1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 setOperationAction(ISD::ABS, VT, Legal); 168 169 // Expand individual DIV and REMs into DIVREMs. 170 setOperationAction(ISD::SDIV, VT, Expand); 171 setOperationAction(ISD::UDIV, VT, Expand); 172 setOperationAction(ISD::SREM, VT, Expand); 173 setOperationAction(ISD::UREM, VT, Expand); 174 setOperationAction(ISD::SDIVREM, VT, Custom); 175 setOperationAction(ISD::UDIVREM, VT, Custom); 176 177 // Support addition/subtraction with overflow. 178 setOperationAction(ISD::SADDO, VT, Custom); 179 setOperationAction(ISD::SSUBO, VT, Custom); 180 181 // Support addition/subtraction with carry. 182 setOperationAction(ISD::UADDO, VT, Custom); 183 setOperationAction(ISD::USUBO, VT, Custom); 184 185 // Support carry in as value rather than glue. 186 setOperationAction(ISD::ADDCARRY, VT, Custom); 187 setOperationAction(ISD::SUBCARRY, VT, Custom); 188 189 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 190 // stores, putting a serialization instruction after the stores. 191 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 192 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 193 194 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 195 // available, or if the operand is constant. 196 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 197 198 // Use POPCNT on z196 and above. 199 if (Subtarget.hasPopulationCount()) 200 setOperationAction(ISD::CTPOP, VT, Custom); 201 else 202 setOperationAction(ISD::CTPOP, VT, Expand); 203 204 // No special instructions for these. 205 setOperationAction(ISD::CTTZ, VT, Expand); 206 setOperationAction(ISD::ROTR, VT, Expand); 207 208 // Use *MUL_LOHI where possible instead of MULH*. 209 setOperationAction(ISD::MULHS, VT, Expand); 210 setOperationAction(ISD::MULHU, VT, Expand); 211 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 212 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 213 214 // Only z196 and above have native support for conversions to unsigned. 215 // On z10, promoting to i64 doesn't generate an inexact condition for 216 // values that are outside the i32 range but in the i64 range, so use 217 // the default expansion. 218 if (!Subtarget.hasFPExtension()) 219 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 220 221 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 222 // default to Expand, so need to be modified to Legal where appropriate. 223 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 224 if (Subtarget.hasFPExtension()) 225 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 226 227 // And similarly for STRICT_[SU]INT_TO_FP. 228 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 229 if (Subtarget.hasFPExtension()) 230 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 231 } 232 } 233 234 // Type legalization will convert 8- and 16-bit atomic operations into 235 // forms that operate on i32s (but still keeping the original memory VT). 236 // Lower them into full i32 operations. 237 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 246 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 248 249 // Even though i128 is not a legal type, we still need to custom lower 250 // the atomic operations in order to exploit SystemZ instructions. 251 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 252 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 253 254 // We can use the CC result of compare-and-swap to implement 255 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 257 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 258 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 259 260 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 261 262 // Traps are legal, as we will convert them to "j .+2". 263 setOperationAction(ISD::TRAP, MVT::Other, Legal); 264 265 // z10 has instructions for signed but not unsigned FP conversion. 266 // Handle unsigned 32-bit types as signed 64-bit types. 267 if (!Subtarget.hasFPExtension()) { 268 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 270 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 271 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 272 } 273 274 // We have native support for a 64-bit CTLZ, via FLOGR. 275 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 276 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 277 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 278 279 // On z15 we have native support for a 64-bit CTPOP. 280 if (Subtarget.hasMiscellaneousExtensions3()) { 281 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 282 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 283 } 284 285 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 286 setOperationAction(ISD::OR, MVT::i64, Custom); 287 288 // Expand 128 bit shifts without using a libcall. 289 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 290 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 291 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 292 setLibcallName(RTLIB::SRL_I128, nullptr); 293 setLibcallName(RTLIB::SHL_I128, nullptr); 294 setLibcallName(RTLIB::SRA_I128, nullptr); 295 296 // We have native instructions for i8, i16 and i32 extensions, but not i1. 297 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 298 for (MVT VT : MVT::integer_valuetypes()) { 299 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 300 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 301 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 302 } 303 304 // Handle the various types of symbolic address. 305 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 306 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 307 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 308 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 309 setOperationAction(ISD::JumpTable, PtrVT, Custom); 310 311 // We need to handle dynamic allocations specially because of the 312 // 160-byte area at the bottom of the stack. 313 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 314 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 315 316 // Use custom expanders so that we can force the function to use 317 // a frame pointer. 318 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 319 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 320 321 // Handle prefetches with PFD or PFDRL. 322 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 323 324 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 325 // Assume by default that all vector operations need to be expanded. 326 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 327 if (getOperationAction(Opcode, VT) == Legal) 328 setOperationAction(Opcode, VT, Expand); 329 330 // Likewise all truncating stores and extending loads. 331 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 332 setTruncStoreAction(VT, InnerVT, Expand); 333 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 334 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 335 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 336 } 337 338 if (isTypeLegal(VT)) { 339 // These operations are legal for anything that can be stored in a 340 // vector register, even if there is no native support for the format 341 // as such. In particular, we can do these for v4f32 even though there 342 // are no specific instructions for that format. 343 setOperationAction(ISD::LOAD, VT, Legal); 344 setOperationAction(ISD::STORE, VT, Legal); 345 setOperationAction(ISD::VSELECT, VT, Legal); 346 setOperationAction(ISD::BITCAST, VT, Legal); 347 setOperationAction(ISD::UNDEF, VT, Legal); 348 349 // Likewise, except that we need to replace the nodes with something 350 // more specific. 351 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 352 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 353 } 354 } 355 356 // Handle integer vector types. 357 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 358 if (isTypeLegal(VT)) { 359 // These operations have direct equivalents. 360 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 361 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 362 setOperationAction(ISD::ADD, VT, Legal); 363 setOperationAction(ISD::SUB, VT, Legal); 364 if (VT != MVT::v2i64) 365 setOperationAction(ISD::MUL, VT, Legal); 366 setOperationAction(ISD::ABS, VT, Legal); 367 setOperationAction(ISD::AND, VT, Legal); 368 setOperationAction(ISD::OR, VT, Legal); 369 setOperationAction(ISD::XOR, VT, Legal); 370 if (Subtarget.hasVectorEnhancements1()) 371 setOperationAction(ISD::CTPOP, VT, Legal); 372 else 373 setOperationAction(ISD::CTPOP, VT, Custom); 374 setOperationAction(ISD::CTTZ, VT, Legal); 375 setOperationAction(ISD::CTLZ, VT, Legal); 376 377 // Convert a GPR scalar to a vector by inserting it into element 0. 378 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 379 380 // Use a series of unpacks for extensions. 381 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 382 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 383 384 // Detect shifts by a scalar amount and convert them into 385 // V*_BY_SCALAR. 386 setOperationAction(ISD::SHL, VT, Custom); 387 setOperationAction(ISD::SRA, VT, Custom); 388 setOperationAction(ISD::SRL, VT, Custom); 389 390 // At present ROTL isn't matched by DAGCombiner. ROTR should be 391 // converted into ROTL. 392 setOperationAction(ISD::ROTL, VT, Expand); 393 setOperationAction(ISD::ROTR, VT, Expand); 394 395 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 396 // and inverting the result as necessary. 397 setOperationAction(ISD::SETCC, VT, Custom); 398 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 399 if (Subtarget.hasVectorEnhancements1()) 400 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 401 } 402 } 403 404 if (Subtarget.hasVector()) { 405 // There should be no need to check for float types other than v2f64 406 // since <2 x f32> isn't a legal type. 407 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 408 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 409 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 410 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 411 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 412 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 413 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 414 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 415 416 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 418 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 419 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 420 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 421 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 422 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 423 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 424 } 425 426 if (Subtarget.hasVectorEnhancements2()) { 427 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 428 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 429 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 430 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 431 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 432 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 433 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 434 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 435 436 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 438 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 439 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 440 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 441 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 442 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 443 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 444 } 445 446 // Handle floating-point types. 447 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 448 I <= MVT::LAST_FP_VALUETYPE; 449 ++I) { 450 MVT VT = MVT::SimpleValueType(I); 451 if (isTypeLegal(VT)) { 452 // We can use FI for FRINT. 453 setOperationAction(ISD::FRINT, VT, Legal); 454 455 // We can use the extended form of FI for other rounding operations. 456 if (Subtarget.hasFPExtension()) { 457 setOperationAction(ISD::FNEARBYINT, VT, Legal); 458 setOperationAction(ISD::FFLOOR, VT, Legal); 459 setOperationAction(ISD::FCEIL, VT, Legal); 460 setOperationAction(ISD::FTRUNC, VT, Legal); 461 setOperationAction(ISD::FROUND, VT, Legal); 462 } 463 464 // No special instructions for these. 465 setOperationAction(ISD::FSIN, VT, Expand); 466 setOperationAction(ISD::FCOS, VT, Expand); 467 setOperationAction(ISD::FSINCOS, VT, Expand); 468 setOperationAction(ISD::FREM, VT, Expand); 469 setOperationAction(ISD::FPOW, VT, Expand); 470 471 // Handle constrained floating-point operations. 472 setOperationAction(ISD::STRICT_FADD, VT, Legal); 473 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 474 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 475 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 476 setOperationAction(ISD::STRICT_FMA, VT, Legal); 477 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 478 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 479 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 481 if (Subtarget.hasFPExtension()) { 482 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 483 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 484 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 485 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 486 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 487 } 488 } 489 } 490 491 // Handle floating-point vector types. 492 if (Subtarget.hasVector()) { 493 // Scalar-to-vector conversion is just a subreg. 494 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 495 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 496 497 // Some insertions and extractions can be done directly but others 498 // need to go via integers. 499 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 500 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 501 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 502 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 503 504 // These operations have direct equivalents. 505 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 506 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 507 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 508 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 509 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 510 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 511 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 512 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 513 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 514 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 515 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 516 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 517 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 518 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 519 520 // Handle constrained floating-point operations. 521 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 527 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 528 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 529 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 530 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 531 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 532 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 533 } 534 535 // The vector enhancements facility 1 has instructions for these. 536 if (Subtarget.hasVectorEnhancements1()) { 537 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 538 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 539 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 540 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 541 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 542 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 543 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 544 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 545 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 546 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 547 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 548 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 549 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 550 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 551 552 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 553 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 554 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 555 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 556 557 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 558 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 559 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 560 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 561 562 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 563 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 564 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 565 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 566 567 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 568 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 569 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 570 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 571 572 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 573 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 574 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 575 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 576 577 // Handle constrained floating-point operations. 578 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 584 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 585 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 586 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 587 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 588 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 589 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 590 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 591 MVT::v4f32, MVT::v2f64 }) { 592 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 593 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 594 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 595 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 596 } 597 } 598 599 // We only have fused f128 multiply-addition on vector registers. 600 if (!Subtarget.hasVectorEnhancements1()) { 601 setOperationAction(ISD::FMA, MVT::f128, Expand); 602 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 603 } 604 605 // We don't have a copysign instruction on vector registers. 606 if (Subtarget.hasVectorEnhancements1()) 607 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 608 609 // Needed so that we don't try to implement f128 constant loads using 610 // a load-and-extend of a f80 constant (in cases where the constant 611 // would fit in an f80). 612 for (MVT VT : MVT::fp_valuetypes()) 613 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 614 615 // We don't have extending load instruction on vector registers. 616 if (Subtarget.hasVectorEnhancements1()) { 617 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 618 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 619 } 620 621 // Floating-point truncation and stores need to be done separately. 622 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 623 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 624 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 625 626 // We have 64-bit FPR<->GPR moves, but need special handling for 627 // 32-bit forms. 628 if (!Subtarget.hasVector()) { 629 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 630 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 631 } 632 633 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 634 // structure, but VAEND is a no-op. 635 setOperationAction(ISD::VASTART, MVT::Other, Custom); 636 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 637 setOperationAction(ISD::VAEND, MVT::Other, Expand); 638 639 // Codes for which we want to perform some z-specific combinations. 640 setTargetDAGCombine(ISD::ZERO_EXTEND); 641 setTargetDAGCombine(ISD::SIGN_EXTEND); 642 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 643 setTargetDAGCombine(ISD::LOAD); 644 setTargetDAGCombine(ISD::STORE); 645 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 646 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 647 setTargetDAGCombine(ISD::FP_ROUND); 648 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 649 setTargetDAGCombine(ISD::FP_EXTEND); 650 setTargetDAGCombine(ISD::SINT_TO_FP); 651 setTargetDAGCombine(ISD::UINT_TO_FP); 652 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 653 setTargetDAGCombine(ISD::BSWAP); 654 setTargetDAGCombine(ISD::SDIV); 655 setTargetDAGCombine(ISD::UDIV); 656 setTargetDAGCombine(ISD::SREM); 657 setTargetDAGCombine(ISD::UREM); 658 setTargetDAGCombine(ISD::INTRINSIC_VOID); 659 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 660 661 // Handle intrinsics. 662 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 663 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 664 665 // We want to use MVC in preference to even a single load/store pair. 666 MaxStoresPerMemcpy = 0; 667 MaxStoresPerMemcpyOptSize = 0; 668 669 // The main memset sequence is a byte store followed by an MVC. 670 // Two STC or MV..I stores win over that, but the kind of fused stores 671 // generated by target-independent code don't when the byte value is 672 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 673 // than "STC;MVC". Handle the choice in target-specific code instead. 674 MaxStoresPerMemset = 0; 675 MaxStoresPerMemsetOptSize = 0; 676 677 // Default to having -disable-strictnode-mutation on 678 IsStrictFPEnabled = true; 679 } 680 681 bool SystemZTargetLowering::useSoftFloat() const { 682 return Subtarget.hasSoftFloat(); 683 } 684 685 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 686 LLVMContext &, EVT VT) const { 687 if (!VT.isVector()) 688 return MVT::i32; 689 return VT.changeVectorElementTypeToInteger(); 690 } 691 692 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 693 const MachineFunction &MF, EVT VT) const { 694 VT = VT.getScalarType(); 695 696 if (!VT.isSimple()) 697 return false; 698 699 switch (VT.getSimpleVT().SimpleTy) { 700 case MVT::f32: 701 case MVT::f64: 702 return true; 703 case MVT::f128: 704 return Subtarget.hasVectorEnhancements1(); 705 default: 706 break; 707 } 708 709 return false; 710 } 711 712 // Return true if the constant can be generated with a vector instruction, 713 // such as VGM, VGMB or VREPI. 714 bool SystemZVectorConstantInfo::isVectorConstantLegal( 715 const SystemZSubtarget &Subtarget) { 716 const SystemZInstrInfo *TII = 717 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 718 if (!Subtarget.hasVector() || 719 (isFP128 && !Subtarget.hasVectorEnhancements1())) 720 return false; 721 722 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 723 // preferred way of creating all-zero and all-one vectors so give it 724 // priority over other methods below. 725 unsigned Mask = 0; 726 unsigned I = 0; 727 for (; I < SystemZ::VectorBytes; ++I) { 728 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 729 if (Byte == 0xff) 730 Mask |= 1ULL << I; 731 else if (Byte != 0) 732 break; 733 } 734 if (I == SystemZ::VectorBytes) { 735 Opcode = SystemZISD::BYTE_MASK; 736 OpVals.push_back(Mask); 737 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 738 return true; 739 } 740 741 if (SplatBitSize > 64) 742 return false; 743 744 auto tryValue = [&](uint64_t Value) -> bool { 745 // Try VECTOR REPLICATE IMMEDIATE 746 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 747 if (isInt<16>(SignedValue)) { 748 OpVals.push_back(((unsigned) SignedValue)); 749 Opcode = SystemZISD::REPLICATE; 750 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 751 SystemZ::VectorBits / SplatBitSize); 752 return true; 753 } 754 // Try VECTOR GENERATE MASK 755 unsigned Start, End; 756 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 757 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 758 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 759 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 760 OpVals.push_back(Start - (64 - SplatBitSize)); 761 OpVals.push_back(End - (64 - SplatBitSize)); 762 Opcode = SystemZISD::ROTATE_MASK; 763 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 764 SystemZ::VectorBits / SplatBitSize); 765 return true; 766 } 767 return false; 768 }; 769 770 // First try assuming that any undefined bits above the highest set bit 771 // and below the lowest set bit are 1s. This increases the likelihood of 772 // being able to use a sign-extended element value in VECTOR REPLICATE 773 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 774 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 775 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 776 uint64_t Lower = 777 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 778 uint64_t Upper = 779 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 780 if (tryValue(SplatBitsZ | Upper | Lower)) 781 return true; 782 783 // Now try assuming that any undefined bits between the first and 784 // last defined set bits are set. This increases the chances of 785 // using a non-wraparound mask. 786 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 787 return tryValue(SplatBitsZ | Middle); 788 } 789 790 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 791 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 792 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 793 SplatBits = FPImm.bitcastToAPInt(); 794 unsigned Width = SplatBits.getBitWidth(); 795 IntBits <<= (SystemZ::VectorBits - Width); 796 797 // Find the smallest splat. 798 while (Width > 8) { 799 unsigned HalfSize = Width / 2; 800 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 801 APInt LowValue = SplatBits.trunc(HalfSize); 802 803 // If the two halves do not match, stop here. 804 if (HighValue != LowValue || 8 > HalfSize) 805 break; 806 807 SplatBits = HighValue; 808 Width = HalfSize; 809 } 810 SplatUndef = 0; 811 SplatBitSize = Width; 812 } 813 814 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 815 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 816 bool HasAnyUndefs; 817 818 // Get IntBits by finding the 128 bit splat. 819 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 820 true); 821 822 // Get SplatBits by finding the 8 bit or greater splat. 823 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 824 true); 825 } 826 827 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 828 bool ForCodeSize) const { 829 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 830 if (Imm.isZero() || Imm.isNegZero()) 831 return true; 832 833 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 834 } 835 836 /// Returns true if stack probing through inline assembly is requested. 837 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 838 // If the function specifically requests inline stack probes, emit them. 839 if (MF.getFunction().hasFnAttribute("probe-stack")) 840 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 841 "inline-asm"; 842 return false; 843 } 844 845 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 846 // We can use CGFI or CLGFI. 847 return isInt<32>(Imm) || isUInt<32>(Imm); 848 } 849 850 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 851 // We can use ALGFI or SLGFI. 852 return isUInt<32>(Imm) || isUInt<32>(-Imm); 853 } 854 855 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 856 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 857 // Unaligned accesses should never be slower than the expanded version. 858 // We check specifically for aligned accesses in the few cases where 859 // they are required. 860 if (Fast) 861 *Fast = true; 862 return true; 863 } 864 865 // Information about the addressing mode for a memory access. 866 struct AddressingMode { 867 // True if a long displacement is supported. 868 bool LongDisplacement; 869 870 // True if use of index register is supported. 871 bool IndexReg; 872 873 AddressingMode(bool LongDispl, bool IdxReg) : 874 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 875 }; 876 877 // Return the desired addressing mode for a Load which has only one use (in 878 // the same block) which is a Store. 879 static AddressingMode getLoadStoreAddrMode(bool HasVector, 880 Type *Ty) { 881 // With vector support a Load->Store combination may be combined to either 882 // an MVC or vector operations and it seems to work best to allow the 883 // vector addressing mode. 884 if (HasVector) 885 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 886 887 // Otherwise only the MVC case is special. 888 bool MVC = Ty->isIntegerTy(8); 889 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 890 } 891 892 // Return the addressing mode which seems most desirable given an LLVM 893 // Instruction pointer. 894 static AddressingMode 895 supportedAddressingMode(Instruction *I, bool HasVector) { 896 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 897 switch (II->getIntrinsicID()) { 898 default: break; 899 case Intrinsic::memset: 900 case Intrinsic::memmove: 901 case Intrinsic::memcpy: 902 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 903 } 904 } 905 906 if (isa<LoadInst>(I) && I->hasOneUse()) { 907 auto *SingleUser = cast<Instruction>(*I->user_begin()); 908 if (SingleUser->getParent() == I->getParent()) { 909 if (isa<ICmpInst>(SingleUser)) { 910 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 911 if (C->getBitWidth() <= 64 && 912 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 913 // Comparison of memory with 16 bit signed / unsigned immediate 914 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 915 } else if (isa<StoreInst>(SingleUser)) 916 // Load->Store 917 return getLoadStoreAddrMode(HasVector, I->getType()); 918 } 919 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 920 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 921 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 922 // Load->Store 923 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 924 } 925 926 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 927 928 // * Use LDE instead of LE/LEY for z13 to avoid partial register 929 // dependencies (LDE only supports small offsets). 930 // * Utilize the vector registers to hold floating point 931 // values (vector load / store instructions only support small 932 // offsets). 933 934 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 935 I->getOperand(0)->getType()); 936 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 937 bool IsVectorAccess = MemAccessTy->isVectorTy(); 938 939 // A store of an extracted vector element will be combined into a VSTE type 940 // instruction. 941 if (!IsVectorAccess && isa<StoreInst>(I)) { 942 Value *DataOp = I->getOperand(0); 943 if (isa<ExtractElementInst>(DataOp)) 944 IsVectorAccess = true; 945 } 946 947 // A load which gets inserted into a vector element will be combined into a 948 // VLE type instruction. 949 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 950 User *LoadUser = *I->user_begin(); 951 if (isa<InsertElementInst>(LoadUser)) 952 IsVectorAccess = true; 953 } 954 955 if (IsFPAccess || IsVectorAccess) 956 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 957 } 958 959 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 960 } 961 962 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 963 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 964 // Punt on globals for now, although they can be used in limited 965 // RELATIVE LONG cases. 966 if (AM.BaseGV) 967 return false; 968 969 // Require a 20-bit signed offset. 970 if (!isInt<20>(AM.BaseOffs)) 971 return false; 972 973 AddressingMode SupportedAM(true, true); 974 if (I != nullptr) 975 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 976 977 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 978 return false; 979 980 if (!SupportedAM.IndexReg) 981 // No indexing allowed. 982 return AM.Scale == 0; 983 else 984 // Indexing is OK but no scale factor can be applied. 985 return AM.Scale == 0 || AM.Scale == 1; 986 } 987 988 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 989 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 990 return false; 991 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 992 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 993 return FromBits > ToBits; 994 } 995 996 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 997 if (!FromVT.isInteger() || !ToVT.isInteger()) 998 return false; 999 unsigned FromBits = FromVT.getFixedSizeInBits(); 1000 unsigned ToBits = ToVT.getFixedSizeInBits(); 1001 return FromBits > ToBits; 1002 } 1003 1004 //===----------------------------------------------------------------------===// 1005 // Inline asm support 1006 //===----------------------------------------------------------------------===// 1007 1008 TargetLowering::ConstraintType 1009 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1010 if (Constraint.size() == 1) { 1011 switch (Constraint[0]) { 1012 case 'a': // Address register 1013 case 'd': // Data register (equivalent to 'r') 1014 case 'f': // Floating-point register 1015 case 'h': // High-part register 1016 case 'r': // General-purpose register 1017 case 'v': // Vector register 1018 return C_RegisterClass; 1019 1020 case 'Q': // Memory with base and unsigned 12-bit displacement 1021 case 'R': // Likewise, plus an index 1022 case 'S': // Memory with base and signed 20-bit displacement 1023 case 'T': // Likewise, plus an index 1024 case 'm': // Equivalent to 'T'. 1025 return C_Memory; 1026 1027 case 'I': // Unsigned 8-bit constant 1028 case 'J': // Unsigned 12-bit constant 1029 case 'K': // Signed 16-bit constant 1030 case 'L': // Signed 20-bit displacement (on all targets we support) 1031 case 'M': // 0x7fffffff 1032 return C_Immediate; 1033 1034 default: 1035 break; 1036 } 1037 } 1038 return TargetLowering::getConstraintType(Constraint); 1039 } 1040 1041 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1042 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1043 const char *constraint) const { 1044 ConstraintWeight weight = CW_Invalid; 1045 Value *CallOperandVal = info.CallOperandVal; 1046 // If we don't have a value, we can't do a match, 1047 // but allow it at the lowest weight. 