuccessor(NextMBB);
7625       MBB = NextMBB;
7626     }
7627   }
7628   if (EndMBB) {
7629     MBB->addSuccessor(EndMBB);
7630     MBB = EndMBB;
7631     MBB->addLiveIn(SystemZ::CC);
7632   }
7633 
7634   MI.eraseFromParent();
7635   return MBB;
7636 }
7637 
7638 // Decompose string pseudo-instruction MI into a loop that continually performs
7639 // Opcode until CC != 3.
7640 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7641     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7642   MachineFunction &MF = *MBB->getParent();
7643   const SystemZInstrInfo *TII =
7644       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7645   MachineRegisterInfo &MRI = MF.getRegInfo();
7646   DebugLoc DL = MI.getDebugLoc();
7647 
7648   uint64_t End1Reg = MI.getOperand(0).getReg();
7649   uint64_t Start1Reg = MI.getOperand(1).getReg();
7650   uint64_t Start2Reg = MI.getOperand(2).getReg();
7651   uint64_t CharReg = MI.getOperand(3).getReg();
7652 
7653   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7654   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7655   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7656   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7657 
7658   MachineBasicBlock *StartMBB = MBB;
7659   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7660   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7661 
7662   //  StartMBB:
7663   //   # fall through to LoopMMB
7664   MBB->addSuccessor(LoopMBB);
7665 
7666   //  LoopMBB:
7667   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7668   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7669   //   R0L = %CharReg
7670   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7671   //   JO LoopMBB
7672   //   # fall through to DoneMMB
7673   //
7674   // The load of R0L can be hoisted by post-RA LICM.
7675   MBB = LoopMBB;
7676 
7677   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7678     .addReg(Start1Reg).addMBB(StartMBB)
7679     .addReg(End1Reg).addMBB(LoopMBB);
7680   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7681     .addReg(Start2Reg).addMBB(StartMBB)
7682     .addReg(End2Reg).addMBB(LoopMBB);
7683   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7684   BuildMI(MBB, DL, TII->get(Opcode))
7685     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7686     .addReg(This1Reg).addReg(This2Reg);
7687   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7688     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7689   MBB->addSuccessor(LoopMBB);
7690   MBB->addSuccessor(DoneMBB);
7691 
7692   DoneMBB->addLiveIn(SystemZ::CC);
7693 
7694   MI.eraseFromParent();
7695   return DoneMBB;
7696 }
7697 
7698 // Update TBEGIN instruction with final opcode and register clobbers.
7699 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7700     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7701     bool NoFloat) const {
7702   MachineFunction &MF = *MBB->getParent();
7703   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7704   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7705 
7706   // Update opcode.
7707   MI.setDesc(TII->get(Opcode));
7708 
7709   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7710   // Make sure to add the corresponding GRSM bits if they are missing.
7711   uint64_t Control = MI.getOperand(2).getImm();
7712   static const unsigned GPRControlBit[16] = {
7713     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7714     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7715   };
7716   Control |= GPRControlBit[15];
7717   if (TFI->hasFP(MF))
7718     Control |= GPRControlBit[11];
7719   MI.getOperand(2).setImm(Control);
7720 
7721   // Add GPR clobbers.
7722   for (int I = 0; I < 16; I++) {
7723     if ((Control & GPRControlBit[I]) == 0) {
7724       unsigned Reg = SystemZMC::GR64Regs[I];
7725       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7726     }
7727   }
7728 
7729   // Add FPR/VR clobbers.
7730   if (!NoFloat && (Control & 4) != 0) {
7731     if (Subtarget.hasVector()) {
7732       for (int I = 0; I < 32; I++) {
7733         unsigned Reg = SystemZMC::VR128Regs[I];
7734         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7735       }
7736     } else {
7737       for (int I = 0; I < 16; I++) {
7738         unsigned Reg = SystemZMC::FP64Regs[I];
7739         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7740       }
7741     }
7742   }
7743 
7744   return MBB;
7745 }
7746 
7747 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7748     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7749   MachineFunction &MF = *MBB->getParent();
7750   MachineRegisterInfo *MRI = &MF.getRegInfo();
7751   const SystemZInstrInfo *TII =
7752       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7753   DebugLoc DL = MI.getDebugLoc();
7754 
7755   Register SrcReg = MI.getOperand(0).getReg();
7756 
7757   // Create new virtual register of the same class as source.
7758   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7759   Register DstReg = MRI->createVirtualRegister(RC);
7760 
7761   // Replace pseudo with a normal load-and-test that models the def as
7762   // well.
