1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm, 85 const SystemZSubtarget &STI) 86 : TargetLowering(tm), Subtarget(STI) { 87 MVT PtrVT = getPointerTy(); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setExceptionPointerRegister(SystemZ::R6D); 118 setExceptionSelectorRegister(SystemZ::R7D); 119 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 120 121 // TODO: It may be better to default to latency-oriented scheduling, however 122 // LLVM's current latency-oriented scheduler can't handle physreg definitions 123 // such as SystemZ has with CC, so set this to the register-pressure 124 // scheduler, because it can. 125 setSchedulingPreference(Sched::RegPressure); 126 127 setBooleanContents(ZeroOrOneBooleanContent); 128 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 129 130 // Instructions are strings of 2-byte aligned 2-byte values. 131 setMinFunctionAlignment(2); 132 133 // Handle operations that are handled in a similar way for all types. 134 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 135 I <= MVT::LAST_FP_VALUETYPE; 136 ++I) { 137 MVT VT = MVT::SimpleValueType(I); 138 if (isTypeLegal(VT)) { 139 // Lower SET_CC into an IPM-based sequence. 140 setOperationAction(ISD::SETCC, VT, Custom); 141 142 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 143 setOperationAction(ISD::SELECT, VT, Expand); 144 145 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 146 setOperationAction(ISD::SELECT_CC, VT, Custom); 147 setOperationAction(ISD::BR_CC, VT, Custom); 148 } 149 } 150 151 // Expand jump table branches as address arithmetic followed by an 152 // indirect jump. 153 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 154 155 // Expand BRCOND into a BR_CC (see above). 156 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 157 158 // Handle integer types. 159 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 160 I <= MVT::LAST_INTEGER_VALUETYPE; 161 ++I) { 162 MVT VT = MVT::SimpleValueType(I); 163 if (isTypeLegal(VT)) { 164 // Expand individual DIV and REMs into DIVREMs. 165 setOperationAction(ISD::SDIV, VT, Expand); 166 setOperationAction(ISD::UDIV, VT, Expand); 167 setOperationAction(ISD::SREM, VT, Expand); 168 setOperationAction(ISD::UREM, VT, Expand); 169 setOperationAction(ISD::SDIVREM, VT, Custom); 170 setOperationAction(ISD::UDIVREM, VT, Custom); 171 172 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 173 // stores, putting a serialization instruction after the stores. 174 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 175 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 176 177 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 178 // available, or if the operand is constant. 179 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 180 181 // Use POPCNT on z196 and above. 182 if (Subtarget.hasPopulationCount()) 183 setOperationAction(ISD::CTPOP, VT, Custom); 184 else 185 setOperationAction(ISD::CTPOP, VT, Expand); 186 187 // No special instructions for these. 188 setOperationAction(ISD::CTTZ, VT, Expand); 189 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 190 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 191 setOperationAction(ISD::ROTR, VT, Expand); 192 193 // Use *MUL_LOHI where possible instead of MULH*. 194 setOperationAction(ISD::MULHS, VT, Expand); 195 setOperationAction(ISD::MULHU, VT, Expand); 196 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 197 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 198 199 // Only z196 and above have native support for conversions to unsigned. 200 if (!Subtarget.hasFPExtension()) 201 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 202 } 203 } 204 205 // Type legalization will convert 8- and 16-bit atomic operations into 206 // forms that operate on i32s (but still keeping the original memory VT). 207 // Lower them into full i32 operations. 208 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 220 221 // z10 has instructions for signed but not unsigned FP conversion. 222 // Handle unsigned 32-bit types as signed 64-bit types. 223 if (!Subtarget.hasFPExtension()) { 224 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 225 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 226 } 227 228 // We have native support for a 64-bit CTLZ, via FLOGR. 229 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 230 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 231 232 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 233 setOperationAction(ISD::OR, MVT::i64, Custom); 234 235 // FIXME: Can we support these natively? 236 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 237 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 239 240 // We have native instructions for i8, i16 and i32 extensions, but not i1. 241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 242 for (MVT VT : MVT::integer_valuetypes()) { 243 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 244 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 246 } 247 248 // Handle the various types of symbolic address. 249 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 250 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 251 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 252 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 253 setOperationAction(ISD::JumpTable, PtrVT, Custom); 254 255 // We need to handle dynamic allocations specially because of the 256 // 160-byte area at the bottom of the stack. 257 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 258 259 // Use custom expanders so that we can force the function to use 260 // a frame pointer. 261 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 262 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 263 264 // Handle prefetches with PFD or PFDRL. 265 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 266 267 for (MVT VT : MVT::vector_valuetypes()) { 268 // Assume by default that all vector operations need to be expanded. 269 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 270 if (getOperationAction(Opcode, VT) == Legal) 271 setOperationAction(Opcode, VT, Expand); 272 273 // Likewise all truncating stores and extending loads. 274 for (MVT InnerVT : MVT::vector_valuetypes()) { 275 setTruncStoreAction(VT, InnerVT, Expand); 276 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 277 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 278 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 279 } 280 281 if (isTypeLegal(VT)) { 282 // These operations are legal for anything that can be stored in a 283 // vector register, even if there is no native support for the format 284 // as such. In particular, we can do these for v4f32 even though there 285 // are no specific instructions for that format. 286 setOperationAction(ISD::LOAD, VT, Legal); 287 setOperationAction(ISD::STORE, VT, Legal); 288 setOperationAction(ISD::VSELECT, VT, Legal); 289 setOperationAction(ISD::BITCAST, VT, Legal); 290 setOperationAction(ISD::UNDEF, VT, Legal); 291 292 // Likewise, except that we need to replace the nodes with something 293 // more specific. 294 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 295 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 296 } 297 } 298 299 // Handle integer vector types. 300 for (MVT VT : MVT::integer_vector_valuetypes()) { 301 if (isTypeLegal(VT)) { 302 // These operations have direct equivalents. 303 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 304 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 305 setOperationAction(ISD::ADD, VT, Legal); 306 setOperationAction(ISD::SUB, VT, Legal); 307 if (VT != MVT::v2i64) 308 setOperationAction(ISD::MUL, VT, Legal); 309 setOperationAction(ISD::AND, VT, Legal); 310 setOperationAction(ISD::OR, VT, Legal); 311 setOperationAction(ISD::XOR, VT, Legal); 312 setOperationAction(ISD::CTPOP, VT, Custom); 313 setOperationAction(ISD::CTTZ, VT, Legal); 314 setOperationAction(ISD::CTLZ, VT, Legal); 315 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 316 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 317 318 // Convert a GPR scalar to a vector by inserting it into element 0. 319 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 320 321 // Use a series of unpacks for extensions. 322 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 323 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 324 325 // Detect shifts by a scalar amount and convert them into 326 // V*_BY_SCALAR. 327 setOperationAction(ISD::SHL, VT, Custom); 328 setOperationAction(ISD::SRA, VT, Custom); 329 setOperationAction(ISD::SRL, VT, Custom); 330 331 // At present ROTL isn't matched by DAGCombiner. ROTR should be 332 // converted into ROTL. 333 setOperationAction(ISD::ROTL, VT, Expand); 334 setOperationAction(ISD::ROTR, VT, Expand); 335 336 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 337 // and inverting the result as necessary. 338 setOperationAction(ISD::SETCC, VT, Custom); 339 } 340 } 341 342 if (Subtarget.hasVector()) { 343 // There should be no need to check for float types other than v2f64 344 // since <2 x f32> isn't a legal type. 345 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 346 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 348 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 349 } 350 351 // Handle floating-point types. 352 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 353 I <= MVT::LAST_FP_VALUETYPE; 354 ++I) { 355 MVT VT = MVT::SimpleValueType(I); 356 if (isTypeLegal(VT)) { 357 // We can use FI for FRINT. 358 setOperationAction(ISD::FRINT, VT, Legal); 359 360 // We can use the extended form of FI for other rounding operations. 361 if (Subtarget.hasFPExtension()) { 362 setOperationAction(ISD::FNEARBYINT, VT, Legal); 363 setOperationAction(ISD::FFLOOR, VT, Legal); 364 setOperationAction(ISD::FCEIL, VT, Legal); 365 setOperationAction(ISD::FTRUNC, VT, Legal); 366 setOperationAction(ISD::FROUND, VT, Legal); 367 } 368 369 // No special instructions for these. 370 setOperationAction(ISD::FSIN, VT, Expand); 371 setOperationAction(ISD::FCOS, VT, Expand); 372 setOperationAction(ISD::FREM, VT, Expand); 373 } 374 } 375 376 // Handle floating-point vector types. 377 if (Subtarget.hasVector()) { 378 // Scalar-to-vector conversion is just a subreg. 379 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 381 382 // Some insertions and extractions can be done directly but others 383 // need to go via integers. 384 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 388 389 // These operations have direct equivalents. 390 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 391 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 392 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 393 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 394 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 395 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 396 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 397 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 398 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 401 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 402 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 403 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 404 } 405 406 // We have fused multiply-addition for f32 and f64 but not f128. 407 setOperationAction(ISD::FMA, MVT::f32, Legal); 408 setOperationAction(ISD::FMA, MVT::f64, Legal); 409 setOperationAction(ISD::FMA, MVT::f128, Expand); 410 411 // Needed so that we don't try to implement f128 constant loads using 412 // a load-and-extend of a f80 constant (in cases where the constant 413 // would fit in an f80). 414 for (MVT VT : MVT::fp_valuetypes()) 415 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 416 417 // Floating-point truncation and stores need to be done separately. 418 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 419 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 420 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 421 422 // We have 64-bit FPR<->GPR moves, but need special handling for 423 // 32-bit forms. 424 if (!Subtarget.hasVector()) { 425 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 426 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 427 } 428 429 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 430 // structure, but VAEND is a no-op. 431 setOperationAction(ISD::VASTART, MVT::Other, Custom); 432 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 433 setOperationAction(ISD::VAEND, MVT::Other, Expand); 434 435 // Codes for which we want to perform some z-specific combinations. 436 setTargetDAGCombine(ISD::SIGN_EXTEND); 437 setTargetDAGCombine(ISD::STORE); 438 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 439 setTargetDAGCombine(ISD::FP_ROUND); 440 441 // Handle intrinsics. 442 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 443 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 444 445 // We want to use MVC in preference to even a single load/store pair. 446 MaxStoresPerMemcpy = 0; 447 MaxStoresPerMemcpyOptSize = 0; 448 449 // The main memset sequence is a byte store followed by an MVC. 450 // Two STC or MV..I stores win over that, but the kind of fused stores 451 // generated by target-independent code don't when the byte value is 452 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 453 // than "STC;MVC". Handle the choice in target-specific code instead. 454 MaxStoresPerMemset = 0; 455 MaxStoresPerMemsetOptSize = 0; 456 } 457 458 EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { 459 if (!VT.isVector()) 460 return MVT::i32; 461 return VT.changeVectorElementTypeToInteger(); 462 } 463 464 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 465 VT = VT.getScalarType(); 466 467 if (!VT.isSimple()) 468 return false; 469 470 switch (VT.getSimpleVT().SimpleTy) { 471 case MVT::f32: 472 case MVT::f64: 473 return true; 474 case MVT::f128: 475 return false; 476 default: 477 break; 478 } 479 480 return false; 481 } 482 483 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 484 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 485 return Imm.isZero() || Imm.isNegZero(); 486 } 487 488 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 489 // We can use CGFI or CLGFI. 490 return isInt<32>(Imm) || isUInt<32>(Imm); 491 } 492 493 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 494 // We can use ALGFI or SLGFI. 495 return isUInt<32>(Imm) || isUInt<32>(-Imm); 496 } 497 498 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 499 unsigned, 500 unsigned, 501 bool *Fast) const { 502 // Unaligned accesses should never be slower than the expanded version. 503 // We check specifically for aligned accesses in the few cases where 504 // they are required. 505 if (Fast) 506 *Fast = true; 507 return true; 508 } 509 510 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM, 511 Type *Ty) const { 512 // Punt on globals for now, although they can be used in limited 513 // RELATIVE LONG cases. 514 if (AM.BaseGV) 515 return false; 516 517 // Require a 20-bit signed offset. 518 if (!isInt<20>(AM.BaseOffs)) 519 return false; 520 521 // Indexing is OK but no scale factor can be applied. 522 return AM.Scale == 0 || AM.Scale == 1; 523 } 524 525 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 526 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 527 return false; 528 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 529 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 530 return FromBits > ToBits; 531 } 532 533 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 534 if (!FromVT.isInteger() || !ToVT.isInteger()) 535 return false; 536 unsigned FromBits = FromVT.getSizeInBits(); 537 unsigned ToBits = ToVT.getSizeInBits(); 538 return FromBits > ToBits; 539 } 540 541 //===----------------------------------------------------------------------===// 542 // Inline asm support 543 //===----------------------------------------------------------------------===// 544 545 TargetLowering::ConstraintType 546 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { 547 if (Constraint.size() == 1) { 548 switch (Constraint[0]) { 549 case 'a': // Address register 550 case 'd': // Data register (equivalent to 'r') 551 case 'f': // Floating-point register 552 case 'h': // High-part register 553 case 'r': // General-purpose register 554 return C_RegisterClass; 555 556 case 'Q': // Memory with base and unsigned 12-bit displacement 557 case 'R': // Likewise, plus an index 558 case 'S': // Memory with base and signed 20-bit displacement 559 case 'T': // Likewise, plus an index 560 case 'm': // Equivalent to 'T'. 561 return C_Memory; 562 563 case 'I': // Unsigned 8-bit constant 564 case 'J': // Unsigned 12-bit constant 565 case 'K': // Signed 16-bit constant 566 case 'L': // Signed 20-bit displacement (on all targets we support) 567 case 'M': // 0x7fffffff 568 return C_Other; 569 570 default: 571 break; 572 } 573 } 574 return TargetLowering::getConstraintType(Constraint); 575 } 576 577 TargetLowering::ConstraintWeight SystemZTargetLowering:: 578 getSingleConstraintMatchWeight(AsmOperandInfo &info, 579 const char *constraint) const { 580 ConstraintWeight weight = CW_Invalid; 581 Value *CallOperandVal = info.CallOperandVal; 582 // If we don't have a value, we can't do a match, 583 // but allow it at the lowest weight. 584 if (!CallOperandVal) 585 return CW_Default; 586 Type *type = CallOperandVal->getType(); 587 // Look at the constraint type. 588 switch (*constraint) { 589 default: 590 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 591 break; 592 593 case 'a': // Address register 594 case 'd': // Data register (equivalent to 'r') 595 case 'h': // High-part register 596 case 'r': // General-purpose register 597 if (CallOperandVal->getType()->isIntegerTy()) 598 weight = CW_Register; 599 break; 600 601 case 'f': // Floating-point register 602 if (type->isFloatingPointTy()) 603 weight = CW_Register; 604 break; 605 606 case 'I': // Unsigned 8-bit constant 607 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 608 if (isUInt<8>(C->getZExtValue())) 609 weight = CW_Constant; 610 break; 611 612 case 'J': // Unsigned 12-bit constant 613 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 614 if (isUInt<12>(C->getZExtValue())) 615 weight = CW_Constant; 616 break; 617 618 case 'K': // Signed 16-bit constant 619 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 620 if (isInt<16>(C->getSExtValue())) 621 weight = CW_Constant; 622 break; 623 624 case 'L': // Signed 20-bit displacement (on all targets we support) 625 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 626 if (isInt<20>(C->getSExtValue())) 627 weight = CW_Constant; 628 break; 629 630 case 'M': // 0x7fffffff 631 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 632 if (C->getZExtValue() == 0x7fffffff) 633 weight = CW_Constant; 634 break; 635 } 636 return weight; 637 } 638 639 // Parse a "{tNNN}" register constraint for which the register type "t" 640 // has already been verified. MC is the class associated with "t" and 641 // Map maps 0-based register numbers to LLVM register numbers. 642 static std::pair<unsigned, const TargetRegisterClass *> 643 parseRegisterNumber(const std::string &Constraint, 644 const TargetRegisterClass *RC, const unsigned *Map) { 645 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 646 if (isdigit(Constraint[2])) { 647 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2); 648 unsigned Index = atoi(Suffix.c_str()); 649 if (Index < 16 && Map[Index]) 650 return std::make_pair(Map[Index], RC); 651 } 652 return std::make_pair(0U, nullptr); 653 } 654 655 std::pair<unsigned, const TargetRegisterClass *> 656 SystemZTargetLowering::getRegForInlineAsmConstraint( 657 const TargetRegisterInfo *TRI, const std::string &Constraint, 658 MVT VT) const { 659 if (Constraint.size() == 1) { 660 // GCC Constraint Letters 661 switch (Constraint[0]) { 662 default: break; 663 case 'd': // Data register (equivalent to 'r') 664 case 'r': // General-purpose register 665 if (VT == MVT::i64) 666 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 667 else if (VT == MVT::i128) 668 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 669 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 670 671 case 'a': // Address register 672 if (VT == MVT::i64) 673 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 674 else if (VT == MVT::i128) 675 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 676 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 677 678 case 'h': // High-part register (an LLVM extension) 679 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 680 681 case 'f': // Floating-point register 682 if (VT == MVT::f64) 683 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 684 else if (VT == MVT::f128) 685 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 686 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 687 } 688 } 689 if (Constraint[0] == '{') { 690 // We need to override the default register parsing for GPRs and FPRs 691 // because the interpretation depends on VT. The internal names of 692 // the registers are also different from the external names 693 // (F0D and F0S instead of F0, etc.). 694 if (Constraint[1] == 'r') { 695 if (VT == MVT::i32) 696 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 697 SystemZMC::GR32Regs); 698 if (VT == MVT::i128) 699 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 700 SystemZMC::GR128Regs); 701 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 702 SystemZMC::GR64Regs); 703 } 704 if (Constraint[1] == 'f') { 705 if (VT == MVT::f32) 706 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 707 SystemZMC::FP32Regs); 708 if (VT == MVT::f128) 709 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 710 SystemZMC::FP128Regs); 711 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 712 SystemZMC::FP64Regs); 713 } 714 } 715 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 716 } 717 718 void SystemZTargetLowering:: 719 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 720 std::vector<SDValue> &Ops, 721 SelectionDAG &DAG) const { 722 // Only support length 1 constraints for now. 723 if (Constraint.length() == 1) { 724 switch (Constraint[0]) { 725 case 'I': // Unsigned 8-bit constant 726 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 727 if (isUInt<8>(C->getZExtValue())) 728 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 729 Op.getValueType())); 730 return; 731 732 case 'J': // Unsigned 12-bit constant 733 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 734 if (isUInt<12>(C->getZExtValue())) 735 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 736 Op.getValueType())); 737 return; 738 739 case 'K': // Signed 16-bit constant 740 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 741 if (isInt<16>(C->getSExtValue())) 742 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 743 Op.getValueType())); 744 return; 745 746 case 'L': // Signed 20-bit displacement (on all targets we support) 747 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 748 if (isInt<20>(C->getSExtValue())) 749 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 750 Op.getValueType())); 751 return; 752 753 case 'M': // 0x7fffffff 754 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 755 if (C->getZExtValue() == 0x7fffffff) 756 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 757 Op.getValueType())); 758 return; 759 } 760 } 761 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 762 } 763 764 //===----------------------------------------------------------------------===// 765 // Calling conventions 766 //===----------------------------------------------------------------------===// 767 768 #include "SystemZGenCallingConv.inc" 769 770 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 771 Type *ToType) const { 772 return isTruncateFree(FromType, ToType); 773 } 774 775 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 776 if (!CI->isTailCall()) 777 return false; 778 return true; 779 } 780 781 // We do not yet support 128-bit single-element vector types. If the user 782 // attempts to use such types as function argument or return type, prefer 783 // to error out instead of emitting code violating the ABI. 784 static void VerifyVectorType(MVT VT, EVT ArgVT) { 785 if (ArgVT.isVector() && !VT.isVector()) 786 report_fatal_error("Unsupported vector argument or return type"); 787 } 788 789 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 790 for (unsigned i = 0; i < Ins.size(); ++i) 791 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 792 } 793 794 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 795 for (unsigned i = 0; i < Outs.size(); ++i) 796 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 797 } 798 799 // Value is a value that has been passed to us in the location described by VA 800 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 801 // any loads onto Chain. 802 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 803 CCValAssign &VA, SDValue Chain, 804 SDValue Value) { 805 // If the argument has been promoted from a smaller type, insert an 806 // assertion to capture this. 807 if (VA.getLocInfo() == CCValAssign::SExt) 808 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 809 DAG.getValueType(VA.getValVT())); 810 else if (VA.getLocInfo() == CCValAssign::ZExt) 811 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 812 DAG.getValueType(VA.getValVT())); 813 814 if (VA.isExtInLoc()) 815 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 816 else if (VA.getLocInfo() == CCValAssign::Indirect) 817 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 818 MachinePointerInfo(), false, false, false, 0); 819 else if (VA.getLocInfo() == CCValAssign::BCvt) { 820 // If this is a short vector argument loaded from the stack, 821 // extend from i64 to full vector size and then bitcast. 822 assert(VA.getLocVT() == MVT::i64); 823 assert(VA.getValVT().isVector()); 824 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 825 Value, DAG.getUNDEF(MVT::i64)); 826 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 827 } else 828 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 829 return Value; 830 } 831 832 // Value is a value of type VA.getValVT() that we need to copy into 833 // the location described by VA. Return a copy of Value converted to 834 // VA.getValVT(). The caller is responsible for handling indirect values. 835 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 836 CCValAssign &VA, SDValue Value) { 837 switch (VA.getLocInfo()) { 838 case CCValAssign::SExt: 839 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 840 case CCValAssign::ZExt: 841 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 842 case CCValAssign::AExt: 843 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 844 case CCValAssign::BCvt: 845 // If this is a short vector argument to be stored to the stack, 846 // bitcast to v2i64 and then extract first element. 