1048 if (!CallOperandVal) 1049 return CW_Default; 1050 Type *type = CallOperandVal->getType(); 1051 // Look at the constraint type. 1052 switch (*constraint) { 1053 default: 1054 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1055 break; 1056 1057 case 'a': // Address register 1058 case 'd': // Data register (equivalent to 'r') 1059 case 'h': // High-part register 1060 case 'r': // General-purpose register 1061 if (CallOperandVal->getType()->isIntegerTy()) 1062 weight = CW_Register; 1063 break; 1064 1065 case 'f': // Floating-point register 1066 if (type->isFloatingPointTy()) 1067 weight = CW_Register; 1068 break; 1069 1070 case 'v': // Vector register 1071 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1072 Subtarget.hasVector()) 1073 weight = CW_Register; 1074 break; 1075 1076 case 'I': // Unsigned 8-bit constant 1077 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1078 if (isUInt<8>(C->getZExtValue())) 1079 weight = CW_Constant; 1080 break; 1081 1082 case 'J': // Unsigned 12-bit constant 1083 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1084 if (isUInt<12>(C->getZExtValue())) 1085 weight = CW_Constant; 1086 break; 1087 1088 case 'K': // Signed 16-bit constant 1089 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1090 if (isInt<16>(C->getSExtValue())) 1091 weight = CW_Constant; 1092 break; 1093 1094 case 'L': // Signed 20-bit displacement (on all targets we support) 1095 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1096 if (isInt<20>(C->getSExtValue())) 1097 weight = CW_Constant; 1098 break; 1099 1100 case 'M': // 0x7fffffff 1101 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1102 if (C->getZExtValue() == 0x7fffffff) 1103 weight = CW_Constant; 1104 break; 1105 } 1106 return weight; 1107 } 1108 1109 // Parse a "{tNNN}" register constraint for which the register type "t" 1110 // has already been verified. MC is the class associated with "t" and 1111 // Map maps 0-based register numbers to LLVM register numbers. 1112 static std::pair<unsigned, const TargetRegisterClass *> 1113 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1114 const unsigned *Map, unsigned Size) { 1115 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1116 if (isdigit(Constraint[2])) { 1117 unsigned Index; 1118 bool Failed = 1119 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1120 if (!Failed && Index < Size && Map[Index]) 1121 return std::make_pair(Map[Index], RC); 1122 } 1123 return std::make_pair(0U, nullptr); 1124 } 1125 1126 std::pair<unsigned, const TargetRegisterClass *> 1127 SystemZTargetLowering::getRegForInlineAsmConstraint( 1128 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1129 if (Constraint.size() == 1) { 1130 // GCC Constraint Letters 1131 switch (Constraint[0]) { 1132 default: break; 1133 case 'd': // Data register (equivalent to 'r') 1134 case 'r': // General-purpose register 1135 if (VT == MVT::i64) 1136 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1137 else if (VT == MVT::i128) 1138 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1139 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1140 1141 case 'a': // Address register 1142 if (VT == MVT::i64) 1143 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1144 else if (VT == MVT::i128) 1145 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1146 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1147 1148 case 'h': // High-part register (an LLVM extension) 1149 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1150 1151 case 'f': // Floating-point register 1152 if (!useSoftFloat()) { 1153 if (VT == MVT::f64) 1154 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1155 else if (VT == MVT::f128) 1156 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1157 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1158 } 1159 break; 1160 case 'v': // Vector register 1161 if (Subtarget.hasVector()) { 1162 if (VT == MVT::f32) 1163 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1164 if (VT == MVT::f64) 1165 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1166 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1167 } 1168 break; 1169 } 1170 } 1171 if (Constraint.size() > 0 && Constraint[0] == '{') { 1172 // We need to override the default register parsing for GPRs and FPRs 1173 // because the interpretation depends on VT. The internal names of 1174 // the registers are also different from the external names 1175 // (F0D and F0S instead of F0, etc.). 1176 if (Constraint[1] == 'r') { 1177 if (VT == MVT::i32) 1178 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1179 SystemZMC::GR32Regs, 16); 1180 if (VT == MVT::i128) 1181 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1182 SystemZMC::GR128Regs, 16); 1183 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1184 SystemZMC::GR64Regs, 16); 1185 } 1186 if (Constraint[1] == 'f') { 1187 if (useSoftFloat()) 1188 return std::make_pair( 1189 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1190 if (VT == MVT::f32) 1191 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1192 SystemZMC::FP32Regs, 16); 1193 if (VT == MVT::f128) 1194 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1195 SystemZMC::FP128Regs, 16); 1196 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1197 SystemZMC::FP64Regs, 16); 1198 } 1199 if (Constraint[1] == 'v') { 1200 if (!Subtarget.hasVector()) 1201 return std::make_pair( 1202 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1203 if (VT == MVT::f32) 1204 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1205 SystemZMC::VR32Regs, 32); 1206 if (VT == MVT::f64) 1207 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1208 SystemZMC::VR64Regs, 32); 1209 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1210 SystemZMC::VR128Regs, 32); 1211 } 1212 } 1213 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1214 } 1215 1216 // FIXME? Maybe this could be a TableGen attribute on some registers and 1217 // this table could be generated automatically from RegInfo. 1218 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1219 const MachineFunction &MF) const { 1220 1221 Register Reg = StringSwitch<Register>(RegName) 1222 .Case("r15", SystemZ::R15D) 1223 .Default(0); 1224 if (Reg) 1225 return Reg; 1226 report_fatal_error("Invalid register name global variable"); 1227 } 1228 1229 void SystemZTargetLowering:: 1230 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1231 std::vector<SDValue> &Ops, 1232 SelectionDAG &DAG) const { 1233 // Only support length 1 constraints for now. 1234 if (Constraint.length() == 1) { 1235 switch (Constraint[0]) { 1236 case 'I': // Unsigned 8-bit constant 1237 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1238 if (isUInt<8>(C->getZExtValue())) 1239 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1240 Op.getValueType())); 1241 return; 1242 1243 case 'J': // Unsigned 12-bit constant 1244 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1245 if (isUInt<12>(C->getZExtValue())) 1246 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1247 Op.getValueType())); 1248 return; 1249 1250 case 'K': // Signed 16-bit constant 1251 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1252 if (isInt<16>(C->getSExtValue())) 1253 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1254 Op.getValueType())); 1255 return; 1256 1257 case 'L': // Signed 20-bit displacement (on all targets we support) 1258 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1259 if (isInt<20>(C->getSExtValue())) 1260 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1261 Op.getValueType())); 1262 return; 1263 1264 case 'M': // 0x7fffffff 1265 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1266 if (C->getZExtValue() == 0x7fffffff) 1267 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1268 Op.getValueType())); 1269 return; 1270 } 1271 } 1272 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1273 } 1274 1275 //===----------------------------------------------------------------------===// 1276 // Calling conventions 1277 //===----------------------------------------------------------------------===// 1278 1279 #include "SystemZGenCallingConv.inc" 1280 1281 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1282 CallingConv::ID) const { 1283 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1284 SystemZ::R14D, 0 }; 1285 return ScratchRegs; 1286 } 1287 1288 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1289 Type *ToType) const { 1290 return isTruncateFree(FromType, ToType); 1291 } 1292 1293 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1294 return CI->isTailCall(); 1295 } 1296 1297 // We do not yet support 128-bit single-element vector types. If the user 1298 // attempts to use such types as function argument or return type, prefer 1299 // to error out instead of emitting code violating the ABI. 1300 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1301 if (ArgVT.isVector() && !VT.isVector()) 1302 report_fatal_error("Unsupported vector argument or return type"); 1303 } 1304 1305 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1306 for (unsigned i = 0; i < Ins.size(); ++i) 1307 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1308 } 1309 1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1311 for (unsigned i = 0; i < Outs.size(); ++i) 1312 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1313 } 1314 1315 // Value is a value that has been passed to us in the location described by VA 1316 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1317 // any loads onto Chain. 1318 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1319 CCValAssign &VA, SDValue Chain, 1320 SDValue Value) { 1321 // If the argument has been promoted from a smaller type, insert an 1322 // assertion to capture this. 1323 if (VA.getLocInfo() == CCValAssign::SExt) 1324 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1325 DAG.getValueType(VA.getValVT())); 1326 else if (VA.getLocInfo() == CCValAssign::ZExt) 1327 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1328 DAG.getValueType(VA.getValVT())); 1329 1330 if (VA.isExtInLoc()) 1331 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1332 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1333 // If this is a short vector argument loaded from the stack, 1334 // extend from i64 to full vector size and then bitcast. 1335 assert(VA.getLocVT() == MVT::i64); 1336 assert(VA.getValVT().isVector()); 1337 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1338 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1339 } else 1340 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1341 return Value; 1342 } 1343 1344 // Value is a value of type VA.getValVT() that we need to copy into 1345 // the location described by VA. Return a copy of Value converted to 1346 // VA.getValVT(). The caller is responsible for handling indirect values. 1347 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1348 CCValAssign &VA, SDValue Value) { 1349 switch (VA.getLocInfo()) { 1350 case CCValAssign::SExt: 1351 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1352 case CCValAssign::ZExt: 1353 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1354 case CCValAssign::AExt: 1355 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1356 case CCValAssign::BCvt: 1357 // If this is a short vector argument to be stored to the stack, 1358 // bitcast to v2i64 and then extract first element. 1359 assert(VA.getLocVT() == MVT::i64); 1360 assert(VA.getValVT().isVector()); 1361 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1362 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1363 DAG.getConstant(0, DL, MVT::i32)); 1364 case CCValAssign::Full: 1365 return Value; 1366 default: 1367 llvm_unreachable("Unhandled getLocInfo()"); 1368 } 1369 } 1370 1371 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1372 SDLoc DL(In); 1373 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1374 DAG.getIntPtrConstant(0, DL)); 1375 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1376 DAG.getIntPtrConstant(1, DL)); 1377 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1378 MVT::Untyped, Hi, Lo); 1379 return SDValue(Pair, 0); 1380 } 1381 1382 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1383 SDLoc DL(In); 1384 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1385 DL, MVT::i64, In); 1386 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1387 DL, MVT::i64, In); 1388 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1389 } 1390 1391 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1392 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1393 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 1394 EVT ValueVT = Val.getValueType(); 1395 assert((ValueVT != MVT::i128 || 1396 ((NumParts == 1 && PartVT == MVT::Untyped) || 1397 (NumParts == 2 && PartVT == MVT::i64))) && 1398 "Unknown handling of i128 value."); 1399 if (ValueVT == MVT::i128 && NumParts == 1) { 1400 // Inline assembly operand. 1401 Parts[0] = lowerI128ToGR128(DAG, Val); 1402 return true; 1403 } 1404 return false; 1405 } 1406 1407 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1408 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1409 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 1410 assert((ValueVT != MVT::i128 || 1411 ((NumParts == 1 && PartVT == MVT::Untyped) || 1412 (NumParts == 2 && PartVT == MVT::i64))) && 1413 "Unknown handling of i128 value."); 1414 if (ValueVT == MVT::i128 && NumParts == 1) 1415 // Inline assembly operand. 1416 return lowerGR128ToI128(DAG, Parts[0]); 1417 return SDValue(); 1418 } 1419 1420 SDValue SystemZTargetLowering::LowerFormalArguments( 1421 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1422 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1423 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1424 MachineFunction &MF = DAG.getMachineFunction(); 1425 MachineFrameInfo &MFI = MF.getFrameInfo(); 1426 MachineRegisterInfo &MRI = MF.getRegInfo(); 1427 SystemZMachineFunctionInfo *FuncInfo = 1428 MF.getInfo<SystemZMachineFunctionInfo>(); 1429 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1430 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1431 1432 // Detect unsupported vector argument types. 1433 if (Subtarget.hasVector()) 1434 VerifyVectorTypes(Ins); 1435 1436 // Assign locations to all of the incoming arguments. 1437 SmallVector<CCValAssign, 16> ArgLocs; 1438 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1439 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1440 1441 unsigned NumFixedGPRs = 0; 1442 unsigned NumFixedFPRs = 0; 1443 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1444 SDValue ArgValue; 1445 CCValAssign &VA = ArgLocs[I]; 1446 EVT LocVT = VA.getLocVT(); 1447 if (VA.isRegLoc()) { 1448 // Arguments passed in registers 1449 const TargetRegisterClass *RC; 1450 switch (LocVT.getSimpleVT().SimpleTy) { 1451 default: 1452 // Integers smaller than i64 should be promoted to i64. 1453 llvm_unreachable("Unexpected argument type"); 1454 case MVT::i32: 1455 NumFixedGPRs += 1; 1456 RC = &SystemZ::GR32BitRegClass; 1457 break; 1458 case MVT::i64: 1459 NumFixedGPRs += 1; 1460 RC = &SystemZ::GR64BitRegClass; 1461 break; 1462 case MVT::f32: 1463 NumFixedFPRs += 1; 1464 RC = &SystemZ::FP32BitRegClass; 1465 break; 1466 case MVT::f64: 1467 NumFixedFPRs += 1; 1468 RC = &SystemZ::FP64BitRegClass; 1469 break; 1470 case MVT::v16i8: 1471 case MVT::v8i16: 1472 case MVT::v4i32: 1473 case MVT::v2i64: 1474 case MVT::v4f32: 1475 case MVT::v2f64: 1476 RC = &SystemZ::VR128BitRegClass; 1477 break; 1478 } 1479 1480 Register VReg = MRI.createVirtualRegister(RC); 1481 MRI.addLiveIn(VA.getLocReg(), VReg); 1482 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1483 } else { 1484 assert(VA.isMemLoc() && "Argument not register or memory"); 1485 1486 // Create the frame index object for this incoming parameter. 1487 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1488 VA.getLocMemOffset(), true); 1489 1490 // Create the SelectionDAG nodes corresponding to a load 1491 // from this parameter. Unpromoted ints and floats are 1492 // passed as right-justified 8-byte values. 1493 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1494 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1495 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1496 DAG.getIntPtrConstant(4, DL)); 1497 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1498 MachinePointerInfo::getFixedStack(MF, FI)); 1499 } 1500 1501 // Convert the value of the argument register into the value that's 1502 // being passed. 1503 if (VA.getLocInfo() == CCValAssign::Indirect) { 1504 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1505 MachinePointerInfo())); 1506 // If the original argument was split (e.g. i128), we need 1507 // to load all parts of it here (using the same address). 1508 unsigned ArgIndex = Ins[I].OrigArgIndex; 1509 assert (Ins[I].PartOffset == 0); 1510 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1511 CCValAssign &PartVA = ArgLocs[I + 1]; 1512 unsigned PartOffset = Ins[I + 1].PartOffset; 1513 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1514 DAG.getIntPtrConstant(PartOffset, DL)); 1515 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1516 MachinePointerInfo())); 1517 ++I; 1518 } 1519 } else 1520 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1521 } 1522 1523 if (IsVarArg) { 1524 // Save the number of non-varargs registers for later use by va_start, etc. 1525 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1526 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1527 1528 // Likewise the address (in the form of a frame index) of where the 1529 // first stack vararg would be. The 1-byte size here is arbitrary. 1530 int64_t StackSize = CCInfo.getNextStackOffset(); 1531 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1532 1533 // ...and a similar frame index for the caller-allocated save area 1534 // that will be used to store the incoming registers. 1535 int64_t RegSaveOffset = 1536 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1537 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1538 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1539 1540 // Store the FPR varargs in the reserved frame slots. (We store the 1541 // GPRs as part of the prologue.) 1542 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1543 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1544 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1545 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1546 int FI = 1547 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1548 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1549 unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1550 &SystemZ::FP64BitRegClass); 1551 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1552 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1553 MachinePointerInfo::getFixedStack(MF, FI)); 1554 } 1555 // Join the stores, which are independent of one another. 1556 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1557 makeArrayRef(&MemOps[NumFixedFPRs], 1558 SystemZ::ELFNumArgFPRs-NumFixedFPRs)); 1559 } 1560 } 1561 1562 return Chain; 1563 } 1564 1565 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1566 SmallVectorImpl<CCValAssign> &ArgLocs, 1567 SmallVectorImpl<ISD::OutputArg> &Outs) { 1568 // Punt if there are any indirect or stack arguments, or if the call 1569 // needs the callee-saved argument register R6, or if the call uses 1570 // the callee-saved register arguments SwiftSelf and SwiftError. 1571 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1572 CCValAssign &VA = ArgLocs[I]; 1573 if (VA.getLocInfo() == CCValAssign::Indirect) 1574 return false; 1575 if (!VA.isRegLoc()) 1576 return false; 1577 Register Reg = VA.getLocReg(); 1578 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1579 return false; 1580 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1581 return false; 1582 } 1583 return true; 1584 } 1585 1586 SDValue 1587 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1588 SmallVectorImpl<SDValue> &InVals) const { 1589 SelectionDAG &DAG = CLI.DAG; 1590 SDLoc &DL = CLI.DL; 1591 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1592 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1593 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1594 SDValue Chain = CLI.Chain; 1595 SDValue Callee = CLI.Callee; 1596 bool &IsTailCall = CLI.IsTailCall; 1597 CallingConv::ID CallConv = CLI.CallConv; 1598 bool IsVarArg = CLI.IsVarArg; 1599 MachineFunction &MF = DAG.getMachineFunction(); 1600 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1601 LLVMContext &Ctx = *DAG.getContext(); 1602 1603 // Detect unsupported vector argument and return types. 1604 if (Subtarget.hasVector()) { 1605 VerifyVectorTypes(Outs); 1606 VerifyVectorTypes(Ins); 1607 } 1608 1609 // Analyze the operands of the call, assigning locations to each operand. 1610 SmallVector<CCValAssign, 16> ArgLocs; 1611 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1612 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1613 1614 // We don't support GuaranteedTailCallOpt, only automatically-detected 1615 // sibling calls. 1616 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1617 IsTailCall = false; 1618 1619 // Get a count of how many bytes are to be pushed on the stack. 1620 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1621 1622 // Mark the start of the call. 1623 if (!IsTailCall) 1624 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1625 1626 // Copy argument values to their designated locations. 1627 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1628 SmallVector<SDValue, 8> MemOpChains; 1629 SDValue StackPtr; 1630 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1631 CCValAssign &VA = ArgLocs[I]; 1632 SDValue ArgValue = OutVals[I]; 1633 1634 if (VA.getLocInfo() == CCValAssign::Indirect) { 1635 // Store the argument in a stack slot and pass its address. 1636 unsigned ArgIndex = Outs[I].OrigArgIndex; 1637 EVT SlotVT; 1638 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1639 // Allocate the full stack space for a promoted (and split) argument. 1640 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1641 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1642 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1643 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1644 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1645 } else { 1646 SlotVT = Outs[I].ArgVT; 1647 } 1648 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1649 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1650 MemOpChains.push_back( 1651 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1652 MachinePointerInfo::getFixedStack(MF, FI))); 1653 // If the original argument was split (e.g. i128), we need 1654 // to store all parts of it here (and pass just one address). 1655 assert (Outs[I].PartOffset == 0); 1656 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1657 SDValue PartValue = OutVals[I + 1]; 1658 unsigned PartOffset = Outs[I + 1].PartOffset; 1659 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1660 DAG.getIntPtrConstant(PartOffset, DL)); 1661 MemOpChains.push_back( 1662 DAG.getStore(Chain, DL, PartValue, Address, 1663 MachinePointerInfo::getFixedStack(MF, FI))); 1664 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1665 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1666 ++I; 1667 } 1668 ArgValue = SpillSlot; 1669 } else 1670 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1671 1672 if (VA.isRegLoc()) 1673 // Queue up the argument copies and emit them at the end. 1674 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1675 else { 1676 assert(VA.isMemLoc() && "Argument not register or memory"); 1677 1678 // Work out the address of the stack slot. Unpromoted ints and 1679 // floats are passed as right-justified 8-byte values. 1680 if (!StackPtr.getNode()) 1681 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1682 unsigned Offset = SystemZMC::ELFCallFrameSize + VA.getLocMemOffset(); 1683 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1684 Offset += 4; 1685 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1686 DAG.getIntPtrConstant(Offset, DL)); 1687 1688 // Emit the store. 1689 MemOpChains.push_back( 1690 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1691 } 1692 } 1693 1694 // Join the stores, which are independent of one another. 1695 if (!MemOpChains.empty()) 1696 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1697 1698 // Accept direct calls by converting symbolic call addresses to the 1699 // associated Target* opcodes. Force %r1 to be used for indirect 1700 // tail calls. 1701 SDValue Glue; 1702 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1703 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1704 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1705 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1706 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1707 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1708 } else if (IsTailCall) { 1709 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1710 Glue = Chain.getValue(1); 1711 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1712 } 1713 1714 // Build a sequence of copy-to-reg nodes, chained and glued together. 1715 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1716 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1717 RegsToPass[I].second, Glue); 1718 Glue = Chain.getValue(1); 1719 } 1720 1721 // The first call operand is the chain and the second is the target address. 1722 SmallVector<SDValue, 8> Ops; 1723 Ops.push_back(Chain); 1724 Ops.push_back(Callee); 1725 1726 // Add argument registers to the end of the list so that they are 1727 // known live into the call. 1728 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1729 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1730 RegsToPass[I].second.getValueType())); 1731 1732 // Add a register mask operand representing the call-preserved registers. 1733 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1734 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1735 assert(Mask && "Missing call preserved mask for calling convention"); 1736 Ops.push_back(DAG.getRegisterMask(Mask)); 1737 1738 // Glue the call to the argument copies, if any. 1739 if (Glue.getNode()) 1740 Ops.push_back(Glue); 1741 1742 // Emit the call. 1743 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1744 if (IsTailCall) 1745 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1746 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1747 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1748 Glue = Chain.getValue(1); 1749 1750 // Mark the end of the call, which is glued to the call itself. 1751 Chain = DAG.getCALLSEQ_END(Chain, 1752 DAG.getConstant(NumBytes, DL, PtrVT, true), 1753 DAG.getConstant(0, DL, PtrVT, true), 1754 Glue, DL); 1755 Glue = Chain.getValue(1); 1756 1757 // Assign locations to each value returned by this call. 1758 SmallVector<CCValAssign, 16> RetLocs; 1759 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 1760 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1761 1762 // Copy all of the result registers out of their specified physreg. 1763 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1764 CCValAssign &VA = RetLocs[I]; 1765 1766 // Copy the value out, gluing the copy to the end of the call sequence. 1767 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1768 VA.getLocVT(), Glue); 1769 Chain = RetValue.getValue(1); 1770 Glue = RetValue.getValue(2); 1771 1772 // Convert the value of the return register into the value that's 1773 // being returned. 1774 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1775 } 1776 1777 return Chain; 1778 } 1779 1780 bool SystemZTargetLowering:: 1781 CanLowerReturn(CallingConv::ID CallConv, 1782 MachineFunction &MF, bool isVarArg, 1783 const SmallVectorImpl<ISD::OutputArg> &Outs, 1784 LLVMContext &Context) const { 1785 // Detect unsupported vector return types. 1786 if (Subtarget.hasVector()) 1787 VerifyVectorTypes(Outs); 1788 1789 // Special case that we cannot easily detect in RetCC_SystemZ since 1790 // i128 is not a legal type. 1791 for (auto &Out : Outs) 1792 if (Out.ArgVT == MVT::i128) 1793 return false; 1794 1795 SmallVector<CCValAssign, 16> RetLocs; 1796 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1797 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1798 } 1799 1800 SDValue 1801 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1802 bool IsVarArg, 1803 const SmallVectorImpl<ISD::OutputArg> &Outs, 1804 const SmallVectorImpl<SDValue> &OutVals, 1805 const SDLoc &DL, SelectionDAG &DAG) const { 1806 MachineFunction &MF = DAG.getMachineFunction(); 1807 1808 // Detect unsupported vector return types. 1809 if (Subtarget.hasVector()) 1810 VerifyVectorTypes(Outs); 1811 1812 // Assign locations to each returned value. 1813 SmallVector<CCValAssign, 16> RetLocs; 1814 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1815 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1816 1817 // Quick exit for void returns 1818 if (RetLocs.empty()) 1819 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1820 1821 if (CallConv == CallingConv::GHC) 1822 report_fatal_error("GHC functions return void only"); 1823 1824 // Copy the result values into the output registers. 1825 SDValue Glue; 1826 SmallVector<SDValue, 4> RetOps; 1827 RetOps.push_back(Chain); 1828 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1829 CCValAssign &VA = RetLocs[I]; 1830 SDValue RetValue = OutVals[I]; 1831 1832 // Make the return register live on exit. 1833 assert(VA.isRegLoc() && "Can only return in registers!"); 1834 1835 // Promote the value as required. 1836 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1837 1838 // Chain and glue the copies together. 1839 Register Reg = VA.getLocReg(); 1840 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1841 Glue = Chain.getValue(1); 1842 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1843 } 1844 1845 // Update chain and glue. 1846 RetOps[0] = Chain; 1847 if (Glue.getNode()) 1848 RetOps.push_back(Glue); 1849 1850 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1851 } 1852 1853 // Return true if Op is an intrinsic node with chain that returns the CC value 1854 // as its only (other) argument. Provide the associated SystemZISD opcode and 1855 // the mask of valid CC values if so. 1856 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1857 unsigned &CCValid) { 1858 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1859 switch (Id) { 1860 case Intrinsic::s390_tbegin: 1861 Opcode = SystemZISD::TBEGIN; 1862 CCValid = SystemZ::CCMASK_TBEGIN; 1863 return true; 1864 1865 case Intrinsic::s390_tbegin_nofloat: 1866 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1867 CCValid = SystemZ::CCMASK_TBEGIN; 1868 return true; 1869 1870 case Intrinsic::s390_tend: 1871 Opcode = SystemZISD::TEND; 1872 CCValid = SystemZ::CCMASK_TEND; 1873 return true; 1874 1875 default: 1876 return false; 1877 } 1878 } 1879 1880 // Return true if Op is an intrinsic node without chain that returns the 1881 // CC value as its final argument. Provide the associated SystemZISD 1882 // opcode and the mask of valid CC values if so. 1883 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1884 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1885 switch (Id) { 1886 case Intrinsic::s390_vpkshs: 1887 case Intrinsic::s390_vpksfs: 1888 case Intrinsic::s390_vpksgs: 1889 Opcode = SystemZISD::PACKS_CC; 1890 CCValid = SystemZ::CCMASK_VCMP; 1891 return true; 1892 1893 case Intrinsic::s390_vpklshs: 1894 case Intrinsic::s390_vpklsfs: 1895 case Intrinsic::s390_vpklsgs: 1896 Opcode = SystemZISD::PACKLS_CC; 1897 CCValid = SystemZ::CCMASK_VCMP; 1898 return true; 1899 1900 case Intrinsic::s390_vceqbs: 1901 case Intrinsic::s390_vceqhs: 1902 case Intrinsic::s390_vceqfs: 1903 case Intrinsic::s390_vceqgs: 1904 Opcode = SystemZISD::VICMPES; 1905 CCValid = SystemZ::CCMASK_VCMP; 1906 return true; 1907 1908 case Intrinsic::s390_vchbs: 1909 case Intrinsic::s390_vchhs: 1910 case Intrinsic::s390_vchfs: 1911 case Intrinsic::s390_vchgs: 1912 Opcode = SystemZISD::VICMPHS; 1913 CCValid = SystemZ::CCMASK_VCMP; 1914 return true; 1915 1916 case Intrinsic::s390_vchlbs: 1917 case Intrinsic::s390_vchlhs: 1918 case Intrinsic::s390_vchlfs: 1919 case Intrinsic::s390_vchlgs: 1920 Opcode = SystemZISD::VICMPHLS; 1921 CCValid = SystemZ::CCMASK_VCMP; 1922 return true; 1923 1924 case Intrinsic::s390_vtm: 1925 Opcode = SystemZISD::VTM; 1926 CCValid = SystemZ::CCMASK_VCMP; 1927 return true; 1928 1929 case Intrinsic::s390_vfaebs: 1930 case Intrinsic::s390_vfaehs: 1931 case Intrinsic::s390_vfaefs: 1932 Opcode = SystemZISD::VFAE_CC; 1933 CCValid = SystemZ::CCMASK_ANY; 1934 return true; 1935 1936 case Intrinsic::s390_vfaezbs: 1937 case Intrinsic::s390_vfaezhs: 1938 case Intrinsic::s390_vfaezfs: 1939 Opcode = SystemZISD::VFAEZ_CC; 1940 CCValid = SystemZ::CCMASK_ANY; 1941 return true; 1942 1943 case Intrinsic::s390_vfeebs: 1944 case Intrinsic::s390_vfeehs: 1945 case Intrinsic::s390_vfeefs: 1946 Opcode = SystemZISD::VFEE_CC; 1947 CCValid = SystemZ::CCMASK_ANY; 1948 return true; 1949 1950 case Intrinsic::s390_vfeezbs: 1951 case Intrinsic::s390_vfeezhs: 1952 case Intrinsic::s390_vfeezfs: 1953 Opcode = SystemZISD::VFEEZ_CC; 1954 CCValid = SystemZ::CCMASK_ANY; 1955 return true; 1956 1957 case Intrinsic::s390_vfenebs: 1958 case Intrinsic::s390_vfenehs: 1959 case Intrinsic::s390_vfenefs: 1960 Opcode = SystemZISD::VFENE_CC; 1961 CCValid = SystemZ::CCMASK_ANY; 1962 return true; 1963 1964 case Intrinsic::s390_vfenezbs: 1965 case Intrinsic::s390_vfenezhs: 1966 case Intrinsic::s390_vfenezfs: 1967 Opcode = SystemZISD::VFENEZ_CC; 1968 CCValid = SystemZ::CCMASK_ANY; 1969 return true; 1970 1971 case Intrinsic::s390_vistrbs: 1972 case Intrinsic::s390_vistrhs: 1973 case Intrinsic::s390_vistrfs: 1974 Opcode = SystemZISD::VISTR_CC; 1975 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1976 return true; 1977 1978 case Intrinsic::s390_vstrcbs: 1979 case Intrinsic::s390_vstrchs: 1980 case Intrinsic::s390_vstrcfs: 1981 Opcode = SystemZISD::VSTRC_CC; 1982 CCValid = SystemZ::CCMASK_ANY; 1983 return true; 1984 1985 case Intrinsic::s390_vstrczbs: 1986 case Intrinsic::s390_vstrczhs: 1987 case Intrinsic::s390_vstrczfs: 1988 Opcode = SystemZISD::VSTRCZ_CC; 1989 CCValid = SystemZ::CCMASK_ANY; 1990 return true; 1991 1992 case Intrinsic::s390_vstrsb: 1993 case Intrinsic::s390_vstrsh: 1994 case Intrinsic::s390_vstrsf: 1995 Opcode = SystemZISD::VSTRS_CC; 1996 CCValid = SystemZ::CCMASK_ANY; 1997 return true; 1998 1999 case Intrinsic::s390_vstrszb: 2000 case Intrinsic::s390_vstrszh: 2001 case Intrinsic::s390_vstrszf: 2002 Opcode = SystemZISD::VSTRSZ_CC; 2003 CCValid = SystemZ::CCMASK_ANY; 2004 return true; 2005 2006 case Intrinsic::s390_vfcedbs: 2007 case Intrinsic::s390_vfcesbs: 2008 Opcode = SystemZISD::VFCMPES; 2009 CCValid = SystemZ::CCMASK_VCMP; 2010 return true; 2011 2012 case Intrinsic::s390_vfchdbs: 2013 case Intrinsic::s390_vfchsbs: 2014 Opcode = SystemZISD::VFCMPHS; 2015 CCValid = SystemZ::CCMASK_VCMP; 2016 return true; 2017 2018 case Intrinsic::s390_vfchedbs: 2019 case Intrinsic::s390_vfchesbs: 2020 Opcode = SystemZISD::VFCMPHES; 2021 CCValid = SystemZ::CCMASK_VCMP; 2022 return true; 2023 2024 case Intrinsic::s390_vftcidb: 2025 case Intrinsic::s390_vftcisb: 2026 Opcode = SystemZISD::VFTCI; 2027 CCValid = SystemZ::CCMASK_VCMP; 2028 return true; 2029 2030 case Intrinsic::s390_tdc: 2031 Opcode = SystemZISD::TDC; 2032 CCValid = SystemZ::CCMASK_TDC; 2033 return true; 2034 2035 default: 2036 return false; 2037 } 2038 } 2039 2040 // Emit an intrinsic with chain and an explicit CC register result. 