1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In)
37     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38 
39   // The operands to the comparison.
40   SDValue Op0, Op1;
41 
42   // The opcode that should be used to compare Op0 and Op1.
43   unsigned Opcode;
44 
45   // A SystemZICMP value.  Only used for integer comparisons.
46   unsigned ICmpType;
47 
48   // The mask of CC values that Opcode can produce.
49   unsigned CCValid;
50 
51   // The mask of CC values for which the original condition is true.
52   unsigned CCMask;
53 };
54 } // end anonymous namespace
55 
56 // Classify VT as either 32 or 64 bit.
57 static bool is32Bit(EVT VT) {
58   switch (VT.getSimpleVT().SimpleTy) {
59   case MVT::i32:
60     return true;
61   case MVT::i64:
62     return false;
63   default:
64     llvm_unreachable("Unsupported type");
65   }
66 }
67 
68 // Return a version of MachineOperand that can be safely used before the
69 // final use.
70 static MachineOperand earlyUseOperand(MachineOperand Op) {
71   if (Op.isReg())
72     Op.setIsKill(false);
73   return Op;
74 }
75 
76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
77                                              const SystemZSubtarget &STI)
78     : TargetLowering(TM), Subtarget(STI) {
79   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
80 
81   // Set up the register classes.
82   if (Subtarget.hasHighWord())
83     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
84   else
85     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
86   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
87   if (Subtarget.hasVector()) {
88     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
89     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
90   } else {
91     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
92     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93   }
94   if (Subtarget.hasVectorEnhancements1())
95     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
96   else
97     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98 
99   if (Subtarget.hasVector()) {
100     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
105     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
106   }
107 
108   // Compute derived properties from the register classes
109   computeRegisterProperties(Subtarget.getRegisterInfo());
110 
111   // Set up special registers.
112   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113 
114   // TODO: It may be better to default to latency-oriented scheduling, however
115   // LLVM's current latency-oriented scheduler can't handle physreg definitions
116   // such as SystemZ has with CC, so set this to the register-pressure
117   // scheduler, because it can.
118   setSchedulingPreference(Sched::RegPressure);
119 
120   setBooleanContents(ZeroOrOneBooleanContent);
121   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122 
123   // Instructions are strings of 2-byte aligned 2-byte values.
124   setMinFunctionAlignment(2);
125 
126   // Handle operations that are handled in a similar way for all types.
127   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
128        I <= MVT::LAST_FP_VALUETYPE;
129        ++I) {
130     MVT VT = MVT::SimpleValueType(I);
131     if (isTypeLegal(VT)) {
132       // Lower SET_CC into an IPM-based sequence.
133       setOperationAction(ISD::SETCC, VT, Custom);
134 
135       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
136       setOperationAction(ISD::SELECT, VT, Expand);
137 
138       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
139       setOperationAction(ISD::SELECT_CC, VT, Custom);
140       setOperationAction(ISD::BR_CC,     VT, Custom);
141     }
142   }
143 
144   // Expand jump table branches as address arithmetic followed by an
145   // indirect jump.
146   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
147 
148   // Expand BRCOND into a BR_CC (see above).
149   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
150 
151   // Handle integer types.
152   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
153        I <= MVT::LAST_INTEGER_VALUETYPE;
154        ++I) {
155     MVT VT = MVT::SimpleValueType(I);
156     if (isTypeLegal(VT)) {
157       // Expand individual DIV and REMs into DIVREMs.
158       setOperationAction(ISD::SDIV, VT, Expand);
159       setOperationAction(ISD::UDIV, VT, Expand);
160       setOperationAction(ISD::SREM, VT, Expand);
161       setOperationAction(ISD::UREM, VT, Expand);
162       setOperationAction(ISD::SDIVREM, VT, Custom);
163       setOperationAction(ISD::UDIVREM, VT, Custom);
164 
165       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
166       // stores, putting a serialization instruction after the stores.
167       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
168       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
169 
170       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
171       // available, or if the operand is constant.
172       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
173 
174       // Use POPCNT on z196 and above.
175       if (Subtarget.hasPopulationCount())
176         setOperationAction(ISD::CTPOP, VT, Custom);
177       else
178         setOperationAction(ISD::CTPOP, VT, Expand);
179 
180       // No special instructions for these.
181       setOperationAction(ISD::CTTZ,            VT, Expand);
182       setOperationAction(ISD::ROTR,            VT, Expand);
183 
184       // Use *MUL_LOHI where possible instead of MULH*.
185       setOperationAction(ISD::MULHS, VT, Expand);
186       setOperationAction(ISD::MULHU, VT, Expand);
187       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
188       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
189 
190       // Only z196 and above have native support for conversions to unsigned.
191       // On z10, promoting to i64 doesn't generate an inexact condition for
192       // values that are outside the i32 range but in the i64 range, so use
193       // the default expansion.
194       if (!Subtarget.hasFPExtension())
195         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
196     }
197   }
198 
199   // Type legalization will convert 8- and 16-bit atomic operations into
200   // forms that operate on i32s (but still keeping the original memory VT).
201   // Lower them into full i32 operations.
202   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
203   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
204   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
205   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
206   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
207   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
208   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
209   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
210   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
211   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
212   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
213 
214   // Even though i128 is not a legal type, we still need to custom lower
215   // the atomic operations in order to exploit SystemZ instructions.
216   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
217   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
218 
219   // We can use the CC result of compare-and-swap to implement
220   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
221   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
223   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
224 
225   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
226 
227   // Traps are legal, as we will convert them to "j .+2".
228   setOperationAction(ISD::TRAP, MVT::Other, Legal);
229 
230   // z10 has instructions for signed but not unsigned FP conversion.
231   // Handle unsigned 32-bit types as signed 64-bit types.
232   if (!Subtarget.hasFPExtension()) {
233     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
234     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
235   }
236 
237   // We have native support for a 64-bit CTLZ, via FLOGR.
238   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
239   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
240 
241   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
242   setOperationAction(ISD::OR, MVT::i64, Custom);
243 
244   // FIXME: Can we support these natively?
245   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
246   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
247   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
248 
249   // We have native instructions for i8, i16 and i32 extensions, but not i1.
250   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
251   for (MVT VT : MVT::integer_valuetypes()) {
252     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
253     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
254     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
255   }
256 
257   // Handle the various types of symbolic address.
258   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
259   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
260   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
261   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
262   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
263 
264   // We need to handle dynamic allocations specially because of the
265   // 160-byte area at the bottom of the stack.
266   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
267   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
268 
269   // Use custom expanders so that we can force the function to use
270   // a frame pointer.
271   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
272   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
273 
274   // Handle prefetches with PFD or PFDRL.
275   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
276 
277   for (MVT VT : MVT::vector_valuetypes()) {
278     // Assume by default that all vector operations need to be expanded.
279     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
280       if (getOperationAction(Opcode, VT) == Legal)
281         setOperationAction(Opcode, VT, Expand);
282 
283     // Likewise all truncating stores and extending loads.
284     for (MVT InnerVT : MVT::vector_valuetypes()) {
285       setTruncStoreAction(VT, InnerVT, Expand);
286       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
287       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
288       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
289     }
290 
291     if (isTypeLegal(VT)) {
292       // These operations are legal for anything that can be stored in a
293       // vector register, even if there is no native support for the format
294       // as such.  In particular, we can do these for v4f32 even though there
295       // are no specific instructions for that format.
296       setOperationAction(ISD::LOAD, VT, Legal);
297       setOperationAction(ISD::STORE, VT, Legal);
298       setOperationAction(ISD::VSELECT, VT, Legal);
299       setOperationAction(ISD::BITCAST, VT, Legal);
300       setOperationAction(ISD::UNDEF, VT, Legal);
301 
302       // Likewise, except that we need to replace the nodes with something
303       // more specific.
304       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
305       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
306     }
307   }
308 
309   // Handle integer vector types.
310   for (MVT VT : MVT::integer_vector_valuetypes()) {
311     if (isTypeLegal(VT)) {
312       // These operations have direct equivalents.
313       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
314       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
315       setOperationAction(ISD::ADD, VT, Legal);
316       setOperationAction(ISD::SUB, VT, Legal);
317       if (VT != MVT::v2i64)
318         setOperationAction(ISD::MUL, VT, Legal);
319       setOperationAction(ISD::AND, VT, Legal);
320       setOperationAction(ISD::OR, VT, Legal);
321       setOperationAction(ISD::XOR, VT, Legal);
322       if (Subtarget.hasVectorEnhancements1())
323         setOperationAction(ISD::CTPOP, VT, Legal);
324       else
325         setOperationAction(ISD::CTPOP, VT, Custom);
326       setOperationAction(ISD::CTTZ, VT, Legal);
327       setOperationAction(ISD::CTLZ, VT, Legal);
328 
329       // Convert a GPR scalar to a vector by inserting it into element 0.
330       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
331 
332       // Use a series of unpacks for extensions.
333       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
334       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
335 
336       // Detect shifts by a scalar amount and convert them into
337       // V*_BY_SCALAR.
338       setOperationAction(ISD::SHL, VT, Custom);
339       setOperationAction(ISD::SRA, VT, Custom);
340       setOperationAction(ISD::SRL, VT, Custom);
341 
342       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
343       // converted into ROTL.
344       setOperationAction(ISD::ROTL, VT, Expand);
345       setOperationAction(ISD::ROTR, VT, Expand);
346 
347       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
348       // and inverting the result as necessary.
349       setOperationAction(ISD::SETCC, VT, Custom);
350     }
351   }
352 
353   if (Subtarget.hasVector()) {
354     // There should be no need to check for float types other than v2f64
355     // since <2 x f32> isn't a legal type.
356     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
357     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
358     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
359     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
360     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
361     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
362     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
363     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
364   }
365 
366   // Handle floating-point types.
367   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
368        I <= MVT::LAST_FP_VALUETYPE;
369        ++I) {
370     MVT VT = MVT::SimpleValueType(I);
371     if (isTypeLegal(VT)) {
372       // We can use FI for FRINT.
373       setOperationAction(ISD::FRINT, VT, Legal);
374 
375       // We can use the extended form of FI for other rounding operations.
376       if (Subtarget.hasFPExtension()) {
377         setOperationAction(ISD::FNEARBYINT, VT, Legal);
378         setOperationAction(ISD::FFLOOR, VT, Legal);
379         setOperationAction(ISD::FCEIL, VT, Legal);
380         setOperationAction(ISD::FTRUNC, VT, Legal);
381         setOperationAction(ISD::FROUND, VT, Legal);
382       }
383 
384       // No special instructions for these.
385       setOperationAction(ISD::FSIN, VT, Expand);
386       setOperationAction(ISD::FCOS, VT, Expand);
387       setOperationAction(ISD::FSINCOS, VT, Expand);
388       setOperationAction(ISD::FREM, VT, Expand);
389       setOperationAction(ISD::FPOW, VT, Expand);
390     }
391   }
392 
393   // Handle floating-point vector types.
394   if (Subtarget.hasVector()) {
395     // Scalar-to-vector conversion is just a subreg.
396     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
397     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
398 
399     // Some insertions and extractions can be done directly but others
400     // need to go via integers.
401     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
402     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
403     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
404     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
405 
406     // These operations have direct equivalents.
407     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
408     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
409     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
410     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
411     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
412     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
413     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
414     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
415     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
416     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
417     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
418     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
419     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
420     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
421   }
422 
423   // The vector enhancements facility 1 has instructions for these.
424   if (Subtarget.hasVectorEnhancements1()) {
425     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
426     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
427     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
428     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
429     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
430     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
431     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
432     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
433     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
435     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
436     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
437     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
438     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
439 
440     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
441     setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
442     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
443     setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
444 
445     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
446     setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
447     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
448     setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
449 
450     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
451     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
452     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
453     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
454 
455     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
456     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
457     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
458     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
459 
460     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
461     setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
462     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
463     setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
464   }
465 
466   // We have fused multiply-addition for f32 and f64 but not f128.
467   setOperationAction(ISD::FMA, MVT::f32,  Legal);
468   setOperationAction(ISD::FMA, MVT::f64,  Legal);
469   if (Subtarget.hasVectorEnhancements1())
470     setOperationAction(ISD::FMA, MVT::f128, Legal);
471   else
472     setOperationAction(ISD::FMA, MVT::f128, Expand);
473 
474   // We don't have a copysign instruction on vector registers.
475   if (Subtarget.hasVectorEnhancements1())
476     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
477 
478   // Needed so that we don't try to implement f128 constant loads using
479   // a load-and-extend of a f80 constant (in cases where the constant
480   // would fit in an f80).
481   for (MVT VT : MVT::fp_valuetypes())
482     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
483 
484   // We don't have extending load instruction on vector registers.
485   if (Subtarget.hasVectorEnhancements1()) {
486     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
487     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
488   }
489 
490   // Floating-point truncation and stores need to be done separately.
491   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
492   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
493   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
494 
495   // We have 64-bit FPR<->GPR moves, but need special handling for
496   // 32-bit forms.
497   if (!Subtarget.hasVector()) {
498     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
499     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
500   }
501 
502   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
503   // structure, but VAEND is a no-op.
504   setOperationAction(ISD::VASTART, MVT::Other, Custom);
505   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
506   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
507 
508   // Codes for which we want to perform some z-specific combinations.
509   setTargetDAGCombine(ISD::ZERO_EXTEND);
510   setTargetDAGCombine(ISD::SIGN_EXTEND);
511   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
512   setTargetDAGCombine(ISD::STORE);
513   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
514   setTargetDAGCombine(ISD::FP_ROUND);
515   setTargetDAGCombine(ISD::BSWAP);
516   setTargetDAGCombine(ISD::SHL);
517   setTargetDAGCombine(ISD::SRA);
518   setTargetDAGCombine(ISD::SRL);
519   setTargetDAGCombine(ISD::ROTL);
520 
521   // Handle intrinsics.
522   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
523   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
524 
525   // We want to use MVC in preference to even a single load/store pair.
526   MaxStoresPerMemcpy = 0;
527   MaxStoresPerMemcpyOptSize = 0;
528 
529   // The main memset sequence is a byte store followed by an MVC.
530   // Two STC or MV..I stores win over that, but the kind of fused stores
531   // generated by target-independent code don't when the byte value is
532   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
533   // than "STC;MVC".  Handle the choice in target-specific code instead.
534   MaxStoresPerMemset = 0;
535   MaxStoresPerMemsetOptSize = 0;
536 }
537 
538 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
539                                               LLVMContext &, EVT VT) const {
540   if (!VT.isVector())
541     return MVT::i32;
542   return VT.changeVectorElementTypeToInteger();
543 }
544 
545 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
546   VT = VT.getScalarType();
547 
548   if (!VT.isSimple())
549     return false;
550 
551   switch (VT.getSimpleVT().SimpleTy) {
552   case MVT::f32:
553   case MVT::f64:
554     return true;
555   case MVT::f128:
556     return Subtarget.hasVectorEnhancements1();
557   default:
558     break;
559   }
560 
561   return false;
562 }
563 
564 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
565   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
566   return Imm.isZero() || Imm.isNegZero();
567 }
568 
569 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
570   // We can use CGFI or CLGFI.
571   return isInt<32>(Imm) || isUInt<32>(Imm);
572 }
573 
574 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
575   // We can use ALGFI or SLGFI.
576   return isUInt<32>(Imm) || isUInt<32>(-Imm);
577 }
578 
579 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
580                                                            unsigned,
581                                                            unsigned,
582                                                            bool *Fast) const {
583   // Unaligned accesses should never be slower than the expanded version.
584   // We check specifically for aligned accesses in the few cases where
585   // they are required.
586   if (Fast)
587     *Fast = true;
588   return true;
589 }
590 
591 // Information about the addressing mode for a memory access.
592 struct AddressingMode {
593   // True if a long displacement is supported.
594   bool LongDisplacement;
595 
596   // True if use of index register is supported.
597   bool IndexReg;
598 
599   AddressingMode(bool LongDispl, bool IdxReg) :
600     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
601 };
602 
603 // Return the desired addressing mode for a Load which has only one use (in
604 // the same block) which is a Store.
605 static AddressingMode getLoadStoreAddrMode(bool HasVector,
606                                           Type *Ty) {
607   // With vector support a Load->Store combination may be combined to either
608   // an MVC or vector operations and it seems to work best to allow the
609   // vector addressing mode.
610   if (HasVector)
611     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
612 
613   // Otherwise only the MVC case is special.
614   bool MVC = Ty->isIntegerTy(8);
615   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
616 }
617 
618 // Return the addressing mode which seems most desirable given an LLVM
619 // Instruction pointer.
620 static AddressingMode
621 supportedAddressingMode(Instruction *I, bool HasVector) {
622   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
623     switch (II->getIntrinsicID()) {
624     default: break;
625     case Intrinsic::memset:
626     case Intrinsic::memmove:
627     case Intrinsic::memcpy:
628       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
629     }
630   }
631 
632   if (isa<LoadInst>(I) && I->hasOneUse()) {
633     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
634     if (SingleUser->getParent() == I->getParent()) {
635       if (isa<ICmpInst>(SingleUser)) {
636         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
637           if (C->getBitWidth() <= 64 &&
638               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
639             // Comparison of memory with 16 bit signed / unsigned immediate
640             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
641       } else if (isa<StoreInst>(SingleUser))
642         // Load->Store
643         return getLoadStoreAddrMode(HasVector, I->getType());
644     }
645   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
646     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
647       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
648         // Load->Store
649         return getLoadStoreAddrMode(HasVector, LoadI->getType());
650   }
651 
652   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
653 
654     // * Use LDE instead of LE/LEY for z13 to avoid partial register
655     //   dependencies (LDE only supports small offsets).
656     // * Utilize the vector registers to hold floating point
657     //   values (vector load / store instructions only support small
658     //   offsets).
659 
660     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
661                          I->getOperand(0)->getType());
662     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
663     bool IsVectorAccess = MemAccessTy->isVectorTy();
664 
665     // A store of an extracted vector element will be combined into a VSTE type
666     // instruction.
667     if (!IsVectorAccess && isa<StoreInst>(I)) {
668       Value *DataOp = I->getOperand(0);
669       if (isa<ExtractElementInst>(DataOp))
670         IsVectorAccess = true;
671     }
672 
673     // A load which gets inserted into a vector element will be combined into a
674     // VLE type instruction.
675     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
676       User *LoadUser = *I->user_begin();
677       if (isa<InsertElementInst>(LoadUser))
678         IsVectorAccess = true;
679     }
680 
681     if (IsFPAccess || IsVectorAccess)
682       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
683   }
684 
685   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
686 }
687 
688 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
689        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
690   // Punt on globals for now, although they can be used in limited
691   // RELATIVE LONG cases.
692   if (AM.BaseGV)
693     return false;
694 
695   // Require a 20-bit signed offset.
696   if (!isInt<20>(AM.BaseOffs))
697     return false;
698 
699   AddressingMode SupportedAM(true, true);
700   if (I != nullptr)
701     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
702 
703   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
704     return false;
705 
706   if (!SupportedAM.IndexReg)
707     // No indexing allowed.
708     return AM.Scale == 0;
709   else
710     // Indexing is OK but no scale factor can be applied.
711     return AM.Scale == 0 || AM.Scale == 1;
712 }
713 
714 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
715   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
716     return false;
717   unsigned FromBits = FromType->getPrimitiveSizeInBits();
718   unsigned ToBits = ToType->getPrimitiveSizeInBits();
719   return FromBits > ToBits;
720 }
721 
722 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
723   if (!FromVT.isInteger() || !ToVT.isInteger())
724     return false;
725   unsigned FromBits = FromVT.getSizeInBits();
726   unsigned ToBits = ToVT.getSizeInBits();
727   return FromBits > ToBits;
728 }
729 
730 //===----------------------------------------------------------------------===//
731 // Inline asm support
732 //===----------------------------------------------------------------------===//
733 
734 TargetLowering::ConstraintType
735 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
736   if (Constraint.size() == 1) {
737     switch (Constraint[0]) {
738     case 'a': // Address register
739     case 'd': // Data register (equivalent to 'r')
740     case 'f': // Floating-point register
741     case 'h': // High-part register
742     case 'r': // General-purpose register
743       return C_RegisterClass;
744 
745     case 'Q': // Memory with base and unsigned 12-bit displacement
746     case 'R': // Likewise, plus an index
747     case 'S': // Memory with base and signed 20-bit displacement
748     case 'T': // Likewise, plus an index
749     case 'm': // Equivalent to 'T'.
750       return C_Memory;
751 
752     case 'I': // Unsigned 8-bit constant
753     case 'J': // Unsigned 12-bit constant
754     case 'K': // Signed 16-bit constant
755     case 'L': // Signed 20-bit displacement (on all targets we support)
756     case 'M': // 0x7fffffff
757       return C_Other;
758 
759     default:
760       break;
761     }
762   }
763   return TargetLowering::getConstraintType(Constraint);
764 }
765 
766 TargetLowering::ConstraintWeight SystemZTargetLowering::
767 getSingleConstraintMatchWeight(AsmOperandInfo &info,
768                                const char *constraint) const {
769   ConstraintWeight weight = CW_Invalid;
770   Value *CallOperandVal = info.CallOperandVal;
771   // If we don't have a value, we can't do a match,
772   // but allow it at the lowest weight.
773   if (!CallOperandVal)
774     return CW_Default;
775   Type *type = CallOperandVal->getType();
776   // Look at the constraint type.
777   switch (*constraint) {
778   default:
779     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
780     break;
781 
782   case 'a': // Address register
783   case 'd': // Data register (equivalent to 'r')
784   case 'h': // High-part register
785   case 'r': // General-purpose register
786     if (CallOperandVal->getType()->isIntegerTy())
787       weight = CW_Register;
788     break;
789 
790   case 'f': // Floating-point register
791     if (type->isFloatingPointTy())
792       weight = CW_Register;
793     break;
794 
795   case 'I': // Unsigned 8-bit constant
796     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
797       if (isUInt<8>(C->getZExtValue()))
798         weight = CW_Constant;
799     break;
800 
801   case 'J': // Unsigned 12-bit constant
802     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
803       if (isUInt<12>(C->getZExtValue()))
804         weight = CW_Constant;
805     break;
806 
807   case 'K': // Signed 16-bit constant
808     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
809       if (isInt<16>(C->getSExtValue()))
810         weight = CW_Constant;
811     break;
812 
813   case 'L': // Signed 20-bit displacement (on all targets we support)
814     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
815       if (isInt<20>(C->getSExtValue()))
816         weight = CW_Constant;
817     break;
818 
819   case 'M': // 0x7fffffff
820     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
821       if (C->getZExtValue() == 0x7fffffff)
822         weight = CW_Constant;
823     break;
824   }
825   return weight;
826 }
827 
828 // Parse a "{tNNN}" register constraint for which the register type "t"
829 // has already been verified.  MC is the class associated with "t" and
830 // Map maps 0-based register numbers to LLVM register numbers.
831 static std::pair<unsigned, const TargetRegisterClass *>
832 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
833                     const unsigned *Map) {
834   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
835   if (isdigit(Constraint[2])) {
836     unsigned Index;
837     bool Failed =
838         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
839     if (!Failed && Index < 16 && Map[Index])
840       return std::make_pair(Map[Index], RC);
841   }
842   return std::make_pair(0U, nullptr);
843 }
844 
845 std::pair<unsigned, const TargetRegisterClass *>
846 SystemZTargetLowering::getRegForInlineAsmConstraint(
847     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
848   if (Constraint.size() == 1) {
849     // GCC Constraint Letters
850     switch (Constraint[0]) {
851     default: break;
852     case 'd': // Data register (equivalent to 'r')
853     case 'r': // General-purpose register
854       if (VT == MVT::i64)
855         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
856       else if (VT == MVT::i128)
857         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
858       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
859 
860     case 'a': // Address register
861       if (VT == MVT::i64)
862         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
863       else if (VT == MVT::i128)
864         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
865       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
866 
867     case 'h': // High-part register (an LLVM extension)
868       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
869 
870     case 'f': // Floating-point register
871       if (VT == MVT::f64)
872         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
873       else if (VT == MVT::f128)
874         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
875       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
876     }
877   }
878   if (Constraint.size() > 0 && Constraint[0] == '{') {
879     // We need to override the default register parsing for GPRs and FPRs
880     // because the interpretation depends on VT.  The internal names of
881     // the registers are also different from the external names
882     // (F0D and F0S instead of F0, etc.).
883     if (Constraint[1] == 'r') {
884       if (VT == MVT::i32)
885         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
886                                    SystemZMC::GR32Regs);
887       if (VT == MVT::i128)
888         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
889                                    SystemZMC::GR128Regs);
890       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
891                                  SystemZMC::GR64Regs);
892     }
893     if (Constraint[1] == 'f') {
894       if (VT == MVT::f32)
895         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
896                                    SystemZMC::FP32Regs);
897       if (VT == MVT::f128)
898         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
899                                    SystemZMC::FP128Regs);
900       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
901                                  SystemZMC::FP64Regs);
902     }
903   }
904   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
905 }
906 
907 void SystemZTargetLowering::
908 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
909                              std::vector<SDValue> &Ops,
910                              SelectionDAG &DAG) const {
911   // Only support length 1 constraints for now.
912   if (Constraint.length() == 1) {
913     switch (Constraint[0]) {
914     case 'I': // Unsigned 8-bit constant
915       if (auto *C = dyn_cast<ConstantSDNode>(Op))
916         if (isUInt<8>(C->getZExtValue()))
917           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
918                                               Op.getValueType()));
919       return;
920 
921     case 'J': // Unsigned 12-bit constant
922       if (auto *C = dyn_cast<ConstantSDNode>(Op))
923         if (isUInt<12>(C->getZExtValue()))
924           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
925                                               Op.getValueType()));
926       return;
927 
928     case 'K': // Signed 16-bit constant
929       if (auto *C = dyn_cast<ConstantSDNode>(Op))
930         if (isInt<16>(C->getSExtValue()))
931           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
932                                               Op.getValueType()));
933       return;
934 
935     case 'L': // Signed 20-bit displacement (on all targets we support)
936       if (auto *C = dyn_cast<ConstantSDNode>(Op))
937         if (isInt<20>(C->getSExtValue()))
938           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
939                                               Op.getValueType()));
940       return;
941 
942     case 'M': // 0x7fffffff
943       if (auto *C = dyn_cast<ConstantSDNode>(Op))
944         if (C->getZExtValue() == 0x7fffffff)
945           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
946                                               Op.getValueType()));
947       return;
948     }
949   }
950   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
951 }
952 
953 //===----------------------------------------------------------------------===//
954 // Calling conventions
955 //===----------------------------------------------------------------------===//
956 
957 #include "SystemZGenCallingConv.inc"
958 
959 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
960                                                      Type *ToType) const {
961   return isTruncateFree(FromType, ToType);
962 }
963 
964 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
965   return CI->isTailCall();
966 }
967 
968 // We do not yet support 128-bit single-element vector types.  If the user
969 // attempts to use such types as function argument or return type, prefer
970 // to error out instead of emitting code violating the ABI.