847 assert(VA.getLocVT() == MVT::i64); 848 assert(VA.getValVT().isVector()); 849 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 850 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 851 DAG.getConstant(0, DL, MVT::i32)); 852 case CCValAssign::Full: 853 return Value; 854 default: 855 llvm_unreachable("Unhandled getLocInfo()"); 856 } 857 } 858 859 SDValue SystemZTargetLowering:: 860 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 861 const SmallVectorImpl<ISD::InputArg> &Ins, 862 SDLoc DL, SelectionDAG &DAG, 863 SmallVectorImpl<SDValue> &InVals) const { 864 MachineFunction &MF = DAG.getMachineFunction(); 865 MachineFrameInfo *MFI = MF.getFrameInfo(); 866 MachineRegisterInfo &MRI = MF.getRegInfo(); 867 SystemZMachineFunctionInfo *FuncInfo = 868 MF.getInfo<SystemZMachineFunctionInfo>(); 869 auto *TFL = 870 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 871 872 // Detect unsupported vector argument types. 873 if (Subtarget.hasVector()) 874 VerifyVectorTypes(Ins); 875 876 // Assign locations to all of the incoming arguments. 877 SmallVector<CCValAssign, 16> ArgLocs; 878 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 879 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 880 881 unsigned NumFixedGPRs = 0; 882 unsigned NumFixedFPRs = 0; 883 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 884 SDValue ArgValue; 885 CCValAssign &VA = ArgLocs[I]; 886 EVT LocVT = VA.getLocVT(); 887 if (VA.isRegLoc()) { 888 // Arguments passed in registers 889 const TargetRegisterClass *RC; 890 switch (LocVT.getSimpleVT().SimpleTy) { 891 default: 892 // Integers smaller than i64 should be promoted to i64. 893 llvm_unreachable("Unexpected argument type"); 894 case MVT::i32: 895 NumFixedGPRs += 1; 896 RC = &SystemZ::GR32BitRegClass; 897 break; 898 case MVT::i64: 899 NumFixedGPRs += 1; 900 RC = &SystemZ::GR64BitRegClass; 901 break; 902 case MVT::f32: 903 NumFixedFPRs += 1; 904 RC = &SystemZ::FP32BitRegClass; 905 break; 906 case MVT::f64: 907 NumFixedFPRs += 1; 908 RC = &SystemZ::FP64BitRegClass; 909 break; 910 case MVT::v16i8: 911 case MVT::v8i16: 912 case MVT::v4i32: 913 case MVT::v2i64: 914 case MVT::v4f32: 915 case MVT::v2f64: 916 RC = &SystemZ::VR128BitRegClass; 917 break; 918 } 919 920 unsigned VReg = MRI.createVirtualRegister(RC); 921 MRI.addLiveIn(VA.getLocReg(), VReg); 922 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 923 } else { 924 assert(VA.isMemLoc() && "Argument not register or memory"); 925 926 // Create the frame index object for this incoming parameter. 927 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 928 VA.getLocMemOffset(), true); 929 930 // Create the SelectionDAG nodes corresponding to a load 931 // from this parameter. Unpromoted ints and floats are 932 // passed as right-justified 8-byte values. 933 EVT PtrVT = getPointerTy(); 934 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 935 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 936 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 937 DAG.getIntPtrConstant(4, DL)); 938 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 939 MachinePointerInfo::getFixedStack(FI), 940 false, false, false, 0); 941 } 942 943 // Convert the value of the argument register into the value that's 944 // being passed. 945 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 946 } 947 948 if (IsVarArg) { 949 // Save the number of non-varargs registers for later use by va_start, etc. 950 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 951 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 952 953 // Likewise the address (in the form of a frame index) of where the 954 // first stack vararg would be. The 1-byte size here is arbitrary. 955 int64_t StackSize = CCInfo.getNextStackOffset(); 956 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 957 958 // ...and a similar frame index for the caller-allocated save area 959 // that will be used to store the incoming registers. 960 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 961 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 962 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 963 964 // Store the FPR varargs in the reserved frame slots. (We store the 965 // GPRs as part of the prologue.) 966 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 967 SDValue MemOps[SystemZ::NumArgFPRs]; 968 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 969 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 970 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 971 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 972 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 973 &SystemZ::FP64BitRegClass); 974 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 975 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 976 MachinePointerInfo::getFixedStack(FI), 977 false, false, 0); 978 979 } 980 // Join the stores, which are independent of one another. 981 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 982 makeArrayRef(&MemOps[NumFixedFPRs], 983 SystemZ::NumArgFPRs-NumFixedFPRs)); 984 } 985 } 986 987 return Chain; 988 } 989 990 static bool canUseSiblingCall(const CCState &ArgCCInfo, 991 SmallVectorImpl<CCValAssign> &ArgLocs) { 992 // Punt if there are any indirect or stack arguments, or if the call 993 // needs the call-saved argument register R6. 994 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 995 CCValAssign &VA = ArgLocs[I]; 996 if (VA.getLocInfo() == CCValAssign::Indirect) 997 return false; 998 if (!VA.isRegLoc()) 999 return false; 1000 unsigned Reg = VA.getLocReg(); 1001 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1002 return false; 1003 } 1004 return true; 1005 } 1006 1007 SDValue 1008 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1009 SmallVectorImpl<SDValue> &InVals) const { 1010 SelectionDAG &DAG = CLI.DAG; 1011 SDLoc &DL = CLI.DL; 1012 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1013 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1014 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1015 SDValue Chain = CLI.Chain; 1016 SDValue Callee = CLI.Callee; 1017 bool &IsTailCall = CLI.IsTailCall; 1018 CallingConv::ID CallConv = CLI.CallConv; 1019 bool IsVarArg = CLI.IsVarArg; 1020 MachineFunction &MF = DAG.getMachineFunction(); 1021 EVT PtrVT = getPointerTy(); 1022 1023 // Detect unsupported vector argument and return types. 1024 if (Subtarget.hasVector()) { 1025 VerifyVectorTypes(Outs); 1026 VerifyVectorTypes(Ins); 1027 } 1028 1029 // Analyze the operands of the call, assigning locations to each operand. 1030 SmallVector<CCValAssign, 16> ArgLocs; 1031 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1032 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1033 1034 // We don't support GuaranteedTailCallOpt, only automatically-detected 1035 // sibling calls. 1036 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1037 IsTailCall = false; 1038 1039 // Get a count of how many bytes are to be pushed on the stack. 1040 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1041 1042 // Mark the start of the call. 1043 if (!IsTailCall) 1044 Chain = DAG.getCALLSEQ_START(Chain, 1045 DAG.getConstant(NumBytes, DL, PtrVT, true), 1046 DL); 1047 1048 // Copy argument values to their designated locations. 1049 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1050 SmallVector<SDValue, 8> MemOpChains; 1051 SDValue StackPtr; 1052 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1053 CCValAssign &VA = ArgLocs[I]; 1054 SDValue ArgValue = OutVals[I]; 1055 1056 if (VA.getLocInfo() == CCValAssign::Indirect) { 1057 // Store the argument in a stack slot and pass its address. 1058 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1059 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1060 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1061 MachinePointerInfo::getFixedStack(FI), 1062 false, false, 0)); 1063 ArgValue = SpillSlot; 1064 } else 1065 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1066 1067 if (VA.isRegLoc()) 1068 // Queue up the argument copies and emit them at the end. 1069 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1070 else { 1071 assert(VA.isMemLoc() && "Argument not register or memory"); 1072 1073 // Work out the address of the stack slot. Unpromoted ints and 1074 // floats are passed as right-justified 8-byte values. 1075 if (!StackPtr.getNode()) 1076 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1077 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1078 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1079 Offset += 4; 1080 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1081 DAG.getIntPtrConstant(Offset, DL)); 1082 1083 // Emit the store. 1084 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1085 MachinePointerInfo(), 1086 false, false, 0)); 1087 } 1088 } 1089 1090 // Join the stores, which are independent of one another. 1091 if (!MemOpChains.empty()) 1092 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1093 1094 // Accept direct calls by converting symbolic call addresses to the 1095 // associated Target* opcodes. Force %r1 to be used for indirect 1096 // tail calls. 1097 SDValue Glue; 1098 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1099 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1100 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1101 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1102 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1103 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1104 } else if (IsTailCall) { 1105 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1106 Glue = Chain.getValue(1); 1107 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1108 } 1109 1110 // Build a sequence of copy-to-reg nodes, chained and glued together. 1111 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1112 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1113 RegsToPass[I].second, Glue); 1114 Glue = Chain.getValue(1); 1115 } 1116 1117 // The first call operand is the chain and the second is the target address. 1118 SmallVector<SDValue, 8> Ops; 1119 Ops.push_back(Chain); 1120 Ops.push_back(Callee); 1121 1122 // Add argument registers to the end of the list so that they are 1123 // known live into the call. 1124 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1125 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1126 RegsToPass[I].second.getValueType())); 1127 1128 // Add a register mask operand representing the call-preserved registers. 1129 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1130 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1131 assert(Mask && "Missing call preserved mask for calling convention"); 1132 Ops.push_back(DAG.getRegisterMask(Mask)); 1133 1134 // Glue the call to the argument copies, if any. 1135 if (Glue.getNode()) 1136 Ops.push_back(Glue); 1137 1138 // Emit the call. 1139 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1140 if (IsTailCall) 1141 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1142 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1143 Glue = Chain.getValue(1); 1144 1145 // Mark the end of the call, which is glued to the call itself. 1146 Chain = DAG.getCALLSEQ_END(Chain, 1147 DAG.getConstant(NumBytes, DL, PtrVT, true), 1148 DAG.getConstant(0, DL, PtrVT, true), 1149 Glue, DL); 1150 Glue = Chain.getValue(1); 1151 1152 // Assign locations to each value returned by this call. 1153 SmallVector<CCValAssign, 16> RetLocs; 1154 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1155 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1156 1157 // Copy all of the result registers out of their specified physreg. 1158 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1159 CCValAssign &VA = RetLocs[I]; 1160 1161 // Copy the value out, gluing the copy to the end of the call sequence. 1162 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1163 VA.getLocVT(), Glue); 1164 Chain = RetValue.getValue(1); 1165 Glue = RetValue.getValue(2); 1166 1167 // Convert the value of the return register into the value that's 1168 // being returned. 1169 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1170 } 1171 1172 return Chain; 1173 } 1174 1175 SDValue 1176 SystemZTargetLowering::LowerReturn(SDValue Chain, 1177 CallingConv::ID CallConv, bool IsVarArg, 1178 const SmallVectorImpl<ISD::OutputArg> &Outs, 1179 const SmallVectorImpl<SDValue> &OutVals, 1180 SDLoc DL, SelectionDAG &DAG) const { 1181 MachineFunction &MF = DAG.getMachineFunction(); 1182 1183 // Detect unsupported vector return types. 1184 if (Subtarget.hasVector()) 1185 VerifyVectorTypes(Outs); 1186 1187 // Assign locations to each returned value. 1188 SmallVector<CCValAssign, 16> RetLocs; 1189 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1190 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1191 1192 // Quick exit for void returns 1193 if (RetLocs.empty()) 1194 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1195 1196 // Copy the result values into the output registers. 1197 SDValue Glue; 1198 SmallVector<SDValue, 4> RetOps; 1199 RetOps.push_back(Chain); 1200 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1201 CCValAssign &VA = RetLocs[I]; 1202 SDValue RetValue = OutVals[I]; 1203 1204 // Make the return register live on exit. 1205 assert(VA.isRegLoc() && "Can only return in registers!"); 1206 1207 // Promote the value as required. 1208 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1209 1210 // Chain and glue the copies together. 1211 unsigned Reg = VA.getLocReg(); 1212 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1213 Glue = Chain.getValue(1); 1214 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1215 } 1216 1217 // Update chain and glue. 1218 RetOps[0] = Chain; 1219 if (Glue.getNode()) 1220 RetOps.push_back(Glue); 1221 1222 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1223 } 1224 1225 SDValue SystemZTargetLowering:: 1226 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1227 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1228 } 1229 1230 // Return true if Op is an intrinsic node with chain that returns the CC value 1231 // as its only (other) argument. Provide the associated SystemZISD opcode and 1232 // the mask of valid CC values if so. 1233 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1234 unsigned &CCValid) { 1235 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1236 switch (Id) { 1237 case Intrinsic::s390_tbegin: 1238 Opcode = SystemZISD::TBEGIN; 1239 CCValid = SystemZ::CCMASK_TBEGIN; 1240 return true; 1241 1242 case Intrinsic::s390_tbegin_nofloat: 1243 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1244 CCValid = SystemZ::CCMASK_TBEGIN; 1245 return true; 1246 1247 case Intrinsic::s390_tend: 1248 Opcode = SystemZISD::TEND; 1249 CCValid = SystemZ::CCMASK_TEND; 1250 return true; 1251 1252 default: 1253 return false; 1254 } 1255 } 1256 1257 // Return true if Op is an intrinsic node without chain that returns the 1258 // CC value as its final argument. Provide the associated SystemZISD 1259 // opcode and the mask of valid CC values if so. 1260 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1261 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1262 switch (Id) { 1263 case Intrinsic::s390_vpkshs: 1264 case Intrinsic::s390_vpksfs: 1265 case Intrinsic::s390_vpksgs: 1266 Opcode = SystemZISD::PACKS_CC; 1267 CCValid = SystemZ::CCMASK_VCMP; 1268 return true; 1269 1270 case Intrinsic::s390_vpklshs: 1271 case Intrinsic::s390_vpklsfs: 1272 case Intrinsic::s390_vpklsgs: 1273 Opcode = SystemZISD::PACKLS_CC; 1274 CCValid = SystemZ::CCMASK_VCMP; 1275 return true; 1276 1277 case Intrinsic::s390_vceqbs: 1278 case Intrinsic::s390_vceqhs: 1279 case Intrinsic::s390_vceqfs: 1280 case Intrinsic::s390_vceqgs: 1281 Opcode = SystemZISD::VICMPES; 1282 CCValid = SystemZ::CCMASK_VCMP; 1283 return true; 1284 1285 case Intrinsic::s390_vchbs: 1286 case Intrinsic::s390_vchhs: 1287 case Intrinsic::s390_vchfs: 1288 case Intrinsic::s390_vchgs: 1289 Opcode = SystemZISD::VICMPHS; 1290 CCValid = SystemZ::CCMASK_VCMP; 1291 return true; 1292 1293 case Intrinsic::s390_vchlbs: 1294 case Intrinsic::s390_vchlhs: 1295 case Intrinsic::s390_vchlfs: 1296 case Intrinsic::s390_vchlgs: 1297 Opcode = SystemZISD::VICMPHLS; 1298 CCValid = SystemZ::CCMASK_VCMP; 1299 return true; 1300 1301 case Intrinsic::s390_vtm: 1302 Opcode = SystemZISD::VTM; 1303 CCValid = SystemZ::CCMASK_VCMP; 1304 return true; 1305 1306 case Intrinsic::s390_vfaebs: 1307 case Intrinsic::s390_vfaehs: 1308 case Intrinsic::s390_vfaefs: 1309 Opcode = SystemZISD::VFAE_CC; 1310 CCValid = SystemZ::CCMASK_ANY; 1311 return true; 1312 1313 case Intrinsic::s390_vfaezbs: 1314 case Intrinsic::s390_vfaezhs: 1315 case Intrinsic::s390_vfaezfs: 1316 Opcode = SystemZISD::VFAEZ_CC; 1317 CCValid = SystemZ::CCMASK_ANY; 1318 return true; 1319 1320 case Intrinsic::s390_vfeebs: 1321 case Intrinsic::s390_vfeehs: 1322 case Intrinsic::s390_vfeefs: 1323 Opcode = SystemZISD::VFEE_CC; 1324 CCValid = SystemZ::CCMASK_ANY; 1325 return true; 1326 1327 case Intrinsic::s390_vfeezbs: 1328 case Intrinsic::s390_vfeezhs: 1329 case Intrinsic::s390_vfeezfs: 1330 Opcode = SystemZISD::VFEEZ_CC; 1331 CCValid = SystemZ::CCMASK_ANY; 1332 return true; 1333 1334 case Intrinsic::s390_vfenebs: 1335 case Intrinsic::s390_vfenehs: 1336 case Intrinsic::s390_vfenefs: 1337 Opcode = SystemZISD::VFENE_CC; 1338 CCValid = SystemZ::CCMASK_ANY; 1339 return true; 1340 1341 case Intrinsic::s390_vfenezbs: 1342 case Intrinsic::s390_vfenezhs: 1343 case Intrinsic::s390_vfenezfs: 1344 Opcode = SystemZISD::VFENEZ_CC; 1345 CCValid = SystemZ::CCMASK_ANY; 1346 return true; 1347 1348 case Intrinsic::s390_vistrbs: 1349 case Intrinsic::s390_vistrhs: 1350 case Intrinsic::s390_vistrfs: 1351 Opcode = SystemZISD::VISTR_CC; 1352 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1353 return true; 1354 1355 case Intrinsic::s390_vstrcbs: 1356 case Intrinsic::s390_vstrchs: 1357 case Intrinsic::s390_vstrcfs: 1358 Opcode = SystemZISD::VSTRC_CC; 1359 CCValid = SystemZ::CCMASK_ANY; 1360 return true; 1361 1362 case Intrinsic::s390_vstrczbs: 1363 case Intrinsic::s390_vstrczhs: 1364 case Intrinsic::s390_vstrczfs: 1365 Opcode = SystemZISD::VSTRCZ_CC; 1366 CCValid = SystemZ::CCMASK_ANY; 1367 return true; 1368 1369 case Intrinsic::s390_vfcedbs: 1370 Opcode = SystemZISD::VFCMPES; 1371 CCValid = SystemZ::CCMASK_VCMP; 1372 return true; 1373 1374 case Intrinsic::s390_vfchdbs: 1375 Opcode = SystemZISD::VFCMPHS; 1376 CCValid = SystemZ::CCMASK_VCMP; 1377 return true; 1378 1379 case Intrinsic::s390_vfchedbs: 1380 Opcode = SystemZISD::VFCMPHES; 1381 CCValid = SystemZ::CCMASK_VCMP; 1382 return true; 1383 1384 case Intrinsic::s390_vftcidb: 1385 Opcode = SystemZISD::VFTCI; 1386 CCValid = SystemZ::CCMASK_VCMP; 1387 return true; 1388 1389 default: 1390 return false; 1391 } 1392 } 1393 1394 // Emit an intrinsic with chain with a glued value instead of its CC result. 1395 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1396 unsigned Opcode) { 1397 // Copy all operands except the intrinsic ID. 1398 unsigned NumOps = Op.getNumOperands(); 1399 SmallVector<SDValue, 6> Ops; 1400 Ops.reserve(NumOps - 1); 1401 Ops.push_back(Op.getOperand(0)); 1402 for (unsigned I = 2; I < NumOps; ++I) 1403 Ops.push_back(Op.getOperand(I)); 1404 1405 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1406 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1407 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1408 SDValue OldChain = SDValue(Op.getNode(), 1); 1409 SDValue NewChain = SDValue(Intr.getNode(), 0); 1410 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1411 return Intr; 1412 } 1413 1414 // Emit an intrinsic with a glued value instead of its CC result. 1415 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1416 unsigned Opcode) { 1417 // Copy all operands except the intrinsic ID. 1418 unsigned NumOps = Op.getNumOperands(); 1419 SmallVector<SDValue, 6> Ops; 1420 Ops.reserve(NumOps - 1); 1421 for (unsigned I = 1; I < NumOps; ++I) 1422 Ops.push_back(Op.getOperand(I)); 1423 1424 if (Op->getNumValues() == 1) 1425 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1426 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1427 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1428 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1429 } 1430 1431 // CC is a comparison that will be implemented using an integer or 1432 // floating-point comparison. Return the condition code mask for 1433 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1434 // unsigned comparisons and clear for signed ones. In the floating-point 1435 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1436 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1437 #define CONV(X) \ 1438 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1439 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1440 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1441 1442 switch (CC) { 1443 default: 1444 llvm_unreachable("Invalid integer condition!"); 1445 1446 CONV(EQ); 1447 CONV(NE); 1448 CONV(GT); 1449 CONV(GE); 1450 CONV(LT); 1451 CONV(LE); 1452 1453 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1454 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1455 } 1456 #undef CONV 1457 } 1458 1459 // Return a sequence for getting a 1 from an IPM result when CC has a 1460 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1461 // The handling of CC values outside CCValid doesn't matter. 1462 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1463 // Deal with cases where the result can be taken directly from a bit 1464 // of the IPM result. 1465 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1466 return IPMConversion(0, 0, SystemZ::IPM_CC); 1467 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1468 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1469 1470 // Deal with cases where we can add a value to force the sign bit 1471 // to contain the right value. Putting the bit in 31 means we can 1472 // use SRL rather than RISBG(L), and also makes it easier to get a 1473 // 0/-1 value, so it has priority over the other tests below. 1474 // 1475 // These sequences rely on the fact that the upper two bits of the 1476 // IPM result are zero. 1477 uint64_t TopBit = uint64_t(1) << 31; 1478 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1479 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1480 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1481 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1482 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1483 | SystemZ::CCMASK_1 1484 | SystemZ::CCMASK_2))) 1485 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1486 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1487 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1488 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1489 | SystemZ::CCMASK_2 1490 | SystemZ::CCMASK_3))) 1491 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1492 1493 // Next try inverting the value and testing a bit. 0/1 could be 1494 // handled this way too, but we dealt with that case above. 1495 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1496 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1497 1498 // Handle cases where adding a value forces a non-sign bit to contain 1499 // the right value. 1500 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1501 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1502 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1503 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1504 1505 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1506 // can be done by inverting the low CC bit and applying one of the 1507 // sign-based extractions above. 1508 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1509 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1510 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1511 return IPMConversion(1 << SystemZ::IPM_CC, 1512 TopBit - (3 << SystemZ::IPM_CC), 31); 1513 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1514 | SystemZ::CCMASK_1 1515 | SystemZ::CCMASK_3))) 1516 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1517 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1518 | SystemZ::CCMASK_2 1519 | SystemZ::CCMASK_3))) 1520 return IPMConversion(1 << SystemZ::IPM_CC, 1521 TopBit - (1 << SystemZ::IPM_CC), 31); 1522 1523 llvm_unreachable("Unexpected CC combination"); 1524 } 1525 1526 // If C can be converted to a comparison against zero, adjust the operands 1527 // as necessary. 1528 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1529 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1530 return; 1531 1532 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1533 if (!ConstOp1) 1534 return; 1535 1536 int64_t Value = ConstOp1->getSExtValue(); 1537 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1538 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1539 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1540 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1541 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1542 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1543 } 1544 } 1545 1546 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1547 // adjust the operands as necessary. 1548 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1549 // For us to make any changes, it must a comparison between a single-use 1550 // load and a constant. 1551 if (!C.Op0.hasOneUse() || 1552 C.Op0.getOpcode() != ISD::LOAD || 1553 C.Op1.getOpcode() != ISD::Constant) 1554 return; 1555 1556 // We must have an 8- or 16-bit load. 1557 auto *Load = cast<LoadSDNode>(C.Op0); 1558 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1559 if (NumBits != 8 && NumBits != 16) 1560 return; 1561 1562 // The load must be an extending one and the constant must be within the 1563 // range of the unextended value. 1564 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1565 uint64_t Value = ConstOp1->getZExtValue(); 1566 uint64_t Mask = (1 << NumBits) - 1; 1567 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1568 // Make sure that ConstOp1 is in range of C.Op0. 1569 int64_t SignedValue = ConstOp1->getSExtValue(); 1570 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1571 return; 1572 if (C.ICmpType != SystemZICMP::SignedOnly) { 1573 // Unsigned comparison between two sign-extended values is equivalent 1574 // to unsigned comparison between two zero-extended values. 1575 Value &= Mask; 1576 } else if (NumBits == 8) { 1577 // Try to treat the comparison as unsigned, so that we can use CLI. 1578 // Adjust CCMask and Value as necessary. 1579 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1580 // Test whether the high bit of the byte is set. 1581 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1582 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1583 // Test whether the high bit of the byte is clear. 1584 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1585 else 1586 // No instruction exists for this combination. 1587 return; 1588 C.ICmpType = SystemZICMP::UnsignedOnly; 1589 } 1590 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1591 if (Value > Mask) 1592 return; 1593 assert(C.ICmpType == SystemZICMP::Any && 1594 "Signedness shouldn't matter here."); 1595 } else 1596 return; 1597 1598 // Make sure that the first operand is an i32 of the right extension type. 1599 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1600 ISD::SEXTLOAD : 1601 ISD::ZEXTLOAD); 1602 if (C.Op0.getValueType() != MVT::i32 || 1603 Load->getExtensionType() != ExtType) 1604 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1605 Load->getChain(), Load->getBasePtr(), 1606 Load->getPointerInfo(), Load->getMemoryVT(), 1607 Load->isVolatile(), Load->isNonTemporal(), 1608 Load->isInvariant(), Load->getAlignment()); 1609 1610 // Make sure that the second operand is an i32 with the right value. 