2041 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2042 unsigned Opcode) { 2043 // Copy all operands except the intrinsic ID. 2044 unsigned NumOps = Op.getNumOperands(); 2045 SmallVector<SDValue, 6> Ops; 2046 Ops.reserve(NumOps - 1); 2047 Ops.push_back(Op.getOperand(0)); 2048 for (unsigned I = 2; I < NumOps; ++I) 2049 Ops.push_back(Op.getOperand(I)); 2050 2051 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2052 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2053 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2054 SDValue OldChain = SDValue(Op.getNode(), 1); 2055 SDValue NewChain = SDValue(Intr.getNode(), 1); 2056 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2057 return Intr.getNode(); 2058 } 2059 2060 // Emit an intrinsic with an explicit CC register result. 2061 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2062 unsigned Opcode) { 2063 // Copy all operands except the intrinsic ID. 2064 unsigned NumOps = Op.getNumOperands(); 2065 SmallVector<SDValue, 6> Ops; 2066 Ops.reserve(NumOps - 1); 2067 for (unsigned I = 1; I < NumOps; ++I) 2068 Ops.push_back(Op.getOperand(I)); 2069 2070 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2071 return Intr.getNode(); 2072 } 2073 2074 // CC is a comparison that will be implemented using an integer or 2075 // floating-point comparison. Return the condition code mask for 2076 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2077 // unsigned comparisons and clear for signed ones. In the floating-point 2078 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2079 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2080 #define CONV(X) \ 2081 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2082 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2083 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2084 2085 switch (CC) { 2086 default: 2087 llvm_unreachable("Invalid integer condition!"); 2088 2089 CONV(EQ); 2090 CONV(NE); 2091 CONV(GT); 2092 CONV(GE); 2093 CONV(LT); 2094 CONV(LE); 2095 2096 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2097 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2098 } 2099 #undef CONV 2100 } 2101 2102 // If C can be converted to a comparison against zero, adjust the operands 2103 // as necessary. 2104 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2105 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2106 return; 2107 2108 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2109 if (!ConstOp1) 2110 return; 2111 2112 int64_t Value = ConstOp1->getSExtValue(); 2113 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2114 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2115 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2116 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2117 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2118 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2119 } 2120 } 2121 2122 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2123 // adjust the operands as necessary. 2124 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2125 Comparison &C) { 2126 // For us to make any changes, it must a comparison between a single-use 2127 // load and a constant. 2128 if (!C.Op0.hasOneUse() || 2129 C.Op0.getOpcode() != ISD::LOAD || 2130 C.Op1.getOpcode() != ISD::Constant) 2131 return; 2132 2133 // We must have an 8- or 16-bit load. 2134 auto *Load = cast<LoadSDNode>(C.Op0); 2135 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2136 if ((NumBits != 8 && NumBits != 16) || 2137 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2138 return; 2139 2140 // The load must be an extending one and the constant must be within the 2141 // range of the unextended value. 2142 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2143 uint64_t Value = ConstOp1->getZExtValue(); 2144 uint64_t Mask = (1 << NumBits) - 1; 2145 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2146 // Make sure that ConstOp1 is in range of C.Op0. 2147 int64_t SignedValue = ConstOp1->getSExtValue(); 2148 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2149 return; 2150 if (C.ICmpType != SystemZICMP::SignedOnly) { 2151 // Unsigned comparison between two sign-extended values is equivalent 2152 // to unsigned comparison between two zero-extended values. 2153 Value &= Mask; 2154 } else if (NumBits == 8) { 2155 // Try to treat the comparison as unsigned, so that we can use CLI. 2156 // Adjust CCMask and Value as necessary. 2157 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2158 // Test whether the high bit of the byte is set. 2159 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2160 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2161 // Test whether the high bit of the byte is clear. 2162 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2163 else 2164 // No instruction exists for this combination. 2165 return; 2166 C.ICmpType = SystemZICMP::UnsignedOnly; 2167 } 2168 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2169 if (Value > Mask) 2170 return; 2171 // If the constant is in range, we can use any comparison. 2172 C.ICmpType = SystemZICMP::Any; 2173 } else 2174 return; 2175 2176 // Make sure that the first operand is an i32 of the right extension type. 2177 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2178 ISD::SEXTLOAD : 2179 ISD::ZEXTLOAD); 2180 if (C.Op0.getValueType() != MVT::i32 || 2181 Load->getExtensionType() != ExtType) { 2182 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2183 Load->getBasePtr(), Load->getPointerInfo(), 2184 Load->getMemoryVT(), Load->getAlignment(), 2185 Load->getMemOperand()->getFlags()); 2186 // Update the chain uses. 2187 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2188 } 2189 2190 // Make sure that the second operand is an i32 with the right value. 2191 if (C.Op1.getValueType() != MVT::i32 || 2192 Value != ConstOp1->getZExtValue()) 2193 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2194 } 2195 2196 // Return true if Op is either an unextended load, or a load suitable 2197 // for integer register-memory comparisons of type ICmpType. 2198 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2199 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2200 if (Load) { 2201 // There are no instructions to compare a register with a memory byte. 2202 if (Load->getMemoryVT() == MVT::i8) 2203 return false; 2204 // Otherwise decide on extension type. 2205 switch (Load->getExtensionType()) { 2206 case ISD::NON_EXTLOAD: 2207 return true; 2208 case ISD::SEXTLOAD: 2209 return ICmpType != SystemZICMP::UnsignedOnly; 2210 case ISD::ZEXTLOAD: 2211 return ICmpType != SystemZICMP::SignedOnly; 2212 default: 2213 break; 2214 } 2215 } 2216 return false; 2217 } 2218 2219 // Return true if it is better to swap the operands of C. 2220 static bool shouldSwapCmpOperands(const Comparison &C) { 2221 // Leave f128 comparisons alone, since they have no memory forms. 2222 if (C.Op0.getValueType() == MVT::f128) 2223 return false; 2224 2225 // Always keep a floating-point constant second, since comparisons with 2226 // zero can use LOAD TEST and comparisons with other constants make a 2227 // natural memory operand. 2228 if (isa<ConstantFPSDNode>(C.Op1)) 2229 return false; 2230 2231 // Never swap comparisons with zero since there are many ways to optimize 2232 // those later. 2233 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2234 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2235 return false; 2236 2237 // Also keep natural memory operands second if the loaded value is 2238 // only used here. Several comparisons have memory forms. 2239 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2240 return false; 2241 2242 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2243 // In that case we generally prefer the memory to be second. 2244 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2245 // The only exceptions are when the second operand is a constant and 2246 // we can use things like CHHSI. 2247 if (!ConstOp1) 2248 return true; 2249 // The unsigned memory-immediate instructions can handle 16-bit 2250 // unsigned integers. 2251 if (C.ICmpType != SystemZICMP::SignedOnly && 2252 isUInt<16>(ConstOp1->getZExtValue())) 2253 return false; 2254 // The signed memory-immediate instructions can handle 16-bit 2255 // signed integers. 2256 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2257 isInt<16>(ConstOp1->getSExtValue())) 2258 return false; 2259 return true; 2260 } 2261 2262 // Try to promote the use of CGFR and CLGFR. 2263 unsigned Opcode0 = C.Op0.getOpcode(); 2264 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2265 return true; 2266 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2267 return true; 2268 if (C.ICmpType != SystemZICMP::SignedOnly && 2269 Opcode0 == ISD::AND && 2270 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2271 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2272 return true; 2273 2274 return false; 2275 } 2276 2277 // Check whether C tests for equality between X and Y and whether X - Y 2278 // or Y - X is also computed. In that case it's better to compare the 2279 // result of the subtraction against zero. 2280 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2281 Comparison &C) { 2282 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2283 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2284 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2285 SDNode *N = *I; 2286 if (N->getOpcode() == ISD::SUB && 2287 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2288 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2289 C.Op0 = SDValue(N, 0); 2290 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2291 return; 2292 } 2293 } 2294 } 2295 } 2296 2297 // Check whether C compares a floating-point value with zero and if that 2298 // floating-point value is also negated. In this case we can use the 2299 // negation to set CC, so avoiding separate LOAD AND TEST and 2300 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2301 static void adjustForFNeg(Comparison &C) { 2302 // This optimization is invalid for strict comparisons, since FNEG 2303 // does not raise any exceptions. 2304 if (C.Chain) 2305 return; 2306 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2307 if (C1 && C1->isZero()) { 2308 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2309 SDNode *N = *I; 2310 if (N->getOpcode() == ISD::FNEG) { 2311 C.Op0 = SDValue(N, 0); 2312 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2313 return; 2314 } 2315 } 2316 } 2317 } 2318 2319 // Check whether C compares (shl X, 32) with 0 and whether X is 2320 // also sign-extended. In that case it is better to test the result 2321 // of the sign extension using LTGFR. 2322 // 2323 // This case is important because InstCombine transforms a comparison 2324 // with (sext (trunc X)) into a comparison with (shl X, 32). 2325 static void adjustForLTGFR(Comparison &C) { 2326 // Check for a comparison between (shl X, 32) and 0. 2327 if (C.Op0.getOpcode() == ISD::SHL && 2328 C.Op0.getValueType() == MVT::i64 && 2329 C.Op1.getOpcode() == ISD::Constant && 2330 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2331 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2332 if (C1 && C1->getZExtValue() == 32) { 2333 SDValue ShlOp0 = C.Op0.getOperand(0); 2334 // See whether X has any SIGN_EXTEND_INREG uses. 2335 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2336 SDNode *N = *I; 2337 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2338 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2339 C.Op0 = SDValue(N, 0); 2340 return; 2341 } 2342 } 2343 } 2344 } 2345 } 2346 2347 // If C compares the truncation of an extending load, try to compare 2348 // the untruncated value instead. This exposes more opportunities to 2349 // reuse CC. 2350 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2351 Comparison &C) { 2352 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2353 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2354 C.Op1.getOpcode() == ISD::Constant && 2355 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2356 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2357 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2358 C.Op0.getValueSizeInBits().getFixedSize()) { 2359 unsigned Type = L->getExtensionType(); 2360 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2361 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2362 C.Op0 = C.Op0.getOperand(0); 2363 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2364 } 2365 } 2366 } 2367 } 2368 2369 // Return true if shift operation N has an in-range constant shift value. 2370 // Store it in ShiftVal if so. 2371 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2372 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2373 if (!Shift) 2374 return false; 2375 2376 uint64_t Amount = Shift->getZExtValue(); 2377 if (Amount >= N.getValueSizeInBits()) 2378 return false; 2379 2380 ShiftVal = Amount; 2381 return true; 2382 } 2383 2384 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2385 // instruction and whether the CC value is descriptive enough to handle 2386 // a comparison of type Opcode between the AND result and CmpVal. 2387 // CCMask says which comparison result is being tested and BitSize is 2388 // the number of bits in the operands. If TEST UNDER MASK can be used, 2389 // return the corresponding CC mask, otherwise return 0. 2390 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2391 uint64_t Mask, uint64_t CmpVal, 2392 unsigned ICmpType) { 2393 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2394 2395 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2396 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2397 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2398 return 0; 2399 2400 // Work out the masks for the lowest and highest bits. 2401 unsigned HighShift = 63 - countLeadingZeros(Mask); 2402 uint64_t High = uint64_t(1) << HighShift; 2403 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2404 2405 // Signed ordered comparisons are effectively unsigned if the sign 2406 // bit is dropped. 2407 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2408 2409 // Check for equality comparisons with 0, or the equivalent. 2410 if (CmpVal == 0) { 2411 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2412 return SystemZ::CCMASK_TM_ALL_0; 2413 if (CCMask == SystemZ::CCMASK_CMP_NE) 2414 return SystemZ::CCMASK_TM_SOME_1; 2415 } 2416 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2417 if (CCMask == SystemZ::CCMASK_CMP_LT) 2418 return SystemZ::CCMASK_TM_ALL_0; 2419 if (CCMask == SystemZ::CCMASK_CMP_GE) 2420 return SystemZ::CCMASK_TM_SOME_1; 2421 } 2422 if (EffectivelyUnsigned && CmpVal < Low) { 2423 if (CCMask == SystemZ::CCMASK_CMP_LE) 2424 return SystemZ::CCMASK_TM_ALL_0; 2425 if (CCMask == SystemZ::CCMASK_CMP_GT) 2426 return SystemZ::CCMASK_TM_SOME_1; 2427 } 2428 2429 // Check for equality comparisons with the mask, or the equivalent. 2430 if (CmpVal == Mask) { 2431 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2432 return SystemZ::CCMASK_TM_ALL_1; 2433 if (CCMask == SystemZ::CCMASK_CMP_NE) 2434 return SystemZ::CCMASK_TM_SOME_0; 2435 } 2436 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2437 if (CCMask == SystemZ::CCMASK_CMP_GT) 2438 return SystemZ::CCMASK_TM_ALL_1; 2439 if (CCMask == SystemZ::CCMASK_CMP_LE) 2440 return SystemZ::CCMASK_TM_SOME_0; 2441 } 2442 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2443 if (CCMask == SystemZ::CCMASK_CMP_GE) 2444 return SystemZ::CCMASK_TM_ALL_1; 2445 if (CCMask == SystemZ::CCMASK_CMP_LT) 2446 return SystemZ::CCMASK_TM_SOME_0; 2447 } 2448 2449 // Check for ordered comparisons with the top bit. 2450 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2451 if (CCMask == SystemZ::CCMASK_CMP_LE) 2452 return SystemZ::CCMASK_TM_MSB_0; 2453 if (CCMask == SystemZ::CCMASK_CMP_GT) 2454 return SystemZ::CCMASK_TM_MSB_1; 2455 } 2456 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2457 if (CCMask == SystemZ::CCMASK_CMP_LT) 2458 return SystemZ::CCMASK_TM_MSB_0; 2459 if (CCMask == SystemZ::CCMASK_CMP_GE) 2460 return SystemZ::CCMASK_TM_MSB_1; 2461 } 2462 2463 // If there are just two bits, we can do equality checks for Low and High 2464 // as well. 2465 if (Mask == Low + High) { 2466 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2467 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2468 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2469 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2470 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2471 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2472 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2473 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2474 } 2475 2476 // Looks like we've exhausted our options. 2477 return 0; 2478 } 2479 2480 // See whether C can be implemented as a TEST UNDER MASK instruction. 2481 // Update the arguments with the TM version if so. 2482 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2483 Comparison &C) { 2484 // Check that we have a comparison with a constant. 2485 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2486 if (!ConstOp1) 2487 return; 2488 uint64_t CmpVal = ConstOp1->getZExtValue(); 2489 2490 // Check whether the nonconstant input is an AND with a constant mask. 2491 Comparison NewC(C); 2492 uint64_t MaskVal; 2493 ConstantSDNode *Mask = nullptr; 2494 if (C.Op0.getOpcode() == ISD::AND) { 2495 NewC.Op0 = C.Op0.getOperand(0); 2496 NewC.Op1 = C.Op0.getOperand(1); 2497 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2498 if (!Mask) 2499 return; 2500 MaskVal = Mask->getZExtValue(); 2501 } else { 2502 // There is no instruction to compare with a 64-bit immediate 2503 // so use TMHH instead if possible. We need an unsigned ordered 2504 // comparison with an i64 immediate. 2505 if (NewC.Op0.getValueType() != MVT::i64 || 2506 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2507 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2508 NewC.ICmpType == SystemZICMP::SignedOnly) 2509 return; 2510 // Convert LE and GT comparisons into LT and GE. 2511 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2512 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2513 if (CmpVal == uint64_t(-1)) 2514 return; 2515 CmpVal += 1; 2516 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2517 } 2518 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2519 // be masked off without changing the result. 2520 MaskVal = -(CmpVal & -CmpVal); 2521 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2522 } 2523 if (!MaskVal) 2524 return; 2525 2526 // Check whether the combination of mask, comparison value and comparison 2527 // type are suitable. 2528 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2529 unsigned NewCCMask, ShiftVal; 2530 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2531 NewC.Op0.getOpcode() == ISD::SHL && 2532 isSimpleShift(NewC.Op0, ShiftVal) && 2533 (MaskVal >> ShiftVal != 0) && 2534 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2535 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2536 MaskVal >> ShiftVal, 2537 CmpVal >> ShiftVal, 2538 SystemZICMP::Any))) { 2539 NewC.Op0 = NewC.Op0.getOperand(0); 2540 MaskVal >>= ShiftVal; 2541 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2542 NewC.Op0.getOpcode() == ISD::SRL && 2543 isSimpleShift(NewC.Op0, ShiftVal) && 2544 (MaskVal << ShiftVal != 0) && 2545 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2546 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2547 MaskVal << ShiftVal, 2548 CmpVal << ShiftVal, 2549 SystemZICMP::UnsignedOnly))) { 2550 NewC.Op0 = NewC.Op0.getOperand(0); 2551 MaskVal <<= ShiftVal; 2552 } else { 2553 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2554 NewC.ICmpType); 2555 if (!NewCCMask) 2556 return; 2557 } 2558 2559 // Go ahead and make the change. 2560 C.Opcode = SystemZISD::TM; 2561 C.Op0 = NewC.Op0; 2562 if (Mask && Mask->getZExtValue() == MaskVal) 2563 C.Op1 = SDValue(Mask, 0); 2564 else 2565 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2566 C.CCValid = SystemZ::CCMASK_TM; 2567 C.CCMask = NewCCMask; 2568 } 2569 2570 // See whether the comparison argument contains a redundant AND 2571 // and remove it if so. This sometimes happens due to the generic 2572 // BRCOND expansion. 2573 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2574 Comparison &C) { 2575 if (C.Op0.getOpcode() != ISD::AND) 2576 return; 2577 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2578 if (!Mask) 2579 return; 2580 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2581 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2582 return; 2583 2584 C.Op0 = C.Op0.getOperand(0); 2585 } 2586 2587 // Return a Comparison that tests the condition-code result of intrinsic 2588 // node Call against constant integer CC using comparison code Cond. 2589 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2590 // and CCValid is the set of possible condition-code results. 2591 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2592 SDValue Call, unsigned CCValid, uint64_t CC, 2593 ISD::CondCode Cond) { 2594 Comparison C(Call, SDValue(), SDValue()); 2595 C.Opcode = Opcode; 2596 C.CCValid = CCValid; 2597 if (Cond == ISD::SETEQ) 2598 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2599 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2600 else if (Cond == ISD::SETNE) 2601 // ...and the inverse of that. 2602 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2603 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2604 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2605 // always true for CC>3. 2606 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2607 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2608 // ...and the inverse of that. 2609 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2610 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2611 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2612 // always true for CC>3. 2613 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2614 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2615 // ...and the inverse of that. 2616 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2617 else 2618 llvm_unreachable("Unexpected integer comparison type"); 2619 C.CCMask &= CCValid; 2620 return C; 2621 } 2622 2623 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2624 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2625 ISD::CondCode Cond, const SDLoc &DL, 2626 SDValue Chain = SDValue(), 2627 bool IsSignaling = false) { 2628 if (CmpOp1.getOpcode() == ISD::Constant) { 2629 assert(!Chain); 2630 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2631 unsigned Opcode, CCValid; 2632 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2633 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2634 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2635 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2636 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2637 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2638 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2639 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2640 } 2641 Comparison C(CmpOp0, CmpOp1, Chain); 2642 C.CCMask = CCMaskForCondCode(Cond); 2643 if (C.Op0.getValueType().isFloatingPoint()) { 2644 C.CCValid = SystemZ::CCMASK_FCMP; 2645 if (!C.Chain) 2646 C.Opcode = SystemZISD::FCMP; 2647 else if (!IsSignaling) 2648 C.Opcode = SystemZISD::STRICT_FCMP; 2649 else 2650 C.Opcode = SystemZISD::STRICT_FCMPS; 2651 adjustForFNeg(C); 2652 } else { 2653 assert(!C.Chain); 2654 C.CCValid = SystemZ::CCMASK_ICMP; 2655 C.Opcode = SystemZISD::ICMP; 2656 // Choose the type of comparison. Equality and inequality tests can 2657 // use either signed or unsigned comparisons. The choice also doesn't 2658 // matter if both sign bits are known to be clear. In those cases we 2659 // want to give the main isel code the freedom to choose whichever 2660 // form fits best. 2661 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2662 C.CCMask == SystemZ::CCMASK_CMP_NE || 2663 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2664 C.ICmpType = SystemZICMP::Any; 2665 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2666 C.ICmpType = SystemZICMP::UnsignedOnly; 2667 else 2668 C.ICmpType = SystemZICMP::SignedOnly; 2669 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2670 adjustForRedundantAnd(DAG, DL, C); 2671 adjustZeroCmp(DAG, DL, C); 2672 adjustSubwordCmp(DAG, DL, C); 2673 adjustForSubtraction(DAG, DL, C); 2674 adjustForLTGFR(C); 2675 adjustICmpTruncate(DAG, DL, C); 2676 } 2677 2678 if (shouldSwapCmpOperands(C)) { 2679 std::swap(C.Op0, C.Op1); 2680 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2681 } 2682 2683 adjustForTestUnderMask(DAG, DL, C); 2684 return C; 2685 } 2686 2687 // Emit the comparison instruction described by C. 2688 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2689 if (!C.Op1.getNode()) { 2690 SDNode *Node; 2691 switch (C.Op0.getOpcode()) { 2692 case ISD::INTRINSIC_W_CHAIN: 2693 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2694 return SDValue(Node, 0); 2695 case ISD::INTRINSIC_WO_CHAIN: 2696 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2697 return SDValue(Node, Node->getNumValues() - 1); 2698 default: 2699 llvm_unreachable("Invalid comparison operands"); 2700 } 2701 } 2702 if (C.Opcode == SystemZISD::ICMP) 2703 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2704 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2705 if (C.Opcode == SystemZISD::TM) { 2706 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2707 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2708 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2709 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2710 } 2711 if (C.Chain) { 2712 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2713 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2714 } 2715 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2716 } 2717 2718 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2719 // 64 bits. Extend is the extension type to use. Store the high part 2720 // in Hi and the low part in Lo. 2721 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2722 SDValue Op0, SDValue Op1, SDValue &Hi, 2723 SDValue &Lo) { 2724 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2725 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2726 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2727 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2728 DAG.getConstant(32, DL, MVT::i64)); 2729 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2730 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2731 } 2732 2733 // Lower a binary operation that produces two VT results, one in each 2734 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2735 // and Opcode performs the GR128 operation. Store the even register result 2736 // in Even and the odd register result in Odd. 2737 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2738 unsigned Opcode, SDValue Op0, SDValue Op1, 2739 SDValue &Even, SDValue &Odd) { 2740 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2741 bool Is32Bit = is32Bit(VT); 2742 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2743 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2744 } 2745 2746 // Return an i32 value that is 1 if the CC value produced by CCReg is 2747 // in the mask CCMask and 0 otherwise. CC is known to have a value 2748 // in CCValid, so other values can be ignored. 2749 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2750 unsigned CCValid, unsigned CCMask) { 2751 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2752 DAG.getConstant(0, DL, MVT::i32), 2753 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2754 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2755 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2756 } 2757 2758 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2759 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2760 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2761 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2762 // floating-point comparisons. 2763 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2764 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2765 switch (CC) { 2766 case ISD::SETOEQ: 2767 case ISD::SETEQ: 2768 switch (Mode) { 2769 case CmpMode::Int: return SystemZISD::VICMPE; 2770 case CmpMode::FP: return SystemZISD::VFCMPE; 2771 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2772 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2773 } 2774 llvm_unreachable("Bad mode"); 2775 2776 case ISD::SETOGE: 2777 case ISD::SETGE: 2778 switch (Mode) { 2779 case CmpMode::Int: return 0; 2780 case CmpMode::FP: return SystemZISD::VFCMPHE; 2781 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2782 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2783 } 2784 llvm_unreachable("Bad mode"); 2785 2786 case ISD::SETOGT: 2787 case ISD::SETGT: 2788 switch (Mode) { 2789 case CmpMode::Int: return SystemZISD::VICMPH; 2790 case CmpMode::FP: return SystemZISD::VFCMPH; 2791 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2792 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2793 } 2794 llvm_unreachable("Bad mode"); 2795 2796 case ISD::SETUGT: 2797 switch (Mode) { 2798 case CmpMode::Int: return SystemZISD::VICMPHL; 2799 case CmpMode::FP: return 0; 2800 case CmpMode::StrictFP: return 0; 2801 case CmpMode::SignalingFP: return 0; 2802 } 2803 llvm_unreachable("Bad mode"); 2804 2805 default: 2806 return 0; 2807 } 2808 } 2809 2810 // Return the SystemZISD vector comparison operation for CC or its inverse, 2811 // or 0 if neither can be done directly. Indicate in Invert whether the 2812 // result is for the inverse of CC. Mode is as above. 2813 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2814 bool &Invert) { 2815 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2816 Invert = false; 2817 return Opcode; 2818 } 2819 2820 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2821 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2822 Invert = true; 2823 return Opcode; 2824 } 2825 2826 return 0; 2827 } 2828 2829 // Return a v2f64 that contains the extended form of elements Start and Start+1 2830 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2831 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2832 SDValue Op, SDValue Chain) { 2833 int Mask[] = { Start, -1, Start + 1, -1 }; 2834 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2835 if (Chain) { 2836 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2837 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2838 } 2839 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2840 } 2841 2842 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2843 // producing a result of type VT. If Chain is nonnull, return the strict form. 2844 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2845 const SDLoc &DL, EVT VT, 2846 SDValue CmpOp0, 2847 SDValue CmpOp1, 2848 SDValue Chain) const { 2849 // There is no hardware support for v4f32 (unless we have the vector 2850 // enhancements facility 1), so extend the vector into two v2f64s 2851 // and compare those. 2852 if (CmpOp0.getValueType() == MVT::v4f32 && 2853 !Subtarget.hasVectorEnhancements1()) { 2854 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2855 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2856 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2857 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2858 if (Chain) { 2859 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2860 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2861 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2862 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2863 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2864 H1.getValue(1), L1.getValue(1), 2865 HRes.getValue(1), LRes.getValue(1) }; 2866 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2867 SDValue Ops[2] = { Res, NewChain }; 2868 return DAG.getMergeValues(Ops, DL); 2869 } 2870 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2871 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2872 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2873 } 2874 if (Chain) { 2875 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2876 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2877 } 2878 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2879 } 2880 2881 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2882 // an integer mask of type VT. If Chain is nonnull, we have a strict 2883 // floating-point comparison. If in addition IsSignaling is true, we have 2884 // a strict signaling floating-point comparison. 2885 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2886 const SDLoc &DL, EVT VT, 2887 ISD::CondCode CC, 2888 SDValue CmpOp0, 2889 SDValue CmpOp1, 2890 SDValue Chain, 2891 bool IsSignaling) const { 2892 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2893 assert (!Chain || IsFP); 2894 assert (!IsSignaling || Chain); 2895 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2896 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2897 bool Invert = false; 2898 SDValue Cmp; 2899 switch (CC) { 2900 // Handle tests for order using (or (ogt y x) (oge x y)). 2901 case ISD::SETUO: 2902 Invert = true; 2903 LLVM_FALLTHROUGH; 2904 case ISD::SETO: { 2905 assert(IsFP && "Unexpected integer comparison"); 2906 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2907 DL, VT, CmpOp1, CmpOp0, Chain); 2908 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2909 DL, VT, CmpOp0, CmpOp1, Chain); 2910 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2911 if (Chain) 2912 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2913 LT.getValue(1), GE.getValue(1)); 2914 break; 2915 } 2916 2917 // Handle <> tests using (or (ogt y x) (ogt x y)). 