7763   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7764     .addReg(SrcReg)
7765     .setMIFlags(MI.getFlags());
7766   MI.eraseFromParent();
7767 
7768   return MBB;
7769 }
7770 
7771 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7772     MachineInstr &MI, MachineBasicBlock *MBB) const {
7773   switch (MI.getOpcode()) {
7774   case SystemZ::Select32:
7775   case SystemZ::Select64:
7776   case SystemZ::SelectF32:
7777   case SystemZ::SelectF64:
7778   case SystemZ::SelectF128:
7779   case SystemZ::SelectVR32:
7780   case SystemZ::SelectVR64:
7781   case SystemZ::SelectVR128:
7782     return emitSelect(MI, MBB);
7783 
7784   case SystemZ::CondStore8Mux:
7785     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7786   case SystemZ::CondStore8MuxInv:
7787     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7788   case SystemZ::CondStore16Mux:
7789     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7790   case SystemZ::CondStore16MuxInv:
7791     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7792   case SystemZ::CondStore32Mux:
7793     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7794   case SystemZ::CondStore32MuxInv:
7795     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7796   case SystemZ::CondStore8:
7797     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7798   case SystemZ::CondStore8Inv:
7799     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7800   case SystemZ::CondStore16:
7801     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7802   case SystemZ::CondStore16Inv:
7803     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7804   case SystemZ::CondStore32:
7805     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7806   case SystemZ::CondStore32Inv:
7807     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7808   case SystemZ::CondStore64:
7809     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7810   case SystemZ::CondStore64Inv:
7811     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7812   case SystemZ::CondStoreF32:
7813     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7814   case SystemZ::CondStoreF32Inv:
7815     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7816   case SystemZ::CondStoreF64:
7817     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7818   case SystemZ::CondStoreF64Inv:
7819     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7820 
7821   case SystemZ::PAIR128:
7822     return emitPair128(MI, MBB);
7823   case SystemZ::AEXT128:
7824     return emitExt128(MI, MBB, false);
7825   case SystemZ::ZEXT128:
7826     return emitExt128(MI, MBB, true);
7827 
7828   case SystemZ::ATOMIC_SWAPW:
7829     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7830   case SystemZ::ATOMIC_SWAP_32:
7831     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7832   case SystemZ::ATOMIC_SWAP_64:
7833     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7834 
7835   case SystemZ::ATOMIC_LOADW_AR:
7836     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7837   case SystemZ::ATOMIC_LOADW_AFI:
7838     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7839   case SystemZ::ATOMIC_LOAD_AR:
7840     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7841   case SystemZ::ATOMIC_LOAD_AHI:
7842     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7843   case SystemZ::ATOMIC_LOAD_AFI:
7844     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7845   case SystemZ::ATOMIC_LOAD_AGR:
7846     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7847   case SystemZ::ATOMIC_LOAD_AGHI:
7848     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7849   case SystemZ::ATOMIC_LOAD_AGFI:
7850     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7851 
7852   case SystemZ::ATOMIC_LOADW_SR:
7853     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7854   case SystemZ::ATOMIC_LOAD_SR:
7855     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7856   case SystemZ::ATOMIC_LOAD_SGR:
7857     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7858 
7859   case SystemZ::ATOMIC_LOADW_NR:
7860     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7861   case SystemZ::ATOMIC_LOADW_NILH:
7862     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7863   case SystemZ::ATOMIC_LOAD_NR:
7864     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7865   case SystemZ::ATOMIC_LOAD_NILL:
7866     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7867   case SystemZ::ATOMIC_LOAD_NILH:
7868     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7869   case SystemZ::ATOMIC_LOAD_NILF:
7870     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7871   case SystemZ::ATOMIC_LOAD_NGR:
7872     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7873   case SystemZ::ATOMIC_LOAD_NILL64:
7874     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7875   case SystemZ::ATOMIC_LOAD_NILH64:
7876     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7877   case SystemZ::ATOMIC_LOAD_NIHL64:
7878     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7879   case SystemZ::ATOMIC_LOAD_NIHH64:
7880     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7881   case SystemZ::ATOMIC_LOAD_NILF64:
7882     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7883   case SystemZ::ATOMIC_LOAD_NIHF64:
7884     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7885 
7886   case SystemZ::ATOMIC_LOADW_OR:
7887     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7888   case SystemZ::ATOMIC_LOADW_OILH:
7889     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7890   case SystemZ::ATOMIC_LOAD_OR:
7891     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7892   case SystemZ::ATOMIC_LOAD_OILL:
7893     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7894   case SystemZ::ATOMIC_LOAD_OILH:
7895     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7896   case SystemZ::ATOMIC_LOAD_OILF:
7897     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7898   case SystemZ::ATOMIC_LOAD_OGR:
7899     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7900   case SystemZ::ATOMIC_LOAD_OILL64:
7901     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7902   case SystemZ::ATOMIC_LOAD_OILH64:
7903     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7904   case SystemZ::ATOMIC_LOAD_OIHL64:
7905     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7906   case SystemZ::ATOMIC_LOAD_OIHH64:
7907     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7908   case SystemZ::ATOMIC_LOAD_OILF64:
7909     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7910   case SystemZ::ATOMIC_LOAD_OIHF64:
7911     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7912 
7913   case SystemZ::ATOMIC_LOADW_XR:
7914     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7915   case SystemZ::ATOMIC_LOADW_XILF:
7916     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7917   case SystemZ::ATOMIC_LOAD_XR:
7918     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7919   case SystemZ::ATOMIC_LOAD_XILF:
7920     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7921   case SystemZ::ATOMIC_LOAD_XGR:
7922     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7923   case SystemZ::ATOMIC_LOAD_XILF64:
7924     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7925   case SystemZ::ATOMIC_LOAD_XIHF64:
7926     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7927 
7928   case SystemZ::ATOMIC_LOADW_NRi:
7929     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7930   case SystemZ::ATOMIC_LOADW_NILHi:
7931     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7932   case SystemZ::ATOMIC_LOAD_NRi:
7933     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7934   case SystemZ::ATOMIC_LOAD_NILLi:
7935     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7936   case SystemZ::ATOMIC_LOAD_NILHi:
7937     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7938   case SystemZ::ATOMIC_LOAD_NILFi:
7939     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7940   case SystemZ::ATOMIC_LOAD_NGRi:
7941     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7942   case SystemZ::ATOMIC_LOAD_NILL64i:
7943     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7944   case SystemZ::ATOMIC_LOAD_NILH64i:
7945     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7946   case SystemZ::ATOMIC_LOAD_NIHL64i:
7947     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7948   case SystemZ::ATOMIC_LOAD_NIHH64i:
7949     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7950   case SystemZ::ATOMIC_LOAD_NILF64i:
7951     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7952   case SystemZ::ATOMIC_LOAD_NIHF64i:
7953     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7954 
7955   case SystemZ::ATOMIC_LOADW_MIN:
7956     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7957                                 SystemZ::CCMASK_CMP_LE, 0);
7958   case SystemZ::ATOMIC_LOAD_MIN_32:
7959     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7960                                 SystemZ::CCMASK_CMP_LE, 32);
7961   case SystemZ::ATOMIC_LOAD_MIN_64:
7962     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7963                                 SystemZ::CCMASK_CMP_LE, 64);
7964 
7965   case SystemZ::ATOMIC_LOADW_MAX:
7966     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7967                                 SystemZ::CCMASK_CMP_GE, 0);
7968   case SystemZ::ATOMIC_LOAD_MAX_32:
7969     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7970                                 SystemZ::CCMASK_CMP_GE, 32);
7971   case SystemZ::ATOMIC_LOAD_MAX_64:
7972     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7973                                 SystemZ::CCMASK_CMP_GE, 64);
7974 
7975   case SystemZ::ATOMIC_LOADW_UMIN:
7976     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7977                                 SystemZ::CCMASK_CMP_LE, 0);
7978   case SystemZ::ATOMIC_LOAD_UMIN_32:
7979     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7980                                 SystemZ::CCMASK_CMP_LE, 32);
7981   case SystemZ::ATOMIC_LOAD_UMIN_64:
7982     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7983                                 SystemZ::CCMASK_CMP_LE, 64);
7984 
7985   case SystemZ::ATOMIC_LOADW_UMAX:
7986     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7987                                 SystemZ::CCMASK_CMP_GE, 0);
7988   case SystemZ::ATOMIC_LOAD_UMAX_32:
7989     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7990                                 SystemZ::CCMASK_CMP_GE, 32);
7991   case SystemZ::ATOMIC_LOAD_UMAX_64:
7992     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7993                                 SystemZ::CCMASK_CMP_GE, 64);
7994 
7995   case SystemZ::ATOMIC_CMP_SWAPW:
7996     return emitAtomicCmpSwapW(MI, MBB);
7997   case SystemZ::MVCSequence:
7998   case SystemZ::MVCLoop:
7999     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8000   case SystemZ::NCSequence:
8001   case SystemZ::NCLoop:
8002     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8003   case SystemZ::OCSequence:
8004   case SystemZ::OCLoop:
8005     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8006   case SystemZ::XCSequence:
8007   case SystemZ::XCLoop:
8008     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8009   case SystemZ::CLCSequence:
8010   case SystemZ::CLCLoop:
8011     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8012   case SystemZ::CLSTLoop:
8013     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8014   case SystemZ::MVSTLoop:
8015     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8016   case SystemZ::SRSTLoop:
8017     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8018   case SystemZ::TBEGIN:
8019     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8020   case SystemZ::TBEGIN_nofloat:
8021     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8022   case SystemZ::TBEGINC:
8023     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8024   case SystemZ::LTEBRCompare_VecPseudo:
8025     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8026   case SystemZ::LTDBRCompare_VecPseudo:
8027     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8028   case SystemZ::LTXBRCompare_VecPseudo:
8029     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8030 
8031   case TargetOpcode::STACKMAP:
8032   case TargetOpcode::PATCHPOINT:
8033     return emitPatchPoint(MI, MBB);
8034 
8035   default:
8036     llvm_unreachable("Unexpected instr type to insert");
8037   }
8038 }
8039 
8040 // This is only used by the isel schedulers, and is needed only to prevent
8041 // compiler from crashing when list-ilp is used.
8042 const TargetRegisterClass *
8043 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8044   if (VT == MVT::Untyped)
8045     return &SystemZ::ADDR128BitRegClass;
8046   return TargetLowering::getRepRegClassFor(VT);
8047 }
8048