1611 if (C.Op1.getValueType() != MVT::i32 || 1612 Value != ConstOp1->getZExtValue()) 1613 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1614 } 1615 1616 // Return true if Op is either an unextended load, or a load suitable 1617 // for integer register-memory comparisons of type ICmpType. 1618 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1619 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1620 if (Load) { 1621 // There are no instructions to compare a register with a memory byte. 1622 if (Load->getMemoryVT() == MVT::i8) 1623 return false; 1624 // Otherwise decide on extension type. 1625 switch (Load->getExtensionType()) { 1626 case ISD::NON_EXTLOAD: 1627 return true; 1628 case ISD::SEXTLOAD: 1629 return ICmpType != SystemZICMP::UnsignedOnly; 1630 case ISD::ZEXTLOAD: 1631 return ICmpType != SystemZICMP::SignedOnly; 1632 default: 1633 break; 1634 } 1635 } 1636 return false; 1637 } 1638 1639 // Return true if it is better to swap the operands of C. 1640 static bool shouldSwapCmpOperands(const Comparison &C) { 1641 // Leave f128 comparisons alone, since they have no memory forms. 1642 if (C.Op0.getValueType() == MVT::f128) 1643 return false; 1644 1645 // Always keep a floating-point constant second, since comparisons with 1646 // zero can use LOAD TEST and comparisons with other constants make a 1647 // natural memory operand. 1648 if (isa<ConstantFPSDNode>(C.Op1)) 1649 return false; 1650 1651 // Never swap comparisons with zero since there are many ways to optimize 1652 // those later. 1653 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1654 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1655 return false; 1656 1657 // Also keep natural memory operands second if the loaded value is 1658 // only used here. Several comparisons have memory forms. 1659 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1660 return false; 1661 1662 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1663 // In that case we generally prefer the memory to be second. 1664 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1665 // The only exceptions are when the second operand is a constant and 1666 // we can use things like CHHSI. 1667 if (!ConstOp1) 1668 return true; 1669 // The unsigned memory-immediate instructions can handle 16-bit 1670 // unsigned integers. 1671 if (C.ICmpType != SystemZICMP::SignedOnly && 1672 isUInt<16>(ConstOp1->getZExtValue())) 1673 return false; 1674 // The signed memory-immediate instructions can handle 16-bit 1675 // signed integers. 1676 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1677 isInt<16>(ConstOp1->getSExtValue())) 1678 return false; 1679 return true; 1680 } 1681 1682 // Try to promote the use of CGFR and CLGFR. 1683 unsigned Opcode0 = C.Op0.getOpcode(); 1684 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1685 return true; 1686 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1687 return true; 1688 if (C.ICmpType != SystemZICMP::SignedOnly && 1689 Opcode0 == ISD::AND && 1690 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1691 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1692 return true; 1693 1694 return false; 1695 } 1696 1697 // Return a version of comparison CC mask CCMask in which the LT and GT 1698 // actions are swapped. 1699 static unsigned reverseCCMask(unsigned CCMask) { 1700 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1701 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1702 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1703 (CCMask & SystemZ::CCMASK_CMP_UO)); 1704 } 1705 1706 // Check whether C tests for equality between X and Y and whether X - Y 1707 // or Y - X is also computed. In that case it's better to compare the 1708 // result of the subtraction against zero. 1709 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1710 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1711 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1712 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1713 SDNode *N = *I; 1714 if (N->getOpcode() == ISD::SUB && 1715 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1716 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1717 C.Op0 = SDValue(N, 0); 1718 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1719 return; 1720 } 1721 } 1722 } 1723 } 1724 1725 // Check whether C compares a floating-point value with zero and if that 1726 // floating-point value is also negated. In this case we can use the 1727 // negation to set CC, so avoiding separate LOAD AND TEST and 1728 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1729 static void adjustForFNeg(Comparison &C) { 1730 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1731 if (C1 && C1->isZero()) { 1732 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1733 SDNode *N = *I; 1734 if (N->getOpcode() == ISD::FNEG) { 1735 C.Op0 = SDValue(N, 0); 1736 C.CCMask = reverseCCMask(C.CCMask); 1737 return; 1738 } 1739 } 1740 } 1741 } 1742 1743 // Check whether C compares (shl X, 32) with 0 and whether X is 1744 // also sign-extended. In that case it is better to test the result 1745 // of the sign extension using LTGFR. 1746 // 1747 // This case is important because InstCombine transforms a comparison 1748 // with (sext (trunc X)) into a comparison with (shl X, 32). 1749 static void adjustForLTGFR(Comparison &C) { 1750 // Check for a comparison between (shl X, 32) and 0. 1751 if (C.Op0.getOpcode() == ISD::SHL && 1752 C.Op0.getValueType() == MVT::i64 && 1753 C.Op1.getOpcode() == ISD::Constant && 1754 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1755 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1756 if (C1 && C1->getZExtValue() == 32) { 1757 SDValue ShlOp0 = C.Op0.getOperand(0); 1758 // See whether X has any SIGN_EXTEND_INREG uses. 1759 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1760 SDNode *N = *I; 1761 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1762 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1763 C.Op0 = SDValue(N, 0); 1764 return; 1765 } 1766 } 1767 } 1768 } 1769 } 1770 1771 // If C compares the truncation of an extending load, try to compare 1772 // the untruncated value instead. This exposes more opportunities to 1773 // reuse CC. 1774 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1775 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1776 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1777 C.Op1.getOpcode() == ISD::Constant && 1778 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1779 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1780 if (L->getMemoryVT().getStoreSizeInBits() 1781 <= C.Op0.getValueType().getSizeInBits()) { 1782 unsigned Type = L->getExtensionType(); 1783 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1784 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1785 C.Op0 = C.Op0.getOperand(0); 1786 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1787 } 1788 } 1789 } 1790 } 1791 1792 // Return true if shift operation N has an in-range constant shift value. 1793 // Store it in ShiftVal if so. 1794 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1795 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1796 if (!Shift) 1797 return false; 1798 1799 uint64_t Amount = Shift->getZExtValue(); 1800 if (Amount >= N.getValueType().getSizeInBits()) 1801 return false; 1802 1803 ShiftVal = Amount; 1804 return true; 1805 } 1806 1807 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1808 // instruction and whether the CC value is descriptive enough to handle 1809 // a comparison of type Opcode between the AND result and CmpVal. 1810 // CCMask says which comparison result is being tested and BitSize is 1811 // the number of bits in the operands. If TEST UNDER MASK can be used, 1812 // return the corresponding CC mask, otherwise return 0. 1813 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1814 uint64_t Mask, uint64_t CmpVal, 1815 unsigned ICmpType) { 1816 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1817 1818 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1819 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1820 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1821 return 0; 1822 1823 // Work out the masks for the lowest and highest bits. 1824 unsigned HighShift = 63 - countLeadingZeros(Mask); 1825 uint64_t High = uint64_t(1) << HighShift; 1826 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1827 1828 // Signed ordered comparisons are effectively unsigned if the sign 1829 // bit is dropped. 1830 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1831 1832 // Check for equality comparisons with 0, or the equivalent. 1833 if (CmpVal == 0) { 1834 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1835 return SystemZ::CCMASK_TM_ALL_0; 1836 if (CCMask == SystemZ::CCMASK_CMP_NE) 1837 return SystemZ::CCMASK_TM_SOME_1; 1838 } 1839 if (EffectivelyUnsigned && CmpVal <= Low) { 1840 if (CCMask == SystemZ::CCMASK_CMP_LT) 1841 return SystemZ::CCMASK_TM_ALL_0; 1842 if (CCMask == SystemZ::CCMASK_CMP_GE) 1843 return SystemZ::CCMASK_TM_SOME_1; 1844 } 1845 if (EffectivelyUnsigned && CmpVal < Low) { 1846 if (CCMask == SystemZ::CCMASK_CMP_LE) 1847 return SystemZ::CCMASK_TM_ALL_0; 1848 if (CCMask == SystemZ::CCMASK_CMP_GT) 1849 return SystemZ::CCMASK_TM_SOME_1; 1850 } 1851 1852 // Check for equality comparisons with the mask, or the equivalent. 1853 if (CmpVal == Mask) { 1854 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1855 return SystemZ::CCMASK_TM_ALL_1; 1856 if (CCMask == SystemZ::CCMASK_CMP_NE) 1857 return SystemZ::CCMASK_TM_SOME_0; 1858 } 1859 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1860 if (CCMask == SystemZ::CCMASK_CMP_GT) 1861 return SystemZ::CCMASK_TM_ALL_1; 1862 if (CCMask == SystemZ::CCMASK_CMP_LE) 1863 return SystemZ::CCMASK_TM_SOME_0; 1864 } 1865 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1866 if (CCMask == SystemZ::CCMASK_CMP_GE) 1867 return SystemZ::CCMASK_TM_ALL_1; 1868 if (CCMask == SystemZ::CCMASK_CMP_LT) 1869 return SystemZ::CCMASK_TM_SOME_0; 1870 } 1871 1872 // Check for ordered comparisons with the top bit. 1873 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1874 if (CCMask == SystemZ::CCMASK_CMP_LE) 1875 return SystemZ::CCMASK_TM_MSB_0; 1876 if (CCMask == SystemZ::CCMASK_CMP_GT) 1877 return SystemZ::CCMASK_TM_MSB_1; 1878 } 1879 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1880 if (CCMask == SystemZ::CCMASK_CMP_LT) 1881 return SystemZ::CCMASK_TM_MSB_0; 1882 if (CCMask == SystemZ::CCMASK_CMP_GE) 1883 return SystemZ::CCMASK_TM_MSB_1; 1884 } 1885 1886 // If there are just two bits, we can do equality checks for Low and High 1887 // as well. 1888 if (Mask == Low + High) { 1889 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1890 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1891 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1892 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1893 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1894 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1895 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1896 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1897 } 1898 1899 // Looks like we've exhausted our options. 1900 return 0; 1901 } 1902 1903 // See whether C can be implemented as a TEST UNDER MASK instruction. 1904 // Update the arguments with the TM version if so. 1905 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1906 // Check that we have a comparison with a constant. 1907 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1908 if (!ConstOp1) 1909 return; 1910 uint64_t CmpVal = ConstOp1->getZExtValue(); 1911 1912 // Check whether the nonconstant input is an AND with a constant mask. 1913 Comparison NewC(C); 1914 uint64_t MaskVal; 1915 ConstantSDNode *Mask = nullptr; 1916 if (C.Op0.getOpcode() == ISD::AND) { 1917 NewC.Op0 = C.Op0.getOperand(0); 1918 NewC.Op1 = C.Op0.getOperand(1); 1919 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1920 if (!Mask) 1921 return; 1922 MaskVal = Mask->getZExtValue(); 1923 } else { 1924 // There is no instruction to compare with a 64-bit immediate 1925 // so use TMHH instead if possible. We need an unsigned ordered 1926 // comparison with an i64 immediate. 1927 if (NewC.Op0.getValueType() != MVT::i64 || 1928 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1929 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1930 NewC.ICmpType == SystemZICMP::SignedOnly) 1931 return; 1932 // Convert LE and GT comparisons into LT and GE. 1933 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1934 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1935 if (CmpVal == uint64_t(-1)) 1936 return; 1937 CmpVal += 1; 1938 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1939 } 1940 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1941 // be masked off without changing the result. 1942 MaskVal = -(CmpVal & -CmpVal); 1943 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1944 } 1945 if (!MaskVal) 1946 return; 1947 1948 // Check whether the combination of mask, comparison value and comparison 1949 // type are suitable. 1950 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1951 unsigned NewCCMask, ShiftVal; 1952 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1953 NewC.Op0.getOpcode() == ISD::SHL && 1954 isSimpleShift(NewC.Op0, ShiftVal) && 1955 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1956 MaskVal >> ShiftVal, 1957 CmpVal >> ShiftVal, 1958 SystemZICMP::Any))) { 1959 NewC.Op0 = NewC.Op0.getOperand(0); 1960 MaskVal >>= ShiftVal; 1961 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1962 NewC.Op0.getOpcode() == ISD::SRL && 1963 isSimpleShift(NewC.Op0, ShiftVal) && 1964 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1965 MaskVal << ShiftVal, 1966 CmpVal << ShiftVal, 1967 SystemZICMP::UnsignedOnly))) { 1968 NewC.Op0 = NewC.Op0.getOperand(0); 1969 MaskVal <<= ShiftVal; 1970 } else { 1971 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1972 NewC.ICmpType); 1973 if (!NewCCMask) 1974 return; 1975 } 1976 1977 // Go ahead and make the change. 1978 C.Opcode = SystemZISD::TM; 1979 C.Op0 = NewC.Op0; 1980 if (Mask && Mask->getZExtValue() == MaskVal) 1981 C.Op1 = SDValue(Mask, 0); 1982 else 1983 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 1984 C.CCValid = SystemZ::CCMASK_TM; 1985 C.CCMask = NewCCMask; 1986 } 1987 1988 // Return a Comparison that tests the condition-code result of intrinsic 1989 // node Call against constant integer CC using comparison code Cond. 1990 // Opcode is the opcode of the SystemZISD operation for the intrinsic 1991 // and CCValid is the set of possible condition-code results. 1992 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 1993 SDValue Call, unsigned CCValid, uint64_t CC, 1994 ISD::CondCode Cond) { 1995 Comparison C(Call, SDValue()); 1996 C.Opcode = Opcode; 1997 C.CCValid = CCValid; 1998 if (Cond == ISD::SETEQ) 1999 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2000 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2001 else if (Cond == ISD::SETNE) 2002 // ...and the inverse of that. 2003 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2004 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2005 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2006 // always true for CC>3. 2007 C.CCMask = CC < 4 ? -1 << (4 - CC) : -1; 2008 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2009 // ...and the inverse of that. 2010 C.CCMask = CC < 4 ? ~(-1 << (4 - CC)) : 0; 2011 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2012 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2013 // always true for CC>3. 2014 C.CCMask = CC < 4 ? -1 << (3 - CC) : -1; 2015 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2016 // ...and the inverse of that. 2017 C.CCMask = CC < 4 ? ~(-1 << (3 - CC)) : 0; 2018 else 2019 llvm_unreachable("Unexpected integer comparison type"); 2020 C.CCMask &= CCValid; 2021 return C; 2022 } 2023 2024 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2025 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2026 ISD::CondCode Cond, SDLoc DL) { 2027 if (CmpOp1.getOpcode() == ISD::Constant) { 2028 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2029 unsigned Opcode, CCValid; 2030 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2031 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2032 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2033 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2034 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2035 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2036 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2037 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2038 } 2039 Comparison C(CmpOp0, CmpOp1); 2040 C.CCMask = CCMaskForCondCode(Cond); 2041 if (C.Op0.getValueType().isFloatingPoint()) { 2042 C.CCValid = SystemZ::CCMASK_FCMP; 2043 C.Opcode = SystemZISD::FCMP; 2044 adjustForFNeg(C); 2045 } else { 2046 C.CCValid = SystemZ::CCMASK_ICMP; 2047 C.Opcode = SystemZISD::ICMP; 2048 // Choose the type of comparison. Equality and inequality tests can 2049 // use either signed or unsigned comparisons. The choice also doesn't 2050 // matter if both sign bits are known to be clear. In those cases we 2051 // want to give the main isel code the freedom to choose whichever 2052 // form fits best. 2053 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2054 C.CCMask == SystemZ::CCMASK_CMP_NE || 2055 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2056 C.ICmpType = SystemZICMP::Any; 2057 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2058 C.ICmpType = SystemZICMP::UnsignedOnly; 2059 else 2060 C.ICmpType = SystemZICMP::SignedOnly; 2061 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2062 adjustZeroCmp(DAG, DL, C); 2063 adjustSubwordCmp(DAG, DL, C); 2064 adjustForSubtraction(DAG, DL, C); 2065 adjustForLTGFR(C); 2066 adjustICmpTruncate(DAG, DL, C); 2067 } 2068 2069 if (shouldSwapCmpOperands(C)) { 2070 std::swap(C.Op0, C.Op1); 2071 C.CCMask = reverseCCMask(C.CCMask); 2072 } 2073 2074 adjustForTestUnderMask(DAG, DL, C); 2075 return C; 2076 } 2077 2078 // Emit the comparison instruction described by C. 2079 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2080 if (!C.Op1.getNode()) { 2081 SDValue Op; 2082 switch (C.Op0.getOpcode()) { 2083 case ISD::INTRINSIC_W_CHAIN: 2084 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2085 break; 2086 case ISD::INTRINSIC_WO_CHAIN: 2087 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2088 break; 2089 default: 2090 llvm_unreachable("Invalid comparison operands"); 2091 } 2092 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2093 } 2094 if (C.Opcode == SystemZISD::ICMP) 2095 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2096 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2097 if (C.Opcode == SystemZISD::TM) { 2098 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2099 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2100 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2101 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2102 } 2103 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2104 } 2105 2106 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2107 // 64 bits. Extend is the extension type to use. Store the high part 2108 // in Hi and the low part in Lo. 2109 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2110 unsigned Extend, SDValue Op0, SDValue Op1, 2111 SDValue &Hi, SDValue &Lo) { 2112 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2113 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2114 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2115 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2116 DAG.getConstant(32, DL, MVT::i64)); 2117 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2118 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2119 } 2120 2121 // Lower a binary operation that produces two VT results, one in each 2122 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2123 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2124 // on the extended Op0 and (unextended) Op1. Store the even register result 2125 // in Even and the odd register result in Odd. 2126 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2127 unsigned Extend, unsigned Opcode, 2128 SDValue Op0, SDValue Op1, 2129 SDValue &Even, SDValue &Odd) { 2130 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2131 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2132 SDValue(In128, 0), Op1); 2133 bool Is32Bit = is32Bit(VT); 2134 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2135 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2136 } 2137 2138 // Return an i32 value that is 1 if the CC value produced by Glue is 2139 // in the mask CCMask and 0 otherwise. CC is known to have a value 2140 // in CCValid, so other values can be ignored. 2141 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2142 unsigned CCValid, unsigned CCMask) { 2143 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2144 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2145 2146 if (Conversion.XORValue) 2147 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2148 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2149 2150 if (Conversion.AddValue) 2151 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2152 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2153 2154 // The SHR/AND sequence should get optimized to an RISBG. 2155 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2156 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2157 if (Conversion.Bit != 31) 2158 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2159 DAG.getConstant(1, DL, MVT::i32)); 2160 return Result; 2161 } 2162 2163 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2164 // be done directly. IsFP is true if CC is for a floating-point rather than 2165 // integer comparison. 2166 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2167 switch (CC) { 2168 case ISD::SETOEQ: 2169 case ISD::SETEQ: 2170 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2171 2172 case ISD::SETOGE: 2173 case ISD::SETGE: 2174 return IsFP ? SystemZISD::VFCMPHE : 0; 2175 2176 case ISD::SETOGT: 2177 case ISD::SETGT: 2178 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2179 2180 case ISD::SETUGT: 2181 return IsFP ? 0 : SystemZISD::VICMPHL; 2182 2183 default: 2184 return 0; 2185 } 2186 } 2187 2188 // Return the SystemZISD vector comparison operation for CC or its inverse, 2189 // or 0 if neither can be done directly. Indicate in Invert whether the 2190 // result is for the inverse of CC. IsFP is true if CC is for a 2191 // floating-point rather than integer comparison. 2192 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2193 bool &Invert) { 2194 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2195 Invert = false; 2196 return Opcode; 2197 } 2198 2199 CC = ISD::getSetCCInverse(CC, !IsFP); 2200 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2201 Invert = true; 2202 return Opcode; 2203 } 2204 2205 return 0; 2206 } 2207 2208 // Return a v2f64 that contains the extended form of elements Start and Start+1 2209 // of v4f32 value Op. 2210 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2211 SDValue Op) { 2212 int Mask[] = { Start, -1, Start + 1, -1 }; 2213 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2214 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2215 } 2216 2217 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2218 // producing a result of type VT. 2219 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2220 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2221 // There is no hardware support for v4f32, so extend the vector into 2222 // two v2f64s and compare those. 2223 if (CmpOp0.getValueType() == MVT::v4f32) { 2224 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2225 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2226 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2227 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2228 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2229 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2230 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2231 } 2232 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2233 } 2234 2235 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2236 // an integer mask of type VT. 2237 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2238 ISD::CondCode CC, SDValue CmpOp0, 2239 SDValue CmpOp1) { 2240 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2241 bool Invert = false; 2242 SDValue Cmp; 2243 switch (CC) { 2244 // Handle tests for order using (or (ogt y x) (oge x y)). 2245 case ISD::SETUO: 2246 Invert = true; 2247 case ISD::SETO: { 2248 assert(IsFP && "Unexpected integer comparison"); 2249 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2250 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2251 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2252 break; 2253 } 2254 2255 // Handle <> tests using (or (ogt y x) (ogt x y)). 2256 case ISD::SETUEQ: 2257 Invert = true; 2258 case ISD::SETONE: { 2259 assert(IsFP && "Unexpected integer comparison"); 2260 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2261 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2262 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2263 break; 2264 } 2265 2266 // Otherwise a single comparison is enough. It doesn't really 2267 // matter whether we try the inversion or the swap first, since 2268 // there are no cases where both work. 2269 default: 2270 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2271 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2272 else { 2273 CC = ISD::getSetCCSwappedOperands(CC); 2274 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2275 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2276 else 2277 llvm_unreachable("Unhandled comparison"); 2278 } 2279 break; 2280 } 2281 if (Invert) { 2282 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2283 DAG.getConstant(65535, DL, MVT::i32)); 2284 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2285 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2286 } 2287 return Cmp; 2288 } 2289 2290 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2291 SelectionDAG &DAG) const { 2292 SDValue CmpOp0 = Op.getOperand(0); 2293 SDValue CmpOp1 = Op.getOperand(1); 2294 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2295 SDLoc DL(Op); 2296 EVT VT = Op.getValueType(); 2297 if (VT.isVector()) 2298 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2299 2300 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2301 SDValue Glue = emitCmp(DAG, DL, C); 2302 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2303 } 2304 2305 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2306 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2307 SDValue CmpOp0 = Op.getOperand(2); 2308 SDValue CmpOp1 = Op.getOperand(3); 2309 SDValue Dest = Op.getOperand(4); 2310 SDLoc DL(Op); 2311 2312 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2313 SDValue Glue = emitCmp(DAG, DL, C); 2314 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2315 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2316 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2317 } 2318 2319 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2320 // allowing Pos and Neg to be wider than CmpOp. 