2918 case ISD::SETUEQ: 2919 Invert = true; 2920 LLVM_FALLTHROUGH; 2921 case ISD::SETONE: { 2922 assert(IsFP && "Unexpected integer comparison"); 2923 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2924 DL, VT, CmpOp1, CmpOp0, Chain); 2925 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2926 DL, VT, CmpOp0, CmpOp1, Chain); 2927 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2928 if (Chain) 2929 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2930 LT.getValue(1), GT.getValue(1)); 2931 break; 2932 } 2933 2934 // Otherwise a single comparison is enough. It doesn't really 2935 // matter whether we try the inversion or the swap first, since 2936 // there are no cases where both work. 2937 default: 2938 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2939 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2940 else { 2941 CC = ISD::getSetCCSwappedOperands(CC); 2942 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2943 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2944 else 2945 llvm_unreachable("Unhandled comparison"); 2946 } 2947 if (Chain) 2948 Chain = Cmp.getValue(1); 2949 break; 2950 } 2951 if (Invert) { 2952 SDValue Mask = 2953 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2954 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2955 } 2956 if (Chain && Chain.getNode() != Cmp.getNode()) { 2957 SDValue Ops[2] = { Cmp, Chain }; 2958 Cmp = DAG.getMergeValues(Ops, DL); 2959 } 2960 return Cmp; 2961 } 2962 2963 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2964 SelectionDAG &DAG) const { 2965 SDValue CmpOp0 = Op.getOperand(0); 2966 SDValue CmpOp1 = Op.getOperand(1); 2967 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2968 SDLoc DL(Op); 2969 EVT VT = Op.getValueType(); 2970 if (VT.isVector()) 2971 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2972 2973 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2974 SDValue CCReg = emitCmp(DAG, DL, C); 2975 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2976 } 2977 2978 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2979 SelectionDAG &DAG, 2980 bool IsSignaling) const { 2981 SDValue Chain = Op.getOperand(0); 2982 SDValue CmpOp0 = Op.getOperand(1); 2983 SDValue CmpOp1 = Op.getOperand(2); 2984 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2985 SDLoc DL(Op); 2986 EVT VT = Op.getNode()->getValueType(0); 2987 if (VT.isVector()) { 2988 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2989 Chain, IsSignaling); 2990 return Res.getValue(Op.getResNo()); 2991 } 2992 2993 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2994 SDValue CCReg = emitCmp(DAG, DL, C); 2995 CCReg->setFlags(Op->getFlags()); 2996 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2997 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2998 return DAG.getMergeValues(Ops, DL); 2999 } 3000 3001 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3002 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3003 SDValue CmpOp0 = Op.getOperand(2); 3004 SDValue CmpOp1 = Op.getOperand(3); 3005 SDValue Dest = Op.getOperand(4); 3006 SDLoc DL(Op); 3007 3008 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3009 SDValue CCReg = emitCmp(DAG, DL, C); 3010 return DAG.getNode( 3011 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3012 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3013 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3014 } 3015 3016 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3017 // allowing Pos and Neg to be wider than CmpOp. 3018 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3019 return (Neg.getOpcode() == ISD::SUB && 3020 Neg.getOperand(0).getOpcode() == ISD::Constant && 3021 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 3022 Neg.getOperand(1) == Pos && 3023 (Pos == CmpOp || 3024 (Pos.getOpcode() == ISD::SIGN_EXTEND && 3025 Pos.getOperand(0) == CmpOp))); 3026 } 3027 3028 // Return the absolute or negative absolute of Op; IsNegative decides which. 3029 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3030 bool IsNegative) { 3031 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3032 if (IsNegative) 3033 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3034 DAG.getConstant(0, DL, Op.getValueType()), Op); 3035 return Op; 3036 } 3037 3038 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3039 SelectionDAG &DAG) const { 3040 SDValue CmpOp0 = Op.getOperand(0); 3041 SDValue CmpOp1 = Op.getOperand(1); 3042 SDValue TrueOp = Op.getOperand(2); 3043 SDValue FalseOp = Op.getOperand(3); 3044 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3045 SDLoc DL(Op); 3046 3047 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3048 3049 // Check for absolute and negative-absolute selections, including those 3050 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3051 // This check supplements the one in DAGCombiner. 3052 if (C.Opcode == SystemZISD::ICMP && 3053 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3054 C.CCMask != SystemZ::CCMASK_CMP_NE && 3055 C.Op1.getOpcode() == ISD::Constant && 3056 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3057 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3058 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3059 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3060 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3061 } 3062 3063 SDValue CCReg = emitCmp(DAG, DL, C); 3064 SDValue Ops[] = {TrueOp, FalseOp, 3065 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3066 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3067 3068 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3069 } 3070 3071 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3072 SelectionDAG &DAG) const { 3073 SDLoc DL(Node); 3074 const GlobalValue *GV = Node->getGlobal(); 3075 int64_t Offset = Node->getOffset(); 3076 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3077 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3078 3079 SDValue Result; 3080 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3081 if (isInt<32>(Offset)) { 3082 // Assign anchors at 1<<12 byte boundaries. 3083 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3084 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3085 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3086 3087 // The offset can be folded into the address if it is aligned to a 3088 // halfword. 3089 Offset -= Anchor; 3090 if (Offset != 0 && (Offset & 1) == 0) { 3091 SDValue Full = 3092 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3093 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3094 Offset = 0; 3095 } 3096 } else { 3097 // Conservatively load a constant offset greater than 32 bits into a 3098 // register below. 3099 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3100 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3101 } 3102 } else { 3103 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3104 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3105 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3106 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3107 } 3108 3109 // If there was a non-zero offset that we didn't fold, create an explicit 3110 // addition for it. 3111 if (Offset != 0) 3112 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3113 DAG.getConstant(Offset, DL, PtrVT)); 3114 3115 return Result; 3116 } 3117 3118 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3119 SelectionDAG &DAG, 3120 unsigned Opcode, 3121 SDValue GOTOffset) const { 3122 SDLoc DL(Node); 3123 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3124 SDValue Chain = DAG.getEntryNode(); 3125 SDValue Glue; 3126 3127 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3128 CallingConv::GHC) 3129 report_fatal_error("In GHC calling convention TLS is not supported"); 3130 3131 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3132 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3133 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3134 Glue = Chain.getValue(1); 3135 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3136 Glue = Chain.getValue(1); 3137 3138 // The first call operand is the chain and the second is the TLS symbol. 3139 SmallVector<SDValue, 8> Ops; 3140 Ops.push_back(Chain); 3141 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3142 Node->getValueType(0), 3143 0, 0)); 3144 3145 // Add argument registers to the end of the list so that they are 3146 // known live into the call. 3147 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3148 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3149 3150 // Add a register mask operand representing the call-preserved registers. 3151 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3152 const uint32_t *Mask = 3153 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3154 assert(Mask && "Missing call preserved mask for calling convention"); 3155 Ops.push_back(DAG.getRegisterMask(Mask)); 3156 3157 // Glue the call to the argument copies. 3158 Ops.push_back(Glue); 3159 3160 // Emit the call. 3161 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3162 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3163 Glue = Chain.getValue(1); 3164 3165 // Copy the return value from %r2. 3166 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3167 } 3168 3169 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3170 SelectionDAG &DAG) const { 3171 SDValue Chain = DAG.getEntryNode(); 3172 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3173 3174 // The high part of the thread pointer is in access register 0. 3175 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3176 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3177 3178 // The low part of the thread pointer is in access register 1. 3179 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3180 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3181 3182 // Merge them into a single 64-bit address. 3183 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3184 DAG.getConstant(32, DL, PtrVT)); 3185 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3186 } 3187 3188 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3189 SelectionDAG &DAG) const { 3190 if (DAG.getTarget().useEmulatedTLS()) 3191 return LowerToTLSEmulatedModel(Node, DAG); 3192 SDLoc DL(Node); 3193 const GlobalValue *GV = Node->getGlobal(); 3194 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3195 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3196 3197 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3198 CallingConv::GHC) 3199 report_fatal_error("In GHC calling convention TLS is not supported"); 3200 3201 SDValue TP = lowerThreadPointer(DL, DAG); 3202 3203 // Get the offset of GA from the thread pointer, based on the TLS model. 3204 SDValue Offset; 3205 switch (model) { 3206 case TLSModel::GeneralDynamic: { 3207 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3208 SystemZConstantPoolValue *CPV = 3209 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3210 3211 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3212 Offset = DAG.getLoad( 3213 PtrVT, DL, DAG.getEntryNode(), Offset, 3214 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3215 3216 // Call __tls_get_offset to retrieve the offset. 3217 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3218 break; 3219 } 3220 3221 case TLSModel::LocalDynamic: { 3222 // Load the GOT offset of the module ID. 3223 SystemZConstantPoolValue *CPV = 3224 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3225 3226 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3227 Offset = DAG.getLoad( 3228 PtrVT, DL, DAG.getEntryNode(), Offset, 3229 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3230 3231 // Call __tls_get_offset to retrieve the module base offset. 3232 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3233 3234 // Note: The SystemZLDCleanupPass will remove redundant computations 3235 // of the module base offset. Count total number of local-dynamic 3236 // accesses to trigger execution of that pass. 3237 SystemZMachineFunctionInfo* MFI = 3238 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3239 MFI->incNumLocalDynamicTLSAccesses(); 3240 3241 // Add the per-symbol offset. 3242 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3243 3244 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3245 DTPOffset = DAG.getLoad( 3246 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3247 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3248 3249 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3250 break; 3251 } 3252 3253 case TLSModel::InitialExec: { 3254 // Load the offset from the GOT. 3255 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3256 SystemZII::MO_INDNTPOFF); 3257 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3258 Offset = 3259 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3260 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3261 break; 3262 } 3263 3264 case TLSModel::LocalExec: { 3265 // Force the offset into the constant pool and load it from there. 3266 SystemZConstantPoolValue *CPV = 3267 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3268 3269 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3270 Offset = DAG.getLoad( 3271 PtrVT, DL, DAG.getEntryNode(), Offset, 3272 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3273 break; 3274 } 3275 } 3276 3277 // Add the base and offset together. 3278 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3279 } 3280 3281 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3282 SelectionDAG &DAG) const { 3283 SDLoc DL(Node); 3284 const BlockAddress *BA = Node->getBlockAddress(); 3285 int64_t Offset = Node->getOffset(); 3286 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3287 3288 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3289 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3290 return Result; 3291 } 3292 3293 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3294 SelectionDAG &DAG) const { 3295 SDLoc DL(JT); 3296 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3297 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3298 3299 // Use LARL to load the address of the table. 3300 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3301 } 3302 3303 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3304 SelectionDAG &DAG) const { 3305 SDLoc DL(CP); 3306 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3307 3308 SDValue Result; 3309 if (CP->isMachineConstantPoolEntry()) 3310 Result = 3311 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3312 else 3313 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3314 CP->getOffset()); 3315 3316 // Use LARL to load the address of the constant pool entry. 3317 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3318 } 3319 3320 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3321 SelectionDAG &DAG) const { 3322 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3323 MachineFunction &MF = DAG.getMachineFunction(); 3324 MachineFrameInfo &MFI = MF.getFrameInfo(); 3325 MFI.setFrameAddressIsTaken(true); 3326 3327 SDLoc DL(Op); 3328 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3329 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3330 3331 // By definition, the frame address is the address of the back chain. (In 3332 // the case of packed stack without backchain, return the address where the 3333 // backchain would have been stored. This will either be an unused space or 3334 // contain a saved register). 3335 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3336 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3337 3338 // FIXME The frontend should detect this case. 3339 if (Depth > 0) { 3340 report_fatal_error("Unsupported stack frame traversal count"); 3341 } 3342 3343 return BackChain; 3344 } 3345 3346 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3347 SelectionDAG &DAG) const { 3348 MachineFunction &MF = DAG.getMachineFunction(); 3349 MachineFrameInfo &MFI = MF.getFrameInfo(); 3350 MFI.setReturnAddressIsTaken(true); 3351 3352 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3353 return SDValue(); 3354 3355 SDLoc DL(Op); 3356 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3357 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3358 3359 // FIXME The frontend should detect this case. 3360 if (Depth > 0) { 3361 report_fatal_error("Unsupported stack frame traversal count"); 3362 } 3363 3364 // Return R14D, which has the return address. Mark it an implicit live-in. 3365 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3366 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3367 } 3368 3369 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3370 SelectionDAG &DAG) const { 3371 SDLoc DL(Op); 3372 SDValue In = Op.getOperand(0); 3373 EVT InVT = In.getValueType(); 3374 EVT ResVT = Op.getValueType(); 3375 3376 // Convert loads directly. This is normally done by DAGCombiner, 3377 // but we need this case for bitcasts that are created during lowering 3378 // and which are then lowered themselves. 3379 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3380 if (ISD::isNormalLoad(LoadN)) { 3381 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3382 LoadN->getBasePtr(), LoadN->getMemOperand()); 3383 // Update the chain uses. 3384 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3385 return NewLoad; 3386 } 3387 3388 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3389 SDValue In64; 3390 if (Subtarget.hasHighWord()) { 3391 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3392 MVT::i64); 3393 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3394 MVT::i64, SDValue(U64, 0), In); 3395 } else { 3396 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3397 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3398 DAG.getConstant(32, DL, MVT::i64)); 3399 } 3400 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3401 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3402 DL, MVT::f32, Out64); 3403 } 3404 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3405 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3406 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3407 MVT::f64, SDValue(U64, 0), In); 3408 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3409 if (Subtarget.hasHighWord()) 3410 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3411 MVT::i32, Out64); 3412 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3413 DAG.getConstant(32, DL, MVT::i64)); 3414 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3415 } 3416 llvm_unreachable("Unexpected bitcast combination"); 3417 } 3418 3419 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3420 SelectionDAG &DAG) const { 3421 MachineFunction &MF = DAG.getMachineFunction(); 3422 SystemZMachineFunctionInfo *FuncInfo = 3423 MF.getInfo<SystemZMachineFunctionInfo>(); 3424 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3425 3426 SDValue Chain = Op.getOperand(0); 3427 SDValue Addr = Op.getOperand(1); 3428 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3429 SDLoc DL(Op); 3430 3431 // The initial values of each field. 3432 const unsigned NumFields = 4; 3433 SDValue Fields[NumFields] = { 3434 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3435 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3436 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3437 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3438 }; 3439 3440 // Store each field into its respective slot. 3441 SDValue MemOps[NumFields]; 3442 unsigned Offset = 0; 3443 for (unsigned I = 0; I < NumFields; ++I) { 3444 SDValue FieldAddr = Addr; 3445 if (Offset != 0) 3446 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3447 DAG.getIntPtrConstant(Offset, DL)); 3448 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3449 MachinePointerInfo(SV, Offset)); 3450 Offset += 8; 3451 } 3452 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3453 } 3454 3455 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3456 SelectionDAG &DAG) const { 3457 SDValue Chain = Op.getOperand(0); 3458 SDValue DstPtr = Op.getOperand(1); 3459 SDValue SrcPtr = Op.getOperand(2); 3460 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3461 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3462 SDLoc DL(Op); 3463 3464 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3465 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3466 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3467 MachinePointerInfo(SrcSV)); 3468 } 3469 3470 SDValue SystemZTargetLowering:: 3471 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3472 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3473 MachineFunction &MF = DAG.getMachineFunction(); 3474 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3475 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3476 3477 SDValue Chain = Op.getOperand(0); 3478 SDValue Size = Op.getOperand(1); 3479 SDValue Align = Op.getOperand(2); 3480 SDLoc DL(Op); 3481 3482 // If user has set the no alignment function attribute, ignore 3483 // alloca alignments. 3484 uint64_t AlignVal = 3485 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3486 3487 uint64_t StackAlign = TFI->getStackAlignment(); 3488 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3489 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3490 3491 Register SPReg = getStackPointerRegisterToSaveRestore(); 3492 SDValue NeededSpace = Size; 3493 3494 // Get a reference to the stack pointer. 3495 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3496 3497 // If we need a backchain, save it now. 3498 SDValue Backchain; 3499 if (StoreBackchain) 3500 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3501 MachinePointerInfo()); 3502 3503 // Add extra space for alignment if needed. 3504 if (ExtraAlignSpace) 3505 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3506 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3507 3508 // Get the new stack pointer value. 3509 SDValue NewSP; 3510 if (hasInlineStackProbe(MF)) { 3511 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3512 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3513 Chain = NewSP.getValue(1); 3514 } 3515 else { 3516 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3517 // Copy the new stack pointer back. 3518 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3519 } 3520 3521 // The allocated data lives above the 160 bytes allocated for the standard 3522 // frame, plus any outgoing stack arguments. We don't know how much that 3523 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3524 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3525 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3526 3527 // Dynamically realign if needed. 3528 if (RequiredAlign > StackAlign) { 3529 Result = 3530 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3531 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3532 Result = 3533 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3534 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3535 } 3536 3537 if (StoreBackchain) 3538 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3539 MachinePointerInfo()); 3540 3541 SDValue Ops[2] = { Result, Chain }; 3542 return DAG.getMergeValues(Ops, DL); 3543 } 3544 3545 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3546 SDValue Op, SelectionDAG &DAG) const { 3547 SDLoc DL(Op); 3548 3549 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3550 } 3551 3552 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3553 SelectionDAG &DAG) const { 3554 EVT VT = Op.getValueType(); 3555 SDLoc DL(Op); 3556 SDValue Ops[2]; 3557 if (is32Bit(VT)) 3558 // Just do a normal 64-bit multiplication and extract the results. 3559 // We define this so that it can be used for constant division. 3560 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3561 Op.getOperand(1), Ops[1], Ops[0]); 3562 else if (Subtarget.hasMiscellaneousExtensions2()) 3563 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3564 // the high result in the even register. ISD::SMUL_LOHI is defined to 3565 // return the low half first, so the results are in reverse order. 3566 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3567 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3568 else { 3569 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3570 // 3571 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3572 // 3573 // but using the fact that the upper halves are either all zeros 3574 // or all ones: 3575 // 3576 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3577 // 3578 // and grouping the right terms together since they are quicker than the 3579 // multiplication: 3580 // 3581 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3582 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3583 SDValue LL = Op.getOperand(0); 3584 SDValue RL = Op.getOperand(1); 3585 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3586 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3587 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3588 // the high result in the even register. ISD::SMUL_LOHI is defined to 3589 // return the low half first, so the results are in reverse order. 3590 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3591 LL, RL, Ops[1], Ops[0]); 3592 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3593 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3594 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3595 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3596 } 3597 return DAG.getMergeValues(Ops, DL); 3598 } 3599 3600 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3601 SelectionDAG &DAG) const { 3602 EVT VT = Op.getValueType(); 3603 SDLoc DL(Op); 3604 SDValue Ops[2]; 3605 if (is32Bit(VT)) 3606 // Just do a normal 64-bit multiplication and extract the results. 3607 // We define this so that it can be used for constant division. 3608 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3609 Op.getOperand(1), Ops[1], Ops[0]); 3610 else 3611 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3612 // the high result in the even register. ISD::UMUL_LOHI is defined to 3613 // return the low half first, so the results are in reverse order. 3614 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3615 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3616 return DAG.getMergeValues(Ops, DL); 3617 } 3618 3619 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3620 SelectionDAG &DAG) const { 3621 SDValue Op0 = Op.getOperand(0); 3622 SDValue Op1 = Op.getOperand(1); 3623 EVT VT = Op.getValueType(); 3624 SDLoc DL(Op); 3625 3626 // We use DSGF for 32-bit division. This means the first operand must 3627 // always be 64-bit, and the second operand should be 32-bit whenever 3628 // that is possible, to improve performance. 3629 if (is32Bit(VT)) 3630 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3631 else if (DAG.ComputeNumSignBits(Op1) > 32) 3632 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3633 3634 // DSG(F) returns the remainder in the even register and the 3635 // quotient in the odd register. 3636 SDValue Ops[2]; 3637 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3638 return DAG.getMergeValues(Ops, DL); 3639 } 3640 3641 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3642 SelectionDAG &DAG) const { 3643 EVT VT = Op.getValueType(); 3644 SDLoc DL(Op); 3645 3646 // DL(G) returns the remainder in the even register and the 3647 // quotient in the odd register. 3648 SDValue Ops[2]; 3649 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3650 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3651 return DAG.getMergeValues(Ops, DL); 3652 } 3653 3654 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3655 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3656 3657 // Get the known-zero masks for each operand. 3658 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3659 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3660 DAG.computeKnownBits(Ops[1])}; 3661 3662 // See if the upper 32 bits of one operand and the lower 32 bits of the 3663 // other are known zero. They are the low and high operands respectively. 3664 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3665 Known[1].Zero.getZExtValue() }; 3666 unsigned High, Low; 3667 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3668 High = 1, Low = 0; 3669 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3670 High = 0, Low = 1; 3671 else 3672 return Op; 3673 3674 SDValue LowOp = Ops[Low]; 3675 SDValue HighOp = Ops[High]; 3676 3677 // If the high part is a constant, we're better off using IILH. 3678 if (HighOp.getOpcode() == ISD::Constant) 3679 return Op; 3680 3681 // If the low part is a constant that is outside the range of LHI, 3682 // then we're better off using IILF. 3683 if (LowOp.getOpcode() == ISD::Constant) { 3684 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3685 if (!isInt<16>(Value)) 3686 return Op; 3687 } 3688 3689 // Check whether the high part is an AND that doesn't change the 3690 // high 32 bits and just masks out low bits. We can skip it if so. 3691 if (HighOp.getOpcode() == ISD::AND && 3692 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3693 SDValue HighOp0 = HighOp.getOperand(0); 3694 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3695 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3696 HighOp = HighOp0; 3697 } 3698 3699 // Take advantage of the fact that all GR32 operations only change the 3700 // low 32 bits by truncating Low to an i32 and inserting it directly 3701 // using a subreg. The interesting cases are those where the truncation 3702 // can be folded. 3703 SDLoc DL(Op); 3704 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3705 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3706 MVT::i64, HighOp, Low32); 3707 } 3708 3709 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3710 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3711 SelectionDAG &DAG) const { 3712 SDNode *N = Op.getNode(); 3713 SDValue LHS = N->getOperand(0); 3714 SDValue RHS = N->getOperand(1); 3715 SDLoc DL(N); 3716 unsigned BaseOp = 0; 3717 unsigned CCValid = 0; 3718 unsigned CCMask = 0; 3719 3720 switch (Op.getOpcode()) { 3721 default: llvm_unreachable("Unknown instruction!"); 3722 case ISD::SADDO: 3723 BaseOp = SystemZISD::SADDO; 3724 CCValid = SystemZ::CCMASK_ARITH; 3725 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3726 break; 3727 case ISD::SSUBO: 3728 BaseOp = SystemZISD::SSUBO; 3729 CCValid = SystemZ::CCMASK_ARITH; 3730 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3731 break; 3732 case ISD::UADDO: 3733 BaseOp = SystemZISD::UADDO; 3734 CCValid = SystemZ::CCMASK_LOGICAL; 3735 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3736 break; 3737 case ISD::USUBO: 3738 BaseOp = SystemZISD::USUBO; 3739 CCValid = SystemZ::CCMASK_LOGICAL; 3740 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3741 break; 3742 } 3743 3744 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3745 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3746 3747 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3748 if (N->getValueType(1) == MVT::i1) 3749 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3750 3751 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3752 } 3753 3754 static bool isAddCarryChain(SDValue Carry) { 3755 while (Carry.getOpcode() == ISD::ADDCARRY) 3756 Carry = Carry.getOperand(2); 3757 return Carry.getOpcode() == ISD::UADDO; 3758 } 3759 3760 static bool isSubBorrowChain(SDValue Carry) { 3761 while (Carry.getOpcode() == ISD::SUBCARRY) 3762 Carry = Carry.getOperand(2); 3763 return Carry.getOpcode() == ISD::USUBO; 3764 } 3765 3766 // Lower ADDCARRY/SUBCARRY nodes. 3767 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3768 SelectionDAG &DAG) const { 3769 3770 SDNode *N = Op.getNode(); 3771 MVT VT = N->getSimpleValueType(0); 3772 3773 // Let legalize expand this if it isn't a legal type yet. 3774 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3775 return SDValue(); 3776 3777 SDValue LHS = N->getOperand(0); 3778 SDValue RHS = N->getOperand(1); 3779 SDValue Carry = Op.getOperand(2); 3780 SDLoc DL(N); 3781 unsigned BaseOp = 0; 3782 unsigned CCValid = 0; 3783 unsigned CCMask = 0; 3784 3785 switch (Op.getOpcode()) { 3786 default: llvm_unreachable("Unknown instruction!"); 3787 case ISD::ADDCARRY: 3788 if (!isAddCarryChain(Carry)) 3789 return SDValue(); 3790 3791 BaseOp = SystemZISD::ADDCARRY; 3792 CCValid = SystemZ::CCMASK_LOGICAL; 3793 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3794 break; 3795 case ISD::SUBCARRY: 3796 if (!isSubBorrowChain(Carry)) 3797 return SDValue(); 3798 3799 BaseOp = SystemZISD::SUBCARRY; 3800 CCValid = SystemZ::CCMASK_LOGICAL; 3801 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3802 break; 3803 } 3804 3805 // Set the condition code from the carry flag. 3806 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3807 DAG.getConstant(CCValid, DL, MVT::i32), 3808 DAG.getConstant(CCMask, DL, MVT::i32)); 3809 3810 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3811 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3812 3813 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3814 if (N->getValueType(1) == MVT::i1) 3815 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3816 3817 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3818 } 3819 3820 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3821 SelectionDAG &DAG) const { 3822 EVT VT = Op.getValueType(); 3823 SDLoc DL(Op); 3824 Op = Op.getOperand(0); 3825 3826 // Handle vector types via VPOPCT. 3827 if (VT.isVector()) { 3828 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3829 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3830 switch (VT.getScalarSizeInBits()) { 3831 case 8: 3832 break; 3833 case 16: { 3834 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3835 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3836 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3837 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3838 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3839 break; 3840 } 3841 case 32: { 3842 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3843 DAG.getConstant(0, DL, MVT::i32)); 3844 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3845 break; 3846 } 3847 case 64: { 3848 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3849 DAG.getConstant(0, DL, MVT::i32)); 3850 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3851 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3852 break; 3853 } 3854 default: 3855 llvm_unreachable("Unexpected type"); 3856 } 3857 return Op; 3858 } 3859 3860 // Get the known-zero mask for the operand. 3861 KnownBits Known = DAG.computeKnownBits(Op); 3862 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3863 if (NumSignificantBits == 0) 3864 return DAG.getConstant(0, DL, VT); 3865 3866 // Skip known-zero high parts of the operand. 3867 int64_t OrigBitSize = VT.getSizeInBits(); 3868 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3869 BitSize = std::min(BitSize, OrigBitSize); 3870 3871 // The POPCNT instruction counts the number of bits in each byte. 3872 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3873 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3874 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3875 3876 // Add up per-byte counts in a binary tree. All bits of Op at 3877 // position larger than BitSize remain zero throughout. 3878 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3879 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3880 if (BitSize != OrigBitSize) 3881 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3882 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3883 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3884 } 3885 3886 // Extract overall result from high byte. 3887 if (BitSize > 8) 3888 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3889 DAG.getConstant(BitSize - 8, DL, VT)); 3890 3891 return Op; 3892 } 3893 3894 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3895 SelectionDAG &DAG) const { 3896 SDLoc DL(Op); 3897 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3898 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3899 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3900 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3901 3902 // The only fence that needs an instruction is a sequentially-consistent 3903 // cross-thread fence. 3904 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3905 FenceSSID == SyncScope::System) { 3906 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3907 Op.getOperand(0)), 3908 0); 3909 } 3910 3911 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3912 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3913 } 3914 3915 // Op is an atomic load. Lower it into a normal volatile load. 3916 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3917 SelectionDAG &DAG) const { 3918 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3919 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3920 Node->getChain(), Node->getBasePtr(), 3921 Node->getMemoryVT(), Node->getMemOperand()); 3922 } 3923 3924 // Op is an atomic store. Lower it into a normal volatile store. 