971 static void VerifyVectorType(MVT VT, EVT ArgVT) {
972   if (ArgVT.isVector() && !VT.isVector())
973     report_fatal_error("Unsupported vector argument or return type");
974 }
975 
976 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
977   for (unsigned i = 0; i < Ins.size(); ++i)
978     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
979 }
980 
981 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
982   for (unsigned i = 0; i < Outs.size(); ++i)
983     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
984 }
985 
986 // Value is a value that has been passed to us in the location described by VA
987 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
988 // any loads onto Chain.
989 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
990                                    CCValAssign &VA, SDValue Chain,
991                                    SDValue Value) {
992   // If the argument has been promoted from a smaller type, insert an
993   // assertion to capture this.
994   if (VA.getLocInfo() == CCValAssign::SExt)
995     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
996                         DAG.getValueType(VA.getValVT()));
997   else if (VA.getLocInfo() == CCValAssign::ZExt)
998     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
999                         DAG.getValueType(VA.getValVT()));
1000 
1001   if (VA.isExtInLoc())
1002     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1003   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1004     // If this is a short vector argument loaded from the stack,
1005     // extend from i64 to full vector size and then bitcast.
1006     assert(VA.getLocVT() == MVT::i64);
1007     assert(VA.getValVT().isVector());
1008     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1009     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1010   } else
1011     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1012   return Value;
1013 }
1014 
1015 // Value is a value of type VA.getValVT() that we need to copy into
1016 // the location described by VA.  Return a copy of Value converted to
1017 // VA.getValVT().  The caller is responsible for handling indirect values.
1018 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1019                                    CCValAssign &VA, SDValue Value) {
1020   switch (VA.getLocInfo()) {
1021   case CCValAssign::SExt:
1022     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1023   case CCValAssign::ZExt:
1024     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1025   case CCValAssign::AExt:
1026     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1027   case CCValAssign::BCvt:
1028     // If this is a short vector argument to be stored to the stack,
1029     // bitcast to v2i64 and then extract first element.
1030     assert(VA.getLocVT() == MVT::i64);
1031     assert(VA.getValVT().isVector());
1032     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1033     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1034                        DAG.getConstant(0, DL, MVT::i32));
1035   case CCValAssign::Full:
1036     return Value;
1037   default:
1038     llvm_unreachable("Unhandled getLocInfo()");
1039   }
1040 }
1041 
1042 SDValue SystemZTargetLowering::LowerFormalArguments(
1043     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1044     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1045     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1046   MachineFunction &MF = DAG.getMachineFunction();
1047   MachineFrameInfo &MFI = MF.getFrameInfo();
1048   MachineRegisterInfo &MRI = MF.getRegInfo();
1049   SystemZMachineFunctionInfo *FuncInfo =
1050       MF.getInfo<SystemZMachineFunctionInfo>();
1051   auto *TFL =
1052       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1053   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1054 
1055   // Detect unsupported vector argument types.
1056   if (Subtarget.hasVector())
1057     VerifyVectorTypes(Ins);
1058 
1059   // Assign locations to all of the incoming arguments.
1060   SmallVector<CCValAssign, 16> ArgLocs;
1061   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1062   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1063 
1064   unsigned NumFixedGPRs = 0;
1065   unsigned NumFixedFPRs = 0;
1066   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1067     SDValue ArgValue;
1068     CCValAssign &VA = ArgLocs[I];
1069     EVT LocVT = VA.getLocVT();
1070     if (VA.isRegLoc()) {
1071       // Arguments passed in registers
1072       const TargetRegisterClass *RC;
1073       switch (LocVT.getSimpleVT().SimpleTy) {
1074       default:
1075         // Integers smaller than i64 should be promoted to i64.
1076         llvm_unreachable("Unexpected argument type");
1077       case MVT::i32:
1078         NumFixedGPRs += 1;
1079         RC = &SystemZ::GR32BitRegClass;
1080         break;
1081       case MVT::i64:
1082         NumFixedGPRs += 1;
1083         RC = &SystemZ::GR64BitRegClass;
1084         break;
1085       case MVT::f32:
1086         NumFixedFPRs += 1;
1087         RC = &SystemZ::FP32BitRegClass;
1088         break;
1089       case MVT::f64:
1090         NumFixedFPRs += 1;
1091         RC = &SystemZ::FP64BitRegClass;
1092         break;
1093       case MVT::v16i8:
1094       case MVT::v8i16:
1095       case MVT::v4i32:
1096       case MVT::v2i64:
1097       case MVT::v4f32:
1098       case MVT::v2f64:
1099         RC = &SystemZ::VR128BitRegClass;
1100         break;
1101       }
1102 
1103       unsigned VReg = MRI.createVirtualRegister(RC);
1104       MRI.addLiveIn(VA.getLocReg(), VReg);
1105       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1106     } else {
1107       assert(VA.isMemLoc() && "Argument not register or memory");
1108 
1109       // Create the frame index object for this incoming parameter.
1110       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1111                                      VA.getLocMemOffset(), true);
1112 
1113       // Create the SelectionDAG nodes corresponding to a load
1114       // from this parameter.  Unpromoted ints and floats are
1115       // passed as right-justified 8-byte values.
1116       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1117       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1118         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1119                           DAG.getIntPtrConstant(4, DL));
1120       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1121                              MachinePointerInfo::getFixedStack(MF, FI));
1122     }
1123 
1124     // Convert the value of the argument register into the value that's
1125     // being passed.
1126     if (VA.getLocInfo() == CCValAssign::Indirect) {
1127       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1128                                    MachinePointerInfo()));
1129       // If the original argument was split (e.g. i128), we need
1130       // to load all parts of it here (using the same address).
1131       unsigned ArgIndex = Ins[I].OrigArgIndex;
1132       assert (Ins[I].PartOffset == 0);
1133       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1134         CCValAssign &PartVA = ArgLocs[I + 1];
1135         unsigned PartOffset = Ins[I + 1].PartOffset;
1136         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1137                                       DAG.getIntPtrConstant(PartOffset, DL));
1138         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1139                                      MachinePointerInfo()));
1140         ++I;
1141       }
1142     } else
1143       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1144   }
1145 
1146   if (IsVarArg) {
1147     // Save the number of non-varargs registers for later use by va_start, etc.
1148     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1149     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1150 
1151     // Likewise the address (in the form of a frame index) of where the
1152     // first stack vararg would be.  The 1-byte size here is arbitrary.
1153     int64_t StackSize = CCInfo.getNextStackOffset();
1154     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1155 
1156     // ...and a similar frame index for the caller-allocated save area
1157     // that will be used to store the incoming registers.
1158     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1159     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1160     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1161 
1162     // Store the FPR varargs in the reserved frame slots.  (We store the
1163     // GPRs as part of the prologue.)
1164     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1165       SDValue MemOps[SystemZ::NumArgFPRs];
1166       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1167         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1168         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1169         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1170         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1171                                      &SystemZ::FP64BitRegClass);
1172         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1173         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1174                                  MachinePointerInfo::getFixedStack(MF, FI));
1175       }
1176       // Join the stores, which are independent of one another.
1177       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1178                           makeArrayRef(&MemOps[NumFixedFPRs],
1179                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1180     }
1181   }
1182 
1183   return Chain;
1184 }
1185 
1186 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1187                               SmallVectorImpl<CCValAssign> &ArgLocs,
1188                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1189   // Punt if there are any indirect or stack arguments, or if the call
1190   // needs the callee-saved argument register R6, or if the call uses
1191   // the callee-saved register arguments SwiftSelf and SwiftError.
1192   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1193     CCValAssign &VA = ArgLocs[I];
1194     if (VA.getLocInfo() == CCValAssign::Indirect)
1195       return false;
1196     if (!VA.isRegLoc())
1197       return false;
1198     unsigned Reg = VA.getLocReg();
1199     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1200       return false;
1201     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1202       return false;
1203   }
1204   return true;
1205 }
1206 
1207 SDValue
1208 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1209                                  SmallVectorImpl<SDValue> &InVals) const {
1210   SelectionDAG &DAG = CLI.DAG;
1211   SDLoc &DL = CLI.DL;
1212   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1213   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1214   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1215   SDValue Chain = CLI.Chain;
1216   SDValue Callee = CLI.Callee;
1217   bool &IsTailCall = CLI.IsTailCall;
1218   CallingConv::ID CallConv = CLI.CallConv;
1219   bool IsVarArg = CLI.IsVarArg;
1220   MachineFunction &MF = DAG.getMachineFunction();
1221   EVT PtrVT = getPointerTy(MF.getDataLayout());
1222 
1223   // Detect unsupported vector argument and return types.
1224   if (Subtarget.hasVector()) {
1225     VerifyVectorTypes(Outs);
1226     VerifyVectorTypes(Ins);
1227   }
1228 
1229   // Analyze the operands of the call, assigning locations to each operand.
1230   SmallVector<CCValAssign, 16> ArgLocs;
1231   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1232   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1233 
1234   // We don't support GuaranteedTailCallOpt, only automatically-detected
1235   // sibling calls.
1236   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1237     IsTailCall = false;
1238 
1239   // Get a count of how many bytes are to be pushed on the stack.
1240   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1241 
1242   // Mark the start of the call.
1243   if (!IsTailCall)
1244     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1245 
1246   // Copy argument values to their designated locations.
1247   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1248   SmallVector<SDValue, 8> MemOpChains;
1249   SDValue StackPtr;
1250   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1251     CCValAssign &VA = ArgLocs[I];
1252     SDValue ArgValue = OutVals[I];
1253 
1254     if (VA.getLocInfo() == CCValAssign::Indirect) {
1255       // Store the argument in a stack slot and pass its address.
1256       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1257       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1258       MemOpChains.push_back(
1259           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1260                        MachinePointerInfo::getFixedStack(MF, FI)));
1261       // If the original argument was split (e.g. i128), we need
1262       // to store all parts of it here (and pass just one address).
1263       unsigned ArgIndex = Outs[I].OrigArgIndex;
1264       assert (Outs[I].PartOffset == 0);
1265       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1266         SDValue PartValue = OutVals[I + 1];
1267         unsigned PartOffset = Outs[I + 1].PartOffset;
1268         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1269                                       DAG.getIntPtrConstant(PartOffset, DL));
1270         MemOpChains.push_back(
1271             DAG.getStore(Chain, DL, PartValue, Address,
1272                          MachinePointerInfo::getFixedStack(MF, FI)));
1273         ++I;
1274       }
1275       ArgValue = SpillSlot;
1276     } else
1277       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1278 
1279     if (VA.isRegLoc())
1280       // Queue up the argument copies and emit them at the end.
1281       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1282     else {
1283       assert(VA.isMemLoc() && "Argument not register or memory");
1284 
1285       // Work out the address of the stack slot.  Unpromoted ints and
1286       // floats are passed as right-justified 8-byte values.
1287       if (!StackPtr.getNode())
1288         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1289       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1290       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1291         Offset += 4;
1292       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1293                                     DAG.getIntPtrConstant(Offset, DL));
1294 
1295       // Emit the store.
1296       MemOpChains.push_back(
1297           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1298     }
1299   }
1300 
1301   // Join the stores, which are independent of one another.
1302   if (!MemOpChains.empty())
1303     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1304 
1305   // Accept direct calls by converting symbolic call addresses to the
1306   // associated Target* opcodes.  Force %r1 to be used for indirect
1307   // tail calls.
1308   SDValue Glue;
1309   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1310     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1311     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1312   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1313     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1314     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1315   } else if (IsTailCall) {
1316     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1317     Glue = Chain.getValue(1);
1318     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1319   }
1320 
1321   // Build a sequence of copy-to-reg nodes, chained and glued together.
1322   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1323     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1324                              RegsToPass[I].second, Glue);
1325     Glue = Chain.getValue(1);
1326   }
1327 
1328   // The first call operand is the chain and the second is the target address.
1329   SmallVector<SDValue, 8> Ops;
1330   Ops.push_back(Chain);
1331   Ops.push_back(Callee);
1332 
1333   // Add argument registers to the end of the list so that they are
1334   // known live into the call.
1335   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1336     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1337                                   RegsToPass[I].second.getValueType()));
1338 
1339   // Add a register mask operand representing the call-preserved registers.
1340   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1341   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1342   assert(Mask && "Missing call preserved mask for calling convention");
1343   Ops.push_back(DAG.getRegisterMask(Mask));
1344 
1345   // Glue the call to the argument copies, if any.
1346   if (Glue.getNode())
1347     Ops.push_back(Glue);
1348 
1349   // Emit the call.
1350   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1351   if (IsTailCall)
1352     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1353   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1354   Glue = Chain.getValue(1);
1355 
1356   // Mark the end of the call, which is glued to the call itself.
1357   Chain = DAG.getCALLSEQ_END(Chain,
1358                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1359                              DAG.getConstant(0, DL, PtrVT, true),
1360                              Glue, DL);
1361   Glue = Chain.getValue(1);
1362 
1363   // Assign locations to each value returned by this call.
1364   SmallVector<CCValAssign, 16> RetLocs;
1365   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1366   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1367 
1368   // Copy all of the result registers out of their specified physreg.
1369   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1370     CCValAssign &VA = RetLocs[I];
1371 
1372     // Copy the value out, gluing the copy to the end of the call sequence.
1373     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1374                                           VA.getLocVT(), Glue);
1375     Chain = RetValue.getValue(1);
1376     Glue = RetValue.getValue(2);
1377 
1378     // Convert the value of the return register into the value that's
1379     // being returned.
1380     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1381   }
1382 
1383   return Chain;
1384 }
1385 
1386 bool SystemZTargetLowering::
1387 CanLowerReturn(CallingConv::ID CallConv,
1388                MachineFunction &MF, bool isVarArg,
1389                const SmallVectorImpl<ISD::OutputArg> &Outs,
1390                LLVMContext &Context) const {
1391   // Detect unsupported vector return types.
1392   if (Subtarget.hasVector())
1393     VerifyVectorTypes(Outs);
1394 
1395   // Special case that we cannot easily detect in RetCC_SystemZ since
1396   // i128 is not a legal type.
1397   for (auto &Out : Outs)
1398     if (Out.ArgVT == MVT::i128)
1399       return false;
1400 
1401   SmallVector<CCValAssign, 16> RetLocs;
1402   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1403   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1404 }
1405 
1406 SDValue
1407 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1408                                    bool IsVarArg,
1409                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1410                                    const SmallVectorImpl<SDValue> &OutVals,
1411                                    const SDLoc &DL, SelectionDAG &DAG) const {
1412   MachineFunction &MF = DAG.getMachineFunction();
1413 
1414   // Detect unsupported vector return types.
1415   if (Subtarget.hasVector())
1416     VerifyVectorTypes(Outs);
1417 
1418   // Assign locations to each returned value.
1419   SmallVector<CCValAssign, 16> RetLocs;
1420   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1421   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1422 
1423   // Quick exit for void returns
1424   if (RetLocs.empty())
1425     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1426 
1427   // Copy the result values into the output registers.
1428   SDValue Glue;
1429   SmallVector<SDValue, 4> RetOps;
1430   RetOps.push_back(Chain);
1431   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1432     CCValAssign &VA = RetLocs[I];
1433     SDValue RetValue = OutVals[I];
1434 
1435     // Make the return register live on exit.
1436     assert(VA.isRegLoc() && "Can only return in registers!");
1437 
1438     // Promote the value as required.
1439     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1440 
1441     // Chain and glue the copies together.
1442     unsigned Reg = VA.getLocReg();
1443     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1444     Glue = Chain.getValue(1);
1445     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1446   }
1447 
1448   // Update chain and glue.
1449   RetOps[0] = Chain;
1450   if (Glue.getNode())
1451     RetOps.push_back(Glue);
1452 
1453   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1454 }
1455 
1456 // Return true if Op is an intrinsic node with chain that returns the CC value
1457 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1458 // the mask of valid CC values if so.
1459 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1460                                       unsigned &CCValid) {
1461   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1462   switch (Id) {
1463   case Intrinsic::s390_tbegin:
1464     Opcode = SystemZISD::TBEGIN;
1465     CCValid = SystemZ::CCMASK_TBEGIN;
1466     return true;
1467 
1468   case Intrinsic::s390_tbegin_nofloat:
1469     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1470     CCValid = SystemZ::CCMASK_TBEGIN;
1471     return true;
1472 
1473   case Intrinsic::s390_tend:
1474     Opcode = SystemZISD::TEND;
1475     CCValid = SystemZ::CCMASK_TEND;
1476     return true;
1477 
1478   default:
1479     return false;
1480   }
1481 }
1482 
1483 // Return true if Op is an intrinsic node without chain that returns the
1484 // CC value as its final argument.  Provide the associated SystemZISD
1485 // opcode and the mask of valid CC values if so.
1486 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1487   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1488   switch (Id) {
1489   case Intrinsic::s390_vpkshs:
1490   case Intrinsic::s390_vpksfs:
1491   case Intrinsic::s390_vpksgs:
1492     Opcode = SystemZISD::PACKS_CC;
1493     CCValid = SystemZ::CCMASK_VCMP;
1494     return true;
1495 
1496   case Intrinsic::s390_vpklshs:
1497   case Intrinsic::s390_vpklsfs:
1498   case Intrinsic::s390_vpklsgs:
1499     Opcode = SystemZISD::PACKLS_CC;
1500     CCValid = SystemZ::CCMASK_VCMP;
1501     return true;
1502 
1503   case Intrinsic::s390_vceqbs:
1504   case Intrinsic::s390_vceqhs:
1505   case Intrinsic::s390_vceqfs:
1506   case Intrinsic::s390_vceqgs:
1507     Opcode = SystemZISD::VICMPES;
1508     CCValid = SystemZ::CCMASK_VCMP;
1509     return true;
1510 
1511   case Intrinsic::s390_vchbs:
1512   case Intrinsic::s390_vchhs:
1513   case Intrinsic::s390_vchfs:
1514   case Intrinsic::s390_vchgs:
1515     Opcode = SystemZISD::VICMPHS;
1516     CCValid = SystemZ::CCMASK_VCMP;
1517     return true;
1518 
1519   case Intrinsic::s390_vchlbs:
1520   case Intrinsic::s390_vchlhs:
1521   case Intrinsic::s390_vchlfs:
1522   case Intrinsic::s390_vchlgs:
1523     Opcode = SystemZISD::VICMPHLS;
1524     CCValid = SystemZ::CCMASK_VCMP;
1525     return true;
1526 
1527   case Intrinsic::s390_vtm:
1528     Opcode = SystemZISD::VTM;
1529     CCValid = SystemZ::CCMASK_VCMP;
1530     return true;
1531 
1532   case Intrinsic::s390_vfaebs:
1533   case Intrinsic::s390_vfaehs:
1534   case Intrinsic::s390_vfaefs:
1535     Opcode = SystemZISD::VFAE_CC;
1536     CCValid = SystemZ::CCMASK_ANY;
1537     return true;
1538 
1539   case Intrinsic::s390_vfaezbs:
1540   case Intrinsic::s390_vfaezhs:
1541   case Intrinsic::s390_vfaezfs:
1542     Opcode = SystemZISD::VFAEZ_CC;
1543     CCValid = SystemZ::CCMASK_ANY;
1544     return true;
1545 
1546   case Intrinsic::s390_vfeebs:
1547   case Intrinsic::s390_vfeehs:
1548   case Intrinsic::s390_vfeefs:
1549     Opcode = SystemZISD::VFEE_CC;
1550     CCValid = SystemZ::CCMASK_ANY;
1551     return true;
1552 
1553   case Intrinsic::s390_vfeezbs:
1554   case Intrinsic::s390_vfeezhs:
1555   case Intrinsic::s390_vfeezfs:
1556     Opcode = SystemZISD::VFEEZ_CC;
1557     CCValid = SystemZ::CCMASK_ANY;
1558     return true;
1559 
1560   case Intrinsic::s390_vfenebs:
1561   case Intrinsic::s390_vfenehs:
1562   case Intrinsic::s390_vfenefs:
1563     Opcode = SystemZISD::VFENE_CC;
1564     CCValid = SystemZ::CCMASK_ANY;
1565     return true;
1566 
1567   case Intrinsic::s390_vfenezbs:
1568   case Intrinsic::s390_vfenezhs:
1569   case Intrinsic::s390_vfenezfs:
1570     Opcode = SystemZISD::VFENEZ_CC;
1571     CCValid = SystemZ::CCMASK_ANY;
1572     return true;
1573 
1574   case Intrinsic::s390_vistrbs:
1575   case Intrinsic::s390_vistrhs:
1576   case Intrinsic::s390_vistrfs:
1577     Opcode = SystemZISD::VISTR_CC;
1578     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1579     return true;
1580 
1581   case Intrinsic::s390_vstrcbs:
1582   case Intrinsic::s390_vstrchs:
1583   case Intrinsic::s390_vstrcfs:
1584     Opcode = SystemZISD::VSTRC_CC;
1585     CCValid = SystemZ::CCMASK_ANY;
1586     return true;
1587 
1588   case Intrinsic::s390_vstrczbs:
1589   case Intrinsic::s390_vstrczhs:
1590   case Intrinsic::s390_vstrczfs:
1591     Opcode = SystemZISD::VSTRCZ_CC;
1592     CCValid = SystemZ::CCMASK_ANY;
1593     return true;
1594 
1595   case Intrinsic::s390_vfcedbs:
1596   case Intrinsic::s390_vfcesbs:
1597     Opcode = SystemZISD::VFCMPES;
1598     CCValid = SystemZ::CCMASK_VCMP;
1599     return true;
1600 
1601   case Intrinsic::s390_vfchdbs:
1602   case Intrinsic::s390_vfchsbs:
1603     Opcode = SystemZISD::VFCMPHS;
1604     CCValid = SystemZ::CCMASK_VCMP;
1605     return true;
1606 
1607   case Intrinsic::s390_vfchedbs:
1608   case Intrinsic::s390_vfchesbs:
1609     Opcode = SystemZISD::VFCMPHES;
1610     CCValid = SystemZ::CCMASK_VCMP;
1611     return true;
1612 
1613   case Intrinsic::s390_vftcidb:
1614   case Intrinsic::s390_vftcisb:
1615     Opcode = SystemZISD::VFTCI;
1616     CCValid = SystemZ::CCMASK_VCMP;
1617     return true;
1618 
1619   case Intrinsic::s390_tdc:
1620     Opcode = SystemZISD::TDC;
1621     CCValid = SystemZ::CCMASK_TDC;
1622     return true;
1623 
1624   default:
1625     return false;
1626   }
1627 }
1628 
1629 // Emit an intrinsic with chain with a glued value instead of its CC result.
1630 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1631                                              unsigned Opcode) {
1632   // Copy all operands except the intrinsic ID.
1633   unsigned NumOps = Op.getNumOperands();
1634   SmallVector<SDValue, 6> Ops;
1635   Ops.reserve(NumOps - 1);
1636   Ops.push_back(Op.getOperand(0));
1637   for (unsigned I = 2; I < NumOps; ++I)
1638     Ops.push_back(Op.getOperand(I));
1639 
1640   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1641   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1642   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1643   SDValue OldChain = SDValue(Op.getNode(), 1);
1644   SDValue NewChain = SDValue(Intr.getNode(), 0);
1645   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1646   return Intr;
1647 }
1648 
1649 // Emit an intrinsic with a glued value instead of its CC result.
1650 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1651                                      unsigned Opcode) {
1652   // Copy all operands except the intrinsic ID.
1653   unsigned NumOps = Op.getNumOperands();
1654   SmallVector<SDValue, 6> Ops;
1655   Ops.reserve(NumOps - 1);
1656   for (unsigned I = 1; I < NumOps; ++I)
1657     Ops.push_back(Op.getOperand(I));
1658 
1659   if (Op->getNumValues() == 1)
1660     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1661   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1662   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1663   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1664 }
1665 
1666 // CC is a comparison that will be implemented using an integer or
1667 // floating-point comparison.  Return the condition code mask for
1668 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1669 // unsigned comparisons and clear for signed ones.  In the floating-point
1670 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1671 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1672 #define CONV(X) \
1673   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1674   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1675   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1676 
1677   switch (CC) {
1678   default:
1679     llvm_unreachable("Invalid integer condition!");
1680 
1681   CONV(EQ);
1682   CONV(NE);
1683   CONV(GT);
1684   CONV(GE);
1685   CONV(LT);
1686   CONV(LE);
1687 
1688   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1689   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1690   }
1691 #undef CONV
1692 }
1693 
1694 // If C can be converted to a comparison against zero, adjust the operands
1695 // as necessary.
1696 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1697   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1698     return;
1699 
1700   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1701   if (!ConstOp1)
1702     return;
1703 
1704   int64_t Value = ConstOp1->getSExtValue();
1705   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1706       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1707       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1708       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1709     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1710     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1711   }
1712 }
1713 
1714 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1715 // adjust the operands as necessary.
1716 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1717                              Comparison &C) {
1718   // For us to make any changes, it must a comparison between a single-use
1719   // load and a constant.
1720   if (!C.Op0.hasOneUse() ||
1721       C.Op0.getOpcode() != ISD::LOAD ||
1722       C.Op1.getOpcode() != ISD::Constant)
1723     return;
1724 
1725   // We must have an 8- or 16-bit load.
1726   auto *Load = cast<LoadSDNode>(C.Op0);
1727   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1728   if (NumBits != 8 && NumBits != 16)
1729     return;
1730 
1731   // The load must be an extending one and the constant must be within the
1732   // range of the unextended value.
1733   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1734   uint64_t Value = ConstOp1->getZExtValue();
1735   uint64_t Mask = (1 << NumBits) - 1;
1736   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1737     // Make sure that ConstOp1 is in range of C.Op0.
1738     int64_t SignedValue = ConstOp1->getSExtValue();
1739     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1740       return;
1741     if (C.ICmpType != SystemZICMP::SignedOnly) {
1742       // Unsigned comparison between two sign-extended values is equivalent
1743       // to unsigned comparison between two zero-extended values.
1744       Value &= Mask;
1745     } else if (NumBits == 8) {
1746       // Try to treat the comparison as unsigned, so that we can use CLI.
1747       // Adjust CCMask and Value as necessary.
1748       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1749         // Test whether the high bit of the byte is set.
1750         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1751       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1752         // Test whether the high bit of the byte is clear.
1753         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1754       else
1755         // No instruction exists for this combination.
1756         return;
1757       C.ICmpType = SystemZICMP::UnsignedOnly;
1758     }
1759   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1760     if (Value > Mask)
1761       return;
1762     // If the constant is in range, we can use any comparison.
1763     C.ICmpType = SystemZICMP::Any;
1764   } else
1765     return;
1766 
1767   // Make sure that the first operand is an i32 of the right extension type.