2321 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2322 return (Neg.getOpcode() == ISD::SUB && 2323 Neg.getOperand(0).getOpcode() == ISD::Constant && 2324 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2325 Neg.getOperand(1) == Pos && 2326 (Pos == CmpOp || 2327 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2328 Pos.getOperand(0) == CmpOp))); 2329 } 2330 2331 // Return the absolute or negative absolute of Op; IsNegative decides which. 2332 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2333 bool IsNegative) { 2334 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2335 if (IsNegative) 2336 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2337 DAG.getConstant(0, DL, Op.getValueType()), Op); 2338 return Op; 2339 } 2340 2341 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2342 SelectionDAG &DAG) const { 2343 SDValue CmpOp0 = Op.getOperand(0); 2344 SDValue CmpOp1 = Op.getOperand(1); 2345 SDValue TrueOp = Op.getOperand(2); 2346 SDValue FalseOp = Op.getOperand(3); 2347 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2348 SDLoc DL(Op); 2349 2350 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2351 2352 // Check for absolute and negative-absolute selections, including those 2353 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2354 // This check supplements the one in DAGCombiner. 2355 if (C.Opcode == SystemZISD::ICMP && 2356 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2357 C.CCMask != SystemZ::CCMASK_CMP_NE && 2358 C.Op1.getOpcode() == ISD::Constant && 2359 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2360 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2361 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2362 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2363 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2364 } 2365 2366 SDValue Glue = emitCmp(DAG, DL, C); 2367 2368 // Special case for handling -1/0 results. The shifts we use here 2369 // should get optimized with the IPM conversion sequence. 2370 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2371 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2372 if (TrueC && FalseC) { 2373 int64_t TrueVal = TrueC->getSExtValue(); 2374 int64_t FalseVal = FalseC->getSExtValue(); 2375 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2376 // Invert the condition if we want -1 on false. 2377 if (TrueVal == 0) 2378 C.CCMask ^= C.CCValid; 2379 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2380 EVT VT = Op.getValueType(); 2381 // Extend the result to VT. Upper bits are ignored. 2382 if (!is32Bit(VT)) 2383 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2384 // Sign-extend from the low bit. 2385 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2386 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2387 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2388 } 2389 } 2390 2391 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2392 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2393 2394 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2395 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2396 } 2397 2398 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2399 SelectionDAG &DAG) const { 2400 SDLoc DL(Node); 2401 const GlobalValue *GV = Node->getGlobal(); 2402 int64_t Offset = Node->getOffset(); 2403 EVT PtrVT = getPointerTy(); 2404 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2405 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2406 2407 SDValue Result; 2408 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2409 // Assign anchors at 1<<12 byte boundaries. 2410 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2411 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2412 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2413 2414 // The offset can be folded into the address if it is aligned to a halfword. 2415 Offset -= Anchor; 2416 if (Offset != 0 && (Offset & 1) == 0) { 2417 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2418 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2419 Offset = 0; 2420 } 2421 } else { 2422 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2423 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2424 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2425 MachinePointerInfo::getGOT(), false, false, false, 0); 2426 } 2427 2428 // If there was a non-zero offset that we didn't fold, create an explicit 2429 // addition for it. 2430 if (Offset != 0) 2431 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2432 DAG.getConstant(Offset, DL, PtrVT)); 2433 2434 return Result; 2435 } 2436 2437 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2438 SelectionDAG &DAG, 2439 unsigned Opcode, 2440 SDValue GOTOffset) const { 2441 SDLoc DL(Node); 2442 EVT PtrVT = getPointerTy(); 2443 SDValue Chain = DAG.getEntryNode(); 2444 SDValue Glue; 2445 2446 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2447 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2448 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2449 Glue = Chain.getValue(1); 2450 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2451 Glue = Chain.getValue(1); 2452 2453 // The first call operand is the chain and the second is the TLS symbol. 2454 SmallVector<SDValue, 8> Ops; 2455 Ops.push_back(Chain); 2456 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2457 Node->getValueType(0), 2458 0, 0)); 2459 2460 // Add argument registers to the end of the list so that they are 2461 // known live into the call. 2462 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2463 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2464 2465 // Add a register mask operand representing the call-preserved registers. 2466 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2467 const uint32_t *Mask = 2468 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2469 assert(Mask && "Missing call preserved mask for calling convention"); 2470 Ops.push_back(DAG.getRegisterMask(Mask)); 2471 2472 // Glue the call to the argument copies. 2473 Ops.push_back(Glue); 2474 2475 // Emit the call. 2476 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2477 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2478 Glue = Chain.getValue(1); 2479 2480 // Copy the return value from %r2. 2481 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2482 } 2483 2484 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2485 SelectionDAG &DAG) const { 2486 SDLoc DL(Node); 2487 const GlobalValue *GV = Node->getGlobal(); 2488 EVT PtrVT = getPointerTy(); 2489 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2490 2491 // The high part of the thread pointer is in access register 0. 2492 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2493 DAG.getConstant(0, DL, MVT::i32)); 2494 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2495 2496 // The low part of the thread pointer is in access register 1. 2497 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2498 DAG.getConstant(1, DL, MVT::i32)); 2499 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2500 2501 // Merge them into a single 64-bit address. 2502 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2503 DAG.getConstant(32, DL, PtrVT)); 2504 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2505 2506 // Get the offset of GA from the thread pointer, based on the TLS model. 2507 SDValue Offset; 2508 switch (model) { 2509 case TLSModel::GeneralDynamic: { 2510 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2511 SystemZConstantPoolValue *CPV = 2512 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2513 2514 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2515 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2516 Offset, MachinePointerInfo::getConstantPool(), 2517 false, false, false, 0); 2518 2519 // Call __tls_get_offset to retrieve the offset. 2520 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2521 break; 2522 } 2523 2524 case TLSModel::LocalDynamic: { 2525 // Load the GOT offset of the module ID. 2526 SystemZConstantPoolValue *CPV = 2527 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2528 2529 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2530 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2531 Offset, MachinePointerInfo::getConstantPool(), 2532 false, false, false, 0); 2533 2534 // Call __tls_get_offset to retrieve the module base offset. 2535 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2536 2537 // Note: The SystemZLDCleanupPass will remove redundant computations 2538 // of the module base offset. Count total number of local-dynamic 2539 // accesses to trigger execution of that pass. 2540 SystemZMachineFunctionInfo* MFI = 2541 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2542 MFI->incNumLocalDynamicTLSAccesses(); 2543 2544 // Add the per-symbol offset. 2545 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2546 2547 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2548 DTPOffset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2549 DTPOffset, MachinePointerInfo::getConstantPool(), 2550 false, false, false, 0); 2551 2552 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2553 break; 2554 } 2555 2556 case TLSModel::InitialExec: { 2557 // Load the offset from the GOT. 2558 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2559 SystemZII::MO_INDNTPOFF); 2560 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2561 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2562 Offset, MachinePointerInfo::getGOT(), 2563 false, false, false, 0); 2564 break; 2565 } 2566 2567 case TLSModel::LocalExec: { 2568 // Force the offset into the constant pool and load it from there. 2569 SystemZConstantPoolValue *CPV = 2570 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2571 2572 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2573 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 2574 Offset, MachinePointerInfo::getConstantPool(), 2575 false, false, false, 0); 2576 break; 2577 } 2578 } 2579 2580 // Add the base and offset together. 2581 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2582 } 2583 2584 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2585 SelectionDAG &DAG) const { 2586 SDLoc DL(Node); 2587 const BlockAddress *BA = Node->getBlockAddress(); 2588 int64_t Offset = Node->getOffset(); 2589 EVT PtrVT = getPointerTy(); 2590 2591 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2592 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2593 return Result; 2594 } 2595 2596 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2597 SelectionDAG &DAG) const { 2598 SDLoc DL(JT); 2599 EVT PtrVT = getPointerTy(); 2600 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2601 2602 // Use LARL to load the address of the table. 2603 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2604 } 2605 2606 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2607 SelectionDAG &DAG) const { 2608 SDLoc DL(CP); 2609 EVT PtrVT = getPointerTy(); 2610 2611 SDValue Result; 2612 if (CP->isMachineConstantPoolEntry()) 2613 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2614 CP->getAlignment()); 2615 else 2616 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2617 CP->getAlignment(), CP->getOffset()); 2618 2619 // Use LARL to load the address of the constant pool entry. 2620 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2621 } 2622 2623 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2624 SelectionDAG &DAG) const { 2625 SDLoc DL(Op); 2626 SDValue In = Op.getOperand(0); 2627 EVT InVT = In.getValueType(); 2628 EVT ResVT = Op.getValueType(); 2629 2630 // Convert loads directly. This is normally done by DAGCombiner, 2631 // but we need this case for bitcasts that are created during lowering 2632 // and which are then lowered themselves. 2633 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2634 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2635 LoadN->getMemOperand()); 2636 2637 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2638 SDValue In64; 2639 if (Subtarget.hasHighWord()) { 2640 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2641 MVT::i64); 2642 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2643 MVT::i64, SDValue(U64, 0), In); 2644 } else { 2645 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2646 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2647 DAG.getConstant(32, DL, MVT::i64)); 2648 } 2649 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2650 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2651 DL, MVT::f32, Out64); 2652 } 2653 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2654 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2655 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2656 MVT::f64, SDValue(U64, 0), In); 2657 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2658 if (Subtarget.hasHighWord()) 2659 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2660 MVT::i32, Out64); 2661 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2662 DAG.getConstant(32, DL, MVT::i64)); 2663 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2664 } 2665 llvm_unreachable("Unexpected bitcast combination"); 2666 } 2667 2668 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2669 SelectionDAG &DAG) const { 2670 MachineFunction &MF = DAG.getMachineFunction(); 2671 SystemZMachineFunctionInfo *FuncInfo = 2672 MF.getInfo<SystemZMachineFunctionInfo>(); 2673 EVT PtrVT = getPointerTy(); 2674 2675 SDValue Chain = Op.getOperand(0); 2676 SDValue Addr = Op.getOperand(1); 2677 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2678 SDLoc DL(Op); 2679 2680 // The initial values of each field. 2681 const unsigned NumFields = 4; 2682 SDValue Fields[NumFields] = { 2683 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2684 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2685 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2686 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2687 }; 2688 2689 // Store each field into its respective slot. 2690 SDValue MemOps[NumFields]; 2691 unsigned Offset = 0; 2692 for (unsigned I = 0; I < NumFields; ++I) { 2693 SDValue FieldAddr = Addr; 2694 if (Offset != 0) 2695 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2696 DAG.getIntPtrConstant(Offset, DL)); 2697 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2698 MachinePointerInfo(SV, Offset), 2699 false, false, 0); 2700 Offset += 8; 2701 } 2702 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2703 } 2704 2705 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2706 SelectionDAG &DAG) const { 2707 SDValue Chain = Op.getOperand(0); 2708 SDValue DstPtr = Op.getOperand(1); 2709 SDValue SrcPtr = Op.getOperand(2); 2710 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2711 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2712 SDLoc DL(Op); 2713 2714 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2715 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2716 /*isTailCall*/false, 2717 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2718 } 2719 2720 SDValue SystemZTargetLowering:: 2721 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2722 SDValue Chain = Op.getOperand(0); 2723 SDValue Size = Op.getOperand(1); 2724 SDLoc DL(Op); 2725 2726 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2727 2728 // Get a reference to the stack pointer. 2729 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2730 2731 // Get the new stack pointer value. 2732 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2733 2734 // Copy the new stack pointer back. 2735 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2736 2737 // The allocated data lives above the 160 bytes allocated for the standard 2738 // frame, plus any outgoing stack arguments. We don't know how much that 2739 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2740 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2741 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2742 2743 SDValue Ops[2] = { Result, Chain }; 2744 return DAG.getMergeValues(Ops, DL); 2745 } 2746 2747 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2748 SelectionDAG &DAG) const { 2749 EVT VT = Op.getValueType(); 2750 SDLoc DL(Op); 2751 SDValue Ops[2]; 2752 if (is32Bit(VT)) 2753 // Just do a normal 64-bit multiplication and extract the results. 2754 // We define this so that it can be used for constant division. 2755 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2756 Op.getOperand(1), Ops[1], Ops[0]); 2757 else { 2758 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2759 // 2760 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2761 // 2762 // but using the fact that the upper halves are either all zeros 2763 // or all ones: 2764 // 2765 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2766 // 2767 // and grouping the right terms together since they are quicker than the 2768 // multiplication: 2769 // 2770 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2771 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2772 SDValue LL = Op.getOperand(0); 2773 SDValue RL = Op.getOperand(1); 2774 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2775 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2776 // UMUL_LOHI64 returns the low result in the odd register and the high 2777 // result in the even register. SMUL_LOHI is defined to return the 2778 // low half first, so the results are in reverse order. 2779 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2780 LL, RL, Ops[1], Ops[0]); 2781 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2782 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2783 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2784 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2785 } 2786 return DAG.getMergeValues(Ops, DL); 2787 } 2788 2789 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2790 SelectionDAG &DAG) const { 2791 EVT VT = Op.getValueType(); 2792 SDLoc DL(Op); 2793 SDValue Ops[2]; 2794 if (is32Bit(VT)) 2795 // Just do a normal 64-bit multiplication and extract the results. 2796 // We define this so that it can be used for constant division. 2797 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2798 Op.getOperand(1), Ops[1], Ops[0]); 2799 else 2800 // UMUL_LOHI64 returns the low result in the odd register and the high 2801 // result in the even register. UMUL_LOHI is defined to return the 2802 // low half first, so the results are in reverse order. 2803 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2804 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2805 return DAG.getMergeValues(Ops, DL); 2806 } 2807 2808 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2809 SelectionDAG &DAG) const { 2810 SDValue Op0 = Op.getOperand(0); 2811 SDValue Op1 = Op.getOperand(1); 2812 EVT VT = Op.getValueType(); 2813 SDLoc DL(Op); 2814 unsigned Opcode; 2815 2816 // We use DSGF for 32-bit division. 2817 if (is32Bit(VT)) { 2818 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2819 Opcode = SystemZISD::SDIVREM32; 2820 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2821 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2822 Opcode = SystemZISD::SDIVREM32; 2823 } else 2824 Opcode = SystemZISD::SDIVREM64; 2825 2826 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2827 // input is "don't care". The instruction returns the remainder in 2828 // the even register and the quotient in the odd register. 2829 SDValue Ops[2]; 2830 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2831 Op0, Op1, Ops[1], Ops[0]); 2832 return DAG.getMergeValues(Ops, DL); 2833 } 2834 2835 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2836 SelectionDAG &DAG) const { 2837 EVT VT = Op.getValueType(); 2838 SDLoc DL(Op); 2839 2840 // DL(G) uses a double-width dividend, so we need to clear the even 2841 // register in the GR128 input. The instruction returns the remainder 2842 // in the even register and the quotient in the odd register. 2843 SDValue Ops[2]; 2844 if (is32Bit(VT)) 2845 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2846 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2847 else 2848 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2849 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2850 return DAG.getMergeValues(Ops, DL); 2851 } 2852 2853 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2854 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2855 2856 // Get the known-zero masks for each operand. 2857 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2858 APInt KnownZero[2], KnownOne[2]; 2859 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2860 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2861 2862 // See if the upper 32 bits of one operand and the lower 32 bits of the 2863 // other are known zero. They are the low and high operands respectively. 2864 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2865 KnownZero[1].getZExtValue() }; 2866 unsigned High, Low; 2867 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2868 High = 1, Low = 0; 2869 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2870 High = 0, Low = 1; 2871 else 2872 return Op; 2873 2874 SDValue LowOp = Ops[Low]; 2875 SDValue HighOp = Ops[High]; 2876 2877 // If the high part is a constant, we're better off using IILH. 2878 if (HighOp.getOpcode() == ISD::Constant) 2879 return Op; 2880 2881 // If the low part is a constant that is outside the range of LHI, 2882 // then we're better off using IILF. 2883 if (LowOp.getOpcode() == ISD::Constant) { 2884 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2885 if (!isInt<16>(Value)) 2886 return Op; 2887 } 2888 2889 // Check whether the high part is an AND that doesn't change the 2890 // high 32 bits and just masks out low bits. We can skip it if so. 2891 if (HighOp.getOpcode() == ISD::AND && 2892 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2893 SDValue HighOp0 = HighOp.getOperand(0); 2894 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2895 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2896 HighOp = HighOp0; 2897 } 2898 2899 // Take advantage of the fact that all GR32 operations only change the 2900 // low 32 bits by truncating Low to an i32 and inserting it directly 2901 // using a subreg. The interesting cases are those where the truncation 2902 // can be folded. 2903 SDLoc DL(Op); 2904 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2905 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2906 MVT::i64, HighOp, Low32); 2907 } 2908 2909 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2910 SelectionDAG &DAG) const { 2911 EVT VT = Op.getValueType(); 2912 SDLoc DL(Op); 2913 Op = Op.getOperand(0); 2914 2915 // Handle vector types via VPOPCT. 2916 if (VT.isVector()) { 2917 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 2918 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 2919 switch (VT.getVectorElementType().getSizeInBits()) { 2920 case 8: 2921 break; 2922 case 16: { 2923 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 2924 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 2925 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 2926 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2927 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 2928 break; 2929 } 2930 case 32: { 2931 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2932 DAG.getConstant(0, DL, MVT::i32)); 2933 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2934 break; 2935 } 2936 case 64: { 2937 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2938 DAG.getConstant(0, DL, MVT::i32)); 2939 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 2940 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2941 break; 2942 } 2943 default: 2944 llvm_unreachable("Unexpected type"); 2945 } 2946 return Op; 2947 } 2948 2949 // Get the known-zero mask for the operand. 2950 APInt KnownZero, KnownOne; 2951 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2952 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 2953 if (NumSignificantBits == 0) 2954 return DAG.getConstant(0, DL, VT); 2955 2956 // Skip known-zero high parts of the operand. 2957 int64_t OrigBitSize = VT.getSizeInBits(); 2958 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 2959 BitSize = std::min(BitSize, OrigBitSize); 2960 2961 // The POPCNT instruction counts the number of bits in each byte. 2962 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 2963 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 2964 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 2965 2966 // Add up per-byte counts in a binary tree. All bits of Op at 2967 // position larger than BitSize remain zero throughout. 2968 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 2969 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 2970 if (BitSize != OrigBitSize) 2971 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 2972 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 2973 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2974 } 2975 2976 // Extract overall result from high byte. 2977 if (BitSize > 8) 2978 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 2979 DAG.getConstant(BitSize - 8, DL, VT)); 2980 2981 return Op; 2982 } 2983 2984 // Op is an atomic load. Lower it into a normal volatile load. 2985 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 2986 SelectionDAG &DAG) const { 2987 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2988 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 2989 Node->getChain(), Node->getBasePtr(), 2990 Node->getMemoryVT(), Node->getMemOperand()); 2991 } 2992 2993 // Op is an atomic store. Lower it into a normal volatile store followed 2994 // by a serialization. 2995 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 2996 SelectionDAG &DAG) const { 2997 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2998 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 2999 Node->getBasePtr(), Node->getMemoryVT(), 3000 Node->getMemOperand()); 3001 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3002 Chain), 0); 3003 } 3004 3005 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3006 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3007 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3008 SelectionDAG &DAG, 3009 unsigned Opcode) const { 3010 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3011 3012 // 32-bit operations need no code outside the main loop. 3013 EVT NarrowVT = Node->getMemoryVT(); 3014 EVT WideVT = MVT::i32; 3015 if (NarrowVT == WideVT) 3016 return Op; 3017 3018 int64_t BitSize = NarrowVT.getSizeInBits(); 3019 SDValue ChainIn = Node->getChain(); 3020 SDValue Addr = Node->getBasePtr(); 3021 SDValue Src2 = Node->getVal(); 3022 MachineMemOperand *MMO = Node->getMemOperand(); 3023 SDLoc DL(Node); 3024 EVT PtrVT = Addr.getValueType(); 3025 3026 // Convert atomic subtracts of constants into additions. 