3925 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3926 SelectionDAG &DAG) const { 3927 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3928 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3929 Node->getBasePtr(), Node->getMemoryVT(), 3930 Node->getMemOperand()); 3931 // We have to enforce sequential consistency by performing a 3932 // serialization operation after the store. 3933 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 3934 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3935 MVT::Other, Chain), 0); 3936 return Chain; 3937 } 3938 3939 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3940 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3941 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3942 SelectionDAG &DAG, 3943 unsigned Opcode) const { 3944 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3945 3946 // 32-bit operations need no code outside the main loop. 3947 EVT NarrowVT = Node->getMemoryVT(); 3948 EVT WideVT = MVT::i32; 3949 if (NarrowVT == WideVT) 3950 return Op; 3951 3952 int64_t BitSize = NarrowVT.getSizeInBits(); 3953 SDValue ChainIn = Node->getChain(); 3954 SDValue Addr = Node->getBasePtr(); 3955 SDValue Src2 = Node->getVal(); 3956 MachineMemOperand *MMO = Node->getMemOperand(); 3957 SDLoc DL(Node); 3958 EVT PtrVT = Addr.getValueType(); 3959 3960 // Convert atomic subtracts of constants into additions. 3961 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3962 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3963 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3964 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3965 } 3966 3967 // Get the address of the containing word. 3968 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3969 DAG.getConstant(-4, DL, PtrVT)); 3970 3971 // Get the number of bits that the word must be rotated left in order 3972 // to bring the field to the top bits of a GR32. 3973 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3974 DAG.getConstant(3, DL, PtrVT)); 3975 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3976 3977 // Get the complementing shift amount, for rotating a field in the top 3978 // bits back to its proper position. 3979 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3980 DAG.getConstant(0, DL, WideVT), BitShift); 3981 3982 // Extend the source operand to 32 bits and prepare it for the inner loop. 3983 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3984 // operations require the source to be shifted in advance. (This shift 3985 // can be folded if the source is constant.) For AND and NAND, the lower 3986 // bits must be set, while for other opcodes they should be left clear. 3987 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3988 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3989 DAG.getConstant(32 - BitSize, DL, WideVT)); 3990 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3991 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3992 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3993 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3994 3995 // Construct the ATOMIC_LOADW_* node. 3996 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3997 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3998 DAG.getConstant(BitSize, DL, WideVT) }; 3999 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4000 NarrowVT, MMO); 4001 4002 // Rotate the result of the final CS so that the field is in the lower 4003 // bits of a GR32, then truncate it. 4004 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4005 DAG.getConstant(BitSize, DL, WideVT)); 4006 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4007 4008 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4009 return DAG.getMergeValues(RetOps, DL); 4010 } 4011 4012 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 4013 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 4014 // operations into additions. 4015 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4016 SelectionDAG &DAG) const { 4017 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4018 EVT MemVT = Node->getMemoryVT(); 4019 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4020 // A full-width operation. 4021 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4022 SDValue Src2 = Node->getVal(); 4023 SDValue NegSrc2; 4024 SDLoc DL(Src2); 4025 4026 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 4027 // Use an addition if the operand is constant and either LAA(G) is 4028 // available or the negative value is in the range of A(G)FHI. 4029 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 4030 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 4031 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 4032 } else if (Subtarget.hasInterlockedAccess1()) 4033 // Use LAA(G) if available. 4034 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 4035 Src2); 4036 4037 if (NegSrc2.getNode()) 4038 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4039 Node->getChain(), Node->getBasePtr(), NegSrc2, 4040 Node->getMemOperand()); 4041 4042 // Use the node as-is. 4043 return Op; 4044 } 4045 4046 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4047 } 4048 4049 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4050 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4051 SelectionDAG &DAG) const { 4052 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4053 SDValue ChainIn = Node->getOperand(0); 4054 SDValue Addr = Node->getOperand(1); 4055 SDValue CmpVal = Node->getOperand(2); 4056 SDValue SwapVal = Node->getOperand(3); 4057 MachineMemOperand *MMO = Node->getMemOperand(); 4058 SDLoc DL(Node); 4059 4060 // We have native support for 32-bit and 64-bit compare and swap, but we 4061 // still need to expand extracting the "success" result from the CC. 4062 EVT NarrowVT = Node->getMemoryVT(); 4063 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4064 if (NarrowVT == WideVT) { 4065 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4066 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4067 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4068 DL, Tys, Ops, NarrowVT, MMO); 4069 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4070 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4071 4072 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4073 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4074 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4075 return SDValue(); 4076 } 4077 4078 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4079 // via a fullword ATOMIC_CMP_SWAPW operation. 4080 int64_t BitSize = NarrowVT.getSizeInBits(); 4081 EVT PtrVT = Addr.getValueType(); 4082 4083 // Get the address of the containing word. 4084 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4085 DAG.getConstant(-4, DL, PtrVT)); 4086 4087 // Get the number of bits that the word must be rotated left in order 4088 // to bring the field to the top bits of a GR32. 4089 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4090 DAG.getConstant(3, DL, PtrVT)); 4091 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4092 4093 // Get the complementing shift amount, for rotating a field in the top 4094 // bits back to its proper position. 4095 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4096 DAG.getConstant(0, DL, WideVT), BitShift); 4097 4098 // Construct the ATOMIC_CMP_SWAPW node. 4099 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4100 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4101 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4102 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4103 VTList, Ops, NarrowVT, MMO); 4104 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4105 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4106 4107 // emitAtomicCmpSwapW() will zero extend the result (original value). 4108 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4109 DAG.getValueType(NarrowVT)); 4110 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4111 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4112 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4113 return SDValue(); 4114 } 4115 4116 MachineMemOperand::Flags 4117 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4118 // Because of how we convert atomic_load and atomic_store to normal loads and 4119 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4120 // since DAGCombine hasn't been updated to account for atomic, but non 4121 // volatile loads. (See D57601) 4122 if (auto *SI = dyn_cast<StoreInst>(&I)) 4123 if (SI->isAtomic()) 4124 return MachineMemOperand::MOVolatile; 4125 if (auto *LI = dyn_cast<LoadInst>(&I)) 4126 if (LI->isAtomic()) 4127 return MachineMemOperand::MOVolatile; 4128 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4129 if (AI->isAtomic()) 4130 return MachineMemOperand::MOVolatile; 4131 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4132 if (AI->isAtomic()) 4133 return MachineMemOperand::MOVolatile; 4134 return MachineMemOperand::MONone; 4135 } 4136 4137 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4138 SelectionDAG &DAG) const { 4139 MachineFunction &MF = DAG.getMachineFunction(); 4140 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4141 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4142 report_fatal_error("Variable-sized stack allocations are not supported " 4143 "in GHC calling convention"); 4144 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4145 SystemZ::R15D, Op.getValueType()); 4146 } 4147 4148 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4149 SelectionDAG &DAG) const { 4150 MachineFunction &MF = DAG.getMachineFunction(); 4151 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4152 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4153 4154 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4155 report_fatal_error("Variable-sized stack allocations are not supported " 4156 "in GHC calling convention"); 4157 4158 SDValue Chain = Op.getOperand(0); 4159 SDValue NewSP = Op.getOperand(1); 4160 SDValue Backchain; 4161 SDLoc DL(Op); 4162 4163 if (StoreBackchain) { 4164 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4165 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4166 MachinePointerInfo()); 4167 } 4168 4169 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4170 4171 if (StoreBackchain) 4172 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4173 MachinePointerInfo()); 4174 4175 return Chain; 4176 } 4177 4178 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4179 SelectionDAG &DAG) const { 4180 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4181 if (!IsData) 4182 // Just preserve the chain. 4183 return Op.getOperand(0); 4184 4185 SDLoc DL(Op); 4186 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4187 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4188 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4189 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4190 Op.getOperand(1)}; 4191 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4192 Node->getVTList(), Ops, 4193 Node->getMemoryVT(), Node->getMemOperand()); 4194 } 4195 4196 // Convert condition code in CCReg to an i32 value. 4197 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4198 SDLoc DL(CCReg); 4199 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4200 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4201 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4202 } 4203 4204 SDValue 4205 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4206 SelectionDAG &DAG) const { 4207 unsigned Opcode, CCValid; 4208 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4209 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4210 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4211 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4212 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4213 return SDValue(); 4214 } 4215 4216 return SDValue(); 4217 } 4218 4219 SDValue 4220 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4221 SelectionDAG &DAG) const { 4222 unsigned Opcode, CCValid; 4223 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4224 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4225 if (Op->getNumValues() == 1) 4226 return getCCResult(DAG, SDValue(Node, 0)); 4227 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4228 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4229 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4230 } 4231 4232 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4233 switch (Id) { 4234 case Intrinsic::thread_pointer: 4235 return lowerThreadPointer(SDLoc(Op), DAG); 4236 4237 case Intrinsic::s390_vpdi: 4238 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4239 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4240 4241 case Intrinsic::s390_vperm: 4242 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4243 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4244 4245 case Intrinsic::s390_vuphb: 4246 case Intrinsic::s390_vuphh: 4247 case Intrinsic::s390_vuphf: 4248 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4249 Op.getOperand(1)); 4250 4251 case Intrinsic::s390_vuplhb: 4252 case Intrinsic::s390_vuplhh: 4253 case Intrinsic::s390_vuplhf: 4254 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4255 Op.getOperand(1)); 4256 4257 case Intrinsic::s390_vuplb: 4258 case Intrinsic::s390_vuplhw: 4259 case Intrinsic::s390_vuplf: 4260 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4261 Op.getOperand(1)); 4262 4263 case Intrinsic::s390_vupllb: 4264 case Intrinsic::s390_vupllh: 4265 case Intrinsic::s390_vupllf: 4266 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4267 Op.getOperand(1)); 4268 4269 case Intrinsic::s390_vsumb: 4270 case Intrinsic::s390_vsumh: 4271 case Intrinsic::s390_vsumgh: 4272 case Intrinsic::s390_vsumgf: 4273 case Intrinsic::s390_vsumqf: 4274 case Intrinsic::s390_vsumqg: 4275 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4276 Op.getOperand(1), Op.getOperand(2)); 4277 } 4278 4279 return SDValue(); 4280 } 4281 4282 namespace { 4283 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4284 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4285 // Operand is the constant third operand, otherwise it is the number of 4286 // bytes in each element of the result. 4287 struct Permute { 4288 unsigned Opcode; 4289 unsigned Operand; 4290 unsigned char Bytes[SystemZ::VectorBytes]; 4291 }; 4292 } 4293 4294 static const Permute PermuteForms[] = { 4295 // VMRHG 4296 { SystemZISD::MERGE_HIGH, 8, 4297 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4298 // VMRHF 4299 { SystemZISD::MERGE_HIGH, 4, 4300 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4301 // VMRHH 4302 { SystemZISD::MERGE_HIGH, 2, 4303 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4304 // VMRHB 4305 { SystemZISD::MERGE_HIGH, 1, 4306 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4307 // VMRLG 4308 { SystemZISD::MERGE_LOW, 8, 4309 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4310 // VMRLF 4311 { SystemZISD::MERGE_LOW, 4, 4312 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4313 // VMRLH 4314 { SystemZISD::MERGE_LOW, 2, 4315 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4316 // VMRLB 4317 { SystemZISD::MERGE_LOW, 1, 4318 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4319 // VPKG 4320 { SystemZISD::PACK, 4, 4321 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4322 // VPKF 4323 { SystemZISD::PACK, 2, 4324 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4325 // VPKH 4326 { SystemZISD::PACK, 1, 4327 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4328 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4329 { SystemZISD::PERMUTE_DWORDS, 4, 4330 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4331 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4332 { SystemZISD::PERMUTE_DWORDS, 1, 4333 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4334 }; 4335 4336 // Called after matching a vector shuffle against a particular pattern. 4337 // Both the original shuffle and the pattern have two vector operands. 4338 // OpNos[0] is the operand of the original shuffle that should be used for 4339 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4340 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4341 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4342 // for operands 0 and 1 of the pattern. 4343 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4344 if (OpNos[0] < 0) { 4345 if (OpNos[1] < 0) 4346 return false; 4347 OpNo0 = OpNo1 = OpNos[1]; 4348 } else if (OpNos[1] < 0) { 4349 OpNo0 = OpNo1 = OpNos[0]; 4350 } else { 4351 OpNo0 = OpNos[0]; 4352 OpNo1 = OpNos[1]; 4353 } 4354 return true; 4355 } 4356 4357 // Bytes is a VPERM-like permute vector, except that -1 is used for 4358 // undefined bytes. Return true if the VPERM can be implemented using P. 4359 // When returning true set OpNo0 to the VPERM operand that should be 4360 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4361 // 4362 // For example, if swapping the VPERM operands allows P to match, OpNo0 4363 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4364 // operand, but rewriting it to use two duplicated operands allows it to 4365 // match P, then OpNo0 and OpNo1 will be the same. 4366 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4367 unsigned &OpNo0, unsigned &OpNo1) { 4368 int OpNos[] = { -1, -1 }; 4369 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4370 int Elt = Bytes[I]; 4371 if (Elt >= 0) { 4372 // Make sure that the two permute vectors use the same suboperand 4373 // byte number. Only the operand numbers (the high bits) are 4374 // allowed to differ. 4375 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4376 return false; 4377 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4378 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4379 // Make sure that the operand mappings are consistent with previous 4380 // elements. 4381 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4382 return false; 4383 OpNos[ModelOpNo] = RealOpNo; 4384 } 4385 } 4386 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4387 } 4388 4389 // As above, but search for a matching permute. 4390 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4391 unsigned &OpNo0, unsigned &OpNo1) { 4392 for (auto &P : PermuteForms) 4393 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4394 return &P; 4395 return nullptr; 4396 } 4397 4398 // Bytes is a VPERM-like permute vector, except that -1 is used for 4399 // undefined bytes. This permute is an operand of an outer permute. 4400 // See whether redistributing the -1 bytes gives a shuffle that can be 4401 // implemented using P. If so, set Transform to a VPERM-like permute vector 4402 // that, when applied to the result of P, gives the original permute in Bytes. 4403 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4404 const Permute &P, 4405 SmallVectorImpl<int> &Transform) { 4406 unsigned To = 0; 4407 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4408 int Elt = Bytes[From]; 4409 if (Elt < 0) 4410 // Byte number From of the result is undefined. 4411 Transform[From] = -1; 4412 else { 4413 while (P.Bytes[To] != Elt) { 4414 To += 1; 4415 if (To == SystemZ::VectorBytes) 4416 return false; 4417 } 4418 Transform[From] = To; 4419 } 4420 } 4421 return true; 4422 } 4423 4424 // As above, but search for a matching permute. 4425 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4426 SmallVectorImpl<int> &Transform) { 4427 for (auto &P : PermuteForms) 4428 if (matchDoublePermute(Bytes, P, Transform)) 4429 return &P; 4430 return nullptr; 4431 } 4432 4433 // Convert the mask of the given shuffle op into a byte-level mask, 4434 // as if it had type vNi8. 4435 static bool getVPermMask(SDValue ShuffleOp, 4436 SmallVectorImpl<int> &Bytes) { 4437 EVT VT = ShuffleOp.getValueType(); 4438 unsigned NumElements = VT.getVectorNumElements(); 4439 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4440 4441 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4442 Bytes.resize(NumElements * BytesPerElement, -1); 4443 for (unsigned I = 0; I < NumElements; ++I) { 4444 int Index = VSN->getMaskElt(I); 4445 if (Index >= 0) 4446 for (unsigned J = 0; J < BytesPerElement; ++J) 4447 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4448 } 4449 return true; 4450 } 4451 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4452 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4453 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4454 Bytes.resize(NumElements * BytesPerElement, -1); 4455 for (unsigned I = 0; I < NumElements; ++I) 4456 for (unsigned J = 0; J < BytesPerElement; ++J) 4457 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4458 return true; 4459 } 4460 return false; 4461 } 4462 4463 // Bytes is a VPERM-like permute vector, except that -1 is used for 4464 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4465 // the result come from a contiguous sequence of bytes from one input. 4466 // Set Base to the selector for the first byte if so. 4467 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4468 unsigned BytesPerElement, int &Base) { 4469 Base = -1; 4470 for (unsigned I = 0; I < BytesPerElement; ++I) { 4471 if (Bytes[Start + I] >= 0) { 4472 unsigned Elem = Bytes[Start + I]; 4473 if (Base < 0) { 4474 Base = Elem - I; 4475 // Make sure the bytes would come from one input operand. 4476 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4477 return false; 4478 } else if (unsigned(Base) != Elem - I) 4479 return false; 4480 } 4481 } 4482 return true; 4483 } 4484 4485 // Bytes is a VPERM-like permute vector, except that -1 is used for 4486 // undefined bytes. Return true if it can be performed using VSLDB. 4487 // When returning true, set StartIndex to the shift amount and OpNo0 4488 // and OpNo1 to the VPERM operands that should be used as the first 4489 // and second shift operand respectively. 4490 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4491 unsigned &StartIndex, unsigned &OpNo0, 4492 unsigned &OpNo1) { 4493 int OpNos[] = { -1, -1 }; 4494 int Shift = -1; 4495 for (unsigned I = 0; I < 16; ++I) { 4496 int Index = Bytes[I]; 4497 if (Index >= 0) { 4498 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4499 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4500 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4501 if (Shift < 0) 4502 Shift = ExpectedShift; 4503 else if (Shift != ExpectedShift) 4504 return false; 4505 // Make sure that the operand mappings are consistent with previous 4506 // elements. 4507 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4508 return false; 4509 OpNos[ModelOpNo] = RealOpNo; 4510 } 4511 } 4512 StartIndex = Shift; 4513 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4514 } 4515 4516 // Create a node that performs P on operands Op0 and Op1, casting the 4517 // operands to the appropriate type. The type of the result is determined by P. 4518 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4519 const Permute &P, SDValue Op0, SDValue Op1) { 4520 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4521 // elements of a PACK are twice as wide as the outputs. 4522 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4523 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4524 P.Operand); 4525 // Cast both operands to the appropriate type. 4526 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4527 SystemZ::VectorBytes / InBytes); 4528 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4529 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4530 SDValue Op; 4531 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4532 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4533 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4534 } else if (P.Opcode == SystemZISD::PACK) { 4535 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4536 SystemZ::VectorBytes / P.Operand); 4537 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4538 } else { 4539 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4540 } 4541 return Op; 4542 } 4543 4544 static bool isZeroVector(SDValue N) { 4545 if (N->getOpcode() == ISD::BITCAST) 4546 N = N->getOperand(0); 4547 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4548 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4549 return Op->getZExtValue() == 0; 4550 return ISD::isBuildVectorAllZeros(N.getNode()); 4551 } 4552 4553 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4554 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4555 for (unsigned I = 0; I < Num ; I++) 4556 if (isZeroVector(Ops[I])) 4557 return I; 4558 return UINT32_MAX; 4559 } 4560 4561 // Bytes is a VPERM-like permute vector, except that -1 is used for 4562 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4563 // VSLDB or VPERM. 4564 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4565 SDValue *Ops, 4566 const SmallVectorImpl<int> &Bytes) { 4567 for (unsigned I = 0; I < 2; ++I) 4568 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4569 4570 // First see whether VSLDB can be used. 4571 unsigned StartIndex, OpNo0, OpNo1; 4572 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4573 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4574 Ops[OpNo1], 4575 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4576 4577 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4578 // eliminate a zero vector by reusing any zero index in the permute vector. 4579 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4580 if (ZeroVecIdx != UINT32_MAX) { 4581 bool MaskFirst = true; 4582 int ZeroIdx = -1; 4583 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4584 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4585 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4586 if (OpNo == ZeroVecIdx && I == 0) { 4587 // If the first byte is zero, use mask as first operand. 4588 ZeroIdx = 0; 4589 break; 4590 } 4591 if (OpNo != ZeroVecIdx && Byte == 0) { 4592 // If mask contains a zero, use it by placing that vector first. 4593 ZeroIdx = I + SystemZ::VectorBytes; 4594 MaskFirst = false; 4595 break; 4596 } 4597 } 4598 if (ZeroIdx != -1) { 4599 SDValue IndexNodes[SystemZ::VectorBytes]; 4600 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4601 if (Bytes[I] >= 0) { 4602 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4603 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4604 if (OpNo == ZeroVecIdx) 4605 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4606 else { 4607 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4608 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4609 } 4610 } else 4611 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4612 } 4613 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4614 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4615 if (MaskFirst) 4616 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4617 Mask); 4618 else 4619 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4620 Mask); 4621 } 4622 } 4623 4624 SDValue IndexNodes[SystemZ::VectorBytes]; 4625 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4626 if (Bytes[I] >= 0) 4627 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4628 else 4629 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4630 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4631 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4632 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4633 } 4634 4635 namespace { 4636 // Describes a general N-operand vector shuffle. 4637 struct GeneralShuffle { 4638 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4639 void addUndef(); 4640 bool add(SDValue, unsigned); 4641 SDValue getNode(SelectionDAG &, const SDLoc &); 4642 void tryPrepareForUnpack(); 4643 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4644 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4645 4646 // The operands of the shuffle. 4647 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4648 4649 // Index I is -1 if byte I of the result is undefined. Otherwise the 4650 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4651 // Bytes[I] / SystemZ::VectorBytes. 4652 SmallVector<int, SystemZ::VectorBytes> Bytes; 4653 4654 // The type of the shuffle result. 4655 EVT VT; 4656 4657 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4658 unsigned UnpackFromEltSize; 4659 }; 4660 } 4661 4662 // Add an extra undefined element to the shuffle. 4663 void GeneralShuffle::addUndef() { 4664 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4665 for (unsigned I = 0; I < BytesPerElement; ++I) 4666 Bytes.push_back(-1); 4667 } 4668 4669 // Add an extra element to the shuffle, taking it from element Elem of Op. 4670 // A null Op indicates a vector input whose value will be calculated later; 4671 // there is at most one such input per shuffle and it always has the same 4672 // type as the result. Aborts and returns false if the source vector elements 4673 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4674 // LLVM they become implicitly extended, but this is rare and not optimized. 4675 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4676 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4677 4678 // The source vector can have wider elements than the result, 4679 // either through an explicit TRUNCATE or because of type legalization. 4680 // We want the least significant part. 4681 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4682 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4683 4684 // Return false if the source elements are smaller than their destination 4685 // elements. 4686 if (FromBytesPerElement < BytesPerElement) 4687 return false; 4688 4689 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4690 (FromBytesPerElement - BytesPerElement)); 4691 4692 // Look through things like shuffles and bitcasts. 4693 while (Op.getNode()) { 4694 if (Op.getOpcode() == ISD::BITCAST) 4695 Op = Op.getOperand(0); 4696 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4697 // See whether the bytes we need come from a contiguous part of one 4698 // operand. 4699 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4700 if (!getVPermMask(Op, OpBytes)) 4701 break; 4702 int NewByte; 4703 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4704 break; 4705 if (NewByte < 0) { 4706 addUndef(); 4707 return true; 4708 } 4709 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4710 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4711 } else if (Op.isUndef()) { 4712 addUndef(); 4713 return true; 4714 } else 4715 break; 4716 } 4717 4718 // Make sure that the source of the extraction is in Ops. 4719 unsigned OpNo = 0; 4720 for (; OpNo < Ops.size(); ++OpNo) 4721 if (Ops[OpNo] == Op) 4722 break; 4723 if (OpNo == Ops.size()) 4724 Ops.push_back(Op); 4725 4726 // Add the element to Bytes. 4727 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4728 for (unsigned I = 0; I < BytesPerElement; ++I) 4729 Bytes.push_back(Base + I); 4730 4731 return true; 4732 } 4733 4734 // Return SDNodes for the completed shuffle. 4735 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4736 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4737 4738 if (Ops.size() == 0) 4739 return DAG.getUNDEF(VT); 4740 4741 // Use a single unpack if possible as the last operation. 4742 tryPrepareForUnpack(); 4743 4744 // Make sure that there are at least two shuffle operands. 4745 if (Ops.size() == 1) 4746 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4747 4748 // Create a tree of shuffles, deferring root node until after the loop. 4749 // Try to redistribute the undefined elements of non-root nodes so that 4750 // the non-root shuffles match something like a pack or merge, then adjust 4751 // the parent node's permute vector to compensate for the new order. 4752 // Among other things, this copes with vectors like <2 x i16> that were 4753 // padded with undefined elements during type legalization. 4754 // 4755 // In the best case this redistribution will lead to the whole tree 4756 // using packs and merges. It should rarely be a loss in other cases. 4757 unsigned Stride = 1; 4758 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4759 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4760 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4761 4762 // Create a mask for just these two operands. 4763 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4764 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4765 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4766 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4767 if (OpNo == I) 4768 NewBytes[J] = Byte; 4769 else if (OpNo == I + Stride) 4770 NewBytes[J] = SystemZ::VectorBytes + Byte; 4771 else 4772 NewBytes[J] = -1; 4773 } 4774 // See if it would be better to reorganize NewMask to avoid using VPERM. 4775 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4776 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4777 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4778 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4779 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4780 if (NewBytes[J] >= 0) { 4781 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4782 "Invalid double permute"); 4783 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4784 } else 4785 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4786 } 4787 } else { 4788 // Just use NewBytes on the operands. 4789 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4790 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4791 if (NewBytes[J] >= 0) 4792 Bytes[J] = I * SystemZ::VectorBytes + J; 4793 } 4794 } 4795 } 4796 4797 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4798 if (Stride > 1) { 4799 Ops[1] = Ops[Stride]; 4800 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4801 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4802 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4803 } 4804 4805 // Look for an instruction that can do the permute without resorting 4806 // to VPERM. 4807 unsigned OpNo0, OpNo1; 4808 SDValue Op; 4809 if (unpackWasPrepared() && Ops[1].isUndef()) 4810 Op = Ops[0]; 4811 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4812 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4813 else 4814 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4815 4816 Op = insertUnpackIfPrepared(DAG, DL, Op); 4817 4818 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4819 } 4820 4821 #ifndef NDEBUG 4822 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 4823 dbgs() << Msg.c_str() << " { "; 4824 for (unsigned i = 0; i < Bytes.size(); i++) 4825 dbgs() << Bytes[i] << " "; 4826 dbgs() << "}\n"; 4827 } 4828 #endif 4829 4830 // If the Bytes vector matches an unpack operation, prepare to do the unpack 4831 // after all else by removing the zero vector and the effect of the unpack on 4832 // Bytes. 4833 void GeneralShuffle::tryPrepareForUnpack() { 4834 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 4835 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 4836 return; 4837 4838 // Only do this if removing the zero vector reduces the depth, otherwise 4839 // the critical path will increase with the final unpack. 