1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       setOperationAction(ISD::ABS, VT, Legal);
168 
169       // Expand individual DIV and REMs into DIVREMs.
170       setOperationAction(ISD::SDIV, VT, Expand);
171       setOperationAction(ISD::UDIV, VT, Expand);
172       setOperationAction(ISD::SREM, VT, Expand);
173       setOperationAction(ISD::UREM, VT, Expand);
174       setOperationAction(ISD::SDIVREM, VT, Custom);
175       setOperationAction(ISD::UDIVREM, VT, Custom);
176 
177       // Support addition/subtraction with overflow.
178       setOperationAction(ISD::SADDO, VT, Custom);
179       setOperationAction(ISD::SSUBO, VT, Custom);
180 
181       // Support addition/subtraction with carry.
182       setOperationAction(ISD::UADDO, VT, Custom);
183       setOperationAction(ISD::USUBO, VT, Custom);
184 
185       // Support carry in as value rather than glue.
186       setOperationAction(ISD::ADDCARRY, VT, Custom);
187       setOperationAction(ISD::SUBCARRY, VT, Custom);
188 
189       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
190       // stores, putting a serialization instruction after the stores.
191       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
192       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
193 
194       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
195       // available, or if the operand is constant.
196       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
197 
198       // Use POPCNT on z196 and above.
199       if (Subtarget.hasPopulationCount())
200         setOperationAction(ISD::CTPOP, VT, Custom);
201       else
202         setOperationAction(ISD::CTPOP, VT, Expand);
203 
204       // No special instructions for these.
205       setOperationAction(ISD::CTTZ,            VT, Expand);
206       setOperationAction(ISD::ROTR,            VT, Expand);
207 
208       // Use *MUL_LOHI where possible instead of MULH*.
209       setOperationAction(ISD::MULHS, VT, Expand);
210       setOperationAction(ISD::MULHU, VT, Expand);
211       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
212       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
213 
214       // Only z196 and above have native support for conversions to unsigned.
215       // On z10, promoting to i64 doesn't generate an inexact condition for
216       // values that are outside the i32 range but in the i64 range, so use
217       // the default expansion.
218       if (!Subtarget.hasFPExtension())
219         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
220 
221       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
222       // default to Expand, so need to be modified to Legal where appropriate.
223       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
224       if (Subtarget.hasFPExtension())
225         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
226 
227       // And similarly for STRICT_[SU]INT_TO_FP.
228       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229       if (Subtarget.hasFPExtension())
230         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
231     }
232   }
233 
234   // Type legalization will convert 8- and 16-bit atomic operations into
235   // forms that operate on i32s (but still keeping the original memory VT).
236   // Lower them into full i32 operations.
237   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
248 
249   // Even though i128 is not a legal type, we still need to custom lower
250   // the atomic operations in order to exploit SystemZ instructions.
251   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
252   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
253 
254   // We can use the CC result of compare-and-swap to implement
255   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
257   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
259 
260   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
261 
262   // Traps are legal, as we will convert them to "j .+2".
263   setOperationAction(ISD::TRAP, MVT::Other, Legal);
264 
265   // z10 has instructions for signed but not unsigned FP conversion.
266   // Handle unsigned 32-bit types as signed 64-bit types.
267   if (!Subtarget.hasFPExtension()) {
268     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
272   }
273 
274   // We have native support for a 64-bit CTLZ, via FLOGR.
275   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
276   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
277   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
278 
279   // On z15 we have native support for a 64-bit CTPOP.
280   if (Subtarget.hasMiscellaneousExtensions3()) {
281     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
282     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
283   }
284 
285   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
286   setOperationAction(ISD::OR, MVT::i64, Custom);
287 
288   // FIXME: Can we support these natively?
289   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
290   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
291   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
292 
293   // We have native instructions for i8, i16 and i32 extensions, but not i1.
294   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
295   for (MVT VT : MVT::integer_valuetypes()) {
296     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
297     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
298     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
299   }
300 
301   // Handle the various types of symbolic address.
302   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
303   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
304   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
305   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
306   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
307 
308   // We need to handle dynamic allocations specially because of the
309   // 160-byte area at the bottom of the stack.
310   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
311   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
312 
313   // Use custom expanders so that we can force the function to use
314   // a frame pointer.
315   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
316   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
317 
318   // Handle prefetches with PFD or PFDRL.
319   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
320 
321   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
322     // Assume by default that all vector operations need to be expanded.
323     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
324       if (getOperationAction(Opcode, VT) == Legal)
325         setOperationAction(Opcode, VT, Expand);
326 
327     // Likewise all truncating stores and extending loads.
328     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
329       setTruncStoreAction(VT, InnerVT, Expand);
330       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
331       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
332       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
333     }
334 
335     if (isTypeLegal(VT)) {
336       // These operations are legal for anything that can be stored in a
337       // vector register, even if there is no native support for the format
338       // as such.  In particular, we can do these for v4f32 even though there
339       // are no specific instructions for that format.
340       setOperationAction(ISD::LOAD, VT, Legal);
341       setOperationAction(ISD::STORE, VT, Legal);
342       setOperationAction(ISD::VSELECT, VT, Legal);
343       setOperationAction(ISD::BITCAST, VT, Legal);
344       setOperationAction(ISD::UNDEF, VT, Legal);
345 
346       // Likewise, except that we need to replace the nodes with something
347       // more specific.
348       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
349       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
350     }
351   }
352 
353   // Handle integer vector types.
354   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
355     if (isTypeLegal(VT)) {
356       // These operations have direct equivalents.
357       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
358       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
359       setOperationAction(ISD::ADD, VT, Legal);
360       setOperationAction(ISD::SUB, VT, Legal);
361       if (VT != MVT::v2i64)
362         setOperationAction(ISD::MUL, VT, Legal);
363       setOperationAction(ISD::ABS, VT, Legal);
364       setOperationAction(ISD::AND, VT, Legal);
365       setOperationAction(ISD::OR, VT, Legal);
366       setOperationAction(ISD::XOR, VT, Legal);
367       if (Subtarget.hasVectorEnhancements1())
368         setOperationAction(ISD::CTPOP, VT, Legal);
369       else
370         setOperationAction(ISD::CTPOP, VT, Custom);
371       setOperationAction(ISD::CTTZ, VT, Legal);
372       setOperationAction(ISD::CTLZ, VT, Legal);
373 
374       // Convert a GPR scalar to a vector by inserting it into element 0.
375       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
376 
377       // Use a series of unpacks for extensions.
378       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
379       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
380 
381       // Detect shifts by a scalar amount and convert them into
382       // V*_BY_SCALAR.
383       setOperationAction(ISD::SHL, VT, Custom);
384       setOperationAction(ISD::SRA, VT, Custom);
385       setOperationAction(ISD::SRL, VT, Custom);
386 
387       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
388       // converted into ROTL.
389       setOperationAction(ISD::ROTL, VT, Expand);
390       setOperationAction(ISD::ROTR, VT, Expand);
391 
392       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
393       // and inverting the result as necessary.
394       setOperationAction(ISD::SETCC, VT, Custom);
395       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
396       if (Subtarget.hasVectorEnhancements1())
397         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
398     }
399   }
400 
401   if (Subtarget.hasVector()) {
402     // There should be no need to check for float types other than v2f64
403     // since <2 x f32> isn't a legal type.
404     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
405     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
406     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
407     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
408     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
409     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
410     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
411     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
412 
413     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
414     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
415     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
416     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
417     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
418     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
419     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
421   }
422 
423   if (Subtarget.hasVectorEnhancements2()) {
424     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
425     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
426     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
427     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
428     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
429     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
430     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
431     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
432 
433     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
434     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
435     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
436     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
437     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
438     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
439     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
441   }
442 
443   // Handle floating-point types.
444   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
445        I <= MVT::LAST_FP_VALUETYPE;
446        ++I) {
447     MVT VT = MVT::SimpleValueType(I);
448     if (isTypeLegal(VT)) {
449       // We can use FI for FRINT.
450       setOperationAction(ISD::FRINT, VT, Legal);
451 
452       // We can use the extended form of FI for other rounding operations.
453       if (Subtarget.hasFPExtension()) {
454         setOperationAction(ISD::FNEARBYINT, VT, Legal);
455         setOperationAction(ISD::FFLOOR, VT, Legal);
456         setOperationAction(ISD::FCEIL, VT, Legal);
457         setOperationAction(ISD::FTRUNC, VT, Legal);
458         setOperationAction(ISD::FROUND, VT, Legal);
459       }
460 
461       // No special instructions for these.
462       setOperationAction(ISD::FSIN, VT, Expand);
463       setOperationAction(ISD::FCOS, VT, Expand);
464       setOperationAction(ISD::FSINCOS, VT, Expand);
465       setOperationAction(ISD::FREM, VT, Expand);
466       setOperationAction(ISD::FPOW, VT, Expand);
467 
468       // Handle constrained floating-point operations.
469       setOperationAction(ISD::STRICT_FADD, VT, Legal);
470       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
471       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
472       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
473       setOperationAction(ISD::STRICT_FMA, VT, Legal);
474       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
475       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
476       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
477       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
478       if (Subtarget.hasFPExtension()) {
479         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
480         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
481         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
482         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
483         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
484       }
485     }
486   }
487 
488   // Handle floating-point vector types.
489   if (Subtarget.hasVector()) {
490     // Scalar-to-vector conversion is just a subreg.
491     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
492     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
493 
494     // Some insertions and extractions can be done directly but others
495     // need to go via integers.
496     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
497     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
498     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
499     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
500 
501     // These operations have direct equivalents.
502     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
503     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
504     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
505     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
506     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
507     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
508     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
509     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
510     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
511     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
512     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
513     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
514     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
515     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
516 
517     // Handle constrained floating-point operations.
518     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
530   }
531 
532   // The vector enhancements facility 1 has instructions for these.
533   if (Subtarget.hasVectorEnhancements1()) {
534     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
535     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
536     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
537     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
538     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
539     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
540     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
541     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
542     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
543     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
544     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
545     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
546     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
547     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
548 
549     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
550     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
551     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
552     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
553 
554     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
555     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
556     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
557     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
558 
559     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
560     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
561     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
562     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
563 
564     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
565     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
566     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
567     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
568 
569     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
570     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
571     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
572     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
573 
574     // Handle constrained floating-point operations.
575     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
587     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
588                      MVT::v4f32, MVT::v2f64 }) {
589       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
590       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
591       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
592       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
593     }
594   }
595 
596   // We only have fused f128 multiply-addition on vector registers.
597   if (!Subtarget.hasVectorEnhancements1()) {
598     setOperationAction(ISD::FMA, MVT::f128, Expand);
599     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
600   }
601 
602   // We don't have a copysign instruction on vector registers.
603   if (Subtarget.hasVectorEnhancements1())
604     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
605 
606   // Needed so that we don't try to implement f128 constant loads using
607   // a load-and-extend of a f80 constant (in cases where the constant
608   // would fit in an f80).
609   for (MVT VT : MVT::fp_valuetypes())
610     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
611 
612   // We don't have extending load instruction on vector registers.
613   if (Subtarget.hasVectorEnhancements1()) {
614     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
615     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
616   }
617 
618   // Floating-point truncation and stores need to be done separately.
619   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
620   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
621   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
622 
623   // We have 64-bit FPR<->GPR moves, but need special handling for
624   // 32-bit forms.
625   if (!Subtarget.hasVector()) {
626     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
627     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
628   }
629 
630   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
631   // structure, but VAEND is a no-op.
632   setOperationAction(ISD::VASTART, MVT::Other, Custom);
633   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
634   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
635 
636   // Codes for which we want to perform some z-specific combinations.
637   setTargetDAGCombine(ISD::ZERO_EXTEND);
638   setTargetDAGCombine(ISD::SIGN_EXTEND);
639   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
640   setTargetDAGCombine(ISD::LOAD);
641   setTargetDAGCombine(ISD::STORE);
642   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
643   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
644   setTargetDAGCombine(ISD::FP_ROUND);
645   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
646   setTargetDAGCombine(ISD::FP_EXTEND);
647   setTargetDAGCombine(ISD::SINT_TO_FP);
648   setTargetDAGCombine(ISD::UINT_TO_FP);
649   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
650   setTargetDAGCombine(ISD::BSWAP);
651   setTargetDAGCombine(ISD::SDIV);
652   setTargetDAGCombine(ISD::UDIV);
653   setTargetDAGCombine(ISD::SREM);
654   setTargetDAGCombine(ISD::UREM);
655   setTargetDAGCombine(ISD::INTRINSIC_VOID);
656   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
657 
658   // Handle intrinsics.
659   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
660   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
661 
662   // We want to use MVC in preference to even a single load/store pair.
663   MaxStoresPerMemcpy = 0;
664   MaxStoresPerMemcpyOptSize = 0;
665 
666   // The main memset sequence is a byte store followed by an MVC.
667   // Two STC or MV..I stores win over that, but the kind of fused stores
668   // generated by target-independent code don't when the byte value is
669   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
670   // than "STC;MVC".  Handle the choice in target-specific code instead.
671   MaxStoresPerMemset = 0;
672   MaxStoresPerMemsetOptSize = 0;
673 
674   // Default to having -disable-strictnode-mutation on
675   IsStrictFPEnabled = true;
676 }
677 
678 bool SystemZTargetLowering::useSoftFloat() const {
679   return Subtarget.hasSoftFloat();
680 }
681 
682 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
683                                               LLVMContext &, EVT VT) const {
684   if (!VT.isVector())
685     return MVT::i32;
686   return VT.changeVectorElementTypeToInteger();
687 }
688 
689 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
690     const MachineFunction &MF, EVT VT) const {
691   VT = VT.getScalarType();
692 
693   if (!VT.isSimple())
694     return false;
695 
696   switch (VT.getSimpleVT().SimpleTy) {
697   case MVT::f32:
698   case MVT::f64:
699     return true;
700   case MVT::f128:
701     return Subtarget.hasVectorEnhancements1();
702   default:
703     break;
704   }
705 
706   return false;
707 }
708 
709 // Return true if the constant can be generated with a vector instruction,
710 // such as VGM, VGMB or VREPI.
711 bool SystemZVectorConstantInfo::isVectorConstantLegal(
712     const SystemZSubtarget &Subtarget) {
713   const SystemZInstrInfo *TII =
714       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
715   if (!Subtarget.hasVector() ||
716       (isFP128 && !Subtarget.hasVectorEnhancements1()))
717     return false;
718 
719   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
720   // preferred way of creating all-zero and all-one vectors so give it
721   // priority over other methods below.
722   unsigned Mask = 0;
723   unsigned I = 0;
724   for (; I < SystemZ::VectorBytes; ++I) {
725     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
726     if (Byte == 0xff)
727       Mask |= 1ULL << I;
728     else if (Byte != 0)
729       break;
730   }
731   if (I == SystemZ::VectorBytes) {
732     Opcode = SystemZISD::BYTE_MASK;
733     OpVals.push_back(Mask);
734     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
735     return true;
736   }
737 
738   if (SplatBitSize > 64)
739     return false;
740 
741   auto tryValue = [&](uint64_t Value) -> bool {
742     // Try VECTOR REPLICATE IMMEDIATE
743     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
744     if (isInt<16>(SignedValue)) {
745       OpVals.push_back(((unsigned) SignedValue));
746       Opcode = SystemZISD::REPLICATE;
747       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
748                                SystemZ::VectorBits / SplatBitSize);
749       return true;
750     }
751     // Try VECTOR GENERATE MASK
752     unsigned Start, End;
753     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
754       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
755       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
756       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
757       OpVals.push_back(Start - (64 - SplatBitSize));
758       OpVals.push_back(End - (64 - SplatBitSize));
759       Opcode = SystemZISD::ROTATE_MASK;
760       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
761                                SystemZ::VectorBits / SplatBitSize);
762       return true;
763     }
764     return false;
765   };
766 
767   // First try assuming that any undefined bits above the highest set bit
768   // and below the lowest set bit are 1s.  This increases the likelihood of
769   // being able to use a sign-extended element value in VECTOR REPLICATE
770   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
771   uint64_t SplatBitsZ = SplatBits.getZExtValue();
772   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
773   uint64_t Lower =
774       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
775   uint64_t Upper =
776       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
777   if (tryValue(SplatBitsZ | Upper | Lower))
778     return true;
779 
780   // Now try assuming that any undefined bits between the first and
781   // last defined set bits are set.  This increases the chances of
782   // using a non-wraparound mask.
783   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
784   return tryValue(SplatBitsZ | Middle);
785 }
786 
787 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
788   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
789   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
790   SplatBits = FPImm.bitcastToAPInt();
791   unsigned Width = SplatBits.getBitWidth();
792   IntBits <<= (SystemZ::VectorBits - Width);
793 
794   // Find the smallest splat.
795   while (Width > 8) {
796     unsigned HalfSize = Width / 2;
797     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
798     APInt LowValue = SplatBits.trunc(HalfSize);
799 
800     // If the two halves do not match, stop here.
801     if (HighValue != LowValue || 8 > HalfSize)
802       break;
803 
804     SplatBits = HighValue;
805     Width = HalfSize;
806   }
807   SplatUndef = 0;
808   SplatBitSize = Width;
809 }
810 
811 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
812   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
813   bool HasAnyUndefs;
814 
815   // Get IntBits by finding the 128 bit splat.
816   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
817                        true);
818 
819   // Get SplatBits by finding the 8 bit or greater splat.
820   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
821                        true);
822 }
823 
824 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
825                                          bool ForCodeSize) const {
826   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
827   if (Imm.isZero() || Imm.isNegZero())
828     return true;
829 
830   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
831 }
832 
833 /// Returns true if stack probing through inline assembly is requested.
834 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
835   // If the function specifically requests inline stack probes, emit them.
836   if (MF.getFunction().hasFnAttribute("probe-stack"))
837     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
838            "inline-asm";
839   return false;
840 }
841 
842 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
843   // We can use CGFI or CLGFI.
844   return isInt<32>(Imm) || isUInt<32>(Imm);
845 }
846 
847 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
848   // We can use ALGFI or SLGFI.
849   return isUInt<32>(Imm) || isUInt<32>(-Imm);
850 }
851 
852 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
853     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
854   // Unaligned accesses should never be slower than the expanded version.
855   // We check specifically for aligned accesses in the few cases where
856   // they are required.
857   if (Fast)
858     *Fast = true;
859   return true;
860 }
861 
862 // Information about the addressing mode for a memory access.
863 struct AddressingMode {
864   // True if a long displacement is supported.
865   bool LongDisplacement;
866 
867   // True if use of index register is supported.
868   bool IndexReg;
869 
870   AddressingMode(bool LongDispl, bool IdxReg) :
871     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
872 };
873 
874 // Return the desired addressing mode for a Load which has only one use (in
875 // the same block) which is a Store.
876 static AddressingMode getLoadStoreAddrMode(bool HasVector,
877                                           Type *Ty) {
878   // With vector support a Load->Store combination may be combined to either
879   // an MVC or vector operations and it seems to work best to allow the
880   // vector addressing mode.
881   if (HasVector)
882     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
883 
884   // Otherwise only the MVC case is special.
885   bool MVC = Ty->isIntegerTy(8);
886   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
887 }
888 
889 // Return the addressing mode which seems most desirable given an LLVM
890 // Instruction pointer.
891 static AddressingMode
892 supportedAddressingMode(Instruction *I, bool HasVector) {
893   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
894     switch (II->getIntrinsicID()) {
895     default: break;
896     case Intrinsic::memset:
897     case Intrinsic::memmove:
898     case Intrinsic::memcpy:
899       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
900     }
901   }
902 
903   if (isa<LoadInst>(I) && I->hasOneUse()) {
904     auto *SingleUser = cast<Instruction>(*I->user_begin());
905     if (SingleUser->getParent() == I->getParent()) {
906       if (isa<ICmpInst>(SingleUser)) {
907         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
908           if (C->getBitWidth() <= 64 &&
909               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
910             // Comparison of memory with 16 bit signed / unsigned immediate
911             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
912       } else if (isa<StoreInst>(SingleUser))
913         // Load->Store
914         return getLoadStoreAddrMode(HasVector, I->getType());
915     }
916   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
917     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
918       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
919         // Load->Store
920         return getLoadStoreAddrMode(HasVector, LoadI->getType());
921   }
922 
923   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
924 
925     // * Use LDE instead of LE/LEY for z13 to avoid partial register
926     //   dependencies (LDE only supports small offsets).
927     // * Utilize the vector registers to hold floating point
928     //   values (vector load / store instructions only support small
929     //   offsets).
930 
931     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
932                          I->getOperand(0)->getType());
933     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
934     bool IsVectorAccess = MemAccessTy->isVectorTy();
935 
936     // A store of an extracted vector element will be combined into a VSTE type
937     // instruction.
938     if (!IsVectorAccess && isa<StoreInst>(I)) {
939       Value *DataOp = I->getOperand(0);
940       if (isa<ExtractElementInst>(DataOp))
941         IsVectorAccess = true;
942     }
943 
944     // A load which gets inserted into a vector element will be combined into a
945     // VLE type instruction.
946     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
947       User *LoadUser = *I->user_begin();
948       if (isa<InsertElementInst>(LoadUser))
949         IsVectorAccess = true;
950     }
951 
952     if (IsFPAccess || IsVectorAccess)
953       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
954   }
955 
956   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
957 }
958 
959 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
960        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
961   // Punt on globals for now, although they can be used in limited
962   // RELATIVE LONG cases.
963   if (AM.BaseGV)
964     return false;
965 
966   // Require a 20-bit signed offset.
967   if (!isInt<20>(AM.BaseOffs))
968     return false;
969 
970   AddressingMode SupportedAM(true, true);
971   if (I != nullptr)
972     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
973 
974   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
975     return false;
976 
977   if (!SupportedAM.IndexReg)
978     // No indexing allowed.
979     return AM.Scale == 0;
980   else
981     // Indexing is OK but no scale factor can be applied.
982     return AM.Scale == 0 || AM.Scale == 1;
983 }
984 
985 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
986   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
987     return false;
988   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
989   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
990   return FromBits > ToBits;
991 }
992 
993 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
994   if (!FromVT.isInteger() || !ToVT.isInteger())
995     return false;
996   unsigned FromBits = FromVT.getFixedSizeInBits();
997   unsigned ToBits = ToVT.getFixedSizeInBits();
998   return FromBits > ToBits;
999 }
1000 
1001 //===----------------------------------------------------------------------===//
1002 // Inline asm support
1003 //===----------------------------------------------------------------------===//
1004 
1005 TargetLowering::ConstraintType
1006 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1007   if (Constraint.size() == 1) {
1008     switch (Constraint[0]) {
1009     case 'a': // Address register
1010     case 'd': // Data register (equivalent to 'r')
1011     case 'f': // Floating-point register
1012     case 'h': // High-part register
1013     case 'r': // General-purpose register
1014     case 'v': // Vector register
1015       return C_RegisterClass;
1016 
1017     case 'Q': // Memory with base and unsigned 12-bit displacement
1018     case 'R': // Likewise, plus an index
1019     case 'S': // Memory with base and signed 20-bit displacement
1020     case 'T': // Likewise, plus an index
1021     case 'm': // Equivalent to 'T'.
1022       return C_Memory;
1023 
1024     case 'I': // Unsigned 8-bit constant
1025     case 'J': // Unsigned 12-bit constant
1026     case 'K': // Signed 16-bit constant
1027     case 'L': // Signed 20-bit displacement (on all targets we support)
1028     case 'M': // 0x7fffffff
1029       return C_Immediate;
1030 
1031     default:
1032       break;
1033     }
1034   }
1035   return TargetLowering::getConstraintType(Constraint);
1036 }
1037 
1038 TargetLowering::ConstraintWeight SystemZTargetLowering::
1039 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1040                                const char *constraint) const {
1041   ConstraintWeight weight = CW_Invalid;
1042   Value *CallOperandVal = info.CallOperandVal;
1043   // If we don't have a value, we can't do a match,
1044   // but allow it at the lowest weight.
1045   if (!CallOperandVal)
1046     return CW_Default;
1047   Type *type = CallOperandVal->getType();
1048   // Look at the constraint type.
1049   switch (*constraint) {
1050   default:
1051     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1052     break;
1053 
1054   case 'a': // Address register
1055   case 'd': // Data register (equivalent to 'r')
1056   case 'h': // High-part register
1057   case 'r': // General-purpose register
1058     if (CallOperandVal->getType()->isIntegerTy())
1059       weight = CW_Register;
1060     break;
1061 
1062   case 'f': // Floating-point register
1063     if (type->isFloatingPointTy())
1064       weight = CW_Register;
1065     break;
1066 
1067   case 'v': // Vector register
1068     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1069         Subtarget.hasVector())
1070       weight = CW_Register;
1071     break;
1072 
1073   case 'I': // Unsigned 8-bit constant
1074     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1075       if (isUInt<8>(C->getZExtValue()))
1076         weight = CW_Constant;
1077     break;
1078 
1079   case 'J': // Unsigned 12-bit constant
1080     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1081       if (isUInt<12>(C->getZExtValue()))
1082         weight = CW_Constant;
1083     break;
1084 
1085   case 'K': // Signed 16-bit constant
1086     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1087       if (isInt<16>(C->getSExtValue()))
1088         weight = CW_Constant;
1089     break;
1090 
1091   case 'L': // Signed 20-bit displacement (on all targets we support)
1092     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1093       if (isInt<20>(C->getSExtValue()))
1094         weight = CW_Constant;
1095     break;
1096 
1097   case 'M': // 0x7fffffff
1098     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1099       if (C->getZExtValue() == 0x7fffffff)
1100         weight = CW_Constant;
1101     break;
1102   }
1103   return weight;
1104 }
1105 
1106 // Parse a "{tNNN}" register constraint for which the register type "t"
1107 // has already been verified.  MC is the class associated with "t" and
1108 // Map maps 0-based register numbers to LLVM register numbers.
1109 static std::pair<unsigned, const TargetRegisterClass *>
1110 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1111                     const unsigned *Map, unsigned Size) {
1112   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1113   if (isdigit(Constraint[2])) {
1114     unsigned Index;
1115     bool Failed =
1116         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1117     if (!Failed && Index < Size && Map[Index])
1118       return std::make_pair(Map[Index], RC);
1119   }
1120   return std::make_pair(0U, nullptr);
1121 }
1122 
1123 std::pair<unsigned, const TargetRegisterClass *>
1124 SystemZTargetLowering::getRegForInlineAsmConstraint(
1125     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1126   if (Constraint.size() == 1) {
1127     // GCC Constraint Letters
1128     switch (Constraint[0]) {
1129     default: break;
1130     case 'd': // Data register (equivalent to 'r')
1131     case 'r': // General-purpose register
1132       if (VT == MVT::i64)
1133         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1134       else if (VT == MVT::i128)
1135         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1136       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1137 
1138     case 'a': // Address register
1139       if (VT == MVT::i64)
1140         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1141       else if (VT == MVT::i128)
1142         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1143       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1144 
1145     case 'h': // High-part register (an LLVM extension)
1146       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1147 
1148     case 'f': // Floating-point register
1149       if (!useSoftFloat()) {
1150         if (VT == MVT::f64)
1151           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1152         else if (VT == MVT::f128)
1153           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1154         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1155       }
1156       break;
1157     case 'v': // Vector register
1158       if (Subtarget.hasVector()) {
1159         if (VT == MVT::f32)
1160           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1161         if (VT == MVT::f64)
1162           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1163         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1164       }
1165       break;
1166     }
1167   }
1168   if (Constraint.size() > 0 && Constraint[0] == '{') {
1169     // We need to override the default register parsing for GPRs and FPRs
1170     // because the interpretation depends on VT.  The internal names of
1171     // the registers are also different from the external names
1172     // (F0D and F0S instead of F0, etc.).
1173     if (Constraint[1] == 'r') {
1174       if (VT == MVT::i32)
1175         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1176                                    SystemZMC::GR32Regs, 16);
1177       if (VT == MVT::i128)
1178         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1179                                    SystemZMC::GR128Regs, 16);
1180       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1181                                  SystemZMC::GR64Regs, 16);
1182     }
1183     if (Constraint[1] == 'f') {
1184       if (useSoftFloat())
1185         return std::make_pair(
1186             0u, static_cast<const TargetRegisterClass *>(nullptr));
1187       if (VT == MVT::f32)
1188         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1189                                    SystemZMC::FP32Regs, 16);
1190       if (VT == MVT::f128)
1191         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1192                                    SystemZMC::FP128Regs, 16);
1193       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1194                                  SystemZMC::FP64Regs, 16);
1195     }
1196     if (Constraint[1] == 'v') {
1197       if (!Subtarget.hasVector())
1198         return std::make_pair(
1199             0u, static_cast<const TargetRegisterClass *>(nullptr));
1200       if (VT == MVT::f32)
1201         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1202                                    SystemZMC::VR32Regs, 32);
1203       if (VT == MVT::f64)
1204         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1205                                    SystemZMC::VR64Regs, 32);
1206       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1207                                  SystemZMC::VR128Regs, 32);
1208     }
1209   }
1210   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1211 }
1212 
1213 // FIXME? Maybe this could be a TableGen attribute on some registers and
1214 // this table could be generated automatically from RegInfo.
1215 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1216                                                   const MachineFunction &MF) const {
1217 
1218   Register Reg = StringSwitch<Register>(RegName)
1219                    .Case("r15", SystemZ::R15D)
1220                    .Default(0);
1221   if (Reg)
1222     return Reg;
1223   report_fatal_error("Invalid register name global variable");
1224 }
1225 
1226 void SystemZTargetLowering::
1227 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1228                              std::vector<SDValue> &Ops,
1229                              SelectionDAG &DAG) const {
1230   // Only support length 1 constraints for now.
1231   if (Constraint.length() == 1) {
1232     switch (Constraint[0]) {
1233     case 'I': // Unsigned 8-bit constant
1234       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1235         if (isUInt<8>(C->getZExtValue()))
1236           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1237                                               Op.getValueType()));
1238       return;
1239 
1240     case 'J': // Unsigned 12-bit constant
1241       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1242         if (isUInt<12>(C->getZExtValue()))
1243           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1244                                               Op.getValueType()));
1245       return;
1246 
1247     case 'K': // Signed 16-bit constant
1248       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1249         if (isInt<16>(C->getSExtValue()))
1250           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1251                                               Op.getValueType()));
1252       return;
1253 
1254     case 'L': // Signed 20-bit displacement (on all targets we support)
1255       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1256         if (isInt<20>(C->getSExtValue()))
1257           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1258                                               Op.getValueType()));
1259       return;
1260 
1261     case 'M': // 0x7fffffff
1262       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1263         if (C->getZExtValue() == 0x7fffffff)
1264           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1265                                               Op.getValueType()));
1266       return;
1267     }
1268   }
1269   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1270 }
1271 
1272 //===----------------------------------------------------------------------===//
1273 // Calling conventions
1274 //===----------------------------------------------------------------------===//
1275 
1276 #include "SystemZGenCallingConv.inc"
1277 
1278 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1279   CallingConv::ID) const {
1280   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1281                                            SystemZ::R14D, 0 };
1282   return ScratchRegs;
1283 }
1284 
1285 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1286                                                      Type *ToType) const {
1287   return isTruncateFree(FromType, ToType);
1288 }
1289 
1290 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1291   return CI->isTailCall();
1292 }
1293 
1294 // We do not yet support 128-bit single-element vector types.  If the user
1295 // attempts to use such types as function argument or return type, prefer
1296 // to error out instead of emitting code violating the ABI.
1297 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1298   if (ArgVT.isVector() && !VT.isVector())
1299     report_fatal_error("Unsupported vector argument or return type");
1300 }
1301 
1302 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1303   for (unsigned i = 0; i < Ins.size(); ++i)
1304     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1305 }
1306 
1307 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1308   for (unsigned i = 0; i < Outs.size(); ++i)
1309     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1310 }
1311 
1312 // Value is a value that has been passed to us in the location described by VA
1313 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1314 // any loads onto Chain.
1315 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1316                                    CCValAssign &VA, SDValue Chain,
1317                                    SDValue Value) {
1318   // If the argument has been promoted from a smaller type, insert an
1319   // assertion to capture this.