1768   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1769                               ISD::SEXTLOAD :
1770                               ISD::ZEXTLOAD);
1771   if (C.Op0.getValueType() != MVT::i32 ||
1772       Load->getExtensionType() != ExtType) {
1773     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1774                            Load->getBasePtr(), Load->getPointerInfo(),
1775                            Load->getMemoryVT(), Load->getAlignment(),
1776                            Load->getMemOperand()->getFlags());
1777     // Update the chain uses.
1778     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1779   }
1780 
1781   // Make sure that the second operand is an i32 with the right value.
1782   if (C.Op1.getValueType() != MVT::i32 ||
1783       Value != ConstOp1->getZExtValue())
1784     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1785 }
1786 
1787 // Return true if Op is either an unextended load, or a load suitable
1788 // for integer register-memory comparisons of type ICmpType.
1789 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1790   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1791   if (Load) {
1792     // There are no instructions to compare a register with a memory byte.
1793     if (Load->getMemoryVT() == MVT::i8)
1794       return false;
1795     // Otherwise decide on extension type.
1796     switch (Load->getExtensionType()) {
1797     case ISD::NON_EXTLOAD:
1798       return true;
1799     case ISD::SEXTLOAD:
1800       return ICmpType != SystemZICMP::UnsignedOnly;
1801     case ISD::ZEXTLOAD:
1802       return ICmpType != SystemZICMP::SignedOnly;
1803     default:
1804       break;
1805     }
1806   }
1807   return false;
1808 }
1809 
1810 // Return true if it is better to swap the operands of C.
1811 static bool shouldSwapCmpOperands(const Comparison &C) {
1812   // Leave f128 comparisons alone, since they have no memory forms.
1813   if (C.Op0.getValueType() == MVT::f128)
1814     return false;
1815 
1816   // Always keep a floating-point constant second, since comparisons with
1817   // zero can use LOAD TEST and comparisons with other constants make a
1818   // natural memory operand.
1819   if (isa<ConstantFPSDNode>(C.Op1))
1820     return false;
1821 
1822   // Never swap comparisons with zero since there are many ways to optimize
1823   // those later.
1824   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1825   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1826     return false;
1827 
1828   // Also keep natural memory operands second if the loaded value is
1829   // only used here.  Several comparisons have memory forms.
1830   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1831     return false;
1832 
1833   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1834   // In that case we generally prefer the memory to be second.
1835   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1836     // The only exceptions are when the second operand is a constant and
1837     // we can use things like CHHSI.
1838     if (!ConstOp1)
1839       return true;
1840     // The unsigned memory-immediate instructions can handle 16-bit
1841     // unsigned integers.
1842     if (C.ICmpType != SystemZICMP::SignedOnly &&
1843         isUInt<16>(ConstOp1->getZExtValue()))
1844       return false;
1845     // The signed memory-immediate instructions can handle 16-bit
1846     // signed integers.
1847     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1848         isInt<16>(ConstOp1->getSExtValue()))
1849       return false;
1850     return true;
1851   }
1852 
1853   // Try to promote the use of CGFR and CLGFR.
1854   unsigned Opcode0 = C.Op0.getOpcode();
1855   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1856     return true;
1857   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1858     return true;
1859   if (C.ICmpType != SystemZICMP::SignedOnly &&
1860       Opcode0 == ISD::AND &&
1861       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1862       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1863     return true;
1864 
1865   return false;
1866 }
1867 
1868 // Return a version of comparison CC mask CCMask in which the LT and GT
1869 // actions are swapped.
1870 static unsigned reverseCCMask(unsigned CCMask) {
1871   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1872           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1873           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1874           (CCMask & SystemZ::CCMASK_CMP_UO));
1875 }
1876 
1877 // Check whether C tests for equality between X and Y and whether X - Y
1878 // or Y - X is also computed.  In that case it's better to compare the
1879 // result of the subtraction against zero.
1880 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1881                                  Comparison &C) {
1882   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1883       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1884     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1885       SDNode *N = *I;
1886       if (N->getOpcode() == ISD::SUB &&
1887           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1888            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1889         C.Op0 = SDValue(N, 0);
1890         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1891         return;
1892       }
1893     }
1894   }
1895 }
1896 
1897 // Check whether C compares a floating-point value with zero and if that
1898 // floating-point value is also negated.  In this case we can use the
1899 // negation to set CC, so avoiding separate LOAD AND TEST and
1900 // LOAD (NEGATIVE/COMPLEMENT) instructions.
1901 static void adjustForFNeg(Comparison &C) {
1902   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1903   if (C1 && C1->isZero()) {
1904     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1905       SDNode *N = *I;
1906       if (N->getOpcode() == ISD::FNEG) {
1907         C.Op0 = SDValue(N, 0);
1908         C.CCMask = reverseCCMask(C.CCMask);
1909         return;
1910       }
1911     }
1912   }
1913 }
1914 
1915 // Check whether C compares (shl X, 32) with 0 and whether X is
1916 // also sign-extended.  In that case it is better to test the result
1917 // of the sign extension using LTGFR.
1918 //
1919 // This case is important because InstCombine transforms a comparison
1920 // with (sext (trunc X)) into a comparison with (shl X, 32).
1921 static void adjustForLTGFR(Comparison &C) {
1922   // Check for a comparison between (shl X, 32) and 0.
1923   if (C.Op0.getOpcode() == ISD::SHL &&
1924       C.Op0.getValueType() == MVT::i64 &&
1925       C.Op1.getOpcode() == ISD::Constant &&
1926       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1927     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1928     if (C1 && C1->getZExtValue() == 32) {
1929       SDValue ShlOp0 = C.Op0.getOperand(0);
1930       // See whether X has any SIGN_EXTEND_INREG uses.
1931       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1932         SDNode *N = *I;
1933         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1934             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1935           C.Op0 = SDValue(N, 0);
1936           return;
1937         }
1938       }
1939     }
1940   }
1941 }
1942 
1943 // If C compares the truncation of an extending load, try to compare
1944 // the untruncated value instead.  This exposes more opportunities to
1945 // reuse CC.
1946 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1947                                Comparison &C) {
1948   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1949       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1950       C.Op1.getOpcode() == ISD::Constant &&
1951       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1952     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1953     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
1954       unsigned Type = L->getExtensionType();
1955       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1956           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1957         C.Op0 = C.Op0.getOperand(0);
1958         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
1959       }
1960     }
1961   }
1962 }
1963 
1964 // Return true if shift operation N has an in-range constant shift value.
1965 // Store it in ShiftVal if so.
1966 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1967   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1968   if (!Shift)
1969     return false;
1970 
1971   uint64_t Amount = Shift->getZExtValue();
1972   if (Amount >= N.getValueSizeInBits())
1973     return false;
1974 
1975   ShiftVal = Amount;
1976   return true;
1977 }
1978 
1979 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1980 // instruction and whether the CC value is descriptive enough to handle
1981 // a comparison of type Opcode between the AND result and CmpVal.
1982 // CCMask says which comparison result is being tested and BitSize is
1983 // the number of bits in the operands.  If TEST UNDER MASK can be used,
1984 // return the corresponding CC mask, otherwise return 0.
1985 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1986                                      uint64_t Mask, uint64_t CmpVal,
1987                                      unsigned ICmpType) {
1988   assert(Mask != 0 && "ANDs with zero should have been removed by now");
1989 
1990   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1991   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1992       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1993     return 0;
1994 
1995   // Work out the masks for the lowest and highest bits.
1996   unsigned HighShift = 63 - countLeadingZeros(Mask);
1997   uint64_t High = uint64_t(1) << HighShift;
1998   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1999 
2000   // Signed ordered comparisons are effectively unsigned if the sign
2001   // bit is dropped.
2002   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2003 
2004   // Check for equality comparisons with 0, or the equivalent.
2005   if (CmpVal == 0) {
2006     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2007       return SystemZ::CCMASK_TM_ALL_0;
2008     if (CCMask == SystemZ::CCMASK_CMP_NE)
2009       return SystemZ::CCMASK_TM_SOME_1;
2010   }
2011   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2012     if (CCMask == SystemZ::CCMASK_CMP_LT)
2013       return SystemZ::CCMASK_TM_ALL_0;
2014     if (CCMask == SystemZ::CCMASK_CMP_GE)
2015       return SystemZ::CCMASK_TM_SOME_1;
2016   }
2017   if (EffectivelyUnsigned && CmpVal < Low) {
2018     if (CCMask == SystemZ::CCMASK_CMP_LE)
2019       return SystemZ::CCMASK_TM_ALL_0;
2020     if (CCMask == SystemZ::CCMASK_CMP_GT)
2021       return SystemZ::CCMASK_TM_SOME_1;
2022   }
2023 
2024   // Check for equality comparisons with the mask, or the equivalent.
2025   if (CmpVal == Mask) {
2026     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2027       return SystemZ::CCMASK_TM_ALL_1;
2028     if (CCMask == SystemZ::CCMASK_CMP_NE)
2029       return SystemZ::CCMASK_TM_SOME_0;
2030   }
2031   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2032     if (CCMask == SystemZ::CCMASK_CMP_GT)
2033       return SystemZ::CCMASK_TM_ALL_1;
2034     if (CCMask == SystemZ::CCMASK_CMP_LE)
2035       return SystemZ::CCMASK_TM_SOME_0;
2036   }
2037   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2038     if (CCMask == SystemZ::CCMASK_CMP_GE)
2039       return SystemZ::CCMASK_TM_ALL_1;
2040     if (CCMask == SystemZ::CCMASK_CMP_LT)
2041       return SystemZ::CCMASK_TM_SOME_0;
2042   }
2043 
2044   // Check for ordered comparisons with the top bit.
2045   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2046     if (CCMask == SystemZ::CCMASK_CMP_LE)
2047       return SystemZ::CCMASK_TM_MSB_0;
2048     if (CCMask == SystemZ::CCMASK_CMP_GT)
2049       return SystemZ::CCMASK_TM_MSB_1;
2050   }
2051   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2052     if (CCMask == SystemZ::CCMASK_CMP_LT)
2053       return SystemZ::CCMASK_TM_MSB_0;
2054     if (CCMask == SystemZ::CCMASK_CMP_GE)
2055       return SystemZ::CCMASK_TM_MSB_1;
2056   }
2057 
2058   // If there are just two bits, we can do equality checks for Low and High
2059   // as well.
2060   if (Mask == Low + High) {
2061     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2062       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2063     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2064       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2065     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2066       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2067     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2068       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2069   }
2070 
2071   // Looks like we've exhausted our options.
2072   return 0;
2073 }
2074 
2075 // See whether C can be implemented as a TEST UNDER MASK instruction.
2076 // Update the arguments with the TM version if so.
2077 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2078                                    Comparison &C) {
2079   // Check that we have a comparison with a constant.
2080   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2081   if (!ConstOp1)
2082     return;
2083   uint64_t CmpVal = ConstOp1->getZExtValue();
2084 
2085   // Check whether the nonconstant input is an AND with a constant mask.
2086   Comparison NewC(C);
2087   uint64_t MaskVal;
2088   ConstantSDNode *Mask = nullptr;
2089   if (C.Op0.getOpcode() == ISD::AND) {
2090     NewC.Op0 = C.Op0.getOperand(0);
2091     NewC.Op1 = C.Op0.getOperand(1);
2092     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2093     if (!Mask)
2094       return;
2095     MaskVal = Mask->getZExtValue();
2096   } else {
2097     // There is no instruction to compare with a 64-bit immediate
2098     // so use TMHH instead if possible.  We need an unsigned ordered
2099     // comparison with an i64 immediate.
2100     if (NewC.Op0.getValueType() != MVT::i64 ||
2101         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2102         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2103         NewC.ICmpType == SystemZICMP::SignedOnly)
2104       return;
2105     // Convert LE and GT comparisons into LT and GE.
2106     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2107         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2108       if (CmpVal == uint64_t(-1))
2109         return;
2110       CmpVal += 1;
2111       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2112     }
2113     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2114     // be masked off without changing the result.
2115     MaskVal = -(CmpVal & -CmpVal);
2116     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2117   }
2118   if (!MaskVal)
2119     return;
2120 
2121   // Check whether the combination of mask, comparison value and comparison
2122   // type are suitable.
2123   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2124   unsigned NewCCMask, ShiftVal;
2125   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2126       NewC.Op0.getOpcode() == ISD::SHL &&
2127       isSimpleShift(NewC.Op0, ShiftVal) &&
2128       (MaskVal >> ShiftVal != 0) &&
2129       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2130       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2131                                         MaskVal >> ShiftVal,
2132                                         CmpVal >> ShiftVal,
2133                                         SystemZICMP::Any))) {
2134     NewC.Op0 = NewC.Op0.getOperand(0);
2135     MaskVal >>= ShiftVal;
2136   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2137              NewC.Op0.getOpcode() == ISD::SRL &&
2138              isSimpleShift(NewC.Op0, ShiftVal) &&
2139              (MaskVal << ShiftVal != 0) &&
2140              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2141              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2142                                                MaskVal << ShiftVal,
2143                                                CmpVal << ShiftVal,
2144                                                SystemZICMP::UnsignedOnly))) {
2145     NewC.Op0 = NewC.Op0.getOperand(0);
2146     MaskVal <<= ShiftVal;
2147   } else {
2148     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2149                                      NewC.ICmpType);
2150     if (!NewCCMask)
2151       return;
2152   }
2153 
2154   // Go ahead and make the change.
2155   C.Opcode = SystemZISD::TM;
2156   C.Op0 = NewC.Op0;
2157   if (Mask && Mask->getZExtValue() == MaskVal)
2158     C.Op1 = SDValue(Mask, 0);
2159   else
2160     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2161   C.CCValid = SystemZ::CCMASK_TM;
2162   C.CCMask = NewCCMask;
2163 }
2164 
2165 // See whether the comparison argument contains a redundant AND
2166 // and remove it if so.  This sometimes happens due to the generic
2167 // BRCOND expansion.
2168 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2169                                   Comparison &C) {
2170   if (C.Op0.getOpcode() != ISD::AND)
2171     return;
2172   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2173   if (!Mask)
2174     return;
2175   KnownBits Known;
2176   DAG.computeKnownBits(C.Op0.getOperand(0), Known);
2177   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2178     return;
2179 
2180   C.Op0 = C.Op0.getOperand(0);
2181 }
2182 
2183 // Return a Comparison that tests the condition-code result of intrinsic
2184 // node Call against constant integer CC using comparison code Cond.
2185 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2186 // and CCValid is the set of possible condition-code results.
2187 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2188                                   SDValue Call, unsigned CCValid, uint64_t CC,
2189                                   ISD::CondCode Cond) {
2190   Comparison C(Call, SDValue());
2191   C.Opcode = Opcode;
2192   C.CCValid = CCValid;
2193   if (Cond == ISD::SETEQ)
2194     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2195     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2196   else if (Cond == ISD::SETNE)
2197     // ...and the inverse of that.
2198     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2199   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2200     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2201     // always true for CC>3.
2202     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2203   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2204     // ...and the inverse of that.
2205     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2206   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2207     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2208     // always true for CC>3.
2209     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2210   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2211     // ...and the inverse of that.
2212     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2213   else
2214     llvm_unreachable("Unexpected integer comparison type");
2215   C.CCMask &= CCValid;
2216   return C;
2217 }
2218 
2219 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2220 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2221                          ISD::CondCode Cond, const SDLoc &DL) {
2222   if (CmpOp1.getOpcode() == ISD::Constant) {
2223     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2224     unsigned Opcode, CCValid;
2225     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2226         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2227         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2228       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2229     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2230         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2231         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2232       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2233   }
2234   Comparison C(CmpOp0, CmpOp1);
2235   C.CCMask = CCMaskForCondCode(Cond);
2236   if (C.Op0.getValueType().isFloatingPoint()) {
2237     C.CCValid = SystemZ::CCMASK_FCMP;
2238     C.Opcode = SystemZISD::FCMP;
2239     adjustForFNeg(C);
2240   } else {
2241     C.CCValid = SystemZ::CCMASK_ICMP;
2242     C.Opcode = SystemZISD::ICMP;
2243     // Choose the type of comparison.  Equality and inequality tests can
2244     // use either signed or unsigned comparisons.  The choice also doesn't
2245     // matter if both sign bits are known to be clear.  In those cases we
2246     // want to give the main isel code the freedom to choose whichever
2247     // form fits best.
2248     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2249         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2250         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2251       C.ICmpType = SystemZICMP::Any;
2252     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2253       C.ICmpType = SystemZICMP::UnsignedOnly;
2254     else
2255       C.ICmpType = SystemZICMP::SignedOnly;
2256     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2257     adjustForRedundantAnd(DAG, DL, C);
2258     adjustZeroCmp(DAG, DL, C);
2259     adjustSubwordCmp(DAG, DL, C);
2260     adjustForSubtraction(DAG, DL, C);
2261     adjustForLTGFR(C);
2262     adjustICmpTruncate(DAG, DL, C);
2263   }
2264 
2265   if (shouldSwapCmpOperands(C)) {
2266     std::swap(C.Op0, C.Op1);
2267     C.CCMask = reverseCCMask(C.CCMask);
2268   }
2269 
2270   adjustForTestUnderMask(DAG, DL, C);
2271   return C;
2272 }
2273 
2274 // Emit the comparison instruction described by C.
2275 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2276   if (!C.Op1.getNode()) {
2277     SDValue Op;
2278     switch (C.Op0.getOpcode()) {
2279     case ISD::INTRINSIC_W_CHAIN:
2280       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2281       break;
2282     case ISD::INTRINSIC_WO_CHAIN:
2283       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2284       break;
2285     default:
2286       llvm_unreachable("Invalid comparison operands");
2287     }
2288     return SDValue(Op.getNode(), Op->getNumValues() - 1);
2289   }
2290   if (C.Opcode == SystemZISD::ICMP)
2291     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2292                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2293   if (C.Opcode == SystemZISD::TM) {
2294     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2295                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2296     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2297                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2298   }
2299   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2300 }
2301 
2302 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2303 // 64 bits.  Extend is the extension type to use.  Store the high part
2304 // in Hi and the low part in Lo.
2305 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2306                             SDValue Op0, SDValue Op1, SDValue &Hi,
2307                             SDValue &Lo) {
2308   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2309   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2310   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2311   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2312                    DAG.getConstant(32, DL, MVT::i64));
2313   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2314   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2315 }
2316 
2317 // Lower a binary operation that produces two VT results, one in each
2318 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2319 // and Opcode performs the GR128 operation.  Store the even register result
2320 // in Even and the odd register result in Odd.
2321 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2322                              unsigned Opcode, SDValue Op0, SDValue Op1,
2323                              SDValue &Even, SDValue &Odd) {
2324   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2325   bool Is32Bit = is32Bit(VT);
2326   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2327   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2328 }
2329 
2330 // Return an i32 value that is 1 if the CC value produced by Glue is
2331 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2332 // in CCValid, so other values can be ignored.
2333 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2334                          unsigned CCValid, unsigned CCMask) {
2335   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2336                     DAG.getConstant(0, DL, MVT::i32),
2337                     DAG.getConstant(CCValid, DL, MVT::i32),
2338                     DAG.getConstant(CCMask, DL, MVT::i32), Glue };
2339   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2340 }
2341 
2342 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2343 // be done directly.  IsFP is true if CC is for a floating-point rather than
2344 // integer comparison.
2345 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2346   switch (CC) {
2347   case ISD::SETOEQ:
2348   case ISD::SETEQ:
2349     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2350 
2351   case ISD::SETOGE:
2352   case ISD::SETGE:
2353     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2354 
2355   case ISD::SETOGT:
2356   case ISD::SETGT:
2357     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2358 
2359   case ISD::SETUGT:
2360     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2361 
2362   default:
2363     return 0;
2364   }
2365 }
2366 
2367 // Return the SystemZISD vector comparison operation for CC or its inverse,
2368 // or 0 if neither can be done directly.  Indicate in Invert whether the
2369 // result is for the inverse of CC.  IsFP is true if CC is for a
2370 // floating-point rather than integer comparison.
2371 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2372                                             bool &Invert) {
2373   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2374     Invert = false;
2375     return Opcode;
2376   }
2377 
2378   CC = ISD::getSetCCInverse(CC, !IsFP);
2379   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2380     Invert = true;
2381     return Opcode;
2382   }
2383 
2384   return 0;
2385 }
2386 
2387 // Return a v2f64 that contains the extended form of elements Start and Start+1
2388 // of v4f32 value Op.
2389 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2390                                   SDValue Op) {
2391   int Mask[] = { Start, -1, Start + 1, -1 };
2392   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2393   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2394 }
2395 
2396 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2397 // producing a result of type VT.
2398 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2399                                             const SDLoc &DL, EVT VT,
2400                                             SDValue CmpOp0,
2401                                             SDValue CmpOp1) const {
2402   // There is no hardware support for v4f32 (unless we have the vector
2403   // enhancements facility 1), so extend the vector into two v2f64s
2404   // and compare those.
2405   if (CmpOp0.getValueType() == MVT::v4f32 &&
2406       !Subtarget.hasVectorEnhancements1()) {
2407     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2408     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2409     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2410     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2411     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2412     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2413     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2414   }
2415   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2416 }
2417 
2418 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2419 // an integer mask of type VT.
2420 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2421                                                 const SDLoc &DL, EVT VT,
2422                                                 ISD::CondCode CC,
2423                                                 SDValue CmpOp0,
2424                                                 SDValue CmpOp1) const {
2425   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2426   bool Invert = false;
2427   SDValue Cmp;
2428   switch (CC) {
2429     // Handle tests for order using (or (ogt y x) (oge x y)).
2430   case ISD::SETUO:
2431     Invert = true;
2432     LLVM_FALLTHROUGH;
2433   case ISD::SETO: {
2434     assert(IsFP && "Unexpected integer comparison");
2435     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2436     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2437     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2438     break;
2439   }
2440 
2441     // Handle <> tests using (or (ogt y x) (ogt x y)).
2442   case ISD::SETUEQ:
2443     Invert = true;
2444     LLVM_FALLTHROUGH;
2445   case ISD::SETONE: {
2446     assert(IsFP && "Unexpected integer comparison");
2447     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2448     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2449     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2450     break;
2451   }
2452 
2453     // Otherwise a single comparison is enough.  It doesn't really
2454     // matter whether we try the inversion or the swap first, since
2455     // there are no cases where both work.
2456   default:
2457     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2458       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2459     else {
2460       CC = ISD::getSetCCSwappedOperands(CC);
2461       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2462         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2463       else
2464         llvm_unreachable("Unhandled comparison");
2465     }
2466     break;
2467   }
2468   if (Invert) {
2469     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2470                                DAG.getConstant(65535, DL, MVT::i32));
2471     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2472     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2473   }
2474   return Cmp;
2475 }
2476 
2477 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2478                                           SelectionDAG &DAG) const {
2479   SDValue CmpOp0   = Op.getOperand(0);
2480   SDValue CmpOp1   = Op.getOperand(1);
2481   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2482   SDLoc DL(Op);
2483   EVT VT = Op.getValueType();
2484   if (VT.isVector())
2485     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2486 
2487   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2488   SDValue Glue = emitCmp(DAG, DL, C);
2489   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2490 }
2491 
2492 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2493   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2494   SDValue CmpOp0   = Op.getOperand(2);
2495   SDValue CmpOp1   = Op.getOperand(3);
2496   SDValue Dest     = Op.getOperand(4);
2497   SDLoc DL(Op);
2498 
2499   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2500   SDValue Glue = emitCmp(DAG, DL, C);
2501   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2502                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2503                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2504 }
2505 
2506 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2507 // allowing Pos and Neg to be wider than CmpOp.
2508 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2509   return (Neg.getOpcode() == ISD::SUB &&
2510           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2511           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2512           Neg.getOperand(1) == Pos &&
2513           (Pos == CmpOp ||
2514            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2515             Pos.getOperand(0) == CmpOp)));
2516 }
2517 
2518 // Return the absolute or negative absolute of Op; IsNegative decides which.
2519 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2520                            bool IsNegative) {
2521   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2522   if (IsNegative)
2523     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2524                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2525   return Op;
2526 }
2527 
2528 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2529                                               SelectionDAG &DAG) const {
2530   SDValue CmpOp0   = Op.getOperand(0);
2531   SDValue CmpOp1   = Op.getOperand(1);
2532   SDValue TrueOp   = Op.getOperand(2);
2533   SDValue FalseOp  = Op.getOperand(3);
2534   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2535   SDLoc DL(Op);
2536 
2537   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2538 
2539   // Check for absolute and negative-absolute selections, including those
2540   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2541   // This check supplements the one in DAGCombiner.
2542   if (C.Opcode == SystemZISD::ICMP &&
2543       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2544       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2545       C.Op1.getOpcode() == ISD::Constant &&
2546       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2547     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2548       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2549     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2550       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2551   }
2552 
2553   SDValue Glue = emitCmp(DAG, DL, C);
2554   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2555                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2556 
2557   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2558 }
2559 
2560 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2561                                                   SelectionDAG &DAG) const {
2562   SDLoc DL(Node);
2563   const GlobalValue *GV = Node->getGlobal();
2564   int64_t Offset = Node->getOffset();
2565   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2566   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2567 
2568   SDValue Result;
2569   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2570     // Assign anchors at 1<<12 byte boundaries.
2571     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2572     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2573     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2574 
2575     // The offset can be folded into the address if it is aligned to a halfword.
2576     Offset -= Anchor;
2577     if (Offset != 0 && (Offset & 1) == 0) {
2578       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2579       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2580       Offset = 0;
2581     }
2582   } else {
2583     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2584     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2585     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2586                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2587   }
2588 
2589   // If there was a non-zero offset that we didn't fold, create an explicit
2590   // addition for it.
2591   if (Offset != 0)
2592     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2593                          DAG.getConstant(Offset, DL, PtrVT));
2594 
2595   return Result;
2596 }
2597 
2598 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2599                                                  SelectionDAG &DAG,
2600                                                  unsigned Opcode,
2601                                                  SDValue GOTOffset) const {
2602   SDLoc DL(Node);
2603   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2604   SDValue Chain = DAG.getEntryNode();
2605   SDValue Glue;
2606 
2607   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2608   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2609   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2610   Glue = Chain.getValue(1);
2611   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2612   Glue = Chain.getValue(1);
2613 
2614   // The first call operand is the chain and the second is the TLS symbol.
2615   SmallVector<SDValue, 8> Ops;
2616   Ops.push_back(Chain);
2617   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2618                                            Node->getValueType(0),
2619                                            0, 0));
2620 
2621   // Add argument registers to the end of the list so that they are
2622   // known live into the call.
2623   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2624   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2625 
2626   // Add a register mask operand representing the call-preserved registers.
2627   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2628   const uint32_t *Mask =
2629       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2630   assert(Mask && "Missing call preserved mask for calling convention");
2631   Ops.push_back(DAG.getRegisterMask(Mask));
2632 
2633   // Glue the call to the argument copies.