3027 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3028 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3029 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3030 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3031 } 3032 3033 // Get the address of the containing word. 3034 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3035 DAG.getConstant(-4, DL, PtrVT)); 3036 3037 // Get the number of bits that the word must be rotated left in order 3038 // to bring the field to the top bits of a GR32. 3039 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3040 DAG.getConstant(3, DL, PtrVT)); 3041 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3042 3043 // Get the complementing shift amount, for rotating a field in the top 3044 // bits back to its proper position. 3045 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3046 DAG.getConstant(0, DL, WideVT), BitShift); 3047 3048 // Extend the source operand to 32 bits and prepare it for the inner loop. 3049 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3050 // operations require the source to be shifted in advance. (This shift 3051 // can be folded if the source is constant.) For AND and NAND, the lower 3052 // bits must be set, while for other opcodes they should be left clear. 3053 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3054 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3055 DAG.getConstant(32 - BitSize, DL, WideVT)); 3056 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3057 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3058 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3059 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3060 3061 // Construct the ATOMIC_LOADW_* node. 3062 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3063 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3064 DAG.getConstant(BitSize, DL, WideVT) }; 3065 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3066 NarrowVT, MMO); 3067 3068 // Rotate the result of the final CS so that the field is in the lower 3069 // bits of a GR32, then truncate it. 3070 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3071 DAG.getConstant(BitSize, DL, WideVT)); 3072 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3073 3074 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3075 return DAG.getMergeValues(RetOps, DL); 3076 } 3077 3078 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3079 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3080 // operations into additions. 3081 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3082 SelectionDAG &DAG) const { 3083 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3084 EVT MemVT = Node->getMemoryVT(); 3085 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3086 // A full-width operation. 3087 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3088 SDValue Src2 = Node->getVal(); 3089 SDValue NegSrc2; 3090 SDLoc DL(Src2); 3091 3092 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3093 // Use an addition if the operand is constant and either LAA(G) is 3094 // available or the negative value is in the range of A(G)FHI. 3095 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3096 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3097 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3098 } else if (Subtarget.hasInterlockedAccess1()) 3099 // Use LAA(G) if available. 3100 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3101 Src2); 3102 3103 if (NegSrc2.getNode()) 3104 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3105 Node->getChain(), Node->getBasePtr(), NegSrc2, 3106 Node->getMemOperand(), Node->getOrdering(), 3107 Node->getSynchScope()); 3108 3109 // Use the node as-is. 3110 return Op; 3111 } 3112 3113 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3114 } 3115 3116 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3117 // into a fullword ATOMIC_CMP_SWAPW operation. 3118 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3119 SelectionDAG &DAG) const { 3120 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3121 3122 // We have native support for 32-bit compare and swap. 3123 EVT NarrowVT = Node->getMemoryVT(); 3124 EVT WideVT = MVT::i32; 3125 if (NarrowVT == WideVT) 3126 return Op; 3127 3128 int64_t BitSize = NarrowVT.getSizeInBits(); 3129 SDValue ChainIn = Node->getOperand(0); 3130 SDValue Addr = Node->getOperand(1); 3131 SDValue CmpVal = Node->getOperand(2); 3132 SDValue SwapVal = Node->getOperand(3); 3133 MachineMemOperand *MMO = Node->getMemOperand(); 3134 SDLoc DL(Node); 3135 EVT PtrVT = Addr.getValueType(); 3136 3137 // Get the address of the containing word. 3138 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3139 DAG.getConstant(-4, DL, PtrVT)); 3140 3141 // Get the number of bits that the word must be rotated left in order 3142 // to bring the field to the top bits of a GR32. 3143 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3144 DAG.getConstant(3, DL, PtrVT)); 3145 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3146 3147 // Get the complementing shift amount, for rotating a field in the top 3148 // bits back to its proper position. 3149 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3150 DAG.getConstant(0, DL, WideVT), BitShift); 3151 3152 // Construct the ATOMIC_CMP_SWAPW node. 3153 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3154 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3155 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3156 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3157 VTList, Ops, NarrowVT, MMO); 3158 return AtomicOp; 3159 } 3160 3161 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3162 SelectionDAG &DAG) const { 3163 MachineFunction &MF = DAG.getMachineFunction(); 3164 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3165 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3166 SystemZ::R15D, Op.getValueType()); 3167 } 3168 3169 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3170 SelectionDAG &DAG) const { 3171 MachineFunction &MF = DAG.getMachineFunction(); 3172 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3173 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3174 SystemZ::R15D, Op.getOperand(1)); 3175 } 3176 3177 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3178 SelectionDAG &DAG) const { 3179 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3180 if (!IsData) 3181 // Just preserve the chain. 3182 return Op.getOperand(0); 3183 3184 SDLoc DL(Op); 3185 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3186 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3187 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3188 SDValue Ops[] = { 3189 Op.getOperand(0), 3190 DAG.getConstant(Code, DL, MVT::i32), 3191 Op.getOperand(1) 3192 }; 3193 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3194 Node->getVTList(), Ops, 3195 Node->getMemoryVT(), Node->getMemOperand()); 3196 } 3197 3198 // Return an i32 that contains the value of CC immediately after After, 3199 // whose final operand must be MVT::Glue. 3200 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3201 SDLoc DL(After); 3202 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3203 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3204 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3205 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3206 } 3207 3208 SDValue 3209 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3210 SelectionDAG &DAG) const { 3211 unsigned Opcode, CCValid; 3212 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3213 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3214 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3215 SDValue CC = getCCResult(DAG, Glued.getNode()); 3216 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3217 return SDValue(); 3218 } 3219 3220 return SDValue(); 3221 } 3222 3223 SDValue 3224 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3225 SelectionDAG &DAG) const { 3226 unsigned Opcode, CCValid; 3227 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3228 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3229 SDValue CC = getCCResult(DAG, Glued.getNode()); 3230 if (Op->getNumValues() == 1) 3231 return CC; 3232 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3233 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3234 Glued, CC); 3235 } 3236 3237 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3238 switch (Id) { 3239 case Intrinsic::s390_vpdi: 3240 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3241 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3242 3243 case Intrinsic::s390_vperm: 3244 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3245 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3246 3247 case Intrinsic::s390_vuphb: 3248 case Intrinsic::s390_vuphh: 3249 case Intrinsic::s390_vuphf: 3250 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3251 Op.getOperand(1)); 3252 3253 case Intrinsic::s390_vuplhb: 3254 case Intrinsic::s390_vuplhh: 3255 case Intrinsic::s390_vuplhf: 3256 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3257 Op.getOperand(1)); 3258 3259 case Intrinsic::s390_vuplb: 3260 case Intrinsic::s390_vuplhw: 3261 case Intrinsic::s390_vuplf: 3262 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3263 Op.getOperand(1)); 3264 3265 case Intrinsic::s390_vupllb: 3266 case Intrinsic::s390_vupllh: 3267 case Intrinsic::s390_vupllf: 3268 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3269 Op.getOperand(1)); 3270 3271 case Intrinsic::s390_vsumb: 3272 case Intrinsic::s390_vsumh: 3273 case Intrinsic::s390_vsumgh: 3274 case Intrinsic::s390_vsumgf: 3275 case Intrinsic::s390_vsumqf: 3276 case Intrinsic::s390_vsumqg: 3277 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3278 Op.getOperand(1), Op.getOperand(2)); 3279 } 3280 3281 return SDValue(); 3282 } 3283 3284 namespace { 3285 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3286 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3287 // Operand is the constant third operand, otherwise it is the number of 3288 // bytes in each element of the result. 3289 struct Permute { 3290 unsigned Opcode; 3291 unsigned Operand; 3292 unsigned char Bytes[SystemZ::VectorBytes]; 3293 }; 3294 } 3295 3296 static const Permute PermuteForms[] = { 3297 // VMRHG 3298 { SystemZISD::MERGE_HIGH, 8, 3299 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3300 // VMRHF 3301 { SystemZISD::MERGE_HIGH, 4, 3302 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3303 // VMRHH 3304 { SystemZISD::MERGE_HIGH, 2, 3305 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3306 // VMRHB 3307 { SystemZISD::MERGE_HIGH, 1, 3308 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3309 // VMRLG 3310 { SystemZISD::MERGE_LOW, 8, 3311 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3312 // VMRLF 3313 { SystemZISD::MERGE_LOW, 4, 3314 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3315 // VMRLH 3316 { SystemZISD::MERGE_LOW, 2, 3317 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3318 // VMRLB 3319 { SystemZISD::MERGE_LOW, 1, 3320 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3321 // VPKG 3322 { SystemZISD::PACK, 4, 3323 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3324 // VPKF 3325 { SystemZISD::PACK, 2, 3326 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3327 // VPKH 3328 { SystemZISD::PACK, 1, 3329 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3330 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3331 { SystemZISD::PERMUTE_DWORDS, 4, 3332 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3333 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3334 { SystemZISD::PERMUTE_DWORDS, 1, 3335 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3336 }; 3337 3338 // Called after matching a vector shuffle against a particular pattern. 3339 // Both the original shuffle and the pattern have two vector operands. 3340 // OpNos[0] is the operand of the original shuffle that should be used for 3341 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3342 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3343 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3344 // for operands 0 and 1 of the pattern. 3345 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3346 if (OpNos[0] < 0) { 3347 if (OpNos[1] < 0) 3348 return false; 3349 OpNo0 = OpNo1 = OpNos[1]; 3350 } else if (OpNos[1] < 0) { 3351 OpNo0 = OpNo1 = OpNos[0]; 3352 } else { 3353 OpNo0 = OpNos[0]; 3354 OpNo1 = OpNos[1]; 3355 } 3356 return true; 3357 } 3358 3359 // Bytes is a VPERM-like permute vector, except that -1 is used for 3360 // undefined bytes. Return true if the VPERM can be implemented using P. 3361 // When returning true set OpNo0 to the VPERM operand that should be 3362 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3363 // 3364 // For example, if swapping the VPERM operands allows P to match, OpNo0 3365 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3366 // operand, but rewriting it to use two duplicated operands allows it to 3367 // match P, then OpNo0 and OpNo1 will be the same. 3368 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3369 unsigned &OpNo0, unsigned &OpNo1) { 3370 int OpNos[] = { -1, -1 }; 3371 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3372 int Elt = Bytes[I]; 3373 if (Elt >= 0) { 3374 // Make sure that the two permute vectors use the same suboperand 3375 // byte number. Only the operand numbers (the high bits) are 3376 // allowed to differ. 3377 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3378 return false; 3379 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3380 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3381 // Make sure that the operand mappings are consistent with previous 3382 // elements. 3383 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3384 return false; 3385 OpNos[ModelOpNo] = RealOpNo; 3386 } 3387 } 3388 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3389 } 3390 3391 // As above, but search for a matching permute. 3392 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3393 unsigned &OpNo0, unsigned &OpNo1) { 3394 for (auto &P : PermuteForms) 3395 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3396 return &P; 3397 return nullptr; 3398 } 3399 3400 // Bytes is a VPERM-like permute vector, except that -1 is used for 3401 // undefined bytes. This permute is an operand of an outer permute. 3402 // See whether redistributing the -1 bytes gives a shuffle that can be 3403 // implemented using P. If so, set Transform to a VPERM-like permute vector 3404 // that, when applied to the result of P, gives the original permute in Bytes. 3405 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3406 const Permute &P, 3407 SmallVectorImpl<int> &Transform) { 3408 unsigned To = 0; 3409 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3410 int Elt = Bytes[From]; 3411 if (Elt < 0) 3412 // Byte number From of the result is undefined. 3413 Transform[From] = -1; 3414 else { 3415 while (P.Bytes[To] != Elt) { 3416 To += 1; 3417 if (To == SystemZ::VectorBytes) 3418 return false; 3419 } 3420 Transform[From] = To; 3421 } 3422 } 3423 return true; 3424 } 3425 3426 // As above, but search for a matching permute. 3427 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3428 SmallVectorImpl<int> &Transform) { 3429 for (auto &P : PermuteForms) 3430 if (matchDoublePermute(Bytes, P, Transform)) 3431 return &P; 3432 return nullptr; 3433 } 3434 3435 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3436 // as if it had type vNi8. 3437 static void getVPermMask(ShuffleVectorSDNode *VSN, 3438 SmallVectorImpl<int> &Bytes) { 3439 EVT VT = VSN->getValueType(0); 3440 unsigned NumElements = VT.getVectorNumElements(); 3441 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3442 Bytes.resize(NumElements * BytesPerElement, -1); 3443 for (unsigned I = 0; I < NumElements; ++I) { 3444 int Index = VSN->getMaskElt(I); 3445 if (Index >= 0) 3446 for (unsigned J = 0; J < BytesPerElement; ++J) 3447 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3448 } 3449 } 3450 3451 // Bytes is a VPERM-like permute vector, except that -1 is used for 3452 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3453 // the result come from a contiguous sequence of bytes from one input. 3454 // Set Base to the selector for the first byte if so. 3455 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3456 unsigned BytesPerElement, int &Base) { 3457 Base = -1; 3458 for (unsigned I = 0; I < BytesPerElement; ++I) { 3459 if (Bytes[Start + I] >= 0) { 3460 unsigned Elem = Bytes[Start + I]; 3461 if (Base < 0) { 3462 Base = Elem - I; 3463 // Make sure the bytes would come from one input operand. 3464 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3465 return false; 3466 } else if (unsigned(Base) != Elem - I) 3467 return false; 3468 } 3469 } 3470 return true; 3471 } 3472 3473 // Bytes is a VPERM-like permute vector, except that -1 is used for 3474 // undefined bytes. Return true if it can be performed using VSLDI. 3475 // When returning true, set StartIndex to the shift amount and OpNo0 3476 // and OpNo1 to the VPERM operands that should be used as the first 3477 // and second shift operand respectively. 3478 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3479 unsigned &StartIndex, unsigned &OpNo0, 3480 unsigned &OpNo1) { 3481 int OpNos[] = { -1, -1 }; 3482 int Shift = -1; 3483 for (unsigned I = 0; I < 16; ++I) { 3484 int Index = Bytes[I]; 3485 if (Index >= 0) { 3486 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3487 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3488 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3489 if (Shift < 0) 3490 Shift = ExpectedShift; 3491 else if (Shift != ExpectedShift) 3492 return false; 3493 // Make sure that the operand mappings are consistent with previous 3494 // elements. 3495 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3496 return false; 3497 OpNos[ModelOpNo] = RealOpNo; 3498 } 3499 } 3500 StartIndex = Shift; 3501 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3502 } 3503 3504 // Create a node that performs P on operands Op0 and Op1, casting the 3505 // operands to the appropriate type. The type of the result is determined by P. 3506 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3507 const Permute &P, SDValue Op0, SDValue Op1) { 3508 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3509 // elements of a PACK are twice as wide as the outputs. 3510 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3511 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3512 P.Operand); 3513 // Cast both operands to the appropriate type. 3514 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3515 SystemZ::VectorBytes / InBytes); 3516 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3517 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3518 SDValue Op; 3519 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3520 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3521 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3522 } else if (P.Opcode == SystemZISD::PACK) { 3523 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3524 SystemZ::VectorBytes / P.Operand); 3525 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3526 } else { 3527 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3528 } 3529 return Op; 3530 } 3531 3532 // Bytes is a VPERM-like permute vector, except that -1 is used for 3533 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3534 // VSLDI or VPERM. 3535 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3536 const SmallVectorImpl<int> &Bytes) { 3537 for (unsigned I = 0; I < 2; ++I) 3538 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3539 3540 // First see whether VSLDI can be used. 3541 unsigned StartIndex, OpNo0, OpNo1; 3542 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3543 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3544 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3545 3546 // Fall back on VPERM. Construct an SDNode for the permute vector. 3547 SDValue IndexNodes[SystemZ::VectorBytes]; 3548 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3549 if (Bytes[I] >= 0) 3550 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3551 else 3552 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3553 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3554 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3555 } 3556 3557 namespace { 3558 // Describes a general N-operand vector shuffle. 3559 struct GeneralShuffle { 3560 GeneralShuffle(EVT vt) : VT(vt) {} 3561 void addUndef(); 3562 void add(SDValue, unsigned); 3563 SDValue getNode(SelectionDAG &, SDLoc); 3564 3565 // The operands of the shuffle. 3566 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3567 3568 // Index I is -1 if byte I of the result is undefined. Otherwise the 3569 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3570 // Bytes[I] / SystemZ::VectorBytes. 3571 SmallVector<int, SystemZ::VectorBytes> Bytes; 3572 3573 // The type of the shuffle result. 3574 EVT VT; 3575 }; 3576 } 3577 3578 // Add an extra undefined element to the shuffle. 3579 void GeneralShuffle::addUndef() { 3580 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3581 for (unsigned I = 0; I < BytesPerElement; ++I) 3582 Bytes.push_back(-1); 3583 } 3584 3585 // Add an extra element to the shuffle, taking it from element Elem of Op. 3586 // A null Op indicates a vector input whose value will be calculated later; 3587 // there is at most one such input per shuffle and it always has the same 3588 // type as the result. 3589 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3590 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3591 3592 // The source vector can have wider elements than the result, 3593 // either through an explicit TRUNCATE or because of type legalization. 3594 // We want the least significant part. 3595 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3596 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3597 assert(FromBytesPerElement >= BytesPerElement && 3598 "Invalid EXTRACT_VECTOR_ELT"); 3599 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3600 (FromBytesPerElement - BytesPerElement)); 3601 3602 // Look through things like shuffles and bitcasts. 3603 while (Op.getNode()) { 3604 if (Op.getOpcode() == ISD::BITCAST) 3605 Op = Op.getOperand(0); 3606 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3607 // See whether the bytes we need come from a contiguous part of one 3608 // operand. 3609 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3610 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3611 int NewByte; 3612 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3613 break; 3614 if (NewByte < 0) { 3615 addUndef(); 3616 return; 3617 } 3618 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3619 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3620 } else if (Op.getOpcode() == ISD::UNDEF) { 3621 addUndef(); 3622 return; 3623 } else 3624 break; 3625 } 3626 3627 // Make sure that the source of the extraction is in Ops. 3628 unsigned OpNo = 0; 3629 for (; OpNo < Ops.size(); ++OpNo) 3630 if (Ops[OpNo] == Op) 3631 break; 3632 if (OpNo == Ops.size()) 3633 Ops.push_back(Op); 3634 3635 // Add the element to Bytes. 3636 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3637 for (unsigned I = 0; I < BytesPerElement; ++I) 3638 Bytes.push_back(Base + I); 3639 } 3640 3641 // Return SDNodes for the completed shuffle. 3642 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3643 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3644 3645 if (Ops.size() == 0) 3646 return DAG.getUNDEF(VT); 3647 3648 // Make sure that there are at least two shuffle operands. 3649 if (Ops.size() == 1) 3650 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3651 3652 // Create a tree of shuffles, deferring root node until after the loop. 3653 // Try to redistribute the undefined elements of non-root nodes so that 3654 // the non-root shuffles match something like a pack or merge, then adjust 3655 // the parent node's permute vector to compensate for the new order. 3656 // Among other things, this copes with vectors like <2 x i16> that were 3657 // padded with undefined elements during type legalization. 3658 // 3659 // In the best case this redistribution will lead to the whole tree 3660 // using packs and merges. It should rarely be a loss in other cases. 3661 unsigned Stride = 1; 3662 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3663 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3664 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3665 3666 // Create a mask for just these two operands. 3667 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3668 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3669 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3670 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3671 if (OpNo == I) 3672 NewBytes[J] = Byte; 3673 else if (OpNo == I + Stride) 3674 NewBytes[J] = SystemZ::VectorBytes + Byte; 3675 else 3676 NewBytes[J] = -1; 3677 } 3678 // See if it would be better to reorganize NewMask to avoid using VPERM. 3679 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3680 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3681 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3682 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3683 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3684 if (NewBytes[J] >= 0) { 3685 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3686 "Invalid double permute"); 3687 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3688 } else 3689 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3690 } 3691 } else { 3692 // Just use NewBytes on the operands. 3693 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3694 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3695 if (NewBytes[J] >= 0) 3696 Bytes[J] = I * SystemZ::VectorBytes + J; 3697 } 3698 } 3699 } 3700 3701 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3702 if (Stride > 1) { 3703 Ops[1] = Ops[Stride]; 3704 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3705 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3706 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3707 } 3708 3709 // Look for an instruction that can do the permute without resorting 3710 // to VPERM. 3711 unsigned OpNo0, OpNo1; 3712 SDValue Op; 3713 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3714 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3715 else 3716 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3717 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3718 } 3719 3720 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3721 static bool isScalarToVector(SDValue Op) { 3722 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3723 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3724 return false; 3725 return true; 3726 } 3727 3728 // Return a vector of type VT that contains Value in the first element. 3729 // The other elements don't matter. 3730 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3731 SDValue Value) { 3732 // If we have a constant, replicate it to all elements and let the 3733 // BUILD_VECTOR lowering take care of it. 3734 if (Value.getOpcode() == ISD::Constant || 3735 Value.getOpcode() == ISD::ConstantFP) { 3736 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3737 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3738 } 3739 if (Value.getOpcode() == ISD::UNDEF) 3740 return DAG.getUNDEF(VT); 3741 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3742 } 3743 3744 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3745 // element 1. Used for cases in which replication is cheap. 