4840 if (Ops.size() > 2 && 4841 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 4842 return; 4843 4844 // Find an unpack that would allow removing the zero vector from Ops. 4845 UnpackFromEltSize = 1; 4846 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 4847 bool MatchUnpack = true; 4848 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 4849 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 4850 unsigned ToEltSize = UnpackFromEltSize * 2; 4851 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 4852 if (!IsZextByte) 4853 SrcBytes.push_back(Bytes[Elt]); 4854 if (Bytes[Elt] != -1) { 4855 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 4856 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 4857 MatchUnpack = false; 4858 break; 4859 } 4860 } 4861 } 4862 if (MatchUnpack) { 4863 if (Ops.size() == 2) { 4864 // Don't use unpack if a single source operand needs rearrangement. 4865 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 4866 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 4867 UnpackFromEltSize = UINT_MAX; 4868 return; 4869 } 4870 } 4871 break; 4872 } 4873 } 4874 if (UnpackFromEltSize > 4) 4875 return; 4876 4877 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 4878 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 4879 << ".\n"; 4880 dumpBytes(Bytes, "Original Bytes vector:");); 4881 4882 // Apply the unpack in reverse to the Bytes array. 4883 unsigned B = 0; 4884 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 4885 Elt += UnpackFromEltSize; 4886 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 4887 Bytes[B] = Bytes[Elt]; 4888 } 4889 while (B < SystemZ::VectorBytes) 4890 Bytes[B++] = -1; 4891 4892 // Remove the zero vector from Ops 4893 Ops.erase(&Ops[ZeroVecOpNo]); 4894 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4895 if (Bytes[I] >= 0) { 4896 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4897 if (OpNo > ZeroVecOpNo) 4898 Bytes[I] -= SystemZ::VectorBytes; 4899 } 4900 4901 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 4902 dbgs() << "\n";); 4903 } 4904 4905 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 4906 const SDLoc &DL, 4907 SDValue Op) { 4908 if (!unpackWasPrepared()) 4909 return Op; 4910 unsigned InBits = UnpackFromEltSize * 8; 4911 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 4912 SystemZ::VectorBits / InBits); 4913 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 4914 unsigned OutBits = InBits * 2; 4915 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 4916 SystemZ::VectorBits / OutBits); 4917 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 4918 } 4919 4920 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4921 static bool isScalarToVector(SDValue Op) { 4922 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4923 if (!Op.getOperand(I).isUndef()) 4924 return false; 4925 return true; 4926 } 4927 4928 // Return a vector of type VT that contains Value in the first element. 4929 // The other elements don't matter. 4930 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4931 SDValue Value) { 4932 // If we have a constant, replicate it to all elements and let the 4933 // BUILD_VECTOR lowering take care of it. 4934 if (Value.getOpcode() == ISD::Constant || 4935 Value.getOpcode() == ISD::ConstantFP) { 4936 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4937 return DAG.getBuildVector(VT, DL, Ops); 4938 } 4939 if (Value.isUndef()) 4940 return DAG.getUNDEF(VT); 4941 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4942 } 4943 4944 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4945 // element 1. Used for cases in which replication is cheap. 4946 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4947 SDValue Op0, SDValue Op1) { 4948 if (Op0.isUndef()) { 4949 if (Op1.isUndef()) 4950 return DAG.getUNDEF(VT); 4951 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4952 } 4953 if (Op1.isUndef()) 4954 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4955 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4956 buildScalarToVector(DAG, DL, VT, Op0), 4957 buildScalarToVector(DAG, DL, VT, Op1)); 4958 } 4959 4960 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4961 // vector for them. 4962 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4963 SDValue Op1) { 4964 if (Op0.isUndef() && Op1.isUndef()) 4965 return DAG.getUNDEF(MVT::v2i64); 4966 // If one of the two inputs is undefined then replicate the other one, 4967 // in order to avoid using another register unnecessarily. 4968 if (Op0.isUndef()) 4969 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4970 else if (Op1.isUndef()) 4971 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4972 else { 4973 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4974 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4975 } 4976 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4977 } 4978 4979 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4980 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4981 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4982 // would benefit from this representation and return it if so. 4983 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4984 BuildVectorSDNode *BVN) { 4985 EVT VT = BVN->getValueType(0); 4986 unsigned NumElements = VT.getVectorNumElements(); 4987 4988 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4989 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4990 // need a BUILD_VECTOR, add an additional placeholder operand for that 4991 // BUILD_VECTOR and store its operands in ResidueOps. 4992 GeneralShuffle GS(VT); 4993 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4994 bool FoundOne = false; 4995 for (unsigned I = 0; I < NumElements; ++I) { 4996 SDValue Op = BVN->getOperand(I); 4997 if (Op.getOpcode() == ISD::TRUNCATE) 4998 Op = Op.getOperand(0); 4999 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5000 Op.getOperand(1).getOpcode() == ISD::Constant) { 5001 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5002 if (!GS.add(Op.getOperand(0), Elem)) 5003 return SDValue(); 5004 FoundOne = true; 5005 } else if (Op.isUndef()) { 5006 GS.addUndef(); 5007 } else { 5008 if (!GS.add(SDValue(), ResidueOps.size())) 5009 return SDValue(); 5010 ResidueOps.push_back(BVN->getOperand(I)); 5011 } 5012 } 5013 5014 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5015 if (!FoundOne) 5016 return SDValue(); 5017 5018 // Create the BUILD_VECTOR for the remaining elements, if any. 5019 if (!ResidueOps.empty()) { 5020 while (ResidueOps.size() < NumElements) 5021 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5022 for (auto &Op : GS.Ops) { 5023 if (!Op.getNode()) { 5024 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5025 break; 5026 } 5027 } 5028 } 5029 return GS.getNode(DAG, SDLoc(BVN)); 5030 } 5031 5032 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5033 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5034 return true; 5035 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5036 return true; 5037 return false; 5038 } 5039 5040 // Combine GPR scalar values Elems into a vector of type VT. 5041 SDValue 5042 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5043 SmallVectorImpl<SDValue> &Elems) const { 5044 // See whether there is a single replicated value. 5045 SDValue Single; 5046 unsigned int NumElements = Elems.size(); 5047 unsigned int Count = 0; 5048 for (auto Elem : Elems) { 5049 if (!Elem.isUndef()) { 5050 if (!Single.getNode()) 5051 Single = Elem; 5052 else if (Elem != Single) { 5053 Single = SDValue(); 5054 break; 5055 } 5056 Count += 1; 5057 } 5058 } 5059 // There are three cases here: 5060 // 5061 // - if the only defined element is a loaded one, the best sequence 5062 // is a replicating load. 5063 // 5064 // - otherwise, if the only defined element is an i64 value, we will 5065 // end up with the same VLVGP sequence regardless of whether we short-cut 5066 // for replication or fall through to the later code. 5067 // 5068 // - otherwise, if the only defined element is an i32 or smaller value, 5069 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5070 // This is only a win if the single defined element is used more than once. 5071 // In other cases we're better off using a single VLVGx. 5072 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5073 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5074 5075 // If all elements are loads, use VLREP/VLEs (below). 5076 bool AllLoads = true; 5077 for (auto Elem : Elems) 5078 if (!isVectorElementLoad(Elem)) { 5079 AllLoads = false; 5080 break; 5081 } 5082 5083 // The best way of building a v2i64 from two i64s is to use VLVGP. 5084 if (VT == MVT::v2i64 && !AllLoads) 5085 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5086 5087 // Use a 64-bit merge high to combine two doubles. 5088 if (VT == MVT::v2f64 && !AllLoads) 5089 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5090 5091 // Build v4f32 values directly from the FPRs: 5092 // 5093 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5094 // V V VMRHF 5095 // <ABxx> <CDxx> 5096 // V VMRHG 5097 // <ABCD> 5098 if (VT == MVT::v4f32 && !AllLoads) { 5099 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5100 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5101 // Avoid unnecessary undefs by reusing the other operand. 5102 if (Op01.isUndef()) 5103 Op01 = Op23; 5104 else if (Op23.isUndef()) 5105 Op23 = Op01; 5106 // Merging identical replications is a no-op. 5107 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5108 return Op01; 5109 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5110 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5111 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5112 DL, MVT::v2i64, Op01, Op23); 5113 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5114 } 5115 5116 // Collect the constant terms. 5117 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5118 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5119 5120 unsigned NumConstants = 0; 5121 for (unsigned I = 0; I < NumElements; ++I) { 5122 SDValue Elem = Elems[I]; 5123 if (Elem.getOpcode() == ISD::Constant || 5124 Elem.getOpcode() == ISD::ConstantFP) { 5125 NumConstants += 1; 5126 Constants[I] = Elem; 5127 Done[I] = true; 5128 } 5129 } 5130 // If there was at least one constant, fill in the other elements of 5131 // Constants with undefs to get a full vector constant and use that 5132 // as the starting point. 5133 SDValue Result; 5134 SDValue ReplicatedVal; 5135 if (NumConstants > 0) { 5136 for (unsigned I = 0; I < NumElements; ++I) 5137 if (!Constants[I].getNode()) 5138 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5139 Result = DAG.getBuildVector(VT, DL, Constants); 5140 } else { 5141 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5142 // avoid a false dependency on any previous contents of the vector 5143 // register. 5144 5145 // Use a VLREP if at least one element is a load. Make sure to replicate 5146 // the load with the most elements having its value. 5147 std::map<const SDNode*, unsigned> UseCounts; 5148 SDNode *LoadMaxUses = nullptr; 5149 for (unsigned I = 0; I < NumElements; ++I) 5150 if (isVectorElementLoad(Elems[I])) { 5151 SDNode *Ld = Elems[I].getNode(); 5152 UseCounts[Ld]++; 5153 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5154 LoadMaxUses = Ld; 5155 } 5156 if (LoadMaxUses != nullptr) { 5157 ReplicatedVal = SDValue(LoadMaxUses, 0); 5158 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5159 } else { 5160 // Try to use VLVGP. 5161 unsigned I1 = NumElements / 2 - 1; 5162 unsigned I2 = NumElements - 1; 5163 bool Def1 = !Elems[I1].isUndef(); 5164 bool Def2 = !Elems[I2].isUndef(); 5165 if (Def1 || Def2) { 5166 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5167 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5168 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5169 joinDwords(DAG, DL, Elem1, Elem2)); 5170 Done[I1] = true; 5171 Done[I2] = true; 5172 } else 5173 Result = DAG.getUNDEF(VT); 5174 } 5175 } 5176 5177 // Use VLVGx to insert the other elements. 5178 for (unsigned I = 0; I < NumElements; ++I) 5179 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5180 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5181 DAG.getConstant(I, DL, MVT::i32)); 5182 return Result; 5183 } 5184 5185 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5186 SelectionDAG &DAG) const { 5187 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5188 SDLoc DL(Op); 5189 EVT VT = Op.getValueType(); 5190 5191 if (BVN->isConstant()) { 5192 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5193 return Op; 5194 5195 // Fall back to loading it from memory. 5196 return SDValue(); 5197 } 5198 5199 // See if we should use shuffles to construct the vector from other vectors. 5200 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5201 return Res; 5202 5203 // Detect SCALAR_TO_VECTOR conversions. 5204 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5205 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5206 5207 // Otherwise use buildVector to build the vector up from GPRs. 5208 unsigned NumElements = Op.getNumOperands(); 5209 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5210 for (unsigned I = 0; I < NumElements; ++I) 5211 Ops[I] = Op.getOperand(I); 5212 return buildVector(DAG, DL, VT, Ops); 5213 } 5214 5215 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5216 SelectionDAG &DAG) const { 5217 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5218 SDLoc DL(Op); 5219 EVT VT = Op.getValueType(); 5220 unsigned NumElements = VT.getVectorNumElements(); 5221 5222 if (VSN->isSplat()) { 5223 SDValue Op0 = Op.getOperand(0); 5224 unsigned Index = VSN->getSplatIndex(); 5225 assert(Index < VT.getVectorNumElements() && 5226 "Splat index should be defined and in first operand"); 5227 // See whether the value we're splatting is directly available as a scalar. 5228 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5229 Op0.getOpcode() == ISD::BUILD_VECTOR) 5230 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5231 // Otherwise keep it as a vector-to-vector operation. 5232 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5233 DAG.getTargetConstant(Index, DL, MVT::i32)); 5234 } 5235 5236 GeneralShuffle GS(VT); 5237 for (unsigned I = 0; I < NumElements; ++I) { 5238 int Elt = VSN->getMaskElt(I); 5239 if (Elt < 0) 5240 GS.addUndef(); 5241 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5242 unsigned(Elt) % NumElements)) 5243 return SDValue(); 5244 } 5245 return GS.getNode(DAG, SDLoc(VSN)); 5246 } 5247 5248 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5249 SelectionDAG &DAG) const { 5250 SDLoc DL(Op); 5251 // Just insert the scalar into element 0 of an undefined vector. 5252 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5253 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5254 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5255 } 5256 5257 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5258 SelectionDAG &DAG) const { 5259 // Handle insertions of floating-point values. 5260 SDLoc DL(Op); 5261 SDValue Op0 = Op.getOperand(0); 5262 SDValue Op1 = Op.getOperand(1); 5263 SDValue Op2 = Op.getOperand(2); 5264 EVT VT = Op.getValueType(); 5265 5266 // Insertions into constant indices of a v2f64 can be done using VPDI. 5267 // However, if the inserted value is a bitcast or a constant then it's 5268 // better to use GPRs, as below. 5269 if (VT == MVT::v2f64 && 5270 Op1.getOpcode() != ISD::BITCAST && 5271 Op1.getOpcode() != ISD::ConstantFP && 5272 Op2.getOpcode() == ISD::Constant) { 5273 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5274 unsigned Mask = VT.getVectorNumElements() - 1; 5275 if (Index <= Mask) 5276 return Op; 5277 } 5278 5279 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5280 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5281 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5282 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5283 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5284 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5285 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5286 } 5287 5288 SDValue 5289 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5290 SelectionDAG &DAG) const { 5291 // Handle extractions of floating-point values. 5292 SDLoc DL(Op); 5293 SDValue Op0 = Op.getOperand(0); 5294 SDValue Op1 = Op.getOperand(1); 5295 EVT VT = Op.getValueType(); 5296 EVT VecVT = Op0.getValueType(); 5297 5298 // Extractions of constant indices can be done directly. 5299 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5300 uint64_t Index = CIndexN->getZExtValue(); 5301 unsigned Mask = VecVT.getVectorNumElements() - 1; 5302 if (Index <= Mask) 5303 return Op; 5304 } 5305 5306 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5307 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5308 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5309 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5310 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5311 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5312 } 5313 5314 SDValue SystemZTargetLowering:: 5315 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5316 SDValue PackedOp = Op.getOperand(0); 5317 EVT OutVT = Op.getValueType(); 5318 EVT InVT = PackedOp.getValueType(); 5319 unsigned ToBits = OutVT.getScalarSizeInBits(); 5320 unsigned FromBits = InVT.getScalarSizeInBits(); 5321 do { 5322 FromBits *= 2; 5323 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5324 SystemZ::VectorBits / FromBits); 5325 PackedOp = 5326 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5327 } while (FromBits != ToBits); 5328 return PackedOp; 5329 } 5330 5331 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5332 SDValue SystemZTargetLowering:: 5333 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5334 SDValue PackedOp = Op.getOperand(0); 5335 SDLoc DL(Op); 5336 EVT OutVT = Op.getValueType(); 5337 EVT InVT = PackedOp.getValueType(); 5338 unsigned InNumElts = InVT.getVectorNumElements(); 5339 unsigned OutNumElts = OutVT.getVectorNumElements(); 5340 unsigned NumInPerOut = InNumElts / OutNumElts; 5341 5342 SDValue ZeroVec = 5343 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5344 5345 SmallVector<int, 16> Mask(InNumElts); 5346 unsigned ZeroVecElt = InNumElts; 5347 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5348 unsigned MaskElt = PackedElt * NumInPerOut; 5349 unsigned End = MaskElt + NumInPerOut - 1; 5350 for (; MaskElt < End; MaskElt++) 5351 Mask[MaskElt] = ZeroVecElt++; 5352 Mask[MaskElt] = PackedElt; 5353 } 5354 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5355 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5356 } 5357 5358 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5359 unsigned ByScalar) const { 5360 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5361 SDValue Op0 = Op.getOperand(0); 5362 SDValue Op1 = Op.getOperand(1); 5363 SDLoc DL(Op); 5364 EVT VT = Op.getValueType(); 5365 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5366 5367 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5368 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5369 APInt SplatBits, SplatUndef; 5370 unsigned SplatBitSize; 5371 bool HasAnyUndefs; 5372 // Check for constant splats. Use ElemBitSize as the minimum element 5373 // width and reject splats that need wider elements. 5374 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5375 ElemBitSize, true) && 5376 SplatBitSize == ElemBitSize) { 5377 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5378 DL, MVT::i32); 5379 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5380 } 5381 // Check for variable splats. 5382 BitVector UndefElements; 5383 SDValue Splat = BVN->getSplatValue(&UndefElements); 5384 if (Splat) { 5385 // Since i32 is the smallest legal type, we either need a no-op 5386 // or a truncation. 5387 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5388 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5389 } 5390 } 5391 5392 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5393 // and the shift amount is directly available in a GPR. 5394 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5395 if (VSN->isSplat()) { 5396 SDValue VSNOp0 = VSN->getOperand(0); 5397 unsigned Index = VSN->getSplatIndex(); 5398 assert(Index < VT.getVectorNumElements() && 5399 "Splat index should be defined and in first operand"); 5400 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5401 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5402 // Since i32 is the smallest legal type, we either need a no-op 5403 // or a truncation. 5404 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5405 VSNOp0.getOperand(Index)); 5406 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5407 } 5408 } 5409 } 5410 5411 // Otherwise just treat the current form as legal. 5412 return Op; 5413 } 5414 5415 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5416 SelectionDAG &DAG) const { 5417 switch (Op.getOpcode()) { 5418 case ISD::FRAMEADDR: 5419 return lowerFRAMEADDR(Op, DAG); 5420 case ISD::RETURNADDR: 5421 return lowerRETURNADDR(Op, DAG); 5422 case ISD::BR_CC: 5423 return lowerBR_CC(Op, DAG); 5424 case ISD::SELECT_CC: 5425 return lowerSELECT_CC(Op, DAG); 5426 case ISD::SETCC: 5427 return lowerSETCC(Op, DAG); 5428 case ISD::STRICT_FSETCC: 5429 return lowerSTRICT_FSETCC(Op, DAG, false); 5430 case ISD::STRICT_FSETCCS: 5431 return lowerSTRICT_FSETCC(Op, DAG, true); 5432 case ISD::GlobalAddress: 5433 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5434 case ISD::GlobalTLSAddress: 5435 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5436 case ISD::BlockAddress: 5437 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5438 case ISD::JumpTable: 5439 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5440 case ISD::ConstantPool: 5441 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5442 case ISD::BITCAST: 5443 return lowerBITCAST(Op, DAG); 5444 case ISD::VASTART: 5445 return lowerVASTART(Op, DAG); 5446 case ISD::VACOPY: 5447 return lowerVACOPY(Op, DAG); 5448 case ISD::DYNAMIC_STACKALLOC: 5449 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5450 case ISD::GET_DYNAMIC_AREA_OFFSET: 5451 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5452 case ISD::SMUL_LOHI: 5453 return lowerSMUL_LOHI(Op, DAG); 5454 case ISD::UMUL_LOHI: 5455 return lowerUMUL_LOHI(Op, DAG); 5456 case ISD::SDIVREM: 5457 return lowerSDIVREM(Op, DAG); 5458 case ISD::UDIVREM: 5459 return lowerUDIVREM(Op, DAG); 5460 case ISD::SADDO: 5461 case ISD::SSUBO: 5462 case ISD::UADDO: 5463 case ISD::USUBO: 5464 return lowerXALUO(Op, DAG); 5465 case ISD::ADDCARRY: 5466 case ISD::SUBCARRY: 5467 return lowerADDSUBCARRY(Op, DAG); 5468 case ISD::OR: 5469 return lowerOR(Op, DAG); 5470 case ISD::CTPOP: 5471 return lowerCTPOP(Op, DAG); 5472 case ISD::ATOMIC_FENCE: 5473 return lowerATOMIC_FENCE(Op, DAG); 5474 case ISD::ATOMIC_SWAP: 5475 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5476 case ISD::ATOMIC_STORE: 5477 return lowerATOMIC_STORE(Op, DAG); 5478 case ISD::ATOMIC_LOAD: 5479 return lowerATOMIC_LOAD(Op, DAG); 5480 case ISD::ATOMIC_LOAD_ADD: 5481 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5482 case ISD::ATOMIC_LOAD_SUB: 5483 return lowerATOMIC_LOAD_SUB(Op, DAG); 5484 case ISD::ATOMIC_LOAD_AND: 5485 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5486 case ISD::ATOMIC_LOAD_OR: 5487 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5488 case ISD::ATOMIC_LOAD_XOR: 5489 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5490 case ISD::ATOMIC_LOAD_NAND: 5491 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5492 case ISD::ATOMIC_LOAD_MIN: 5493 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5494 case ISD::ATOMIC_LOAD_MAX: 5495 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5496 case ISD::ATOMIC_LOAD_UMIN: 5497 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5498 case ISD::ATOMIC_LOAD_UMAX: 5499 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5500 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5501 return lowerATOMIC_CMP_SWAP(Op, DAG); 5502 case ISD::STACKSAVE: 5503 return lowerSTACKSAVE(Op, DAG); 5504 case ISD::STACKRESTORE: 5505 return lowerSTACKRESTORE(Op, DAG); 5506 case ISD::PREFETCH: 5507 return lowerPREFETCH(Op, DAG); 5508 case ISD::INTRINSIC_W_CHAIN: 5509 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5510 case ISD::INTRINSIC_WO_CHAIN: 5511 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5512 case ISD::BUILD_VECTOR: 5513 return lowerBUILD_VECTOR(Op, DAG); 5514 case ISD::VECTOR_SHUFFLE: 5515 return lowerVECTOR_SHUFFLE(Op, DAG); 5516 case ISD::SCALAR_TO_VECTOR: 5517 return lowerSCALAR_TO_VECTOR(Op, DAG); 5518 case ISD::INSERT_VECTOR_ELT: 5519 return lowerINSERT_VECTOR_ELT(Op, DAG); 5520 case ISD::EXTRACT_VECTOR_ELT: 5521 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5522 case ISD::SIGN_EXTEND_VECTOR_INREG: 5523 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5524 case ISD::ZERO_EXTEND_VECTOR_INREG: 5525 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5526 case ISD::SHL: 5527 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5528 case ISD::SRL: 5529 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5530 case ISD::SRA: 5531 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5532 default: 5533 llvm_unreachable("Unexpected node to lower"); 5534 } 5535 } 5536 5537 // Lower operations with invalid operand or result types (currently used 5538 // only for 128-bit integer types). 5539 void 5540 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5541 SmallVectorImpl<SDValue> &Results, 5542 SelectionDAG &DAG) const { 5543 switch (N->getOpcode()) { 5544 case ISD::ATOMIC_LOAD: { 5545 SDLoc DL(N); 5546 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5547 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5548 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5549 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5550 DL, Tys, Ops, MVT::i128, MMO); 5551 Results.push_back(lowerGR128ToI128(DAG, Res)); 5552 Results.push_back(Res.getValue(1)); 5553 break; 5554 } 5555 case ISD::ATOMIC_STORE: { 5556 SDLoc DL(N); 5557 SDVTList Tys = DAG.getVTList(MVT::Other); 5558 SDValue Ops[] = { N->getOperand(0), 5559 lowerI128ToGR128(DAG, N->getOperand(2)), 5560 N->getOperand(1) }; 5561 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5562 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5563 DL, Tys, Ops, MVT::i128, MMO); 5564 // We have to enforce sequential consistency by performing a 5565 // serialization operation after the store. 5566 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 5567 AtomicOrdering::SequentiallyConsistent) 5568 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5569 MVT::Other, Res), 0); 5570 Results.push_back(Res); 5571 break; 5572 } 5573 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5574 SDLoc DL(N); 5575 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5576 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5577 lowerI128ToGR128(DAG, N->getOperand(2)), 5578 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5579 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5580 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5581 DL, Tys, Ops, MVT::i128, MMO); 5582 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5583 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5584 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5585 Results.push_back(lowerGR128ToI128(DAG, Res)); 5586 Results.push_back(Success); 5587 Results.push_back(Res.getValue(2)); 5588 break; 5589 } 5590 default: 5591 llvm_unreachable("Unexpected node to lower"); 5592 } 5593 } 5594 5595 void 5596 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5597 SmallVectorImpl<SDValue> &Results, 5598 SelectionDAG &DAG) const { 5599 return LowerOperationWrapper(N, Results, DAG); 5600 } 5601 5602 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5603 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5604 switch ((SystemZISD::NodeType)Opcode) { 5605 case SystemZISD::FIRST_NUMBER: break; 5606 OPCODE(RET_FLAG); 5607 OPCODE(CALL); 5608 OPCODE(SIBCALL); 5609 OPCODE(TLS_GDCALL); 5610 OPCODE(TLS_LDCALL); 5611 OPCODE(PCREL_WRAPPER); 5612 OPCODE(PCREL_OFFSET); 5613 OPCODE(ICMP); 5614 OPCODE(FCMP); 5615 OPCODE(STRICT_FCMP); 5616 OPCODE(STRICT_FCMPS); 5617 OPCODE(TM); 5618 OPCODE(BR_CCMASK); 5619 OPCODE(SELECT_CCMASK); 5620 OPCODE(ADJDYNALLOC); 5621 OPCODE(PROBED_ALLOCA); 5622 OPCODE(POPCNT); 5623 OPCODE(SMUL_LOHI); 5624 OPCODE(UMUL_LOHI); 5625 OPCODE(SDIVREM); 5626 OPCODE(UDIVREM); 5627 OPCODE(SADDO); 5628 OPCODE(SSUBO); 5629 OPCODE(UADDO); 5630 OPCODE(USUBO); 5631 OPCODE(ADDCARRY); 5632 OPCODE(SUBCARRY); 5633 OPCODE(GET_CCMASK); 5634 OPCODE(MVC); 5635 OPCODE(MVC_LOOP); 5636 OPCODE(NC); 5637 OPCODE(NC_LOOP); 5638 OPCODE(OC); 5639 OPCODE(OC_LOOP); 5640 OPCODE(XC); 5641 OPCODE(XC_LOOP); 5642 OPCODE(CLC); 5643 OPCODE(CLC_LOOP); 5644 OPCODE(STPCPY); 5645 OPCODE(STRCMP); 5646 OPCODE(SEARCH_STRING); 5647 OPCODE(IPM); 5648 OPCODE(MEMBARRIER); 5649 OPCODE(TBEGIN); 5650 OPCODE(TBEGIN_NOFLOAT); 5651 OPCODE(TEND); 5652 OPCODE(BYTE_MASK); 5653 OPCODE(ROTATE_MASK); 5654 OPCODE(REPLICATE); 5655 OPCODE(JOIN_DWORDS); 5656 OPCODE(SPLAT); 5657 OPCODE(MERGE_HIGH); 5658 OPCODE(MERGE_LOW); 5659 OPCODE(SHL_DOUBLE); 5660 OPCODE(PERMUTE_DWORDS); 5661 OPCODE(PERMUTE); 5662 OPCODE(PACK); 5663 OPCODE(PACKS_CC); 5664 OPCODE(PACKLS_CC); 5665 OPCODE(UNPACK_HIGH); 5666 OPCODE(UNPACKL_HIGH); 5667 OPCODE(UNPACK_LOW); 5668 OPCODE(UNPACKL_LOW); 5669 OPCODE(VSHL_BY_SCALAR); 5670 OPCODE(VSRL_BY_SCALAR); 5671 OPCODE(VSRA_BY_SCALAR); 5672 OPCODE(VSUM); 5673 OPCODE(VICMPE); 5674 OPCODE(VICMPH); 5675 OPCODE(VICMPHL); 5676 OPCODE(VICMPES); 5677 OPCODE(VICMPHS); 5678 OPCODE(VICMPHLS); 5679 OPCODE(VFCMPE); 5680 OPCODE(STRICT_VFCMPE); 5681 OPCODE(STRICT_VFCMPES); 5682 OPCODE(VFCMPH); 5683 OPCODE(STRICT_VFCMPH); 5684 OPCODE(STRICT_VFCMPHS); 5685 OPCODE(VFCMPHE); 5686 OPCODE(STRICT_VFCMPHE); 5687 OPCODE(STRICT_VFCMPHES); 5688 OPCODE(VFCMPES); 5689 OPCODE(VFCMPHS); 5690 OPCODE(VFCMPHES); 5691 OPCODE(VFTCI); 5692 OPCODE(VEXTEND); 5693 OPCODE(STRICT_VEXTEND); 5694 OPCODE(VROUND); 5695 OPCODE(STRICT_VROUND); 5696 OPCODE(VTM); 5697 OPCODE(VFAE_CC); 5698 OPCODE(VFAEZ_CC); 5699 OPCODE(VFEE_CC); 5700 OPCODE(VFEEZ_CC); 5701 OPCODE(VFENE_CC); 5702 OPCODE(VFENEZ_CC); 5703 OPCODE(VISTR_CC); 5704 OPCODE(VSTRC_CC); 5705 OPCODE(VSTRCZ_CC); 5706 OPCODE(VSTRS_CC); 5707 OPCODE(VSTRSZ_CC); 5708 OPCODE(TDC); 5709 OPCODE(ATOMIC_SWAPW); 5710 OPCODE(ATOMIC_LOADW_ADD); 5711 OPCODE(ATOMIC_LOADW_SUB); 5712 OPCODE(ATOMIC_LOADW_AND); 5713 OPCODE(ATOMIC_LOADW_OR); 5714 OPCODE(ATOMIC_LOADW_XOR); 5715 OPCODE(ATOMIC_LOADW_NAND); 5716 OPCODE(ATOMIC_LOADW_MIN); 5717 OPCODE(ATOMIC_LOADW_MAX); 5718 OPCODE(ATOMIC_LOADW_UMIN); 5719 OPCODE(ATOMIC_LOADW_UMAX); 5720 OPCODE(ATOMIC_CMP_SWAPW); 5721 OPCODE(ATOMIC_CMP_SWAP); 5722 OPCODE(ATOMIC_LOAD_128); 5723 OPCODE(ATOMIC_STORE_128); 5724 OPCODE(ATOMIC_CMP_SWAP_128); 5725 OPCODE(LRV); 5726 OPCODE(STRV); 5727 OPCODE(VLER); 5728 OPCODE(VSTER); 5729 OPCODE(PREFETCH); 5730 } 5731 return nullptr; 5732 #undef OPCODE 5733 } 5734 5735 // Return true if VT is a vector whose elements are a whole number of bytes 5736 // in width. Also check for presence of vector support. 5737 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5738 if (!Subtarget.hasVector()) 5739 return false; 5740 5741 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5742 } 5743 5744 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5745 // producing a result of type ResVT. Op is a possibly bitcast version 5746 // of the input vector and Index is the index (based on type VecVT) that 5747 // should be extracted. Return the new extraction if a simplification 5748 // was possible or if Force is true. 5749 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5750 EVT VecVT, SDValue Op, 5751 unsigned Index, 5752 DAGCombinerInfo &DCI, 5753 bool Force) const { 5754 SelectionDAG &DAG = DCI.DAG; 5755 5756 // The number of bytes being extracted. 5757 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5758 5759 for (;;) { 5760 unsigned Opcode = Op.getOpcode(); 5761 if (Opcode == ISD::BITCAST) 5762 // Look through bitcasts. 5763 Op = Op.getOperand(0); 5764 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5765 canTreatAsByteVector(Op.getValueType())) { 5766 // Get a VPERM-like permute mask and see whether the bytes covered 5767 // by the extracted element are a contiguous sequence from one 5768 // source operand. 5769 SmallVector<int, SystemZ::VectorBytes> Bytes; 5770 if (!getVPermMask(Op, Bytes)) 5771 break; 5772 int First; 5773 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5774 BytesPerElement, First)) 5775 break; 5776 if (First < 0) 5777 return DAG.getUNDEF(ResVT); 5778 // Make sure the contiguous sequence starts at a multiple of the 5779 // original element size. 5780 unsigned Byte = unsigned(First) % Bytes.size(); 5781 if (Byte % BytesPerElement != 0) 5782 break; 5783 // We can get the extracted value directly from an input. 5784 Index = Byte / BytesPerElement; 5785 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5786 Force = true; 5787 } else if (Opcode == ISD::BUILD_VECTOR && 5788 canTreatAsByteVector(Op.getValueType())) { 5789 // We can only optimize this case if the BUILD_VECTOR elements are 5790 // at least as wide as the extracted value. 5791 EVT OpVT = Op.getValueType(); 5792 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5793 if (OpBytesPerElement < BytesPerElement) 5794 break; 5795 // Make sure that the least-significant bit of the extracted value 5796 // is the least significant bit of an input. 5797 unsigned End = (Index + 1) * BytesPerElement; 5798 if (End % OpBytesPerElement != 0) 5799 break; 5800 // We're extracting the low part of one operand of the BUILD_VECTOR. 5801 Op = Op.getOperand(End / OpBytesPerElement - 1); 5802 if (!Op.getValueType().isInteger()) { 5803 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5804 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5805 DCI.AddToWorklist(Op.getNode()); 5806 } 5807 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5808 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5809 if (VT != ResVT) { 5810 DCI.AddToWorklist(Op.getNode()); 5811 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5812 } 5813 return Op; 5814 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5815 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5816 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5817 canTreatAsByteVector(Op.getValueType()) && 5818 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5819 // Make sure that only the unextended bits are significant. 5820 EVT ExtVT = Op.getValueType(); 5821 EVT OpVT = Op.getOperand(0).getValueType(); 5822 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5823 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5824 unsigned Byte = Index * BytesPerElement; 5825 unsigned SubByte = Byte % ExtBytesPerElement; 5826 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5827 if (SubByte < MinSubByte || 5828 SubByte + BytesPerElement > ExtBytesPerElement) 5829 break; 5830 // Get the byte offset of the unextended element 5831 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5832 // ...then add the byte offset relative to that element. 