2634   Ops.push_back(Glue);
2635 
2636   // Emit the call.
2637   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2638   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2639   Glue = Chain.getValue(1);
2640 
2641   // Copy the return value from %r2.
2642   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2643 }
2644 
2645 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2646                                                   SelectionDAG &DAG) const {
2647   SDValue Chain = DAG.getEntryNode();
2648   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2649 
2650   // The high part of the thread pointer is in access register 0.
2651   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2652   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2653 
2654   // The low part of the thread pointer is in access register 1.
2655   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2656   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2657 
2658   // Merge them into a single 64-bit address.
2659   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2660                                     DAG.getConstant(32, DL, PtrVT));
2661   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2662 }
2663 
2664 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2665                                                      SelectionDAG &DAG) const {
2666   if (DAG.getTarget().Options.EmulatedTLS)
2667     return LowerToTLSEmulatedModel(Node, DAG);
2668   SDLoc DL(Node);
2669   const GlobalValue *GV = Node->getGlobal();
2670   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2671   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2672 
2673   SDValue TP = lowerThreadPointer(DL, DAG);
2674 
2675   // Get the offset of GA from the thread pointer, based on the TLS model.
2676   SDValue Offset;
2677   switch (model) {
2678     case TLSModel::GeneralDynamic: {
2679       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2680       SystemZConstantPoolValue *CPV =
2681         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2682 
2683       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2684       Offset = DAG.getLoad(
2685           PtrVT, DL, DAG.getEntryNode(), Offset,
2686           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2687 
2688       // Call __tls_get_offset to retrieve the offset.
2689       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2690       break;
2691     }
2692 
2693     case TLSModel::LocalDynamic: {
2694       // Load the GOT offset of the module ID.
2695       SystemZConstantPoolValue *CPV =
2696         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2697 
2698       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2699       Offset = DAG.getLoad(
2700           PtrVT, DL, DAG.getEntryNode(), Offset,
2701           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2702 
2703       // Call __tls_get_offset to retrieve the module base offset.
2704       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2705 
2706       // Note: The SystemZLDCleanupPass will remove redundant computations
2707       // of the module base offset.  Count total number of local-dynamic
2708       // accesses to trigger execution of that pass.
2709       SystemZMachineFunctionInfo* MFI =
2710         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2711       MFI->incNumLocalDynamicTLSAccesses();
2712 
2713       // Add the per-symbol offset.
2714       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2715 
2716       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2717       DTPOffset = DAG.getLoad(
2718           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2719           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2720 
2721       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2722       break;
2723     }
2724 
2725     case TLSModel::InitialExec: {
2726       // Load the offset from the GOT.
2727       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2728                                           SystemZII::MO_INDNTPOFF);
2729       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2730       Offset =
2731           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2732                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2733       break;
2734     }
2735 
2736     case TLSModel::LocalExec: {
2737       // Force the offset into the constant pool and load it from there.
2738       SystemZConstantPoolValue *CPV =
2739         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2740 
2741       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2742       Offset = DAG.getLoad(
2743           PtrVT, DL, DAG.getEntryNode(), Offset,
2744           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2745       break;
2746     }
2747   }
2748 
2749   // Add the base and offset together.
2750   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2751 }
2752 
2753 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2754                                                  SelectionDAG &DAG) const {
2755   SDLoc DL(Node);
2756   const BlockAddress *BA = Node->getBlockAddress();
2757   int64_t Offset = Node->getOffset();
2758   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2759 
2760   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2761   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2762   return Result;
2763 }
2764 
2765 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2766                                               SelectionDAG &DAG) const {
2767   SDLoc DL(JT);
2768   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2769   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2770 
2771   // Use LARL to load the address of the table.
2772   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2773 }
2774 
2775 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2776                                                  SelectionDAG &DAG) const {
2777   SDLoc DL(CP);
2778   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2779 
2780   SDValue Result;
2781   if (CP->isMachineConstantPoolEntry())
2782     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2783                                        CP->getAlignment());
2784   else
2785     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2786                                        CP->getAlignment(), CP->getOffset());
2787 
2788   // Use LARL to load the address of the constant pool entry.
2789   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2790 }
2791 
2792 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2793                                               SelectionDAG &DAG) const {
2794   MachineFunction &MF = DAG.getMachineFunction();
2795   MachineFrameInfo &MFI = MF.getFrameInfo();
2796   MFI.setFrameAddressIsTaken(true);
2797 
2798   SDLoc DL(Op);
2799   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2800   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2801 
2802   // If the back chain frame index has not been allocated yet, do so.
2803   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2804   int BackChainIdx = FI->getFramePointerSaveIndex();
2805   if (!BackChainIdx) {
2806     // By definition, the frame address is the address of the back chain.
2807     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2808     FI->setFramePointerSaveIndex(BackChainIdx);
2809   }
2810   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2811 
2812   // FIXME The frontend should detect this case.
2813   if (Depth > 0) {
2814     report_fatal_error("Unsupported stack frame traversal count");
2815   }
2816 
2817   return BackChain;
2818 }
2819 
2820 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2821                                                SelectionDAG &DAG) const {
2822   MachineFunction &MF = DAG.getMachineFunction();
2823   MachineFrameInfo &MFI = MF.getFrameInfo();
2824   MFI.setReturnAddressIsTaken(true);
2825 
2826   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2827     return SDValue();
2828 
2829   SDLoc DL(Op);
2830   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2831   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2832 
2833   // FIXME The frontend should detect this case.
2834   if (Depth > 0) {
2835     report_fatal_error("Unsupported stack frame traversal count");
2836   }
2837 
2838   // Return R14D, which has the return address. Mark it an implicit live-in.
2839   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2840   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2841 }
2842 
2843 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2844                                             SelectionDAG &DAG) const {
2845   SDLoc DL(Op);
2846   SDValue In = Op.getOperand(0);
2847   EVT InVT = In.getValueType();
2848   EVT ResVT = Op.getValueType();
2849 
2850   // Convert loads directly.  This is normally done by DAGCombiner,
2851   // but we need this case for bitcasts that are created during lowering
2852   // and which are then lowered themselves.
2853   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2854     if (ISD::isNormalLoad(LoadN)) {
2855       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2856                                     LoadN->getBasePtr(), LoadN->getMemOperand());
2857       // Update the chain uses.
2858       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2859       return NewLoad;
2860     }
2861 
2862   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2863     SDValue In64;
2864     if (Subtarget.hasHighWord()) {
2865       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2866                                        MVT::i64);
2867       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2868                                        MVT::i64, SDValue(U64, 0), In);
2869     } else {
2870       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2871       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2872                          DAG.getConstant(32, DL, MVT::i64));
2873     }
2874     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2875     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2876                                       DL, MVT::f32, Out64);
2877   }
2878   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2879     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2880     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2881                                              MVT::f64, SDValue(U64, 0), In);
2882     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2883     if (Subtarget.hasHighWord())
2884       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2885                                         MVT::i32, Out64);
2886     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2887                                 DAG.getConstant(32, DL, MVT::i64));
2888     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2889   }
2890   llvm_unreachable("Unexpected bitcast combination");
2891 }
2892 
2893 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2894                                             SelectionDAG &DAG) const {
2895   MachineFunction &MF = DAG.getMachineFunction();
2896   SystemZMachineFunctionInfo *FuncInfo =
2897     MF.getInfo<SystemZMachineFunctionInfo>();
2898   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2899 
2900   SDValue Chain   = Op.getOperand(0);
2901   SDValue Addr    = Op.getOperand(1);
2902   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2903   SDLoc DL(Op);
2904 
2905   // The initial values of each field.
2906   const unsigned NumFields = 4;
2907   SDValue Fields[NumFields] = {
2908     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2909     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2910     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2911     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2912   };
2913 
2914   // Store each field into its respective slot.
2915   SDValue MemOps[NumFields];
2916   unsigned Offset = 0;
2917   for (unsigned I = 0; I < NumFields; ++I) {
2918     SDValue FieldAddr = Addr;
2919     if (Offset != 0)
2920       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2921                               DAG.getIntPtrConstant(Offset, DL));
2922     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2923                              MachinePointerInfo(SV, Offset));
2924     Offset += 8;
2925   }
2926   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2927 }
2928 
2929 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2930                                            SelectionDAG &DAG) const {
2931   SDValue Chain      = Op.getOperand(0);
2932   SDValue DstPtr     = Op.getOperand(1);
2933   SDValue SrcPtr     = Op.getOperand(2);
2934   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2935   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2936   SDLoc DL(Op);
2937 
2938   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2939                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2940                        /*isTailCall*/false,
2941                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2942 }
2943 
2944 SDValue SystemZTargetLowering::
2945 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2946   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2947   MachineFunction &MF = DAG.getMachineFunction();
2948   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
2949   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
2950 
2951   SDValue Chain = Op.getOperand(0);
2952   SDValue Size  = Op.getOperand(1);
2953   SDValue Align = Op.getOperand(2);
2954   SDLoc DL(Op);
2955 
2956   // If user has set the no alignment function attribute, ignore
2957   // alloca alignments.
2958   uint64_t AlignVal = (RealignOpt ?
2959                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2960 
2961   uint64_t StackAlign = TFI->getStackAlignment();
2962   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2963   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2964 
2965   unsigned SPReg = getStackPointerRegisterToSaveRestore();
2966   SDValue NeededSpace = Size;
2967 
2968   // Get a reference to the stack pointer.
2969   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2970 
2971   // If we need a backchain, save it now.
2972   SDValue Backchain;
2973   if (StoreBackchain)
2974     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
2975 
2976   // Add extra space for alignment if needed.
2977   if (ExtraAlignSpace)
2978     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
2979                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2980 
2981   // Get the new stack pointer value.
2982   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
2983 
2984   // Copy the new stack pointer back.
2985   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2986 
2987   // The allocated data lives above the 160 bytes allocated for the standard
2988   // frame, plus any outgoing stack arguments.  We don't know how much that
2989   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2990   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2991   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2992 
2993   // Dynamically realign if needed.
2994   if (RequiredAlign > StackAlign) {
2995     Result =
2996       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
2997                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2998     Result =
2999       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3000                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3001   }
3002 
3003   if (StoreBackchain)
3004     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3005 
3006   SDValue Ops[2] = { Result, Chain };
3007   return DAG.getMergeValues(Ops, DL);
3008 }
3009 
3010 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3011     SDValue Op, SelectionDAG &DAG) const {
3012   SDLoc DL(Op);
3013 
3014   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3015 }
3016 
3017 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3018                                               SelectionDAG &DAG) const {
3019   EVT VT = Op.getValueType();
3020   SDLoc DL(Op);
3021   SDValue Ops[2];
3022   if (is32Bit(VT))
3023     // Just do a normal 64-bit multiplication and extract the results.
3024     // We define this so that it can be used for constant division.
3025     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3026                     Op.getOperand(1), Ops[1], Ops[0]);
3027   else if (Subtarget.hasMiscellaneousExtensions2())
3028     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3029     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3030     // return the low half first, so the results are in reverse order.
3031     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3032                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3033   else {
3034     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3035     //
3036     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3037     //
3038     // but using the fact that the upper halves are either all zeros
3039     // or all ones:
3040     //
3041     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3042     //
3043     // and grouping the right terms together since they are quicker than the
3044     // multiplication:
3045     //
3046     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3047     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3048     SDValue LL = Op.getOperand(0);
3049     SDValue RL = Op.getOperand(1);
3050     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3051     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3052     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3053     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3054     // return the low half first, so the results are in reverse order.
3055     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3056                      LL, RL, Ops[1], Ops[0]);
3057     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3058     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3059     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3060     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3061   }
3062   return DAG.getMergeValues(Ops, DL);
3063 }
3064 
3065 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3066                                               SelectionDAG &DAG) const {
3067   EVT VT = Op.getValueType();
3068   SDLoc DL(Op);
3069   SDValue Ops[2];
3070   if (is32Bit(VT))
3071     // Just do a normal 64-bit multiplication and extract the results.
3072     // We define this so that it can be used for constant division.
3073     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3074                     Op.getOperand(1), Ops[1], Ops[0]);
3075   else
3076     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3077     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3078     // return the low half first, so the results are in reverse order.
3079     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3080                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3081   return DAG.getMergeValues(Ops, DL);
3082 }
3083 
3084 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3085                                             SelectionDAG &DAG) const {
3086   SDValue Op0 = Op.getOperand(0);
3087   SDValue Op1 = Op.getOperand(1);
3088   EVT VT = Op.getValueType();
3089   SDLoc DL(Op);
3090 
3091   // We use DSGF for 32-bit division.  This means the first operand must
3092   // always be 64-bit, and the second operand should be 32-bit whenever
3093   // that is possible, to improve performance.
3094   if (is32Bit(VT))
3095     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3096   else if (DAG.ComputeNumSignBits(Op1) > 32)
3097     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3098 
3099   // DSG(F) returns the remainder in the even register and the
3100   // quotient in the odd register.
3101   SDValue Ops[2];
3102   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3103   return DAG.getMergeValues(Ops, DL);
3104 }
3105 
3106 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3107                                             SelectionDAG &DAG) const {
3108   EVT VT = Op.getValueType();
3109   SDLoc DL(Op);
3110 
3111   // DL(G) returns the remainder in the even register and the
3112   // quotient in the odd register.
3113   SDValue Ops[2];
3114   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3115                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3116   return DAG.getMergeValues(Ops, DL);
3117 }
3118 
3119 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3120   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3121 
3122   // Get the known-zero masks for each operand.
3123   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3124   KnownBits Known[2];
3125   DAG.computeKnownBits(Ops[0], Known[0]);
3126   DAG.computeKnownBits(Ops[1], Known[1]);
3127 
3128   // See if the upper 32 bits of one operand and the lower 32 bits of the
3129   // other are known zero.  They are the low and high operands respectively.
3130   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3131                        Known[1].Zero.getZExtValue() };
3132   unsigned High, Low;
3133   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3134     High = 1, Low = 0;
3135   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3136     High = 0, Low = 1;
3137   else
3138     return Op;
3139 
3140   SDValue LowOp = Ops[Low];
3141   SDValue HighOp = Ops[High];
3142 
3143   // If the high part is a constant, we're better off using IILH.
3144   if (HighOp.getOpcode() == ISD::Constant)
3145     return Op;
3146 
3147   // If the low part is a constant that is outside the range of LHI,
3148   // then we're better off using IILF.
3149   if (LowOp.getOpcode() == ISD::Constant) {
3150     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3151     if (!isInt<16>(Value))
3152       return Op;
3153   }
3154 
3155   // Check whether the high part is an AND that doesn't change the
3156   // high 32 bits and just masks out low bits.  We can skip it if so.
3157   if (HighOp.getOpcode() == ISD::AND &&
3158       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3159     SDValue HighOp0 = HighOp.getOperand(0);
3160     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3161     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3162       HighOp = HighOp0;
3163   }
3164 
3165   // Take advantage of the fact that all GR32 operations only change the
3166   // low 32 bits by truncating Low to an i32 and inserting it directly
3167   // using a subreg.  The interesting cases are those where the truncation
3168   // can be folded.
3169   SDLoc DL(Op);
3170   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3171   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3172                                    MVT::i64, HighOp, Low32);
3173 }
3174 
3175 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3176                                           SelectionDAG &DAG) const {
3177   EVT VT = Op.getValueType();
3178   SDLoc DL(Op);
3179   Op = Op.getOperand(0);
3180 
3181   // Handle vector types via VPOPCT.
3182   if (VT.isVector()) {
3183     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3184     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3185     switch (VT.getScalarSizeInBits()) {
3186     case 8:
3187       break;
3188     case 16: {
3189       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3190       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3191       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3192       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3193       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3194       break;
3195     }
3196     case 32: {
3197       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3198                                 DAG.getConstant(0, DL, MVT::i32));
3199       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3200       break;
3201     }
3202     case 64: {
3203       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3204                                 DAG.getConstant(0, DL, MVT::i32));
3205       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3206       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3207       break;
3208     }
3209     default:
3210       llvm_unreachable("Unexpected type");
3211     }
3212     return Op;
3213   }
3214 
3215   // Get the known-zero mask for the operand.
3216   KnownBits Known;
3217   DAG.computeKnownBits(Op, Known);
3218   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3219   if (NumSignificantBits == 0)
3220     return DAG.getConstant(0, DL, VT);
3221 
3222   // Skip known-zero high parts of the operand.
3223   int64_t OrigBitSize = VT.getSizeInBits();
3224   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3225   BitSize = std::min(BitSize, OrigBitSize);
3226 
3227   // The POPCNT instruction counts the number of bits in each byte.
3228   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3229   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3230   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3231 
3232   // Add up per-byte counts in a binary tree.  All bits of Op at
3233   // position larger than BitSize remain zero throughout.
3234   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3235     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3236     if (BitSize != OrigBitSize)
3237       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3238                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3239     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3240   }
3241 
3242   // Extract overall result from high byte.
3243   if (BitSize > 8)
3244     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3245                      DAG.getConstant(BitSize - 8, DL, VT));
3246 
3247   return Op;
3248 }
3249 
3250 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3251                                                  SelectionDAG &DAG) const {
3252   SDLoc DL(Op);
3253   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3254     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3255   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3256     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3257 
3258   // The only fence that needs an instruction is a sequentially-consistent
3259   // cross-thread fence.
3260   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3261       FenceSSID == SyncScope::System) {
3262     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3263                                       Op.getOperand(0)),
3264                    0);
3265   }
3266 
3267   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3268   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3269 }
3270 
3271 // Op is an atomic load.  Lower it into a normal volatile load.
3272 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3273                                                 SelectionDAG &DAG) const {
3274   auto *Node = cast<AtomicSDNode>(Op.getNode());
3275   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3276                         Node->getChain(), Node->getBasePtr(),
3277                         Node->getMemoryVT(), Node->getMemOperand());
3278 }
3279 
3280 // Op is an atomic store.  Lower it into a normal volatile store.
3281 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3282                                                  SelectionDAG &DAG) const {
3283   auto *Node = cast<AtomicSDNode>(Op.getNode());
3284   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3285                                     Node->getBasePtr(), Node->getMemoryVT(),
3286                                     Node->getMemOperand());
3287   // We have to enforce sequential consistency by performing a
3288   // serialization operation after the store.
3289   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3290     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3291                                        MVT::Other, Chain), 0);
3292   return Chain;
3293 }
3294 
3295 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3296 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3297 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3298                                                    SelectionDAG &DAG,
3299                                                    unsigned Opcode) const {
3300   auto *Node = cast<AtomicSDNode>(Op.getNode());
3301 
3302   // 32-bit operations need no code outside the main loop.
3303   EVT NarrowVT = Node->getMemoryVT();
3304   EVT WideVT = MVT::i32;
3305   if (NarrowVT == WideVT)
3306     return Op;
3307 
3308   int64_t BitSize = NarrowVT.getSizeInBits();
3309   SDValue ChainIn = Node->getChain();
3310   SDValue Addr = Node->getBasePtr();
3311   SDValue Src2 = Node->getVal();
3312   MachineMemOperand *MMO = Node->getMemOperand();
3313   SDLoc DL(Node);
3314   EVT PtrVT = Addr.getValueType();
3315 
3316   // Convert atomic subtracts of constants into additions.
3317   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3318     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3319       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3320       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3321     }
3322 
3323   // Get the address of the containing word.
3324   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3325                                     DAG.getConstant(-4, DL, PtrVT));
3326 
3327   // Get the number of bits that the word must be rotated left in order
3328   // to bring the field to the top bits of a GR32.
3329   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3330                                  DAG.getConstant(3, DL, PtrVT));
3331   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3332 
3333   // Get the complementing shift amount, for rotating a field in the top
3334   // bits back to its proper position.
3335   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3336                                     DAG.getConstant(0, DL, WideVT), BitShift);
3337 
3338   // Extend the source operand to 32 bits and prepare it for the inner loop.
3339   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3340   // operations require the source to be shifted in advance.  (This shift
3341   // can be folded if the source is constant.)  For AND and NAND, the lower
3342   // bits must be set, while for other opcodes they should be left clear.
3343   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3344     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3345                        DAG.getConstant(32 - BitSize, DL, WideVT));
3346   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3347       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3348     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3349                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3350 
3351   // Construct the ATOMIC_LOADW_* node.
3352   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3353   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3354                     DAG.getConstant(BitSize, DL, WideVT) };
3355   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3356                                              NarrowVT, MMO);
3357 
3358   // Rotate the result of the final CS so that the field is in the lower
3359   // bits of a GR32, then truncate it.
3360   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3361                                     DAG.getConstant(BitSize, DL, WideVT));
3362   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3363 
3364   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3365   return DAG.getMergeValues(RetOps, DL);
3366 }
3367 
3368 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3369 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3370 // operations into additions.
3371 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3372                                                     SelectionDAG &DAG) const {
3373   auto *Node = cast<AtomicSDNode>(Op.getNode());
3374   EVT MemVT = Node->getMemoryVT();
3375   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3376     // A full-width operation.
3377     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3378     SDValue Src2 = Node->getVal();
3379     SDValue NegSrc2;
3380     SDLoc DL(Src2);
3381 
3382     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3383       // Use an addition if the operand is constant and either LAA(G) is
3384       // available or the negative value is in the range of A(G)FHI.
3385       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3386       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3387         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3388     } else if (Subtarget.hasInterlockedAccess1())
3389       // Use LAA(G) if available.
3390       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3391                             Src2);
3392 
3393     if (NegSrc2.getNode())
3394       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3395                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3396                            Node->getMemOperand());
3397 
3398     // Use the node as-is.
3399     return Op;
3400   }
3401 
3402   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3403 }
3404 
3405 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3406 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3407                                                     SelectionDAG &DAG) const {
3408   auto *Node = cast<AtomicSDNode>(Op.getNode());
3409   SDValue ChainIn = Node->getOperand(0);
3410   SDValue Addr = Node->getOperand(1);
3411   SDValue CmpVal = Node->getOperand(2);
3412   SDValue SwapVal = Node->getOperand(3);
3413   MachineMemOperand *MMO = Node->getMemOperand();
3414   SDLoc DL(Node);
3415 
3416   // We have native support for 32-bit and 64-bit compare and swap, but we
3417   // still need to expand extracting the "success" result from the CC.
3418   EVT NarrowVT = Node->getMemoryVT();
3419   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3420   if (NarrowVT == WideVT) {
3421     SDVTList Tys = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3422     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3423     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3424                                                DL, Tys, Ops, NarrowVT, MMO);
3425     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3426                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3427 
3428     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3429     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3430     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3431     return SDValue();
3432   }
3433 
3434   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3435   // via a fullword ATOMIC_CMP_SWAPW operation.
3436   int64_t BitSize = NarrowVT.getSizeInBits();
3437   EVT PtrVT = Addr.getValueType();
3438 
3439   // Get the address of the containing word.
3440   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3441                                     DAG.getConstant(-4, DL, PtrVT));
3442 
3443   // Get the number of bits that the word must be rotated left in order
3444   // to bring the field to the top bits of a GR32.
3445   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3446                                  DAG.getConstant(3, DL, PtrVT));
3447   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3448 
3449   // Get the complementing shift amount, for rotating a field in the top
3450   // bits back to its proper position.
3451   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3452                                     DAG.getConstant(0, DL, WideVT), BitShift);
3453 
3454   // Construct the ATOMIC_CMP_SWAPW node.
3455   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3456   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3457                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3458   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3459                                              VTList, Ops, NarrowVT, MMO);
3460   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3461                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3462 
3463   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3464   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3465   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3466   return SDValue();
3467 }
3468 
3469 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3470                                               SelectionDAG &DAG) const {
3471   MachineFunction &MF = DAG.getMachineFunction();
3472   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3473   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3474                             SystemZ::R15D, Op.getValueType());
3475 }
3476 
3477 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3478                                                  SelectionDAG &DAG) const {
3479   MachineFunction &MF = DAG.getMachineFunction();
3480   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3481   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3482 
3483   SDValue Chain = Op.getOperand(0);
3484   SDValue NewSP = Op.getOperand(1);
3485   SDValue Backchain;
3486   SDLoc DL(Op);
3487 
3488   if (StoreBackchain) {
3489     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3490     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3491   }
3492 
3493   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3494 
3495   if (StoreBackchain)
3496     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3497 
3498   return Chain;
3499 }
3500 
3501 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3502                                              SelectionDAG &DAG) const {
3503   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3504   if (!IsData)
3505     // Just preserve the chain.
3506     return Op.getOperand(0);
3507 
3508   SDLoc DL(Op);
3509   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3510   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3511   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3512   SDValue Ops[] = {
3513     Op.getOperand(0),
3514     DAG.getConstant(Code, DL, MVT::i32),
3515     Op.getOperand(1)
3516   };
3517   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3518                                  Node->getVTList(), Ops,
3519                                  Node->getMemoryVT(), Node->getMemOperand());
3520 }
3521 
3522 // Return an i32 that contains the value of CC immediately after After,
3523 // whose final operand must be MVT::Glue.
3524 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3525   SDLoc DL(After);
3526   SDValue Glue = SDValue(After, After->getNumValues() - 1);
3527   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3528   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3529                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3530 }
3531 
3532 SDValue
3533 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3534                                               SelectionDAG &DAG) const {
3535   unsigned Opcode, CCValid;
3536   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3537     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3538     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3539     SDValue CC = getCCResult(DAG, Glued.getNode());
3540     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3541     return SDValue();
3542   }
3543 
3544   return SDValue();
3545 }
3546 
3547 SDValue
3548 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3549                                                SelectionDAG &DAG) const {
3550   unsigned Opcode, CCValid;
3551   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3552     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3553     SDValue CC = getCCResult(DAG, Glued.getNode());
3554     if (Op->getNumValues() == 1)
3555       return CC;
3556     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3557     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3558                        CC);
3559   }
3560 
3561   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3562   switch (Id) {
3563   case Intrinsic::thread_pointer:
3564     return lowerThreadPointer(SDLoc(Op), DAG);
3565 
3566   case Intrinsic::s390_vpdi:
3567     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3568                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3569 
3570   case Intrinsic::s390_vperm:
3571     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3572                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3573 
3574   case Intrinsic::s390_vuphb:
3575   case Intrinsic::s390_vuphh:
3576   case Intrinsic::s390_vuphf:
3577     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3578                        Op.getOperand(1));
3579 
3580   case Intrinsic::s390_vuplhb:
3581   case Intrinsic::s390_vuplhh:
3582   case Intrinsic::s390_vuplhf:
3583     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3584                        Op.getOperand(1));
3585 
3586   case Intrinsic::s390_vuplb:
3587   case Intrinsic::s390_vuplhw:
3588   case Intrinsic::s390_vuplf:
3589     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3590                        Op.getOperand(1));
3591 
3592   case Intrinsic::s390_vupllb:
3593   case Intrinsic::s390_vupllh:
3594   case Intrinsic::s390_vupllf:
3595     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3596                        Op.getOperand(1));
3597 
3598   case Intrinsic::s390_vsumb:
3599   case Intrinsic::s390_vsumh:
3600   case Intrinsic::s390_vsumgh:
3601   case Intrinsic::s390_vsumgf:
3602   case Intrinsic::s390_vsumqf:
3603   case Intrinsic::s390_vsumqg:
3604     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3605                        Op.getOperand(1), Op.getOperand(2));
3606   }
3607 
3608   return SDValue();
3609 }
3610 
3611 namespace {
3612 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3613 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3614 // Operand is the constant third operand, otherwise it is the number of
3615 // bytes in each element of the result.