1320   if (VA.getLocInfo() == CCValAssign::SExt)
1321     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1322                         DAG.getValueType(VA.getValVT()));
1323   else if (VA.getLocInfo() == CCValAssign::ZExt)
1324     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1325                         DAG.getValueType(VA.getValVT()));
1326 
1327   if (VA.isExtInLoc())
1328     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1329   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1330     // If this is a short vector argument loaded from the stack,
1331     // extend from i64 to full vector size and then bitcast.
1332     assert(VA.getLocVT() == MVT::i64);
1333     assert(VA.getValVT().isVector());
1334     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1335     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1336   } else
1337     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1338   return Value;
1339 }
1340 
1341 // Value is a value of type VA.getValVT() that we need to copy into
1342 // the location described by VA.  Return a copy of Value converted to
1343 // VA.getValVT().  The caller is responsible for handling indirect values.
1344 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1345                                    CCValAssign &VA, SDValue Value) {
1346   switch (VA.getLocInfo()) {
1347   case CCValAssign::SExt:
1348     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1349   case CCValAssign::ZExt:
1350     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1351   case CCValAssign::AExt:
1352     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1353   case CCValAssign::BCvt:
1354     // If this is a short vector argument to be stored to the stack,
1355     // bitcast to v2i64 and then extract first element.
1356     assert(VA.getLocVT() == MVT::i64);
1357     assert(VA.getValVT().isVector());
1358     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1359     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1360                        DAG.getConstant(0, DL, MVT::i32));
1361   case CCValAssign::Full:
1362     return Value;
1363   default:
1364     llvm_unreachable("Unhandled getLocInfo()");
1365   }
1366 }
1367 
1368 SDValue SystemZTargetLowering::LowerFormalArguments(
1369     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1370     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1371     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1372   MachineFunction &MF = DAG.getMachineFunction();
1373   MachineFrameInfo &MFI = MF.getFrameInfo();
1374   MachineRegisterInfo &MRI = MF.getRegInfo();
1375   SystemZMachineFunctionInfo *FuncInfo =
1376       MF.getInfo<SystemZMachineFunctionInfo>();
1377   auto *TFL =
1378       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1379   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1380 
1381   // Detect unsupported vector argument types.
1382   if (Subtarget.hasVector())
1383     VerifyVectorTypes(Ins);
1384 
1385   // Assign locations to all of the incoming arguments.
1386   SmallVector<CCValAssign, 16> ArgLocs;
1387   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1388   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1389 
1390   unsigned NumFixedGPRs = 0;
1391   unsigned NumFixedFPRs = 0;
1392   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1393     SDValue ArgValue;
1394     CCValAssign &VA = ArgLocs[I];
1395     EVT LocVT = VA.getLocVT();
1396     if (VA.isRegLoc()) {
1397       // Arguments passed in registers
1398       const TargetRegisterClass *RC;
1399       switch (LocVT.getSimpleVT().SimpleTy) {
1400       default:
1401         // Integers smaller than i64 should be promoted to i64.
1402         llvm_unreachable("Unexpected argument type");
1403       case MVT::i32:
1404         NumFixedGPRs += 1;
1405         RC = &SystemZ::GR32BitRegClass;
1406         break;
1407       case MVT::i64:
1408         NumFixedGPRs += 1;
1409         RC = &SystemZ::GR64BitRegClass;
1410         break;
1411       case MVT::f32:
1412         NumFixedFPRs += 1;
1413         RC = &SystemZ::FP32BitRegClass;
1414         break;
1415       case MVT::f64:
1416         NumFixedFPRs += 1;
1417         RC = &SystemZ::FP64BitRegClass;
1418         break;
1419       case MVT::v16i8:
1420       case MVT::v8i16:
1421       case MVT::v4i32:
1422       case MVT::v2i64:
1423       case MVT::v4f32:
1424       case MVT::v2f64:
1425         RC = &SystemZ::VR128BitRegClass;
1426         break;
1427       }
1428 
1429       Register VReg = MRI.createVirtualRegister(RC);
1430       MRI.addLiveIn(VA.getLocReg(), VReg);
1431       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1432     } else {
1433       assert(VA.isMemLoc() && "Argument not register or memory");
1434 
1435       // Create the frame index object for this incoming parameter.
1436       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1437                                      VA.getLocMemOffset(), true);
1438 
1439       // Create the SelectionDAG nodes corresponding to a load
1440       // from this parameter.  Unpromoted ints and floats are
1441       // passed as right-justified 8-byte values.
1442       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1443       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1444         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1445                           DAG.getIntPtrConstant(4, DL));
1446       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1447                              MachinePointerInfo::getFixedStack(MF, FI));
1448     }
1449 
1450     // Convert the value of the argument register into the value that's
1451     // being passed.
1452     if (VA.getLocInfo() == CCValAssign::Indirect) {
1453       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1454                                    MachinePointerInfo()));
1455       // If the original argument was split (e.g. i128), we need
1456       // to load all parts of it here (using the same address).
1457       unsigned ArgIndex = Ins[I].OrigArgIndex;
1458       assert (Ins[I].PartOffset == 0);
1459       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1460         CCValAssign &PartVA = ArgLocs[I + 1];
1461         unsigned PartOffset = Ins[I + 1].PartOffset;
1462         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1463                                       DAG.getIntPtrConstant(PartOffset, DL));
1464         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1465                                      MachinePointerInfo()));
1466         ++I;
1467       }
1468     } else
1469       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1470   }
1471 
1472   if (IsVarArg) {
1473     // Save the number of non-varargs registers for later use by va_start, etc.
1474     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1475     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1476 
1477     // Likewise the address (in the form of a frame index) of where the
1478     // first stack vararg would be.  The 1-byte size here is arbitrary.
1479     int64_t StackSize = CCInfo.getNextStackOffset();
1480     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1481 
1482     // ...and a similar frame index for the caller-allocated save area
1483     // that will be used to store the incoming registers.
1484     int64_t RegSaveOffset =
1485       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1486     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1487     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1488 
1489     // Store the FPR varargs in the reserved frame slots.  (We store the
1490     // GPRs as part of the prologue.)
1491     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1492       SDValue MemOps[SystemZ::NumArgFPRs];
1493       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1494         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1495         int FI =
1496           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1497         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1498         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1499                                      &SystemZ::FP64BitRegClass);
1500         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1501         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1502                                  MachinePointerInfo::getFixedStack(MF, FI));
1503       }
1504       // Join the stores, which are independent of one another.
1505       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1506                           makeArrayRef(&MemOps[NumFixedFPRs],
1507                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1508     }
1509   }
1510 
1511   return Chain;
1512 }
1513 
1514 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1515                               SmallVectorImpl<CCValAssign> &ArgLocs,
1516                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1517   // Punt if there are any indirect or stack arguments, or if the call
1518   // needs the callee-saved argument register R6, or if the call uses
1519   // the callee-saved register arguments SwiftSelf and SwiftError.
1520   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1521     CCValAssign &VA = ArgLocs[I];
1522     if (VA.getLocInfo() == CCValAssign::Indirect)
1523       return false;
1524     if (!VA.isRegLoc())
1525       return false;
1526     Register Reg = VA.getLocReg();
1527     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1528       return false;
1529     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1530       return false;
1531   }
1532   return true;
1533 }
1534 
1535 SDValue
1536 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1537                                  SmallVectorImpl<SDValue> &InVals) const {
1538   SelectionDAG &DAG = CLI.DAG;
1539   SDLoc &DL = CLI.DL;
1540   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1541   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1542   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1543   SDValue Chain = CLI.Chain;
1544   SDValue Callee = CLI.Callee;
1545   bool &IsTailCall = CLI.IsTailCall;
1546   CallingConv::ID CallConv = CLI.CallConv;
1547   bool IsVarArg = CLI.IsVarArg;
1548   MachineFunction &MF = DAG.getMachineFunction();
1549   EVT PtrVT = getPointerTy(MF.getDataLayout());
1550   LLVMContext &Ctx = *DAG.getContext();
1551 
1552   // Detect unsupported vector argument and return types.
1553   if (Subtarget.hasVector()) {
1554     VerifyVectorTypes(Outs);
1555     VerifyVectorTypes(Ins);
1556   }
1557 
1558   // Analyze the operands of the call, assigning locations to each operand.
1559   SmallVector<CCValAssign, 16> ArgLocs;
1560   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1561   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1562 
1563   // We don't support GuaranteedTailCallOpt, only automatically-detected
1564   // sibling calls.
1565   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1566     IsTailCall = false;
1567 
1568   // Get a count of how many bytes are to be pushed on the stack.
1569   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1570 
1571   // Mark the start of the call.
1572   if (!IsTailCall)
1573     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1574 
1575   // Copy argument values to their designated locations.
1576   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1577   SmallVector<SDValue, 8> MemOpChains;
1578   SDValue StackPtr;
1579   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1580     CCValAssign &VA = ArgLocs[I];
1581     SDValue ArgValue = OutVals[I];
1582 
1583     if (VA.getLocInfo() == CCValAssign::Indirect) {
1584       // Store the argument in a stack slot and pass its address.
1585       unsigned ArgIndex = Outs[I].OrigArgIndex;
1586       EVT SlotVT;
1587       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1588         // Allocate the full stack space for a promoted (and split) argument.
1589         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1590         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1591         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1592         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1593         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1594       } else {
1595         SlotVT = Outs[I].ArgVT;
1596       }
1597       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1598       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1599       MemOpChains.push_back(
1600           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1601                        MachinePointerInfo::getFixedStack(MF, FI)));
1602       // If the original argument was split (e.g. i128), we need
1603       // to store all parts of it here (and pass just one address).
1604       assert (Outs[I].PartOffset == 0);
1605       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1606         SDValue PartValue = OutVals[I + 1];
1607         unsigned PartOffset = Outs[I + 1].PartOffset;
1608         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1609                                       DAG.getIntPtrConstant(PartOffset, DL));
1610         MemOpChains.push_back(
1611             DAG.getStore(Chain, DL, PartValue, Address,
1612                          MachinePointerInfo::getFixedStack(MF, FI)));
1613         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1614                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1615         ++I;
1616       }
1617       ArgValue = SpillSlot;
1618     } else
1619       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1620 
1621     if (VA.isRegLoc())
1622       // Queue up the argument copies and emit them at the end.
1623       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1624     else {
1625       assert(VA.isMemLoc() && "Argument not register or memory");
1626 
1627       // Work out the address of the stack slot.  Unpromoted ints and
1628       // floats are passed as right-justified 8-byte values.
1629       if (!StackPtr.getNode())
1630         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1631       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1632       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1633         Offset += 4;
1634       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1635                                     DAG.getIntPtrConstant(Offset, DL));
1636 
1637       // Emit the store.
1638       MemOpChains.push_back(
1639           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1640     }
1641   }
1642 
1643   // Join the stores, which are independent of one another.
1644   if (!MemOpChains.empty())
1645     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1646 
1647   // Accept direct calls by converting symbolic call addresses to the
1648   // associated Target* opcodes.  Force %r1 to be used for indirect
1649   // tail calls.
1650   SDValue Glue;
1651   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1652     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1653     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1654   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1655     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1656     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1657   } else if (IsTailCall) {
1658     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1659     Glue = Chain.getValue(1);
1660     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1661   }
1662 
1663   // Build a sequence of copy-to-reg nodes, chained and glued together.
1664   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1665     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1666                              RegsToPass[I].second, Glue);
1667     Glue = Chain.getValue(1);
1668   }
1669 
1670   // The first call operand is the chain and the second is the target address.
1671   SmallVector<SDValue, 8> Ops;
1672   Ops.push_back(Chain);
1673   Ops.push_back(Callee);
1674 
1675   // Add argument registers to the end of the list so that they are
1676   // known live into the call.
1677   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1678     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1679                                   RegsToPass[I].second.getValueType()));
1680 
1681   // Add a register mask operand representing the call-preserved registers.
1682   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1683   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1684   assert(Mask && "Missing call preserved mask for calling convention");
1685   Ops.push_back(DAG.getRegisterMask(Mask));
1686 
1687   // Glue the call to the argument copies, if any.
1688   if (Glue.getNode())
1689     Ops.push_back(Glue);
1690 
1691   // Emit the call.
1692   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1693   if (IsTailCall)
1694     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1695   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1696   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1697   Glue = Chain.getValue(1);
1698 
1699   // Mark the end of the call, which is glued to the call itself.
1700   Chain = DAG.getCALLSEQ_END(Chain,
1701                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1702                              DAG.getConstant(0, DL, PtrVT, true),
1703                              Glue, DL);
1704   Glue = Chain.getValue(1);
1705 
1706   // Assign locations to each value returned by this call.
1707   SmallVector<CCValAssign, 16> RetLocs;
1708   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1709   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1710 
1711   // Copy all of the result registers out of their specified physreg.
1712   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1713     CCValAssign &VA = RetLocs[I];
1714 
1715     // Copy the value out, gluing the copy to the end of the call sequence.
1716     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1717                                           VA.getLocVT(), Glue);
1718     Chain = RetValue.getValue(1);
1719     Glue = RetValue.getValue(2);
1720 
1721     // Convert the value of the return register into the value that's
1722     // being returned.
1723     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1724   }
1725 
1726   return Chain;
1727 }
1728 
1729 bool SystemZTargetLowering::
1730 CanLowerReturn(CallingConv::ID CallConv,
1731                MachineFunction &MF, bool isVarArg,
1732                const SmallVectorImpl<ISD::OutputArg> &Outs,
1733                LLVMContext &Context) const {
1734   // Detect unsupported vector return types.
1735   if (Subtarget.hasVector())
1736     VerifyVectorTypes(Outs);
1737 
1738   // Special case that we cannot easily detect in RetCC_SystemZ since
1739   // i128 is not a legal type.
1740   for (auto &Out : Outs)
1741     if (Out.ArgVT == MVT::i128)
1742       return false;
1743 
1744   SmallVector<CCValAssign, 16> RetLocs;
1745   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1746   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1747 }
1748 
1749 SDValue
1750 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1751                                    bool IsVarArg,
1752                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1753                                    const SmallVectorImpl<SDValue> &OutVals,
1754                                    const SDLoc &DL, SelectionDAG &DAG) const {
1755   MachineFunction &MF = DAG.getMachineFunction();
1756 
1757   // Detect unsupported vector return types.
1758   if (Subtarget.hasVector())
1759     VerifyVectorTypes(Outs);
1760 
1761   // Assign locations to each returned value.
1762   SmallVector<CCValAssign, 16> RetLocs;
1763   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1764   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1765 
1766   // Quick exit for void returns
1767   if (RetLocs.empty())
1768     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1769 
1770   if (CallConv == CallingConv::GHC)
1771     report_fatal_error("GHC functions return void only");
1772 
1773   // Copy the result values into the output registers.
1774   SDValue Glue;
1775   SmallVector<SDValue, 4> RetOps;
1776   RetOps.push_back(Chain);
1777   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1778     CCValAssign &VA = RetLocs[I];
1779     SDValue RetValue = OutVals[I];
1780 
1781     // Make the return register live on exit.
1782     assert(VA.isRegLoc() && "Can only return in registers!");
1783 
1784     // Promote the value as required.
1785     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1786 
1787     // Chain and glue the copies together.
1788     Register Reg = VA.getLocReg();
1789     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1790     Glue = Chain.getValue(1);
1791     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1792   }
1793 
1794   // Update chain and glue.
1795   RetOps[0] = Chain;
1796   if (Glue.getNode())
1797     RetOps.push_back(Glue);
1798 
1799   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1800 }
1801 
1802 // Return true if Op is an intrinsic node with chain that returns the CC value
1803 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1804 // the mask of valid CC values if so.
1805 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1806                                       unsigned &CCValid) {
1807   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1808   switch (Id) {
1809   case Intrinsic::s390_tbegin:
1810     Opcode = SystemZISD::TBEGIN;
1811     CCValid = SystemZ::CCMASK_TBEGIN;
1812     return true;
1813 
1814   case Intrinsic::s390_tbegin_nofloat:
1815     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1816     CCValid = SystemZ::CCMASK_TBEGIN;
1817     return true;
1818 
1819   case Intrinsic::s390_tend:
1820     Opcode = SystemZISD::TEND;
1821     CCValid = SystemZ::CCMASK_TEND;
1822     return true;
1823 
1824   default:
1825     return false;
1826   }
1827 }
1828 
1829 // Return true if Op is an intrinsic node without chain that returns the
1830 // CC value as its final argument.  Provide the associated SystemZISD
1831 // opcode and the mask of valid CC values if so.
1832 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1833   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1834   switch (Id) {
1835   case Intrinsic::s390_vpkshs:
1836   case Intrinsic::s390_vpksfs:
1837   case Intrinsic::s390_vpksgs:
1838     Opcode = SystemZISD::PACKS_CC;
1839     CCValid = SystemZ::CCMASK_VCMP;
1840     return true;
1841 
1842   case Intrinsic::s390_vpklshs:
1843   case Intrinsic::s390_vpklsfs:
1844   case Intrinsic::s390_vpklsgs:
1845     Opcode = SystemZISD::PACKLS_CC;
1846     CCValid = SystemZ::CCMASK_VCMP;
1847     return true;
1848 
1849   case Intrinsic::s390_vceqbs:
1850   case Intrinsic::s390_vceqhs:
1851   case Intrinsic::s390_vceqfs:
1852   case Intrinsic::s390_vceqgs:
1853     Opcode = SystemZISD::VICMPES;
1854     CCValid = SystemZ::CCMASK_VCMP;
1855     return true;
1856 
1857   case Intrinsic::s390_vchbs:
1858   case Intrinsic::s390_vchhs:
1859   case Intrinsic::s390_vchfs:
1860   case Intrinsic::s390_vchgs:
1861     Opcode = SystemZISD::VICMPHS;
1862     CCValid = SystemZ::CCMASK_VCMP;
1863     return true;
1864 
1865   case Intrinsic::s390_vchlbs:
1866   case Intrinsic::s390_vchlhs:
1867   case Intrinsic::s390_vchlfs:
1868   case Intrinsic::s390_vchlgs:
1869     Opcode = SystemZISD::VICMPHLS;
1870     CCValid = SystemZ::CCMASK_VCMP;
1871     return true;
1872 
1873   case Intrinsic::s390_vtm:
1874     Opcode = SystemZISD::VTM;
1875     CCValid = SystemZ::CCMASK_VCMP;
1876     return true;
1877 
1878   case Intrinsic::s390_vfaebs:
1879   case Intrinsic::s390_vfaehs:
1880   case Intrinsic::s390_vfaefs:
1881     Opcode = SystemZISD::VFAE_CC;
1882     CCValid = SystemZ::CCMASK_ANY;
1883     return true;
1884 
1885   case Intrinsic::s390_vfaezbs:
1886   case Intrinsic::s390_vfaezhs:
1887   case Intrinsic::s390_vfaezfs:
1888     Opcode = SystemZISD::VFAEZ_CC;
1889     CCValid = SystemZ::CCMASK_ANY;
1890     return true;
1891 
1892   case Intrinsic::s390_vfeebs:
1893   case Intrinsic::s390_vfeehs:
1894   case Intrinsic::s390_vfeefs:
1895     Opcode = SystemZISD::VFEE_CC;
1896     CCValid = SystemZ::CCMASK_ANY;
1897     return true;
1898 
1899   case Intrinsic::s390_vfeezbs:
1900   case Intrinsic::s390_vfeezhs:
1901   case Intrinsic::s390_vfeezfs:
1902     Opcode = SystemZISD::VFEEZ_CC;
1903     CCValid = SystemZ::CCMASK_ANY;
1904     return true;
1905 
1906   case Intrinsic::s390_vfenebs:
1907   case Intrinsic::s390_vfenehs:
1908   case Intrinsic::s390_vfenefs:
1909     Opcode = SystemZISD::VFENE_CC;
1910     CCValid = SystemZ::CCMASK_ANY;
1911     return true;
1912 
1913   case Intrinsic::s390_vfenezbs:
1914   case Intrinsic::s390_vfenezhs:
1915   case Intrinsic::s390_vfenezfs:
1916     Opcode = SystemZISD::VFENEZ_CC;
1917     CCValid = SystemZ::CCMASK_ANY;
1918     return true;
1919 
1920   case Intrinsic::s390_vistrbs:
1921   case Intrinsic::s390_vistrhs:
1922   case Intrinsic::s390_vistrfs:
1923     Opcode = SystemZISD::VISTR_CC;
1924     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1925     return true;
1926 
1927   case Intrinsic::s390_vstrcbs:
1928   case Intrinsic::s390_vstrchs:
1929   case Intrinsic::s390_vstrcfs:
1930     Opcode = SystemZISD::VSTRC_CC;
1931     CCValid = SystemZ::CCMASK_ANY;
1932     return true;
1933 
1934   case Intrinsic::s390_vstrczbs:
1935   case Intrinsic::s390_vstrczhs:
1936   case Intrinsic::s390_vstrczfs:
1937     Opcode = SystemZISD::VSTRCZ_CC;
1938     CCValid = SystemZ::CCMASK_ANY;
1939     return true;
1940 
1941   case Intrinsic::s390_vstrsb:
1942   case Intrinsic::s390_vstrsh:
1943   case Intrinsic::s390_vstrsf:
1944     Opcode = SystemZISD::VSTRS_CC;
1945     CCValid = SystemZ::CCMASK_ANY;
1946     return true;
1947 
1948   case Intrinsic::s390_vstrszb:
1949   case Intrinsic::s390_vstrszh:
1950   case Intrinsic::s390_vstrszf:
1951     Opcode = SystemZISD::VSTRSZ_CC;
1952     CCValid = SystemZ::CCMASK_ANY;
1953     return true;
1954 
1955   case Intrinsic::s390_vfcedbs:
1956   case Intrinsic::s390_vfcesbs:
1957     Opcode = SystemZISD::VFCMPES;
1958     CCValid = SystemZ::CCMASK_VCMP;
1959     return true;
1960 
1961   case Intrinsic::s390_vfchdbs:
1962   case Intrinsic::s390_vfchsbs:
1963     Opcode = SystemZISD::VFCMPHS;
1964     CCValid = SystemZ::CCMASK_VCMP;
1965     return true;
1966 
1967   case Intrinsic::s390_vfchedbs:
1968   case Intrinsic::s390_vfchesbs:
1969     Opcode = SystemZISD::VFCMPHES;
1970     CCValid = SystemZ::CCMASK_VCMP;
1971     return true;
1972 
1973   case Intrinsic::s390_vftcidb:
1974   case Intrinsic::s390_vftcisb:
1975     Opcode = SystemZISD::VFTCI;
1976     CCValid = SystemZ::CCMASK_VCMP;
1977     return true;
1978 
1979   case Intrinsic::s390_tdc:
1980     Opcode = SystemZISD::TDC;
1981     CCValid = SystemZ::CCMASK_TDC;
1982     return true;
1983 
1984   default:
1985     return false;
1986   }
1987 }
1988 
1989 // Emit an intrinsic with chain and an explicit CC register result.
1990 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1991                                            unsigned Opcode) {
1992   // Copy all operands except the intrinsic ID.
1993   unsigned NumOps = Op.getNumOperands();
1994   SmallVector<SDValue, 6> Ops;
1995   Ops.reserve(NumOps - 1);
1996   Ops.push_back(Op.getOperand(0));
1997   for (unsigned I = 2; I < NumOps; ++I)
1998     Ops.push_back(Op.getOperand(I));
1999 
2000   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2001   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2002   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2003   SDValue OldChain = SDValue(Op.getNode(), 1);
2004   SDValue NewChain = SDValue(Intr.getNode(), 1);
2005   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2006   return Intr.getNode();
2007 }
2008 
2009 // Emit an intrinsic with an explicit CC register result.
2010 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2011                                    unsigned Opcode) {
2012   // Copy all operands except the intrinsic ID.
2013   unsigned NumOps = Op.getNumOperands();
2014   SmallVector<SDValue, 6> Ops;
2015   Ops.reserve(NumOps - 1);
2016   for (unsigned I = 1; I < NumOps; ++I)
2017     Ops.push_back(Op.getOperand(I));
2018 
2019   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2020   return Intr.getNode();
2021 }
2022 
2023 // CC is a comparison that will be implemented using an integer or
2024 // floating-point comparison.  Return the condition code mask for
2025 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2026 // unsigned comparisons and clear for signed ones.  In the floating-point
2027 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2028 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2029 #define CONV(X) \
2030   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2031   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2032   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2033 
2034   switch (CC) {
2035   default:
2036     llvm_unreachable("Invalid integer condition!");
2037 
2038   CONV(EQ);
2039   CONV(NE);
2040   CONV(GT);
2041   CONV(GE);
2042   CONV(LT);
2043   CONV(LE);
2044 
2045   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2046   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2047   }
2048 #undef CONV
2049 }
2050 
2051 // If C can be converted to a comparison against zero, adjust the operands
2052 // as necessary.
2053 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2054   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2055     return;
2056 
2057   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2058   if (!ConstOp1)
2059     return;
2060 
2061   int64_t Value = ConstOp1->getSExtValue();
2062   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2063       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2064       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2065       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2066     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2067     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2068   }
2069 }
2070 
2071 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2072 // adjust the operands as necessary.
2073 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2074                              Comparison &C) {
2075   // For us to make any changes, it must a comparison between a single-use
2076   // load and a constant.
2077   if (!C.Op0.hasOneUse() ||
2078       C.Op0.getOpcode() != ISD::LOAD ||
2079       C.Op1.getOpcode() != ISD::Constant)
2080     return;
2081 
2082   // We must have an 8- or 16-bit load.
2083   auto *Load = cast<LoadSDNode>(C.Op0);
2084   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2085   if ((NumBits != 8 && NumBits != 16) ||
2086       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2087     return;
2088 
2089   // The load must be an extending one and the constant must be within the
2090   // range of the unextended value.
2091   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2092   uint64_t Value = ConstOp1->getZExtValue();
2093   uint64_t Mask = (1 << NumBits) - 1;
2094   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2095     // Make sure that ConstOp1 is in range of C.Op0.
2096     int64_t SignedValue = ConstOp1->getSExtValue();
2097     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2098       return;
2099     if (C.ICmpType != SystemZICMP::SignedOnly) {
2100       // Unsigned comparison between two sign-extended values is equivalent
2101       // to unsigned comparison between two zero-extended values.
2102       Value &= Mask;
2103     } else if (NumBits == 8) {
2104       // Try to treat the comparison as unsigned, so that we can use CLI.
2105       // Adjust CCMask and Value as necessary.
2106       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2107         // Test whether the high bit of the byte is set.
2108         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2109       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2110         // Test whether the high bit of the byte is clear.
2111         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2112       else
2113         // No instruction exists for this combination.
2114         return;
2115       C.ICmpType = SystemZICMP::UnsignedOnly;
2116     }
2117   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2118     if (Value > Mask)
2119       return;
2120     // If the constant is in range, we can use any comparison.
2121     C.ICmpType = SystemZICMP::Any;
2122   } else
2123     return;
2124 
2125   // Make sure that the first operand is an i32 of the right extension type.
2126   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2127                               ISD::SEXTLOAD :
2128                               ISD::ZEXTLOAD);
2129   if (C.Op0.getValueType() != MVT::i32 ||
2130       Load->getExtensionType() != ExtType) {
2131     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2132                            Load->getBasePtr(), Load->getPointerInfo(),
2133                            Load->getMemoryVT(), Load->getAlignment(),
2134                            Load->getMemOperand()->getFlags());
2135     // Update the chain uses.
2136     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2137   }
2138 
2139   // Make sure that the second operand is an i32 with the right value.
2140   if (C.Op1.getValueType() != MVT::i32 ||
2141       Value != ConstOp1->getZExtValue())
2142     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2143 }
2144 
2145 // Return true if Op is either an unextended load, or a load suitable
2146 // for integer register-memory comparisons of type ICmpType.
2147 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2148   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2149   if (Load) {
2150     // There are no instructions to compare a register with a memory byte.
2151     if (Load->getMemoryVT() == MVT::i8)
2152       return false;
2153     // Otherwise decide on extension type.
2154     switch (Load->getExtensionType()) {
2155     case ISD::NON_EXTLOAD:
2156       return true;
2157     case ISD::SEXTLOAD:
2158       return ICmpType != SystemZICMP::UnsignedOnly;
2159     case ISD::ZEXTLOAD:
2160       return ICmpType != SystemZICMP::SignedOnly;
2161     default:
2162       break;
2163     }
2164   }
2165   return false;
2166 }
2167 
2168 // Return true if it is better to swap the operands of C.
2169 static bool shouldSwapCmpOperands(const Comparison &C) {
2170   // Leave f128 comparisons alone, since they have no memory forms.
2171   if (C.Op0.getValueType() == MVT::f128)
2172     return false;
2173 
2174   // Always keep a floating-point constant second, since comparisons with
2175   // zero can use LOAD TEST and comparisons with other constants make a
2176   // natural memory operand.
2177   if (isa<ConstantFPSDNode>(C.Op1))
2178     return false;
2179 
2180   // Never swap comparisons with zero since there are many ways to optimize
2181   // those later.
2182   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2183   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2184     return false;
2185 
2186   // Also keep natural memory operands second if the loaded value is
2187   // only used here.  Several comparisons have memory forms.
2188   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2189     return false;
2190 
2191   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2192   // In that case we generally prefer the memory to be second.
2193   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2194     // The only exceptions are when the second operand is a constant and
2195     // we can use things like CHHSI.
2196     if (!ConstOp1)
2197       return true;
2198     // The unsigned memory-immediate instructions can handle 16-bit
2199     // unsigned integers.
2200     if (C.ICmpType != SystemZICMP::SignedOnly &&
2201         isUInt<16>(ConstOp1->getZExtValue()))
2202       return false;
2203     // The signed memory-immediate instructions can handle 16-bit
2204     // signed integers.
2205     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2206         isInt<16>(ConstOp1->getSExtValue()))
2207       return false;
2208     return true;
2209   }
2210 
2211   // Try to promote the use of CGFR and CLGFR.
2212   unsigned Opcode0 = C.Op0.getOpcode();
2213   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2214     return true;
2215   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2216     return true;
2217   if (C.ICmpType != SystemZICMP::SignedOnly &&
2218       Opcode0 == ISD::AND &&
2219       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2220       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2221     return true;
2222 
2223   return false;
2224 }
2225 
2226 // Check whether C tests for equality between X and Y and whether X - Y
2227 // or Y - X is also computed.  In that case it's better to compare the
2228 // result of the subtraction against zero.
2229 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2230                                  Comparison &C) {
2231   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2232       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2233     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2234       SDNode *N = *I;
2235       if (N->getOpcode() == ISD::SUB &&
2236           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2237            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2238         C.Op0 = SDValue(N, 0);
2239         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2240         return;
2241       }
2242     }
2243   }
2244 }
2245 
2246 // Check whether C compares a floating-point value with zero and if that
2247 // floating-point value is also negated.  In this case we can use the
2248 // negation to set CC, so avoiding separate LOAD AND TEST and
2249 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2250 static void adjustForFNeg(Comparison &C) {
2251   // This optimization is invalid for strict comparisons, since FNEG
2252   // does not raise any exceptions.
2253   if (C.Chain)
2254     return;
2255   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2256   if (C1 && C1->isZero()) {
2257     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2258       SDNode *N = *I;
2259       if (N->getOpcode() == ISD::FNEG) {
2260         C.Op0 = SDValue(N, 0);
2261         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2262         return;
2263       }
2264     }
2265   }
2266 }
2267 
2268 // Check whether C compares (shl X, 32) with 0 and whether X is
2269 // also sign-extended.  In that case it is better to test the result
2270 // of the sign extension using LTGFR.
2271 //
2272 // This case is important because InstCombine transforms a comparison
2273 // with (sext (trunc X)) into a comparison with (shl X, 32).
2274 static void adjustForLTGFR(Comparison &C) {
2275   // Check for a comparison between (shl X, 32) and 0.
2276   if (C.Op0.getOpcode() == ISD::SHL &&
2277       C.Op0.getValueType() == MVT::i64 &&
2278       C.Op1.getOpcode() == ISD::Constant &&
2279       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2280     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2281     if (C1 && C1->getZExtValue() == 32) {
2282       SDValue ShlOp0 = C.Op0.getOperand(0);
2283       // See whether X has any SIGN_EXTEND_INREG uses.
2284       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2285         SDNode *N = *I;
2286         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2287             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2288           C.Op0 = SDValue(N, 0);
2289           return;
2290         }
2291       }
2292     }
2293   }
2294 }
2295 
2296 // If C compares the truncation of an extending load, try to compare
2297 // the untruncated value instead.  This exposes more opportunities to
2298 // reuse CC.