5833 Byte += SubByte - MinSubByte; 5834 if (Byte % BytesPerElement != 0) 5835 break; 5836 Op = Op.getOperand(0); 5837 Index = Byte / BytesPerElement; 5838 Force = true; 5839 } else 5840 break; 5841 } 5842 if (Force) { 5843 if (Op.getValueType() != VecVT) { 5844 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5845 DCI.AddToWorklist(Op.getNode()); 5846 } 5847 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5848 DAG.getConstant(Index, DL, MVT::i32)); 5849 } 5850 return SDValue(); 5851 } 5852 5853 // Optimize vector operations in scalar value Op on the basis that Op 5854 // is truncated to TruncVT. 5855 SDValue SystemZTargetLowering::combineTruncateExtract( 5856 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5857 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5858 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5859 // of type TruncVT. 5860 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5861 TruncVT.getSizeInBits() % 8 == 0) { 5862 SDValue Vec = Op.getOperand(0); 5863 EVT VecVT = Vec.getValueType(); 5864 if (canTreatAsByteVector(VecVT)) { 5865 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5866 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5867 unsigned TruncBytes = TruncVT.getStoreSize(); 5868 if (BytesPerElement % TruncBytes == 0) { 5869 // Calculate the value of Y' in the above description. We are 5870 // splitting the original elements into Scale equal-sized pieces 5871 // and for truncation purposes want the last (least-significant) 5872 // of these pieces for IndexN. This is easiest to do by calculating 5873 // the start index of the following element and then subtracting 1. 5874 unsigned Scale = BytesPerElement / TruncBytes; 5875 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5876 5877 // Defer the creation of the bitcast from X to combineExtract, 5878 // which might be able to optimize the extraction. 5879 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5880 VecVT.getStoreSize() / TruncBytes); 5881 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5882 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5883 } 5884 } 5885 } 5886 } 5887 return SDValue(); 5888 } 5889 5890 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5891 SDNode *N, DAGCombinerInfo &DCI) const { 5892 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5893 SelectionDAG &DAG = DCI.DAG; 5894 SDValue N0 = N->getOperand(0); 5895 EVT VT = N->getValueType(0); 5896 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5897 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5898 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5899 if (TrueOp && FalseOp) { 5900 SDLoc DL(N0); 5901 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5902 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5903 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5904 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5905 // If N0 has multiple uses, change other uses as well. 5906 if (!N0.hasOneUse()) { 5907 SDValue TruncSelect = 5908 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5909 DCI.CombineTo(N0.getNode(), TruncSelect); 5910 } 5911 return NewSelect; 5912 } 5913 } 5914 return SDValue(); 5915 } 5916 5917 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5918 SDNode *N, DAGCombinerInfo &DCI) const { 5919 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5920 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5921 // into (select_cc LHS, RHS, -1, 0, COND) 5922 SelectionDAG &DAG = DCI.DAG; 5923 SDValue N0 = N->getOperand(0); 5924 EVT VT = N->getValueType(0); 5925 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5926 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5927 N0 = N0.getOperand(0); 5928 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5929 SDLoc DL(N0); 5930 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5931 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5932 N0.getOperand(2) }; 5933 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5934 } 5935 return SDValue(); 5936 } 5937 5938 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5939 SDNode *N, DAGCombinerInfo &DCI) const { 5940 // Convert (sext (ashr (shl X, C1), C2)) to 5941 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5942 // cheap as narrower ones. 5943 SelectionDAG &DAG = DCI.DAG; 5944 SDValue N0 = N->getOperand(0); 5945 EVT VT = N->getValueType(0); 5946 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5947 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5948 SDValue Inner = N0.getOperand(0); 5949 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5950 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5951 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5952 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5953 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5954 EVT ShiftVT = N0.getOperand(1).getValueType(); 5955 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5956 Inner.getOperand(0)); 5957 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5958 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5959 ShiftVT)); 5960 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5961 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5962 } 5963 } 5964 } 5965 return SDValue(); 5966 } 5967 5968 SDValue SystemZTargetLowering::combineMERGE( 5969 SDNode *N, DAGCombinerInfo &DCI) const { 5970 SelectionDAG &DAG = DCI.DAG; 5971 unsigned Opcode = N->getOpcode(); 5972 SDValue Op0 = N->getOperand(0); 5973 SDValue Op1 = N->getOperand(1); 5974 if (Op0.getOpcode() == ISD::BITCAST) 5975 Op0 = Op0.getOperand(0); 5976 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5977 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5978 // for v4f32. 5979 if (Op1 == N->getOperand(0)) 5980 return Op1; 5981 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5982 EVT VT = Op1.getValueType(); 5983 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5984 if (ElemBytes <= 4) { 5985 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5986 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5987 EVT InVT = VT.changeVectorElementTypeToInteger(); 5988 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5989 SystemZ::VectorBytes / ElemBytes / 2); 5990 if (VT != InVT) { 5991 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5992 DCI.AddToWorklist(Op1.getNode()); 5993 } 5994 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5995 DCI.AddToWorklist(Op.getNode()); 5996 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5997 } 5998 } 5999 return SDValue(); 6000 } 6001 6002 SDValue SystemZTargetLowering::combineLOAD( 6003 SDNode *N, DAGCombinerInfo &DCI) const { 6004 SelectionDAG &DAG = DCI.DAG; 6005 EVT LdVT = N->getValueType(0); 6006 if (LdVT.isVector() || LdVT.isInteger()) 6007 return SDValue(); 6008 // Transform a scalar load that is REPLICATEd as well as having other 6009 // use(s) to the form where the other use(s) use the first element of the 6010 // REPLICATE instead of the load. Otherwise instruction selection will not 6011 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6012 // point loads. 6013 6014 SDValue Replicate; 6015 SmallVector<SDNode*, 8> OtherUses; 6016 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6017 UI != UE; ++UI) { 6018 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6019 if (Replicate) 6020 return SDValue(); // Should never happen 6021 Replicate = SDValue(*UI, 0); 6022 } 6023 else if (UI.getUse().getResNo() == 0) 6024 OtherUses.push_back(*UI); 6025 } 6026 if (!Replicate || OtherUses.empty()) 6027 return SDValue(); 6028 6029 SDLoc DL(N); 6030 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6031 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6032 // Update uses of the loaded Value while preserving old chains. 6033 for (SDNode *U : OtherUses) { 6034 SmallVector<SDValue, 8> Ops; 6035 for (SDValue Op : U->ops()) 6036 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6037 DAG.UpdateNodeOperands(U, Ops); 6038 } 6039 return SDValue(N, 0); 6040 } 6041 6042 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6043 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6044 return true; 6045 if (Subtarget.hasVectorEnhancements2()) 6046 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 6047 return true; 6048 return false; 6049 } 6050 6051 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6052 if (!VT.isVector() || !VT.isSimple() || 6053 VT.getSizeInBits() != 128 || 6054 VT.getScalarSizeInBits() % 8 != 0) 6055 return false; 6056 6057 unsigned NumElts = VT.getVectorNumElements(); 6058 for (unsigned i = 0; i < NumElts; ++i) { 6059 if (M[i] < 0) continue; // ignore UNDEF indices 6060 if ((unsigned) M[i] != NumElts - 1 - i) 6061 return false; 6062 } 6063 6064 return true; 6065 } 6066 6067 SDValue SystemZTargetLowering::combineSTORE( 6068 SDNode *N, DAGCombinerInfo &DCI) const { 6069 SelectionDAG &DAG = DCI.DAG; 6070 auto *SN = cast<StoreSDNode>(N); 6071 auto &Op1 = N->getOperand(1); 6072 EVT MemVT = SN->getMemoryVT(); 6073 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6074 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6075 // If X has wider elements then convert it to: 6076 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6077 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6078 if (SDValue Value = 6079 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6080 DCI.AddToWorklist(Value.getNode()); 6081 6082 // Rewrite the store with the new form of stored value. 6083 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6084 SN->getBasePtr(), SN->getMemoryVT(), 6085 SN->getMemOperand()); 6086 } 6087 } 6088 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6089 if (!SN->isTruncatingStore() && 6090 Op1.getOpcode() == ISD::BSWAP && 6091 Op1.getNode()->hasOneUse() && 6092 canLoadStoreByteSwapped(Op1.getValueType())) { 6093 6094 SDValue BSwapOp = Op1.getOperand(0); 6095 6096 if (BSwapOp.getValueType() == MVT::i16) 6097 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6098 6099 SDValue Ops[] = { 6100 N->getOperand(0), BSwapOp, N->getOperand(2) 6101 }; 6102 6103 return 6104 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6105 Ops, MemVT, SN->getMemOperand()); 6106 } 6107 // Combine STORE (element-swap) into VSTER 6108 if (!SN->isTruncatingStore() && 6109 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6110 Op1.getNode()->hasOneUse() && 6111 Subtarget.hasVectorEnhancements2()) { 6112 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6113 ArrayRef<int> ShuffleMask = SVN->getMask(); 6114 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6115 SDValue Ops[] = { 6116 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6117 }; 6118 6119 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6120 DAG.getVTList(MVT::Other), 6121 Ops, MemVT, SN->getMemOperand()); 6122 } 6123 } 6124 6125 return SDValue(); 6126 } 6127 6128 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6129 SDNode *N, DAGCombinerInfo &DCI) const { 6130 SelectionDAG &DAG = DCI.DAG; 6131 // Combine element-swap (LOAD) into VLER 6132 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6133 N->getOperand(0).hasOneUse() && 6134 Subtarget.hasVectorEnhancements2()) { 6135 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6136 ArrayRef<int> ShuffleMask = SVN->getMask(); 6137 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6138 SDValue Load = N->getOperand(0); 6139 LoadSDNode *LD = cast<LoadSDNode>(Load); 6140 6141 // Create the element-swapping load. 6142 SDValue Ops[] = { 6143 LD->getChain(), // Chain 6144 LD->getBasePtr() // Ptr 6145 }; 6146 SDValue ESLoad = 6147 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6148 DAG.getVTList(LD->getValueType(0), MVT::Other), 6149 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6150 6151 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6152 // by the load dead. 6153 DCI.CombineTo(N, ESLoad); 6154 6155 // Next, combine the load away, we give it a bogus result value but a real 6156 // chain result. The result value is dead because the shuffle is dead. 6157 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6158 6159 // Return N so it doesn't get rechecked! 6160 return SDValue(N, 0); 6161 } 6162 } 6163 6164 return SDValue(); 6165 } 6166 6167 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6168 SDNode *N, DAGCombinerInfo &DCI) const { 6169 SelectionDAG &DAG = DCI.DAG; 6170 6171 if (!Subtarget.hasVector()) 6172 return SDValue(); 6173 6174 // Look through bitcasts that retain the number of vector elements. 6175 SDValue Op = N->getOperand(0); 6176 if (Op.getOpcode() == ISD::BITCAST && 6177 Op.getValueType().isVector() && 6178 Op.getOperand(0).getValueType().isVector() && 6179 Op.getValueType().getVectorNumElements() == 6180 Op.getOperand(0).getValueType().getVectorNumElements()) 6181 Op = Op.getOperand(0); 6182 6183 // Pull BSWAP out of a vector extraction. 6184 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6185 EVT VecVT = Op.getValueType(); 6186 EVT EltVT = VecVT.getVectorElementType(); 6187 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6188 Op.getOperand(0), N->getOperand(1)); 6189 DCI.AddToWorklist(Op.getNode()); 6190 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6191 if (EltVT != N->getValueType(0)) { 6192 DCI.AddToWorklist(Op.getNode()); 6193 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6194 } 6195 return Op; 6196 } 6197 6198 // Try to simplify a vector extraction. 6199 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6200 SDValue Op0 = N->getOperand(0); 6201 EVT VecVT = Op0.getValueType(); 6202 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6203 IndexN->getZExtValue(), DCI, false); 6204 } 6205 return SDValue(); 6206 } 6207 6208 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6209 SDNode *N, DAGCombinerInfo &DCI) const { 6210 SelectionDAG &DAG = DCI.DAG; 6211 // (join_dwords X, X) == (replicate X) 6212 if (N->getOperand(0) == N->getOperand(1)) 6213 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6214 N->getOperand(0)); 6215 return SDValue(); 6216 } 6217 6218 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6219 SDValue Chain1 = N1->getOperand(0); 6220 SDValue Chain2 = N2->getOperand(0); 6221 6222 // Trivial case: both nodes take the same chain. 6223 if (Chain1 == Chain2) 6224 return Chain1; 6225 6226 // FIXME - we could handle more complex cases via TokenFactor, 6227 // assuming we can verify that this would not create a cycle. 6228 return SDValue(); 6229 } 6230 6231 SDValue SystemZTargetLowering::combineFP_ROUND( 6232 SDNode *N, DAGCombinerInfo &DCI) const { 6233 6234 if (!Subtarget.hasVector()) 6235 return SDValue(); 6236 6237 // (fpround (extract_vector_elt X 0)) 6238 // (fpround (extract_vector_elt X 1)) -> 6239 // (extract_vector_elt (VROUND X) 0) 6240 // (extract_vector_elt (VROUND X) 2) 6241 // 6242 // This is a special case since the target doesn't really support v2f32s. 6243 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6244 SelectionDAG &DAG = DCI.DAG; 6245 SDValue Op0 = N->getOperand(OpNo); 6246 if (N->getValueType(0) == MVT::f32 && 6247 Op0.hasOneUse() && 6248 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6249 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6250 Op0.getOperand(1).getOpcode() == ISD::Constant && 6251 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6252 SDValue Vec = Op0.getOperand(0); 6253 for (auto *U : Vec->uses()) { 6254 if (U != Op0.getNode() && 6255 U->hasOneUse() && 6256 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6257 U->getOperand(0) == Vec && 6258 U->getOperand(1).getOpcode() == ISD::Constant && 6259 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6260 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6261 if (OtherRound.getOpcode() == N->getOpcode() && 6262 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6263 OtherRound.getValueType() == MVT::f32) { 6264 SDValue VRound, Chain; 6265 if (N->isStrictFPOpcode()) { 6266 Chain = MergeInputChains(N, OtherRound.getNode()); 6267 if (!Chain) 6268 continue; 6269 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6270 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6271 Chain = VRound.getValue(1); 6272 } else 6273 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6274 MVT::v4f32, Vec); 6275 DCI.AddToWorklist(VRound.getNode()); 6276 SDValue Extract1 = 6277 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6278 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6279 DCI.AddToWorklist(Extract1.getNode()); 6280 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6281 if (Chain) 6282 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6283 SDValue Extract0 = 6284 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6285 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6286 if (Chain) 6287 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6288 N->getVTList(), Extract0, Chain); 6289 return Extract0; 6290 } 6291 } 6292 } 6293 } 6294 return SDValue(); 6295 } 6296 6297 SDValue SystemZTargetLowering::combineFP_EXTEND( 6298 SDNode *N, DAGCombinerInfo &DCI) const { 6299 6300 if (!Subtarget.hasVector()) 6301 return SDValue(); 6302 6303 // (fpextend (extract_vector_elt X 0)) 6304 // (fpextend (extract_vector_elt X 2)) -> 6305 // (extract_vector_elt (VEXTEND X) 0) 6306 // (extract_vector_elt (VEXTEND X) 1) 6307 // 6308 // This is a special case since the target doesn't really support v2f32s. 6309 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6310 SelectionDAG &DAG = DCI.DAG; 6311 SDValue Op0 = N->getOperand(OpNo); 6312 if (N->getValueType(0) == MVT::f64 && 6313 Op0.hasOneUse() && 6314 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6315 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6316 Op0.getOperand(1).getOpcode() == ISD::Constant && 6317 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6318 SDValue Vec = Op0.getOperand(0); 6319 for (auto *U : Vec->uses()) { 6320 if (U != Op0.getNode() && 6321 U->hasOneUse() && 6322 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6323 U->getOperand(0) == Vec && 6324 U->getOperand(1).getOpcode() == ISD::Constant && 6325 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6326 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6327 if (OtherExtend.getOpcode() == N->getOpcode() && 6328 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6329 OtherExtend.getValueType() == MVT::f64) { 6330 SDValue VExtend, Chain; 6331 if (N->isStrictFPOpcode()) { 6332 Chain = MergeInputChains(N, OtherExtend.getNode()); 6333 if (!Chain) 6334 continue; 6335 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6336 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6337 Chain = VExtend.getValue(1); 6338 } else 6339 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6340 MVT::v2f64, Vec); 6341 DCI.AddToWorklist(VExtend.getNode()); 6342 SDValue Extract1 = 6343 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6344 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6345 DCI.AddToWorklist(Extract1.getNode()); 6346 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6347 if (Chain) 6348 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6349 SDValue Extract0 = 6350 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6351 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6352 if (Chain) 6353 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6354 N->getVTList(), Extract0, Chain); 6355 return Extract0; 6356 } 6357 } 6358 } 6359 } 6360 return SDValue(); 6361 } 6362 6363 SDValue SystemZTargetLowering::combineINT_TO_FP( 6364 SDNode *N, DAGCombinerInfo &DCI) const { 6365 if (DCI.Level != BeforeLegalizeTypes) 6366 return SDValue(); 6367 unsigned Opcode = N->getOpcode(); 6368 EVT OutVT = N->getValueType(0); 6369 SelectionDAG &DAG = DCI.DAG; 6370 SDValue Op = N->getOperand(0); 6371 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6372 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6373 6374 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6375 // v2f64 = uint_to_fp v2i16 6376 // => 6377 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6378 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6379 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6380 OutVT.getVectorNumElements()); 6381 unsigned ExtOpcode = 6382 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6383 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6384 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6385 } 6386 return SDValue(); 6387 } 6388 6389 SDValue SystemZTargetLowering::combineBSWAP( 6390 SDNode *N, DAGCombinerInfo &DCI) const { 6391 SelectionDAG &DAG = DCI.DAG; 6392 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6393 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6394 N->getOperand(0).hasOneUse() && 6395 canLoadStoreByteSwapped(N->getValueType(0))) { 6396 SDValue Load = N->getOperand(0); 6397 LoadSDNode *LD = cast<LoadSDNode>(Load); 6398 6399 // Create the byte-swapping load. 6400 SDValue Ops[] = { 6401 LD->getChain(), // Chain 6402 LD->getBasePtr() // Ptr 6403 }; 6404 EVT LoadVT = N->getValueType(0); 6405 if (LoadVT == MVT::i16) 6406 LoadVT = MVT::i32; 6407 SDValue BSLoad = 6408 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6409 DAG.getVTList(LoadVT, MVT::Other), 6410 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6411 6412 // If this is an i16 load, insert the truncate. 6413 SDValue ResVal = BSLoad; 6414 if (N->getValueType(0) == MVT::i16) 6415 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6416 6417 // First, combine the bswap away. This makes the value produced by the 6418 // load dead. 6419 DCI.CombineTo(N, ResVal); 6420 6421 // Next, combine the load away, we give it a bogus result value but a real 6422 // chain result. The result value is dead because the bswap is dead. 6423 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6424 6425 // Return N so it doesn't get rechecked! 6426 return SDValue(N, 0); 6427 } 6428 6429 // Look through bitcasts that retain the number of vector elements. 6430 SDValue Op = N->getOperand(0); 6431 if (Op.getOpcode() == ISD::BITCAST && 6432 Op.getValueType().isVector() && 6433 Op.getOperand(0).getValueType().isVector() && 6434 Op.getValueType().getVectorNumElements() == 6435 Op.getOperand(0).getValueType().getVectorNumElements()) 6436 Op = Op.getOperand(0); 6437 6438 // Push BSWAP into a vector insertion if at least one side then simplifies. 6439 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6440 SDValue Vec = Op.getOperand(0); 6441 SDValue Elt = Op.getOperand(1); 6442 SDValue Idx = Op.getOperand(2); 6443 6444 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6445 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6446 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6447 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6448 (canLoadStoreByteSwapped(N->getValueType(0)) && 6449 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6450 EVT VecVT = N->getValueType(0); 6451 EVT EltVT = N->getValueType(0).getVectorElementType(); 6452 if (VecVT != Vec.getValueType()) { 6453 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6454 DCI.AddToWorklist(Vec.getNode()); 6455 } 6456 if (EltVT != Elt.getValueType()) { 6457 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6458 DCI.AddToWorklist(Elt.getNode()); 6459 } 6460 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6461 DCI.AddToWorklist(Vec.getNode()); 6462 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6463 DCI.AddToWorklist(Elt.getNode()); 6464 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6465 Vec, Elt, Idx); 6466 } 6467 } 6468 6469 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6470 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6471 if (SV && Op.hasOneUse()) { 6472 SDValue Op0 = Op.getOperand(0); 6473 SDValue Op1 = Op.getOperand(1); 6474 6475 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6476 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6477 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6478 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6479 EVT VecVT = N->getValueType(0); 6480 if (VecVT != Op0.getValueType()) { 6481 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6482 DCI.AddToWorklist(Op0.getNode()); 6483 } 6484 if (VecVT != Op1.getValueType()) { 6485 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6486 DCI.AddToWorklist(Op1.getNode()); 6487 } 6488 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6489 DCI.AddToWorklist(Op0.getNode()); 6490 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6491 DCI.AddToWorklist(Op1.getNode()); 6492 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6493 } 6494 } 6495 6496 return SDValue(); 6497 } 6498 6499 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6500 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6501 // set by the CCReg instruction using the CCValid / CCMask masks, 6502 // If the CCReg instruction is itself a ICMP testing the condition 6503 // code set by some other instruction, see whether we can directly 6504 // use that condition code. 6505 6506 // Verify that we have an ICMP against some constant. 6507 if (CCValid != SystemZ::CCMASK_ICMP) 6508 return false; 6509 auto *ICmp = CCReg.getNode(); 6510 if (ICmp->getOpcode() != SystemZISD::ICMP) 6511 return false; 6512 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6513 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6514 if (!CompareRHS) 6515 return false; 6516 6517 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6518 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6519 // Verify that we have an appropriate mask for a EQ or NE comparison. 6520 bool Invert = false; 6521 if (CCMask == SystemZ::CCMASK_CMP_NE) 6522 Invert = !Invert; 6523 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6524 return false; 6525 6526 // Verify that the ICMP compares against one of select values. 6527 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6528 if (!TrueVal) 6529 return false; 6530 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6531 if (!FalseVal) 6532 return false; 6533 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6534 Invert = !Invert; 6535 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6536 return false; 6537 6538 // Compute the effective CC mask for the new branch or select. 6539 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6540 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6541 if (!NewCCValid || !NewCCMask) 6542 return false; 6543 CCValid = NewCCValid->getZExtValue(); 6544 CCMask = NewCCMask->getZExtValue(); 6545 if (Invert) 6546 CCMask ^= CCValid; 6547 6548 // Return the updated CCReg link. 6549 CCReg = CompareLHS->getOperand(4); 6550 return true; 6551 } 6552 6553 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6554 if (CompareLHS->getOpcode() == ISD::SRA) { 6555 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6556 if (!SRACount || SRACount->getZExtValue() != 30) 6557 return false; 6558 auto *SHL = CompareLHS->getOperand(0).getNode(); 6559 if (SHL->getOpcode() != ISD::SHL) 6560 return false; 6561 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6562 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6563 return false; 6564 auto *IPM = SHL->getOperand(0).getNode(); 6565 if (IPM->getOpcode() != SystemZISD::IPM) 6566 return false; 6567 6568 // Avoid introducing CC spills (because SRA would clobber CC). 6569 if (!CompareLHS->hasOneUse()) 6570 return false; 6571 // Verify that the ICMP compares against zero. 6572 if (CompareRHS->getZExtValue() != 0) 6573 return false; 6574 6575 // Compute the effective CC mask for the new branch or select. 6576 CCMask = SystemZ::reverseCCMask(CCMask); 6577 6578 // Return the updated CCReg link. 6579 CCReg = IPM->getOperand(0); 6580 return true; 6581 } 6582 6583 return false; 6584 } 6585 6586 SDValue SystemZTargetLowering::combineBR_CCMASK( 6587 SDNode *N, DAGCombinerInfo &DCI) const { 6588 SelectionDAG &DAG = DCI.DAG; 6589 6590 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6591 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6592 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6593 if (!CCValid || !CCMask) 6594 return SDValue(); 6595 6596 int CCValidVal = CCValid->getZExtValue(); 6597 int CCMaskVal = CCMask->getZExtValue(); 6598 SDValue Chain = N->getOperand(0); 6599 SDValue CCReg = N->getOperand(4); 6600 6601 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6602 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6603 Chain, 6604 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6605 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6606 N->getOperand(3), CCReg); 6607 return SDValue(); 6608 } 6609 6610 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6611 SDNode *N, DAGCombinerInfo &DCI) const { 6612 SelectionDAG &DAG = DCI.DAG; 6613 6614 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6615 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6616 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6617 if (!CCValid || !CCMask) 6618 return SDValue(); 6619 6620 int CCValidVal = CCValid->getZExtValue(); 6621 int CCMaskVal = CCMask->getZExtValue(); 6622 SDValue CCReg = N->getOperand(4); 6623 6624 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6625 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6626 N->getOperand(0), N->getOperand(1), 6627 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6628 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6629 CCReg); 6630 return SDValue(); 6631 } 6632 6633 6634 SDValue SystemZTargetLowering::combineGET_CCMASK( 6635 SDNode *N, DAGCombinerInfo &DCI) const { 6636 6637 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6638 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6639 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6640 if (!CCValid || !CCMask) 6641 return SDValue(); 6642 int CCValidVal = CCValid->getZExtValue(); 6643 int CCMaskVal = CCMask->getZExtValue(); 6644 6645 SDValue Select = N->getOperand(0); 6646 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6647 return SDValue(); 6648 6649 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6650 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6651 if (!SelectCCValid || !SelectCCMask) 6652 return SDValue(); 6653 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6654 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6655 6656 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6657 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6658 if (!TrueVal || !FalseVal) 6659 return SDValue(); 6660 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6661 ; 6662 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6663 SelectCCMaskVal ^= SelectCCValidVal; 6664 else 6665 return SDValue(); 6666 6667 if (SelectCCValidVal & ~CCValidVal) 6668 return SDValue(); 6669 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6670 return SDValue(); 6671 6672 return Select->getOperand(4); 6673 } 6674 6675 SDValue SystemZTargetLowering::combineIntDIVREM( 6676 SDNode *N, DAGCombinerInfo &DCI) const { 6677 SelectionDAG &DAG = DCI.DAG; 6678 EVT VT = N->getValueType(0); 6679 // In the case where the divisor is a vector of constants a cheaper 6680 // sequence of instructions can replace the divide. BuildSDIV is called to 6681 // do this during DAG combining, but it only succeeds when it can build a 6682 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6683 // since it is not Legal but Custom it can only happen before 6684 // legalization. Therefore we must scalarize this early before Combine 6685 // 1. For widened vectors, this is already the result of type legalization. 6686 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6687 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6688 return DAG.UnrollVectorOp(N); 6689 return SDValue(); 6690 } 6691 6692 SDValue SystemZTargetLowering::combineINTRINSIC( 6693 SDNode *N, DAGCombinerInfo &DCI) const { 6694 SelectionDAG &DAG = DCI.DAG; 6695 6696 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6697 switch (Id) { 6698 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6699 // or larger is simply a vector load. 6700 case Intrinsic::s390_vll: 6701 case Intrinsic::s390_vlrl: 6702 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6703 if (C->getZExtValue() >= 15) 6704 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6705 N->getOperand(3), MachinePointerInfo()); 6706 break; 6707 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6708 case Intrinsic::s390_vstl: 6709 case Intrinsic::s390_vstrl: 6710 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6711 if (C->getZExtValue() >= 15) 6712 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6713 N->getOperand(4), MachinePointerInfo()); 6714 break; 6715 } 6716 6717 return SDValue(); 6718 } 6719 6720 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6721 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6722 return N->getOperand(0); 6723 return N; 6724 } 6725 6726 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6727 DAGCombinerInfo &DCI) const { 6728 switch(N->getOpcode()) { 6729 default: break; 6730 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6731 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6732 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6733 case SystemZISD::MERGE_HIGH: 6734 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6735 case ISD::LOAD: return combineLOAD(N, DCI); 6736 case ISD::STORE: return combineSTORE(N, DCI); 6737 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6738 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6739 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6740 case ISD::STRICT_FP_ROUND: 6741 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6742 case ISD::STRICT_FP_EXTEND: 6743 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6744 case ISD::SINT_TO_FP: 6745 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6746 case ISD::BSWAP: return combineBSWAP(N, DCI); 6747 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6748 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6749 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6750 case ISD::SDIV: 6751 case ISD::UDIV: 6752 case ISD::SREM: 6753 case ISD::UREM: return combineIntDIVREM(N, DCI); 6754 case ISD::INTRINSIC_W_CHAIN: 6755 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6756 } 6757 6758 return SDValue(); 6759 } 6760 6761 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6762 // are for Op. 6763 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6764 unsigned OpNo) { 6765 EVT VT = Op.getValueType(); 6766 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6767 APInt SrcDemE; 6768 unsigned Opcode = Op.getOpcode(); 6769 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6770 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6771 switch (Id) { 6772 case Intrinsic::s390_vpksh: // PACKS 6773 case Intrinsic::s390_vpksf: 6774 case Intrinsic::s390_vpksg: 6775 case Intrinsic::s390_vpkshs: // PACKS_CC 6776 case Intrinsic::s390_vpksfs: 6777 case Intrinsic::s390_vpksgs: 6778 case Intrinsic::s390_vpklsh: // PACKLS 6779 case Intrinsic::s390_vpklsf: 6780 case Intrinsic::s390_vpklsg: 6781 case Intrinsic::s390_vpklshs: // PACKLS_CC 6782 case Intrinsic::s390_vpklsfs: 6783 case Intrinsic::s390_vpklsgs: 6784 // VECTOR PACK truncates the elements of two source vectors into one. 6785 SrcDemE = DemandedElts; 6786 if (OpNo == 2) 6787 SrcDemE.lshrInPlace(NumElts / 2); 6788 SrcDemE = SrcDemE.trunc(NumElts / 2); 6789 break; 6790 // VECTOR UNPACK extends half the elements of the source vector. 