3616 struct Permute {
3617   unsigned Opcode;
3618   unsigned Operand;
3619   unsigned char Bytes[SystemZ::VectorBytes];
3620 };
3621 }
3622 
3623 static const Permute PermuteForms[] = {
3624   // VMRHG
3625   { SystemZISD::MERGE_HIGH, 8,
3626     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3627   // VMRHF
3628   { SystemZISD::MERGE_HIGH, 4,
3629     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3630   // VMRHH
3631   { SystemZISD::MERGE_HIGH, 2,
3632     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3633   // VMRHB
3634   { SystemZISD::MERGE_HIGH, 1,
3635     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3636   // VMRLG
3637   { SystemZISD::MERGE_LOW, 8,
3638     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3639   // VMRLF
3640   { SystemZISD::MERGE_LOW, 4,
3641     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3642   // VMRLH
3643   { SystemZISD::MERGE_LOW, 2,
3644     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3645   // VMRLB
3646   { SystemZISD::MERGE_LOW, 1,
3647     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3648   // VPKG
3649   { SystemZISD::PACK, 4,
3650     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3651   // VPKF
3652   { SystemZISD::PACK, 2,
3653     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3654   // VPKH
3655   { SystemZISD::PACK, 1,
3656     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3657   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3658   { SystemZISD::PERMUTE_DWORDS, 4,
3659     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3660   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3661   { SystemZISD::PERMUTE_DWORDS, 1,
3662     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3663 };
3664 
3665 // Called after matching a vector shuffle against a particular pattern.
3666 // Both the original shuffle and the pattern have two vector operands.
3667 // OpNos[0] is the operand of the original shuffle that should be used for
3668 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3669 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3670 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3671 // for operands 0 and 1 of the pattern.
3672 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3673   if (OpNos[0] < 0) {
3674     if (OpNos[1] < 0)
3675       return false;
3676     OpNo0 = OpNo1 = OpNos[1];
3677   } else if (OpNos[1] < 0) {
3678     OpNo0 = OpNo1 = OpNos[0];
3679   } else {
3680     OpNo0 = OpNos[0];
3681     OpNo1 = OpNos[1];
3682   }
3683   return true;
3684 }
3685 
3686 // Bytes is a VPERM-like permute vector, except that -1 is used for
3687 // undefined bytes.  Return true if the VPERM can be implemented using P.
3688 // When returning true set OpNo0 to the VPERM operand that should be
3689 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3690 //
3691 // For example, if swapping the VPERM operands allows P to match, OpNo0
3692 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3693 // operand, but rewriting it to use two duplicated operands allows it to
3694 // match P, then OpNo0 and OpNo1 will be the same.
3695 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3696                          unsigned &OpNo0, unsigned &OpNo1) {
3697   int OpNos[] = { -1, -1 };
3698   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3699     int Elt = Bytes[I];
3700     if (Elt >= 0) {
3701       // Make sure that the two permute vectors use the same suboperand
3702       // byte number.  Only the operand numbers (the high bits) are
3703       // allowed to differ.
3704       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3705         return false;
3706       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3707       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3708       // Make sure that the operand mappings are consistent with previous
3709       // elements.
3710       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3711         return false;
3712       OpNos[ModelOpNo] = RealOpNo;
3713     }
3714   }
3715   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3716 }
3717 
3718 // As above, but search for a matching permute.
3719 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3720                                    unsigned &OpNo0, unsigned &OpNo1) {
3721   for (auto &P : PermuteForms)
3722     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3723       return &P;
3724   return nullptr;
3725 }
3726 
3727 // Bytes is a VPERM-like permute vector, except that -1 is used for
3728 // undefined bytes.  This permute is an operand of an outer permute.
3729 // See whether redistributing the -1 bytes gives a shuffle that can be
3730 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3731 // that, when applied to the result of P, gives the original permute in Bytes.
3732 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3733                                const Permute &P,
3734                                SmallVectorImpl<int> &Transform) {
3735   unsigned To = 0;
3736   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3737     int Elt = Bytes[From];
3738     if (Elt < 0)
3739       // Byte number From of the result is undefined.
3740       Transform[From] = -1;
3741     else {
3742       while (P.Bytes[To] != Elt) {
3743         To += 1;
3744         if (To == SystemZ::VectorBytes)
3745           return false;
3746       }
3747       Transform[From] = To;
3748     }
3749   }
3750   return true;
3751 }
3752 
3753 // As above, but search for a matching permute.
3754 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3755                                          SmallVectorImpl<int> &Transform) {
3756   for (auto &P : PermuteForms)
3757     if (matchDoublePermute(Bytes, P, Transform))
3758       return &P;
3759   return nullptr;
3760 }
3761 
3762 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3763 // as if it had type vNi8.
3764 static void getVPermMask(ShuffleVectorSDNode *VSN,
3765                          SmallVectorImpl<int> &Bytes) {
3766   EVT VT = VSN->getValueType(0);
3767   unsigned NumElements = VT.getVectorNumElements();
3768   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3769   Bytes.resize(NumElements * BytesPerElement, -1);
3770   for (unsigned I = 0; I < NumElements; ++I) {
3771     int Index = VSN->getMaskElt(I);
3772     if (Index >= 0)
3773       for (unsigned J = 0; J < BytesPerElement; ++J)
3774         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3775   }
3776 }
3777 
3778 // Bytes is a VPERM-like permute vector, except that -1 is used for
3779 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3780 // the result come from a contiguous sequence of bytes from one input.
3781 // Set Base to the selector for the first byte if so.
3782 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3783                             unsigned BytesPerElement, int &Base) {
3784   Base = -1;
3785   for (unsigned I = 0; I < BytesPerElement; ++I) {
3786     if (Bytes[Start + I] >= 0) {
3787       unsigned Elem = Bytes[Start + I];
3788       if (Base < 0) {
3789         Base = Elem - I;
3790         // Make sure the bytes would come from one input operand.
3791         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3792           return false;
3793       } else if (unsigned(Base) != Elem - I)
3794         return false;
3795     }
3796   }
3797   return true;
3798 }
3799 
3800 // Bytes is a VPERM-like permute vector, except that -1 is used for
3801 // undefined bytes.  Return true if it can be performed using VSLDI.
3802 // When returning true, set StartIndex to the shift amount and OpNo0
3803 // and OpNo1 to the VPERM operands that should be used as the first
3804 // and second shift operand respectively.
3805 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3806                                unsigned &StartIndex, unsigned &OpNo0,
3807                                unsigned &OpNo1) {
3808   int OpNos[] = { -1, -1 };
3809   int Shift = -1;
3810   for (unsigned I = 0; I < 16; ++I) {
3811     int Index = Bytes[I];
3812     if (Index >= 0) {
3813       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3814       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3815       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3816       if (Shift < 0)
3817         Shift = ExpectedShift;
3818       else if (Shift != ExpectedShift)
3819         return false;
3820       // Make sure that the operand mappings are consistent with previous
3821       // elements.
3822       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3823         return false;
3824       OpNos[ModelOpNo] = RealOpNo;
3825     }
3826   }
3827   StartIndex = Shift;
3828   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3829 }
3830 
3831 // Create a node that performs P on operands Op0 and Op1, casting the
3832 // operands to the appropriate type.  The type of the result is determined by P.
3833 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3834                               const Permute &P, SDValue Op0, SDValue Op1) {
3835   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3836   // elements of a PACK are twice as wide as the outputs.
3837   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3838                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3839                       P.Operand);
3840   // Cast both operands to the appropriate type.
3841   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3842                               SystemZ::VectorBytes / InBytes);
3843   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3844   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3845   SDValue Op;
3846   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3847     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3848     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3849   } else if (P.Opcode == SystemZISD::PACK) {
3850     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3851                                  SystemZ::VectorBytes / P.Operand);
3852     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3853   } else {
3854     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3855   }
3856   return Op;
3857 }
3858 
3859 // Bytes is a VPERM-like permute vector, except that -1 is used for
3860 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3861 // VSLDI or VPERM.
3862 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3863                                      SDValue *Ops,
3864                                      const SmallVectorImpl<int> &Bytes) {
3865   for (unsigned I = 0; I < 2; ++I)
3866     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3867 
3868   // First see whether VSLDI can be used.
3869   unsigned StartIndex, OpNo0, OpNo1;
3870   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3871     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3872                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3873 
3874   // Fall back on VPERM.  Construct an SDNode for the permute vector.
3875   SDValue IndexNodes[SystemZ::VectorBytes];
3876   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3877     if (Bytes[I] >= 0)
3878       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3879     else
3880       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3881   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3882   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3883 }
3884 
3885 namespace {
3886 // Describes a general N-operand vector shuffle.
3887 struct GeneralShuffle {
3888   GeneralShuffle(EVT vt) : VT(vt) {}
3889   void addUndef();
3890   bool add(SDValue, unsigned);
3891   SDValue getNode(SelectionDAG &, const SDLoc &);
3892 
3893   // The operands of the shuffle.
3894   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3895 
3896   // Index I is -1 if byte I of the result is undefined.  Otherwise the
3897   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3898   // Bytes[I] / SystemZ::VectorBytes.
3899   SmallVector<int, SystemZ::VectorBytes> Bytes;
3900 
3901   // The type of the shuffle result.
3902   EVT VT;
3903 };
3904 }
3905 
3906 // Add an extra undefined element to the shuffle.
3907 void GeneralShuffle::addUndef() {
3908   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3909   for (unsigned I = 0; I < BytesPerElement; ++I)
3910     Bytes.push_back(-1);
3911 }
3912 
3913 // Add an extra element to the shuffle, taking it from element Elem of Op.
3914 // A null Op indicates a vector input whose value will be calculated later;
3915 // there is at most one such input per shuffle and it always has the same
3916 // type as the result. Aborts and returns false if the source vector elements
3917 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
3918 // LLVM they become implicitly extended, but this is rare and not optimized.
3919 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
3920   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3921 
3922   // The source vector can have wider elements than the result,
3923   // either through an explicit TRUNCATE or because of type legalization.
3924   // We want the least significant part.
3925   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3926   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3927 
3928   // Return false if the source elements are smaller than their destination
3929   // elements.
3930   if (FromBytesPerElement < BytesPerElement)
3931     return false;
3932 
3933   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3934                    (FromBytesPerElement - BytesPerElement));
3935 
3936   // Look through things like shuffles and bitcasts.
3937   while (Op.getNode()) {
3938     if (Op.getOpcode() == ISD::BITCAST)
3939       Op = Op.getOperand(0);
3940     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3941       // See whether the bytes we need come from a contiguous part of one
3942       // operand.
3943       SmallVector<int, SystemZ::VectorBytes> OpBytes;
3944       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3945       int NewByte;
3946       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3947         break;
3948       if (NewByte < 0) {
3949         addUndef();
3950         return true;
3951       }
3952       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3953       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3954     } else if (Op.isUndef()) {
3955       addUndef();
3956       return true;
3957     } else
3958       break;
3959   }
3960 
3961   // Make sure that the source of the extraction is in Ops.
3962   unsigned OpNo = 0;
3963   for (; OpNo < Ops.size(); ++OpNo)
3964     if (Ops[OpNo] == Op)
3965       break;
3966   if (OpNo == Ops.size())
3967     Ops.push_back(Op);
3968 
3969   // Add the element to Bytes.
3970   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3971   for (unsigned I = 0; I < BytesPerElement; ++I)
3972     Bytes.push_back(Base + I);
3973 
3974   return true;
3975 }
3976 
3977 // Return SDNodes for the completed shuffle.
3978 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
3979   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3980 
3981   if (Ops.size() == 0)
3982     return DAG.getUNDEF(VT);
3983 
3984   // Make sure that there are at least two shuffle operands.
3985   if (Ops.size() == 1)
3986     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3987 
3988   // Create a tree of shuffles, deferring root node until after the loop.
3989   // Try to redistribute the undefined elements of non-root nodes so that
3990   // the non-root shuffles match something like a pack or merge, then adjust
3991   // the parent node's permute vector to compensate for the new order.
3992   // Among other things, this copes with vectors like <2 x i16> that were
3993   // padded with undefined elements during type legalization.
3994   //
3995   // In the best case this redistribution will lead to the whole tree
3996   // using packs and merges.  It should rarely be a loss in other cases.
3997   unsigned Stride = 1;
3998   for (; Stride * 2 < Ops.size(); Stride *= 2) {
3999     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4000       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4001 
4002       // Create a mask for just these two operands.
4003       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4004       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4005         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4006         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4007         if (OpNo == I)
4008           NewBytes[J] = Byte;
4009         else if (OpNo == I + Stride)
4010           NewBytes[J] = SystemZ::VectorBytes + Byte;
4011         else
4012           NewBytes[J] = -1;
4013       }
4014       // See if it would be better to reorganize NewMask to avoid using VPERM.
4015       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4016       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4017         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4018         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4019         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4020           if (NewBytes[J] >= 0) {
4021             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4022                    "Invalid double permute");
4023             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4024           } else
4025             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4026         }
4027       } else {
4028         // Just use NewBytes on the operands.
4029         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4030         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4031           if (NewBytes[J] >= 0)
4032             Bytes[J] = I * SystemZ::VectorBytes + J;
4033       }
4034     }
4035   }
4036 
4037   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4038   if (Stride > 1) {
4039     Ops[1] = Ops[Stride];
4040     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4041       if (Bytes[I] >= int(SystemZ::VectorBytes))
4042         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4043   }
4044 
4045   // Look for an instruction that can do the permute without resorting
4046   // to VPERM.
4047   unsigned OpNo0, OpNo1;
4048   SDValue Op;
4049   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4050     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4051   else
4052     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4053   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4054 }
4055 
4056 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4057 static bool isScalarToVector(SDValue Op) {
4058   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4059     if (!Op.getOperand(I).isUndef())
4060       return false;
4061   return true;
4062 }
4063 
4064 // Return a vector of type VT that contains Value in the first element.
4065 // The other elements don't matter.
4066 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4067                                    SDValue Value) {
4068   // If we have a constant, replicate it to all elements and let the
4069   // BUILD_VECTOR lowering take care of it.
4070   if (Value.getOpcode() == ISD::Constant ||
4071       Value.getOpcode() == ISD::ConstantFP) {
4072     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4073     return DAG.getBuildVector(VT, DL, Ops);
4074   }
4075   if (Value.isUndef())
4076     return DAG.getUNDEF(VT);
4077   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4078 }
4079 
4080 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4081 // element 1.  Used for cases in which replication is cheap.
4082 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4083                                  SDValue Op0, SDValue Op1) {
4084   if (Op0.isUndef()) {
4085     if (Op1.isUndef())
4086       return DAG.getUNDEF(VT);
4087     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4088   }
4089   if (Op1.isUndef())
4090     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4091   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4092                      buildScalarToVector(DAG, DL, VT, Op0),
4093                      buildScalarToVector(DAG, DL, VT, Op1));
4094 }
4095 
4096 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4097 // vector for them.
4098 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4099                           SDValue Op1) {
4100   if (Op0.isUndef() && Op1.isUndef())
4101     return DAG.getUNDEF(MVT::v2i64);
4102   // If one of the two inputs is undefined then replicate the other one,
4103   // in order to avoid using another register unnecessarily.
4104   if (Op0.isUndef())
4105     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4106   else if (Op1.isUndef())
4107     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4108   else {
4109     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4110     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4111   }
4112   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4113 }
4114 
4115 // Try to represent constant BUILD_VECTOR node BVN using a
4116 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4117 // on success.
4118 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4119   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4120   unsigned BytesPerElement = ElemVT.getStoreSize();
4121   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4122     SDValue Op = BVN->getOperand(I);
4123     if (!Op.isUndef()) {
4124       uint64_t Value;
4125       if (Op.getOpcode() == ISD::Constant)
4126         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4127       else if (Op.getOpcode() == ISD::ConstantFP)
4128         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4129                  .getZExtValue());
4130       else
4131         return false;
4132       for (unsigned J = 0; J < BytesPerElement; ++J) {
4133         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4134         if (Byte == 0xff)
4135           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4136         else if (Byte != 0)
4137           return false;
4138       }
4139     }
4140   }
4141   return true;
4142 }
4143 
4144 // Try to load a vector constant in which BitsPerElement-bit value Value
4145 // is replicated to fill the vector.  VT is the type of the resulting
4146 // constant, which may have elements of a different size from BitsPerElement.
4147 // Return the SDValue of the constant on success, otherwise return
4148 // an empty value.
4149 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4150                                        const SystemZInstrInfo *TII,
4151                                        const SDLoc &DL, EVT VT, uint64_t Value,
4152                                        unsigned BitsPerElement) {
4153   // Signed 16-bit values can be replicated using VREPI.
4154   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4155   if (isInt<16>(SignedValue)) {
4156     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4157                                  SystemZ::VectorBits / BitsPerElement);
4158     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4159                              DAG.getConstant(SignedValue, DL, MVT::i32));
4160     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4161   }
4162   // See whether rotating the constant left some N places gives a value that
4163   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4164   // If so we can use VGM.
4165   unsigned Start, End;
4166   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4167     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4168     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4169     // bit numbers for an BitsPerElement value, so that 0 denotes
4170     // 1 << (BitsPerElement-1).
4171     Start -= 64 - BitsPerElement;
4172     End -= 64 - BitsPerElement;
4173     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4174                                  SystemZ::VectorBits / BitsPerElement);
4175     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4176                              DAG.getConstant(Start, DL, MVT::i32),
4177                              DAG.getConstant(End, DL, MVT::i32));
4178     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4179   }
4180   return SDValue();
4181 }
4182 
4183 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4184 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4185 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4186 // would benefit from this representation and return it if so.
4187 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4188                                      BuildVectorSDNode *BVN) {
4189   EVT VT = BVN->getValueType(0);
4190   unsigned NumElements = VT.getVectorNumElements();
4191 
4192   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4193   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4194   // need a BUILD_VECTOR, add an additional placeholder operand for that
4195   // BUILD_VECTOR and store its operands in ResidueOps.
4196   GeneralShuffle GS(VT);
4197   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4198   bool FoundOne = false;
4199   for (unsigned I = 0; I < NumElements; ++I) {
4200     SDValue Op = BVN->getOperand(I);
4201     if (Op.getOpcode() == ISD::TRUNCATE)
4202       Op = Op.getOperand(0);
4203     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4204         Op.getOperand(1).getOpcode() == ISD::Constant) {
4205       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4206       if (!GS.add(Op.getOperand(0), Elem))
4207         return SDValue();
4208       FoundOne = true;
4209     } else if (Op.isUndef()) {
4210       GS.addUndef();
4211     } else {
4212       if (!GS.add(SDValue(), ResidueOps.size()))
4213         return SDValue();
4214       ResidueOps.push_back(BVN->getOperand(I));
4215     }
4216   }
4217 
4218   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4219   if (!FoundOne)
4220     return SDValue();
4221 
4222   // Create the BUILD_VECTOR for the remaining elements, if any.
4223   if (!ResidueOps.empty()) {
4224     while (ResidueOps.size() < NumElements)
4225       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4226     for (auto &Op : GS.Ops) {
4227       if (!Op.getNode()) {
4228         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4229         break;
4230       }
4231     }
4232   }
4233   return GS.getNode(DAG, SDLoc(BVN));
4234 }
4235 
4236 // Combine GPR scalar values Elems into a vector of type VT.
4237 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4238                            SmallVectorImpl<SDValue> &Elems) {
4239   // See whether there is a single replicated value.
4240   SDValue Single;
4241   unsigned int NumElements = Elems.size();
4242   unsigned int Count = 0;
4243   for (auto Elem : Elems) {
4244     if (!Elem.isUndef()) {
4245       if (!Single.getNode())
4246         Single = Elem;
4247       else if (Elem != Single) {
4248         Single = SDValue();
4249         break;
4250       }
4251       Count += 1;
4252     }
4253   }
4254   // There are three cases here:
4255   //
4256   // - if the only defined element is a loaded one, the best sequence
4257   //   is a replicating load.
4258   //
4259   // - otherwise, if the only defined element is an i64 value, we will
4260   //   end up with the same VLVGP sequence regardless of whether we short-cut
4261   //   for replication or fall through to the later code.
4262   //
4263   // - otherwise, if the only defined element is an i32 or smaller value,
4264   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4265   //   This is only a win if the single defined element is used more than once.
4266   //   In other cases we're better off using a single VLVGx.
4267   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4268     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4269 
4270   // If all elements are loads, use VLREP/VLEs (below).
4271   bool AllLoads = true;
4272   for (auto Elem : Elems)
4273     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4274       AllLoads = false;
4275       break;
4276     }
4277 
4278   // The best way of building a v2i64 from two i64s is to use VLVGP.
4279   if (VT == MVT::v2i64 && !AllLoads)
4280     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4281 
4282   // Use a 64-bit merge high to combine two doubles.
4283   if (VT == MVT::v2f64 && !AllLoads)
4284     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4285 
4286   // Build v4f32 values directly from the FPRs:
4287   //
4288   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4289   //         V              V         VMRHF
4290   //      <ABxx>         <CDxx>
4291   //                V                 VMRHG
4292   //              <ABCD>
4293   if (VT == MVT::v4f32 && !AllLoads) {
4294     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4295     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4296     // Avoid unnecessary undefs by reusing the other operand.
4297     if (Op01.isUndef())
4298       Op01 = Op23;
4299     else if (Op23.isUndef())
4300       Op23 = Op01;
4301     // Merging identical replications is a no-op.
4302     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4303       return Op01;
4304     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4305     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4306     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4307                              DL, MVT::v2i64, Op01, Op23);
4308     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4309   }
4310 
4311   // Collect the constant terms.
4312   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4313   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4314 
4315   unsigned NumConstants = 0;
4316   for (unsigned I = 0; I < NumElements; ++I) {
4317     SDValue Elem = Elems[I];
4318     if (Elem.getOpcode() == ISD::Constant ||
4319         Elem.getOpcode() == ISD::ConstantFP) {
4320       NumConstants += 1;
4321       Constants[I] = Elem;
4322       Done[I] = true;
4323     }
4324   }
4325   // If there was at least one constant, fill in the other elements of
4326   // Constants with undefs to get a full vector constant and use that
4327   // as the starting point.
4328   SDValue Result;
4329   if (NumConstants > 0) {
4330     for (unsigned I = 0; I < NumElements; ++I)
4331       if (!Constants[I].getNode())
4332         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4333     Result = DAG.getBuildVector(VT, DL, Constants);
4334   } else {
4335     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4336     // avoid a false dependency on any previous contents of the vector
4337     // register.
4338 
4339     // Use a VLREP if at least one element is a load.
4340     unsigned LoadElIdx = UINT_MAX;
4341     for (unsigned I = 0; I < NumElements; ++I)
4342       if (Elems[I].getOpcode() == ISD::LOAD &&
4343           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4344         LoadElIdx = I;
4345         break;
4346       }
4347     if (LoadElIdx != UINT_MAX) {
4348       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]);
4349       Done[LoadElIdx] = true;
4350     } else {
4351       // Try to use VLVGP.
4352       unsigned I1 = NumElements / 2 - 1;
4353       unsigned I2 = NumElements - 1;
4354       bool Def1 = !Elems[I1].isUndef();
4355       bool Def2 = !Elems[I2].isUndef();
4356       if (Def1 || Def2) {
4357         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4358         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4359         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4360                              joinDwords(DAG, DL, Elem1, Elem2));
4361         Done[I1] = true;
4362         Done[I2] = true;
4363       } else
4364         Result = DAG.getUNDEF(VT);
4365     }
4366   }
4367 
4368   // Use VLVGx to insert the other elements.
4369   for (unsigned I = 0; I < NumElements; ++I)
4370     if (!Done[I] && !Elems[I].isUndef())
4371       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4372                            DAG.getConstant(I, DL, MVT::i32));
4373   return Result;
4374 }
4375 
4376 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4377                                                  SelectionDAG &DAG) const {
4378   const SystemZInstrInfo *TII =
4379     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4380   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4381   SDLoc DL(Op);
4382   EVT VT = Op.getValueType();
4383 
4384   if (BVN->isConstant()) {
4385     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4386     // preferred way of creating all-zero and all-one vectors so give it
4387     // priority over other methods below.
4388     uint64_t Mask = 0;
4389     if (tryBuildVectorByteMask(BVN, Mask)) {
4390       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4391                                DAG.getConstant(Mask, DL, MVT::i32));
4392       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4393     }
4394 
4395     // Try using some form of replication.
4396     APInt SplatBits, SplatUndef;
4397     unsigned SplatBitSize;
4398     bool HasAnyUndefs;
4399     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4400                              8, true) &&
4401         SplatBitSize <= 64) {
4402       // First try assuming that any undefined bits above the highest set bit
4403       // and below the lowest set bit are 1s.  This increases the likelihood of
4404       // being able to use a sign-extended element value in VECTOR REPLICATE
4405       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4406       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4407       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4408       uint64_t Lower = (SplatUndefZ
4409                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4410       uint64_t Upper = (SplatUndefZ
4411                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4412       uint64_t Value = SplatBitsZ | Upper | Lower;
4413       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4414                                            SplatBitSize);
4415       if (Op.getNode())
4416         return Op;
4417 
4418       // Now try assuming that any undefined bits between the first and
4419       // last defined set bits are set.  This increases the chances of
4420       // using a non-wraparound mask.
4421       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4422       Value = SplatBitsZ | Middle;
4423       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4424       if (Op.getNode())
4425         return Op;
4426     }
4427 
4428     // Fall back to loading it from memory.
4429     return SDValue();
4430   }
4431 
4432   // See if we should use shuffles to construct the vector from other vectors.
4433   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4434     return Res;
4435 
4436   // Detect SCALAR_TO_VECTOR conversions.
4437   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4438     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4439 
4440   // Otherwise use buildVector to build the vector up from GPRs.