2299 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2300                                Comparison &C) {
2301   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2302       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2303       C.Op1.getOpcode() == ISD::Constant &&
2304       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2305     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2306     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2307         C.Op0.getValueSizeInBits().getFixedSize()) {
2308       unsigned Type = L->getExtensionType();
2309       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2310           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2311         C.Op0 = C.Op0.getOperand(0);
2312         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2313       }
2314     }
2315   }
2316 }
2317 
2318 // Return true if shift operation N has an in-range constant shift value.
2319 // Store it in ShiftVal if so.
2320 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2321   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2322   if (!Shift)
2323     return false;
2324 
2325   uint64_t Amount = Shift->getZExtValue();
2326   if (Amount >= N.getValueSizeInBits())
2327     return false;
2328 
2329   ShiftVal = Amount;
2330   return true;
2331 }
2332 
2333 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2334 // instruction and whether the CC value is descriptive enough to handle
2335 // a comparison of type Opcode between the AND result and CmpVal.
2336 // CCMask says which comparison result is being tested and BitSize is
2337 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2338 // return the corresponding CC mask, otherwise return 0.
2339 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2340                                      uint64_t Mask, uint64_t CmpVal,
2341                                      unsigned ICmpType) {
2342   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2343 
2344   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2345   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2346       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2347     return 0;
2348 
2349   // Work out the masks for the lowest and highest bits.
2350   unsigned HighShift = 63 - countLeadingZeros(Mask);
2351   uint64_t High = uint64_t(1) << HighShift;
2352   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2353 
2354   // Signed ordered comparisons are effectively unsigned if the sign
2355   // bit is dropped.
2356   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2357 
2358   // Check for equality comparisons with 0, or the equivalent.
2359   if (CmpVal == 0) {
2360     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2361       return SystemZ::CCMASK_TM_ALL_0;
2362     if (CCMask == SystemZ::CCMASK_CMP_NE)
2363       return SystemZ::CCMASK_TM_SOME_1;
2364   }
2365   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2366     if (CCMask == SystemZ::CCMASK_CMP_LT)
2367       return SystemZ::CCMASK_TM_ALL_0;
2368     if (CCMask == SystemZ::CCMASK_CMP_GE)
2369       return SystemZ::CCMASK_TM_SOME_1;
2370   }
2371   if (EffectivelyUnsigned && CmpVal < Low) {
2372     if (CCMask == SystemZ::CCMASK_CMP_LE)
2373       return SystemZ::CCMASK_TM_ALL_0;
2374     if (CCMask == SystemZ::CCMASK_CMP_GT)
2375       return SystemZ::CCMASK_TM_SOME_1;
2376   }
2377 
2378   // Check for equality comparisons with the mask, or the equivalent.
2379   if (CmpVal == Mask) {
2380     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2381       return SystemZ::CCMASK_TM_ALL_1;
2382     if (CCMask == SystemZ::CCMASK_CMP_NE)
2383       return SystemZ::CCMASK_TM_SOME_0;
2384   }
2385   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2386     if (CCMask == SystemZ::CCMASK_CMP_GT)
2387       return SystemZ::CCMASK_TM_ALL_1;
2388     if (CCMask == SystemZ::CCMASK_CMP_LE)
2389       return SystemZ::CCMASK_TM_SOME_0;
2390   }
2391   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2392     if (CCMask == SystemZ::CCMASK_CMP_GE)
2393       return SystemZ::CCMASK_TM_ALL_1;
2394     if (CCMask == SystemZ::CCMASK_CMP_LT)
2395       return SystemZ::CCMASK_TM_SOME_0;
2396   }
2397 
2398   // Check for ordered comparisons with the top bit.
2399   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2400     if (CCMask == SystemZ::CCMASK_CMP_LE)
2401       return SystemZ::CCMASK_TM_MSB_0;
2402     if (CCMask == SystemZ::CCMASK_CMP_GT)
2403       return SystemZ::CCMASK_TM_MSB_1;
2404   }
2405   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2406     if (CCMask == SystemZ::CCMASK_CMP_LT)
2407       return SystemZ::CCMASK_TM_MSB_0;
2408     if (CCMask == SystemZ::CCMASK_CMP_GE)
2409       return SystemZ::CCMASK_TM_MSB_1;
2410   }
2411 
2412   // If there are just two bits, we can do equality checks for Low and High
2413   // as well.
2414   if (Mask == Low + High) {
2415     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2416       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2417     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2418       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2419     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2420       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2421     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2422       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2423   }
2424 
2425   // Looks like we've exhausted our options.
2426   return 0;
2427 }
2428 
2429 // See whether C can be implemented as a TEST UNDER MASK instruction.
2430 // Update the arguments with the TM version if so.
2431 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2432                                    Comparison &C) {
2433   // Check that we have a comparison with a constant.
2434   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2435   if (!ConstOp1)
2436     return;
2437   uint64_t CmpVal = ConstOp1->getZExtValue();
2438 
2439   // Check whether the nonconstant input is an AND with a constant mask.
2440   Comparison NewC(C);
2441   uint64_t MaskVal;
2442   ConstantSDNode *Mask = nullptr;
2443   if (C.Op0.getOpcode() == ISD::AND) {
2444     NewC.Op0 = C.Op0.getOperand(0);
2445     NewC.Op1 = C.Op0.getOperand(1);
2446     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2447     if (!Mask)
2448       return;
2449     MaskVal = Mask->getZExtValue();
2450   } else {
2451     // There is no instruction to compare with a 64-bit immediate
2452     // so use TMHH instead if possible.  We need an unsigned ordered
2453     // comparison with an i64 immediate.
2454     if (NewC.Op0.getValueType() != MVT::i64 ||
2455         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2456         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2457         NewC.ICmpType == SystemZICMP::SignedOnly)
2458       return;
2459     // Convert LE and GT comparisons into LT and GE.
2460     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2461         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2462       if (CmpVal == uint64_t(-1))
2463         return;
2464       CmpVal += 1;
2465       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2466     }
2467     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2468     // be masked off without changing the result.
2469     MaskVal = -(CmpVal & -CmpVal);
2470     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2471   }
2472   if (!MaskVal)
2473     return;
2474 
2475   // Check whether the combination of mask, comparison value and comparison
2476   // type are suitable.
2477   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2478   unsigned NewCCMask, ShiftVal;
2479   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2480       NewC.Op0.getOpcode() == ISD::SHL &&
2481       isSimpleShift(NewC.Op0, ShiftVal) &&
2482       (MaskVal >> ShiftVal != 0) &&
2483       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2484       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2485                                         MaskVal >> ShiftVal,
2486                                         CmpVal >> ShiftVal,
2487                                         SystemZICMP::Any))) {
2488     NewC.Op0 = NewC.Op0.getOperand(0);
2489     MaskVal >>= ShiftVal;
2490   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2491              NewC.Op0.getOpcode() == ISD::SRL &&
2492              isSimpleShift(NewC.Op0, ShiftVal) &&
2493              (MaskVal << ShiftVal != 0) &&
2494              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2495              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2496                                                MaskVal << ShiftVal,
2497                                                CmpVal << ShiftVal,
2498                                                SystemZICMP::UnsignedOnly))) {
2499     NewC.Op0 = NewC.Op0.getOperand(0);
2500     MaskVal <<= ShiftVal;
2501   } else {
2502     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2503                                      NewC.ICmpType);
2504     if (!NewCCMask)
2505       return;
2506   }
2507 
2508   // Go ahead and make the change.
2509   C.Opcode = SystemZISD::TM;
2510   C.Op0 = NewC.Op0;
2511   if (Mask && Mask->getZExtValue() == MaskVal)
2512     C.Op1 = SDValue(Mask, 0);
2513   else
2514     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2515   C.CCValid = SystemZ::CCMASK_TM;
2516   C.CCMask = NewCCMask;
2517 }
2518 
2519 // See whether the comparison argument contains a redundant AND
2520 // and remove it if so.  This sometimes happens due to the generic
2521 // BRCOND expansion.
2522 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2523                                   Comparison &C) {
2524   if (C.Op0.getOpcode() != ISD::AND)
2525     return;
2526   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2527   if (!Mask)
2528     return;
2529   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2530   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2531     return;
2532 
2533   C.Op0 = C.Op0.getOperand(0);
2534 }
2535 
2536 // Return a Comparison that tests the condition-code result of intrinsic
2537 // node Call against constant integer CC using comparison code Cond.
2538 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2539 // and CCValid is the set of possible condition-code results.
2540 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2541                                   SDValue Call, unsigned CCValid, uint64_t CC,
2542                                   ISD::CondCode Cond) {
2543   Comparison C(Call, SDValue(), SDValue());
2544   C.Opcode = Opcode;
2545   C.CCValid = CCValid;
2546   if (Cond == ISD::SETEQ)
2547     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2548     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2549   else if (Cond == ISD::SETNE)
2550     // ...and the inverse of that.
2551     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2552   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2553     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2554     // always true for CC>3.
2555     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2556   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2557     // ...and the inverse of that.
2558     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2559   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2560     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2561     // always true for CC>3.
2562     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2563   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2564     // ...and the inverse of that.
2565     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2566   else
2567     llvm_unreachable("Unexpected integer comparison type");
2568   C.CCMask &= CCValid;
2569   return C;
2570 }
2571 
2572 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2573 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2574                          ISD::CondCode Cond, const SDLoc &DL,
2575                          SDValue Chain = SDValue(),
2576                          bool IsSignaling = false) {
2577   if (CmpOp1.getOpcode() == ISD::Constant) {
2578     assert(!Chain);
2579     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2580     unsigned Opcode, CCValid;
2581     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2582         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2583         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2584       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2585     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2586         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2587         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2588       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2589   }
2590   Comparison C(CmpOp0, CmpOp1, Chain);
2591   C.CCMask = CCMaskForCondCode(Cond);
2592   if (C.Op0.getValueType().isFloatingPoint()) {
2593     C.CCValid = SystemZ::CCMASK_FCMP;
2594     if (!C.Chain)
2595       C.Opcode = SystemZISD::FCMP;
2596     else if (!IsSignaling)
2597       C.Opcode = SystemZISD::STRICT_FCMP;
2598     else
2599       C.Opcode = SystemZISD::STRICT_FCMPS;
2600     adjustForFNeg(C);
2601   } else {
2602     assert(!C.Chain);
2603     C.CCValid = SystemZ::CCMASK_ICMP;
2604     C.Opcode = SystemZISD::ICMP;
2605     // Choose the type of comparison.  Equality and inequality tests can
2606     // use either signed or unsigned comparisons.  The choice also doesn't
2607     // matter if both sign bits are known to be clear.  In those cases we
2608     // want to give the main isel code the freedom to choose whichever
2609     // form fits best.
2610     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2611         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2612         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2613       C.ICmpType = SystemZICMP::Any;
2614     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2615       C.ICmpType = SystemZICMP::UnsignedOnly;
2616     else
2617       C.ICmpType = SystemZICMP::SignedOnly;
2618     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2619     adjustForRedundantAnd(DAG, DL, C);
2620     adjustZeroCmp(DAG, DL, C);
2621     adjustSubwordCmp(DAG, DL, C);
2622     adjustForSubtraction(DAG, DL, C);
2623     adjustForLTGFR(C);
2624     adjustICmpTruncate(DAG, DL, C);
2625   }
2626 
2627   if (shouldSwapCmpOperands(C)) {
2628     std::swap(C.Op0, C.Op1);
2629     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2630   }
2631 
2632   adjustForTestUnderMask(DAG, DL, C);
2633   return C;
2634 }
2635 
2636 // Emit the comparison instruction described by C.
2637 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2638   if (!C.Op1.getNode()) {
2639     SDNode *Node;
2640     switch (C.Op0.getOpcode()) {
2641     case ISD::INTRINSIC_W_CHAIN:
2642       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2643       return SDValue(Node, 0);
2644     case ISD::INTRINSIC_WO_CHAIN:
2645       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2646       return SDValue(Node, Node->getNumValues() - 1);
2647     default:
2648       llvm_unreachable("Invalid comparison operands");
2649     }
2650   }
2651   if (C.Opcode == SystemZISD::ICMP)
2652     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2653                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2654   if (C.Opcode == SystemZISD::TM) {
2655     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2656                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2657     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2658                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2659   }
2660   if (C.Chain) {
2661     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2662     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2663   }
2664   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2665 }
2666 
2667 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2668 // 64 bits.  Extend is the extension type to use.  Store the high part
2669 // in Hi and the low part in Lo.
2670 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2671                             SDValue Op0, SDValue Op1, SDValue &Hi,
2672                             SDValue &Lo) {
2673   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2674   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2675   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2676   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2677                    DAG.getConstant(32, DL, MVT::i64));
2678   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2679   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2680 }
2681 
2682 // Lower a binary operation that produces two VT results, one in each
2683 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2684 // and Opcode performs the GR128 operation.  Store the even register result
2685 // in Even and the odd register result in Odd.
2686 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2687                              unsigned Opcode, SDValue Op0, SDValue Op1,
2688                              SDValue &Even, SDValue &Odd) {
2689   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2690   bool Is32Bit = is32Bit(VT);
2691   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2692   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2693 }
2694 
2695 // Return an i32 value that is 1 if the CC value produced by CCReg is
2696 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2697 // in CCValid, so other values can be ignored.
2698 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2699                          unsigned CCValid, unsigned CCMask) {
2700   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2701                    DAG.getConstant(0, DL, MVT::i32),
2702                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2703                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2704   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2705 }
2706 
2707 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2708 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2709 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2710 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2711 // floating-point comparisons.
2712 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2713 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2714   switch (CC) {
2715   case ISD::SETOEQ:
2716   case ISD::SETEQ:
2717     switch (Mode) {
2718     case CmpMode::Int:         return SystemZISD::VICMPE;
2719     case CmpMode::FP:          return SystemZISD::VFCMPE;
2720     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2721     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2722     }
2723     llvm_unreachable("Bad mode");
2724 
2725   case ISD::SETOGE:
2726   case ISD::SETGE:
2727     switch (Mode) {
2728     case CmpMode::Int:         return 0;
2729     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2730     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2731     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2732     }
2733     llvm_unreachable("Bad mode");
2734 
2735   case ISD::SETOGT:
2736   case ISD::SETGT:
2737     switch (Mode) {
2738     case CmpMode::Int:         return SystemZISD::VICMPH;
2739     case CmpMode::FP:          return SystemZISD::VFCMPH;
2740     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2741     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2742     }
2743     llvm_unreachable("Bad mode");
2744 
2745   case ISD::SETUGT:
2746     switch (Mode) {
2747     case CmpMode::Int:         return SystemZISD::VICMPHL;
2748     case CmpMode::FP:          return 0;
2749     case CmpMode::StrictFP:    return 0;
2750     case CmpMode::SignalingFP: return 0;
2751     }
2752     llvm_unreachable("Bad mode");
2753 
2754   default:
2755     return 0;
2756   }
2757 }
2758 
2759 // Return the SystemZISD vector comparison operation for CC or its inverse,
2760 // or 0 if neither can be done directly.  Indicate in Invert whether the
2761 // result is for the inverse of CC.  Mode is as above.
2762 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2763                                             bool &Invert) {
2764   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2765     Invert = false;
2766     return Opcode;
2767   }
2768 
2769   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2770   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2771     Invert = true;
2772     return Opcode;
2773   }
2774 
2775   return 0;
2776 }
2777 
2778 // Return a v2f64 that contains the extended form of elements Start and Start+1
2779 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2780 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2781                                   SDValue Op, SDValue Chain) {
2782   int Mask[] = { Start, -1, Start + 1, -1 };
2783   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2784   if (Chain) {
2785     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2786     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2787   }
2788   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2789 }
2790 
2791 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2792 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2793 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2794                                             const SDLoc &DL, EVT VT,
2795                                             SDValue CmpOp0,
2796                                             SDValue CmpOp1,
2797                                             SDValue Chain) const {
2798   // There is no hardware support for v4f32 (unless we have the vector
2799   // enhancements facility 1), so extend the vector into two v2f64s
2800   // and compare those.
2801   if (CmpOp0.getValueType() == MVT::v4f32 &&
2802       !Subtarget.hasVectorEnhancements1()) {
2803     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2804     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2805     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2806     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2807     if (Chain) {
2808       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2809       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2810       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2811       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2812       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2813                             H1.getValue(1), L1.getValue(1),
2814                             HRes.getValue(1), LRes.getValue(1) };
2815       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2816       SDValue Ops[2] = { Res, NewChain };
2817       return DAG.getMergeValues(Ops, DL);
2818     }
2819     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2820     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2821     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2822   }
2823   if (Chain) {
2824     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2825     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2826   }
2827   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2828 }
2829 
2830 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2831 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2832 // floating-point comparison.  If in addition IsSignaling is true, we have
2833 // a strict signaling floating-point comparison.
2834 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2835                                                 const SDLoc &DL, EVT VT,
2836                                                 ISD::CondCode CC,
2837                                                 SDValue CmpOp0,
2838                                                 SDValue CmpOp1,
2839                                                 SDValue Chain,
2840                                                 bool IsSignaling) const {
2841   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2842   assert (!Chain || IsFP);
2843   assert (!IsSignaling || Chain);
2844   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2845                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2846   bool Invert = false;
2847   SDValue Cmp;
2848   switch (CC) {
2849     // Handle tests for order using (or (ogt y x) (oge x y)).
2850   case ISD::SETUO:
2851     Invert = true;
2852     LLVM_FALLTHROUGH;
2853   case ISD::SETO: {
2854     assert(IsFP && "Unexpected integer comparison");
2855     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2856                               DL, VT, CmpOp1, CmpOp0, Chain);
2857     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2858                               DL, VT, CmpOp0, CmpOp1, Chain);
2859     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2860     if (Chain)
2861       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2862                           LT.getValue(1), GE.getValue(1));
2863     break;
2864   }
2865 
2866     // Handle <> tests using (or (ogt y x) (ogt x y)).
2867   case ISD::SETUEQ:
2868     Invert = true;
2869     LLVM_FALLTHROUGH;
2870   case ISD::SETONE: {
2871     assert(IsFP && "Unexpected integer comparison");
2872     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2873                               DL, VT, CmpOp1, CmpOp0, Chain);
2874     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2875                               DL, VT, CmpOp0, CmpOp1, Chain);
2876     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2877     if (Chain)
2878       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2879                           LT.getValue(1), GT.getValue(1));
2880     break;
2881   }
2882 
2883     // Otherwise a single comparison is enough.  It doesn't really
2884     // matter whether we try the inversion or the swap first, since
2885     // there are no cases where both work.
2886   default:
2887     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2888       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2889     else {
2890       CC = ISD::getSetCCSwappedOperands(CC);
2891       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2892         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2893       else
2894         llvm_unreachable("Unhandled comparison");
2895     }
2896     if (Chain)
2897       Chain = Cmp.getValue(1);
2898     break;
2899   }
2900   if (Invert) {
2901     SDValue Mask =
2902       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2903     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2904   }
2905   if (Chain && Chain.getNode() != Cmp.getNode()) {
2906     SDValue Ops[2] = { Cmp, Chain };
2907     Cmp = DAG.getMergeValues(Ops, DL);
2908   }
2909   return Cmp;
2910 }
2911 
2912 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2913                                           SelectionDAG &DAG) const {
2914   SDValue CmpOp0   = Op.getOperand(0);
2915   SDValue CmpOp1   = Op.getOperand(1);
2916   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2917   SDLoc DL(Op);
2918   EVT VT = Op.getValueType();
2919   if (VT.isVector())
2920     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2921 
2922   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2923   SDValue CCReg = emitCmp(DAG, DL, C);
2924   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2925 }
2926 
2927 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2928                                                   SelectionDAG &DAG,
2929                                                   bool IsSignaling) const {
2930   SDValue Chain    = Op.getOperand(0);
2931   SDValue CmpOp0   = Op.getOperand(1);
2932   SDValue CmpOp1   = Op.getOperand(2);
2933   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2934   SDLoc DL(Op);
2935   EVT VT = Op.getNode()->getValueType(0);
2936   if (VT.isVector()) {
2937     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2938                                    Chain, IsSignaling);
2939     return Res.getValue(Op.getResNo());
2940   }
2941 
2942   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2943   SDValue CCReg = emitCmp(DAG, DL, C);
2944   CCReg->setFlags(Op->getFlags());
2945   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2946   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2947   return DAG.getMergeValues(Ops, DL);
2948 }
2949 
2950 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2951   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2952   SDValue CmpOp0   = Op.getOperand(2);
2953   SDValue CmpOp1   = Op.getOperand(3);
2954   SDValue Dest     = Op.getOperand(4);
2955   SDLoc DL(Op);
2956 
2957   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2958   SDValue CCReg = emitCmp(DAG, DL, C);
2959   return DAG.getNode(
2960       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2961       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2962       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2963 }
2964 
2965 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2966 // allowing Pos and Neg to be wider than CmpOp.
2967 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2968   return (Neg.getOpcode() == ISD::SUB &&
2969           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2970           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2971           Neg.getOperand(1) == Pos &&
2972           (Pos == CmpOp ||
2973            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2974             Pos.getOperand(0) == CmpOp)));
2975 }
2976 
2977 // Return the absolute or negative absolute of Op; IsNegative decides which.
2978 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2979                            bool IsNegative) {
2980   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
2981   if (IsNegative)
2982     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2983                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2984   return Op;
2985 }
2986 
2987 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2988                                               SelectionDAG &DAG) const {
2989   SDValue CmpOp0   = Op.getOperand(0);
2990   SDValue CmpOp1   = Op.getOperand(1);
2991   SDValue TrueOp   = Op.getOperand(2);
2992   SDValue FalseOp  = Op.getOperand(3);
2993   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2994   SDLoc DL(Op);
2995 
2996   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2997 
2998   // Check for absolute and negative-absolute selections, including those
2999   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3000   // This check supplements the one in DAGCombiner.
3001   if (C.Opcode == SystemZISD::ICMP &&
3002       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3003       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3004       C.Op1.getOpcode() == ISD::Constant &&
3005       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3006     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3007       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3008     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3009       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3010   }
3011 
3012   SDValue CCReg = emitCmp(DAG, DL, C);
3013   SDValue Ops[] = {TrueOp, FalseOp,
3014                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3015                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3016 
3017   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3018 }
3019 
3020 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3021                                                   SelectionDAG &DAG) const {
3022   SDLoc DL(Node);
3023   const GlobalValue *GV = Node->getGlobal();
3024   int64_t Offset = Node->getOffset();
3025   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3026   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3027 
3028   SDValue Result;
3029   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3030     if (isInt<32>(Offset)) {
3031       // Assign anchors at 1<<12 byte boundaries.
3032       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3033       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3034       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3035 
3036       // The offset can be folded into the address if it is aligned to a
3037       // halfword.
3038       Offset -= Anchor;
3039       if (Offset != 0 && (Offset & 1) == 0) {
3040         SDValue Full =
3041           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3042         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3043         Offset = 0;
3044       }
3045     } else {
3046       // Conservatively load a constant offset greater than 32 bits into a
3047       // register below.
3048       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3049       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3050     }
3051   } else {
3052     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3053     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3054     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3055                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3056   }
3057 
3058   // If there was a non-zero offset that we didn't fold, create an explicit
3059   // addition for it.
3060   if (Offset != 0)
3061     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3062                          DAG.getConstant(Offset, DL, PtrVT));
3063 
3064   return Result;
3065 }
3066 
3067 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3068                                                  SelectionDAG &DAG,
3069                                                  unsigned Opcode,
3070                                                  SDValue GOTOffset) const {
3071   SDLoc DL(Node);
3072   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3073   SDValue Chain = DAG.getEntryNode();
3074   SDValue Glue;
3075 
3076   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3077       CallingConv::GHC)
3078     report_fatal_error("In GHC calling convention TLS is not supported");
3079 
3080   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3081   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3082   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3083   Glue = Chain.getValue(1);
3084   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3085   Glue = Chain.getValue(1);
3086 
3087   // The first call operand is the chain and the second is the TLS symbol.
3088   SmallVector<SDValue, 8> Ops;
3089   Ops.push_back(Chain);
3090   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3091                                            Node->getValueType(0),
3092                                            0, 0));
3093 
3094   // Add argument registers to the end of the list so that they are
3095   // known live into the call.
3096   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3097   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3098 
3099   // Add a register mask operand representing the call-preserved registers.
3100   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3101   const uint32_t *Mask =
3102       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3103   assert(Mask && "Missing call preserved mask for calling convention");
3104   Ops.push_back(DAG.getRegisterMask(Mask));
3105 
3106   // Glue the call to the argument copies.
3107   Ops.push_back(Glue);
3108 
3109   // Emit the call.
3110   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3111   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3112   Glue = Chain.getValue(1);
3113 
3114   // Copy the return value from %r2.
3115   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3116 }
3117 
3118 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3119                                                   SelectionDAG &DAG) const {
3120   SDValue Chain = DAG.getEntryNode();
3121   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3122 
3123   // The high part of the thread pointer is in access register 0.
3124   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3125   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3126 
3127   // The low part of the thread pointer is in access register 1.
3128   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3129   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3130 
3131   // Merge them into a single 64-bit address.
3132   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3133                                     DAG.getConstant(32, DL, PtrVT));
3134   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3135 }
3136 
3137 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3138                                                      SelectionDAG &DAG) const {
3139   if (DAG.getTarget().useEmulatedTLS())
3140     return LowerToTLSEmulatedModel(Node, DAG);
3141   SDLoc DL(Node);
3142   const GlobalValue *GV = Node->getGlobal();
3143   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3144   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3145 
3146   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3147       CallingConv::GHC)
3148     report_fatal_error("In GHC calling convention TLS is not supported");
3149 
3150   SDValue TP = lowerThreadPointer(DL, DAG);
3151 
3152   // Get the offset of GA from the thread pointer, based on the TLS model.
3153   SDValue Offset;
3154   switch (model) {
3155     case TLSModel::GeneralDynamic: {
3156       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3157       SystemZConstantPoolValue *CPV =
3158         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3159 
3160       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3161       Offset = DAG.getLoad(
3162           PtrVT, DL, DAG.getEntryNode(), Offset,
3163           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3164 
3165       // Call __tls_get_offset to retrieve the offset.
3166       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3167       break;
3168     }
3169 
3170     case TLSModel::LocalDynamic: {
3171       // Load the GOT offset of the module ID.
3172       SystemZConstantPoolValue *CPV =
3173         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3174 
3175       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3176       Offset = DAG.getLoad(
3177           PtrVT, DL, DAG.getEntryNode(), Offset,
3178           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3179 
3180       // Call __tls_get_offset to retrieve the module base offset.
3181       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3182 
3183       // Note: The SystemZLDCleanupPass will remove redundant computations
3184       // of the module base offset.  Count total number of local-dynamic
3185       // accesses to trigger execution of that pass.
3186       SystemZMachineFunctionInfo* MFI =
3187         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3188       MFI->incNumLocalDynamicTLSAccesses();
3189 
3190       // Add the per-symbol offset.
3191       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3192 
3193       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3194       DTPOffset = DAG.getLoad(
3195           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3196           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3197 
3198       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3199       break;
3200     }
3201 
3202     case TLSModel::InitialExec: {
3203       // Load the offset from the GOT.
3204       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3205                                           SystemZII::MO_INDNTPOFF);
3206       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3207       Offset =
3208           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3209                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3210       break;
3211     }
3212 
3213     case TLSModel::LocalExec: {
3214       // Force the offset into the constant pool and load it from there.
3215       SystemZConstantPoolValue *CPV =
3216         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3217 
3218       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3219       Offset = DAG.getLoad(
3220           PtrVT, DL, DAG.getEntryNode(), Offset,
3221           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3222       break;
3223     }
3224   }
3225 
3226   // Add the base and offset together.
3227   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3228 }
3229 
3230 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3231                                                  SelectionDAG &DAG) const {
3232   SDLoc DL(Node);
3233   const BlockAddress *BA = Node->getBlockAddress();
3234   int64_t Offset = Node->getOffset();
3235   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3236 
3237   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3238   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3239   return Result;
3240 }
3241 
3242 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3243                                               SelectionDAG &DAG) const {
3244   SDLoc DL(JT);
3245   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3246   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3247 
3248   // Use LARL to load the address of the table.
3249   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3250 }
3251 
3252 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3253                                                  SelectionDAG &DAG) const {
3254   SDLoc DL(CP);
3255   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3256 
3257   SDValue Result;
3258   if (CP->isMachineConstantPoolEntry())
3259     Result =
3260         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3261   else
3262     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3263                                        CP->getOffset());
3264 
3265   // Use LARL to load the address of the constant pool entry.
3266   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3267 }
3268 
3269 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3270                                               SelectionDAG &DAG) const {
3271   auto *TFL =
3272       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3273   MachineFunction &MF = DAG.getMachineFunction();
3274   MachineFrameInfo &MFI = MF.getFrameInfo();
3275   MFI.setFrameAddressIsTaken(true);
3276 
3277   SDLoc DL(Op);
3278   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3279   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3280 
3281   // Return null if the back chain is not present.
3282   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3283   if (TFL->usePackedStack(MF) && !HasBackChain)
3284     return DAG.getConstant(0, DL, PtrVT);
3285 
3286   // By definition, the frame address is the address of the back chain.
3287   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3288   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3289 
3290   // FIXME The frontend should detect this case.
3291   if (Depth > 0) {
3292     report_fatal_error("Unsupported stack frame traversal count");
3293   }
3294 
3295   return BackChain;
3296 }
3297 
3298 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3299                                                SelectionDAG &DAG) const {
3300   MachineFunction &MF = DAG.getMachineFunction();
3301   MachineFrameInfo &MFI = MF.getFrameInfo();
3302   MFI.setReturnAddressIsTaken(true);
3303 
3304   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3305     return SDValue();
3306 
3307   SDLoc DL(Op);
3308   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3309   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3310 
3311   // FIXME The frontend should detect this case.
3312   if (Depth > 0) {
3313     report_fatal_error("Unsupported stack frame traversal count");
3314   }
3315 
3316   // Return R14D, which has the return address. Mark it an implicit live-in.
3317   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3318   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3319 }
3320 
3321 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3322                                             SelectionDAG &DAG) const {
3323   SDLoc DL(Op);
3324   SDValue In = Op.getOperand(0);
3325   EVT InVT = In.getValueType();
3326   EVT ResVT = Op.getValueType();
3327 
3328   // Convert loads directly.  This is normally done by DAGCombiner,
3329   // but we need this case for bitcasts that are created during lowering
3330   // and which are then lowered themselves.
3331   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3332     if (ISD::isNormalLoad(LoadN)) {
3333       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3334                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3335       // Update the chain uses.
3336       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3337       return NewLoad;
3338     }
3339 
3340   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3341     SDValue In64;
3342     if (Subtarget.hasHighWord()) {
3343       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3344                                        MVT::i64);
3345       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3346                                        MVT::i64, SDValue(U64, 0), In);
3347     } else {
3348       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3349       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3350                          DAG.getConstant(32, DL, MVT::i64));
3351     }
3352     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3353     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3354                                       DL, MVT::f32, Out64);
3355   }
3356   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3357     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3358     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3359                                              MVT::f64, SDValue(U64, 0), In);
3360     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3361     if (Subtarget.hasHighWord())
3362       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3363                                         MVT::i32, Out64);
3364     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3365                                 DAG.getConstant(32, DL, MVT::i64));
3366     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3367   }
3368   llvm_unreachable("Unexpected bitcast combination");
3369 }
3370 
3371 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3372                                             SelectionDAG &DAG) const {
3373   MachineFunction &MF = DAG.getMachineFunction();
3374   SystemZMachineFunctionInfo *FuncInfo =
3375     MF.getInfo<SystemZMachineFunctionInfo>();
3376   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3377 
3378   SDValue Chain   = Op.getOperand(0);
3379   SDValue Addr    = Op.getOperand(1);
3380   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3381   SDLoc DL(Op);
3382 
3383   // The initial values of each field.
3384   const unsigned NumFields = 4;
3385   SDValue Fields[NumFields] = {
3386     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3387     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3388     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3389     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3390   };
3391 
3392   // Store each field into its respective slot.