3746 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3747 SDValue Op0, SDValue Op1) { 3748 if (Op0.getOpcode() == ISD::UNDEF) { 3749 if (Op1.getOpcode() == ISD::UNDEF) 3750 return DAG.getUNDEF(VT); 3751 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3752 } 3753 if (Op1.getOpcode() == ISD::UNDEF) 3754 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3755 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3756 buildScalarToVector(DAG, DL, VT, Op0), 3757 buildScalarToVector(DAG, DL, VT, Op1)); 3758 } 3759 3760 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3761 // vector for them. 3762 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3763 SDValue Op1) { 3764 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3765 return DAG.getUNDEF(MVT::v2i64); 3766 // If one of the two inputs is undefined then replicate the other one, 3767 // in order to avoid using another register unnecessarily. 3768 if (Op0.getOpcode() == ISD::UNDEF) 3769 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3770 else if (Op1.getOpcode() == ISD::UNDEF) 3771 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3772 else { 3773 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3774 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3775 } 3776 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3777 } 3778 3779 // Try to represent constant BUILD_VECTOR node BVN using a 3780 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3781 // on success. 3782 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3783 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3784 unsigned BytesPerElement = ElemVT.getStoreSize(); 3785 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3786 SDValue Op = BVN->getOperand(I); 3787 if (Op.getOpcode() != ISD::UNDEF) { 3788 uint64_t Value; 3789 if (Op.getOpcode() == ISD::Constant) 3790 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3791 else if (Op.getOpcode() == ISD::ConstantFP) 3792 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3793 .getZExtValue()); 3794 else 3795 return false; 3796 for (unsigned J = 0; J < BytesPerElement; ++J) { 3797 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3798 if (Byte == 0xff) 3799 Mask |= 1 << ((E - I - 1) * BytesPerElement + J); 3800 else if (Byte != 0) 3801 return false; 3802 } 3803 } 3804 } 3805 return true; 3806 } 3807 3808 // Try to load a vector constant in which BitsPerElement-bit value Value 3809 // is replicated to fill the vector. VT is the type of the resulting 3810 // constant, which may have elements of a different size from BitsPerElement. 3811 // Return the SDValue of the constant on success, otherwise return 3812 // an empty value. 3813 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3814 const SystemZInstrInfo *TII, 3815 SDLoc DL, EVT VT, uint64_t Value, 3816 unsigned BitsPerElement) { 3817 // Signed 16-bit values can be replicated using VREPI. 3818 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3819 if (isInt<16>(SignedValue)) { 3820 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3821 SystemZ::VectorBits / BitsPerElement); 3822 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3823 DAG.getConstant(SignedValue, DL, MVT::i32)); 3824 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3825 } 3826 // See whether rotating the constant left some N places gives a value that 3827 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3828 // If so we can use VGM. 3829 unsigned Start, End; 3830 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3831 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3832 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3833 // bit numbers for an BitsPerElement value, so that 0 denotes 3834 // 1 << (BitsPerElement-1). 3835 Start -= 64 - BitsPerElement; 3836 End -= 64 - BitsPerElement; 3837 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3838 SystemZ::VectorBits / BitsPerElement); 3839 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3840 DAG.getConstant(Start, DL, MVT::i32), 3841 DAG.getConstant(End, DL, MVT::i32)); 3842 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3843 } 3844 return SDValue(); 3845 } 3846 3847 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3848 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3849 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3850 // would benefit from this representation and return it if so. 3851 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3852 BuildVectorSDNode *BVN) { 3853 EVT VT = BVN->getValueType(0); 3854 unsigned NumElements = VT.getVectorNumElements(); 3855 3856 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3857 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3858 // need a BUILD_VECTOR, add an additional placeholder operand for that 3859 // BUILD_VECTOR and store its operands in ResidueOps. 3860 GeneralShuffle GS(VT); 3861 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3862 bool FoundOne = false; 3863 for (unsigned I = 0; I < NumElements; ++I) { 3864 SDValue Op = BVN->getOperand(I); 3865 if (Op.getOpcode() == ISD::TRUNCATE) 3866 Op = Op.getOperand(0); 3867 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3868 Op.getOperand(1).getOpcode() == ISD::Constant) { 3869 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3870 GS.add(Op.getOperand(0), Elem); 3871 FoundOne = true; 3872 } else if (Op.getOpcode() == ISD::UNDEF) { 3873 GS.addUndef(); 3874 } else { 3875 GS.add(SDValue(), ResidueOps.size()); 3876 ResidueOps.push_back(Op); 3877 } 3878 } 3879 3880 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3881 if (!FoundOne) 3882 return SDValue(); 3883 3884 // Create the BUILD_VECTOR for the remaining elements, if any. 3885 if (!ResidueOps.empty()) { 3886 while (ResidueOps.size() < NumElements) 3887 ResidueOps.push_back(DAG.getUNDEF(VT.getVectorElementType())); 3888 for (auto &Op : GS.Ops) { 3889 if (!Op.getNode()) { 3890 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3891 break; 3892 } 3893 } 3894 } 3895 return GS.getNode(DAG, SDLoc(BVN)); 3896 } 3897 3898 // Combine GPR scalar values Elems into a vector of type VT. 3899 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3900 SmallVectorImpl<SDValue> &Elems) { 3901 // See whether there is a single replicated value. 3902 SDValue Single; 3903 unsigned int NumElements = Elems.size(); 3904 unsigned int Count = 0; 3905 for (auto Elem : Elems) { 3906 if (Elem.getOpcode() != ISD::UNDEF) { 3907 if (!Single.getNode()) 3908 Single = Elem; 3909 else if (Elem != Single) { 3910 Single = SDValue(); 3911 break; 3912 } 3913 Count += 1; 3914 } 3915 } 3916 // There are three cases here: 3917 // 3918 // - if the only defined element is a loaded one, the best sequence 3919 // is a replicating load. 3920 // 3921 // - otherwise, if the only defined element is an i64 value, we will 3922 // end up with the same VLVGP sequence regardless of whether we short-cut 3923 // for replication or fall through to the later code. 3924 // 3925 // - otherwise, if the only defined element is an i32 or smaller value, 3926 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 3927 // This is only a win if the single defined element is used more than once. 3928 // In other cases we're better off using a single VLVGx. 3929 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 3930 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 3931 3932 // The best way of building a v2i64 from two i64s is to use VLVGP. 3933 if (VT == MVT::v2i64) 3934 return joinDwords(DAG, DL, Elems[0], Elems[1]); 3935 3936 // Use a 64-bit merge high to combine two doubles. 3937 if (VT == MVT::v2f64) 3938 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3939 3940 // Build v4f32 values directly from the FPRs: 3941 // 3942 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 3943 // V V VMRHF 3944 // <ABxx> <CDxx> 3945 // V VMRHG 3946 // <ABCD> 3947 if (VT == MVT::v4f32) { 3948 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3949 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 3950 // Avoid unnecessary undefs by reusing the other operand. 3951 if (Op01.getOpcode() == ISD::UNDEF) 3952 Op01 = Op23; 3953 else if (Op23.getOpcode() == ISD::UNDEF) 3954 Op23 = Op01; 3955 // Merging identical replications is a no-op. 3956 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 3957 return Op01; 3958 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 3959 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 3960 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 3961 DL, MVT::v2i64, Op01, Op23); 3962 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3963 } 3964 3965 // Collect the constant terms. 3966 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 3967 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 3968 3969 unsigned NumConstants = 0; 3970 for (unsigned I = 0; I < NumElements; ++I) { 3971 SDValue Elem = Elems[I]; 3972 if (Elem.getOpcode() == ISD::Constant || 3973 Elem.getOpcode() == ISD::ConstantFP) { 3974 NumConstants += 1; 3975 Constants[I] = Elem; 3976 Done[I] = true; 3977 } 3978 } 3979 // If there was at least one constant, fill in the other elements of 3980 // Constants with undefs to get a full vector constant and use that 3981 // as the starting point. 3982 SDValue Result; 3983 if (NumConstants > 0) { 3984 for (unsigned I = 0; I < NumElements; ++I) 3985 if (!Constants[I].getNode()) 3986 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 3987 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 3988 } else { 3989 // Otherwise try to use VLVGP to start the sequence in order to 3990 // avoid a false dependency on any previous contents of the vector 3991 // register. This only makes sense if one of the associated elements 3992 // is defined. 3993 unsigned I1 = NumElements / 2 - 1; 3994 unsigned I2 = NumElements - 1; 3995 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 3996 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 3997 if (Def1 || Def2) { 3998 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 3999 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4000 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4001 joinDwords(DAG, DL, Elem1, Elem2)); 4002 Done[I1] = true; 4003 Done[I2] = true; 4004 } else 4005 Result = DAG.getUNDEF(VT); 4006 } 4007 4008 // Use VLVGx to insert the other elements. 4009 for (unsigned I = 0; I < NumElements; ++I) 4010 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4011 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4012 DAG.getConstant(I, DL, MVT::i32)); 4013 return Result; 4014 } 4015 4016 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4017 SelectionDAG &DAG) const { 4018 const SystemZInstrInfo *TII = 4019 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4020 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4021 SDLoc DL(Op); 4022 EVT VT = Op.getValueType(); 4023 4024 if (BVN->isConstant()) { 4025 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4026 // preferred way of creating all-zero and all-one vectors so give it 4027 // priority over other methods below. 4028 uint64_t Mask = 0; 4029 if (tryBuildVectorByteMask(BVN, Mask)) { 4030 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4031 DAG.getConstant(Mask, DL, MVT::i32)); 4032 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4033 } 4034 4035 // Try using some form of replication. 4036 APInt SplatBits, SplatUndef; 4037 unsigned SplatBitSize; 4038 bool HasAnyUndefs; 4039 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4040 8, true) && 4041 SplatBitSize <= 64) { 4042 // First try assuming that any undefined bits above the highest set bit 4043 // and below the lowest set bit are 1s. This increases the likelihood of 4044 // being able to use a sign-extended element value in VECTOR REPLICATE 4045 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4046 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4047 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4048 uint64_t Lower = (SplatUndefZ 4049 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4050 uint64_t Upper = (SplatUndefZ 4051 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4052 uint64_t Value = SplatBitsZ | Upper | Lower; 4053 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4054 SplatBitSize); 4055 if (Op.getNode()) 4056 return Op; 4057 4058 // Now try assuming that any undefined bits between the first and 4059 // last defined set bits are set. This increases the chances of 4060 // using a non-wraparound mask. 4061 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4062 Value = SplatBitsZ | Middle; 4063 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4064 if (Op.getNode()) 4065 return Op; 4066 } 4067 4068 // Fall back to loading it from memory. 4069 return SDValue(); 4070 } 4071 4072 // See if we should use shuffles to construct the vector from other vectors. 4073 SDValue Res = tryBuildVectorShuffle(DAG, BVN); 4074 if (Res.getNode()) 4075 return Res; 4076 4077 // Detect SCALAR_TO_VECTOR conversions. 4078 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4079 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4080 4081 // Otherwise use buildVector to build the vector up from GPRs. 4082 unsigned NumElements = Op.getNumOperands(); 4083 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4084 for (unsigned I = 0; I < NumElements; ++I) 4085 Ops[I] = Op.getOperand(I); 4086 return buildVector(DAG, DL, VT, Ops); 4087 } 4088 4089 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4090 SelectionDAG &DAG) const { 4091 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4092 SDLoc DL(Op); 4093 EVT VT = Op.getValueType(); 4094 unsigned NumElements = VT.getVectorNumElements(); 4095 4096 if (VSN->isSplat()) { 4097 SDValue Op0 = Op.getOperand(0); 4098 unsigned Index = VSN->getSplatIndex(); 4099 assert(Index < VT.getVectorNumElements() && 4100 "Splat index should be defined and in first operand"); 4101 // See whether the value we're splatting is directly available as a scalar. 4102 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4103 Op0.getOpcode() == ISD::BUILD_VECTOR) 4104 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4105 // Otherwise keep it as a vector-to-vector operation. 4106 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4107 DAG.getConstant(Index, DL, MVT::i32)); 4108 } 4109 4110 GeneralShuffle GS(VT); 4111 for (unsigned I = 0; I < NumElements; ++I) { 4112 int Elt = VSN->getMaskElt(I); 4113 if (Elt < 0) 4114 GS.addUndef(); 4115 else 4116 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4117 unsigned(Elt) % NumElements); 4118 } 4119 return GS.getNode(DAG, SDLoc(VSN)); 4120 } 4121 4122 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4123 SelectionDAG &DAG) const { 4124 SDLoc DL(Op); 4125 // Just insert the scalar into element 0 of an undefined vector. 4126 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4127 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4128 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4129 } 4130 4131 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4132 SelectionDAG &DAG) const { 4133 // Handle insertions of floating-point values. 4134 SDLoc DL(Op); 4135 SDValue Op0 = Op.getOperand(0); 4136 SDValue Op1 = Op.getOperand(1); 4137 SDValue Op2 = Op.getOperand(2); 4138 EVT VT = Op.getValueType(); 4139 4140 // Insertions into constant indices of a v2f64 can be done using VPDI. 4141 // However, if the inserted value is a bitcast or a constant then it's 4142 // better to use GPRs, as below. 4143 if (VT == MVT::v2f64 && 4144 Op1.getOpcode() != ISD::BITCAST && 4145 Op1.getOpcode() != ISD::ConstantFP && 4146 Op2.getOpcode() == ISD::Constant) { 4147 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4148 unsigned Mask = VT.getVectorNumElements() - 1; 4149 if (Index <= Mask) 4150 return Op; 4151 } 4152 4153 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4154 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4155 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4156 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4157 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4158 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4159 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4160 } 4161 4162 SDValue 4163 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4164 SelectionDAG &DAG) const { 4165 // Handle extractions of floating-point values. 4166 SDLoc DL(Op); 4167 SDValue Op0 = Op.getOperand(0); 4168 SDValue Op1 = Op.getOperand(1); 4169 EVT VT = Op.getValueType(); 4170 EVT VecVT = Op0.getValueType(); 4171 4172 // Extractions of constant indices can be done directly. 4173 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4174 uint64_t Index = CIndexN->getZExtValue(); 4175 unsigned Mask = VecVT.getVectorNumElements() - 1; 4176 if (Index <= Mask) 4177 return Op; 4178 } 4179 4180 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4181 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4182 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4183 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4184 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4185 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4186 } 4187 4188 SDValue 4189 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4190 unsigned UnpackHigh) const { 4191 SDValue PackedOp = Op.getOperand(0); 4192 EVT OutVT = Op.getValueType(); 4193 EVT InVT = PackedOp.getValueType(); 4194 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4195 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4196 do { 4197 FromBits *= 2; 4198 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4199 SystemZ::VectorBits / FromBits); 4200 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4201 } while (FromBits != ToBits); 4202 return PackedOp; 4203 } 4204 4205 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4206 unsigned ByScalar) const { 4207 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4208 SDValue Op0 = Op.getOperand(0); 4209 SDValue Op1 = Op.getOperand(1); 4210 SDLoc DL(Op); 4211 EVT VT = Op.getValueType(); 4212 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4213 4214 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4215 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4216 APInt SplatBits, SplatUndef; 4217 unsigned SplatBitSize; 4218 bool HasAnyUndefs; 4219 // Check for constant splats. Use ElemBitSize as the minimum element 4220 // width and reject splats that need wider elements. 4221 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4222 ElemBitSize, true) && 4223 SplatBitSize == ElemBitSize) { 4224 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4225 DL, MVT::i32); 4226 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4227 } 4228 // Check for variable splats. 4229 BitVector UndefElements; 4230 SDValue Splat = BVN->getSplatValue(&UndefElements); 4231 if (Splat) { 4232 // Since i32 is the smallest legal type, we either need a no-op 4233 // or a truncation. 4234 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4235 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4236 } 4237 } 4238 4239 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4240 // and the shift amount is directly available in a GPR. 4241 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4242 if (VSN->isSplat()) { 4243 SDValue VSNOp0 = VSN->getOperand(0); 4244 unsigned Index = VSN->getSplatIndex(); 4245 assert(Index < VT.getVectorNumElements() && 4246 "Splat index should be defined and in first operand"); 4247 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4248 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4249 // Since i32 is the smallest legal type, we either need a no-op 4250 // or a truncation. 4251 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4252 VSNOp0.getOperand(Index)); 4253 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4254 } 4255 } 4256 } 4257 4258 // Otherwise just treat the current form as legal. 4259 return Op; 4260 } 4261 4262 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4263 SelectionDAG &DAG) const { 4264 switch (Op.getOpcode()) { 4265 case ISD::BR_CC: 4266 return lowerBR_CC(Op, DAG); 4267 case ISD::SELECT_CC: 4268 return lowerSELECT_CC(Op, DAG); 4269 case ISD::SETCC: 4270 return lowerSETCC(Op, DAG); 4271 case ISD::GlobalAddress: 4272 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4273 case ISD::GlobalTLSAddress: 4274 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4275 case ISD::BlockAddress: 4276 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4277 case ISD::JumpTable: 4278 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4279 case ISD::ConstantPool: 4280 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4281 case ISD::BITCAST: 4282 return lowerBITCAST(Op, DAG); 4283 case ISD::VASTART: 4284 return lowerVASTART(Op, DAG); 4285 case ISD::VACOPY: 4286 return lowerVACOPY(Op, DAG); 4287 case ISD::DYNAMIC_STACKALLOC: 4288 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4289 case ISD::SMUL_LOHI: 4290 return lowerSMUL_LOHI(Op, DAG); 4291 case ISD::UMUL_LOHI: 4292 return lowerUMUL_LOHI(Op, DAG); 4293 case ISD::SDIVREM: 4294 return lowerSDIVREM(Op, DAG); 4295 case ISD::UDIVREM: 4296 return lowerUDIVREM(Op, DAG); 4297 case ISD::OR: 4298 return lowerOR(Op, DAG); 4299 case ISD::CTPOP: 4300 return lowerCTPOP(Op, DAG); 4301 case ISD::CTLZ_ZERO_UNDEF: 4302 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4303 Op.getValueType(), Op.getOperand(0)); 4304 case ISD::CTTZ_ZERO_UNDEF: 4305 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4306 Op.getValueType(), Op.getOperand(0)); 4307 case ISD::ATOMIC_SWAP: 4308 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4309 case ISD::ATOMIC_STORE: 4310 return lowerATOMIC_STORE(Op, DAG); 4311 case ISD::ATOMIC_LOAD: 4312 return lowerATOMIC_LOAD(Op, DAG); 4313 case ISD::ATOMIC_LOAD_ADD: 4314 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4315 case ISD::ATOMIC_LOAD_SUB: 4316 return lowerATOMIC_LOAD_SUB(Op, DAG); 4317 case ISD::ATOMIC_LOAD_AND: 4318 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4319 case ISD::ATOMIC_LOAD_OR: 4320 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4321 case ISD::ATOMIC_LOAD_XOR: 4322 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4323 case ISD::ATOMIC_LOAD_NAND: 4324 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4325 case ISD::ATOMIC_LOAD_MIN: 4326 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4327 case ISD::ATOMIC_LOAD_MAX: 4328 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4329 case ISD::ATOMIC_LOAD_UMIN: 4330 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4331 case ISD::ATOMIC_LOAD_UMAX: 4332 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4333 case ISD::ATOMIC_CMP_SWAP: 4334 return lowerATOMIC_CMP_SWAP(Op, DAG); 4335 case ISD::STACKSAVE: 4336 return lowerSTACKSAVE(Op, DAG); 4337 case ISD::STACKRESTORE: 4338 return lowerSTACKRESTORE(Op, DAG); 4339 case ISD::PREFETCH: 4340 return lowerPREFETCH(Op, DAG); 4341 case ISD::INTRINSIC_W_CHAIN: 4342 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4343 case ISD::INTRINSIC_WO_CHAIN: 4344 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4345 case ISD::BUILD_VECTOR: 4346 return lowerBUILD_VECTOR(Op, DAG); 4347 case ISD::VECTOR_SHUFFLE: 4348 return lowerVECTOR_SHUFFLE(Op, DAG); 4349 case ISD::SCALAR_TO_VECTOR: 4350 return lowerSCALAR_TO_VECTOR(Op, DAG); 4351 case ISD::INSERT_VECTOR_ELT: 4352 return lowerINSERT_VECTOR_ELT(Op, DAG); 4353 case ISD::EXTRACT_VECTOR_ELT: 4354 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4355 case ISD::SIGN_EXTEND_VECTOR_INREG: 4356 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4357 case ISD::ZERO_EXTEND_VECTOR_INREG: 4358 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4359 case ISD::SHL: 4360 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4361 case ISD::SRL: 4362 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4363 case ISD::SRA: 4364 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4365 default: 4366 llvm_unreachable("Unexpected node to lower"); 4367 } 4368 } 4369 4370 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4371 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4372 switch (Opcode) { 4373 OPCODE(RET_FLAG); 4374 OPCODE(CALL); 4375 OPCODE(SIBCALL); 4376 OPCODE(TLS_GDCALL); 4377 OPCODE(TLS_LDCALL); 4378 OPCODE(PCREL_WRAPPER); 4379 OPCODE(PCREL_OFFSET); 4380 OPCODE(IABS); 4381 OPCODE(ICMP); 4382 OPCODE(FCMP); 4383 OPCODE(TM); 4384 OPCODE(BR_CCMASK); 4385 OPCODE(SELECT_CCMASK); 4386 OPCODE(ADJDYNALLOC); 4387 OPCODE(EXTRACT_ACCESS); 4388 OPCODE(POPCNT); 4389 OPCODE(UMUL_LOHI64); 4390 OPCODE(SDIVREM32); 4391 OPCODE(SDIVREM64); 4392 OPCODE(UDIVREM32); 4393 OPCODE(UDIVREM64); 4394 OPCODE(MVC); 4395 OPCODE(MVC_LOOP); 4396 OPCODE(NC); 4397 OPCODE(NC_LOOP); 4398 OPCODE(OC); 4399 OPCODE(OC_LOOP); 4400 OPCODE(XC); 4401 OPCODE(XC_LOOP); 4402 OPCODE(CLC); 4403 OPCODE(CLC_LOOP); 4404 OPCODE(STPCPY); 4405 OPCODE(STRCMP); 4406 OPCODE(SEARCH_STRING); 4407 OPCODE(IPM); 4408 OPCODE(SERIALIZE); 4409 OPCODE(TBEGIN); 4410 OPCODE(TBEGIN_NOFLOAT); 4411 OPCODE(TEND); 4412 OPCODE(BYTE_MASK); 4413 OPCODE(ROTATE_MASK); 4414 OPCODE(REPLICATE); 4415 OPCODE(JOIN_DWORDS); 4416 OPCODE(SPLAT); 4417 OPCODE(MERGE_HIGH); 4418 OPCODE(MERGE_LOW); 4419 OPCODE(SHL_DOUBLE); 4420 OPCODE(PERMUTE_DWORDS); 4421 OPCODE(PERMUTE); 4422 OPCODE(PACK); 4423 OPCODE(PACKS_CC); 4424 OPCODE(PACKLS_CC); 4425 OPCODE(UNPACK_HIGH); 4426 OPCODE(UNPACKL_HIGH); 4427 OPCODE(UNPACK_LOW); 4428 OPCODE(UNPACKL_LOW); 4429 OPCODE(VSHL_BY_SCALAR); 4430 OPCODE(VSRL_BY_SCALAR); 4431 OPCODE(VSRA_BY_SCALAR); 4432 OPCODE(VSUM); 4433 OPCODE(VICMPE); 4434 OPCODE(VICMPH); 4435 OPCODE(VICMPHL); 4436 OPCODE(VICMPES); 4437 OPCODE(VICMPHS); 4438 OPCODE(VICMPHLS); 4439 OPCODE(VFCMPE); 4440 OPCODE(VFCMPH); 4441 OPCODE(VFCMPHE); 4442 OPCODE(VFCMPES); 4443 OPCODE(VFCMPHS); 4444 OPCODE(VFCMPHES); 4445 OPCODE(VFTCI); 4446 OPCODE(VEXTEND); 4447 OPCODE(VROUND); 4448 OPCODE(VTM); 4449 OPCODE(VFAE_CC); 4450 OPCODE(VFAEZ_CC); 4451 OPCODE(VFEE_CC); 4452 OPCODE(VFEEZ_CC); 4453 OPCODE(VFENE_CC); 4454 OPCODE(VFENEZ_CC); 4455 OPCODE(VISTR_CC); 4456 OPCODE(VSTRC_CC); 4457 OPCODE(VSTRCZ_CC); 4458 OPCODE(ATOMIC_SWAPW); 4459 OPCODE(ATOMIC_LOADW_ADD); 4460 OPCODE(ATOMIC_LOADW_SUB); 4461 OPCODE(ATOMIC_LOADW_AND); 4462 OPCODE(ATOMIC_LOADW_OR); 4463 OPCODE(ATOMIC_LOADW_XOR); 4464 OPCODE(ATOMIC_LOADW_NAND); 4465 OPCODE(ATOMIC_LOADW_MIN); 4466 OPCODE(ATOMIC_LOADW_MAX); 4467 OPCODE(ATOMIC_LOADW_UMIN); 4468 OPCODE(ATOMIC_LOADW_UMAX); 4469 OPCODE(ATOMIC_CMP_SWAPW); 4470 OPCODE(PREFETCH); 4471 } 4472 return nullptr; 4473 #undef OPCODE 4474 } 4475 4476 // Return true if VT is a vector whose elements are a whole number of bytes 4477 // in width. 4478 static bool canTreatAsByteVector(EVT VT) { 4479 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4480 } 4481 4482 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4483 // producing a result of type ResVT. Op is a possibly bitcast version 4484 // of the input vector and Index is the index (based on type VecVT) that 4485 // should be extracted. Return the new extraction if a simplification 4486 // was possible or if Force is true. 4487 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4488 SDValue Op, unsigned Index, 4489 DAGCombinerInfo &DCI, 4490 bool Force) const { 4491 SelectionDAG &DAG = DCI.DAG; 4492 4493 // The number of bytes being extracted. 