4441   unsigned NumElements = Op.getNumOperands();
4442   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4443   for (unsigned I = 0; I < NumElements; ++I)
4444     Ops[I] = Op.getOperand(I);
4445   return buildVector(DAG, DL, VT, Ops);
4446 }
4447 
4448 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4449                                                    SelectionDAG &DAG) const {
4450   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4451   SDLoc DL(Op);
4452   EVT VT = Op.getValueType();
4453   unsigned NumElements = VT.getVectorNumElements();
4454 
4455   if (VSN->isSplat()) {
4456     SDValue Op0 = Op.getOperand(0);
4457     unsigned Index = VSN->getSplatIndex();
4458     assert(Index < VT.getVectorNumElements() &&
4459            "Splat index should be defined and in first operand");
4460     // See whether the value we're splatting is directly available as a scalar.
4461     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4462         Op0.getOpcode() == ISD::BUILD_VECTOR)
4463       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4464     // Otherwise keep it as a vector-to-vector operation.
4465     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4466                        DAG.getConstant(Index, DL, MVT::i32));
4467   }
4468 
4469   GeneralShuffle GS(VT);
4470   for (unsigned I = 0; I < NumElements; ++I) {
4471     int Elt = VSN->getMaskElt(I);
4472     if (Elt < 0)
4473       GS.addUndef();
4474     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4475                      unsigned(Elt) % NumElements))
4476       return SDValue();
4477   }
4478   return GS.getNode(DAG, SDLoc(VSN));
4479 }
4480 
4481 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4482                                                      SelectionDAG &DAG) const {
4483   SDLoc DL(Op);
4484   // Just insert the scalar into element 0 of an undefined vector.
4485   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4486                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4487                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4488 }
4489 
4490 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4491                                                       SelectionDAG &DAG) const {
4492   // Handle insertions of floating-point values.
4493   SDLoc DL(Op);
4494   SDValue Op0 = Op.getOperand(0);
4495   SDValue Op1 = Op.getOperand(1);
4496   SDValue Op2 = Op.getOperand(2);
4497   EVT VT = Op.getValueType();
4498 
4499   // Insertions into constant indices of a v2f64 can be done using VPDI.
4500   // However, if the inserted value is a bitcast or a constant then it's
4501   // better to use GPRs, as below.
4502   if (VT == MVT::v2f64 &&
4503       Op1.getOpcode() != ISD::BITCAST &&
4504       Op1.getOpcode() != ISD::ConstantFP &&
4505       Op2.getOpcode() == ISD::Constant) {
4506     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4507     unsigned Mask = VT.getVectorNumElements() - 1;
4508     if (Index <= Mask)
4509       return Op;
4510   }
4511 
4512   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4513   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4514   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4515   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4516                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4517                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4518   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4519 }
4520 
4521 SDValue
4522 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4523                                                SelectionDAG &DAG) const {
4524   // Handle extractions of floating-point values.
4525   SDLoc DL(Op);
4526   SDValue Op0 = Op.getOperand(0);
4527   SDValue Op1 = Op.getOperand(1);
4528   EVT VT = Op.getValueType();
4529   EVT VecVT = Op0.getValueType();
4530 
4531   // Extractions of constant indices can be done directly.
4532   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4533     uint64_t Index = CIndexN->getZExtValue();
4534     unsigned Mask = VecVT.getVectorNumElements() - 1;
4535     if (Index <= Mask)
4536       return Op;
4537   }
4538 
4539   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4540   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4541   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4542   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4543                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4544   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4545 }
4546 
4547 SDValue
4548 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4549                                               unsigned UnpackHigh) const {
4550   SDValue PackedOp = Op.getOperand(0);
4551   EVT OutVT = Op.getValueType();
4552   EVT InVT = PackedOp.getValueType();
4553   unsigned ToBits = OutVT.getScalarSizeInBits();
4554   unsigned FromBits = InVT.getScalarSizeInBits();
4555   do {
4556     FromBits *= 2;
4557     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4558                                  SystemZ::VectorBits / FromBits);
4559     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4560   } while (FromBits != ToBits);
4561   return PackedOp;
4562 }
4563 
4564 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4565                                           unsigned ByScalar) const {
4566   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4567   SDValue Op0 = Op.getOperand(0);
4568   SDValue Op1 = Op.getOperand(1);
4569   SDLoc DL(Op);
4570   EVT VT = Op.getValueType();
4571   unsigned ElemBitSize = VT.getScalarSizeInBits();
4572 
4573   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4574   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4575     APInt SplatBits, SplatUndef;
4576     unsigned SplatBitSize;
4577     bool HasAnyUndefs;
4578     // Check for constant splats.  Use ElemBitSize as the minimum element
4579     // width and reject splats that need wider elements.
4580     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4581                              ElemBitSize, true) &&
4582         SplatBitSize == ElemBitSize) {
4583       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4584                                       DL, MVT::i32);
4585       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4586     }
4587     // Check for variable splats.
4588     BitVector UndefElements;
4589     SDValue Splat = BVN->getSplatValue(&UndefElements);
4590     if (Splat) {
4591       // Since i32 is the smallest legal type, we either need a no-op
4592       // or a truncation.
4593       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4594       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4595     }
4596   }
4597 
4598   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4599   // and the shift amount is directly available in a GPR.
4600   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4601     if (VSN->isSplat()) {
4602       SDValue VSNOp0 = VSN->getOperand(0);
4603       unsigned Index = VSN->getSplatIndex();
4604       assert(Index < VT.getVectorNumElements() &&
4605              "Splat index should be defined and in first operand");
4606       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4607           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4608         // Since i32 is the smallest legal type, we either need a no-op
4609         // or a truncation.
4610         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4611                                     VSNOp0.getOperand(Index));
4612         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4613       }
4614     }
4615   }
4616 
4617   // Otherwise just treat the current form as legal.
4618   return Op;
4619 }
4620 
4621 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4622                                               SelectionDAG &DAG) const {
4623   switch (Op.getOpcode()) {
4624   case ISD::FRAMEADDR:
4625     return lowerFRAMEADDR(Op, DAG);
4626   case ISD::RETURNADDR:
4627     return lowerRETURNADDR(Op, DAG);
4628   case ISD::BR_CC:
4629     return lowerBR_CC(Op, DAG);
4630   case ISD::SELECT_CC:
4631     return lowerSELECT_CC(Op, DAG);
4632   case ISD::SETCC:
4633     return lowerSETCC(Op, DAG);
4634   case ISD::GlobalAddress:
4635     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4636   case ISD::GlobalTLSAddress:
4637     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4638   case ISD::BlockAddress:
4639     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4640   case ISD::JumpTable:
4641     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4642   case ISD::ConstantPool:
4643     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4644   case ISD::BITCAST:
4645     return lowerBITCAST(Op, DAG);
4646   case ISD::VASTART:
4647     return lowerVASTART(Op, DAG);
4648   case ISD::VACOPY:
4649     return lowerVACOPY(Op, DAG);
4650   case ISD::DYNAMIC_STACKALLOC:
4651     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4652   case ISD::GET_DYNAMIC_AREA_OFFSET:
4653     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4654   case ISD::SMUL_LOHI:
4655     return lowerSMUL_LOHI(Op, DAG);
4656   case ISD::UMUL_LOHI:
4657     return lowerUMUL_LOHI(Op, DAG);
4658   case ISD::SDIVREM:
4659     return lowerSDIVREM(Op, DAG);
4660   case ISD::UDIVREM:
4661     return lowerUDIVREM(Op, DAG);
4662   case ISD::OR:
4663     return lowerOR(Op, DAG);
4664   case ISD::CTPOP:
4665     return lowerCTPOP(Op, DAG);
4666   case ISD::ATOMIC_FENCE:
4667     return lowerATOMIC_FENCE(Op, DAG);
4668   case ISD::ATOMIC_SWAP:
4669     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4670   case ISD::ATOMIC_STORE:
4671     return lowerATOMIC_STORE(Op, DAG);
4672   case ISD::ATOMIC_LOAD:
4673     return lowerATOMIC_LOAD(Op, DAG);
4674   case ISD::ATOMIC_LOAD_ADD:
4675     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4676   case ISD::ATOMIC_LOAD_SUB:
4677     return lowerATOMIC_LOAD_SUB(Op, DAG);
4678   case ISD::ATOMIC_LOAD_AND:
4679     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4680   case ISD::ATOMIC_LOAD_OR:
4681     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4682   case ISD::ATOMIC_LOAD_XOR:
4683     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4684   case ISD::ATOMIC_LOAD_NAND:
4685     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4686   case ISD::ATOMIC_LOAD_MIN:
4687     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4688   case ISD::ATOMIC_LOAD_MAX:
4689     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4690   case ISD::ATOMIC_LOAD_UMIN:
4691     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4692   case ISD::ATOMIC_LOAD_UMAX:
4693     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4694   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4695     return lowerATOMIC_CMP_SWAP(Op, DAG);
4696   case ISD::STACKSAVE:
4697     return lowerSTACKSAVE(Op, DAG);
4698   case ISD::STACKRESTORE:
4699     return lowerSTACKRESTORE(Op, DAG);
4700   case ISD::PREFETCH:
4701     return lowerPREFETCH(Op, DAG);
4702   case ISD::INTRINSIC_W_CHAIN:
4703     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4704   case ISD::INTRINSIC_WO_CHAIN:
4705     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4706   case ISD::BUILD_VECTOR:
4707     return lowerBUILD_VECTOR(Op, DAG);
4708   case ISD::VECTOR_SHUFFLE:
4709     return lowerVECTOR_SHUFFLE(Op, DAG);
4710   case ISD::SCALAR_TO_VECTOR:
4711     return lowerSCALAR_TO_VECTOR(Op, DAG);
4712   case ISD::INSERT_VECTOR_ELT:
4713     return lowerINSERT_VECTOR_ELT(Op, DAG);
4714   case ISD::EXTRACT_VECTOR_ELT:
4715     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4716   case ISD::SIGN_EXTEND_VECTOR_INREG:
4717     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4718   case ISD::ZERO_EXTEND_VECTOR_INREG:
4719     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4720   case ISD::SHL:
4721     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4722   case ISD::SRL:
4723     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4724   case ISD::SRA:
4725     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4726   default:
4727     llvm_unreachable("Unexpected node to lower");
4728   }
4729 }
4730 
4731 // Lower operations with invalid operand or result types (currently used
4732 // only for 128-bit integer types).
4733 
4734 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4735   SDLoc DL(In);
4736   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4737                            DAG.getIntPtrConstant(0, DL));
4738   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4739                            DAG.getIntPtrConstant(1, DL));
4740   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4741                                     MVT::Untyped, Hi, Lo);
4742   return SDValue(Pair, 0);
4743 }
4744 
4745 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4746   SDLoc DL(In);
4747   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4748                                           DL, MVT::i64, In);
4749   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4750                                           DL, MVT::i64, In);
4751   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4752 }
4753 
4754 void
4755 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4756                                              SmallVectorImpl<SDValue> &Results,
4757                                              SelectionDAG &DAG) const {
4758   switch (N->getOpcode()) {
4759   case ISD::ATOMIC_LOAD: {
4760     SDLoc DL(N);
4761     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4762     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4763     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4764     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4765                                           DL, Tys, Ops, MVT::i128, MMO);
4766     Results.push_back(lowerGR128ToI128(DAG, Res));
4767     Results.push_back(Res.getValue(1));
4768     break;
4769   }
4770   case ISD::ATOMIC_STORE: {
4771     SDLoc DL(N);
4772     SDVTList Tys = DAG.getVTList(MVT::Other);
4773     SDValue Ops[] = { N->getOperand(0),
4774                       lowerI128ToGR128(DAG, N->getOperand(2)),
4775                       N->getOperand(1) };
4776     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4777     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4778                                           DL, Tys, Ops, MVT::i128, MMO);
4779     // We have to enforce sequential consistency by performing a
4780     // serialization operation after the store.
4781     if (cast<AtomicSDNode>(N)->getOrdering() ==
4782         AtomicOrdering::SequentiallyConsistent)
4783       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4784                                        MVT::Other, Res), 0);
4785     Results.push_back(Res);
4786     break;
4787   }
4788   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4789     SDLoc DL(N);
4790     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other, MVT::Glue);
4791     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4792                       lowerI128ToGR128(DAG, N->getOperand(2)),
4793                       lowerI128ToGR128(DAG, N->getOperand(3)) };
4794     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4795     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4796                                           DL, Tys, Ops, MVT::i128, MMO);
4797     SDValue Success = emitSETCC(DAG, DL, Res.getValue(2),
4798                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4799     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4800     Results.push_back(lowerGR128ToI128(DAG, Res));
4801     Results.push_back(Success);
4802     Results.push_back(Res.getValue(1));
4803     break;
4804   }
4805   default:
4806     llvm_unreachable("Unexpected node to lower");
4807   }
4808 }
4809 
4810 void
4811 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4812                                           SmallVectorImpl<SDValue> &Results,
4813                                           SelectionDAG &DAG) const {
4814   return LowerOperationWrapper(N, Results, DAG);
4815 }
4816 
4817 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4818 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4819   switch ((SystemZISD::NodeType)Opcode) {
4820     case SystemZISD::FIRST_NUMBER: break;
4821     OPCODE(RET_FLAG);
4822     OPCODE(CALL);
4823     OPCODE(SIBCALL);
4824     OPCODE(TLS_GDCALL);
4825     OPCODE(TLS_LDCALL);
4826     OPCODE(PCREL_WRAPPER);
4827     OPCODE(PCREL_OFFSET);
4828     OPCODE(IABS);
4829     OPCODE(ICMP);
4830     OPCODE(FCMP);
4831     OPCODE(TM);
4832     OPCODE(BR_CCMASK);
4833     OPCODE(SELECT_CCMASK);
4834     OPCODE(ADJDYNALLOC);
4835     OPCODE(POPCNT);
4836     OPCODE(SMUL_LOHI);
4837     OPCODE(UMUL_LOHI);
4838     OPCODE(SDIVREM);
4839     OPCODE(UDIVREM);
4840     OPCODE(MVC);
4841     OPCODE(MVC_LOOP);
4842     OPCODE(NC);
4843     OPCODE(NC_LOOP);
4844     OPCODE(OC);
4845     OPCODE(OC_LOOP);
4846     OPCODE(XC);
4847     OPCODE(XC_LOOP);
4848     OPCODE(CLC);
4849     OPCODE(CLC_LOOP);
4850     OPCODE(STPCPY);
4851     OPCODE(STRCMP);
4852     OPCODE(SEARCH_STRING);
4853     OPCODE(IPM);
4854     OPCODE(MEMBARRIER);
4855     OPCODE(TBEGIN);
4856     OPCODE(TBEGIN_NOFLOAT);
4857     OPCODE(TEND);
4858     OPCODE(BYTE_MASK);
4859     OPCODE(ROTATE_MASK);
4860     OPCODE(REPLICATE);
4861     OPCODE(JOIN_DWORDS);
4862     OPCODE(SPLAT);
4863     OPCODE(MERGE_HIGH);
4864     OPCODE(MERGE_LOW);
4865     OPCODE(SHL_DOUBLE);
4866     OPCODE(PERMUTE_DWORDS);
4867     OPCODE(PERMUTE);
4868     OPCODE(PACK);
4869     OPCODE(PACKS_CC);
4870     OPCODE(PACKLS_CC);
4871     OPCODE(UNPACK_HIGH);
4872     OPCODE(UNPACKL_HIGH);
4873     OPCODE(UNPACK_LOW);
4874     OPCODE(UNPACKL_LOW);
4875     OPCODE(VSHL_BY_SCALAR);
4876     OPCODE(VSRL_BY_SCALAR);
4877     OPCODE(VSRA_BY_SCALAR);
4878     OPCODE(VSUM);
4879     OPCODE(VICMPE);
4880     OPCODE(VICMPH);
4881     OPCODE(VICMPHL);
4882     OPCODE(VICMPES);
4883     OPCODE(VICMPHS);
4884     OPCODE(VICMPHLS);
4885     OPCODE(VFCMPE);
4886     OPCODE(VFCMPH);
4887     OPCODE(VFCMPHE);
4888     OPCODE(VFCMPES);
4889     OPCODE(VFCMPHS);
4890     OPCODE(VFCMPHES);
4891     OPCODE(VFTCI);
4892     OPCODE(VEXTEND);
4893     OPCODE(VROUND);
4894     OPCODE(VTM);
4895     OPCODE(VFAE_CC);
4896     OPCODE(VFAEZ_CC);
4897     OPCODE(VFEE_CC);
4898     OPCODE(VFEEZ_CC);
4899     OPCODE(VFENE_CC);
4900     OPCODE(VFENEZ_CC);
4901     OPCODE(VISTR_CC);
4902     OPCODE(VSTRC_CC);
4903     OPCODE(VSTRCZ_CC);
4904     OPCODE(TDC);
4905     OPCODE(ATOMIC_SWAPW);
4906     OPCODE(ATOMIC_LOADW_ADD);
4907     OPCODE(ATOMIC_LOADW_SUB);
4908     OPCODE(ATOMIC_LOADW_AND);
4909     OPCODE(ATOMIC_LOADW_OR);
4910     OPCODE(ATOMIC_LOADW_XOR);
4911     OPCODE(ATOMIC_LOADW_NAND);
4912     OPCODE(ATOMIC_LOADW_MIN);
4913     OPCODE(ATOMIC_LOADW_MAX);
4914     OPCODE(ATOMIC_LOADW_UMIN);
4915     OPCODE(ATOMIC_LOADW_UMAX);
4916     OPCODE(ATOMIC_CMP_SWAPW);
4917     OPCODE(ATOMIC_CMP_SWAP);
4918     OPCODE(ATOMIC_LOAD_128);
4919     OPCODE(ATOMIC_STORE_128);
4920     OPCODE(ATOMIC_CMP_SWAP_128);
4921     OPCODE(LRV);
4922     OPCODE(STRV);
4923     OPCODE(PREFETCH);
4924   }
4925   return nullptr;
4926 #undef OPCODE
4927 }
4928 
4929 // Return true if VT is a vector whose elements are a whole number of bytes
4930 // in width. Also check for presence of vector support.
4931 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
4932   if (!Subtarget.hasVector())
4933     return false;
4934 
4935   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
4936 }
4937 
4938 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4939 // producing a result of type ResVT.  Op is a possibly bitcast version
4940 // of the input vector and Index is the index (based on type VecVT) that
4941 // should be extracted.  Return the new extraction if a simplification
4942 // was possible or if Force is true.
4943 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
4944                                               EVT VecVT, SDValue Op,
4945                                               unsigned Index,
4946                                               DAGCombinerInfo &DCI,
4947                                               bool Force) const {
4948   SelectionDAG &DAG = DCI.DAG;
4949 
4950   // The number of bytes being extracted.
4951   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4952 
4953   for (;;) {
4954     unsigned Opcode = Op.getOpcode();
4955     if (Opcode == ISD::BITCAST)
4956       // Look through bitcasts.
4957       Op = Op.getOperand(0);
4958     else if (Opcode == ISD::VECTOR_SHUFFLE &&
4959              canTreatAsByteVector(Op.getValueType())) {
4960       // Get a VPERM-like permute mask and see whether the bytes covered
4961       // by the extracted element are a contiguous sequence from one
4962       // source operand.
4963       SmallVector<int, SystemZ::VectorBytes> Bytes;
4964       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4965       int First;
4966       if (!getShuffleInput(Bytes, Index * BytesPerElement,
4967                            BytesPerElement, First))
4968         break;
4969       if (First < 0)
4970         return DAG.getUNDEF(ResVT);
4971       // Make sure the contiguous sequence starts at a multiple of the
4972       // original element size.
4973       unsigned Byte = unsigned(First) % Bytes.size();
4974       if (Byte % BytesPerElement != 0)
4975         break;
4976       // We can get the extracted value directly from an input.
4977       Index = Byte / BytesPerElement;
4978       Op = Op.getOperand(unsigned(First) / Bytes.size());
4979       Force = true;
4980     } else if (Opcode == ISD::BUILD_VECTOR &&
4981                canTreatAsByteVector(Op.getValueType())) {
4982       // We can only optimize this case if the BUILD_VECTOR elements are
4983       // at least as wide as the extracted value.
4984       EVT OpVT = Op.getValueType();
4985       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4986       if (OpBytesPerElement < BytesPerElement)
4987         break;
4988       // Make sure that the least-significant bit of the extracted value
4989       // is the least significant bit of an input.
4990       unsigned End = (Index + 1) * BytesPerElement;
4991       if (End % OpBytesPerElement != 0)
4992         break;
4993       // We're extracting the low part of one operand of the BUILD_VECTOR.
4994       Op = Op.getOperand(End / OpBytesPerElement - 1);
4995       if (!Op.getValueType().isInteger()) {
4996         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
4997         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4998         DCI.AddToWorklist(Op.getNode());
4999       }
5000       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5001       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5002       if (VT != ResVT) {
5003         DCI.AddToWorklist(Op.getNode());
5004         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5005       }
5006       return Op;
5007     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5008                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5009                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5010                canTreatAsByteVector(Op.getValueType()) &&
5011                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5012       // Make sure that only the unextended bits are significant.
5013       EVT ExtVT = Op.getValueType();
5014       EVT OpVT = Op.getOperand(0).getValueType();
5015       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5016       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5017       unsigned Byte = Index * BytesPerElement;
5018       unsigned SubByte = Byte % ExtBytesPerElement;
5019       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5020       if (SubByte < MinSubByte ||
5021           SubByte + BytesPerElement > ExtBytesPerElement)
5022         break;
5023       // Get the byte offset of the unextended element
5024       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5025       // ...then add the byte offset relative to that element.
5026       Byte += SubByte - MinSubByte;
5027       if (Byte % BytesPerElement != 0)
5028         break;
5029       Op = Op.getOperand(0);
5030       Index = Byte / BytesPerElement;
5031       Force = true;
5032     } else
5033       break;
5034   }
5035   if (Force) {
5036     if (Op.getValueType() != VecVT) {
5037       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5038       DCI.AddToWorklist(Op.getNode());
5039     }
5040     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5041                        DAG.getConstant(Index, DL, MVT::i32));
5042   }
5043   return SDValue();
5044 }
5045 
5046 // Optimize vector operations in scalar value Op on the basis that Op
5047 // is truncated to TruncVT.
5048 SDValue SystemZTargetLowering::combineTruncateExtract(
5049     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5050   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5051   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5052   // of type TruncVT.
5053   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5054       TruncVT.getSizeInBits() % 8 == 0) {
5055     SDValue Vec = Op.getOperand(0);
5056     EVT VecVT = Vec.getValueType();
5057     if (canTreatAsByteVector(VecVT)) {
5058       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5059         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5060         unsigned TruncBytes = TruncVT.getStoreSize();
5061         if (BytesPerElement % TruncBytes == 0) {
5062           // Calculate the value of Y' in the above description.  We are
5063           // splitting the original elements into Scale equal-sized pieces
5064           // and for truncation purposes want the last (least-significant)
5065           // of these pieces for IndexN.  This is easiest to do by calculating
5066           // the start index of the following element and then subtracting 1.
5067           unsigned Scale = BytesPerElement / TruncBytes;
5068           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5069 
5070           // Defer the creation of the bitcast from X to combineExtract,
5071           // which might be able to optimize the extraction.
5072           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5073                                    VecVT.getStoreSize() / TruncBytes);
5074           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5075           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5076         }
5077       }
5078     }
5079   }
5080   return SDValue();
5081 }
5082 
5083 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5084     SDNode *N, DAGCombinerInfo &DCI) const {
5085   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5086   SelectionDAG &DAG = DCI.DAG;
5087   SDValue N0 = N->getOperand(0);
5088   EVT VT = N->getValueType(0);
5089   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5090     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5091     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5092     if (TrueOp && FalseOp) {
5093       SDLoc DL(N0);
5094       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5095                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5096                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5097       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5098       // If N0 has multiple uses, change other uses as well.
5099       if (!N0.hasOneUse()) {
5100         SDValue TruncSelect =
5101           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5102         DCI.CombineTo(N0.getNode(), TruncSelect);
5103       }
5104       return NewSelect;
5105     }
5106   }
5107   return SDValue();
5108 }
5109 
5110 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5111     SDNode *N, DAGCombinerInfo &DCI) const {
5112   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5113   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5114   // into (select_cc LHS, RHS, -1, 0, COND)
5115   SelectionDAG &DAG = DCI.DAG;
5116   SDValue N0 = N->getOperand(0);
5117   EVT VT = N->getValueType(0);
5118   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5119   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5120     N0 = N0.getOperand(0);
5121   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5122     SDLoc DL(N0);
5123     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5124                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5125                       N0.getOperand(2) };
5126     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5127   }
5128   return SDValue();
5129 }
5130 
5131 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5132     SDNode *N, DAGCombinerInfo &DCI) const {
5133   // Convert (sext (ashr (shl X, C1), C2)) to
5134   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5135   // cheap as narrower ones.
5136   SelectionDAG &DAG = DCI.DAG;
5137   SDValue N0 = N->getOperand(0);
5138   EVT VT = N->getValueType(0);
5139   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5140     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5141     SDValue Inner = N0.getOperand(0);
5142     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5143       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5144         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5145         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5146         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5147         EVT ShiftVT = N0.getOperand(1).getValueType();
5148         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5149                                   Inner.getOperand(0));
5150         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5151                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5152                                                   ShiftVT));
5153         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5154                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5155       }
5156     }
5157   }
5158   return SDValue();
5159 }
5160 
5161 SDValue SystemZTargetLowering::combineMERGE(
5162     SDNode *N, DAGCombinerInfo &DCI) const {
5163   SelectionDAG &DAG = DCI.DAG;
5164   unsigned Opcode = N->getOpcode();
5165   SDValue Op0 = N->getOperand(0);
5166   SDValue Op1 = N->getOperand(1);
5167   if (Op0.getOpcode() == ISD::BITCAST)
5168     Op0 = Op0.getOperand(0);
5169   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5170       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5171     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5172     // for v4f32.
5173     if (Op1 == N->getOperand(0))
5174       return Op1;
5175     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5176     EVT VT = Op1.getValueType();
5177     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5178     if (ElemBytes <= 4) {
5179       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5180                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5181       EVT InVT = VT.changeVectorElementTypeToInteger();
5182       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5183                                    SystemZ::VectorBytes / ElemBytes / 2);
5184       if (VT != InVT) {
5185         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5186         DCI.AddToWorklist(Op1.getNode());
5187       }
5188       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5189       DCI.AddToWorklist(Op.getNode());
5190       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5191     }
5192   }
5193   return SDValue();
5194 }
5195 
5196 SDValue SystemZTargetLowering::combineSTORE(
5197     SDNode *N, DAGCombinerInfo &DCI) const {
5198   SelectionDAG &DAG = DCI.DAG;
5199   auto *SN = cast<StoreSDNode>(N);
5200   auto &Op1 = N->getOperand(1);
5201   EVT MemVT = SN->getMemoryVT();
5202   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5203   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5204   // If X has wider elements then convert it to:
5205   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5206   if (MemVT.isInteger()) {
5207     if (SDValue Value =
5208             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5209       DCI.AddToWorklist(Value.getNode());
5210 
5211       // Rewrite the store with the new form of stored value.