3393   SDValue MemOps[NumFields];
3394   unsigned Offset = 0;
3395   for (unsigned I = 0; I < NumFields; ++I) {
3396     SDValue FieldAddr = Addr;
3397     if (Offset != 0)
3398       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3399                               DAG.getIntPtrConstant(Offset, DL));
3400     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3401                              MachinePointerInfo(SV, Offset));
3402     Offset += 8;
3403   }
3404   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3405 }
3406 
3407 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3408                                            SelectionDAG &DAG) const {
3409   SDValue Chain      = Op.getOperand(0);
3410   SDValue DstPtr     = Op.getOperand(1);
3411   SDValue SrcPtr     = Op.getOperand(2);
3412   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3413   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3414   SDLoc DL(Op);
3415 
3416   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3417                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3418                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3419                        MachinePointerInfo(SrcSV));
3420 }
3421 
3422 SDValue SystemZTargetLowering::
3423 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3424   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3425   MachineFunction &MF = DAG.getMachineFunction();
3426   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3427   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3428 
3429   SDValue Chain = Op.getOperand(0);
3430   SDValue Size  = Op.getOperand(1);
3431   SDValue Align = Op.getOperand(2);
3432   SDLoc DL(Op);
3433 
3434   // If user has set the no alignment function attribute, ignore
3435   // alloca alignments.
3436   uint64_t AlignVal =
3437       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3438 
3439   uint64_t StackAlign = TFI->getStackAlignment();
3440   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3441   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3442 
3443   Register SPReg = getStackPointerRegisterToSaveRestore();
3444   SDValue NeededSpace = Size;
3445 
3446   // Get a reference to the stack pointer.
3447   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3448 
3449   // If we need a backchain, save it now.
3450   SDValue Backchain;
3451   if (StoreBackchain)
3452     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3453                             MachinePointerInfo());
3454 
3455   // Add extra space for alignment if needed.
3456   if (ExtraAlignSpace)
3457     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3458                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3459 
3460   // Get the new stack pointer value.
3461   SDValue NewSP;
3462   if (hasInlineStackProbe(MF)) {
3463     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3464                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3465     Chain = NewSP.getValue(1);
3466   }
3467   else {
3468     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3469     // Copy the new stack pointer back.
3470     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3471   }
3472 
3473   // The allocated data lives above the 160 bytes allocated for the standard
3474   // frame, plus any outgoing stack arguments.  We don't know how much that
3475   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3476   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3477   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3478 
3479   // Dynamically realign if needed.
3480   if (RequiredAlign > StackAlign) {
3481     Result =
3482       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3483                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3484     Result =
3485       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3486                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3487   }
3488 
3489   if (StoreBackchain)
3490     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3491                          MachinePointerInfo());
3492 
3493   SDValue Ops[2] = { Result, Chain };
3494   return DAG.getMergeValues(Ops, DL);
3495 }
3496 
3497 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3498     SDValue Op, SelectionDAG &DAG) const {
3499   SDLoc DL(Op);
3500 
3501   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3502 }
3503 
3504 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3505                                               SelectionDAG &DAG) const {
3506   EVT VT = Op.getValueType();
3507   SDLoc DL(Op);
3508   SDValue Ops[2];
3509   if (is32Bit(VT))
3510     // Just do a normal 64-bit multiplication and extract the results.
3511     // We define this so that it can be used for constant division.
3512     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3513                     Op.getOperand(1), Ops[1], Ops[0]);
3514   else if (Subtarget.hasMiscellaneousExtensions2())
3515     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3516     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3517     // return the low half first, so the results are in reverse order.
3518     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3519                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3520   else {
3521     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3522     //
3523     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3524     //
3525     // but using the fact that the upper halves are either all zeros
3526     // or all ones:
3527     //
3528     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3529     //
3530     // and grouping the right terms together since they are quicker than the
3531     // multiplication:
3532     //
3533     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3534     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3535     SDValue LL = Op.getOperand(0);
3536     SDValue RL = Op.getOperand(1);
3537     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3538     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3539     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3540     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3541     // return the low half first, so the results are in reverse order.
3542     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3543                      LL, RL, Ops[1], Ops[0]);
3544     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3545     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3546     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3547     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3548   }
3549   return DAG.getMergeValues(Ops, DL);
3550 }
3551 
3552 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3553                                               SelectionDAG &DAG) const {
3554   EVT VT = Op.getValueType();
3555   SDLoc DL(Op);
3556   SDValue Ops[2];
3557   if (is32Bit(VT))
3558     // Just do a normal 64-bit multiplication and extract the results.
3559     // We define this so that it can be used for constant division.
3560     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3561                     Op.getOperand(1), Ops[1], Ops[0]);
3562   else
3563     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3564     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3565     // return the low half first, so the results are in reverse order.
3566     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3567                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3568   return DAG.getMergeValues(Ops, DL);
3569 }
3570 
3571 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3572                                             SelectionDAG &DAG) const {
3573   SDValue Op0 = Op.getOperand(0);
3574   SDValue Op1 = Op.getOperand(1);
3575   EVT VT = Op.getValueType();
3576   SDLoc DL(Op);
3577 
3578   // We use DSGF for 32-bit division.  This means the first operand must
3579   // always be 64-bit, and the second operand should be 32-bit whenever
3580   // that is possible, to improve performance.
3581   if (is32Bit(VT))
3582     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3583   else if (DAG.ComputeNumSignBits(Op1) > 32)
3584     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3585 
3586   // DSG(F) returns the remainder in the even register and the
3587   // quotient in the odd register.
3588   SDValue Ops[2];
3589   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3590   return DAG.getMergeValues(Ops, DL);
3591 }
3592 
3593 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3594                                             SelectionDAG &DAG) const {
3595   EVT VT = Op.getValueType();
3596   SDLoc DL(Op);
3597 
3598   // DL(G) returns the remainder in the even register and the
3599   // quotient in the odd register.
3600   SDValue Ops[2];
3601   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3602                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3603   return DAG.getMergeValues(Ops, DL);
3604 }
3605 
3606 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3607   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3608 
3609   // Get the known-zero masks for each operand.
3610   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3611   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3612                         DAG.computeKnownBits(Ops[1])};
3613 
3614   // See if the upper 32 bits of one operand and the lower 32 bits of the
3615   // other are known zero.  They are the low and high operands respectively.
3616   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3617                        Known[1].Zero.getZExtValue() };
3618   unsigned High, Low;
3619   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3620     High = 1, Low = 0;
3621   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3622     High = 0, Low = 1;
3623   else
3624     return Op;
3625 
3626   SDValue LowOp = Ops[Low];
3627   SDValue HighOp = Ops[High];
3628 
3629   // If the high part is a constant, we're better off using IILH.
3630   if (HighOp.getOpcode() == ISD::Constant)
3631     return Op;
3632 
3633   // If the low part is a constant that is outside the range of LHI,
3634   // then we're better off using IILF.
3635   if (LowOp.getOpcode() == ISD::Constant) {
3636     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3637     if (!isInt<16>(Value))
3638       return Op;
3639   }
3640 
3641   // Check whether the high part is an AND that doesn't change the
3642   // high 32 bits and just masks out low bits.  We can skip it if so.
3643   if (HighOp.getOpcode() == ISD::AND &&
3644       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3645     SDValue HighOp0 = HighOp.getOperand(0);
3646     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3647     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3648       HighOp = HighOp0;
3649   }
3650 
3651   // Take advantage of the fact that all GR32 operations only change the
3652   // low 32 bits by truncating Low to an i32 and inserting it directly
3653   // using a subreg.  The interesting cases are those where the truncation
3654   // can be folded.
3655   SDLoc DL(Op);
3656   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3657   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3658                                    MVT::i64, HighOp, Low32);
3659 }
3660 
3661 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3662 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3663                                           SelectionDAG &DAG) const {
3664   SDNode *N = Op.getNode();
3665   SDValue LHS = N->getOperand(0);
3666   SDValue RHS = N->getOperand(1);
3667   SDLoc DL(N);
3668   unsigned BaseOp = 0;
3669   unsigned CCValid = 0;
3670   unsigned CCMask = 0;
3671 
3672   switch (Op.getOpcode()) {
3673   default: llvm_unreachable("Unknown instruction!");
3674   case ISD::SADDO:
3675     BaseOp = SystemZISD::SADDO;
3676     CCValid = SystemZ::CCMASK_ARITH;
3677     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3678     break;
3679   case ISD::SSUBO:
3680     BaseOp = SystemZISD::SSUBO;
3681     CCValid = SystemZ::CCMASK_ARITH;
3682     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3683     break;
3684   case ISD::UADDO:
3685     BaseOp = SystemZISD::UADDO;
3686     CCValid = SystemZ::CCMASK_LOGICAL;
3687     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3688     break;
3689   case ISD::USUBO:
3690     BaseOp = SystemZISD::USUBO;
3691     CCValid = SystemZ::CCMASK_LOGICAL;
3692     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3693     break;
3694   }
3695 
3696   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3697   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3698 
3699   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3700   if (N->getValueType(1) == MVT::i1)
3701     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3702 
3703   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3704 }
3705 
3706 static bool isAddCarryChain(SDValue Carry) {
3707   while (Carry.getOpcode() == ISD::ADDCARRY)
3708     Carry = Carry.getOperand(2);
3709   return Carry.getOpcode() == ISD::UADDO;
3710 }
3711 
3712 static bool isSubBorrowChain(SDValue Carry) {
3713   while (Carry.getOpcode() == ISD::SUBCARRY)
3714     Carry = Carry.getOperand(2);
3715   return Carry.getOpcode() == ISD::USUBO;
3716 }
3717 
3718 // Lower ADDCARRY/SUBCARRY nodes.
3719 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3720                                                 SelectionDAG &DAG) const {
3721 
3722   SDNode *N = Op.getNode();
3723   MVT VT = N->getSimpleValueType(0);
3724 
3725   // Let legalize expand this if it isn't a legal type yet.
3726   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3727     return SDValue();
3728 
3729   SDValue LHS = N->getOperand(0);
3730   SDValue RHS = N->getOperand(1);
3731   SDValue Carry = Op.getOperand(2);
3732   SDLoc DL(N);
3733   unsigned BaseOp = 0;
3734   unsigned CCValid = 0;
3735   unsigned CCMask = 0;
3736 
3737   switch (Op.getOpcode()) {
3738   default: llvm_unreachable("Unknown instruction!");
3739   case ISD::ADDCARRY:
3740     if (!isAddCarryChain(Carry))
3741       return SDValue();
3742 
3743     BaseOp = SystemZISD::ADDCARRY;
3744     CCValid = SystemZ::CCMASK_LOGICAL;
3745     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3746     break;
3747   case ISD::SUBCARRY:
3748     if (!isSubBorrowChain(Carry))
3749       return SDValue();
3750 
3751     BaseOp = SystemZISD::SUBCARRY;
3752     CCValid = SystemZ::CCMASK_LOGICAL;
3753     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3754     break;
3755   }
3756 
3757   // Set the condition code from the carry flag.
3758   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3759                       DAG.getConstant(CCValid, DL, MVT::i32),
3760                       DAG.getConstant(CCMask, DL, MVT::i32));
3761 
3762   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3763   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3764 
3765   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3766   if (N->getValueType(1) == MVT::i1)
3767     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3768 
3769   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3770 }
3771 
3772 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3773                                           SelectionDAG &DAG) const {
3774   EVT VT = Op.getValueType();
3775   SDLoc DL(Op);
3776   Op = Op.getOperand(0);
3777 
3778   // Handle vector types via VPOPCT.
3779   if (VT.isVector()) {
3780     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3781     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3782     switch (VT.getScalarSizeInBits()) {
3783     case 8:
3784       break;
3785     case 16: {
3786       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3787       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3788       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3789       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3790       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3791       break;
3792     }
3793     case 32: {
3794       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3795                                             DAG.getConstant(0, DL, MVT::i32));
3796       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3797       break;
3798     }
3799     case 64: {
3800       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3801                                             DAG.getConstant(0, DL, MVT::i32));
3802       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3803       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3804       break;
3805     }
3806     default:
3807       llvm_unreachable("Unexpected type");
3808     }
3809     return Op;
3810   }
3811 
3812   // Get the known-zero mask for the operand.
3813   KnownBits Known = DAG.computeKnownBits(Op);
3814   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3815   if (NumSignificantBits == 0)
3816     return DAG.getConstant(0, DL, VT);
3817 
3818   // Skip known-zero high parts of the operand.
3819   int64_t OrigBitSize = VT.getSizeInBits();
3820   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3821   BitSize = std::min(BitSize, OrigBitSize);
3822 
3823   // The POPCNT instruction counts the number of bits in each byte.
3824   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3825   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3826   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3827 
3828   // Add up per-byte counts in a binary tree.  All bits of Op at
3829   // position larger than BitSize remain zero throughout.
3830   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3831     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3832     if (BitSize != OrigBitSize)
3833       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3834                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3835     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3836   }
3837 
3838   // Extract overall result from high byte.
3839   if (BitSize > 8)
3840     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3841                      DAG.getConstant(BitSize - 8, DL, VT));
3842 
3843   return Op;
3844 }
3845 
3846 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3847                                                  SelectionDAG &DAG) const {
3848   SDLoc DL(Op);
3849   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3850     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3851   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3852     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3853 
3854   // The only fence that needs an instruction is a sequentially-consistent
3855   // cross-thread fence.
3856   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3857       FenceSSID == SyncScope::System) {
3858     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3859                                       Op.getOperand(0)),
3860                    0);
3861   }
3862 
3863   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3864   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3865 }
3866 
3867 // Op is an atomic load.  Lower it into a normal volatile load.
3868 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3869                                                 SelectionDAG &DAG) const {
3870   auto *Node = cast<AtomicSDNode>(Op.getNode());
3871   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3872                         Node->getChain(), Node->getBasePtr(),
3873                         Node->getMemoryVT(), Node->getMemOperand());
3874 }
3875 
3876 // Op is an atomic store.  Lower it into a normal volatile store.
3877 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3878                                                  SelectionDAG &DAG) const {
3879   auto *Node = cast<AtomicSDNode>(Op.getNode());
3880   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3881                                     Node->getBasePtr(), Node->getMemoryVT(),
3882                                     Node->getMemOperand());
3883   // We have to enforce sequential consistency by performing a
3884   // serialization operation after the store.
3885   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3886     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3887                                        MVT::Other, Chain), 0);
3888   return Chain;
3889 }
3890 
3891 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3892 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3893 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3894                                                    SelectionDAG &DAG,
3895                                                    unsigned Opcode) const {
3896   auto *Node = cast<AtomicSDNode>(Op.getNode());
3897 
3898   // 32-bit operations need no code outside the main loop.
3899   EVT NarrowVT = Node->getMemoryVT();
3900   EVT WideVT = MVT::i32;
3901   if (NarrowVT == WideVT)
3902     return Op;
3903 
3904   int64_t BitSize = NarrowVT.getSizeInBits();
3905   SDValue ChainIn = Node->getChain();
3906   SDValue Addr = Node->getBasePtr();
3907   SDValue Src2 = Node->getVal();
3908   MachineMemOperand *MMO = Node->getMemOperand();
3909   SDLoc DL(Node);
3910   EVT PtrVT = Addr.getValueType();
3911 
3912   // Convert atomic subtracts of constants into additions.
3913   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3914     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3915       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3916       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3917     }
3918 
3919   // Get the address of the containing word.
3920   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3921                                     DAG.getConstant(-4, DL, PtrVT));
3922 
3923   // Get the number of bits that the word must be rotated left in order
3924   // to bring the field to the top bits of a GR32.
3925   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3926                                  DAG.getConstant(3, DL, PtrVT));
3927   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3928 
3929   // Get the complementing shift amount, for rotating a field in the top
3930   // bits back to its proper position.
3931   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3932                                     DAG.getConstant(0, DL, WideVT), BitShift);
3933 
3934   // Extend the source operand to 32 bits and prepare it for the inner loop.
3935   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3936   // operations require the source to be shifted in advance.  (This shift
3937   // can be folded if the source is constant.)  For AND and NAND, the lower
3938   // bits must be set, while for other opcodes they should be left clear.
3939   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3940     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3941                        DAG.getConstant(32 - BitSize, DL, WideVT));
3942   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3943       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3944     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3945                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3946 
3947   // Construct the ATOMIC_LOADW_* node.
3948   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3949   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3950                     DAG.getConstant(BitSize, DL, WideVT) };
3951   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3952                                              NarrowVT, MMO);
3953 
3954   // Rotate the result of the final CS so that the field is in the lower
3955   // bits of a GR32, then truncate it.
3956   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3957                                     DAG.getConstant(BitSize, DL, WideVT));
3958   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3959 
3960   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3961   return DAG.getMergeValues(RetOps, DL);
3962 }
3963 
3964 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3965 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3966 // operations into additions.
3967 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3968                                                     SelectionDAG &DAG) const {
3969   auto *Node = cast<AtomicSDNode>(Op.getNode());
3970   EVT MemVT = Node->getMemoryVT();
3971   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3972     // A full-width operation.
3973     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3974     SDValue Src2 = Node->getVal();
3975     SDValue NegSrc2;
3976     SDLoc DL(Src2);
3977 
3978     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3979       // Use an addition if the operand is constant and either LAA(G) is
3980       // available or the negative value is in the range of A(G)FHI.
3981       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3982       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3983         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3984     } else if (Subtarget.hasInterlockedAccess1())
3985       // Use LAA(G) if available.
3986       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3987                             Src2);
3988 
3989     if (NegSrc2.getNode())
3990       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3991                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3992                            Node->getMemOperand());
3993 
3994     // Use the node as-is.
3995     return Op;
3996   }
3997 
3998   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3999 }
4000 
4001 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4002 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4003                                                     SelectionDAG &DAG) const {
4004   auto *Node = cast<AtomicSDNode>(Op.getNode());
4005   SDValue ChainIn = Node->getOperand(0);
4006   SDValue Addr = Node->getOperand(1);
4007   SDValue CmpVal = Node->getOperand(2);
4008   SDValue SwapVal = Node->getOperand(3);
4009   MachineMemOperand *MMO = Node->getMemOperand();
4010   SDLoc DL(Node);
4011 
4012   // We have native support for 32-bit and 64-bit compare and swap, but we
4013   // still need to expand extracting the "success" result from the CC.
4014   EVT NarrowVT = Node->getMemoryVT();
4015   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4016   if (NarrowVT == WideVT) {
4017     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4018     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4019     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4020                                                DL, Tys, Ops, NarrowVT, MMO);
4021     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4022                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4023 
4024     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4025     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4026     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4027     return SDValue();
4028   }
4029 
4030   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4031   // via a fullword ATOMIC_CMP_SWAPW operation.
4032   int64_t BitSize = NarrowVT.getSizeInBits();
4033   EVT PtrVT = Addr.getValueType();
4034 
4035   // Get the address of the containing word.
4036   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4037                                     DAG.getConstant(-4, DL, PtrVT));
4038 
4039   // Get the number of bits that the word must be rotated left in order
4040   // to bring the field to the top bits of a GR32.
4041   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4042                                  DAG.getConstant(3, DL, PtrVT));
4043   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4044 
4045   // Get the complementing shift amount, for rotating a field in the top
4046   // bits back to its proper position.
4047   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4048                                     DAG.getConstant(0, DL, WideVT), BitShift);
4049 
4050   // Construct the ATOMIC_CMP_SWAPW node.
4051   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4052   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4053                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4054   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4055                                              VTList, Ops, NarrowVT, MMO);
4056   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4057                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4058 
4059   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4060   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4061   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4062   return SDValue();
4063 }
4064 
4065 MachineMemOperand::Flags
4066 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4067   // Because of how we convert atomic_load and atomic_store to normal loads and
4068   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4069   // since DAGCombine hasn't been updated to account for atomic, but non
4070   // volatile loads.  (See D57601)
4071   if (auto *SI = dyn_cast<StoreInst>(&I))
4072     if (SI->isAtomic())
4073       return MachineMemOperand::MOVolatile;
4074   if (auto *LI = dyn_cast<LoadInst>(&I))
4075     if (LI->isAtomic())
4076       return MachineMemOperand::MOVolatile;
4077   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4078     if (AI->isAtomic())
4079       return MachineMemOperand::MOVolatile;
4080   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4081     if (AI->isAtomic())
4082       return MachineMemOperand::MOVolatile;
4083   return MachineMemOperand::MONone;
4084 }
4085 
4086 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4087                                               SelectionDAG &DAG) const {
4088   MachineFunction &MF = DAG.getMachineFunction();
4089   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4090   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4091     report_fatal_error("Variable-sized stack allocations are not supported "
4092                        "in GHC calling convention");
4093   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4094                             SystemZ::R15D, Op.getValueType());
4095 }
4096 
4097 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4098                                                  SelectionDAG &DAG) const {
4099   MachineFunction &MF = DAG.getMachineFunction();
4100   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4101   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4102 
4103   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4104     report_fatal_error("Variable-sized stack allocations are not supported "
4105                        "in GHC calling convention");
4106 
4107   SDValue Chain = Op.getOperand(0);
4108   SDValue NewSP = Op.getOperand(1);
4109   SDValue Backchain;
4110   SDLoc DL(Op);
4111 
4112   if (StoreBackchain) {
4113     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4114     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4115                             MachinePointerInfo());
4116   }
4117 
4118   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4119 
4120   if (StoreBackchain)
4121     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4122                          MachinePointerInfo());
4123 
4124   return Chain;
4125 }
4126 
4127 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4128                                              SelectionDAG &DAG) const {
4129   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4130   if (!IsData)
4131     // Just preserve the chain.
4132     return Op.getOperand(0);
4133 
4134   SDLoc DL(Op);
4135   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4136   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4137   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4138   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4139                    Op.getOperand(1)};
4140   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4141                                  Node->getVTList(), Ops,
4142                                  Node->getMemoryVT(), Node->getMemOperand());
4143 }
4144 
4145 // Convert condition code in CCReg to an i32 value.
4146 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4147   SDLoc DL(CCReg);
4148   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4149   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4150                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4151 }
4152 
4153 SDValue
4154 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4155                                               SelectionDAG &DAG) const {
4156   unsigned Opcode, CCValid;
4157   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4158     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4159     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4160     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4161     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4162     return SDValue();
4163   }
4164 
4165   return SDValue();
4166 }
4167 
4168 SDValue
4169 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4170                                                SelectionDAG &DAG) const {
4171   unsigned Opcode, CCValid;
4172   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4173     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4174     if (Op->getNumValues() == 1)
4175       return getCCResult(DAG, SDValue(Node, 0));
4176     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4177     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4178                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4179   }
4180 
4181   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4182   switch (Id) {
4183   case Intrinsic::thread_pointer:
4184     return lowerThreadPointer(SDLoc(Op), DAG);
4185 
4186   case Intrinsic::s390_vpdi:
4187     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4188                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4189 
4190   case Intrinsic::s390_vperm:
4191     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4192                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4193 
4194   case Intrinsic::s390_vuphb:
4195   case Intrinsic::s390_vuphh:
4196   case Intrinsic::s390_vuphf:
4197     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4198                        Op.getOperand(1));
4199 
4200   case Intrinsic::s390_vuplhb:
4201   case Intrinsic::s390_vuplhh:
4202   case Intrinsic::s390_vuplhf:
4203     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4204                        Op.getOperand(1));
4205 
4206   case Intrinsic::s390_vuplb:
4207   case Intrinsic::s390_vuplhw:
4208   case Intrinsic::s390_vuplf:
4209     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4210                        Op.getOperand(1));
4211 
4212   case Intrinsic::s390_vupllb:
4213   case Intrinsic::s390_vupllh:
4214   case Intrinsic::s390_vupllf:
4215     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4216                        Op.getOperand(1));
4217 
4218   case Intrinsic::s390_vsumb:
4219   case Intrinsic::s390_vsumh:
4220   case Intrinsic::s390_vsumgh:
4221   case Intrinsic::s390_vsumgf:
4222   case Intrinsic::s390_vsumqf:
4223   case Intrinsic::s390_vsumqg:
4224     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4225                        Op.getOperand(1), Op.getOperand(2));
4226   }
4227 
4228   return SDValue();
4229 }
4230 
4231 namespace {
4232 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4233 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4234 // Operand is the constant third operand, otherwise it is the number of
4235 // bytes in each element of the result.
4236 struct Permute {
4237   unsigned Opcode;
4238   unsigned Operand;
4239   unsigned char Bytes[SystemZ::VectorBytes];
4240 };
4241 }
4242 
4243 static const Permute PermuteForms[] = {
4244   // VMRHG
4245   { SystemZISD::MERGE_HIGH, 8,
4246     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4247   // VMRHF
4248   { SystemZISD::MERGE_HIGH, 4,
4249     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4250   // VMRHH
4251   { SystemZISD::MERGE_HIGH, 2,
4252     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4253   // VMRHB
4254   { SystemZISD::MERGE_HIGH, 1,
4255     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4256   // VMRLG
4257   { SystemZISD::MERGE_LOW, 8,
4258     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4259   // VMRLF
4260   { SystemZISD::MERGE_LOW, 4,
4261     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4262   // VMRLH
4263   { SystemZISD::MERGE_LOW, 2,
4264     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4265   // VMRLB
4266   { SystemZISD::MERGE_LOW, 1,
4267     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4268   // VPKG
4269   { SystemZISD::PACK, 4,
4270     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4271   // VPKF
4272   { SystemZISD::PACK, 2,
4273     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4274   // VPKH
4275   { SystemZISD::PACK, 1,
4276     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4277   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4278   { SystemZISD::PERMUTE_DWORDS, 4,
4279     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4280   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4281   { SystemZISD::PERMUTE_DWORDS, 1,
4282     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4283 };
4284 
4285 // Called after matching a vector shuffle against a particular pattern.
4286 // Both the original shuffle and the pattern have two vector operands.
4287 // OpNos[0] is the operand of the original shuffle that should be used for
4288 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4289 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4290 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4291 // for operands 0 and 1 of the pattern.
4292 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4293   if (OpNos[0] < 0) {
4294     if (OpNos[1] < 0)
4295       return false;
4296     OpNo0 = OpNo1 = OpNos[1];
4297   } else if (OpNos[1] < 0) {
4298     OpNo0 = OpNo1 = OpNos[0];
4299   } else {
4300     OpNo0 = OpNos[0];
4301     OpNo1 = OpNos[1];
4302   }
4303   return true;
4304 }
4305 
4306 // Bytes is a VPERM-like permute vector, except that -1 is used for
4307 // undefined bytes.  Return true if the VPERM can be implemented using P.
4308 // When returning true set OpNo0 to the VPERM operand that should be
4309 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4310 //
4311 // For example, if swapping the VPERM operands allows P to match, OpNo0
4312 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4313 // operand, but rewriting it to use two duplicated operands allows it to
4314 // match P, then OpNo0 and OpNo1 will be the same.
4315 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4316                          unsigned &OpNo0, unsigned &OpNo1) {
4317   int OpNos[] = { -1, -1 };
4318   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4319     int Elt = Bytes[I];
4320     if (Elt >= 0) {
4321       // Make sure that the two permute vectors use the same suboperand
4322       // byte number.  Only the operand numbers (the high bits) are
4323       // allowed to differ.
4324       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4325         return false;
4326       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4327       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4328       // Make sure that the operand mappings are consistent with previous
4329       // elements.
4330       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4331         return false;
4332       OpNos[ModelOpNo] = RealOpNo;
4333     }
4334   }
4335   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4336 }
4337 
4338 // As above, but search for a matching permute.
4339 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4340                                    unsigned &OpNo0, unsigned &OpNo1) {
4341   for (auto &P : PermuteForms)
4342     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4343       return &P;
4344   return nullptr;
4345 }
4346 
4347 // Bytes is a VPERM-like permute vector, except that -1 is used for
4348 // undefined bytes.  This permute is an operand of an outer permute.
4349 // See whether redistributing the -1 bytes gives a shuffle that can be
4350 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4351 // that, when applied to the result of P, gives the original permute in Bytes.
4352 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4353                                const Permute &P,
4354                                SmallVectorImpl<int> &Transform) {
4355   unsigned To = 0;
4356   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4357     int Elt = Bytes[From];
4358     if (Elt < 0)
4359       // Byte number From of the result is undefined.
4360       Transform[From] = -1;
4361     else {
4362       while (P.Bytes[To] != Elt) {
4363         To += 1;
4364         if (To == SystemZ::VectorBytes)
4365           return false;
4366       }
4367       Transform[From] = To;
4368     }
4369   }
4370   return true;
4371 }
4372 
4373 // As above, but search for a matching permute.
4374 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4375                                          SmallVectorImpl<int> &Transform) {
4376   for (auto &P : PermuteForms)
4377     if (matchDoublePermute(Bytes, P, Transform))
4378       return &P;
4379   return nullptr;
4380 }
4381 
4382 // Convert the mask of the given shuffle op into a byte-level mask,
4383 // as if it had type vNi8.
4384 static bool getVPermMask(SDValue ShuffleOp,
4385                          SmallVectorImpl<int> &Bytes) {
4386   EVT VT = ShuffleOp.getValueType();
4387   unsigned NumElements = VT.getVectorNumElements();
4388   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4389 
4390   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4391     Bytes.resize(NumElements * BytesPerElement, -1);
4392     for (unsigned I = 0; I < NumElements; ++I) {
4393       int Index = VSN->getMaskElt(I);
4394       if (Index >= 0)
4395         for (unsigned J = 0; J < BytesPerElement; ++J)
4396           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4397     }
4398     return true;
4399   }
4400   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4401       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4402     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4403     Bytes.resize(NumElements * BytesPerElement, -1);
4404     for (unsigned I = 0; I < NumElements; ++I)
4405       for (unsigned J = 0; J < BytesPerElement; ++J)
4406         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4407     return true;
4408   }
4409   return false;
4410 }
4411 
4412 // Bytes is a VPERM-like permute vector, except that -1 is used for
4413 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4414 // the result come from a contiguous sequence of bytes from one input.
4415 // Set Base to the selector for the first byte if so.
4416 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4417                             unsigned BytesPerElement, int &Base) {
4418   Base = -1;
4419   for (unsigned I = 0; I < BytesPerElement; ++I) {
4420     if (Bytes[Start + I] >= 0) {
4421       unsigned Elem = Bytes[Start + I];
4422       if (Base < 0) {
4423         Base = Elem - I;
4424         // Make sure the bytes would come from one input operand.
4425         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4426           return false;
4427       } else if (unsigned(Base) != Elem - I)
4428         return false;
4429     }
4430   }
4431   return true;
4432 }
4433 
4434 // Bytes is a VPERM-like permute vector, except that -1 is used for
4435 // undefined bytes.  Return true if it can be performed using VSLDB.
4436 // When returning true, set StartIndex to the shift amount and OpNo0
4437 // and OpNo1 to the VPERM operands that should be used as the first
4438 // and second shift operand respectively.
4439 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4440                                unsigned &StartIndex, unsigned &OpNo0,
4441                                unsigned &OpNo1) {
4442   int OpNos[] = { -1, -1 };
4443   int Shift = -1;
4444   for (unsigned I = 0; I < 16; ++I) {
4445     int Index = Bytes[I];
4446     if (Index >= 0) {
4447       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4448       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4449       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4450       if (Shift < 0)
4451         Shift = ExpectedShift;
4452       else if (Shift != ExpectedShift)
4453         return false;
4454       // Make sure that the operand mappings are consistent with previous
4455       // elements.
4456       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4457         return false;
4458       OpNos[ModelOpNo] = RealOpNo;
4459     }
4460   }
4461   StartIndex = Shift;
4462   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4463 }
4464 
4465 // Create a node that performs P on operands Op0 and Op1, casting the
4466 // operands to the appropriate type.  The type of the result is determined by P.
4467 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4468                               const Permute &P, SDValue Op0, SDValue Op1) {
4469   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4470   // elements of a PACK are twice as wide as the outputs.
4471   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4472                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4473                       P.Operand);
4474   // Cast both operands to the appropriate type.