4494 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4495 4496 for (;;) { 4497 unsigned Opcode = Op.getOpcode(); 4498 if (Opcode == ISD::BITCAST) 4499 // Look through bitcasts. 4500 Op = Op.getOperand(0); 4501 else if (Opcode == ISD::VECTOR_SHUFFLE && 4502 canTreatAsByteVector(Op.getValueType())) { 4503 // Get a VPERM-like permute mask and see whether the bytes covered 4504 // by the extracted element are a contiguous sequence from one 4505 // source operand. 4506 SmallVector<int, SystemZ::VectorBytes> Bytes; 4507 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4508 int First; 4509 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4510 BytesPerElement, First)) 4511 break; 4512 if (First < 0) 4513 return DAG.getUNDEF(ResVT); 4514 // Make sure the contiguous sequence starts at a multiple of the 4515 // original element size. 4516 unsigned Byte = unsigned(First) % Bytes.size(); 4517 if (Byte % BytesPerElement != 0) 4518 break; 4519 // We can get the extracted value directly from an input. 4520 Index = Byte / BytesPerElement; 4521 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4522 Force = true; 4523 } else if (Opcode == ISD::BUILD_VECTOR && 4524 canTreatAsByteVector(Op.getValueType())) { 4525 // We can only optimize this case if the BUILD_VECTOR elements are 4526 // at least as wide as the extracted value. 4527 EVT OpVT = Op.getValueType(); 4528 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4529 if (OpBytesPerElement < BytesPerElement) 4530 break; 4531 // Make sure that the least-significant bit of the extracted value 4532 // is the least significant bit of an input. 4533 unsigned End = (Index + 1) * BytesPerElement; 4534 if (End % OpBytesPerElement != 0) 4535 break; 4536 // We're extracting the low part of one operand of the BUILD_VECTOR. 4537 Op = Op.getOperand(End / OpBytesPerElement - 1); 4538 if (!Op.getValueType().isInteger()) { 4539 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4540 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4541 DCI.AddToWorklist(Op.getNode()); 4542 } 4543 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4544 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4545 if (VT != ResVT) { 4546 DCI.AddToWorklist(Op.getNode()); 4547 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4548 } 4549 return Op; 4550 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4551 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4552 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4553 canTreatAsByteVector(Op.getValueType()) && 4554 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4555 // Make sure that only the unextended bits are significant. 4556 EVT ExtVT = Op.getValueType(); 4557 EVT OpVT = Op.getOperand(0).getValueType(); 4558 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4559 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4560 unsigned Byte = Index * BytesPerElement; 4561 unsigned SubByte = Byte % ExtBytesPerElement; 4562 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4563 if (SubByte < MinSubByte || 4564 SubByte + BytesPerElement > ExtBytesPerElement) 4565 break; 4566 // Get the byte offset of the unextended element 4567 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4568 // ...then add the byte offset relative to that element. 4569 Byte += SubByte - MinSubByte; 4570 if (Byte % BytesPerElement != 0) 4571 break; 4572 Op = Op.getOperand(0); 4573 Index = Byte / BytesPerElement; 4574 Force = true; 4575 } else 4576 break; 4577 } 4578 if (Force) { 4579 if (Op.getValueType() != VecVT) { 4580 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4581 DCI.AddToWorklist(Op.getNode()); 4582 } 4583 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4584 DAG.getConstant(Index, DL, MVT::i32)); 4585 } 4586 return SDValue(); 4587 } 4588 4589 // Optimize vector operations in scalar value Op on the basis that Op 4590 // is truncated to TruncVT. 4591 SDValue 4592 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4593 DAGCombinerInfo &DCI) const { 4594 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4595 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4596 // of type TruncVT. 4597 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4598 TruncVT.getSizeInBits() % 8 == 0) { 4599 SDValue Vec = Op.getOperand(0); 4600 EVT VecVT = Vec.getValueType(); 4601 if (canTreatAsByteVector(VecVT)) { 4602 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4603 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4604 unsigned TruncBytes = TruncVT.getStoreSize(); 4605 if (BytesPerElement % TruncBytes == 0) { 4606 // Calculate the value of Y' in the above description. We are 4607 // splitting the original elements into Scale equal-sized pieces 4608 // and for truncation purposes want the last (least-significant) 4609 // of these pieces for IndexN. This is easiest to do by calculating 4610 // the start index of the following element and then subtracting 1. 4611 unsigned Scale = BytesPerElement / TruncBytes; 4612 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4613 4614 // Defer the creation of the bitcast from X to combineExtract, 4615 // which might be able to optimize the extraction. 4616 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4617 VecVT.getStoreSize() / TruncBytes); 4618 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4619 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4620 } 4621 } 4622 } 4623 } 4624 return SDValue(); 4625 } 4626 4627 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4628 DAGCombinerInfo &DCI) const { 4629 SelectionDAG &DAG = DCI.DAG; 4630 unsigned Opcode = N->getOpcode(); 4631 if (Opcode == ISD::SIGN_EXTEND) { 4632 // Convert (sext (ashr (shl X, C1), C2)) to 4633 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4634 // cheap as narrower ones. 4635 SDValue N0 = N->getOperand(0); 4636 EVT VT = N->getValueType(0); 4637 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4638 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4639 SDValue Inner = N0.getOperand(0); 4640 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4641 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4642 unsigned Extra = (VT.getSizeInBits() - 4643 N0.getValueType().getSizeInBits()); 4644 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4645 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4646 EVT ShiftVT = N0.getOperand(1).getValueType(); 4647 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4648 Inner.getOperand(0)); 4649 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4650 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4651 ShiftVT)); 4652 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4653 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4654 } 4655 } 4656 } 4657 } 4658 if (Opcode == SystemZISD::MERGE_HIGH || 4659 Opcode == SystemZISD::MERGE_LOW) { 4660 SDValue Op0 = N->getOperand(0); 4661 SDValue Op1 = N->getOperand(1); 4662 if (Op0.getOpcode() == ISD::BITCAST) 4663 Op0 = Op0.getOperand(0); 4664 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4665 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4666 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4667 // for v4f32. 4668 if (Op1 == N->getOperand(0)) 4669 return Op1; 4670 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4671 EVT VT = Op1.getValueType(); 4672 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4673 if (ElemBytes <= 4) { 4674 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4675 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4676 EVT InVT = VT.changeVectorElementTypeToInteger(); 4677 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4678 SystemZ::VectorBytes / ElemBytes / 2); 4679 if (VT != InVT) { 4680 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4681 DCI.AddToWorklist(Op1.getNode()); 4682 } 4683 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4684 DCI.AddToWorklist(Op.getNode()); 4685 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4686 } 4687 } 4688 } 4689 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4690 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4691 // If X has wider elements then convert it to: 4692 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4693 if (Opcode == ISD::STORE) { 4694 auto *SN = cast<StoreSDNode>(N); 4695 EVT MemVT = SN->getMemoryVT(); 4696 if (MemVT.isInteger()) { 4697 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, 4698 SN->getValue(), DCI); 4699 if (Value.getNode()) { 4700 DCI.AddToWorklist(Value.getNode()); 4701 4702 // Rewrite the store with the new form of stored value. 4703 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4704 SN->getBasePtr(), SN->getMemoryVT(), 4705 SN->getMemOperand()); 4706 } 4707 } 4708 } 4709 // Try to simplify a vector extraction. 4710 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4711 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4712 SDValue Op0 = N->getOperand(0); 4713 EVT VecVT = Op0.getValueType(); 4714 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4715 IndexN->getZExtValue(), DCI, false); 4716 } 4717 } 4718 // (join_dwords X, X) == (replicate X) 4719 if (Opcode == SystemZISD::JOIN_DWORDS && 4720 N->getOperand(0) == N->getOperand(1)) 4721 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4722 N->getOperand(0)); 4723 // (fround (extract_vector_elt X 0)) 4724 // (fround (extract_vector_elt X 1)) -> 4725 // (extract_vector_elt (VROUND X) 0) 4726 // (extract_vector_elt (VROUND X) 1) 4727 // 4728 // This is a special case since the target doesn't really support v2f32s. 4729 if (Opcode == ISD::FP_ROUND) { 4730 SDValue Op0 = N->getOperand(0); 4731 if (N->getValueType(0) == MVT::f32 && 4732 Op0.hasOneUse() && 4733 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4734 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4735 Op0.getOperand(1).getOpcode() == ISD::Constant && 4736 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4737 SDValue Vec = Op0.getOperand(0); 4738 for (auto *U : Vec->uses()) { 4739 if (U != Op0.getNode() && 4740 U->hasOneUse() && 4741 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4742 U->getOperand(0) == Vec && 4743 U->getOperand(1).getOpcode() == ISD::Constant && 4744 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4745 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4746 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4747 OtherRound.getOperand(0) == SDValue(U, 0) && 4748 OtherRound.getValueType() == MVT::f32) { 4749 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4750 MVT::v4f32, Vec); 4751 DCI.AddToWorklist(VRound.getNode()); 4752 SDValue Extract1 = 4753 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4754 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4755 DCI.AddToWorklist(Extract1.getNode()); 4756 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4757 SDValue Extract0 = 4758 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4759 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4760 return Extract0; 4761 } 4762 } 4763 } 4764 } 4765 } 4766 return SDValue(); 4767 } 4768 4769 //===----------------------------------------------------------------------===// 4770 // Custom insertion 4771 //===----------------------------------------------------------------------===// 4772 4773 // Create a new basic block after MBB. 4774 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4775 MachineFunction &MF = *MBB->getParent(); 4776 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4777 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4778 return NewMBB; 4779 } 4780 4781 // Split MBB after MI and return the new block (the one that contains 4782 // instructions after MI). 4783 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4784 MachineBasicBlock *MBB) { 4785 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4786 NewMBB->splice(NewMBB->begin(), MBB, 4787 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4788 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4789 return NewMBB; 4790 } 4791 4792 // Split MBB before MI and return the new block (the one that contains MI). 4793 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4794 MachineBasicBlock *MBB) { 4795 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4796 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4797 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4798 return NewMBB; 4799 } 4800 4801 // Force base value Base into a register before MI. Return the register. 4802 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4803 const SystemZInstrInfo *TII) { 4804 if (Base.isReg()) 4805 return Base.getReg(); 4806 4807 MachineBasicBlock *MBB = MI->getParent(); 4808 MachineFunction &MF = *MBB->getParent(); 4809 MachineRegisterInfo &MRI = MF.getRegInfo(); 4810 4811 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4812 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4813 .addOperand(Base).addImm(0).addReg(0); 4814 return Reg; 4815 } 4816 4817 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4818 MachineBasicBlock * 4819 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4820 MachineBasicBlock *MBB) const { 4821 const SystemZInstrInfo *TII = 4822 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4823 4824 unsigned DestReg = MI->getOperand(0).getReg(); 4825 unsigned TrueReg = MI->getOperand(1).getReg(); 4826 unsigned FalseReg = MI->getOperand(2).getReg(); 4827 unsigned CCValid = MI->getOperand(3).getImm(); 4828 unsigned CCMask = MI->getOperand(4).getImm(); 4829 DebugLoc DL = MI->getDebugLoc(); 4830 4831 MachineBasicBlock *StartMBB = MBB; 4832 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4833 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4834 4835 // StartMBB: 4836 // BRC CCMask, JoinMBB 4837 // # fallthrough to FalseMBB 4838 MBB = StartMBB; 4839 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4840 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4841 MBB->addSuccessor(JoinMBB); 4842 MBB->addSuccessor(FalseMBB); 4843 4844 // FalseMBB: 4845 // # fallthrough to JoinMBB 4846 MBB = FalseMBB; 4847 MBB->addSuccessor(JoinMBB); 4848 4849 // JoinMBB: 4850 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4851 // ... 4852 MBB = JoinMBB; 4853 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4854 .addReg(TrueReg).addMBB(StartMBB) 4855 .addReg(FalseReg).addMBB(FalseMBB); 4856 4857 MI->eraseFromParent(); 4858 return JoinMBB; 4859 } 4860 4861 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4862 // StoreOpcode is the store to use and Invert says whether the store should 4863 // happen when the condition is false rather than true. If a STORE ON 4864 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4865 MachineBasicBlock * 4866 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4867 MachineBasicBlock *MBB, 4868 unsigned StoreOpcode, unsigned STOCOpcode, 4869 bool Invert) const { 4870 const SystemZInstrInfo *TII = 4871 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4872 4873 unsigned SrcReg = MI->getOperand(0).getReg(); 4874 MachineOperand Base = MI->getOperand(1); 4875 int64_t Disp = MI->getOperand(2).getImm(); 4876 unsigned IndexReg = MI->getOperand(3).getReg(); 4877 unsigned CCValid = MI->getOperand(4).getImm(); 4878 unsigned CCMask = MI->getOperand(5).getImm(); 4879 DebugLoc DL = MI->getDebugLoc(); 4880 4881 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4882 4883 // Use STOCOpcode if possible. We could use different store patterns in 4884 // order to avoid matching the index register, but the performance trade-offs 4885 // might be more complicated in that case. 4886 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4887 if (Invert) 4888 CCMask ^= CCValid; 4889 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4890 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4891 .addImm(CCValid).addImm(CCMask); 4892 MI->eraseFromParent(); 4893 return MBB; 4894 } 4895 4896 // Get the condition needed to branch around the store. 4897 if (!Invert) 4898 CCMask ^= CCValid; 4899 4900 MachineBasicBlock *StartMBB = MBB; 4901 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4902 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4903 4904 // StartMBB: 4905 // BRC CCMask, JoinMBB 4906 // # fallthrough to FalseMBB 4907 MBB = StartMBB; 4908 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4909 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4910 MBB->addSuccessor(JoinMBB); 4911 MBB->addSuccessor(FalseMBB); 4912 4913 // FalseMBB: 4914 // store %SrcReg, %Disp(%Index,%Base) 4915 // # fallthrough to JoinMBB 4916 MBB = FalseMBB; 4917 BuildMI(MBB, DL, TII->get(StoreOpcode)) 4918 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 4919 MBB->addSuccessor(JoinMBB); 4920 4921 MI->eraseFromParent(); 4922 return JoinMBB; 4923 } 4924 4925 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 4926 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 4927 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 4928 // BitSize is the width of the field in bits, or 0 if this is a partword 4929 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 4930 // is one of the operands. Invert says whether the field should be 4931 // inverted after performing BinOpcode (e.g. for NAND). 4932 MachineBasicBlock * 4933 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 4934 MachineBasicBlock *MBB, 4935 unsigned BinOpcode, 4936 unsigned BitSize, 4937 bool Invert) const { 4938 MachineFunction &MF = *MBB->getParent(); 4939 const SystemZInstrInfo *TII = 4940 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4941 MachineRegisterInfo &MRI = MF.getRegInfo(); 4942 bool IsSubWord = (BitSize < 32); 4943 4944 // Extract the operands. Base can be a register or a frame index. 4945 // Src2 can be a register or immediate. 4946 unsigned Dest = MI->getOperand(0).getReg(); 4947 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 4948 int64_t Disp = MI->getOperand(2).getImm(); 4949 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 4950 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 4951 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 4952 DebugLoc DL = MI->getDebugLoc(); 4953 if (IsSubWord) 4954 BitSize = MI->getOperand(6).getImm(); 4955 4956 // Subword operations use 32-bit registers. 4957 const TargetRegisterClass *RC = (BitSize <= 32 ? 4958 &SystemZ::GR32BitRegClass : 4959 &SystemZ::GR64BitRegClass); 4960 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 4961 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 4962 4963 // Get the right opcodes for the displacement. 4964 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 4965 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 4966 assert(LOpcode && CSOpcode && "Displacement out of range"); 4967 4968 // Create virtual registers for temporary results. 4969 unsigned OrigVal = MRI.createVirtualRegister(RC); 4970 unsigned OldVal = MRI.createVirtualRegister(RC); 4971 unsigned NewVal = (BinOpcode || IsSubWord ? 4972 MRI.createVirtualRegister(RC) : Src2.getReg()); 4973 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 4974 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 4975 4976 // Insert a basic block for the main loop. 4977 MachineBasicBlock *StartMBB = MBB; 4978 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 4979 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 4980 4981 // StartMBB: 4982 // ... 4983 // %OrigVal = L Disp(%Base) 4984 // # fall through to LoopMMB 4985 MBB = StartMBB; 4986 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 4987 .addOperand(Base).addImm(Disp).addReg(0); 4988 MBB->addSuccessor(LoopMBB); 4989 4990 // LoopMBB: 4991 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 4992 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 4993 // %RotatedNewVal = OP %RotatedOldVal, %Src2 4994 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 4995 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 4996 // JNE LoopMBB 4997 // # fall through to DoneMMB 4998 MBB = LoopMBB; 4999 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5000 .addReg(OrigVal).addMBB(StartMBB) 5001 .addReg(Dest).addMBB(LoopMBB); 5002 if (IsSubWord) 5003 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5004 .addReg(OldVal).addReg(BitShift).addImm(0); 5005 if (Invert) { 5006 // Perform the operation normally and then invert every bit of the field. 5007 unsigned Tmp = MRI.createVirtualRegister(RC); 5008 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5009 .addReg(RotatedOldVal).addOperand(Src2); 5010 if (BitSize <= 32) 5011 // XILF with the upper BitSize bits set. 5012 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5013 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5014 else { 5015 // Use LCGR and add -1 to the result, which is more compact than 5016 // an XILF, XILH pair. 5017 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5018 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5019 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5020 .addReg(Tmp2).addImm(-1); 5021 } 5022 } else if (BinOpcode) 5023 // A simply binary operation. 5024 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5025 .addReg(RotatedOldVal).addOperand(Src2); 5026 else if (IsSubWord) 5027 // Use RISBG to rotate Src2 into position and use it to replace the 5028 // field in RotatedOldVal. 5029 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5030 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5031 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5032 if (IsSubWord) 5033 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5034 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5035 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5036 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5037 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5038 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5039 MBB->addSuccessor(LoopMBB); 5040 MBB->addSuccessor(DoneMBB); 5041 5042 MI->eraseFromParent(); 5043 return DoneMBB; 5044 } 5045 5046 // Implement EmitInstrWithCustomInserter for pseudo 5047 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5048 // instruction that should be used to compare the current field with the 5049 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5050 // for when the current field should be kept. BitSize is the width of 5051 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5052 MachineBasicBlock * 5053 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5054 MachineBasicBlock *MBB, 5055 unsigned CompareOpcode, 5056 unsigned KeepOldMask, 5057 unsigned BitSize) const { 5058 MachineFunction &MF = *MBB->getParent(); 5059 const SystemZInstrInfo *TII = 5060 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5061 MachineRegisterInfo &MRI = MF.getRegInfo(); 5062 bool IsSubWord = (BitSize < 32); 5063 5064 // Extract the operands. Base can be a register or a frame index. 5065 unsigned Dest = MI->getOperand(0).getReg(); 5066 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5067 int64_t Disp = MI->getOperand(2).getImm(); 5068 unsigned Src2 = MI->getOperand(3).getReg(); 5069 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5070 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5071 DebugLoc DL = MI->getDebugLoc(); 5072 if (IsSubWord) 5073 BitSize = MI->getOperand(6).getImm(); 5074 5075 // Subword operations use 32-bit registers. 5076 const TargetRegisterClass *RC = (BitSize <= 32 ? 5077 &SystemZ::GR32BitRegClass : 5078 &SystemZ::GR64BitRegClass); 5079 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5080 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5081 5082 // Get the right opcodes for the displacement. 5083 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5084 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5085 assert(LOpcode && CSOpcode && "Displacement out of range"); 5086 5087 // Create virtual registers for temporary results. 5088 unsigned OrigVal = MRI.createVirtualRegister(RC); 5089 unsigned OldVal = MRI.createVirtualRegister(RC); 5090 unsigned NewVal = MRI.createVirtualRegister(RC); 5091 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5092 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5093 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5094 5095 // Insert 3 basic blocks for the loop. 5096 MachineBasicBlock *StartMBB = MBB; 5097 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5098 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5099 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5100 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5101 5102 // StartMBB: 5103 // ... 5104 // %OrigVal = L Disp(%Base) 5105 // # fall through to LoopMMB 5106 MBB = StartMBB; 5107 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5108 .addOperand(Base).addImm(Disp).addReg(0); 5109 MBB->addSuccessor(LoopMBB); 5110 5111 // LoopMBB: 5112 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5113 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5114 // CompareOpcode %RotatedOldVal, %Src2 5115 // BRC KeepOldMask, UpdateMBB 5116 MBB = LoopMBB; 5117 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5118 .addReg(OrigVal).addMBB(StartMBB) 5119 .addReg(Dest).addMBB(UpdateMBB); 5120 if (IsSubWord) 5121 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5122 .addReg(OldVal).addReg(BitShift).addImm(0); 5123 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5124 .addReg(RotatedOldVal).addReg(Src2); 5125 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5126 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5127 MBB->addSuccessor(UpdateMBB); 5128 MBB->addSuccessor(UseAltMBB); 5129 5130 // UseAltMBB: 5131 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5132 // # fall through to UpdateMMB 5133 MBB = UseAltMBB; 5134 if (IsSubWord) 5135 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5136 .addReg(RotatedOldVal).addReg(Src2) 5137 .addImm(32).addImm(31 + BitSize).addImm(0); 5138 MBB->addSuccessor(UpdateMBB); 5139 5140 // UpdateMBB: 5141 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5142 // [ %RotatedAltVal, UseAltMBB ] 5143 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5144 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5145 // JNE LoopMBB 5146 // # fall through to DoneMMB 5147 MBB = UpdateMBB; 5148 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5149 .addReg(RotatedOldVal).addMBB(LoopMBB) 5150 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5151 if (IsSubWord) 5152 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5153 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5154 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5155 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5156 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5157 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5158 MBB->addSuccessor(LoopMBB); 5159 MBB->addSuccessor(DoneMBB); 5160 5161 MI->eraseFromParent(); 5162 return DoneMBB; 5163 } 5164 5165 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5166 // instruction MI. 5167 MachineBasicBlock * 5168 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5169 MachineBasicBlock *MBB) const { 5170 MachineFunction &MF = *MBB->getParent(); 5171 const SystemZInstrInfo *TII = 5172 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5173 MachineRegisterInfo &MRI = MF.getRegInfo(); 5174 5175 // Extract the operands. Base can be a register or a frame index. 