5212       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5213                                SN->getBasePtr(), SN->getMemoryVT(),
5214                                SN->getMemOperand());
5215     }
5216   }
5217   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5218   // See comment in combineBSWAP about volatile accesses.
5219   if (!SN->isTruncatingStore() &&
5220       !SN->isVolatile() &&
5221       Op1.getOpcode() == ISD::BSWAP &&
5222       Op1.getNode()->hasOneUse() &&
5223       (Op1.getValueType() == MVT::i16 ||
5224        Op1.getValueType() == MVT::i32 ||
5225        Op1.getValueType() == MVT::i64)) {
5226 
5227       SDValue BSwapOp = Op1.getOperand(0);
5228 
5229       if (BSwapOp.getValueType() == MVT::i16)
5230         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5231 
5232       SDValue Ops[] = {
5233         N->getOperand(0), BSwapOp, N->getOperand(2),
5234         DAG.getValueType(Op1.getValueType())
5235       };
5236 
5237       return
5238         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5239                                 Ops, MemVT, SN->getMemOperand());
5240     }
5241   return SDValue();
5242 }
5243 
5244 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5245     SDNode *N, DAGCombinerInfo &DCI) const {
5246 
5247   if (!Subtarget.hasVector())
5248     return SDValue();
5249 
5250   // Try to simplify a vector extraction.
5251   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5252     SDValue Op0 = N->getOperand(0);
5253     EVT VecVT = Op0.getValueType();
5254     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5255                           IndexN->getZExtValue(), DCI, false);
5256   }
5257   return SDValue();
5258 }
5259 
5260 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5261     SDNode *N, DAGCombinerInfo &DCI) const {
5262   SelectionDAG &DAG = DCI.DAG;
5263   // (join_dwords X, X) == (replicate X)
5264   if (N->getOperand(0) == N->getOperand(1))
5265     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5266                        N->getOperand(0));
5267   return SDValue();
5268 }
5269 
5270 SDValue SystemZTargetLowering::combineFP_ROUND(
5271     SDNode *N, DAGCombinerInfo &DCI) const {
5272   // (fpround (extract_vector_elt X 0))
5273   // (fpround (extract_vector_elt X 1)) ->
5274   // (extract_vector_elt (VROUND X) 0)
5275   // (extract_vector_elt (VROUND X) 1)
5276   //
5277   // This is a special case since the target doesn't really support v2f32s.
5278   SelectionDAG &DAG = DCI.DAG;
5279   SDValue Op0 = N->getOperand(0);
5280   if (N->getValueType(0) == MVT::f32 &&
5281       Op0.hasOneUse() &&
5282       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5283       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5284       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5285       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5286     SDValue Vec = Op0.getOperand(0);
5287     for (auto *U : Vec->uses()) {
5288       if (U != Op0.getNode() &&
5289           U->hasOneUse() &&
5290           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5291           U->getOperand(0) == Vec &&
5292           U->getOperand(1).getOpcode() == ISD::Constant &&
5293           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5294         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5295         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5296             OtherRound.getOperand(0) == SDValue(U, 0) &&
5297             OtherRound.getValueType() == MVT::f32) {
5298           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5299                                        MVT::v4f32, Vec);
5300           DCI.AddToWorklist(VRound.getNode());
5301           SDValue Extract1 =
5302             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5303                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5304           DCI.AddToWorklist(Extract1.getNode());
5305           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5306           SDValue Extract0 =
5307             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5308                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5309           return Extract0;
5310         }
5311       }
5312     }
5313   }
5314   return SDValue();
5315 }
5316 
5317 SDValue SystemZTargetLowering::combineBSWAP(
5318     SDNode *N, DAGCombinerInfo &DCI) const {
5319   SelectionDAG &DAG = DCI.DAG;
5320   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5321   // These loads are allowed to access memory multiple times, and so we must check
5322   // that the loads are not volatile before performing the combine.
5323   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5324       N->getOperand(0).hasOneUse() &&
5325       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5326        N->getValueType(0) == MVT::i64) &&
5327        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
5328       SDValue Load = N->getOperand(0);
5329       LoadSDNode *LD = cast<LoadSDNode>(Load);
5330 
5331       // Create the byte-swapping load.
5332       SDValue Ops[] = {
5333         LD->getChain(),    // Chain
5334         LD->getBasePtr(),  // Ptr
5335         DAG.getValueType(N->getValueType(0)) // VT
5336       };
5337       SDValue BSLoad =
5338         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5339                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5340                                               MVT::i64 : MVT::i32, MVT::Other),
5341                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5342 
5343       // If this is an i16 load, insert the truncate.
5344       SDValue ResVal = BSLoad;
5345       if (N->getValueType(0) == MVT::i16)
5346         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5347 
5348       // First, combine the bswap away.  This makes the value produced by the
5349       // load dead.
5350       DCI.CombineTo(N, ResVal);
5351 
5352       // Next, combine the load away, we give it a bogus result value but a real
5353       // chain result.  The result value is dead because the bswap is dead.
5354       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5355 
5356       // Return N so it doesn't get rechecked!
5357       return SDValue(N, 0);
5358     }
5359   return SDValue();
5360 }
5361 
5362 SDValue SystemZTargetLowering::combineSHIFTROT(
5363     SDNode *N, DAGCombinerInfo &DCI) const {
5364 
5365   SelectionDAG &DAG = DCI.DAG;
5366 
5367   // Shift/rotate instructions only use the last 6 bits of the second operand
5368   // register. If the second operand is the result of an AND with an immediate
5369   // value that has its last 6 bits set, we can safely remove the AND operation.
5370   //
5371   // If the AND operation doesn't have the last 6 bits set, we can't remove it
5372   // entirely, but we can still truncate it to a 16-bit value. This prevents
5373   // us from ending up with a NILL with a signed operand, which will cause the
5374   // instruction printer to abort.
5375   SDValue N1 = N->getOperand(1);
5376   if (N1.getOpcode() == ISD::AND) {
5377     SDValue AndMaskOp = N1->getOperand(1);
5378     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
5379 
5380     // The AND mask is constant
5381     if (AndMask) {
5382       auto AmtVal = AndMask->getZExtValue();
5383 
5384       // Bottom 6 bits are set
5385       if ((AmtVal & 0x3f) == 0x3f) {
5386         SDValue AndOp = N1->getOperand(0);
5387 
5388         // This is the only use, so remove the node
5389         if (N1.hasOneUse()) {
5390           // Combine the AND away
5391           DCI.CombineTo(N1.getNode(), AndOp);
5392 
5393           // Return N so it isn't rechecked
5394           return SDValue(N, 0);
5395 
5396         // The node will be reused, so create a new node for this one use
5397         } else {
5398           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5399                                         N->getValueType(0), N->getOperand(0),
5400                                         AndOp);
5401           DCI.AddToWorklist(Replace.getNode());
5402 
5403           return Replace;
5404         }
5405 
5406       // We can't remove the AND, but we can use NILL here (normally we would
5407       // use NILF). Only keep the last 16 bits of the mask. The actual
5408       // transformation will be handled by .td definitions.
5409       } else if (AmtVal >> 16 != 0) {
5410         SDValue AndOp = N1->getOperand(0);
5411 
5412         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
5413                                        SDLoc(AndMaskOp),
5414                                        AndMaskOp.getValueType());
5415 
5416         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
5417                                   AndOp, NewMask);
5418 
5419         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5420                                       N->getValueType(0), N->getOperand(0),
5421                                       NewAnd);
5422         DCI.AddToWorklist(Replace.getNode());
5423 
5424         return Replace;
5425       }
5426     }
5427   }
5428 
5429   return SDValue();
5430 }
5431 
5432 static bool combineCCMask(SDValue &Glue, int &CCValid, int &CCMask) {
5433   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5434   // set by the glued instruction using the CCValid / CCMask masks,
5435   // If the glued instruction is itself a (ICMP (SELECT_CCMASK)) testing
5436   // the condition code set by some other instruction, see whether we
5437   // can directly use that condition code.
5438   bool Invert = false;
5439 
5440   // Verify that we have an appropriate mask for a EQ or NE comparison.
5441   if (CCValid != SystemZ::CCMASK_ICMP)
5442     return false;
5443   if (CCMask == SystemZ::CCMASK_CMP_NE)
5444     Invert = !Invert;
5445   else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5446     return false;
5447 
5448   // Verify that we have an ICMP that is the single user of a SELECT_CCMASK.
5449   SDNode *ICmp = Glue.getNode();
5450   if (ICmp->getOpcode() != SystemZISD::ICMP)
5451     return false;
5452   SDNode *Select = ICmp->getOperand(0).getNode();
5453   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5454     return false;
5455   if (!Select->hasOneUse())
5456     return false;
5457 
5458   // Verify that the ICMP compares against one of select values.
5459   auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5460   if (!CompareVal)
5461     return false;
5462   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5463   if (!TrueVal)
5464     return false;
5465   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5466   if (!FalseVal)
5467     return false;
5468   if (CompareVal->getZExtValue() == FalseVal->getZExtValue())
5469     Invert = !Invert;
5470   else if (CompareVal->getZExtValue() != TrueVal->getZExtValue())
5471     return false;
5472 
5473   // Compute the effective CC mask for the new branch or select.
5474   auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5475   auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5476   if (!NewCCValid || !NewCCMask)
5477     return false;
5478   CCValid = NewCCValid->getZExtValue();
5479   CCMask = NewCCMask->getZExtValue();
5480   if (Invert)
5481     CCMask ^= CCValid;
5482 
5483   // Return the updated Glue link.
5484   Glue = Select->getOperand(4);
5485   return true;
5486 }
5487 
5488 static bool combineMergeChains(SDValue &Chain, SDValue Glue) {
5489   // We are about to glue an instruction with input chain Chain to the
5490   // instruction Glue.  Verify that this would not create an invalid
5491   // topological sort due to intervening chain nodes.
5492 
5493   SDNode *Node = Glue.getNode();
5494   for (int ResNo = Node->getNumValues() - 1; ResNo >= 0; --ResNo)
5495     if (Node->getValueType(ResNo) == MVT::Other) {
5496       SDValue OutChain = SDValue(Node, ResNo);
5497       // FIXME: We should be able to at least handle an intervening
5498       // TokenFactor node by swapping chains around a bit ...
5499       return Chain == OutChain;
5500     }
5501 
5502   return true;
5503 }
5504 
5505 SDValue SystemZTargetLowering::combineBR_CCMASK(
5506     SDNode *N, DAGCombinerInfo &DCI) const {
5507   SelectionDAG &DAG = DCI.DAG;
5508 
5509   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5510   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5511   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5512   if (!CCValid || !CCMask)
5513     return SDValue();
5514 
5515   int CCValidVal = CCValid->getZExtValue();
5516   int CCMaskVal = CCMask->getZExtValue();
5517   SDValue Chain = N->getOperand(0);
5518   SDValue Glue = N->getOperand(4);
5519 
5520   if (combineCCMask(Glue, CCValidVal, CCMaskVal)
5521       && combineMergeChains(Chain, Glue))
5522     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5523                        Chain,
5524                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5525                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5526                        N->getOperand(3), Glue);
5527   return SDValue();
5528 }
5529 
5530 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5531     SDNode *N, DAGCombinerInfo &DCI) const {
5532   SelectionDAG &DAG = DCI.DAG;
5533 
5534   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5535   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5536   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5537   if (!CCValid || !CCMask)
5538     return SDValue();
5539 
5540   int CCValidVal = CCValid->getZExtValue();
5541   int CCMaskVal = CCMask->getZExtValue();
5542   SDValue Glue = N->getOperand(4);
5543 
5544   if (combineCCMask(Glue, CCValidVal, CCMaskVal))
5545     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5546                        N->getOperand(0),
5547                        N->getOperand(1),
5548                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5549                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5550                        Glue);
5551   return SDValue();
5552 }
5553 
5554 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5555                                                  DAGCombinerInfo &DCI) const {
5556   switch(N->getOpcode()) {
5557   default: break;
5558   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
5559   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5560   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
5561   case SystemZISD::MERGE_HIGH:
5562   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5563   case ISD::STORE:              return combineSTORE(N, DCI);
5564   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5565   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5566   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5567   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5568   case ISD::SHL:
5569   case ISD::SRA:
5570   case ISD::SRL:
5571   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5572   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
5573   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5574   }
5575 
5576   return SDValue();
5577 }
5578 
5579 void
5580 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5581                                                      KnownBits &Known,
5582                                                      const APInt &DemandedElts,
5583                                                      const SelectionDAG &DAG,
5584                                                      unsigned Depth) const {
5585   unsigned BitWidth = Known.getBitWidth();
5586 
5587   Known.resetAll();
5588   switch (Op.getOpcode()) {
5589   case SystemZISD::SELECT_CCMASK: {
5590     KnownBits TrueKnown(BitWidth), FalseKnown(BitWidth);
5591     DAG.computeKnownBits(Op.getOperand(0), TrueKnown, Depth + 1);
5592     DAG.computeKnownBits(Op.getOperand(1), FalseKnown, Depth + 1);
5593     Known.Zero = TrueKnown.Zero & FalseKnown.Zero;
5594     Known.One = TrueKnown.One & FalseKnown.One;
5595     break;
5596   }
5597 
5598   default:
5599     break;
5600   }
5601 }
5602 
5603 //===----------------------------------------------------------------------===//
5604 // Custom insertion
5605 //===----------------------------------------------------------------------===//
5606 
5607 // Create a new basic block after MBB.
5608 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5609   MachineFunction &MF = *MBB->getParent();
5610   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5611   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5612   return NewMBB;
5613 }
5614 
5615 // Split MBB after MI and return the new block (the one that contains
5616 // instructions after MI).
5617 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5618                                           MachineBasicBlock *MBB) {
5619   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5620   NewMBB->splice(NewMBB->begin(), MBB,
5621                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5622   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5623   return NewMBB;
5624 }
5625 
5626 // Split MBB before MI and return the new block (the one that contains MI).
5627 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5628                                            MachineBasicBlock *MBB) {
5629   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5630   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5631   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5632   return NewMBB;
5633 }
5634 
5635 // Force base value Base into a register before MI.  Return the register.
5636 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5637                          const SystemZInstrInfo *TII) {
5638   if (Base.isReg())
5639     return Base.getReg();
5640 
5641   MachineBasicBlock *MBB = MI.getParent();
5642   MachineFunction &MF = *MBB->getParent();
5643   MachineRegisterInfo &MRI = MF.getRegInfo();
5644 
5645   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5646   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5647       .add(Base)
5648       .addImm(0)
5649       .addReg(0);
5650   return Reg;
5651 }
5652 
5653 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5654 MachineBasicBlock *
5655 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5656                                   MachineBasicBlock *MBB,
5657                                   unsigned LOCROpcode) const {
5658   const SystemZInstrInfo *TII =
5659       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5660 
5661   unsigned DestReg = MI.getOperand(0).getReg();
5662   unsigned TrueReg = MI.getOperand(1).getReg();
5663   unsigned FalseReg = MI.getOperand(2).getReg();
5664   unsigned CCValid = MI.getOperand(3).getImm();
5665   unsigned CCMask = MI.getOperand(4).getImm();
5666   DebugLoc DL = MI.getDebugLoc();
5667 
5668   // Use LOCROpcode if possible.
5669   if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) {
5670     BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg)
5671       .addReg(FalseReg).addReg(TrueReg)
5672       .addImm(CCValid).addImm(CCMask);
5673     MI.eraseFromParent();
5674     return MBB;
5675   }
5676 
5677   MachineBasicBlock *StartMBB = MBB;
5678   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5679   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5680 
5681   //  StartMBB:
5682   //   BRC CCMask, JoinMBB
5683   //   # fallthrough to FalseMBB
5684   MBB = StartMBB;
5685   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5686     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5687   MBB->addSuccessor(JoinMBB);
5688   MBB->addSuccessor(FalseMBB);
5689 
5690   //  FalseMBB:
5691   //   # fallthrough to JoinMBB
5692   MBB = FalseMBB;
5693   MBB->addSuccessor(JoinMBB);
5694 
5695   //  JoinMBB:
5696   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5697   //  ...
5698   MBB = JoinMBB;
5699   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5700     .addReg(TrueReg).addMBB(StartMBB)
5701     .addReg(FalseReg).addMBB(FalseMBB);
5702 
5703   MI.eraseFromParent();
5704   return JoinMBB;
5705 }
5706 
5707 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5708 // StoreOpcode is the store to use and Invert says whether the store should
5709 // happen when the condition is false rather than true.  If a STORE ON
5710 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
5711 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5712                                                         MachineBasicBlock *MBB,
5713                                                         unsigned StoreOpcode,
5714                                                         unsigned STOCOpcode,
5715                                                         bool Invert) const {
5716   const SystemZInstrInfo *TII =
5717       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5718 
5719   unsigned SrcReg = MI.getOperand(0).getReg();
5720   MachineOperand Base = MI.getOperand(1);
5721   int64_t Disp = MI.getOperand(2).getImm();
5722   unsigned IndexReg = MI.getOperand(3).getReg();
5723   unsigned CCValid = MI.getOperand(4).getImm();
5724   unsigned CCMask = MI.getOperand(5).getImm();
5725   DebugLoc DL = MI.getDebugLoc();
5726 
5727   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5728 
5729   // Use STOCOpcode if possible.  We could use different store patterns in
5730   // order to avoid matching the index register, but the performance trade-offs
5731   // might be more complicated in that case.
5732   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
5733     if (Invert)
5734       CCMask ^= CCValid;
5735 
5736     // ISel pattern matching also adds a load memory operand of the same
5737     // address, so take special care to find the storing memory operand.
5738     MachineMemOperand *MMO = nullptr;
5739     for (auto *I : MI.memoperands())
5740       if (I->isStore()) {
5741           MMO = I;
5742           break;
5743         }
5744 
5745     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
5746       .addReg(SrcReg)
5747       .add(Base)
5748       .addImm(Disp)
5749       .addImm(CCValid)
5750       .addImm(CCMask)
5751       .addMemOperand(MMO);
5752 
5753     MI.eraseFromParent();
5754     return MBB;
5755   }
5756 
5757   // Get the condition needed to branch around the store.
5758   if (!Invert)
5759     CCMask ^= CCValid;
5760 
5761   MachineBasicBlock *StartMBB = MBB;
5762   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5763   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5764 
5765   //  StartMBB:
5766   //   BRC CCMask, JoinMBB
5767   //   # fallthrough to FalseMBB
5768   MBB = StartMBB;
5769   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5770     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5771   MBB->addSuccessor(JoinMBB);
5772   MBB->addSuccessor(FalseMBB);
5773 
5774   //  FalseMBB:
5775   //   store %SrcReg, %Disp(%Index,%Base)
5776   //   # fallthrough to JoinMBB
5777   MBB = FalseMBB;
5778   BuildMI(MBB, DL, TII->get(StoreOpcode))
5779       .addReg(SrcReg)
5780       .add(Base)
5781       .addImm(Disp)
5782       .addReg(IndexReg);
5783   MBB->addSuccessor(JoinMBB);
5784 
5785   MI.eraseFromParent();
5786   return JoinMBB;
5787 }
5788 
5789 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5790 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
5791 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5792 // BitSize is the width of the field in bits, or 0 if this is a partword
5793 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5794 // is one of the operands.  Invert says whether the field should be
5795 // inverted after performing BinOpcode (e.g. for NAND).
5796 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5797     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5798     unsigned BitSize, bool Invert) const {
5799   MachineFunction &MF = *MBB->getParent();
5800   const SystemZInstrInfo *TII =
5801       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5802   MachineRegisterInfo &MRI = MF.getRegInfo();
5803   bool IsSubWord = (BitSize < 32);
5804 
5805   // Extract the operands.  Base can be a register or a frame index.
5806   // Src2 can be a register or immediate.
5807   unsigned Dest = MI.getOperand(0).getReg();
5808   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5809   int64_t Disp = MI.getOperand(2).getImm();
5810   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5811   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5812   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5813   DebugLoc DL = MI.getDebugLoc();
5814   if (IsSubWord)
5815     BitSize = MI.getOperand(6).getImm();
5816 
5817   // Subword operations use 32-bit registers.
5818   const TargetRegisterClass *RC = (BitSize <= 32 ?
5819                                    &SystemZ::GR32BitRegClass :
5820                                    &SystemZ::GR64BitRegClass);
5821   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5822   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5823 
5824   // Get the right opcodes for the displacement.
5825   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5826   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5827   assert(LOpcode && CSOpcode && "Displacement out of range");
5828 
5829   // Create virtual registers for temporary results.
5830   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5831   unsigned OldVal        = MRI.createVirtualRegister(RC);
5832   unsigned NewVal        = (BinOpcode || IsSubWord ?
5833                             MRI.createVirtualRegister(RC) : Src2.getReg());
5834   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5835   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5836 
5837   // Insert a basic block for the main loop.
5838   MachineBasicBlock *StartMBB = MBB;
5839   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5840   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5841 
5842   //  StartMBB:
5843   //   ...
5844   //   %OrigVal = L Disp(%Base)
5845   //   # fall through to LoopMMB
5846   MBB = StartMBB;
5847   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
5848   MBB->addSuccessor(LoopMBB);
5849 
5850   //  LoopMBB:
5851   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5852   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5853   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
5854   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5855   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5856   //   JNE LoopMBB
5857   //   # fall through to DoneMMB
5858   MBB = LoopMBB;
5859   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5860     .addReg(OrigVal).addMBB(StartMBB)
5861     .addReg(Dest).addMBB(LoopMBB);
5862   if (IsSubWord)
5863     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5864       .addReg(OldVal).addReg(BitShift).addImm(0);
5865   if (Invert) {
5866     // Perform the operation normally and then invert every bit of the field.
5867     unsigned Tmp = MRI.createVirtualRegister(RC);
5868     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
5869     if (BitSize <= 32)
5870       // XILF with the upper BitSize bits set.
5871       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5872         .addReg(Tmp).addImm(-1U << (32 - BitSize));
5873     else {
5874       // Use LCGR and add -1 to the result, which is more compact than
5875       // an XILF, XILH pair.
5876       unsigned Tmp2 = MRI.createVirtualRegister(RC);
5877       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5878       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5879         .addReg(Tmp2).addImm(-1);
5880     }
5881   } else if (BinOpcode)
5882     // A simply binary operation.
5883     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5884         .addReg(RotatedOldVal)
5885         .add(Src2);
5886   else if (IsSubWord)
5887     // Use RISBG to rotate Src2 into position and use it to replace the
5888     // field in RotatedOldVal.
5889     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5890       .addReg(RotatedOldVal).addReg(Src2.getReg())
5891       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5892   if (IsSubWord)
5893     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5894       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5895   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5896       .addReg(OldVal)
5897       .addReg(NewVal)
5898       .add(Base)
5899       .addImm(Disp);
5900   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5901     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5902   MBB->addSuccessor(LoopMBB);
5903   MBB->addSuccessor(DoneMBB);
5904 
5905   MI.eraseFromParent();
5906   return DoneMBB;
5907 }
5908 
5909 // Implement EmitInstrWithCustomInserter for pseudo
5910 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
5911 // instruction that should be used to compare the current field with the
5912 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
5913 // for when the current field should be kept.  BitSize is the width of
5914 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
5915 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5916     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5917     unsigned KeepOldMask, unsigned BitSize) const {
5918   MachineFunction &MF = *MBB->getParent();
5919   const SystemZInstrInfo *TII =
5920       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5921   MachineRegisterInfo &MRI = MF.getRegInfo();
5922   bool IsSubWord = (BitSize < 32);
5923 
5924   // Extract the operands.  Base can be a register or a frame index.
5925   unsigned Dest = MI.getOperand(0).getReg();
5926   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5927   int64_t Disp = MI.getOperand(2).getImm();
5928   unsigned Src2 = MI.getOperand(3).getReg();
5929   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5930   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5931   DebugLoc DL = MI.getDebugLoc();
5932   if (IsSubWord)
5933     BitSize = MI.getOperand(6).getImm();
5934 
5935   // Subword operations use 32-bit registers.
5936   const TargetRegisterClass *RC = (BitSize <= 32 ?
5937                                    &SystemZ::GR32BitRegClass :
5938                                    &SystemZ::GR64BitRegClass);
5939   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5940   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5941 
5942   // Get the right opcodes for the displacement.
5943   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5944   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5945   assert(LOpcode && CSOpcode && "Displacement out of range");
5946 
5947   // Create virtual registers for temporary results.
5948   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5949   unsigned OldVal        = MRI.createVirtualRegister(RC);
5950   unsigned NewVal        = MRI.createVirtualRegister(RC);
5951   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5952   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5953   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5954 
5955   // Insert 3 basic blocks for the loop.
5956   MachineBasicBlock *StartMBB  = MBB;
5957   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
5958   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
5959   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5960   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5961 
5962   //  StartMBB:
5963   //   ...
5964   //   %OrigVal     = L Disp(%Base)
5965   //   # fall through to LoopMMB
5966   MBB = StartMBB;
5967   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
5968   MBB->addSuccessor(LoopMBB);
5969 
5970   //  LoopMBB:
5971   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5972   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5973   //   CompareOpcode %RotatedOldVal, %Src2
5974   //   BRC KeepOldMask, UpdateMBB
5975   MBB = LoopMBB;
5976   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5977     .addReg(OrigVal).addMBB(StartMBB)
5978     .addReg(Dest).addMBB(UpdateMBB);
5979   if (IsSubWord)
5980     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5981       .addReg(OldVal).addReg(BitShift).addImm(0);
5982   BuildMI(MBB, DL, TII->get(CompareOpcode))
5983     .addReg(RotatedOldVal).addReg(Src2);
5984   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5985     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5986   MBB->addSuccessor(UpdateMBB);
5987   MBB->addSuccessor(UseAltMBB);
5988 
5989   //  UseAltMBB:
5990   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5991   //   # fall through to UpdateMMB
5992   MBB = UseAltMBB;
5993   if (IsSubWord)
5994     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5995       .addReg(RotatedOldVal).addReg(Src2)
5996       .addImm(32).addImm(31 + BitSize).addImm(0);
5997   MBB->addSuccessor(UpdateMBB);
5998 
5999   //  UpdateMBB:
6000   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6001   //                        [ %RotatedAltVal, UseAltMBB ]
6002   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6003   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6004   //   JNE LoopMBB
6005   //   # fall through to DoneMMB
6006   MBB = UpdateMBB;
6007   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6008     .addReg(RotatedOldVal).addMBB(LoopMBB)
6009     .addReg(RotatedAltVal).addMBB(UseAltMBB);
6010   if (IsSubWord)
6011     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6012       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6013   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6014       .addReg(OldVal)
6015       .addReg(NewVal)
6016       .add(Base)
6017       .addImm(Disp);
6018   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6019     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6020   MBB->addSuccessor(LoopMBB);
6021   MBB->addSuccessor(DoneMBB);
6022 
6023   MI.eraseFromParent();
6024   return DoneMBB;
6025 }
6026 
6027 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6028 // instruction MI.