4475   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4476                               SystemZ::VectorBytes / InBytes);
4477   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4478   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4479   SDValue Op;
4480   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4481     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4482     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4483   } else if (P.Opcode == SystemZISD::PACK) {
4484     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4485                                  SystemZ::VectorBytes / P.Operand);
4486     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4487   } else {
4488     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4489   }
4490   return Op;
4491 }
4492 
4493 static bool isZeroVector(SDValue N) {
4494   if (N->getOpcode() == ISD::BITCAST)
4495     N = N->getOperand(0);
4496   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4497     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4498       return Op->getZExtValue() == 0;
4499   return ISD::isBuildVectorAllZeros(N.getNode());
4500 }
4501 
4502 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4503 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4504   for (unsigned I = 0; I < Num ; I++)
4505     if (isZeroVector(Ops[I]))
4506       return I;
4507   return UINT32_MAX;
4508 }
4509 
4510 // Bytes is a VPERM-like permute vector, except that -1 is used for
4511 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4512 // VSLDB or VPERM.
4513 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4514                                      SDValue *Ops,
4515                                      const SmallVectorImpl<int> &Bytes) {
4516   for (unsigned I = 0; I < 2; ++I)
4517     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4518 
4519   // First see whether VSLDB can be used.
4520   unsigned StartIndex, OpNo0, OpNo1;
4521   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4522     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4523                        Ops[OpNo1],
4524                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4525 
4526   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4527   // eliminate a zero vector by reusing any zero index in the permute vector.
4528   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4529   if (ZeroVecIdx != UINT32_MAX) {
4530     bool MaskFirst = true;
4531     int ZeroIdx = -1;
4532     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4533       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4534       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4535       if (OpNo == ZeroVecIdx && I == 0) {
4536         // If the first byte is zero, use mask as first operand.
4537         ZeroIdx = 0;
4538         break;
4539       }
4540       if (OpNo != ZeroVecIdx && Byte == 0) {
4541         // If mask contains a zero, use it by placing that vector first.
4542         ZeroIdx = I + SystemZ::VectorBytes;
4543         MaskFirst = false;
4544         break;
4545       }
4546     }
4547     if (ZeroIdx != -1) {
4548       SDValue IndexNodes[SystemZ::VectorBytes];
4549       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4550         if (Bytes[I] >= 0) {
4551           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4552           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4553           if (OpNo == ZeroVecIdx)
4554             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4555           else {
4556             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4557             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4558           }
4559         } else
4560           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4561       }
4562       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4563       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4564       if (MaskFirst)
4565         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4566                            Mask);
4567       else
4568         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4569                            Mask);
4570     }
4571   }
4572 
4573   SDValue IndexNodes[SystemZ::VectorBytes];
4574   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4575     if (Bytes[I] >= 0)
4576       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4577     else
4578       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4579   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4580   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4581                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4582 }
4583 
4584 namespace {
4585 // Describes a general N-operand vector shuffle.
4586 struct GeneralShuffle {
4587   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4588   void addUndef();
4589   bool add(SDValue, unsigned);
4590   SDValue getNode(SelectionDAG &, const SDLoc &);
4591   void tryPrepareForUnpack();
4592   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4593   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4594 
4595   // The operands of the shuffle.
4596   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4597 
4598   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4599   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4600   // Bytes[I] / SystemZ::VectorBytes.
4601   SmallVector<int, SystemZ::VectorBytes> Bytes;
4602 
4603   // The type of the shuffle result.
4604   EVT VT;
4605 
4606   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4607   unsigned UnpackFromEltSize;
4608 };
4609 }
4610 
4611 // Add an extra undefined element to the shuffle.
4612 void GeneralShuffle::addUndef() {
4613   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4614   for (unsigned I = 0; I < BytesPerElement; ++I)
4615     Bytes.push_back(-1);
4616 }
4617 
4618 // Add an extra element to the shuffle, taking it from element Elem of Op.
4619 // A null Op indicates a vector input whose value will be calculated later;
4620 // there is at most one such input per shuffle and it always has the same
4621 // type as the result. Aborts and returns false if the source vector elements
4622 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4623 // LLVM they become implicitly extended, but this is rare and not optimized.
4624 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4625   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4626 
4627   // The source vector can have wider elements than the result,
4628   // either through an explicit TRUNCATE or because of type legalization.
4629   // We want the least significant part.
4630   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4631   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4632 
4633   // Return false if the source elements are smaller than their destination
4634   // elements.
4635   if (FromBytesPerElement < BytesPerElement)
4636     return false;
4637 
4638   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4639                    (FromBytesPerElement - BytesPerElement));
4640 
4641   // Look through things like shuffles and bitcasts.
4642   while (Op.getNode()) {
4643     if (Op.getOpcode() == ISD::BITCAST)
4644       Op = Op.getOperand(0);
4645     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4646       // See whether the bytes we need come from a contiguous part of one
4647       // operand.
4648       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4649       if (!getVPermMask(Op, OpBytes))
4650         break;
4651       int NewByte;
4652       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4653         break;
4654       if (NewByte < 0) {
4655         addUndef();
4656         return true;
4657       }
4658       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4659       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4660     } else if (Op.isUndef()) {
4661       addUndef();
4662       return true;
4663     } else
4664       break;
4665   }
4666 
4667   // Make sure that the source of the extraction is in Ops.
4668   unsigned OpNo = 0;
4669   for (; OpNo < Ops.size(); ++OpNo)
4670     if (Ops[OpNo] == Op)
4671       break;
4672   if (OpNo == Ops.size())
4673     Ops.push_back(Op);
4674 
4675   // Add the element to Bytes.
4676   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4677   for (unsigned I = 0; I < BytesPerElement; ++I)
4678     Bytes.push_back(Base + I);
4679 
4680   return true;
4681 }
4682 
4683 // Return SDNodes for the completed shuffle.
4684 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4685   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4686 
4687   if (Ops.size() == 0)
4688     return DAG.getUNDEF(VT);
4689 
4690   // Use a single unpack if possible as the last operation.
4691   tryPrepareForUnpack();
4692 
4693   // Make sure that there are at least two shuffle operands.
4694   if (Ops.size() == 1)
4695     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4696 
4697   // Create a tree of shuffles, deferring root node until after the loop.
4698   // Try to redistribute the undefined elements of non-root nodes so that
4699   // the non-root shuffles match something like a pack or merge, then adjust
4700   // the parent node's permute vector to compensate for the new order.
4701   // Among other things, this copes with vectors like <2 x i16> that were
4702   // padded with undefined elements during type legalization.
4703   //
4704   // In the best case this redistribution will lead to the whole tree
4705   // using packs and merges.  It should rarely be a loss in other cases.
4706   unsigned Stride = 1;
4707   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4708     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4709       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4710 
4711       // Create a mask for just these two operands.
4712       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4713       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4714         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4715         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4716         if (OpNo == I)
4717           NewBytes[J] = Byte;
4718         else if (OpNo == I + Stride)
4719           NewBytes[J] = SystemZ::VectorBytes + Byte;
4720         else
4721           NewBytes[J] = -1;
4722       }
4723       // See if it would be better to reorganize NewMask to avoid using VPERM.
4724       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4725       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4726         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4727         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4728         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4729           if (NewBytes[J] >= 0) {
4730             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4731                    "Invalid double permute");
4732             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4733           } else
4734             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4735         }
4736       } else {
4737         // Just use NewBytes on the operands.
4738         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4739         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4740           if (NewBytes[J] >= 0)
4741             Bytes[J] = I * SystemZ::VectorBytes + J;
4742       }
4743     }
4744   }
4745 
4746   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4747   if (Stride > 1) {
4748     Ops[1] = Ops[Stride];
4749     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4750       if (Bytes[I] >= int(SystemZ::VectorBytes))
4751         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4752   }
4753 
4754   // Look for an instruction that can do the permute without resorting
4755   // to VPERM.
4756   unsigned OpNo0, OpNo1;
4757   SDValue Op;
4758   if (unpackWasPrepared() && Ops[1].isUndef())
4759     Op = Ops[0];
4760   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4761     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4762   else
4763     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4764 
4765   Op = insertUnpackIfPrepared(DAG, DL, Op);
4766 
4767   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4768 }
4769 
4770 #ifndef NDEBUG
4771 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4772   dbgs() << Msg.c_str() << " { ";
4773   for (unsigned i = 0; i < Bytes.size(); i++)
4774     dbgs() << Bytes[i] << " ";
4775   dbgs() << "}\n";
4776 }
4777 #endif
4778 
4779 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4780 // after all else by removing the zero vector and the effect of the unpack on
4781 // Bytes.
4782 void GeneralShuffle::tryPrepareForUnpack() {
4783   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4784   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4785     return;
4786 
4787   // Only do this if removing the zero vector reduces the depth, otherwise
4788   // the critical path will increase with the final unpack.
4789   if (Ops.size() > 2 &&
4790       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4791     return;
4792 
4793   // Find an unpack that would allow removing the zero vector from Ops.
4794   UnpackFromEltSize = 1;
4795   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4796     bool MatchUnpack = true;
4797     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4798     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4799       unsigned ToEltSize = UnpackFromEltSize * 2;
4800       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4801       if (!IsZextByte)
4802         SrcBytes.push_back(Bytes[Elt]);
4803       if (Bytes[Elt] != -1) {
4804         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4805         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4806           MatchUnpack = false;
4807           break;
4808         }
4809       }
4810     }
4811     if (MatchUnpack) {
4812       if (Ops.size() == 2) {
4813         // Don't use unpack if a single source operand needs rearrangement.
4814         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4815           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4816             UnpackFromEltSize = UINT_MAX;
4817             return;
4818           }
4819       }
4820       break;
4821     }
4822   }
4823   if (UnpackFromEltSize > 4)
4824     return;
4825 
4826   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4827              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4828              << ".\n";
4829              dumpBytes(Bytes, "Original Bytes vector:"););
4830 
4831   // Apply the unpack in reverse to the Bytes array.
4832   unsigned B = 0;
4833   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4834     Elt += UnpackFromEltSize;
4835     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4836       Bytes[B] = Bytes[Elt];
4837   }
4838   while (B < SystemZ::VectorBytes)
4839     Bytes[B++] = -1;
4840 
4841   // Remove the zero vector from Ops
4842   Ops.erase(&Ops[ZeroVecOpNo]);
4843   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4844     if (Bytes[I] >= 0) {
4845       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4846       if (OpNo > ZeroVecOpNo)
4847         Bytes[I] -= SystemZ::VectorBytes;
4848     }
4849 
4850   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4851              dbgs() << "\n";);
4852 }
4853 
4854 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4855                                                const SDLoc &DL,
4856                                                SDValue Op) {
4857   if (!unpackWasPrepared())
4858     return Op;
4859   unsigned InBits = UnpackFromEltSize * 8;
4860   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4861                                 SystemZ::VectorBits / InBits);
4862   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4863   unsigned OutBits = InBits * 2;
4864   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4865                                SystemZ::VectorBits / OutBits);
4866   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4867 }
4868 
4869 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4870 static bool isScalarToVector(SDValue Op) {
4871   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4872     if (!Op.getOperand(I).isUndef())
4873       return false;
4874   return true;
4875 }
4876 
4877 // Return a vector of type VT that contains Value in the first element.
4878 // The other elements don't matter.
4879 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4880                                    SDValue Value) {
4881   // If we have a constant, replicate it to all elements and let the
4882   // BUILD_VECTOR lowering take care of it.
4883   if (Value.getOpcode() == ISD::Constant ||
4884       Value.getOpcode() == ISD::ConstantFP) {
4885     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4886     return DAG.getBuildVector(VT, DL, Ops);
4887   }
4888   if (Value.isUndef())
4889     return DAG.getUNDEF(VT);
4890   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4891 }
4892 
4893 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4894 // element 1.  Used for cases in which replication is cheap.
4895 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4896                                  SDValue Op0, SDValue Op1) {
4897   if (Op0.isUndef()) {
4898     if (Op1.isUndef())
4899       return DAG.getUNDEF(VT);
4900     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4901   }
4902   if (Op1.isUndef())
4903     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4904   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4905                      buildScalarToVector(DAG, DL, VT, Op0),
4906                      buildScalarToVector(DAG, DL, VT, Op1));
4907 }
4908 
4909 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4910 // vector for them.
4911 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4912                           SDValue Op1) {
4913   if (Op0.isUndef() && Op1.isUndef())
4914     return DAG.getUNDEF(MVT::v2i64);
4915   // If one of the two inputs is undefined then replicate the other one,
4916   // in order to avoid using another register unnecessarily.
4917   if (Op0.isUndef())
4918     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4919   else if (Op1.isUndef())
4920     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4921   else {
4922     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4923     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4924   }
4925   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4926 }
4927 
4928 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4929 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4930 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4931 // would benefit from this representation and return it if so.
4932 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4933                                      BuildVectorSDNode *BVN) {
4934   EVT VT = BVN->getValueType(0);
4935   unsigned NumElements = VT.getVectorNumElements();
4936 
4937   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4938   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4939   // need a BUILD_VECTOR, add an additional placeholder operand for that
4940   // BUILD_VECTOR and store its operands in ResidueOps.
4941   GeneralShuffle GS(VT);
4942   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4943   bool FoundOne = false;
4944   for (unsigned I = 0; I < NumElements; ++I) {
4945     SDValue Op = BVN->getOperand(I);
4946     if (Op.getOpcode() == ISD::TRUNCATE)
4947       Op = Op.getOperand(0);
4948     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4949         Op.getOperand(1).getOpcode() == ISD::Constant) {
4950       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4951       if (!GS.add(Op.getOperand(0), Elem))
4952         return SDValue();
4953       FoundOne = true;
4954     } else if (Op.isUndef()) {
4955       GS.addUndef();
4956     } else {
4957       if (!GS.add(SDValue(), ResidueOps.size()))
4958         return SDValue();
4959       ResidueOps.push_back(BVN->getOperand(I));
4960     }
4961   }
4962 
4963   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4964   if (!FoundOne)
4965     return SDValue();
4966 
4967   // Create the BUILD_VECTOR for the remaining elements, if any.
4968   if (!ResidueOps.empty()) {
4969     while (ResidueOps.size() < NumElements)
4970       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4971     for (auto &Op : GS.Ops) {
4972       if (!Op.getNode()) {
4973         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4974         break;
4975       }
4976     }
4977   }
4978   return GS.getNode(DAG, SDLoc(BVN));
4979 }
4980 
4981 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4982   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4983     return true;
4984   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4985     return true;
4986   return false;
4987 }
4988 
4989 // Combine GPR scalar values Elems into a vector of type VT.
4990 SDValue
4991 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4992                                    SmallVectorImpl<SDValue> &Elems) const {
4993   // See whether there is a single replicated value.
4994   SDValue Single;
4995   unsigned int NumElements = Elems.size();
4996   unsigned int Count = 0;
4997   for (auto Elem : Elems) {
4998     if (!Elem.isUndef()) {
4999       if (!Single.getNode())
5000         Single = Elem;
5001       else if (Elem != Single) {
5002         Single = SDValue();
5003         break;
5004       }
5005       Count += 1;
5006     }
5007   }
5008   // There are three cases here:
5009   //
5010   // - if the only defined element is a loaded one, the best sequence
5011   //   is a replicating load.
5012   //
5013   // - otherwise, if the only defined element is an i64 value, we will
5014   //   end up with the same VLVGP sequence regardless of whether we short-cut
5015   //   for replication or fall through to the later code.
5016   //
5017   // - otherwise, if the only defined element is an i32 or smaller value,
5018   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5019   //   This is only a win if the single defined element is used more than once.
5020   //   In other cases we're better off using a single VLVGx.
5021   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5022     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5023 
5024   // If all elements are loads, use VLREP/VLEs (below).
5025   bool AllLoads = true;
5026   for (auto Elem : Elems)
5027     if (!isVectorElementLoad(Elem)) {
5028       AllLoads = false;
5029       break;
5030     }
5031 
5032   // The best way of building a v2i64 from two i64s is to use VLVGP.
5033   if (VT == MVT::v2i64 && !AllLoads)
5034     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5035 
5036   // Use a 64-bit merge high to combine two doubles.
5037   if (VT == MVT::v2f64 && !AllLoads)
5038     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5039 
5040   // Build v4f32 values directly from the FPRs:
5041   //
5042   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5043   //         V              V         VMRHF
5044   //      <ABxx>         <CDxx>
5045   //                V                 VMRHG
5046   //              <ABCD>
5047   if (VT == MVT::v4f32 && !AllLoads) {
5048     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5049     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5050     // Avoid unnecessary undefs by reusing the other operand.
5051     if (Op01.isUndef())
5052       Op01 = Op23;
5053     else if (Op23.isUndef())
5054       Op23 = Op01;
5055     // Merging identical replications is a no-op.
5056     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5057       return Op01;
5058     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5059     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5060     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5061                              DL, MVT::v2i64, Op01, Op23);
5062     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5063   }
5064 
5065   // Collect the constant terms.
5066   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5067   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5068 
5069   unsigned NumConstants = 0;
5070   for (unsigned I = 0; I < NumElements; ++I) {
5071     SDValue Elem = Elems[I];
5072     if (Elem.getOpcode() == ISD::Constant ||
5073         Elem.getOpcode() == ISD::ConstantFP) {
5074       NumConstants += 1;
5075       Constants[I] = Elem;
5076       Done[I] = true;
5077     }
5078   }
5079   // If there was at least one constant, fill in the other elements of
5080   // Constants with undefs to get a full vector constant and use that
5081   // as the starting point.
5082   SDValue Result;
5083   SDValue ReplicatedVal;
5084   if (NumConstants > 0) {
5085     for (unsigned I = 0; I < NumElements; ++I)
5086       if (!Constants[I].getNode())
5087         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5088     Result = DAG.getBuildVector(VT, DL, Constants);
5089   } else {
5090     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5091     // avoid a false dependency on any previous contents of the vector
5092     // register.
5093 
5094     // Use a VLREP if at least one element is a load. Make sure to replicate
5095     // the load with the most elements having its value.
5096     std::map<const SDNode*, unsigned> UseCounts;
5097     SDNode *LoadMaxUses = nullptr;
5098     for (unsigned I = 0; I < NumElements; ++I)
5099       if (isVectorElementLoad(Elems[I])) {
5100         SDNode *Ld = Elems[I].getNode();
5101         UseCounts[Ld]++;
5102         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5103           LoadMaxUses = Ld;
5104       }
5105     if (LoadMaxUses != nullptr) {
5106       ReplicatedVal = SDValue(LoadMaxUses, 0);
5107       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5108     } else {
5109       // Try to use VLVGP.
5110       unsigned I1 = NumElements / 2 - 1;
5111       unsigned I2 = NumElements - 1;
5112       bool Def1 = !Elems[I1].isUndef();
5113       bool Def2 = !Elems[I2].isUndef();
5114       if (Def1 || Def2) {
5115         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5116         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5117         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5118                              joinDwords(DAG, DL, Elem1, Elem2));
5119         Done[I1] = true;
5120         Done[I2] = true;
5121       } else
5122         Result = DAG.getUNDEF(VT);
5123     }
5124   }
5125 
5126   // Use VLVGx to insert the other elements.
5127   for (unsigned I = 0; I < NumElements; ++I)
5128     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5129       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5130                            DAG.getConstant(I, DL, MVT::i32));
5131   return Result;
5132 }
5133 
5134 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5135                                                  SelectionDAG &DAG) const {
5136   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5137   SDLoc DL(Op);
5138   EVT VT = Op.getValueType();
5139 
5140   if (BVN->isConstant()) {
5141     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5142       return Op;
5143 
5144     // Fall back to loading it from memory.
5145     return SDValue();
5146   }
5147 
5148   // See if we should use shuffles to construct the vector from other vectors.
5149   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5150     return Res;
5151 
5152   // Detect SCALAR_TO_VECTOR conversions.
5153   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5154     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5155 
5156   // Otherwise use buildVector to build the vector up from GPRs.
5157   unsigned NumElements = Op.getNumOperands();
5158   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5159   for (unsigned I = 0; I < NumElements; ++I)
5160     Ops[I] = Op.getOperand(I);
5161   return buildVector(DAG, DL, VT, Ops);
5162 }
5163 
5164 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5165                                                    SelectionDAG &DAG) const {
5166   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5167   SDLoc DL(Op);
5168   EVT VT = Op.getValueType();
5169   unsigned NumElements = VT.getVectorNumElements();
5170 
5171   if (VSN->isSplat()) {
5172     SDValue Op0 = Op.getOperand(0);
5173     unsigned Index = VSN->getSplatIndex();
5174     assert(Index < VT.getVectorNumElements() &&
5175            "Splat index should be defined and in first operand");
5176     // See whether the value we're splatting is directly available as a scalar.
5177     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5178         Op0.getOpcode() == ISD::BUILD_VECTOR)
5179       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5180     // Otherwise keep it as a vector-to-vector operation.
5181     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5182                        DAG.getTargetConstant(Index, DL, MVT::i32));
5183   }
5184 
5185   GeneralShuffle GS(VT);
5186   for (unsigned I = 0; I < NumElements; ++I) {
5187     int Elt = VSN->getMaskElt(I);
5188     if (Elt < 0)
5189       GS.addUndef();
5190     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5191                      unsigned(Elt) % NumElements))
5192       return SDValue();
5193   }
5194   return GS.getNode(DAG, SDLoc(VSN));
5195 }
5196 
5197 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5198                                                      SelectionDAG &DAG) const {
5199   SDLoc DL(Op);
5200   // Just insert the scalar into element 0 of an undefined vector.
5201   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5202                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5203                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5204 }
5205 
5206 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5207                                                       SelectionDAG &DAG) const {
5208   // Handle insertions of floating-point values.
5209   SDLoc DL(Op);
5210   SDValue Op0 = Op.getOperand(0);
5211   SDValue Op1 = Op.getOperand(1);
5212   SDValue Op2 = Op.getOperand(2);
5213   EVT VT = Op.getValueType();
5214 
5215   // Insertions into constant indices of a v2f64 can be done using VPDI.
5216   // However, if the inserted value is a bitcast or a constant then it's
5217   // better to use GPRs, as below.
5218   if (VT == MVT::v2f64 &&
5219       Op1.getOpcode() != ISD::BITCAST &&
5220       Op1.getOpcode() != ISD::ConstantFP &&
5221       Op2.getOpcode() == ISD::Constant) {
5222     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5223     unsigned Mask = VT.getVectorNumElements() - 1;
5224     if (Index <= Mask)
5225       return Op;
5226   }
5227 
5228   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5229   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5230   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5231   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5232                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5233                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5234   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5235 }
5236 
5237 SDValue
5238 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5239                                                SelectionDAG &DAG) const {
5240   // Handle extractions of floating-point values.
5241   SDLoc DL(Op);
5242   SDValue Op0 = Op.getOperand(0);
5243   SDValue Op1 = Op.getOperand(1);
5244   EVT VT = Op.getValueType();
5245   EVT VecVT = Op0.getValueType();
5246 
5247   // Extractions of constant indices can be done directly.
5248   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5249     uint64_t Index = CIndexN->getZExtValue();
5250     unsigned Mask = VecVT.getVectorNumElements() - 1;
5251     if (Index <= Mask)
5252       return Op;
5253   }
5254 
5255   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5256   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5257   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5258   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5259                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5260   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5261 }
5262 
5263 SDValue SystemZTargetLowering::
5264 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5265   SDValue PackedOp = Op.getOperand(0);
5266   EVT OutVT = Op.getValueType();
5267   EVT InVT = PackedOp.getValueType();
5268   unsigned ToBits = OutVT.getScalarSizeInBits();
5269   unsigned FromBits = InVT.getScalarSizeInBits();
5270   do {
5271     FromBits *= 2;
5272     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5273                                  SystemZ::VectorBits / FromBits);
5274     PackedOp =
5275       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5276   } while (FromBits != ToBits);
5277   return PackedOp;
5278 }
5279 
5280 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5281 SDValue SystemZTargetLowering::
5282 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5283   SDValue PackedOp = Op.getOperand(0);
5284   SDLoc DL(Op);
5285   EVT OutVT = Op.getValueType();
5286   EVT InVT = PackedOp.getValueType();
5287   unsigned InNumElts = InVT.getVectorNumElements();
5288   unsigned OutNumElts = OutVT.getVectorNumElements();
5289   unsigned NumInPerOut = InNumElts / OutNumElts;
5290 
5291   SDValue ZeroVec =
5292     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5293 
5294   SmallVector<int, 16> Mask(InNumElts);
5295   unsigned ZeroVecElt = InNumElts;
5296   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5297     unsigned MaskElt = PackedElt * NumInPerOut;
5298     unsigned End = MaskElt + NumInPerOut - 1;
5299     for (; MaskElt < End; MaskElt++)
5300       Mask[MaskElt] = ZeroVecElt++;
5301     Mask[MaskElt] = PackedElt;
5302   }
5303   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5304   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5305 }
5306 
5307 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5308                                           unsigned ByScalar) const {
5309   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5310   SDValue Op0 = Op.getOperand(0);
5311   SDValue Op1 = Op.getOperand(1);
5312   SDLoc DL(Op);
5313   EVT VT = Op.getValueType();
5314   unsigned ElemBitSize = VT.getScalarSizeInBits();
5315 
5316   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5317   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5318     APInt SplatBits, SplatUndef;
5319     unsigned SplatBitSize;
5320     bool HasAnyUndefs;
5321     // Check for constant splats.  Use ElemBitSize as the minimum element
5322     // width and reject splats that need wider elements.
5323     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5324                              ElemBitSize, true) &&
5325         SplatBitSize == ElemBitSize) {
5326       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5327                                       DL, MVT::i32);
5328       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5329     }
5330     // Check for variable splats.
5331     BitVector UndefElements;
5332     SDValue Splat = BVN->getSplatValue(&UndefElements);
5333     if (Splat) {
5334       // Since i32 is the smallest legal type, we either need a no-op
5335       // or a truncation.
5336       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5337       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5338     }
5339   }
5340 
5341   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5342   // and the shift amount is directly available in a GPR.
5343   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5344     if (VSN->isSplat()) {
5345       SDValue VSNOp0 = VSN->getOperand(0);
5346       unsigned Index = VSN->getSplatIndex();
5347       assert(Index < VT.getVectorNumElements() &&
5348              "Splat index should be defined and in first operand");
5349       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5350           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5351         // Since i32 is the smallest legal type, we either need a no-op
5352         // or a truncation.
5353         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5354                                     VSNOp0.getOperand(Index));
5355         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5356       }
5357     }
5358   }
5359 
5360   // Otherwise just treat the current form as legal.
5361   return Op;
5362 }
5363 
5364 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5365                                               SelectionDAG &DAG) const {
5366   switch (Op.getOpcode()) {
5367   case ISD::FRAMEADDR:
5368     return lowerFRAMEADDR(Op, DAG);
5369   case ISD::RETURNADDR:
5370     return lowerRETURNADDR(Op, DAG);
5371   case ISD::BR_CC:
5372     return lowerBR_CC(Op, DAG);
5373   case ISD::SELECT_CC:
5374     return lowerSELECT_CC(Op, DAG);
5375   case ISD::SETCC:
5376     return lowerSETCC(Op, DAG);
5377   case ISD::STRICT_FSETCC:
5378     return lowerSTRICT_FSETCC(Op, DAG, false);
5379   case ISD::STRICT_FSETCCS:
5380     return lowerSTRICT_FSETCC(Op, DAG, true);
5381   case ISD::GlobalAddress:
5382     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5383   case ISD::GlobalTLSAddress:
5384     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5385   case ISD::BlockAddress:
5386     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5387   case ISD::JumpTable:
5388     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5389   case ISD::ConstantPool:
5390     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5391   case ISD::BITCAST:
5392     return lowerBITCAST(Op, DAG);
5393   case ISD::VASTART:
5394     return lowerVASTART(Op, DAG);
5395   case ISD::VACOPY:
5396     return lowerVACOPY(Op, DAG);
5397   case ISD::DYNAMIC_STACKALLOC:
5398     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5399   case ISD::GET_DYNAMIC_AREA_OFFSET:
5400     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5401   case ISD::SMUL_LOHI:
5402     return lowerSMUL_LOHI(Op, DAG);
5403   case ISD::UMUL_LOHI:
5404     return lowerUMUL_LOHI(Op, DAG);
5405   case ISD::SDIVREM:
5406     return lowerSDIVREM(Op, DAG);
5407   case ISD::UDIVREM:
5408     return lowerUDIVREM(Op, DAG);
5409   case ISD::SADDO:
5410   case ISD::SSUBO:
5411   case ISD::UADDO:
5412   case ISD::USUBO:
5413     return lowerXALUO(Op, DAG);
5414   case ISD::ADDCARRY:
5415   case ISD::SUBCARRY:
5416     return lowerADDSUBCARRY(Op, DAG);
5417   case ISD::OR:
5418     return lowerOR(Op, DAG);
5419   case ISD::CTPOP:
5420     return lowerCTPOP(Op, DAG);
5421   case ISD::ATOMIC_FENCE:
5422     return lowerATOMIC_FENCE(Op, DAG);
5423   case ISD::ATOMIC_SWAP:
5424     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5425   case ISD::ATOMIC_STORE:
5426     return lowerATOMIC_STORE(Op, DAG);
5427   case ISD::ATOMIC_LOAD:
5428     return lowerATOMIC_LOAD(Op, DAG);
5429   case ISD::ATOMIC_LOAD_ADD:
5430     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5431   case ISD::ATOMIC_LOAD_SUB:
5432     return lowerATOMIC_LOAD_SUB(Op, DAG);
5433   case ISD::ATOMIC_LOAD_AND:
5434     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5435   case ISD::ATOMIC_LOAD_OR:
5436     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5437   case ISD::ATOMIC_LOAD_XOR:
5438     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5439   case ISD::ATOMIC_LOAD_NAND:
5440     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5441   case ISD::ATOMIC_LOAD_MIN:
5442     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5443   case ISD::ATOMIC_LOAD_MAX:
5444     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5445   case ISD::ATOMIC_LOAD_UMIN:
5446     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5447   case ISD::ATOMIC_LOAD_UMAX:
5448     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5449   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5450     return lowerATOMIC_CMP_SWAP(Op, DAG);
5451   case ISD::STACKSAVE:
5452     return lowerSTACKSAVE(Op, DAG);
5453   case ISD::STACKRESTORE:
5454     return lowerSTACKRESTORE(Op, DAG);
5455   case ISD::PREFETCH:
5456     return lowerPREFETCH(Op, DAG);
5457   case ISD::INTRINSIC_W_CHAIN:
5458     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5459   case ISD::INTRINSIC_WO_CHAIN:
5460     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5461   case ISD::BUILD_VECTOR:
5462     return lowerBUILD_VECTOR(Op, DAG);
5463   case ISD::VECTOR_SHUFFLE:
5464     return lowerVECTOR_SHUFFLE(Op, DAG);
5465   case ISD::SCALAR_TO_VECTOR:
5466     return lowerSCALAR_TO_VECTOR(Op, DAG);
5467   case ISD::INSERT_VECTOR_ELT:
5468     return lowerINSERT_VECTOR_ELT(Op, DAG);
5469   case ISD::EXTRACT_VECTOR_ELT:
5470     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5471   case ISD::SIGN_EXTEND_VECTOR_INREG:
5472     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5473   case ISD::ZERO_EXTEND_VECTOR_INREG:
5474     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5475   case ISD::SHL:
5476     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5477   case ISD::SRL:
5478     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5479   case ISD::SRA:
5480     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5481   default:
5482     llvm_unreachable("Unexpected node to lower");
5483   }
5484 }
5485 
5486 // Lower operations with invalid operand or result types (currently used
5487 // only for 128-bit integer types).
5488 
5489 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5490   SDLoc DL(In);
5491   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5492                            DAG.getIntPtrConstant(0, DL));
5493   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5494                            DAG.getIntPtrConstant(1, DL));
5495   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5496                                     MVT::Untyped, Hi, Lo);
5497   return SDValue(Pair, 0);
5498 }
5499 
5500 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5501   SDLoc DL(In);
5502   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5503                                           DL, MVT::i64, In);
5504   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5505                                           DL, MVT::i64, In);
5506   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5507 }
5508 
5509 void
5510 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5511                                              SmallVectorImpl<SDValue> &Results,
5512                                              SelectionDAG &DAG) const {
5513   switch (N->getOpcode()) {
5514   case ISD::ATOMIC_LOAD: {
5515     SDLoc DL(N);
5516     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5517     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5518     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5519     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5520                                           DL, Tys, Ops, MVT::i128, MMO);
5521     Results.push_back(lowerGR128ToI128(DAG, Res));
5522     Results.push_back(Res.getValue(1));
5523     break;
5524   }
5525   case ISD::ATOMIC_STORE: {
5526     SDLoc DL(N);
5527     SDVTList Tys = DAG.getVTList(MVT::Other);
5528     SDValue Ops[] = { N->getOperand(0),
5529                       lowerI128ToGR128(DAG, N->getOperand(2)),
5530                       N->getOperand(1) };
5531     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5532     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5533                                           DL, Tys, Ops, MVT::i128, MMO);
5534     // We have to enforce sequential consistency by performing a
5535     // serialization operation after the store.