5176 unsigned Dest = MI->getOperand(0).getReg(); 5177 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5178 int64_t Disp = MI->getOperand(2).getImm(); 5179 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5180 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5181 unsigned BitShift = MI->getOperand(5).getReg(); 5182 unsigned NegBitShift = MI->getOperand(6).getReg(); 5183 int64_t BitSize = MI->getOperand(7).getImm(); 5184 DebugLoc DL = MI->getDebugLoc(); 5185 5186 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5187 5188 // Get the right opcodes for the displacement. 5189 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5190 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5191 assert(LOpcode && CSOpcode && "Displacement out of range"); 5192 5193 // Create virtual registers for temporary results. 5194 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5195 unsigned OldVal = MRI.createVirtualRegister(RC); 5196 unsigned CmpVal = MRI.createVirtualRegister(RC); 5197 unsigned SwapVal = MRI.createVirtualRegister(RC); 5198 unsigned StoreVal = MRI.createVirtualRegister(RC); 5199 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5200 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5201 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5202 5203 // Insert 2 basic blocks for the loop. 5204 MachineBasicBlock *StartMBB = MBB; 5205 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5206 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5207 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5208 5209 // StartMBB: 5210 // ... 5211 // %OrigOldVal = L Disp(%Base) 5212 // # fall through to LoopMMB 5213 MBB = StartMBB; 5214 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5215 .addOperand(Base).addImm(Disp).addReg(0); 5216 MBB->addSuccessor(LoopMBB); 5217 5218 // LoopMBB: 5219 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5220 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5221 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5222 // %Dest = RLL %OldVal, BitSize(%BitShift) 5223 // ^^ The low BitSize bits contain the field 5224 // of interest. 5225 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5226 // ^^ Replace the upper 32-BitSize bits of the 5227 // comparison value with those that we loaded, 5228 // so that we can use a full word comparison. 5229 // CR %Dest, %RetryCmpVal 5230 // JNE DoneMBB 5231 // # Fall through to SetMBB 5232 MBB = LoopMBB; 5233 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5234 .addReg(OrigOldVal).addMBB(StartMBB) 5235 .addReg(RetryOldVal).addMBB(SetMBB); 5236 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5237 .addReg(OrigCmpVal).addMBB(StartMBB) 5238 .addReg(RetryCmpVal).addMBB(SetMBB); 5239 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5240 .addReg(OrigSwapVal).addMBB(StartMBB) 5241 .addReg(RetrySwapVal).addMBB(SetMBB); 5242 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5243 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5244 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5245 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5246 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5247 .addReg(Dest).addReg(RetryCmpVal); 5248 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5249 .addImm(SystemZ::CCMASK_ICMP) 5250 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5251 MBB->addSuccessor(DoneMBB); 5252 MBB->addSuccessor(SetMBB); 5253 5254 // SetMBB: 5255 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5256 // ^^ Replace the upper 32-BitSize bits of the new 5257 // value with those that we loaded. 5258 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5259 // ^^ Rotate the new field to its proper position. 5260 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5261 // JNE LoopMBB 5262 // # fall through to ExitMMB 5263 MBB = SetMBB; 5264 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5265 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5266 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5267 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5268 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5269 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5270 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5271 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5272 MBB->addSuccessor(LoopMBB); 5273 MBB->addSuccessor(DoneMBB); 5274 5275 MI->eraseFromParent(); 5276 return DoneMBB; 5277 } 5278 5279 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5280 // if the high register of the GR128 value must be cleared or false if 5281 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5282 // and subreg_l64 when extending a GR64. 5283 MachineBasicBlock * 5284 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5285 MachineBasicBlock *MBB, 5286 bool ClearEven, unsigned SubReg) const { 5287 MachineFunction &MF = *MBB->getParent(); 5288 const SystemZInstrInfo *TII = 5289 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5290 MachineRegisterInfo &MRI = MF.getRegInfo(); 5291 DebugLoc DL = MI->getDebugLoc(); 5292 5293 unsigned Dest = MI->getOperand(0).getReg(); 5294 unsigned Src = MI->getOperand(1).getReg(); 5295 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5296 5297 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5298 if (ClearEven) { 5299 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5300 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5301 5302 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5303 .addImm(0); 5304 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5305 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5306 In128 = NewIn128; 5307 } 5308 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5309 .addReg(In128).addReg(Src).addImm(SubReg); 5310 5311 MI->eraseFromParent(); 5312 return MBB; 5313 } 5314 5315 MachineBasicBlock * 5316 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5317 MachineBasicBlock *MBB, 5318 unsigned Opcode) const { 5319 MachineFunction &MF = *MBB->getParent(); 5320 const SystemZInstrInfo *TII = 5321 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5322 MachineRegisterInfo &MRI = MF.getRegInfo(); 5323 DebugLoc DL = MI->getDebugLoc(); 5324 5325 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5326 uint64_t DestDisp = MI->getOperand(1).getImm(); 5327 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5328 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5329 uint64_t Length = MI->getOperand(4).getImm(); 5330 5331 // When generating more than one CLC, all but the last will need to 5332 // branch to the end when a difference is found. 5333 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5334 splitBlockAfter(MI, MBB) : nullptr); 5335 5336 // Check for the loop form, in which operand 5 is the trip count. 5337 if (MI->getNumExplicitOperands() > 5) { 5338 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5339 5340 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5341 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5342 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5343 forceReg(MI, DestBase, TII)); 5344 5345 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5346 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5347 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5348 MRI.createVirtualRegister(RC)); 5349 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5350 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5351 MRI.createVirtualRegister(RC)); 5352 5353 RC = &SystemZ::GR64BitRegClass; 5354 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5355 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5356 5357 MachineBasicBlock *StartMBB = MBB; 5358 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5359 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5360 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5361 5362 // StartMBB: 5363 // # fall through to LoopMMB 5364 MBB->addSuccessor(LoopMBB); 5365 5366 // LoopMBB: 5367 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5368 // [ %NextDestReg, NextMBB ] 5369 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5370 // [ %NextSrcReg, NextMBB ] 5371 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5372 // [ %NextCountReg, NextMBB ] 5373 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5374 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5375 // ( JLH EndMBB ) 5376 // 5377 // The prefetch is used only for MVC. The JLH is used only for CLC. 5378 MBB = LoopMBB; 5379 5380 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5381 .addReg(StartDestReg).addMBB(StartMBB) 5382 .addReg(NextDestReg).addMBB(NextMBB); 5383 if (!HaveSingleBase) 5384 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5385 .addReg(StartSrcReg).addMBB(StartMBB) 5386 .addReg(NextSrcReg).addMBB(NextMBB); 5387 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5388 .addReg(StartCountReg).addMBB(StartMBB) 5389 .addReg(NextCountReg).addMBB(NextMBB); 5390 if (Opcode == SystemZ::MVC) 5391 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5392 .addImm(SystemZ::PFD_WRITE) 5393 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5394 BuildMI(MBB, DL, TII->get(Opcode)) 5395 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5396 .addReg(ThisSrcReg).addImm(SrcDisp); 5397 if (EndMBB) { 5398 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5399 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5400 .addMBB(EndMBB); 5401 MBB->addSuccessor(EndMBB); 5402 MBB->addSuccessor(NextMBB); 5403 } 5404 5405 // NextMBB: 5406 // %NextDestReg = LA 256(%ThisDestReg) 5407 // %NextSrcReg = LA 256(%ThisSrcReg) 5408 // %NextCountReg = AGHI %ThisCountReg, -1 5409 // CGHI %NextCountReg, 0 5410 // JLH LoopMBB 5411 // # fall through to DoneMMB 5412 // 5413 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5414 MBB = NextMBB; 5415 5416 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5417 .addReg(ThisDestReg).addImm(256).addReg(0); 5418 if (!HaveSingleBase) 5419 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5420 .addReg(ThisSrcReg).addImm(256).addReg(0); 5421 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5422 .addReg(ThisCountReg).addImm(-1); 5423 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5424 .addReg(NextCountReg).addImm(0); 5425 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5426 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5427 .addMBB(LoopMBB); 5428 MBB->addSuccessor(LoopMBB); 5429 MBB->addSuccessor(DoneMBB); 5430 5431 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5432 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5433 Length &= 255; 5434 MBB = DoneMBB; 5435 } 5436 // Handle any remaining bytes with straight-line code. 5437 while (Length > 0) { 5438 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5439 // The previous iteration might have created out-of-range displacements. 5440 // Apply them using LAY if so. 5441 if (!isUInt<12>(DestDisp)) { 5442 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5443 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5444 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5445 DestBase = MachineOperand::CreateReg(Reg, false); 5446 DestDisp = 0; 5447 } 5448 if (!isUInt<12>(SrcDisp)) { 5449 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5450 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5451 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5452 SrcBase = MachineOperand::CreateReg(Reg, false); 5453 SrcDisp = 0; 5454 } 5455 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5456 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5457 .addOperand(SrcBase).addImm(SrcDisp); 5458 DestDisp += ThisLength; 5459 SrcDisp += ThisLength; 5460 Length -= ThisLength; 5461 // If there's another CLC to go, branch to the end if a difference 5462 // was found. 5463 if (EndMBB && Length > 0) { 5464 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5465 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5466 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5467 .addMBB(EndMBB); 5468 MBB->addSuccessor(EndMBB); 5469 MBB->addSuccessor(NextMBB); 5470 MBB = NextMBB; 5471 } 5472 } 5473 if (EndMBB) { 5474 MBB->addSuccessor(EndMBB); 5475 MBB = EndMBB; 5476 MBB->addLiveIn(SystemZ::CC); 5477 } 5478 5479 MI->eraseFromParent(); 5480 return MBB; 5481 } 5482 5483 // Decompose string pseudo-instruction MI into a loop that continually performs 5484 // Opcode until CC != 3. 5485 MachineBasicBlock * 5486 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5487 MachineBasicBlock *MBB, 5488 unsigned Opcode) const { 5489 MachineFunction &MF = *MBB->getParent(); 5490 const SystemZInstrInfo *TII = 5491 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5492 MachineRegisterInfo &MRI = MF.getRegInfo(); 5493 DebugLoc DL = MI->getDebugLoc(); 5494 5495 uint64_t End1Reg = MI->getOperand(0).getReg(); 5496 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5497 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5498 uint64_t CharReg = MI->getOperand(3).getReg(); 5499 5500 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5501 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5502 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5503 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5504 5505 MachineBasicBlock *StartMBB = MBB; 5506 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5507 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5508 5509 // StartMBB: 5510 // # fall through to LoopMMB 5511 MBB->addSuccessor(LoopMBB); 5512 5513 // LoopMBB: 5514 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5515 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5516 // R0L = %CharReg 5517 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5518 // JO LoopMBB 5519 // # fall through to DoneMMB 5520 // 5521 // The load of R0L can be hoisted by post-RA LICM. 5522 MBB = LoopMBB; 5523 5524 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5525 .addReg(Start1Reg).addMBB(StartMBB) 5526 .addReg(End1Reg).addMBB(LoopMBB); 5527 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5528 .addReg(Start2Reg).addMBB(StartMBB) 5529 .addReg(End2Reg).addMBB(LoopMBB); 5530 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5531 BuildMI(MBB, DL, TII->get(Opcode)) 5532 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5533 .addReg(This1Reg).addReg(This2Reg); 5534 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5535 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5536 MBB->addSuccessor(LoopMBB); 5537 MBB->addSuccessor(DoneMBB); 5538 5539 DoneMBB->addLiveIn(SystemZ::CC); 5540 5541 MI->eraseFromParent(); 5542 return DoneMBB; 5543 } 5544 5545 // Update TBEGIN instruction with final opcode and register clobbers. 5546 MachineBasicBlock * 5547 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5548 MachineBasicBlock *MBB, 5549 unsigned Opcode, 5550 bool NoFloat) const { 5551 MachineFunction &MF = *MBB->getParent(); 5552 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5553 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5554 5555 // Update opcode. 5556 MI->setDesc(TII->get(Opcode)); 5557 5558 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5559 // Make sure to add the corresponding GRSM bits if they are missing. 5560 uint64_t Control = MI->getOperand(2).getImm(); 5561 static const unsigned GPRControlBit[16] = { 5562 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5563 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5564 }; 5565 Control |= GPRControlBit[15]; 5566 if (TFI->hasFP(MF)) 5567 Control |= GPRControlBit[11]; 5568 MI->getOperand(2).setImm(Control); 5569 5570 // Add GPR clobbers. 5571 for (int I = 0; I < 16; I++) { 5572 if ((Control & GPRControlBit[I]) == 0) { 5573 unsigned Reg = SystemZMC::GR64Regs[I]; 5574 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5575 } 5576 } 5577 5578 // Add FPR/VR clobbers. 5579 if (!NoFloat && (Control & 4) != 0) { 5580 if (Subtarget.hasVector()) { 5581 for (int I = 0; I < 32; I++) { 5582 unsigned Reg = SystemZMC::VR128Regs[I]; 5583 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5584 } 5585 } else { 5586 for (int I = 0; I < 16; I++) { 5587 unsigned Reg = SystemZMC::FP64Regs[I]; 5588 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5589 } 5590 } 5591 } 5592 5593 return MBB; 5594 } 5595 5596 MachineBasicBlock *SystemZTargetLowering:: 5597 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5598 switch (MI->getOpcode()) { 5599 case SystemZ::Select32Mux: 5600 case SystemZ::Select32: 5601 case SystemZ::SelectF32: 5602 case SystemZ::Select64: 5603 case SystemZ::SelectF64: 5604 case SystemZ::SelectF128: 5605 return emitSelect(MI, MBB); 5606 5607 case SystemZ::CondStore8Mux: 5608 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5609 case SystemZ::CondStore8MuxInv: 5610 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5611 case SystemZ::CondStore16Mux: 5612 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5613 case SystemZ::CondStore16MuxInv: 5614 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5615 case SystemZ::CondStore8: 5616 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5617 case SystemZ::CondStore8Inv: 5618 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5619 case SystemZ::CondStore16: 5620 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5621 case SystemZ::CondStore16Inv: 5622 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5623 case SystemZ::CondStore32: 5624 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5625 case SystemZ::CondStore32Inv: 5626 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5627 case SystemZ::CondStore64: 5628 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5629 case SystemZ::CondStore64Inv: 5630 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5631 case SystemZ::CondStoreF32: 5632 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5633 case SystemZ::CondStoreF32Inv: 5634 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5635 case SystemZ::CondStoreF64: 5636 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5637 case SystemZ::CondStoreF64Inv: 5638 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5639 5640 case SystemZ::AEXT128_64: 5641 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5642 case SystemZ::ZEXT128_32: 5643 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5644 case SystemZ::ZEXT128_64: 5645 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5646 5647 case SystemZ::ATOMIC_SWAPW: 5648 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5649 case SystemZ::ATOMIC_SWAP_32: 5650 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5651 case SystemZ::ATOMIC_SWAP_64: 5652 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5653 5654 case SystemZ::ATOMIC_LOADW_AR: 5655 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5656 case SystemZ::ATOMIC_LOADW_AFI: 5657 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5658 case SystemZ::ATOMIC_LOAD_AR: 5659 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5660 case SystemZ::ATOMIC_LOAD_AHI: 5661 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5662 case SystemZ::ATOMIC_LOAD_AFI: 5663 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5664 case SystemZ::ATOMIC_LOAD_AGR: 5665 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5666 case SystemZ::ATOMIC_LOAD_AGHI: 5667 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5668 case SystemZ::ATOMIC_LOAD_AGFI: 5669 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5670 5671 case SystemZ::ATOMIC_LOADW_SR: 5672 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5673 case SystemZ::ATOMIC_LOAD_SR: 5674 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5675 case SystemZ::ATOMIC_LOAD_SGR: 5676 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5677 5678 case SystemZ::ATOMIC_LOADW_NR: 5679 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5680 case SystemZ::ATOMIC_LOADW_NILH: 5681 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5682 case SystemZ::ATOMIC_LOAD_NR: 5683 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5684 case SystemZ::ATOMIC_LOAD_NILL: 5685 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5686 case SystemZ::ATOMIC_LOAD_NILH: 5687 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5688 case SystemZ::ATOMIC_LOAD_NILF: 5689 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5690 case SystemZ::ATOMIC_LOAD_NGR: 5691 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5692 case SystemZ::ATOMIC_LOAD_NILL64: 5693 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5694 case SystemZ::ATOMIC_LOAD_NILH64: 5695 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5696 case SystemZ::ATOMIC_LOAD_NIHL64: 5697 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5698 case SystemZ::ATOMIC_LOAD_NIHH64: 5699 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5700 case SystemZ::ATOMIC_LOAD_NILF64: 5701 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5702 case SystemZ::ATOMIC_LOAD_NIHF64: 5703 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5704 5705 case SystemZ::ATOMIC_LOADW_OR: 5706 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5707 case SystemZ::ATOMIC_LOADW_OILH: 5708 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5709 case SystemZ::ATOMIC_LOAD_OR: 5710 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5711 case SystemZ::ATOMIC_LOAD_OILL: 5712 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5713 case SystemZ::ATOMIC_LOAD_OILH: 5714 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5715 case SystemZ::ATOMIC_LOAD_OILF: 5716 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5717 case SystemZ::ATOMIC_LOAD_OGR: 5718 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5719 case SystemZ::ATOMIC_LOAD_OILL64: 5720 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5721 case SystemZ::ATOMIC_LOAD_OILH64: 5722 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5723 case SystemZ::ATOMIC_LOAD_OIHL64: 5724 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5725 case SystemZ::ATOMIC_LOAD_OIHH64: 5726 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5727 case SystemZ::ATOMIC_LOAD_OILF64: 5728 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5729 case SystemZ::ATOMIC_LOAD_OIHF64: 5730 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5731 5732 case SystemZ::ATOMIC_LOADW_XR: 5733 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5734 case SystemZ::ATOMIC_LOADW_XILF: 5735 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5736 case SystemZ::ATOMIC_LOAD_XR: 5737 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5738 case SystemZ::ATOMIC_LOAD_XILF: 5739 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5740 case SystemZ::ATOMIC_LOAD_XGR: 5741 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5742 case SystemZ::ATOMIC_LOAD_XILF64: 5743 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5744 case SystemZ::ATOMIC_LOAD_XIHF64: 5745 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5746 5747 case SystemZ::ATOMIC_LOADW_NRi: 5748 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5749 case SystemZ::ATOMIC_LOADW_NILHi: 5750 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5751 case SystemZ::ATOMIC_LOAD_NRi: 5752 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5753 case SystemZ::ATOMIC_LOAD_NILLi: 5754 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5755 case SystemZ::ATOMIC_LOAD_NILHi: 5756 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5757 case SystemZ::ATOMIC_LOAD_NILFi: 5758 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5759 case SystemZ::ATOMIC_LOAD_NGRi: 5760 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5761 case SystemZ::ATOMIC_LOAD_NILL64i: 5762 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5763 case SystemZ::ATOMIC_LOAD_NILH64i: 5764 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5765 case SystemZ::ATOMIC_LOAD_NIHL64i: 5766 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5767 case SystemZ::ATOMIC_LOAD_NIHH64i: 5768 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5769 case SystemZ::ATOMIC_LOAD_NILF64i: 5770 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5771 case SystemZ::ATOMIC_LOAD_NIHF64i: 5772 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5773 5774 case SystemZ::ATOMIC_LOADW_MIN: 5775 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5776 SystemZ::CCMASK_CMP_LE, 0); 5777 case SystemZ::ATOMIC_LOAD_MIN_32: 5778 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5779 SystemZ::CCMASK_CMP_LE, 32); 5780 case SystemZ::ATOMIC_LOAD_MIN_64: 5781 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5782 SystemZ::CCMASK_CMP_LE, 64); 5783 5784 case SystemZ::ATOMIC_LOADW_MAX: 5785 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5786 SystemZ::CCMASK_CMP_GE, 0); 5787 case SystemZ::ATOMIC_LOAD_MAX_32: 5788 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5789 SystemZ::CCMASK_CMP_GE, 32); 5790 case SystemZ::ATOMIC_LOAD_MAX_64: 5791 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5792 SystemZ::CCMASK_CMP_GE, 64); 5793 5794 case SystemZ::ATOMIC_LOADW_UMIN: 5795 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5796 SystemZ::CCMASK_CMP_LE, 0); 5797 case SystemZ::ATOMIC_LOAD_UMIN_32: 5798 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5799 SystemZ::CCMASK_CMP_LE, 32); 5800 case SystemZ::ATOMIC_LOAD_UMIN_64: 5801 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5802 SystemZ::CCMASK_CMP_LE, 64); 5803 5804 case SystemZ::ATOMIC_LOADW_UMAX: 5805 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5806 SystemZ::CCMASK_CMP_GE, 0); 5807 case SystemZ::ATOMIC_LOAD_UMAX_32: 5808 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5809 SystemZ::CCMASK_CMP_GE, 32); 5810 case SystemZ::ATOMIC_LOAD_UMAX_64: 5811 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5812 SystemZ::CCMASK_CMP_GE, 64); 5813 5814 case SystemZ::ATOMIC_CMP_SWAPW: 5815 return emitAtomicCmpSwapW(MI, MBB); 5816 case SystemZ::MVCSequence: 5817 case SystemZ::MVCLoop: 5818 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5819 case SystemZ::NCSequence: 5820 case SystemZ::NCLoop: 5821 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5822 case SystemZ::OCSequence: 5823 case SystemZ::OCLoop: 5824 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5825 case SystemZ::XCSequence: 5826 case SystemZ::XCLoop: 5827 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5828 case SystemZ::CLCSequence: 5829 case SystemZ::CLCLoop: 5830 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5831 case SystemZ::CLSTLoop: 5832 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5833 case SystemZ::MVSTLoop: 5834 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5835 case SystemZ::SRSTLoop: 5836 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5837 case SystemZ::TBEGIN: 5838 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5839 case SystemZ::TBEGIN_nofloat: 5840 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5841 case SystemZ::TBEGINC: 5842 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5843 default: 5844 llvm_unreachable("Unexpected instr type to insert"); 5845 } 5846 } 5847