6029 MachineBasicBlock *
6030 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6031                                           MachineBasicBlock *MBB) const {
6032 
6033   MachineFunction &MF = *MBB->getParent();
6034   const SystemZInstrInfo *TII =
6035       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6036   MachineRegisterInfo &MRI = MF.getRegInfo();
6037 
6038   // Extract the operands.  Base can be a register or a frame index.
6039   unsigned Dest = MI.getOperand(0).getReg();
6040   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6041   int64_t Disp = MI.getOperand(2).getImm();
6042   unsigned OrigCmpVal = MI.getOperand(3).getReg();
6043   unsigned OrigSwapVal = MI.getOperand(4).getReg();
6044   unsigned BitShift = MI.getOperand(5).getReg();
6045   unsigned NegBitShift = MI.getOperand(6).getReg();
6046   int64_t BitSize = MI.getOperand(7).getImm();
6047   DebugLoc DL = MI.getDebugLoc();
6048 
6049   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6050 
6051   // Get the right opcodes for the displacement.
6052   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
6053   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6054   assert(LOpcode && CSOpcode && "Displacement out of range");
6055 
6056   // Create virtual registers for temporary results.
6057   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
6058   unsigned OldVal       = MRI.createVirtualRegister(RC);
6059   unsigned CmpVal       = MRI.createVirtualRegister(RC);
6060   unsigned SwapVal      = MRI.createVirtualRegister(RC);
6061   unsigned StoreVal     = MRI.createVirtualRegister(RC);
6062   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
6063   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
6064   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6065 
6066   // Insert 2 basic blocks for the loop.
6067   MachineBasicBlock *StartMBB = MBB;
6068   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6069   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6070   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
6071 
6072   //  StartMBB:
6073   //   ...
6074   //   %OrigOldVal     = L Disp(%Base)
6075   //   # fall through to LoopMMB
6076   MBB = StartMBB;
6077   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6078       .add(Base)
6079       .addImm(Disp)
6080       .addReg(0);
6081   MBB->addSuccessor(LoopMBB);
6082 
6083   //  LoopMBB:
6084   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6085   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6086   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6087   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
6088   //                      ^^ The low BitSize bits contain the field
6089   //                         of interest.
6090   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6091   //                      ^^ Replace the upper 32-BitSize bits of the
6092   //                         comparison value with those that we loaded,
6093   //                         so that we can use a full word comparison.
6094   //   CR %Dest, %RetryCmpVal
6095   //   JNE DoneMBB
6096   //   # Fall through to SetMBB
6097   MBB = LoopMBB;
6098   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6099     .addReg(OrigOldVal).addMBB(StartMBB)
6100     .addReg(RetryOldVal).addMBB(SetMBB);
6101   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6102     .addReg(OrigCmpVal).addMBB(StartMBB)
6103     .addReg(RetryCmpVal).addMBB(SetMBB);
6104   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6105     .addReg(OrigSwapVal).addMBB(StartMBB)
6106     .addReg(RetrySwapVal).addMBB(SetMBB);
6107   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6108     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6109   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6110     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6111   BuildMI(MBB, DL, TII->get(SystemZ::CR))
6112     .addReg(Dest).addReg(RetryCmpVal);
6113   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6114     .addImm(SystemZ::CCMASK_ICMP)
6115     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6116   MBB->addSuccessor(DoneMBB);
6117   MBB->addSuccessor(SetMBB);
6118 
6119   //  SetMBB:
6120   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6121   //                      ^^ Replace the upper 32-BitSize bits of the new
6122   //                         value with those that we loaded.
6123   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6124   //                      ^^ Rotate the new field to its proper position.
6125   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6126   //   JNE LoopMBB
6127   //   # fall through to ExitMMB
6128   MBB = SetMBB;
6129   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6130     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6131   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6132     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6133   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6134       .addReg(OldVal)
6135       .addReg(StoreVal)
6136       .add(Base)
6137       .addImm(Disp);
6138   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6139     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6140   MBB->addSuccessor(LoopMBB);
6141   MBB->addSuccessor(DoneMBB);
6142 
6143   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6144   // to the block after the loop.  At this point, CC may have been defined
6145   // either by the CR in LoopMBB or by the CS in SetMBB.
6146   if (!MI.registerDefIsDead(SystemZ::CC))
6147     DoneMBB->addLiveIn(SystemZ::CC);
6148 
6149   MI.eraseFromParent();
6150   return DoneMBB;
6151 }
6152 
6153 // Emit a move from two GR64s to a GR128.
6154 MachineBasicBlock *
6155 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6156                                    MachineBasicBlock *MBB) const {
6157   MachineFunction &MF = *MBB->getParent();
6158   const SystemZInstrInfo *TII =
6159       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6160   MachineRegisterInfo &MRI = MF.getRegInfo();
6161   DebugLoc DL = MI.getDebugLoc();
6162 
6163   unsigned Dest = MI.getOperand(0).getReg();
6164   unsigned Hi = MI.getOperand(1).getReg();
6165   unsigned Lo = MI.getOperand(2).getReg();
6166   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6167   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6168 
6169   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6170   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6171     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6172   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6173     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6174 
6175   MI.eraseFromParent();
6176   return MBB;
6177 }
6178 
6179 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6180 // if the high register of the GR128 value must be cleared or false if
6181 // it's "don't care".
6182 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6183                                                      MachineBasicBlock *MBB,
6184                                                      bool ClearEven) const {
6185   MachineFunction &MF = *MBB->getParent();
6186   const SystemZInstrInfo *TII =
6187       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6188   MachineRegisterInfo &MRI = MF.getRegInfo();
6189   DebugLoc DL = MI.getDebugLoc();
6190 
6191   unsigned Dest = MI.getOperand(0).getReg();
6192   unsigned Src = MI.getOperand(1).getReg();
6193   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6194 
6195   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6196   if (ClearEven) {
6197     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6198     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6199 
6200     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6201       .addImm(0);
6202     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6203       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6204     In128 = NewIn128;
6205   }
6206   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6207     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6208 
6209   MI.eraseFromParent();
6210   return MBB;
6211 }
6212 
6213 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6214     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6215   MachineFunction &MF = *MBB->getParent();
6216   const SystemZInstrInfo *TII =
6217       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6218   MachineRegisterInfo &MRI = MF.getRegInfo();
6219   DebugLoc DL = MI.getDebugLoc();
6220 
6221   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6222   uint64_t DestDisp = MI.getOperand(1).getImm();
6223   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6224   uint64_t SrcDisp = MI.getOperand(3).getImm();
6225   uint64_t Length = MI.getOperand(4).getImm();
6226 
6227   // When generating more than one CLC, all but the last will need to
6228   // branch to the end when a difference is found.
6229   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6230                                splitBlockAfter(MI, MBB) : nullptr);
6231 
6232   // Check for the loop form, in which operand 5 is the trip count.
6233   if (MI.getNumExplicitOperands() > 5) {
6234     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6235 
6236     uint64_t StartCountReg = MI.getOperand(5).getReg();
6237     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
6238     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
6239                               forceReg(MI, DestBase, TII));
6240 
6241     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6242     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
6243     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6244                             MRI.createVirtualRegister(RC));
6245     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
6246     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6247                             MRI.createVirtualRegister(RC));
6248 
6249     RC = &SystemZ::GR64BitRegClass;
6250     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6251     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6252 
6253     MachineBasicBlock *StartMBB = MBB;
6254     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6255     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6256     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6257 
6258     //  StartMBB:
6259     //   # fall through to LoopMMB
6260     MBB->addSuccessor(LoopMBB);
6261 
6262     //  LoopMBB:
6263     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6264     //                      [ %NextDestReg, NextMBB ]
6265     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6266     //                     [ %NextSrcReg, NextMBB ]
6267     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6268     //                       [ %NextCountReg, NextMBB ]
6269     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
6270     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6271     //   ( JLH EndMBB )
6272     //
6273     // The prefetch is used only for MVC.  The JLH is used only for CLC.
6274     MBB = LoopMBB;
6275 
6276     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6277       .addReg(StartDestReg).addMBB(StartMBB)
6278       .addReg(NextDestReg).addMBB(NextMBB);
6279     if (!HaveSingleBase)
6280       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6281         .addReg(StartSrcReg).addMBB(StartMBB)
6282         .addReg(NextSrcReg).addMBB(NextMBB);
6283     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6284       .addReg(StartCountReg).addMBB(StartMBB)
6285       .addReg(NextCountReg).addMBB(NextMBB);
6286     if (Opcode == SystemZ::MVC)
6287       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6288         .addImm(SystemZ::PFD_WRITE)
6289         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6290     BuildMI(MBB, DL, TII->get(Opcode))
6291       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6292       .addReg(ThisSrcReg).addImm(SrcDisp);
6293     if (EndMBB) {
6294       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6295         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6296         .addMBB(EndMBB);
6297       MBB->addSuccessor(EndMBB);
6298       MBB->addSuccessor(NextMBB);
6299     }
6300 
6301     // NextMBB:
6302     //   %NextDestReg = LA 256(%ThisDestReg)
6303     //   %NextSrcReg = LA 256(%ThisSrcReg)
6304     //   %NextCountReg = AGHI %ThisCountReg, -1
6305     //   CGHI %NextCountReg, 0
6306     //   JLH LoopMBB
6307     //   # fall through to DoneMMB
6308     //
6309     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6310     MBB = NextMBB;
6311 
6312     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6313       .addReg(ThisDestReg).addImm(256).addReg(0);
6314     if (!HaveSingleBase)
6315       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6316         .addReg(ThisSrcReg).addImm(256).addReg(0);
6317     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6318       .addReg(ThisCountReg).addImm(-1);
6319     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6320       .addReg(NextCountReg).addImm(0);
6321     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6322       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6323       .addMBB(LoopMBB);
6324     MBB->addSuccessor(LoopMBB);
6325     MBB->addSuccessor(DoneMBB);
6326 
6327     DestBase = MachineOperand::CreateReg(NextDestReg, false);
6328     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6329     Length &= 255;
6330     MBB = DoneMBB;
6331   }
6332   // Handle any remaining bytes with straight-line code.
6333   while (Length > 0) {
6334     uint64_t ThisLength = std::min(Length, uint64_t(256));
6335     // The previous iteration might have created out-of-range displacements.
6336     // Apply them using LAY if so.
6337     if (!isUInt<12>(DestDisp)) {
6338       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6339       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6340           .add(DestBase)
6341           .addImm(DestDisp)
6342           .addReg(0);
6343       DestBase = MachineOperand::CreateReg(Reg, false);
6344       DestDisp = 0;
6345     }
6346     if (!isUInt<12>(SrcDisp)) {
6347       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6348       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6349           .add(SrcBase)
6350           .addImm(SrcDisp)
6351           .addReg(0);
6352       SrcBase = MachineOperand::CreateReg(Reg, false);
6353       SrcDisp = 0;
6354     }
6355     BuildMI(*MBB, MI, DL, TII->get(Opcode))
6356         .add(DestBase)
6357         .addImm(DestDisp)
6358         .addImm(ThisLength)
6359         .add(SrcBase)
6360         .addImm(SrcDisp)
6361         ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
6362     DestDisp += ThisLength;
6363     SrcDisp += ThisLength;
6364     Length -= ThisLength;
6365     // If there's another CLC to go, branch to the end if a difference
6366     // was found.
6367     if (EndMBB && Length > 0) {
6368       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6369       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6370         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6371         .addMBB(EndMBB);
6372       MBB->addSuccessor(EndMBB);
6373       MBB->addSuccessor(NextMBB);
6374       MBB = NextMBB;
6375     }
6376   }
6377   if (EndMBB) {
6378     MBB->addSuccessor(EndMBB);
6379     MBB = EndMBB;
6380     MBB->addLiveIn(SystemZ::CC);
6381   }
6382 
6383   MI.eraseFromParent();
6384   return MBB;
6385 }
6386 
6387 // Decompose string pseudo-instruction MI into a loop that continually performs
6388 // Opcode until CC != 3.
6389 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
6390     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6391   MachineFunction &MF = *MBB->getParent();
6392   const SystemZInstrInfo *TII =
6393       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6394   MachineRegisterInfo &MRI = MF.getRegInfo();
6395   DebugLoc DL = MI.getDebugLoc();
6396 
6397   uint64_t End1Reg = MI.getOperand(0).getReg();
6398   uint64_t Start1Reg = MI.getOperand(1).getReg();
6399   uint64_t Start2Reg = MI.getOperand(2).getReg();
6400   uint64_t CharReg = MI.getOperand(3).getReg();
6401 
6402   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
6403   uint64_t This1Reg = MRI.createVirtualRegister(RC);
6404   uint64_t This2Reg = MRI.createVirtualRegister(RC);
6405   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
6406 
6407   MachineBasicBlock *StartMBB = MBB;
6408   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6409   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6410 
6411   //  StartMBB:
6412   //   # fall through to LoopMMB
6413   MBB->addSuccessor(LoopMBB);
6414 
6415   //  LoopMBB:
6416   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
6417   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
6418   //   R0L = %CharReg
6419   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
6420   //   JO LoopMBB
6421   //   # fall through to DoneMMB
6422   //
6423   // The load of R0L can be hoisted by post-RA LICM.
6424   MBB = LoopMBB;
6425 
6426   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
6427     .addReg(Start1Reg).addMBB(StartMBB)
6428     .addReg(End1Reg).addMBB(LoopMBB);
6429   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
6430     .addReg(Start2Reg).addMBB(StartMBB)
6431     .addReg(End2Reg).addMBB(LoopMBB);
6432   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
6433   BuildMI(MBB, DL, TII->get(Opcode))
6434     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
6435     .addReg(This1Reg).addReg(This2Reg);
6436   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6437     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
6438   MBB->addSuccessor(LoopMBB);
6439   MBB->addSuccessor(DoneMBB);
6440 
6441   DoneMBB->addLiveIn(SystemZ::CC);
6442 
6443   MI.eraseFromParent();
6444   return DoneMBB;
6445 }
6446 
6447 // Update TBEGIN instruction with final opcode and register clobbers.
6448 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
6449     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
6450     bool NoFloat) const {
6451   MachineFunction &MF = *MBB->getParent();
6452   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6453   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
6454 
6455   // Update opcode.
6456   MI.setDesc(TII->get(Opcode));
6457 
6458   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
6459   // Make sure to add the corresponding GRSM bits if they are missing.
6460   uint64_t Control = MI.getOperand(2).getImm();
6461   static const unsigned GPRControlBit[16] = {
6462     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
6463     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
6464   };
6465   Control |= GPRControlBit[15];
6466   if (TFI->hasFP(MF))
6467     Control |= GPRControlBit[11];
6468   MI.getOperand(2).setImm(Control);
6469 
6470   // Add GPR clobbers.
6471   for (int I = 0; I < 16; I++) {
6472     if ((Control & GPRControlBit[I]) == 0) {
6473       unsigned Reg = SystemZMC::GR64Regs[I];
6474       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6475     }
6476   }
6477 
6478   // Add FPR/VR clobbers.
6479   if (!NoFloat && (Control & 4) != 0) {
6480     if (Subtarget.hasVector()) {
6481       for (int I = 0; I < 32; I++) {
6482         unsigned Reg = SystemZMC::VR128Regs[I];
6483         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6484       }
6485     } else {
6486       for (int I = 0; I < 16; I++) {
6487         unsigned Reg = SystemZMC::FP64Regs[I];
6488         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6489       }
6490     }
6491   }
6492 
6493   return MBB;
6494 }
6495 
6496 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6497     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6498   MachineFunction &MF = *MBB->getParent();
6499   MachineRegisterInfo *MRI = &MF.getRegInfo();
6500   const SystemZInstrInfo *TII =
6501       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6502   DebugLoc DL = MI.getDebugLoc();
6503 
6504   unsigned SrcReg = MI.getOperand(0).getReg();
6505 
6506   // Create new virtual register of the same class as source.
6507   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
6508   unsigned DstReg = MRI->createVirtualRegister(RC);
6509 
6510   // Replace pseudo with a normal load-and-test that models the def as
6511   // well.
6512   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
6513     .addReg(SrcReg);
6514   MI.eraseFromParent();
6515 
6516   return MBB;
6517 }
6518 
6519 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
6520     MachineInstr &MI, MachineBasicBlock *MBB) const {
6521   switch (MI.getOpcode()) {
6522   case SystemZ::Select32Mux:
6523     return emitSelect(MI, MBB,
6524                       Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0);
6525   case SystemZ::Select32:
6526     return emitSelect(MI, MBB, SystemZ::LOCR);
6527   case SystemZ::Select64:
6528     return emitSelect(MI, MBB, SystemZ::LOCGR);
6529   case SystemZ::SelectF32:
6530   case SystemZ::SelectF64:
6531   case SystemZ::SelectF128:
6532   case SystemZ::SelectVR128:
6533     return emitSelect(MI, MBB, 0);
6534 
6535   case SystemZ::CondStore8Mux:
6536     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6537   case SystemZ::CondStore8MuxInv:
6538     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6539   case SystemZ::CondStore16Mux:
6540     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6541   case SystemZ::CondStore16MuxInv:
6542     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6543   case SystemZ::CondStore32Mux:
6544     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
6545   case SystemZ::CondStore32MuxInv:
6546     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
6547   case SystemZ::CondStore8:
6548     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6549   case SystemZ::CondStore8Inv:
6550     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6551   case SystemZ::CondStore16:
6552     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6553   case SystemZ::CondStore16Inv:
6554     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6555   case SystemZ::CondStore32:
6556     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6557   case SystemZ::CondStore32Inv:
6558     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6559   case SystemZ::CondStore64:
6560     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6561   case SystemZ::CondStore64Inv:
6562     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6563   case SystemZ::CondStoreF32:
6564     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6565   case SystemZ::CondStoreF32Inv:
6566     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6567   case SystemZ::CondStoreF64:
6568     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6569   case SystemZ::CondStoreF64Inv:
6570     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6571 
6572   case SystemZ::PAIR128:
6573     return emitPair128(MI, MBB);
6574   case SystemZ::AEXT128:
6575     return emitExt128(MI, MBB, false);
6576   case SystemZ::ZEXT128:
6577     return emitExt128(MI, MBB, true);
6578 
6579   case SystemZ::ATOMIC_SWAPW:
6580     return emitAtomicLoadBinary(MI, MBB, 0, 0);
6581   case SystemZ::ATOMIC_SWAP_32:
6582     return emitAtomicLoadBinary(MI, MBB, 0, 32);
6583   case SystemZ::ATOMIC_SWAP_64:
6584     return emitAtomicLoadBinary(MI, MBB, 0, 64);
6585 
6586   case SystemZ::ATOMIC_LOADW_AR:
6587     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6588   case SystemZ::ATOMIC_LOADW_AFI:
6589     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6590   case SystemZ::ATOMIC_LOAD_AR:
6591     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6592   case SystemZ::ATOMIC_LOAD_AHI:
6593     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6594   case SystemZ::ATOMIC_LOAD_AFI:
6595     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6596   case SystemZ::ATOMIC_LOAD_AGR:
6597     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6598   case SystemZ::ATOMIC_LOAD_AGHI:
6599     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6600   case SystemZ::ATOMIC_LOAD_AGFI:
6601     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6602 
6603   case SystemZ::ATOMIC_LOADW_SR:
6604     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6605   case SystemZ::ATOMIC_LOAD_SR:
6606     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6607   case SystemZ::ATOMIC_LOAD_SGR:
6608     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6609 
6610   case SystemZ::ATOMIC_LOADW_NR:
6611     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6612   case SystemZ::ATOMIC_LOADW_NILH:
6613     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6614   case SystemZ::ATOMIC_LOAD_NR:
6615     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6616   case SystemZ::ATOMIC_LOAD_NILL:
6617     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6618   case SystemZ::ATOMIC_LOAD_NILH:
6619     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6620   case SystemZ::ATOMIC_LOAD_NILF:
6621     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6622   case SystemZ::ATOMIC_LOAD_NGR:
6623     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6624   case SystemZ::ATOMIC_LOAD_NILL64:
6625     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6626   case SystemZ::ATOMIC_LOAD_NILH64:
6627     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6628   case SystemZ::ATOMIC_LOAD_NIHL64:
6629     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6630   case SystemZ::ATOMIC_LOAD_NIHH64:
6631     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6632   case SystemZ::ATOMIC_LOAD_NILF64:
6633     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6634   case SystemZ::ATOMIC_LOAD_NIHF64:
6635     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6636 
6637   case SystemZ::ATOMIC_LOADW_OR:
6638     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6639   case SystemZ::ATOMIC_LOADW_OILH:
6640     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6641   case SystemZ::ATOMIC_LOAD_OR:
6642     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6643   case SystemZ::ATOMIC_LOAD_OILL:
6644     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6645   case SystemZ::ATOMIC_LOAD_OILH:
6646     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6647   case SystemZ::ATOMIC_LOAD_OILF:
6648     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6649   case SystemZ::ATOMIC_LOAD_OGR:
6650     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6651   case SystemZ::ATOMIC_LOAD_OILL64:
6652     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6653   case SystemZ::ATOMIC_LOAD_OILH64:
6654     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6655   case SystemZ::ATOMIC_LOAD_OIHL64:
6656     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6657   case SystemZ::ATOMIC_LOAD_OIHH64:
6658     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6659   case SystemZ::ATOMIC_LOAD_OILF64:
6660     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6661   case SystemZ::ATOMIC_LOAD_OIHF64:
6662     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6663 
6664   case SystemZ::ATOMIC_LOADW_XR:
6665     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6666   case SystemZ::ATOMIC_LOADW_XILF:
6667     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6668   case SystemZ::ATOMIC_LOAD_XR:
6669     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6670   case SystemZ::ATOMIC_LOAD_XILF:
6671     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6672   case SystemZ::ATOMIC_LOAD_XGR:
6673     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6674   case SystemZ::ATOMIC_LOAD_XILF64:
6675     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6676   case SystemZ::ATOMIC_LOAD_XIHF64:
6677     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6678 
6679   case SystemZ::ATOMIC_LOADW_NRi:
6680     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6681   case SystemZ::ATOMIC_LOADW_NILHi:
6682     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6683   case SystemZ::ATOMIC_LOAD_NRi:
6684     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6685   case SystemZ::ATOMIC_LOAD_NILLi:
6686     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6687   case SystemZ::ATOMIC_LOAD_NILHi:
6688     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6689   case SystemZ::ATOMIC_LOAD_NILFi:
6690     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6691   case SystemZ::ATOMIC_LOAD_NGRi:
6692     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6693   case SystemZ::ATOMIC_LOAD_NILL64i:
6694     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6695   case SystemZ::ATOMIC_LOAD_NILH64i:
6696     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
6697   case SystemZ::ATOMIC_LOAD_NIHL64i:
6698     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6699   case SystemZ::ATOMIC_LOAD_NIHH64i:
6700     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
6701   case SystemZ::ATOMIC_LOAD_NILF64i:
6702     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
6703   case SystemZ::ATOMIC_LOAD_NIHF64i:
6704     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
6705 
6706   case SystemZ::ATOMIC_LOADW_MIN:
6707     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6708                                 SystemZ::CCMASK_CMP_LE, 0);
6709   case SystemZ::ATOMIC_LOAD_MIN_32:
6710     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6711                                 SystemZ::CCMASK_CMP_LE, 32);
6712   case SystemZ::ATOMIC_LOAD_MIN_64:
6713     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6714                                 SystemZ::CCMASK_CMP_LE, 64);
6715 
6716   case SystemZ::ATOMIC_LOADW_MAX:
6717     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6718                                 SystemZ::CCMASK_CMP_GE, 0);
6719   case SystemZ::ATOMIC_LOAD_MAX_32:
6720     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6721                                 SystemZ::CCMASK_CMP_GE, 32);
6722   case SystemZ::ATOMIC_LOAD_MAX_64:
6723     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6724                                 SystemZ::CCMASK_CMP_GE, 64);
6725 
6726   case SystemZ::ATOMIC_LOADW_UMIN:
6727     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6728                                 SystemZ::CCMASK_CMP_LE, 0);
6729   case SystemZ::ATOMIC_LOAD_UMIN_32:
6730     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6731                                 SystemZ::CCMASK_CMP_LE, 32);
6732   case SystemZ::ATOMIC_LOAD_UMIN_64:
6733     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6734                                 SystemZ::CCMASK_CMP_LE, 64);
6735 
6736   case SystemZ::ATOMIC_LOADW_UMAX:
6737     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6738                                 SystemZ::CCMASK_CMP_GE, 0);
6739   case SystemZ::ATOMIC_LOAD_UMAX_32:
6740     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6741                                 SystemZ::CCMASK_CMP_GE, 32);
6742   case SystemZ::ATOMIC_LOAD_UMAX_64:
6743     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6744                                 SystemZ::CCMASK_CMP_GE, 64);
6745 
6746   case SystemZ::ATOMIC_CMP_SWAPW:
6747     return emitAtomicCmpSwapW(MI, MBB);
6748   case SystemZ::MVCSequence:
6749   case SystemZ::MVCLoop:
6750     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
6751   case SystemZ::NCSequence:
6752   case SystemZ::NCLoop:
6753     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6754   case SystemZ::OCSequence:
6755   case SystemZ::OCLoop:
6756     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6757   case SystemZ::XCSequence:
6758   case SystemZ::XCLoop:
6759     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
6760   case SystemZ::CLCSequence:
6761   case SystemZ::CLCLoop:
6762     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
6763   case SystemZ::CLSTLoop:
6764     return emitStringWrapper(MI, MBB, SystemZ::CLST);
6765   case SystemZ::MVSTLoop:
6766     return emitStringWrapper(MI, MBB, SystemZ::MVST);
6767   case SystemZ::SRSTLoop:
6768     return emitStringWrapper(MI, MBB, SystemZ::SRST);
6769   case SystemZ::TBEGIN:
6770     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6771   case SystemZ::TBEGIN_nofloat:
6772     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6773   case SystemZ::TBEGINC:
6774     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
6775   case SystemZ::LTEBRCompare_VecPseudo:
6776     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6777   case SystemZ::LTDBRCompare_VecPseudo:
6778     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6779   case SystemZ::LTXBRCompare_VecPseudo:
6780     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6781 
6782   default:
6783     llvm_unreachable("Unexpected instr type to insert");
6784   }
6785 }
6786 
6787 // This is only used by the isel schedulers, and is needed only to prevent
6788 // compiler from crashing when list-ilp is used.
6789 const TargetRegisterClass *
6790 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
6791   if (VT == MVT::Untyped)
6792     return &SystemZ::ADDR128BitRegClass;
6793   return TargetLowering::getRepRegClassFor(VT);
6794 }
6795