5536     if (cast<AtomicSDNode>(N)->getOrdering() ==
5537         AtomicOrdering::SequentiallyConsistent)
5538       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5539                                        MVT::Other, Res), 0);
5540     Results.push_back(Res);
5541     break;
5542   }
5543   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5544     SDLoc DL(N);
5545     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5546     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5547                       lowerI128ToGR128(DAG, N->getOperand(2)),
5548                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5549     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5550     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5551                                           DL, Tys, Ops, MVT::i128, MMO);
5552     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5553                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5554     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5555     Results.push_back(lowerGR128ToI128(DAG, Res));
5556     Results.push_back(Success);
5557     Results.push_back(Res.getValue(2));
5558     break;
5559   }
5560   default:
5561     llvm_unreachable("Unexpected node to lower");
5562   }
5563 }
5564 
5565 void
5566 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5567                                           SmallVectorImpl<SDValue> &Results,
5568                                           SelectionDAG &DAG) const {
5569   return LowerOperationWrapper(N, Results, DAG);
5570 }
5571 
5572 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5573 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5574   switch ((SystemZISD::NodeType)Opcode) {
5575     case SystemZISD::FIRST_NUMBER: break;
5576     OPCODE(RET_FLAG);
5577     OPCODE(CALL);
5578     OPCODE(SIBCALL);
5579     OPCODE(TLS_GDCALL);
5580     OPCODE(TLS_LDCALL);
5581     OPCODE(PCREL_WRAPPER);
5582     OPCODE(PCREL_OFFSET);
5583     OPCODE(ICMP);
5584     OPCODE(FCMP);
5585     OPCODE(STRICT_FCMP);
5586     OPCODE(STRICT_FCMPS);
5587     OPCODE(TM);
5588     OPCODE(BR_CCMASK);
5589     OPCODE(SELECT_CCMASK);
5590     OPCODE(ADJDYNALLOC);
5591     OPCODE(PROBED_ALLOCA);
5592     OPCODE(POPCNT);
5593     OPCODE(SMUL_LOHI);
5594     OPCODE(UMUL_LOHI);
5595     OPCODE(SDIVREM);
5596     OPCODE(UDIVREM);
5597     OPCODE(SADDO);
5598     OPCODE(SSUBO);
5599     OPCODE(UADDO);
5600     OPCODE(USUBO);
5601     OPCODE(ADDCARRY);
5602     OPCODE(SUBCARRY);
5603     OPCODE(GET_CCMASK);
5604     OPCODE(MVC);
5605     OPCODE(MVC_LOOP);
5606     OPCODE(NC);
5607     OPCODE(NC_LOOP);
5608     OPCODE(OC);
5609     OPCODE(OC_LOOP);
5610     OPCODE(XC);
5611     OPCODE(XC_LOOP);
5612     OPCODE(CLC);
5613     OPCODE(CLC_LOOP);
5614     OPCODE(STPCPY);
5615     OPCODE(STRCMP);
5616     OPCODE(SEARCH_STRING);
5617     OPCODE(IPM);
5618     OPCODE(MEMBARRIER);
5619     OPCODE(TBEGIN);
5620     OPCODE(TBEGIN_NOFLOAT);
5621     OPCODE(TEND);
5622     OPCODE(BYTE_MASK);
5623     OPCODE(ROTATE_MASK);
5624     OPCODE(REPLICATE);
5625     OPCODE(JOIN_DWORDS);
5626     OPCODE(SPLAT);
5627     OPCODE(MERGE_HIGH);
5628     OPCODE(MERGE_LOW);
5629     OPCODE(SHL_DOUBLE);
5630     OPCODE(PERMUTE_DWORDS);
5631     OPCODE(PERMUTE);
5632     OPCODE(PACK);
5633     OPCODE(PACKS_CC);
5634     OPCODE(PACKLS_CC);
5635     OPCODE(UNPACK_HIGH);
5636     OPCODE(UNPACKL_HIGH);
5637     OPCODE(UNPACK_LOW);
5638     OPCODE(UNPACKL_LOW);
5639     OPCODE(VSHL_BY_SCALAR);
5640     OPCODE(VSRL_BY_SCALAR);
5641     OPCODE(VSRA_BY_SCALAR);
5642     OPCODE(VSUM);
5643     OPCODE(VICMPE);
5644     OPCODE(VICMPH);
5645     OPCODE(VICMPHL);
5646     OPCODE(VICMPES);
5647     OPCODE(VICMPHS);
5648     OPCODE(VICMPHLS);
5649     OPCODE(VFCMPE);
5650     OPCODE(STRICT_VFCMPE);
5651     OPCODE(STRICT_VFCMPES);
5652     OPCODE(VFCMPH);
5653     OPCODE(STRICT_VFCMPH);
5654     OPCODE(STRICT_VFCMPHS);
5655     OPCODE(VFCMPHE);
5656     OPCODE(STRICT_VFCMPHE);
5657     OPCODE(STRICT_VFCMPHES);
5658     OPCODE(VFCMPES);
5659     OPCODE(VFCMPHS);
5660     OPCODE(VFCMPHES);
5661     OPCODE(VFTCI);
5662     OPCODE(VEXTEND);
5663     OPCODE(STRICT_VEXTEND);
5664     OPCODE(VROUND);
5665     OPCODE(STRICT_VROUND);
5666     OPCODE(VTM);
5667     OPCODE(VFAE_CC);
5668     OPCODE(VFAEZ_CC);
5669     OPCODE(VFEE_CC);
5670     OPCODE(VFEEZ_CC);
5671     OPCODE(VFENE_CC);
5672     OPCODE(VFENEZ_CC);
5673     OPCODE(VISTR_CC);
5674     OPCODE(VSTRC_CC);
5675     OPCODE(VSTRCZ_CC);
5676     OPCODE(VSTRS_CC);
5677     OPCODE(VSTRSZ_CC);
5678     OPCODE(TDC);
5679     OPCODE(ATOMIC_SWAPW);
5680     OPCODE(ATOMIC_LOADW_ADD);
5681     OPCODE(ATOMIC_LOADW_SUB);
5682     OPCODE(ATOMIC_LOADW_AND);
5683     OPCODE(ATOMIC_LOADW_OR);
5684     OPCODE(ATOMIC_LOADW_XOR);
5685     OPCODE(ATOMIC_LOADW_NAND);
5686     OPCODE(ATOMIC_LOADW_MIN);
5687     OPCODE(ATOMIC_LOADW_MAX);
5688     OPCODE(ATOMIC_LOADW_UMIN);
5689     OPCODE(ATOMIC_LOADW_UMAX);
5690     OPCODE(ATOMIC_CMP_SWAPW);
5691     OPCODE(ATOMIC_CMP_SWAP);
5692     OPCODE(ATOMIC_LOAD_128);
5693     OPCODE(ATOMIC_STORE_128);
5694     OPCODE(ATOMIC_CMP_SWAP_128);
5695     OPCODE(LRV);
5696     OPCODE(STRV);
5697     OPCODE(VLER);
5698     OPCODE(VSTER);
5699     OPCODE(PREFETCH);
5700   }
5701   return nullptr;
5702 #undef OPCODE
5703 }
5704 
5705 // Return true if VT is a vector whose elements are a whole number of bytes
5706 // in width. Also check for presence of vector support.
5707 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5708   if (!Subtarget.hasVector())
5709     return false;
5710 
5711   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5712 }
5713 
5714 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5715 // producing a result of type ResVT.  Op is a possibly bitcast version
5716 // of the input vector and Index is the index (based on type VecVT) that
5717 // should be extracted.  Return the new extraction if a simplification
5718 // was possible or if Force is true.
5719 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5720                                               EVT VecVT, SDValue Op,
5721                                               unsigned Index,
5722                                               DAGCombinerInfo &DCI,
5723                                               bool Force) const {
5724   SelectionDAG &DAG = DCI.DAG;
5725 
5726   // The number of bytes being extracted.
5727   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5728 
5729   for (;;) {
5730     unsigned Opcode = Op.getOpcode();
5731     if (Opcode == ISD::BITCAST)
5732       // Look through bitcasts.
5733       Op = Op.getOperand(0);
5734     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5735              canTreatAsByteVector(Op.getValueType())) {
5736       // Get a VPERM-like permute mask and see whether the bytes covered
5737       // by the extracted element are a contiguous sequence from one
5738       // source operand.
5739       SmallVector<int, SystemZ::VectorBytes> Bytes;
5740       if (!getVPermMask(Op, Bytes))
5741         break;
5742       int First;
5743       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5744                            BytesPerElement, First))
5745         break;
5746       if (First < 0)
5747         return DAG.getUNDEF(ResVT);
5748       // Make sure the contiguous sequence starts at a multiple of the
5749       // original element size.
5750       unsigned Byte = unsigned(First) % Bytes.size();
5751       if (Byte % BytesPerElement != 0)
5752         break;
5753       // We can get the extracted value directly from an input.
5754       Index = Byte / BytesPerElement;
5755       Op = Op.getOperand(unsigned(First) / Bytes.size());
5756       Force = true;
5757     } else if (Opcode == ISD::BUILD_VECTOR &&
5758                canTreatAsByteVector(Op.getValueType())) {
5759       // We can only optimize this case if the BUILD_VECTOR elements are
5760       // at least as wide as the extracted value.
5761       EVT OpVT = Op.getValueType();
5762       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5763       if (OpBytesPerElement < BytesPerElement)
5764         break;
5765       // Make sure that the least-significant bit of the extracted value
5766       // is the least significant bit of an input.
5767       unsigned End = (Index + 1) * BytesPerElement;
5768       if (End % OpBytesPerElement != 0)
5769         break;
5770       // We're extracting the low part of one operand of the BUILD_VECTOR.
5771       Op = Op.getOperand(End / OpBytesPerElement - 1);
5772       if (!Op.getValueType().isInteger()) {
5773         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5774         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5775         DCI.AddToWorklist(Op.getNode());
5776       }
5777       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5778       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5779       if (VT != ResVT) {
5780         DCI.AddToWorklist(Op.getNode());
5781         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5782       }
5783       return Op;
5784     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5785                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5786                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5787                canTreatAsByteVector(Op.getValueType()) &&
5788                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5789       // Make sure that only the unextended bits are significant.
5790       EVT ExtVT = Op.getValueType();
5791       EVT OpVT = Op.getOperand(0).getValueType();
5792       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5793       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5794       unsigned Byte = Index * BytesPerElement;
5795       unsigned SubByte = Byte % ExtBytesPerElement;
5796       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5797       if (SubByte < MinSubByte ||
5798           SubByte + BytesPerElement > ExtBytesPerElement)
5799         break;
5800       // Get the byte offset of the unextended element
5801       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5802       // ...then add the byte offset relative to that element.
5803       Byte += SubByte - MinSubByte;
5804       if (Byte % BytesPerElement != 0)
5805         break;
5806       Op = Op.getOperand(0);
5807       Index = Byte / BytesPerElement;
5808       Force = true;
5809     } else
5810       break;
5811   }
5812   if (Force) {
5813     if (Op.getValueType() != VecVT) {
5814       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5815       DCI.AddToWorklist(Op.getNode());
5816     }
5817     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5818                        DAG.getConstant(Index, DL, MVT::i32));
5819   }
5820   return SDValue();
5821 }
5822 
5823 // Optimize vector operations in scalar value Op on the basis that Op
5824 // is truncated to TruncVT.
5825 SDValue SystemZTargetLowering::combineTruncateExtract(
5826     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5827   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5828   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5829   // of type TruncVT.
5830   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5831       TruncVT.getSizeInBits() % 8 == 0) {
5832     SDValue Vec = Op.getOperand(0);
5833     EVT VecVT = Vec.getValueType();
5834     if (canTreatAsByteVector(VecVT)) {
5835       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5836         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5837         unsigned TruncBytes = TruncVT.getStoreSize();
5838         if (BytesPerElement % TruncBytes == 0) {
5839           // Calculate the value of Y' in the above description.  We are
5840           // splitting the original elements into Scale equal-sized pieces
5841           // and for truncation purposes want the last (least-significant)
5842           // of these pieces for IndexN.  This is easiest to do by calculating
5843           // the start index of the following element and then subtracting 1.
5844           unsigned Scale = BytesPerElement / TruncBytes;
5845           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5846 
5847           // Defer the creation of the bitcast from X to combineExtract,
5848           // which might be able to optimize the extraction.
5849           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5850                                    VecVT.getStoreSize() / TruncBytes);
5851           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5852           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5853         }
5854       }
5855     }
5856   }
5857   return SDValue();
5858 }
5859 
5860 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5861     SDNode *N, DAGCombinerInfo &DCI) const {
5862   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5863   SelectionDAG &DAG = DCI.DAG;
5864   SDValue N0 = N->getOperand(0);
5865   EVT VT = N->getValueType(0);
5866   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5867     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5868     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5869     if (TrueOp && FalseOp) {
5870       SDLoc DL(N0);
5871       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5872                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5873                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5874       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5875       // If N0 has multiple uses, change other uses as well.
5876       if (!N0.hasOneUse()) {
5877         SDValue TruncSelect =
5878           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5879         DCI.CombineTo(N0.getNode(), TruncSelect);
5880       }
5881       return NewSelect;
5882     }
5883   }
5884   return SDValue();
5885 }
5886 
5887 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5888     SDNode *N, DAGCombinerInfo &DCI) const {
5889   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5890   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5891   // into (select_cc LHS, RHS, -1, 0, COND)
5892   SelectionDAG &DAG = DCI.DAG;
5893   SDValue N0 = N->getOperand(0);
5894   EVT VT = N->getValueType(0);
5895   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5896   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5897     N0 = N0.getOperand(0);
5898   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5899     SDLoc DL(N0);
5900     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5901                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5902                       N0.getOperand(2) };
5903     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5904   }
5905   return SDValue();
5906 }
5907 
5908 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5909     SDNode *N, DAGCombinerInfo &DCI) const {
5910   // Convert (sext (ashr (shl X, C1), C2)) to
5911   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5912   // cheap as narrower ones.
5913   SelectionDAG &DAG = DCI.DAG;
5914   SDValue N0 = N->getOperand(0);
5915   EVT VT = N->getValueType(0);
5916   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5917     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5918     SDValue Inner = N0.getOperand(0);
5919     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5920       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5921         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5922         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5923         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5924         EVT ShiftVT = N0.getOperand(1).getValueType();
5925         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5926                                   Inner.getOperand(0));
5927         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5928                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5929                                                   ShiftVT));
5930         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5931                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5932       }
5933     }
5934   }
5935   return SDValue();
5936 }
5937 
5938 SDValue SystemZTargetLowering::combineMERGE(
5939     SDNode *N, DAGCombinerInfo &DCI) const {
5940   SelectionDAG &DAG = DCI.DAG;
5941   unsigned Opcode = N->getOpcode();
5942   SDValue Op0 = N->getOperand(0);
5943   SDValue Op1 = N->getOperand(1);
5944   if (Op0.getOpcode() == ISD::BITCAST)
5945     Op0 = Op0.getOperand(0);
5946   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5947     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5948     // for v4f32.
5949     if (Op1 == N->getOperand(0))
5950       return Op1;
5951     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5952     EVT VT = Op1.getValueType();
5953     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5954     if (ElemBytes <= 4) {
5955       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5956                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5957       EVT InVT = VT.changeVectorElementTypeToInteger();
5958       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5959                                    SystemZ::VectorBytes / ElemBytes / 2);
5960       if (VT != InVT) {
5961         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5962         DCI.AddToWorklist(Op1.getNode());
5963       }
5964       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5965       DCI.AddToWorklist(Op.getNode());
5966       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5967     }
5968   }
5969   return SDValue();
5970 }
5971 
5972 SDValue SystemZTargetLowering::combineLOAD(
5973     SDNode *N, DAGCombinerInfo &DCI) const {
5974   SelectionDAG &DAG = DCI.DAG;
5975   EVT LdVT = N->getValueType(0);
5976   if (LdVT.isVector() || LdVT.isInteger())
5977     return SDValue();
5978   // Transform a scalar load that is REPLICATEd as well as having other
5979   // use(s) to the form where the other use(s) use the first element of the
5980   // REPLICATE instead of the load. Otherwise instruction selection will not
5981   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5982   // point loads.
5983 
5984   SDValue Replicate;
5985   SmallVector<SDNode*, 8> OtherUses;
5986   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5987        UI != UE; ++UI) {
5988     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5989       if (Replicate)
5990         return SDValue(); // Should never happen
5991       Replicate = SDValue(*UI, 0);
5992     }
5993     else if (UI.getUse().getResNo() == 0)
5994       OtherUses.push_back(*UI);
5995   }
5996   if (!Replicate || OtherUses.empty())
5997     return SDValue();
5998 
5999   SDLoc DL(N);
6000   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6001                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6002   // Update uses of the loaded Value while preserving old chains.
6003   for (SDNode *U : OtherUses) {
6004     SmallVector<SDValue, 8> Ops;
6005     for (SDValue Op : U->ops())
6006       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6007     DAG.UpdateNodeOperands(U, Ops);
6008   }
6009   return SDValue(N, 0);
6010 }
6011 
6012 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6013   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6014     return true;
6015   if (Subtarget.hasVectorEnhancements2())
6016     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6017       return true;
6018   return false;
6019 }
6020 
6021 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6022   if (!VT.isVector() || !VT.isSimple() ||
6023       VT.getSizeInBits() != 128 ||
6024       VT.getScalarSizeInBits() % 8 != 0)
6025     return false;
6026 
6027   unsigned NumElts = VT.getVectorNumElements();
6028   for (unsigned i = 0; i < NumElts; ++i) {
6029     if (M[i] < 0) continue; // ignore UNDEF indices
6030     if ((unsigned) M[i] != NumElts - 1 - i)
6031       return false;
6032   }
6033 
6034   return true;
6035 }
6036 
6037 SDValue SystemZTargetLowering::combineSTORE(
6038     SDNode *N, DAGCombinerInfo &DCI) const {
6039   SelectionDAG &DAG = DCI.DAG;
6040   auto *SN = cast<StoreSDNode>(N);
6041   auto &Op1 = N->getOperand(1);
6042   EVT MemVT = SN->getMemoryVT();
6043   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6044   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6045   // If X has wider elements then convert it to:
6046   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6047   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6048     if (SDValue Value =
6049             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6050       DCI.AddToWorklist(Value.getNode());
6051 
6052       // Rewrite the store with the new form of stored value.
6053       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6054                                SN->getBasePtr(), SN->getMemoryVT(),
6055                                SN->getMemOperand());
6056     }
6057   }
6058   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6059   if (!SN->isTruncatingStore() &&
6060       Op1.getOpcode() == ISD::BSWAP &&
6061       Op1.getNode()->hasOneUse() &&
6062       canLoadStoreByteSwapped(Op1.getValueType())) {
6063 
6064       SDValue BSwapOp = Op1.getOperand(0);
6065 
6066       if (BSwapOp.getValueType() == MVT::i16)
6067         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6068 
6069       SDValue Ops[] = {
6070         N->getOperand(0), BSwapOp, N->getOperand(2)
6071       };
6072 
6073       return
6074         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6075                                 Ops, MemVT, SN->getMemOperand());
6076     }
6077   // Combine STORE (element-swap) into VSTER
6078   if (!SN->isTruncatingStore() &&
6079       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6080       Op1.getNode()->hasOneUse() &&
6081       Subtarget.hasVectorEnhancements2()) {
6082     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6083     ArrayRef<int> ShuffleMask = SVN->getMask();
6084     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6085       SDValue Ops[] = {
6086         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6087       };
6088 
6089       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6090                                      DAG.getVTList(MVT::Other),
6091                                      Ops, MemVT, SN->getMemOperand());
6092     }
6093   }
6094 
6095   return SDValue();
6096 }
6097 
6098 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6099     SDNode *N, DAGCombinerInfo &DCI) const {
6100   SelectionDAG &DAG = DCI.DAG;
6101   // Combine element-swap (LOAD) into VLER
6102   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6103       N->getOperand(0).hasOneUse() &&
6104       Subtarget.hasVectorEnhancements2()) {
6105     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6106     ArrayRef<int> ShuffleMask = SVN->getMask();
6107     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6108       SDValue Load = N->getOperand(0);
6109       LoadSDNode *LD = cast<LoadSDNode>(Load);
6110 
6111       // Create the element-swapping load.
6112       SDValue Ops[] = {
6113         LD->getChain(),    // Chain
6114         LD->getBasePtr()   // Ptr
6115       };
6116       SDValue ESLoad =
6117         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6118                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6119                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6120 
6121       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6122       // by the load dead.
6123       DCI.CombineTo(N, ESLoad);
6124 
6125       // Next, combine the load away, we give it a bogus result value but a real
6126       // chain result.  The result value is dead because the shuffle is dead.
6127       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6128 
6129       // Return N so it doesn't get rechecked!
6130       return SDValue(N, 0);
6131     }
6132   }
6133 
6134   return SDValue();
6135 }
6136 
6137 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6138     SDNode *N, DAGCombinerInfo &DCI) const {
6139   SelectionDAG &DAG = DCI.DAG;
6140 
6141   if (!Subtarget.hasVector())
6142     return SDValue();
6143 
6144   // Look through bitcasts that retain the number of vector elements.
6145   SDValue Op = N->getOperand(0);
6146   if (Op.getOpcode() == ISD::BITCAST &&
6147       Op.getValueType().isVector() &&
6148       Op.getOperand(0).getValueType().isVector() &&
6149       Op.getValueType().getVectorNumElements() ==
6150       Op.getOperand(0).getValueType().getVectorNumElements())
6151     Op = Op.getOperand(0);
6152 
6153   // Pull BSWAP out of a vector extraction.
6154   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6155     EVT VecVT = Op.getValueType();
6156     EVT EltVT = VecVT.getVectorElementType();
6157     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6158                      Op.getOperand(0), N->getOperand(1));
6159     DCI.AddToWorklist(Op.getNode());
6160     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6161     if (EltVT != N->getValueType(0)) {
6162       DCI.AddToWorklist(Op.getNode());
6163       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6164     }
6165     return Op;
6166   }
6167 
6168   // Try to simplify a vector extraction.
6169   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6170     SDValue Op0 = N->getOperand(0);
6171     EVT VecVT = Op0.getValueType();
6172     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6173                           IndexN->getZExtValue(), DCI, false);
6174   }
6175   return SDValue();
6176 }
6177 
6178 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6179     SDNode *N, DAGCombinerInfo &DCI) const {
6180   SelectionDAG &DAG = DCI.DAG;
6181   // (join_dwords X, X) == (replicate X)
6182   if (N->getOperand(0) == N->getOperand(1))
6183     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6184                        N->getOperand(0));
6185   return SDValue();
6186 }
6187 
6188 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6189   SDValue Chain1 = N1->getOperand(0);
6190   SDValue Chain2 = N2->getOperand(0);
6191 
6192   // Trivial case: both nodes take the same chain.
6193   if (Chain1 == Chain2)
6194     return Chain1;
6195 
6196   // FIXME - we could handle more complex cases via TokenFactor,
6197   // assuming we can verify that this would not create a cycle.
6198   return SDValue();
6199 }
6200 
6201 SDValue SystemZTargetLowering::combineFP_ROUND(
6202     SDNode *N, DAGCombinerInfo &DCI) const {
6203 
6204   if (!Subtarget.hasVector())
6205     return SDValue();
6206 
6207   // (fpround (extract_vector_elt X 0))
6208   // (fpround (extract_vector_elt X 1)) ->
6209   // (extract_vector_elt (VROUND X) 0)
6210   // (extract_vector_elt (VROUND X) 2)
6211   //
6212   // This is a special case since the target doesn't really support v2f32s.
6213   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6214   SelectionDAG &DAG = DCI.DAG;
6215   SDValue Op0 = N->getOperand(OpNo);
6216   if (N->getValueType(0) == MVT::f32 &&
6217       Op0.hasOneUse() &&
6218       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6219       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6220       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6221       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6222     SDValue Vec = Op0.getOperand(0);
6223     for (auto *U : Vec->uses()) {
6224       if (U != Op0.getNode() &&
6225           U->hasOneUse() &&
6226           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6227           U->getOperand(0) == Vec &&
6228           U->getOperand(1).getOpcode() == ISD::Constant &&
6229           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6230         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6231         if (OtherRound.getOpcode() == N->getOpcode() &&
6232             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6233             OtherRound.getValueType() == MVT::f32) {
6234           SDValue VRound, Chain;
6235           if (N->isStrictFPOpcode()) {
6236             Chain = MergeInputChains(N, OtherRound.getNode());
6237             if (!Chain)
6238               continue;
6239             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6240                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6241             Chain = VRound.getValue(1);
6242           } else
6243             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6244                                  MVT::v4f32, Vec);
6245           DCI.AddToWorklist(VRound.getNode());
6246           SDValue Extract1 =
6247             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6248                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6249           DCI.AddToWorklist(Extract1.getNode());
6250           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6251           if (Chain)
6252             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6253           SDValue Extract0 =
6254             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6255                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6256           if (Chain)
6257             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6258                                N->getVTList(), Extract0, Chain);
6259           return Extract0;
6260         }
6261       }
6262     }
6263   }
6264   return SDValue();
6265 }
6266 
6267 SDValue SystemZTargetLowering::combineFP_EXTEND(
6268     SDNode *N, DAGCombinerInfo &DCI) const {
6269 
6270   if (!Subtarget.hasVector())
6271     return SDValue();
6272 
6273   // (fpextend (extract_vector_elt X 0))
6274   // (fpextend (extract_vector_elt X 2)) ->
6275   // (extract_vector_elt (VEXTEND X) 0)
6276   // (extract_vector_elt (VEXTEND X) 1)
6277   //
6278   // This is a special case since the target doesn't really support v2f32s.
6279   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6280   SelectionDAG &DAG = DCI.DAG;
6281   SDValue Op0 = N->getOperand(OpNo);
6282   if (N->getValueType(0) == MVT::f64 &&
6283       Op0.hasOneUse() &&
6284       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6285       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6286       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6287       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6288     SDValue Vec = Op0.getOperand(0);
6289     for (auto *U : Vec->uses()) {
6290       if (U != Op0.getNode() &&
6291           U->hasOneUse() &&
6292           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6293           U->getOperand(0) == Vec &&
6294           U->getOperand(1).getOpcode() == ISD::Constant &&
6295           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6296         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6297         if (OtherExtend.getOpcode() == N->getOpcode() &&
6298             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6299             OtherExtend.getValueType() == MVT::f64) {
6300           SDValue VExtend, Chain;
6301           if (N->isStrictFPOpcode()) {
6302             Chain = MergeInputChains(N, OtherExtend.getNode());
6303             if (!Chain)
6304               continue;
6305             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6306                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6307             Chain = VExtend.getValue(1);
6308           } else
6309             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6310                                   MVT::v2f64, Vec);
6311           DCI.AddToWorklist(VExtend.getNode());
6312           SDValue Extract1 =
6313             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6314                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6315           DCI.AddToWorklist(Extract1.getNode());
6316           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6317           if (Chain)
6318             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6319           SDValue Extract0 =
6320             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6321                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6322           if (Chain)
6323             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6324                                N->getVTList(), Extract0, Chain);
6325           return Extract0;
6326         }
6327       }
6328     }
6329   }
6330   return SDValue();
6331 }
6332 
6333 SDValue SystemZTargetLowering::combineINT_TO_FP(
6334     SDNode *N, DAGCombinerInfo &DCI) const {
6335   if (DCI.Level != BeforeLegalizeTypes)
6336     return SDValue();
6337   unsigned Opcode = N->getOpcode();
6338   EVT OutVT = N->getValueType(0);
6339   SelectionDAG &DAG = DCI.DAG;
6340   SDValue Op = N->getOperand(0);
6341   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6342   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6343 
6344   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6345   // v2f64 = uint_to_fp v2i16
6346   // =>
6347   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6348   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6349     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6350                                  OutVT.getVectorNumElements());
6351     unsigned ExtOpcode =
6352       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6353     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6354     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6355   }
6356   return SDValue();
6357 }
6358 
6359 SDValue SystemZTargetLowering::combineBSWAP(
6360     SDNode *N, DAGCombinerInfo &DCI) const {
6361   SelectionDAG &DAG = DCI.DAG;
6362   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6363   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6364       N->getOperand(0).hasOneUse() &&
6365       canLoadStoreByteSwapped(N->getValueType(0))) {
6366       SDValue Load = N->getOperand(0);
6367       LoadSDNode *LD = cast<LoadSDNode>(Load);
6368 
6369       // Create the byte-swapping load.
6370       SDValue Ops[] = {
6371         LD->getChain(),    // Chain
6372         LD->getBasePtr()   // Ptr
6373       };
6374       EVT LoadVT = N->getValueType(0);
6375       if (LoadVT == MVT::i16)
6376         LoadVT = MVT::i32;
6377       SDValue BSLoad =
6378         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6379                                 DAG.getVTList(LoadVT, MVT::Other),
6380                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6381 
6382       // If this is an i16 load, insert the truncate.
6383       SDValue ResVal = BSLoad;
6384       if (N->getValueType(0) == MVT::i16)
6385         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6386 
6387       // First, combine the bswap away.  This makes the value produced by the
6388       // load dead.
6389       DCI.CombineTo(N, ResVal);
6390 
6391       // Next, combine the load away, we give it a bogus result value but a real
6392       // chain result.  The result value is dead because the bswap is dead.
6393       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6394 
6395       // Return N so it doesn't get rechecked!
6396       return SDValue(N, 0);
6397     }
6398 
6399   // Look through bitcasts that retain the number of vector elements.
6400   SDValue Op = N->getOperand(0);
6401   if (Op.getOpcode() == ISD::BITCAST &&
6402       Op.getValueType().isVector() &&
6403       Op.getOperand(0).getValueType().isVector() &&
6404       Op.getValueType().getVectorNumElements() ==
6405       Op.getOperand(0).getValueType().getVectorNumElements())
6406     Op = Op.getOperand(0);
6407 
6408   // Push BSWAP into a vector insertion if at least one side then simplifies.
6409   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6410     SDValue Vec = Op.getOperand(0);
6411     SDValue Elt = Op.getOperand(1);
6412     SDValue Idx = Op.getOperand(2);
6413 
6414     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6415         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6416         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6417         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6418         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6419          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6420       EVT VecVT = N->getValueType(0);
6421       EVT EltVT = N->getValueType(0).getVectorElementType();
6422       if (VecVT != Vec.getValueType()) {
6423         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6424         DCI.AddToWorklist(Vec.getNode());
6425       }
6426       if (EltVT != Elt.getValueType()) {
6427         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6428         DCI.AddToWorklist(Elt.getNode());
6429       }
6430       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6431       DCI.AddToWorklist(Vec.getNode());
6432       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6433       DCI.AddToWorklist(Elt.getNode());
6434       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6435                          Vec, Elt, Idx);
6436     }
6437   }
6438 
6439   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6440   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6441   if (SV && Op.hasOneUse()) {
6442     SDValue Op0 = Op.getOperand(0);
6443     SDValue Op1 = Op.getOperand(1);
6444 
6445     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6446         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6447         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6448         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6449       EVT VecVT = N->getValueType(0);
6450       if (VecVT != Op0.getValueType()) {
6451         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6452         DCI.AddToWorklist(Op0.getNode());
6453       }
6454       if (VecVT != Op1.getValueType()) {
6455         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6456         DCI.AddToWorklist(Op1.getNode());
6457       }
6458       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6459       DCI.AddToWorklist(Op0.getNode());
6460       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6461       DCI.AddToWorklist(Op1.getNode());
6462       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6463     }
6464   }
6465 
6466   return SDValue();
6467 }
6468 
6469 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6470   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6471   // set by the CCReg instruction using the CCValid / CCMask masks,
6472   // If the CCReg instruction is itself a ICMP testing the condition
6473   // code set by some other instruction, see whether we can directly
6474   // use that condition code.
6475 
6476   // Verify that we have an ICMP against some constant.
6477   if (CCValid != SystemZ::CCMASK_ICMP)
6478     return false;
6479   auto *ICmp = CCReg.getNode();
6480   if (ICmp->getOpcode() != SystemZISD::ICMP)
6481     return false;
6482   auto *CompareLHS = ICmp->getOperand(0).getNode();
6483   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6484   if (!CompareRHS)
6485     return false;
6486 
6487   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6488   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6489     // Verify that we have an appropriate mask for a EQ or NE comparison.
6490     bool Invert = false;
6491     if (CCMask == SystemZ::CCMASK_CMP_NE)
6492       Invert = !Invert;
6493     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6494       return false;
6495 
6496     // Verify that the ICMP compares against one of select values.
6497     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6498     if (!TrueVal)
6499       return false;
6500     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6501     if (!FalseVal)
6502       return false;
6503     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6504       Invert = !Invert;
6505     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6506       return false;
6507 
6508     // Compute the effective CC mask for the new branch or select.
6509     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6510     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6511     if (!NewCCValid || !NewCCMask)
6512       return false;
6513     CCValid = NewCCValid->getZExtValue();
6514     CCMask = NewCCMask->getZExtValue();
6515     if (Invert)
6516       CCMask ^= CCValid;
6517 
6518     // Return the updated CCReg link.
6519     CCReg = CompareLHS->getOperand(4);
6520     return true;
6521   }
6522 
6523   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6524   if (CompareLHS->getOpcode() == ISD::SRA) {
6525     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6526     if (!SRACount || SRACount->getZExtValue() != 30)
6527       return false;
6528     auto *SHL = CompareLHS->getOperand(0).getNode();
6529     if (SHL->getOpcode() != ISD::SHL)
6530       return false;
6531     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6532     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6533       return false;
6534     auto *IPM = SHL->getOperand(0).getNode();
6535     if (IPM->getOpcode() != SystemZISD::IPM)
6536       return false;
6537 
6538     // Avoid introducing CC spills (because SRA would clobber CC).
6539     if (!CompareLHS->hasOneUse())
6540       return false;
6541     // Verify that the ICMP compares against zero.
6542     if (CompareRHS->getZExtValue() != 0)
6543       return false;
6544 
6545     // Compute the effective CC mask for the new branch or select.
6546     CCMask = SystemZ::reverseCCMask(CCMask);
6547 
6548     // Return the updated CCReg link.
6549     CCReg = IPM->getOperand(0);
6550     return true;
6551   }
6552 
6553   return false;
6554 }
6555 
6556 SDValue SystemZTargetLowering::combineBR_CCMASK(
6557     SDNode *N, DAGCombinerInfo &DCI) const {
6558   SelectionDAG &DAG = DCI.DAG;
6559 
6560   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6561   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6562   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6563   if (!CCValid || !CCMask)
6564     return SDValue();
6565 
6566   int CCValidVal = CCValid->getZExtValue();
6567   int CCMaskVal = CCMask->getZExtValue();
6568   SDValue Chain = N->getOperand(0);
6569   SDValue CCReg = N->getOperand(4);
6570 
6571   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6572     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6573                        Chain,
6574                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6575                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6576                        N->getOperand(3), CCReg);
6577   return SDValue();
6578 }
6579 
6580 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6581     SDNode *N, DAGCombinerInfo &DCI) const {
6582   SelectionDAG &DAG = DCI.DAG;
6583 
6584   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6585   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6586   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6587   if (!CCValid || !CCMask)
6588     return SDValue();
6589 
6590   int CCValidVal = CCValid->getZExtValue();
6591   int CCMaskVal = CCMask->getZExtValue();
6592   SDValue CCReg = N->getOperand(4);
6593 
6594   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6595     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6596                        N->getOperand(0), N->getOperand(1),
6597                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6598                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6599                        CCReg);
6600   return SDValue();
6601 }
6602 
6603 
6604 SDValue SystemZTargetLowering::combineGET_CCMASK(
6605     SDNode *N, DAGCombinerInfo &DCI) const {
6606 
6607   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6608   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6609   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6610   if (!CCValid || !CCMask)
6611     return SDValue();
6612   int CCValidVal = CCValid->getZExtValue();
6613   int CCMaskVal = CCMask->getZExtValue();
6614 
6615   SDValue Select = N->getOperand(0);
6616   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6617     return SDValue();
6618 
6619   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6620   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6621   if (!SelectCCValid || !SelectCCMask)
6622     return SDValue();
6623   int SelectCCValidVal = SelectCCValid->getZExtValue();
6624   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6625 
6626   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6627   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6628   if (!TrueVal || !FalseVal)
6629     return SDValue();
6630   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6631     ;
6632   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6633     SelectCCMaskVal ^= SelectCCValidVal;
6634   else
6635     return SDValue();
6636 
6637   if (SelectCCValidVal & ~CCValidVal)
6638     return SDValue();
6639   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6640     return SDValue();
6641 
6642   return Select->getOperand(4);
6643 }
6644 
6645 SDValue SystemZTargetLowering::combineIntDIVREM(
6646     SDNode *N, DAGCombinerInfo &DCI) const {
6647   SelectionDAG &DAG = DCI.DAG;
6648   EVT VT = N->getValueType(0);
6649   // In the case where the divisor is a vector of constants a cheaper
6650   // sequence of instructions can replace the divide. BuildSDIV is called to
6651   // do this during DAG combining, but it only succeeds when it can build a
6652   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6653   // since it is not Legal but Custom it can only happen before
6654   // legalization. Therefore we must scalarize this early before Combine
6655   // 1. For widened vectors, this is already the result of type legalization.
6656   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6657       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6658     return DAG.UnrollVectorOp(N);
6659   return SDValue();
6660 }
6661 
6662 SDValue SystemZTargetLowering::combineINTRINSIC(
6663     SDNode *N, DAGCombinerInfo &DCI) const {
6664   SelectionDAG &DAG = DCI.DAG;
6665 
6666   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6667   switch (Id) {
6668   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6669   // or larger is simply a vector load.
6670   case Intrinsic::s390_vll:
6671   case Intrinsic::s390_vlrl:
6672     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6673       if (C->getZExtValue() >= 15)
6674         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6675                            N->getOperand(3), MachinePointerInfo());
6676     break;
6677   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6678   case Intrinsic::s390_vstl:
6679   case Intrinsic::s390_vstrl:
6680     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6681       if (C->getZExtValue() >= 15)
6682         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6683                             N->getOperand(4), MachinePointerInfo());
6684     break;
6685   }
6686 
6687   return SDValue();
6688 }
6689 
6690 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6691   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6692     return N->getOperand(0);
6693   return N;
6694 }
6695 
6696 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6697                                                  DAGCombinerInfo &DCI) const {
6698   switch(N->getOpcode()) {
6699   default: break;
6700   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6701   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6702   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6703   case SystemZISD::MERGE_HIGH:
6704   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6705   case ISD::LOAD:               return combineLOAD(N, DCI);
6706   case ISD::STORE:              return combineSTORE(N, DCI);
6707   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6708   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6709   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6710   case ISD::STRICT_FP_ROUND:
6711   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6712   case ISD::STRICT_FP_EXTEND:
6713   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6714   case ISD::SINT_TO_FP:
6715   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6716   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6717   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6718   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6719   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6720   case ISD::SDIV:
6721   case ISD::UDIV:
6722   case ISD::SREM:
6723   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6724   case ISD::INTRINSIC_W_CHAIN:
6725   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6726   }
6727 
6728   return SDValue();
6729 }
6730 
6731 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6732 // are for Op.
6733 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6734                                     unsigned OpNo) {
6735   EVT VT = Op.getValueType();
6736   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6737   APInt SrcDemE;
6738   unsigned Opcode = Op.getOpcode();
6739   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6740     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6741     switch (Id) {
6742     case Intrinsic::s390_vpksh:   // PACKS
6743     case Intrinsic::s390_vpksf:
6744     case Intrinsic::s390_vpksg:
6745     case Intrinsic::s390_vpkshs:  // PACKS_CC
6746     case Intrinsic::s390_vpksfs:
6747     case Intrinsic::s390_vpksgs:
6748     case Intrinsic::s390_vpklsh:  // PACKLS
6749     case Intrinsic::s390_vpklsf:
6750     case Intrinsic::s390_vpklsg:
6751     case Intrinsic::s390_vpklshs: // PACKLS_CC
6752     case Intrinsic::s390_vpklsfs:
6753     case Intrinsic::s390_vpklsgs:
6754       // VECTOR PACK truncates the elements of two source vectors into one.
6755       SrcDemE = DemandedElts;
6756       if (OpNo == 2)
6757         SrcDemE.lshrInPlace(NumElts / 2);
6758       SrcDemE = SrcDemE.trunc(NumElts / 2);
6759       break;
6760       // VECTOR UNPACK extends half the elements of the source vector.
6761     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6762     case Intrinsic::s390_vuphh:
6763     case Intrinsic::s390_vuphf:
6764     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6765     case Intrinsic::s390_vuplhh:
6766     case Intrinsic::s390_vuplhf:
6767       SrcDemE = APInt(NumElts * 2, 0);
6768       SrcDemE.insertBits(DemandedElts, 0);
6769       break;
6770     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6771     case Intrinsic::s390_vuplhw:
6772     case Intrinsic::s390_vuplf:
6773     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6774     case Intrinsic::s390_vupllh:
6775     case Intrinsic::s390_vupllf:
6776       SrcDemE = APInt(NumElts * 2, 0);
6777       SrcDemE.insertBits(DemandedElts, NumElts);
6778       break;
6779     case Intrinsic::s390_vpdi: {
6780       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6781       SrcDemE = APInt(NumElts, 0);
6782       if (!DemandedElts[OpNo - 1])
6783         break;
6784       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6785       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6786       // Demand input element 0 or 1, given by the mask bit value.
6787       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6788       break;
6789     }
6790     case Intrinsic::s390_vsldb: {
6791       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6792       assert(VT == MVT::v16i8 && "Unexpected type.");
6793       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6794       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6795       unsigned NumSrc0Els = 16 - FirstIdx;
6796       SrcDemE = APInt(NumElts, 0);
6797       if (OpNo == 1) {
6798         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6799         SrcDemE.insertBits(DemEls, FirstIdx);
6800       } else {
6801         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6802         SrcDemE.insertBits(DemEls, 0);
6803       }
6804       break;
6805     }
6806     case Intrinsic::s390_vperm:
6807       SrcDemE = APInt(NumElts, 1);
6808       break;
6809     default:
6810       llvm_unreachable("Unhandled intrinsic.");
6811       break;
6812     }
6813   } else {
6814     switch (Opcode) {
6815     case SystemZISD::JOIN_DWORDS:
6816       // Scalar operand.
6817       SrcDemE = APInt(1, 1);
6818       break;
6819     case SystemZISD::SELECT_CCMASK:
6820       SrcDemE = DemandedElts;
6821       break;
6822     default:
6823       llvm_unreachable("Unhandled opcode.");
6824       break;
6825     }
6826   }
6827   return SrcDemE;
6828 }
6829 
6830 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6831                                   const APInt &DemandedElts,
6832                                   const SelectionDAG &DAG, unsigned Depth,
6833                                   unsigned OpNo) {
6834   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6835   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6836   KnownBits LHSKnown =
6837       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6838   KnownBits RHSKnown =
6839       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6840   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6841 }
6842 
6843 void
6844 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6845                                                      KnownBits &Known,
6846                                                      const APInt &DemandedElts,
6847                                                      const SelectionDAG &DAG,
6848                                                      unsigned Depth) const {
6849   Known.resetAll();
6850 
6851   // Intrinsic CC result is returned in the two low bits.
6852   unsigned tmp0, tmp1; // not used
6853   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6854     Known.Zero.setBitsFrom(2);
6855     return;
6856   }
6857   EVT VT = Op.getValueType();
6858   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6859     return;
6860   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6861           "KnownBits does not match VT in bitwidth");
6862   assert ((!VT.isVector() ||
6863            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6864           "DemandedElts does not match VT number of elements");
6865   unsigned BitWidth = Known.getBitWidth();
6866   unsigned Opcode = Op.getOpcode();
6867   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6868     bool IsLogical = false;
6869     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6870     switch (Id) {
6871     case Intrinsic::s390_vpksh:   // PACKS
6872     case Intrinsic::s390_vpksf:
6873     case Intrinsic::s390_vpksg:
6874     case Intrinsic::s390_vpkshs:  // PACKS_CC
6875     case Intrinsic::s390_vpksfs:
6876     case Intrinsic::s390_vpksgs:
6877     case Intrinsic::s390_vpklsh:  // PACKLS
6878     case Intrinsic::s390_vpklsf:
6879     case Intrinsic::s390_vpklsg:
6880     case Intrinsic::s390_vpklshs: // PACKLS_CC
6881     case Intrinsic::s390_vpklsfs:
6882     case Intrinsic::s390_vpklsgs:
6883     case Intrinsic::s390_vpdi:
6884     case Intrinsic::s390_vsldb:
6885     case Intrinsic::s390_vperm:
6886       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6887       break;
6888     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6889     case Intrinsic::s390_vuplhh:
6890     case Intrinsic::s390_vuplhf:
6891     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6892     case Intrinsic::s390_vupllh:
6893     case Intrinsic::s390_vupllf:
6894       IsLogical = true;
6895       LLVM_FALLTHROUGH;
6896     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6897     case Intrinsic::s390_vuphh:
6898     case Intrinsic::s390_vuphf:
6899     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6900     case Intrinsic::s390_vuplhw:
6901     case Intrinsic::s390_vuplf: {
6902       SDValue SrcOp = Op.getOperand(1);
6903       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6904       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6905       if (IsLogical) {
6906         Known = Known.zext(BitWidth);
6907       } else
6908         Known = Known.sext(BitWidth);
6909       break;
6910     }
6911     default:
6912       break;
6913     }
6914   } else {
6915     switch (Opcode) {
6916     case SystemZISD::JOIN_DWORDS:
6917     case SystemZISD::SELECT_CCMASK:
6918       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6919       break;
6920     case SystemZISD::REPLICATE: {
6921       SDValue SrcOp = Op.getOperand(0);
6922       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6923       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6924         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6925       break;
6926     }
6927     default:
6928       break;
6929     }
6930   }
6931 
6932   // Known has the width of the source operand(s). Adjust if needed to match
6933   // the passed bitwidth.
6934   if (Known.getBitWidth() != BitWidth)
6935     Known = Known.anyextOrTrunc(BitWidth);
6936 }
6937 
6938 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6939                                         const SelectionDAG &DAG, unsigned Depth,
6940                                         unsigned OpNo) {
6941   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6942   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6943   if (LHS == 1) return 1; // Early out.
6944   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6945   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6946   if (RHS == 1) return 1; // Early out.
6947   unsigned Common = std::min(LHS, RHS);
6948   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6949   EVT VT = Op.getValueType();
6950   unsigned VTBits = VT.getScalarSizeInBits();
6951   if (SrcBitWidth > VTBits) { // PACK
6952     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6953     if (Common > SrcExtraBits)
6954       return (Common - SrcExtraBits);
6955     return 1;
6956   }
6957   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6958   return Common;
6959 }
6960 
6961 unsigned
6962 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6963     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6964     unsigned Depth) const {
6965   if (Op.getResNo() != 0)
6966     return 1;
6967   unsigned Opcode = Op.getOpcode();
6968   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6969     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6970     switch (Id) {
6971     case Intrinsic::s390_vpksh:   // PACKS
6972     case Intrinsic::s390_vpksf:
6973     case Intrinsic::s390_vpksg:
6974     case Intrinsic::s390_vpkshs:  // PACKS_CC
6975     case Intrinsic::s390_vpksfs:
6976     case Intrinsic::s390_vpksgs:
6977     case Intrinsic::s390_vpklsh:  // PACKLS
6978     case Intrinsic::s390_vpklsf:
6979     case Intrinsic::s390_vpklsg:
6980     case Intrinsic::s390_vpklshs: // PACKLS_CC
6981     case Intrinsic::s390_vpklsfs:
6982     case Intrinsic::s390_vpklsgs:
6983     case Intrinsic::s390_vpdi:
6984     case Intrinsic::s390_vsldb:
6985     case Intrinsic::s390_vperm:
6986       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6987     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6988     case Intrinsic::s390_vuphh:
6989     case Intrinsic::s390_vuphf:
6990     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6991     case Intrinsic::s390_vuplhw:
6992     case Intrinsic::s390_vuplf: {
6993       SDValue PackedOp = Op.getOperand(1);
6994       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6995       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6996       EVT VT = Op.getValueType();
6997       unsigned VTBits = VT.getScalarSizeInBits();
6998       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6999       return Tmp;
7000     }
7001     default:
7002       break;
7003     }
7004   } else {
7005     switch (Opcode) {
7006     case SystemZISD::SELECT_CCMASK:
7007       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7008     default:
7009       break;
7010     }
7011   }
7012 
7013   return 1;
7014 }
7015 
7016 unsigned
7017 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7018   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7019   unsigned StackAlign = TFI->getStackAlignment();
7020   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7021          "Unexpected stack alignment");
7022   // The default stack probe size is 4096 if the function has no
7023   // stack-probe-size attribute.
7024   unsigned StackProbeSize = 4096;
7025   const Function &Fn = MF.getFunction();
7026   if (Fn.hasFnAttribute("stack-probe-size"))
7027     Fn.getFnAttribute("stack-probe-size")
7028         .getValueAsString()
7029         .getAsInteger(0, StackProbeSize);
7030   // Round down to the stack alignment.
7031   StackProbeSize &= ~(StackAlign - 1);
7032   return StackProbeSize ? StackProbeSize : StackAlign;
7033 }
7034 
7035 //===----------------------------------------------------------------------===//
7036 // Custom insertion
7037 //===----------------------------------------------------------------------===//
7038 
7039 // Force base value Base into a register before MI.  Return the register.
7040 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7041                          const SystemZInstrInfo *TII) {
7042   if (Base.isReg())
7043     return Base.getReg();
7044 
7045   MachineBasicBlock *MBB = MI.getParent();
7046   MachineFunction &MF = *MBB->getParent();
7047   MachineRegisterInfo &MRI = MF.getRegInfo();
7048 
7049   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7050   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7051       .add(Base)
7052       .addImm(0)
7053       .addReg(0);
7054   return Reg;
7055 }
7056 
7057 // The CC operand of MI might be missing a kill marker because there
7058 // were multiple uses of CC, and ISel didn't know which to mark.
7059 // Figure out whether MI should have had a kill marker.
7060 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7061   // Scan forward through BB for a use/def of CC.
7062   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7063   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7064     const MachineInstr& mi = *miI;
7065     if (mi.readsRegister(SystemZ::CC))
7066       return false;
7067     if (mi.definesRegister(SystemZ::CC))
7068       break; // Should have kill-flag - update below.
7069   }
7070 
7071   // If we hit the end of the block, check whether CC is live into a
7072   // successor.
7073   if (miI == MBB->end()) {
7074     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7075       if ((*SI)->isLiveIn(SystemZ::CC))
7076         return false;
7077   }
7078 
7079   return true;
7080 }
7081 
7082 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7083 // together with other Select pseudo-opcodes into a single basic-block with
7084 // a conditional jump around it.
7085 static bool isSelectPseudo(MachineInstr &MI) {
7086   switch (MI.getOpcode()) {
7087   case SystemZ::Select32:
7088   case SystemZ::Select64:
7089   case SystemZ::SelectF32:
7090   case SystemZ::SelectF64:
7091   case SystemZ::SelectF128:
7092   case SystemZ::SelectVR32:
7093   case SystemZ::SelectVR64:
7094   case SystemZ::SelectVR128:
7095     return true;
7096 
7097   default:
7098     return false;
7099   }
7100 }
7101 
7102 // Helper function, which inserts PHI functions into SinkMBB:
7103 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7104 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7105 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7106                                  MachineBasicBlock *TrueMBB,
7107                                  MachineBasicBlock *FalseMBB,
7108                                  MachineBasicBlock *SinkMBB) {
7109   MachineFunction *MF = TrueMBB->getParent();
7110   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7111 
7112   MachineInstr *FirstMI = Selects.front();
7113   unsigned CCValid = FirstMI->getOperand(3).getImm();
7114   unsigned CCMask = FirstMI->getOperand(4).getImm();
7115 
7116   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7117 
7118   // As we are creating the PHIs, we have to be careful if there is more than
7119   // one.  Later Selects may reference the results of earlier Selects, but later
7120   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7121   // That also means that PHI construction must work forward from earlier to
7122   // later, and that the code must maintain a mapping from earlier PHI's
7123   // destination registers, and the registers that went into the PHI.
7124   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7125 
7126   for (auto MI : Selects) {
7127     Register DestReg = MI->getOperand(0).getReg();
7128     Register TrueReg = MI->getOperand(1).getReg();
7129     Register FalseReg = MI->getOperand(2).getReg();
7130 
7131     // If this Select we are generating is the opposite condition from
7132     // the jump we generated, then we have to swap the operands for the
7133     // PHI that is going to be generated.
7134     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7135       std::swap(TrueReg, FalseReg);
7136 
7137     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7138       TrueReg = RegRewriteTable[TrueReg].first;
7139 
7140     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7141       FalseReg = RegRewriteTable[FalseReg].second;
7142 
7143     DebugLoc DL = MI->getDebugLoc();
7144     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7145       .addReg(TrueReg).addMBB(TrueMBB)
7146       .addReg(FalseReg).addMBB(FalseMBB);
7147 
7148     // Add this PHI to the rewrite table.
7149     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7150   }
7151 
7152   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7153 }
7154 
7155 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7156 MachineBasicBlock *
7157 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7158                                   MachineBasicBlock *MBB) const {
7159   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7160   const SystemZInstrInfo *TII =
7161       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7162 
7163   unsigned CCValid = MI.getOperand(3).getImm();
7164   unsigned CCMask = MI.getOperand(4).getImm();
7165 
7166   // If we have a sequence of Select* pseudo instructions using the
7167   // same condition code value, we want to expand all of them into
7168   // a single pair of basic blocks using the same condition.
7169   SmallVector<MachineInstr*, 8> Selects;
7170   SmallVector<MachineInstr*, 8> DbgValues;
7171   Selects.push_back(&MI);
7172   unsigned Count = 0;
7173   for (MachineBasicBlock::iterator NextMIIt =
7174          std::next(MachineBasicBlock::iterator(MI));
7175        NextMIIt != MBB->end(); ++NextMIIt) {
7176     if (isSelectPseudo(*NextMIIt)) {
7177       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7178              "Bad CCValid operands since CC was not redefined.");
7179       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7180           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7181         Selects.push_back(&*NextMIIt);
7182         continue;
7183       }
7184       break;
7185     }
7186     if (NextMIIt->definesRegister(SystemZ::CC) ||
7187         NextMIIt->usesCustomInsertionHook())
7188       break;
7189     bool User = false;
7190     for (auto SelMI : Selects)
7191       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7192         User = true;
7193         break;
7194       }
7195     if (NextMIIt->isDebugInstr()) {
7196       if (User) {
7197         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7198         DbgValues.push_back(&*NextMIIt);
7199       }
7200     }
7201     else if (User || ++Count > 20)
7202       break;
7203   }
7204 
7205   MachineInstr *LastMI = Selects.back();
7206   bool CCKilled =
7207       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7208   MachineBasicBlock *StartMBB = MBB;
7209   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7210   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7211 
7212   // Unless CC was killed in the last Select instruction, mark it as
7213   // live-in to both FalseMBB and JoinMBB.
7214   if (!CCKilled) {
7215     FalseMBB->addLiveIn(SystemZ::CC);
7216     JoinMBB->addLiveIn(SystemZ::CC);
7217   }
7218 
7219   //  StartMBB:
7220   //   BRC CCMask, JoinMBB
7221   //   # fallthrough to FalseMBB
7222   MBB = StartMBB;
7223   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7224     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7225   MBB->addSuccessor(JoinMBB);
7226   MBB->addSuccessor(FalseMBB);
7227 
7228   //  FalseMBB:
7229   //   # fallthrough to JoinMBB
7230   MBB = FalseMBB;
7231   MBB->addSuccessor(JoinMBB);
7232 
7233   //  JoinMBB:
7234   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7235   //  ...
7236   MBB = JoinMBB;
7237   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7238   for (auto SelMI : Selects)
7239     SelMI->eraseFromParent();
7240 
7241   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7242   for (auto DbgMI : DbgValues)
7243     MBB->splice(InsertPos, StartMBB, DbgMI);
7244 
7245   return JoinMBB;
7246 }
7247 
7248 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7249 // StoreOpcode is the store to use and Invert says whether the store should
7250 // happen when the condition is false rather than true.  If a STORE ON
7251 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7252 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7253                                                         MachineBasicBlock *MBB,
7254                                                         unsigned StoreOpcode,
7255                                                         unsigned STOCOpcode,
7256                                                         bool Invert) const {
7257   const SystemZInstrInfo *TII =
7258       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7259 
7260   Register SrcReg = MI.getOperand(0).getReg();
7261   MachineOperand Base = MI.getOperand(1);
7262   int64_t Disp = MI.getOperand(2).getImm();
7263   Register IndexReg = MI.getOperand(3).getReg();
7264   unsigned CCValid = MI.getOperand(4).getImm();
7265   unsigned CCMask = MI.getOperand(5).getImm();
7266   DebugLoc DL = MI.getDebugLoc();
7267 
7268   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7269 
7270   // ISel pattern matching also adds a load memory operand of the same
7271   // address, so take special care to find the storing memory operand.
7272   MachineMemOperand *MMO = nullptr;
7273   for (auto *I : MI.memoperands())
7274     if (I->isStore()) {
7275       MMO = I;
7276       break;
7277     }
7278 
7279   // Use STOCOpcode if possible.  We could use different store patterns in
7280   // order to avoid matching the index register, but the performance trade-offs
7281   // might be more complicated in that case.
7282   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7283     if (Invert)
7284       CCMask ^= CCValid;
7285 
7286     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7287       .addReg(SrcReg)
7288       .add(Base)
7289       .addImm(Disp)
7290       .addImm(CCValid)
7291       .addImm(CCMask)
7292       .addMemOperand(MMO);
7293 
7294     MI.eraseFromParent();
7295     return MBB;
7296   }
7297 
7298   // Get the condition needed to branch around the store.
7299   if (!Invert)
7300     CCMask ^= CCValid;
7301 
7302   MachineBasicBlock *StartMBB = MBB;
7303   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7304   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7305 
7306   // Unless CC was killed in the CondStore instruction, mark it as
7307   // live-in to both FalseMBB and JoinMBB.
7308   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7309     FalseMBB->addLiveIn(SystemZ::CC);
7310     JoinMBB->addLiveIn(SystemZ::CC);
7311   }
7312 
7313   //  StartMBB:
7314   //   BRC CCMask, JoinMBB
7315   //   # fallthrough to FalseMBB
7316   MBB = StartMBB;
7317   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7318     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7319   MBB->addSuccessor(JoinMBB);
7320   MBB->addSuccessor(FalseMBB);
7321 
7322   //  FalseMBB:
7323   //   store %SrcReg, %Disp(%Index,%Base)
7324   //   # fallthrough to JoinMBB
7325   MBB = FalseMBB;
7326   BuildMI(MBB, DL, TII->get(StoreOpcode))
7327       .addReg(SrcReg)
7328       .add(Base)
7329       .addImm(Disp)
7330       .addReg(IndexReg)
7331       .addMemOperand(MMO);
7332   MBB->addSuccessor(JoinMBB);
7333 
7334   MI.eraseFromParent();
7335   return JoinMBB;
7336 }
7337 
7338 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7339 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7340 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7341 // BitSize is the width of the field in bits, or 0 if this is a partword
7342 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7343 // is one of the operands.  Invert says whether the field should be
7344 // inverted after performing BinOpcode (e.g. for NAND).
7345 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7346     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7347     unsigned BitSize, bool Invert) const {
7348   MachineFunction &MF = *MBB->getParent();
7349   const SystemZInstrInfo *TII =
7350       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7351   MachineRegisterInfo &MRI = MF.getRegInfo();
7352   bool IsSubWord = (BitSize < 32);
7353 
7354   // Extract the operands.  Base can be a register or a frame index.
7355   // Src2 can be a register or immediate.
7356   Register Dest = MI.getOperand(0).getReg();
7357   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7358   int64_t Disp = MI.getOperand(2).getImm();
7359   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7360   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7361   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7362   DebugLoc DL = MI.getDebugLoc();
7363   if (IsSubWord)
7364     BitSize = MI.getOperand(6).getImm();
7365 
7366   // Subword operations use 32-bit registers.
7367   const TargetRegisterClass *RC = (BitSize <= 32 ?
7368                                    &SystemZ::GR32BitRegClass :
7369                                    &SystemZ::GR64BitRegClass);
7370   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7371   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7372 
7373   // Get the right opcodes for the displacement.
7374   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7375   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7376   assert(LOpcode && CSOpcode && "Displacement out of range");
7377 
7378   // Create virtual registers for temporary results.
7379   Register OrigVal       = MRI.createVirtualRegister(RC);
7380   Register OldVal        = MRI.createVirtualRegister(RC);
7381   Register NewVal        = (BinOpcode || IsSubWord ?
7382                             MRI.createVirtualRegister(RC) : Src2.getReg());
7383   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7384   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7385 
7386   // Insert a basic block for the main loop.
7387   MachineBasicBlock *StartMBB = MBB;
7388   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7389   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7390 
7391   //  StartMBB:
7392   //   ...
7393   //   %OrigVal = L Disp(%Base)
7394   //   # fall through to LoopMMB
7395   MBB = StartMBB;
7396   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7397   MBB->addSuccessor(LoopMBB);
7398 
7399   //  LoopMBB:
7400   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7401   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7402   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7403   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7404   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7405   //   JNE LoopMBB
7406   //   # fall through to DoneMMB
7407   MBB = LoopMBB;
7408   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7409     .addReg(OrigVal).addMBB(StartMBB)
7410     .addReg(Dest).addMBB(LoopMBB);
7411   if (IsSubWord)
7412     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7413       .addReg(OldVal).addReg(BitShift).addImm(0);
7414   if (Invert) {
7415     // Perform the operation normally and then invert every bit of the field.
7416     Register Tmp = MRI.createVirtualRegister(RC);
7417     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7418     if (BitSize <= 32)
7419       // XILF with the upper BitSize bits set.
7420       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7421         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7422     else {
7423       // Use LCGR and add -1 to the result, which is more compact than
7424       // an XILF, XILH pair.
7425       Register Tmp2 = MRI.createVirtualRegister(RC);
7426       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7427       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7428         .addReg(Tmp2).addImm(-1);
7429     }
7430   } else if (BinOpcode)
7431     // A simply binary operation.
7432     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7433         .addReg(RotatedOldVal)
7434         .add(Src2);
7435   else if (IsSubWord)
7436     // Use RISBG to rotate Src2 into position and use it to replace the
7437     // field in RotatedOldVal.
7438     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7439       .addReg(RotatedOldVal).addReg(Src2.getReg())
7440       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7441   if (IsSubWord)
7442     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7443       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7444   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7445       .addReg(OldVal)
7446       .addReg(NewVal)
7447       .add(Base)
7448       .addImm(Disp);
7449   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7450     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7451   MBB->addSuccessor(LoopMBB);
7452   MBB->addSuccessor(DoneMBB);
7453 
7454   MI.eraseFromParent();
7455   return DoneMBB;
7456 }
7457 
7458 // Implement EmitInstrWithCustomInserter for pseudo
7459 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7460 // instruction that should be used to compare the current field with the
7461 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7462 // for when the current field should be kept.  BitSize is the width of
7463 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7464 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7465     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7466     unsigned KeepOldMask, unsigned BitSize) const {
7467   MachineFunction &MF = *MBB->getParent();
7468   const SystemZInstrInfo *TII =
7469       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7470   MachineRegisterInfo &MRI = MF.getRegInfo();
7471   bool IsSubWord = (BitSize < 32);
7472 
7473   // Extract the operands.  Base can be a register or a frame index.
7474   Register Dest = MI.getOperand(0).getReg();
7475   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7476   int64_t Disp = MI.getOperand(2).getImm();
7477   Register Src2 = MI.getOperand(3).getReg();
7478   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7479   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7480   DebugLoc DL = MI.getDebugLoc();
7481   if (IsSubWord)
7482     BitSize = MI.getOperand(6).getImm();
7483 
7484   // Subword operations use 32-bit registers.
7485   const TargetRegisterClass *RC = (BitSize <= 32 ?
7486                                    &SystemZ::GR32BitRegClass :
7487                                    &SystemZ::GR64BitRegClass);
7488   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7489   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7490 
7491   // Get the right opcodes for the displacement.
7492   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7493   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7494   assert(LOpcode && CSOpcode && "Displacement out of range");
7495 
7496   // Create virtual registers for temporary results.
7497   Register OrigVal       = MRI.createVirtualRegister(RC);
7498   Register OldVal        = MRI.createVirtualRegister(RC);
7499   Register NewVal        = MRI.createVirtualRegister(RC);
7500   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7501   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7502   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7503 
7504   // Insert 3 basic blocks for the loop.
7505   MachineBasicBlock *StartMBB  = MBB;
7506   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7507   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7508   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7509   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7510 
7511   //  StartMBB:
7512   //   ...
7513   //   %OrigVal     = L Disp(%Base)
7514   //   # fall through to LoopMMB
7515   MBB = StartMBB;
7516   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7517   MBB->addSuccessor(LoopMBB);
7518 
7519   //  LoopMBB:
7520   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7521   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7522   //   CompareOpcode %RotatedOldVal, %Src2
7523   //   BRC KeepOldMask, UpdateMBB
7524   MBB = LoopMBB;
7525   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7526     .addReg(OrigVal).addMBB(StartMBB)
7527     .addReg(Dest).addMBB(UpdateMBB);
7528   if (IsSubWord)
7529     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7530       .addReg(OldVal).addReg(BitShift).addImm(0);
7531   BuildMI(MBB, DL, TII->get(CompareOpcode))
7532     .addReg(RotatedOldVal).addReg(Src2);
7533   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7534     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7535   MBB->addSuccessor(UpdateMBB);
7536   MBB->addSuccessor(UseAltMBB);
7537 
7538   //  UseAltMBB:
7539   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7540   //   # fall through to UpdateMMB
7541   MBB = UseAltMBB;
7542   if (IsSubWord)
7543     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7544       .addReg(RotatedOldVal).addReg(Src2)
7545       .addImm(32).addImm(31 + BitSize).addImm(0);
7546   MBB->addSuccessor(UpdateMBB);
7547 
7548   //  UpdateMBB:
7549   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7550   //                        [ %RotatedAltVal, UseAltMBB ]
7551   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7552   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7553   //   JNE LoopMBB
7554   //   # fall through to DoneMMB
7555   MBB = UpdateMBB;
7556   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7557     .addReg(RotatedOldVal).addMBB(LoopMBB)
7558     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7559   if (IsSubWord)
7560     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7561       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7562   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7563       .addReg(OldVal)
7564       .addReg(NewVal)
7565       .add(Base)
7566       .addImm(Disp);
7567   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7568     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7569   MBB->addSuccessor(LoopMBB);
7570   MBB->addSuccessor(DoneMBB);
7571 
7572   MI.eraseFromParent();
7573   return DoneMBB;
7574 }
7575 
7576 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7577 // instruction MI.
7578 MachineBasicBlock *
7579 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7580                                           MachineBasicBlock *MBB) const {
7581 
7582   MachineFunction &MF = *MBB->getParent();
7583   const SystemZInstrInfo *TII =
7584       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7585   MachineRegisterInfo &MRI = MF.getRegInfo();
7586 
7587   // Extract the operands.  Base can be a register or a frame index.
7588   Register Dest = MI.getOperand(0).getReg();
7589   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7590   int64_t Disp = MI.getOperand(2).getImm();
7591   Register OrigCmpVal = MI.getOperand(3).getReg();
7592   Register OrigSwapVal = MI.getOperand(4).getReg();
7593   Register BitShift = MI.getOperand(5).getReg();
7594   Register NegBitShift = MI.getOperand(6).getReg();
7595   int64_t BitSize = MI.getOperand(7).getImm();
7596   DebugLoc DL = MI.getDebugLoc();
7597 
7598   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7599 
7600   // Get the right opcodes for the displacement.
7601   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7602   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7603   assert(LOpcode && CSOpcode && "Displacement out of range");
7604 
7605   // Create virtual registers for temporary results.
7606   Register OrigOldVal = MRI.createVirtualRegister(RC);
7607   Register OldVal = MRI.createVirtualRegister(RC);
7608   Register CmpVal = MRI.createVirtualRegister(RC);
7609   Register SwapVal = MRI.createVirtualRegister(RC);
7610   Register StoreVal = MRI.createVirtualRegister(RC);
7611   Register RetryOldVal = MRI.createVirtualRegister(RC);
7612   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7613   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7614 
7615   // Insert 2 basic blocks for the loop.
7616   MachineBasicBlock *StartMBB = MBB;
7617   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7618   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7619   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7620 
7621   //  StartMBB:
7622   //   ...
7623   //   %OrigOldVal     = L Disp(%Base)
7624   //   # fall through to LoopMMB
7625   MBB = StartMBB;
7626   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7627       .add(Base)
7628       .addImm(Disp)
7629       .addReg(0);
7630   MBB->addSuccessor(LoopMBB);
7631 
7632   //  LoopMBB:
7633   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7634   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7635   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7636   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7637   //                      ^^ The low BitSize bits contain the field
7638   //                         of interest.
7639   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7640   //                      ^^ Replace the upper 32-BitSize bits of the
7641   //                         comparison value with those that we loaded,
7642   //                         so that we can use a full word comparison.
7643   //   CR %Dest, %RetryCmpVal
7644   //   JNE DoneMBB
7645   //   # Fall through to SetMBB
7646   MBB = LoopMBB;
7647   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7648     .addReg(OrigOldVal).addMBB(StartMBB)
7649     .addReg(RetryOldVal).addMBB(SetMBB);
7650   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7651     .addReg(OrigCmpVal).addMBB(StartMBB)
7652     .addReg(RetryCmpVal).addMBB(SetMBB);
7653   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7654     .addReg(OrigSwapVal).addMBB(StartMBB)
7655     .addReg(RetrySwapVal).addMBB(SetMBB);
7656   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7657     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7658   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7659     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7660   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7661     .addReg(Dest).addReg(RetryCmpVal);
7662   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7663     .addImm(SystemZ::CCMASK_ICMP)
7664     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7665   MBB->addSuccessor(DoneMBB);
7666   MBB->addSuccessor(SetMBB);
7667 
7668   //  SetMBB:
7669   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7670   //                      ^^ Replace the upper 32-BitSize bits of the new
7671   //                         value with those that we loaded.
7672   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7673   //                      ^^ Rotate the new field to its proper position.
7674   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7675   //   JNE LoopMBB
7676   //   # fall through to ExitMMB
7677   MBB = SetMBB;
7678   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7679     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7680   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7681     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7682   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7683       .addReg(OldVal)
7684       .addReg(StoreVal)
7685       .add(Base)
7686       .addImm(Disp);
7687   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7688     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7689   MBB->addSuccessor(LoopMBB);
7690   MBB->addSuccessor(DoneMBB);
7691 
7692   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7693   // to the block after the loop.  At this point, CC may have been defined
7694   // either by the CR in LoopMBB or by the CS in SetMBB.
7695   if (!MI.registerDefIsDead(SystemZ::CC))
7696     DoneMBB->addLiveIn(SystemZ::CC);
7697 
7698   MI.eraseFromParent();
7699   return DoneMBB;
7700 }
7701 
7702 // Emit a move from two GR64s to a GR128.
7703 MachineBasicBlock *
7704 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7705                                    MachineBasicBlock *MBB) const {
7706   MachineFunction &MF = *MBB->getParent();
7707   const SystemZInstrInfo *TII =
7708       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7709   MachineRegisterInfo &MRI = MF.getRegInfo();
7710   DebugLoc DL = MI.getDebugLoc();
7711 
7712   Register Dest = MI.getOperand(0).getReg();
7713   Register Hi = MI.getOperand(1).getReg();
7714   Register Lo = MI.getOperand(2).getReg();
7715   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7716   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7717 
7718   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7719   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7720     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7721   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7722     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7723 
7724   MI.eraseFromParent();
7725   return MBB;
7726 }
7727 
7728 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7729 // if the high register of the GR128 value must be cleared or false if
7730 // it's "don't care".
7731 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7732                                                      MachineBasicBlock *MBB,
7733                                                      bool ClearEven) const {
7734   MachineFunction &MF = *MBB->getParent();
7735   const SystemZInstrInfo *TII =
7736       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7737   MachineRegisterInfo &MRI = MF.getRegInfo();
7738   DebugLoc DL = MI.getDebugLoc();
7739 
7740   Register Dest = MI.getOperand(0).getReg();
7741   Register Src = MI.getOperand(1).getReg();
7742   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7743 
7744   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7745   if (ClearEven) {
7746     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7747     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7748 
7749     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7750       .addImm(0);
7751     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7752       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7753     In128 = NewIn128;
7754   }
7755   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7756     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7757 
7758   MI.eraseFromParent();
7759   return MBB;
7760 }
7761 
7762 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7763     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7764   MachineFunction &MF = *MBB->getParent();
7765   const SystemZInstrInfo *TII =
7766       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7767   MachineRegisterInfo &MRI = MF.getRegInfo();
7768   DebugLoc DL = MI.getDebugLoc();
7769 
7770   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7771   uint64_t DestDisp = MI.getOperand(1).getImm();
7772   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7773   uint64_t SrcDisp = MI.getOperand(3).getImm();
7774   uint64_t Length = MI.getOperand(4).getImm();
7775 
7776   // When generating more than one CLC, all but the last will need to
7777   // branch to the end when a difference is found.
7778   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7779                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7780 
7781   // Check for the loop form, in which operand 5 is the trip count.
7782   if (MI.getNumExplicitOperands() > 5) {
7783     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7784 
7785     Register StartCountReg = MI.getOperand(5).getReg();
7786     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7787     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7788                               forceReg(MI, DestBase, TII));
7789 
7790     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7791     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7792     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7793                             MRI.createVirtualRegister(RC));
7794     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7795     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7796                             MRI.createVirtualRegister(RC));
7797 
7798     RC = &SystemZ::GR64BitRegClass;
7799     Register ThisCountReg = MRI.createVirtualRegister(RC);
7800     Register NextCountReg = MRI.createVirtualRegister(RC);
7801 
7802     MachineBasicBlock *StartMBB = MBB;
7803     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7804     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7805     MachineBasicBlock *NextMBB =
7806         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7807 
7808     //  StartMBB:
7809     //   # fall through to LoopMMB
7810     MBB->addSuccessor(LoopMBB);
7811 
7812     //  LoopMBB:
7813     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7814     //                      [ %NextDestReg, NextMBB ]
7815     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7816     //                     [ %NextSrcReg, NextMBB ]
7817     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7818     //                       [ %NextCountReg, NextMBB ]
7819     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7820     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7821     //   ( JLH EndMBB )
7822     //
7823     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7824     MBB = LoopMBB;
7825 
7826     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7827       .addReg(StartDestReg).addMBB(StartMBB)
7828       .addReg(NextDestReg).addMBB(NextMBB);
7829     if (!HaveSingleBase)
7830       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7831         .addReg(StartSrcReg).addMBB(StartMBB)
7832         .addReg(NextSrcReg).addMBB(NextMBB);
7833     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7834       .addReg(StartCountReg).addMBB(StartMBB)
7835       .addReg(NextCountReg).addMBB(NextMBB);
7836     if (Opcode == SystemZ::MVC)
7837       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7838         .addImm(SystemZ::PFD_WRITE)
7839         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7840     BuildMI(MBB, DL, TII->get(Opcode))
7841       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7842       .addReg(ThisSrcReg).addImm(SrcDisp);
7843     if (EndMBB) {
7844       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7845         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7846         .addMBB(EndMBB);
7847       MBB->addSuccessor(EndMBB);
7848       MBB->addSuccessor(NextMBB);
7849     }
7850 
7851     // NextMBB:
7852     //   %NextDestReg = LA 256(%ThisDestReg)
7853     //   %NextSrcReg = LA 256(%ThisSrcReg)
7854     //   %NextCountReg = AGHI %ThisCountReg, -1
7855     //   CGHI %NextCountReg, 0
7856     //   JLH LoopMBB
7857     //   # fall through to DoneMMB
7858     //
7859     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7860     MBB = NextMBB;
7861 
7862     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7863       .addReg(ThisDestReg).addImm(256).addReg(0);
7864     if (!HaveSingleBase)
7865       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7866         .addReg(ThisSrcReg).addImm(256).addReg(0);
7867     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7868       .addReg(ThisCountReg).addImm(-1);
7869     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7870       .addReg(NextCountReg).addImm(0);
7871     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7872       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7873       .addMBB(LoopMBB);
7874     MBB->addSuccessor(LoopMBB);
7875     MBB->addSuccessor(DoneMBB);
7876 
7877     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7878     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7879     Length &= 255;
7880     if (EndMBB && !Length)
7881       // If the loop handled the whole CLC range, DoneMBB will be empty with
7882       // CC live-through into EndMBB, so add it as live-in.
7883       DoneMBB->addLiveIn(SystemZ::CC);
7884     MBB = DoneMBB;
7885   }
7886   // Handle any remaining bytes with straight-line code.
7887   while (Length > 0) {
7888     uint64_t ThisLength = std::min(Length, uint64_t(256));
7889     // The previous iteration might have created out-of-range displacements.
7890     // Apply them using LAY if so.
7891     if (!isUInt<12>(DestDisp)) {
7892       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7893       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7894           .add(DestBase)
7895           .addImm(DestDisp)
7896           .addReg(0);
7897       DestBase = MachineOperand::CreateReg(Reg, false);
7898       DestDisp = 0;
7899     }
7900     if (!isUInt<12>(SrcDisp)) {
7901       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7902       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7903           .add(SrcBase)
7904           .addImm(SrcDisp)
7905           .addReg(0);
7906       SrcBase = MachineOperand::CreateReg(Reg, false);
7907       SrcDisp = 0;
7908     }
7909     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7910         .add(DestBase)
7911         .addImm(DestDisp)
7912         .addImm(ThisLength)
7913         .add(SrcBase)
7914         .addImm(SrcDisp)
7915         .setMemRefs(MI.memoperands());
7916     DestDisp += ThisLength;
7917     SrcDisp += ThisLength;
7918     Length -= ThisLength;
7919     // If there's another CLC to go, branch to the end if a difference
7920     // was found.
7921     if (EndMBB && Length > 0) {
7922       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7923       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7924         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7925         .addMBB(EndMBB);
7926       MBB->addSuccessor(EndMBB);
7927       MBB->addSuccessor(NextMBB);
7928       MBB = NextMBB;
7929     }
7930   }
7931   if (EndMBB) {
7932     MBB->addSuccessor(EndMBB);
7933     MBB = EndMBB;
7934     MBB->addLiveIn(SystemZ::CC);
7935   }
7936 
7937   MI.eraseFromParent();
7938   return MBB;
7939 }
7940 
7941 // Decompose string pseudo-instruction MI into a loop that continually performs
7942 // Opcode until CC != 3.
7943 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7944     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7945   MachineFunction &MF = *MBB->getParent();
7946   const SystemZInstrInfo *TII =
7947       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7948   MachineRegisterInfo &MRI = MF.getRegInfo();
7949   DebugLoc DL = MI.getDebugLoc();
7950 
7951   uint64_t End1Reg = MI.getOperand(0).getReg();
7952   uint64_t Start1Reg = MI.getOperand(1).getReg();
7953   uint64_t Start2Reg = MI.getOperand(2).getReg();
7954   uint64_t CharReg = MI.getOperand(3).getReg();
7955 
7956   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7957   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7958   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7959   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7960 
7961   MachineBasicBlock *StartMBB = MBB;
7962   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7963   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7964 
7965   //  StartMBB:
7966   //   # fall through to LoopMMB
7967   MBB->addSuccessor(LoopMBB);
7968 
7969   //  LoopMBB:
7970   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7971   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7972   //   R0L = %CharReg
7973   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7974   //   JO LoopMBB
7975   //   # fall through to DoneMMB
7976   //
7977   // The load of R0L can be hoisted by post-RA LICM.
7978   MBB = LoopMBB;
7979 
7980   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7981     .addReg(Start1Reg).addMBB(StartMBB)
7982     .addReg(End1Reg).addMBB(LoopMBB);
7983   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7984     .addReg(Start2Reg).addMBB(StartMBB)
7985     .addReg(End2Reg).addMBB(LoopMBB);
7986   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7987   BuildMI(MBB, DL, TII->get(Opcode))
7988     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7989     .addReg(This1Reg).addReg(This2Reg);
7990   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7991     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7992   MBB->addSuccessor(LoopMBB);
7993   MBB->addSuccessor(DoneMBB);
7994 
7995   DoneMBB->addLiveIn(SystemZ::CC);
7996 
7997   MI.eraseFromParent();
7998   return DoneMBB;
7999 }
8000 
8001 // Update TBEGIN instruction with final opcode and register clobbers.
8002 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8003     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8004     bool NoFloat) const {
8005   MachineFunction &MF = *MBB->getParent();
8006   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8007   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8008 
8009   // Update opcode.
8010   MI.setDesc(TII->get(Opcode));
8011 
8012   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8013   // Make sure to add the corresponding GRSM bits if they are missing.
8014   uint64_t Control = MI.getOperand(2).getImm();
8015   static const unsigned GPRControlBit[16] = {
8016     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8017     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8018   };
8019   Control |= GPRControlBit[15];
8020   if (TFI->hasFP(MF))
8021     Control |= GPRControlBit[11];
8022   MI.getOperand(2).setImm(Control);
8023 
8024   // Add GPR clobbers.
8025   for (int I = 0; I < 16; I++) {
8026     if ((Control & GPRControlBit[I]) == 0) {
8027       unsigned Reg = SystemZMC::GR64Regs[I];
8028       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8029     }
8030   }
8031 
8032   // Add FPR/VR clobbers.
8033   if (!NoFloat && (Control & 4) != 0) {
8034     if (Subtarget.hasVector()) {
8035       for (int I = 0; I < 32; I++) {
8036         unsigned Reg = SystemZMC::VR128Regs[I];
8037         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8038       }
8039     } else {
8040       for (int I = 0; I < 16; I++) {
8041         unsigned Reg = SystemZMC::FP64Regs[I];
8042         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8043       }
8044     }
8045   }
8046 
8047   return MBB;
8048 }
8049 
8050 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8051     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8052   MachineFunction &MF = *MBB->getParent();
8053   MachineRegisterInfo *MRI = &MF.getRegInfo();
8054   const SystemZInstrInfo *TII =
8055       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8056   DebugLoc DL = MI.getDebugLoc();
8057 
8058   Register SrcReg = MI.getOperand(0).getReg();
8059 
8060   // Create new virtual register of the same class as source.
8061   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8062   Register DstReg = MRI->createVirtualRegister(RC);
8063 
8064   // Replace pseudo with a normal load-and-test that models the def as
8065   // well.
8066   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8067     .addReg(SrcReg)
8068     .setMIFlags(MI.getFlags());
8069   MI.eraseFromParent();
8070 
8071   return MBB;
8072 }
8073 
8074 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8075     MachineInstr &MI, MachineBasicBlock *MBB) const {
8076   MachineFunction &MF = *MBB->getParent();
8077   MachineRegisterInfo *MRI = &MF.getRegInfo();
8078   const SystemZInstrInfo *TII =
8079       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8080   DebugLoc DL = MI.getDebugLoc();
8081   const unsigned ProbeSize = getStackProbeSize(MF);
8082   Register DstReg = MI.getOperand(0).getReg();
8083   Register SizeReg = MI.getOperand(2).getReg();
8084 
8085   MachineBasicBlock *StartMBB = MBB;
8086   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8087   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8088   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8089   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8090   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8091 
8092   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8093     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8094 
8095   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8096   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8097 
8098   //  LoopTestMBB
8099   //  BRC TailTestMBB
8100   //  # fallthrough to LoopBodyMBB
8101   StartMBB->addSuccessor(LoopTestMBB);
8102   MBB = LoopTestMBB;
8103   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8104     .addReg(SizeReg)
8105     .addMBB(StartMBB)
8106     .addReg(IncReg)
8107     .addMBB(LoopBodyMBB);
8108   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8109     .addReg(PHIReg)
8110     .addImm(ProbeSize);
8111   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8112     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8113     .addMBB(TailTestMBB);
8114   MBB->addSuccessor(LoopBodyMBB);
8115   MBB->addSuccessor(TailTestMBB);
8116 
8117   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8118   //  J LoopTestMBB
8119   MBB = LoopBodyMBB;
8120   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8121     .addReg(PHIReg)
8122     .addImm(ProbeSize);
8123   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8124     .addReg(SystemZ::R15D)
8125     .addImm(ProbeSize);
8126   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8127     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8128     .setMemRefs(VolLdMMO);
8129   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8130   MBB->addSuccessor(LoopTestMBB);
8131 
8132   //  TailTestMBB
8133   //  BRC DoneMBB
8134   //  # fallthrough to TailMBB
8135   MBB = TailTestMBB;
8136   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8137     .addReg(PHIReg)
8138     .addImm(0);
8139   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8140     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8141     .addMBB(DoneMBB);
8142   MBB->addSuccessor(TailMBB);
8143   MBB->addSuccessor(DoneMBB);
8144 
8145   //  TailMBB
8146   //  # fallthrough to DoneMBB
8147   MBB = TailMBB;
8148   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8149     .addReg(SystemZ::R15D)
8150     .addReg(PHIReg);
8151   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8152     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8153     .setMemRefs(VolLdMMO);
8154   MBB->addSuccessor(DoneMBB);
8155 
8156   //  DoneMBB
8157   MBB = DoneMBB;
8158   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8159     .addReg(SystemZ::R15D);
8160 
8161   MI.eraseFromParent();
8162   return DoneMBB;
8163 }
8164 
8165 SDValue SystemZTargetLowering::
8166 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8167   MachineFunction &MF = DAG.getMachineFunction();
8168   auto *TFL =
8169       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
8170   SDLoc DL(SP);
8171   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8172                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8173 }
8174 
8175 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8176     MachineInstr &MI, MachineBasicBlock *MBB) const {
8177   switch (MI.getOpcode()) {
8178   case SystemZ::Select32:
8179   case SystemZ::Select64:
8180   case SystemZ::SelectF32:
8181   case SystemZ::SelectF64:
8182   case SystemZ::SelectF128:
8183   case SystemZ::SelectVR32:
8184   case SystemZ::SelectVR64:
8185   case SystemZ::SelectVR128:
8186     return emitSelect(MI, MBB);
8187 
8188   case SystemZ::CondStore8Mux:
8189     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8190   case SystemZ::CondStore8MuxInv:
8191     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8192   case SystemZ::CondStore16Mux:
8193     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8194   case SystemZ::CondStore16MuxInv:
8195     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8196   case SystemZ::CondStore32Mux:
8197     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8198   case SystemZ::CondStore32MuxInv:
8199     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8200   case SystemZ::CondStore8:
8201     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8202   case SystemZ::CondStore8Inv:
8203     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8204   case SystemZ::CondStore16:
8205     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8206   case SystemZ::CondStore16Inv:
8207     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8208   case SystemZ::CondStore32:
8209     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8210   case SystemZ::CondStore32Inv:
8211     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8212   case SystemZ::CondStore64:
8213     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8214   case SystemZ::CondStore64Inv:
8215     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8216   case SystemZ::CondStoreF32:
8217     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8218   case SystemZ::CondStoreF32Inv:
8219     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8220   case SystemZ::CondStoreF64:
8221     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8222   case SystemZ::CondStoreF64Inv:
8223     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8224 
8225   case SystemZ::PAIR128:
8226     return emitPair128(MI, MBB);
8227   case SystemZ::AEXT128:
8228     return emitExt128(MI, MBB, false);
8229   case SystemZ::ZEXT128:
8230     return emitExt128(MI, MBB, true);
8231 
8232   case SystemZ::ATOMIC_SWAPW:
8233     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8234   case SystemZ::ATOMIC_SWAP_32:
8235     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8236   case SystemZ::ATOMIC_SWAP_64:
8237     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8238 
8239   case SystemZ::ATOMIC_LOADW_AR:
8240     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8241   case SystemZ::ATOMIC_LOADW_AFI:
8242     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8243   case SystemZ::ATOMIC_LOAD_AR:
8244     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8245   case SystemZ::ATOMIC_LOAD_AHI:
8246     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8247   case SystemZ::ATOMIC_LOAD_AFI:
8248     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8249   case SystemZ::ATOMIC_LOAD_AGR:
8250     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8251   case SystemZ::ATOMIC_LOAD_AGHI:
8252     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8253   case SystemZ::ATOMIC_LOAD_AGFI:
8254     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8255 
8256   case SystemZ::ATOMIC_LOADW_SR:
8257     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8258   case SystemZ::ATOMIC_LOAD_SR:
8259     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8260   case SystemZ::ATOMIC_LOAD_SGR:
8261     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8262 
8263   case SystemZ::ATOMIC_LOADW_NR:
8264     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8265   case SystemZ::ATOMIC_LOADW_NILH:
8266     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8267   case SystemZ::ATOMIC_LOAD_NR:
8268     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8269   case SystemZ::ATOMIC_LOAD_NILL:
8270     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8271   case SystemZ::ATOMIC_LOAD_NILH:
8272     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8273   case SystemZ::ATOMIC_LOAD_NILF:
8274     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8275   case SystemZ::ATOMIC_LOAD_NGR:
8276     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8277   case SystemZ::ATOMIC_LOAD_NILL64:
8278     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8279   case SystemZ::ATOMIC_LOAD_NILH64:
8280     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8281   case SystemZ::ATOMIC_LOAD_NIHL64:
8282     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8283   case SystemZ::ATOMIC_LOAD_NIHH64:
8284     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8285   case SystemZ::ATOMIC_LOAD_NILF64:
8286     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8287   case SystemZ::ATOMIC_LOAD_NIHF64:
8288     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8289 
8290   case SystemZ::ATOMIC_LOADW_OR:
8291     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8292   case SystemZ::ATOMIC_LOADW_OILH:
8293     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8294   case SystemZ::ATOMIC_LOAD_OR:
8295     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8296   case SystemZ::ATOMIC_LOAD_OILL:
8297     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8298   case SystemZ::ATOMIC_LOAD_OILH:
8299     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8300   case SystemZ::ATOMIC_LOAD_OILF:
8301     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8302   case SystemZ::ATOMIC_LOAD_OGR:
8303     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8304   case SystemZ::ATOMIC_LOAD_OILL64:
8305     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8306   case SystemZ::ATOMIC_LOAD_OILH64:
8307     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8308   case SystemZ::ATOMIC_LOAD_OIHL64:
8309     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8310   case SystemZ::ATOMIC_LOAD_OIHH64:
8311     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8312   case SystemZ::ATOMIC_LOAD_OILF64:
8313     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8314   case SystemZ::ATOMIC_LOAD_OIHF64:
8315     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8316 
8317   case SystemZ::ATOMIC_LOADW_XR:
8318     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8319   case SystemZ::ATOMIC_LOADW_XILF:
8320     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8321   case SystemZ::ATOMIC_LOAD_XR:
8322     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8323   case SystemZ::ATOMIC_LOAD_XILF:
8324     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8325   case SystemZ::ATOMIC_LOAD_XGR:
8326     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8327   case SystemZ::ATOMIC_LOAD_XILF64:
8328     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8329   case SystemZ::ATOMIC_LOAD_XIHF64:
8330     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8331 
8332   case SystemZ::ATOMIC_LOADW_NRi:
8333     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8334   case SystemZ::ATOMIC_LOADW_NILHi:
8335     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8336   case SystemZ::ATOMIC_LOAD_NRi:
8337     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8338   case SystemZ::ATOMIC_LOAD_NILLi:
8339     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8340   case SystemZ::ATOMIC_LOAD_NILHi:
8341     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8342   case SystemZ::ATOMIC_LOAD_NILFi:
8343     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8344   case SystemZ::ATOMIC_LOAD_NGRi:
8345     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8346   case SystemZ::ATOMIC_LOAD_NILL64i:
8347     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8348   case SystemZ::ATOMIC_LOAD_NILH64i:
8349     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8350   case SystemZ::ATOMIC_LOAD_NIHL64i:
8351     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8352   case SystemZ::ATOMIC_LOAD_NIHH64i:
8353     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8354   case SystemZ::ATOMIC_LOAD_NILF64i:
8355     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8356   case SystemZ::ATOMIC_LOAD_NIHF64i:
8357     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8358 
8359   case SystemZ::ATOMIC_LOADW_MIN:
8360     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8361                                 SystemZ::CCMASK_CMP_LE, 0);
8362   case SystemZ::ATOMIC_LOAD_MIN_32:
8363     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8364                                 SystemZ::CCMASK_CMP_LE, 32);
8365   case SystemZ::ATOMIC_LOAD_MIN_64:
8366     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8367                                 SystemZ::CCMASK_CMP_LE, 64);
8368 
8369   case SystemZ::ATOMIC_LOADW_MAX:
8370     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8371                                 SystemZ::CCMASK_CMP_GE, 0);
8372   case SystemZ::ATOMIC_LOAD_MAX_32:
8373     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8374                                 SystemZ::CCMASK_CMP_GE, 32);
8375   case SystemZ::ATOMIC_LOAD_MAX_64:
8376     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8377                                 SystemZ::CCMASK_CMP_GE, 64);
8378 
8379   case SystemZ::ATOMIC_LOADW_UMIN:
8380     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8381                                 SystemZ::CCMASK_CMP_LE, 0);
8382   case SystemZ::ATOMIC_LOAD_UMIN_32:
8383     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8384                                 SystemZ::CCMASK_CMP_LE, 32);
8385   case SystemZ::ATOMIC_LOAD_UMIN_64:
8386     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8387                                 SystemZ::CCMASK_CMP_LE, 64);
8388 
8389   case SystemZ::ATOMIC_LOADW_UMAX:
8390     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8391                                 SystemZ::CCMASK_CMP_GE, 0);
8392   case SystemZ::ATOMIC_LOAD_UMAX_32:
8393     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8394                                 SystemZ::CCMASK_CMP_GE, 32);
8395   case SystemZ::ATOMIC_LOAD_UMAX_64:
8396     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8397                                 SystemZ::CCMASK_CMP_GE, 64);
8398 
8399   case SystemZ::ATOMIC_CMP_SWAPW:
8400     return emitAtomicCmpSwapW(MI, MBB);
8401   case SystemZ::MVCSequence:
8402   case SystemZ::MVCLoop:
8403     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8404   case SystemZ::NCSequence:
8405   case SystemZ::NCLoop:
8406     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8407   case SystemZ::OCSequence:
8408   case SystemZ::OCLoop:
8409     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8410   case SystemZ::XCSequence:
8411   case SystemZ::XCLoop:
8412     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8413   case SystemZ::CLCSequence:
8414   case SystemZ::CLCLoop:
8415     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8416   case SystemZ::CLSTLoop:
8417     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8418   case SystemZ::MVSTLoop:
8419     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8420   case SystemZ::SRSTLoop:
8421     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8422   case SystemZ::TBEGIN:
8423     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8424   case SystemZ::TBEGIN_nofloat:
8425     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8426   case SystemZ::TBEGINC:
8427     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8428   case SystemZ::LTEBRCompare_VecPseudo:
8429     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8430   case SystemZ::LTDBRCompare_VecPseudo:
8431     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8432   case SystemZ::LTXBRCompare_VecPseudo:
8433     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8434 
8435   case SystemZ::PROBED_ALLOCA:
8436     return emitProbedAlloca(MI, MBB);
8437 
8438   case TargetOpcode::STACKMAP:
8439   case TargetOpcode::PATCHPOINT:
8440     return emitPatchPoint(MI, MBB);
8441 
8442   default:
8443     llvm_unreachable("Unexpected instr type to insert");
8444   }
8445 }
8446 
8447 // This is only used by the isel schedulers, and is needed only to prevent
8448 // compiler from crashing when list-ilp is used.
8449 const TargetRegisterClass *
8450 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8451   if (VT == MVT::Untyped)
8452     return &SystemZ::ADDR128BitRegClass;
8453   return TargetLowering::getRepRegClassFor(VT);
8454 }
8455