6791 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6792 case Intrinsic::s390_vuphh: 6793 case Intrinsic::s390_vuphf: 6794 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6795 case Intrinsic::s390_vuplhh: 6796 case Intrinsic::s390_vuplhf: 6797 SrcDemE = APInt(NumElts * 2, 0); 6798 SrcDemE.insertBits(DemandedElts, 0); 6799 break; 6800 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6801 case Intrinsic::s390_vuplhw: 6802 case Intrinsic::s390_vuplf: 6803 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6804 case Intrinsic::s390_vupllh: 6805 case Intrinsic::s390_vupllf: 6806 SrcDemE = APInt(NumElts * 2, 0); 6807 SrcDemE.insertBits(DemandedElts, NumElts); 6808 break; 6809 case Intrinsic::s390_vpdi: { 6810 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6811 SrcDemE = APInt(NumElts, 0); 6812 if (!DemandedElts[OpNo - 1]) 6813 break; 6814 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6815 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6816 // Demand input element 0 or 1, given by the mask bit value. 6817 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6818 break; 6819 } 6820 case Intrinsic::s390_vsldb: { 6821 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6822 assert(VT == MVT::v16i8 && "Unexpected type."); 6823 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6824 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6825 unsigned NumSrc0Els = 16 - FirstIdx; 6826 SrcDemE = APInt(NumElts, 0); 6827 if (OpNo == 1) { 6828 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6829 SrcDemE.insertBits(DemEls, FirstIdx); 6830 } else { 6831 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6832 SrcDemE.insertBits(DemEls, 0); 6833 } 6834 break; 6835 } 6836 case Intrinsic::s390_vperm: 6837 SrcDemE = APInt(NumElts, 1); 6838 break; 6839 default: 6840 llvm_unreachable("Unhandled intrinsic."); 6841 break; 6842 } 6843 } else { 6844 switch (Opcode) { 6845 case SystemZISD::JOIN_DWORDS: 6846 // Scalar operand. 6847 SrcDemE = APInt(1, 1); 6848 break; 6849 case SystemZISD::SELECT_CCMASK: 6850 SrcDemE = DemandedElts; 6851 break; 6852 default: 6853 llvm_unreachable("Unhandled opcode."); 6854 break; 6855 } 6856 } 6857 return SrcDemE; 6858 } 6859 6860 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6861 const APInt &DemandedElts, 6862 const SelectionDAG &DAG, unsigned Depth, 6863 unsigned OpNo) { 6864 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6865 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6866 KnownBits LHSKnown = 6867 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6868 KnownBits RHSKnown = 6869 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6870 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 6871 } 6872 6873 void 6874 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6875 KnownBits &Known, 6876 const APInt &DemandedElts, 6877 const SelectionDAG &DAG, 6878 unsigned Depth) const { 6879 Known.resetAll(); 6880 6881 // Intrinsic CC result is returned in the two low bits. 6882 unsigned tmp0, tmp1; // not used 6883 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6884 Known.Zero.setBitsFrom(2); 6885 return; 6886 } 6887 EVT VT = Op.getValueType(); 6888 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6889 return; 6890 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6891 "KnownBits does not match VT in bitwidth"); 6892 assert ((!VT.isVector() || 6893 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6894 "DemandedElts does not match VT number of elements"); 6895 unsigned BitWidth = Known.getBitWidth(); 6896 unsigned Opcode = Op.getOpcode(); 6897 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6898 bool IsLogical = false; 6899 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6900 switch (Id) { 6901 case Intrinsic::s390_vpksh: // PACKS 6902 case Intrinsic::s390_vpksf: 6903 case Intrinsic::s390_vpksg: 6904 case Intrinsic::s390_vpkshs: // PACKS_CC 6905 case Intrinsic::s390_vpksfs: 6906 case Intrinsic::s390_vpksgs: 6907 case Intrinsic::s390_vpklsh: // PACKLS 6908 case Intrinsic::s390_vpklsf: 6909 case Intrinsic::s390_vpklsg: 6910 case Intrinsic::s390_vpklshs: // PACKLS_CC 6911 case Intrinsic::s390_vpklsfs: 6912 case Intrinsic::s390_vpklsgs: 6913 case Intrinsic::s390_vpdi: 6914 case Intrinsic::s390_vsldb: 6915 case Intrinsic::s390_vperm: 6916 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6917 break; 6918 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6919 case Intrinsic::s390_vuplhh: 6920 case Intrinsic::s390_vuplhf: 6921 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6922 case Intrinsic::s390_vupllh: 6923 case Intrinsic::s390_vupllf: 6924 IsLogical = true; 6925 LLVM_FALLTHROUGH; 6926 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6927 case Intrinsic::s390_vuphh: 6928 case Intrinsic::s390_vuphf: 6929 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6930 case Intrinsic::s390_vuplhw: 6931 case Intrinsic::s390_vuplf: { 6932 SDValue SrcOp = Op.getOperand(1); 6933 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6934 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6935 if (IsLogical) { 6936 Known = Known.zext(BitWidth); 6937 } else 6938 Known = Known.sext(BitWidth); 6939 break; 6940 } 6941 default: 6942 break; 6943 } 6944 } else { 6945 switch (Opcode) { 6946 case SystemZISD::JOIN_DWORDS: 6947 case SystemZISD::SELECT_CCMASK: 6948 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6949 break; 6950 case SystemZISD::REPLICATE: { 6951 SDValue SrcOp = Op.getOperand(0); 6952 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6953 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6954 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6955 break; 6956 } 6957 default: 6958 break; 6959 } 6960 } 6961 6962 // Known has the width of the source operand(s). Adjust if needed to match 6963 // the passed bitwidth. 6964 if (Known.getBitWidth() != BitWidth) 6965 Known = Known.anyextOrTrunc(BitWidth); 6966 } 6967 6968 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6969 const SelectionDAG &DAG, unsigned Depth, 6970 unsigned OpNo) { 6971 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6972 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6973 if (LHS == 1) return 1; // Early out. 6974 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6975 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6976 if (RHS == 1) return 1; // Early out. 6977 unsigned Common = std::min(LHS, RHS); 6978 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6979 EVT VT = Op.getValueType(); 6980 unsigned VTBits = VT.getScalarSizeInBits(); 6981 if (SrcBitWidth > VTBits) { // PACK 6982 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6983 if (Common > SrcExtraBits) 6984 return (Common - SrcExtraBits); 6985 return 1; 6986 } 6987 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6988 return Common; 6989 } 6990 6991 unsigned 6992 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6993 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6994 unsigned Depth) const { 6995 if (Op.getResNo() != 0) 6996 return 1; 6997 unsigned Opcode = Op.getOpcode(); 6998 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6999 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7000 switch (Id) { 7001 case Intrinsic::s390_vpksh: // PACKS 7002 case Intrinsic::s390_vpksf: 7003 case Intrinsic::s390_vpksg: 7004 case Intrinsic::s390_vpkshs: // PACKS_CC 7005 case Intrinsic::s390_vpksfs: 7006 case Intrinsic::s390_vpksgs: 7007 case Intrinsic::s390_vpklsh: // PACKLS 7008 case Intrinsic::s390_vpklsf: 7009 case Intrinsic::s390_vpklsg: 7010 case Intrinsic::s390_vpklshs: // PACKLS_CC 7011 case Intrinsic::s390_vpklsfs: 7012 case Intrinsic::s390_vpklsgs: 7013 case Intrinsic::s390_vpdi: 7014 case Intrinsic::s390_vsldb: 7015 case Intrinsic::s390_vperm: 7016 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7017 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7018 case Intrinsic::s390_vuphh: 7019 case Intrinsic::s390_vuphf: 7020 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7021 case Intrinsic::s390_vuplhw: 7022 case Intrinsic::s390_vuplf: { 7023 SDValue PackedOp = Op.getOperand(1); 7024 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7025 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7026 EVT VT = Op.getValueType(); 7027 unsigned VTBits = VT.getScalarSizeInBits(); 7028 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7029 return Tmp; 7030 } 7031 default: 7032 break; 7033 } 7034 } else { 7035 switch (Opcode) { 7036 case SystemZISD::SELECT_CCMASK: 7037 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7038 default: 7039 break; 7040 } 7041 } 7042 7043 return 1; 7044 } 7045 7046 unsigned 7047 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 7048 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7049 unsigned StackAlign = TFI->getStackAlignment(); 7050 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7051 "Unexpected stack alignment"); 7052 // The default stack probe size is 4096 if the function has no 7053 // stack-probe-size attribute. 7054 unsigned StackProbeSize = 4096; 7055 const Function &Fn = MF.getFunction(); 7056 if (Fn.hasFnAttribute("stack-probe-size")) 7057 Fn.getFnAttribute("stack-probe-size") 7058 .getValueAsString() 7059 .getAsInteger(0, StackProbeSize); 7060 // Round down to the stack alignment. 7061 StackProbeSize &= ~(StackAlign - 1); 7062 return StackProbeSize ? StackProbeSize : StackAlign; 7063 } 7064 7065 //===----------------------------------------------------------------------===// 7066 // Custom insertion 7067 //===----------------------------------------------------------------------===// 7068 7069 // Force base value Base into a register before MI. Return the register. 7070 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7071 const SystemZInstrInfo *TII) { 7072 if (Base.isReg()) 7073 return Base.getReg(); 7074 7075 MachineBasicBlock *MBB = MI.getParent(); 7076 MachineFunction &MF = *MBB->getParent(); 7077 MachineRegisterInfo &MRI = MF.getRegInfo(); 7078 7079 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7080 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7081 .add(Base) 7082 .addImm(0) 7083 .addReg(0); 7084 return Reg; 7085 } 7086 7087 // The CC operand of MI might be missing a kill marker because there 7088 // were multiple uses of CC, and ISel didn't know which to mark. 7089 // Figure out whether MI should have had a kill marker. 7090 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7091 // Scan forward through BB for a use/def of CC. 7092 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7093 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7094 const MachineInstr& mi = *miI; 7095 if (mi.readsRegister(SystemZ::CC)) 7096 return false; 7097 if (mi.definesRegister(SystemZ::CC)) 7098 break; // Should have kill-flag - update below. 7099 } 7100 7101 // If we hit the end of the block, check whether CC is live into a 7102 // successor. 7103 if (miI == MBB->end()) { 7104 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 7105 if ((*SI)->isLiveIn(SystemZ::CC)) 7106 return false; 7107 } 7108 7109 return true; 7110 } 7111 7112 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7113 // together with other Select pseudo-opcodes into a single basic-block with 7114 // a conditional jump around it. 7115 static bool isSelectPseudo(MachineInstr &MI) { 7116 switch (MI.getOpcode()) { 7117 case SystemZ::Select32: 7118 case SystemZ::Select64: 7119 case SystemZ::SelectF32: 7120 case SystemZ::SelectF64: 7121 case SystemZ::SelectF128: 7122 case SystemZ::SelectVR32: 7123 case SystemZ::SelectVR64: 7124 case SystemZ::SelectVR128: 7125 return true; 7126 7127 default: 7128 return false; 7129 } 7130 } 7131 7132 // Helper function, which inserts PHI functions into SinkMBB: 7133 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7134 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7135 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7136 MachineBasicBlock *TrueMBB, 7137 MachineBasicBlock *FalseMBB, 7138 MachineBasicBlock *SinkMBB) { 7139 MachineFunction *MF = TrueMBB->getParent(); 7140 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7141 7142 MachineInstr *FirstMI = Selects.front(); 7143 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7144 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7145 7146 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7147 7148 // As we are creating the PHIs, we have to be careful if there is more than 7149 // one. Later Selects may reference the results of earlier Selects, but later 7150 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7151 // That also means that PHI construction must work forward from earlier to 7152 // later, and that the code must maintain a mapping from earlier PHI's 7153 // destination registers, and the registers that went into the PHI. 7154 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7155 7156 for (auto MI : Selects) { 7157 Register DestReg = MI->getOperand(0).getReg(); 7158 Register TrueReg = MI->getOperand(1).getReg(); 7159 Register FalseReg = MI->getOperand(2).getReg(); 7160 7161 // If this Select we are generating is the opposite condition from 7162 // the jump we generated, then we have to swap the operands for the 7163 // PHI that is going to be generated. 7164 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7165 std::swap(TrueReg, FalseReg); 7166 7167 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7168 TrueReg = RegRewriteTable[TrueReg].first; 7169 7170 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7171 FalseReg = RegRewriteTable[FalseReg].second; 7172 7173 DebugLoc DL = MI->getDebugLoc(); 7174 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7175 .addReg(TrueReg).addMBB(TrueMBB) 7176 .addReg(FalseReg).addMBB(FalseMBB); 7177 7178 // Add this PHI to the rewrite table. 7179 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7180 } 7181 7182 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7183 } 7184 7185 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7186 MachineBasicBlock * 7187 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7188 MachineBasicBlock *MBB) const { 7189 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7190 const SystemZInstrInfo *TII = 7191 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7192 7193 unsigned CCValid = MI.getOperand(3).getImm(); 7194 unsigned CCMask = MI.getOperand(4).getImm(); 7195 7196 // If we have a sequence of Select* pseudo instructions using the 7197 // same condition code value, we want to expand all of them into 7198 // a single pair of basic blocks using the same condition. 7199 SmallVector<MachineInstr*, 8> Selects; 7200 SmallVector<MachineInstr*, 8> DbgValues; 7201 Selects.push_back(&MI); 7202 unsigned Count = 0; 7203 for (MachineBasicBlock::iterator NextMIIt = 7204 std::next(MachineBasicBlock::iterator(MI)); 7205 NextMIIt != MBB->end(); ++NextMIIt) { 7206 if (isSelectPseudo(*NextMIIt)) { 7207 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7208 "Bad CCValid operands since CC was not redefined."); 7209 if (NextMIIt->getOperand(4).getImm() == CCMask || 7210 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7211 Selects.push_back(&*NextMIIt); 7212 continue; 7213 } 7214 break; 7215 } 7216 if (NextMIIt->definesRegister(SystemZ::CC) || 7217 NextMIIt->usesCustomInsertionHook()) 7218 break; 7219 bool User = false; 7220 for (auto SelMI : Selects) 7221 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7222 User = true; 7223 break; 7224 } 7225 if (NextMIIt->isDebugInstr()) { 7226 if (User) { 7227 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7228 DbgValues.push_back(&*NextMIIt); 7229 } 7230 } 7231 else if (User || ++Count > 20) 7232 break; 7233 } 7234 7235 MachineInstr *LastMI = Selects.back(); 7236 bool CCKilled = 7237 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7238 MachineBasicBlock *StartMBB = MBB; 7239 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7240 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7241 7242 // Unless CC was killed in the last Select instruction, mark it as 7243 // live-in to both FalseMBB and JoinMBB. 7244 if (!CCKilled) { 7245 FalseMBB->addLiveIn(SystemZ::CC); 7246 JoinMBB->addLiveIn(SystemZ::CC); 7247 } 7248 7249 // StartMBB: 7250 // BRC CCMask, JoinMBB 7251 // # fallthrough to FalseMBB 7252 MBB = StartMBB; 7253 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7254 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7255 MBB->addSuccessor(JoinMBB); 7256 MBB->addSuccessor(FalseMBB); 7257 7258 // FalseMBB: 7259 // # fallthrough to JoinMBB 7260 MBB = FalseMBB; 7261 MBB->addSuccessor(JoinMBB); 7262 7263 // JoinMBB: 7264 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7265 // ... 7266 MBB = JoinMBB; 7267 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7268 for (auto SelMI : Selects) 7269 SelMI->eraseFromParent(); 7270 7271 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7272 for (auto DbgMI : DbgValues) 7273 MBB->splice(InsertPos, StartMBB, DbgMI); 7274 7275 return JoinMBB; 7276 } 7277 7278 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7279 // StoreOpcode is the store to use and Invert says whether the store should 7280 // happen when the condition is false rather than true. If a STORE ON 7281 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7282 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7283 MachineBasicBlock *MBB, 7284 unsigned StoreOpcode, 7285 unsigned STOCOpcode, 7286 bool Invert) const { 7287 const SystemZInstrInfo *TII = 7288 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7289 7290 Register SrcReg = MI.getOperand(0).getReg(); 7291 MachineOperand Base = MI.getOperand(1); 7292 int64_t Disp = MI.getOperand(2).getImm(); 7293 Register IndexReg = MI.getOperand(3).getReg(); 7294 unsigned CCValid = MI.getOperand(4).getImm(); 7295 unsigned CCMask = MI.getOperand(5).getImm(); 7296 DebugLoc DL = MI.getDebugLoc(); 7297 7298 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7299 7300 // ISel pattern matching also adds a load memory operand of the same 7301 // address, so take special care to find the storing memory operand. 7302 MachineMemOperand *MMO = nullptr; 7303 for (auto *I : MI.memoperands()) 7304 if (I->isStore()) { 7305 MMO = I; 7306 break; 7307 } 7308 7309 // Use STOCOpcode if possible. We could use different store patterns in 7310 // order to avoid matching the index register, but the performance trade-offs 7311 // might be more complicated in that case. 7312 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7313 if (Invert) 7314 CCMask ^= CCValid; 7315 7316 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7317 .addReg(SrcReg) 7318 .add(Base) 7319 .addImm(Disp) 7320 .addImm(CCValid) 7321 .addImm(CCMask) 7322 .addMemOperand(MMO); 7323 7324 MI.eraseFromParent(); 7325 return MBB; 7326 } 7327 7328 // Get the condition needed to branch around the store. 7329 if (!Invert) 7330 CCMask ^= CCValid; 7331 7332 MachineBasicBlock *StartMBB = MBB; 7333 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7334 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7335 7336 // Unless CC was killed in the CondStore instruction, mark it as 7337 // live-in to both FalseMBB and JoinMBB. 7338 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7339 FalseMBB->addLiveIn(SystemZ::CC); 7340 JoinMBB->addLiveIn(SystemZ::CC); 7341 } 7342 7343 // StartMBB: 7344 // BRC CCMask, JoinMBB 7345 // # fallthrough to FalseMBB 7346 MBB = StartMBB; 7347 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7348 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7349 MBB->addSuccessor(JoinMBB); 7350 MBB->addSuccessor(FalseMBB); 7351 7352 // FalseMBB: 7353 // store %SrcReg, %Disp(%Index,%Base) 7354 // # fallthrough to JoinMBB 7355 MBB = FalseMBB; 7356 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7357 .addReg(SrcReg) 7358 .add(Base) 7359 .addImm(Disp) 7360 .addReg(IndexReg) 7361 .addMemOperand(MMO); 7362 MBB->addSuccessor(JoinMBB); 7363 7364 MI.eraseFromParent(); 7365 return JoinMBB; 7366 } 7367 7368 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7369 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7370 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7371 // BitSize is the width of the field in bits, or 0 if this is a partword 7372 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7373 // is one of the operands. Invert says whether the field should be 7374 // inverted after performing BinOpcode (e.g. for NAND). 7375 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7376 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7377 unsigned BitSize, bool Invert) const { 7378 MachineFunction &MF = *MBB->getParent(); 7379 const SystemZInstrInfo *TII = 7380 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7381 MachineRegisterInfo &MRI = MF.getRegInfo(); 7382 bool IsSubWord = (BitSize < 32); 7383 7384 // Extract the operands. Base can be a register or a frame index. 7385 // Src2 can be a register or immediate. 7386 Register Dest = MI.getOperand(0).getReg(); 7387 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7388 int64_t Disp = MI.getOperand(2).getImm(); 7389 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7390 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7391 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7392 DebugLoc DL = MI.getDebugLoc(); 7393 if (IsSubWord) 7394 BitSize = MI.getOperand(6).getImm(); 7395 7396 // Subword operations use 32-bit registers. 7397 const TargetRegisterClass *RC = (BitSize <= 32 ? 7398 &SystemZ::GR32BitRegClass : 7399 &SystemZ::GR64BitRegClass); 7400 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7401 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7402 7403 // Get the right opcodes for the displacement. 7404 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7405 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7406 assert(LOpcode && CSOpcode && "Displacement out of range"); 7407 7408 // Create virtual registers for temporary results. 7409 Register OrigVal = MRI.createVirtualRegister(RC); 7410 Register OldVal = MRI.createVirtualRegister(RC); 7411 Register NewVal = (BinOpcode || IsSubWord ? 7412 MRI.createVirtualRegister(RC) : Src2.getReg()); 7413 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7414 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7415 7416 // Insert a basic block for the main loop. 7417 MachineBasicBlock *StartMBB = MBB; 7418 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7419 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7420 7421 // StartMBB: 7422 // ... 7423 // %OrigVal = L Disp(%Base) 7424 // # fall through to LoopMBB 7425 MBB = StartMBB; 7426 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7427 MBB->addSuccessor(LoopMBB); 7428 7429 // LoopMBB: 7430 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7431 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7432 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7433 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7434 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7435 // JNE LoopMBB 7436 // # fall through to DoneMBB 7437 MBB = LoopMBB; 7438 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7439 .addReg(OrigVal).addMBB(StartMBB) 7440 .addReg(Dest).addMBB(LoopMBB); 7441 if (IsSubWord) 7442 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7443 .addReg(OldVal).addReg(BitShift).addImm(0); 7444 if (Invert) { 7445 // Perform the operation normally and then invert every bit of the field. 7446 Register Tmp = MRI.createVirtualRegister(RC); 7447 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7448 if (BitSize <= 32) 7449 // XILF with the upper BitSize bits set. 7450 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7451 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7452 else { 7453 // Use LCGR and add -1 to the result, which is more compact than 7454 // an XILF, XILH pair. 7455 Register Tmp2 = MRI.createVirtualRegister(RC); 7456 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7457 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7458 .addReg(Tmp2).addImm(-1); 7459 } 7460 } else if (BinOpcode) 7461 // A simply binary operation. 7462 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7463 .addReg(RotatedOldVal) 7464 .add(Src2); 7465 else if (IsSubWord) 7466 // Use RISBG to rotate Src2 into position and use it to replace the 7467 // field in RotatedOldVal. 7468 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7469 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7470 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7471 if (IsSubWord) 7472 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7473 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7474 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7475 .addReg(OldVal) 7476 .addReg(NewVal) 7477 .add(Base) 7478 .addImm(Disp); 7479 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7480 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7481 MBB->addSuccessor(LoopMBB); 7482 MBB->addSuccessor(DoneMBB); 7483 7484 MI.eraseFromParent(); 7485 return DoneMBB; 7486 } 7487 7488 // Implement EmitInstrWithCustomInserter for pseudo 7489 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7490 // instruction that should be used to compare the current field with the 7491 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7492 // for when the current field should be kept. BitSize is the width of 7493 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7494 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7495 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7496 unsigned KeepOldMask, unsigned BitSize) const { 7497 MachineFunction &MF = *MBB->getParent(); 7498 const SystemZInstrInfo *TII = 7499 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7500 MachineRegisterInfo &MRI = MF.getRegInfo(); 7501 bool IsSubWord = (BitSize < 32); 7502 7503 // Extract the operands. Base can be a register or a frame index. 7504 Register Dest = MI.getOperand(0).getReg(); 7505 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7506 int64_t Disp = MI.getOperand(2).getImm(); 7507 Register Src2 = MI.getOperand(3).getReg(); 7508 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7509 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7510 DebugLoc DL = MI.getDebugLoc(); 7511 if (IsSubWord) 7512 BitSize = MI.getOperand(6).getImm(); 7513 7514 // Subword operations use 32-bit registers. 7515 const TargetRegisterClass *RC = (BitSize <= 32 ? 7516 &SystemZ::GR32BitRegClass : 7517 &SystemZ::GR64BitRegClass); 7518 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7519 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7520 7521 // Get the right opcodes for the displacement. 7522 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7523 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7524 assert(LOpcode && CSOpcode && "Displacement out of range"); 7525 7526 // Create virtual registers for temporary results. 7527 Register OrigVal = MRI.createVirtualRegister(RC); 7528 Register OldVal = MRI.createVirtualRegister(RC); 7529 Register NewVal = MRI.createVirtualRegister(RC); 7530 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7531 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7532 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7533 7534 // Insert 3 basic blocks for the loop. 7535 MachineBasicBlock *StartMBB = MBB; 7536 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7537 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7538 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7539 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7540 7541 // StartMBB: 7542 // ... 7543 // %OrigVal = L Disp(%Base) 7544 // # fall through to LoopMBB 7545 MBB = StartMBB; 7546 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7547 MBB->addSuccessor(LoopMBB); 7548 7549 // LoopMBB: 7550 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7551 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7552 // CompareOpcode %RotatedOldVal, %Src2 7553 // BRC KeepOldMask, UpdateMBB 7554 MBB = LoopMBB; 7555 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7556 .addReg(OrigVal).addMBB(StartMBB) 7557 .addReg(Dest).addMBB(UpdateMBB); 7558 if (IsSubWord) 7559 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7560 .addReg(OldVal).addReg(BitShift).addImm(0); 7561 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7562 .addReg(RotatedOldVal).addReg(Src2); 7563 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7564 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7565 MBB->addSuccessor(UpdateMBB); 7566 MBB->addSuccessor(UseAltMBB); 7567 7568 // UseAltMBB: 7569 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7570 // # fall through to UpdateMBB 7571 MBB = UseAltMBB; 7572 if (IsSubWord) 7573 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7574 .addReg(RotatedOldVal).addReg(Src2) 7575 .addImm(32).addImm(31 + BitSize).addImm(0); 7576 MBB->addSuccessor(UpdateMBB); 7577 7578 // UpdateMBB: 7579 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7580 // [ %RotatedAltVal, UseAltMBB ] 7581 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7582 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7583 // JNE LoopMBB 7584 // # fall through to DoneMBB 7585 MBB = UpdateMBB; 7586 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7587 .addReg(RotatedOldVal).addMBB(LoopMBB) 7588 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7589 if (IsSubWord) 7590 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7591 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7592 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7593 .addReg(OldVal) 7594 .addReg(NewVal) 7595 .add(Base) 7596 .addImm(Disp); 7597 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7598 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7599 MBB->addSuccessor(LoopMBB); 7600 MBB->addSuccessor(DoneMBB); 7601 7602 MI.eraseFromParent(); 7603 return DoneMBB; 7604 } 7605 7606 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7607 // instruction MI. 7608 MachineBasicBlock * 7609 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7610 MachineBasicBlock *MBB) const { 7611 MachineFunction &MF = *MBB->getParent(); 7612 const SystemZInstrInfo *TII = 7613 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7614 MachineRegisterInfo &MRI = MF.getRegInfo(); 7615 7616 // Extract the operands. Base can be a register or a frame index. 7617 Register Dest = MI.getOperand(0).getReg(); 7618 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7619 int64_t Disp = MI.getOperand(2).getImm(); 7620 Register CmpVal = MI.getOperand(3).getReg(); 7621 Register OrigSwapVal = MI.getOperand(4).getReg(); 7622 Register BitShift = MI.getOperand(5).getReg(); 7623 Register NegBitShift = MI.getOperand(6).getReg(); 7624 int64_t BitSize = MI.getOperand(7).getImm(); 7625 DebugLoc DL = MI.getDebugLoc(); 7626 7627 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7628 7629 // Get the right opcodes for the displacement and zero-extension. 7630 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7631 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7632 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 7633 assert(LOpcode && CSOpcode && "Displacement out of range"); 7634 7635 // Create virtual registers for temporary results. 7636 Register OrigOldVal = MRI.createVirtualRegister(RC); 7637 Register OldVal = MRI.createVirtualRegister(RC); 7638 Register SwapVal = MRI.createVirtualRegister(RC); 7639 Register StoreVal = MRI.createVirtualRegister(RC); 7640 Register OldValRot = MRI.createVirtualRegister(RC); 7641 Register RetryOldVal = MRI.createVirtualRegister(RC); 7642 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7643 7644 // Insert 2 basic blocks for the loop. 7645 MachineBasicBlock *StartMBB = MBB; 7646 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7647 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7648 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7649 7650 // StartMBB: 7651 // ... 7652 // %OrigOldVal = L Disp(%Base) 7653 // # fall through to LoopMBB 7654 MBB = StartMBB; 7655 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7656 .add(Base) 7657 .addImm(Disp) 7658 .addReg(0); 7659 MBB->addSuccessor(LoopMBB); 7660 7661 // LoopMBB: 7662 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7663 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7664 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 7665 // ^^ The low BitSize bits contain the field 7666 // of interest. 7667 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 7668 // ^^ Replace the upper 32-BitSize bits of the 7669 // swap value with those that we loaded and rotated. 7670 // %Dest = LL[CH] %OldValRot 7671 // CR %Dest, %CmpVal 7672 // JNE DoneMBB 7673 // # Fall through to SetMBB 7674 MBB = LoopMBB; 7675 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7676 .addReg(OrigOldVal).addMBB(StartMBB) 7677 .addReg(RetryOldVal).addMBB(SetMBB); 7678 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7679 .addReg(OrigSwapVal).addMBB(StartMBB) 7680 .addReg(RetrySwapVal).addMBB(SetMBB); 7681 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 7682 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7683 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7684 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 7685 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 7686 .addReg(OldValRot); 7687 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7688 .addReg(Dest).addReg(CmpVal); 7689 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7690 .addImm(SystemZ::CCMASK_ICMP) 7691 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7692 MBB->addSuccessor(DoneMBB); 7693 MBB->addSuccessor(SetMBB); 7694 7695 // SetMBB: 7696 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7697 // ^^ Rotate the new field to its proper position. 7698 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 7699 // JNE LoopMBB 7700 // # fall through to ExitMBB 7701 MBB = SetMBB; 7702 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7703 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7704 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7705 .addReg(OldVal) 7706 .addReg(StoreVal) 7707 .add(Base) 7708 .addImm(Disp); 7709 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7710 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7711 MBB->addSuccessor(LoopMBB); 7712 MBB->addSuccessor(DoneMBB); 7713 7714 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7715 // to the block after the loop. At this point, CC may have been defined 7716 // either by the CR in LoopMBB or by the CS in SetMBB. 7717 if (!MI.registerDefIsDead(SystemZ::CC)) 7718 DoneMBB->addLiveIn(SystemZ::CC); 7719 7720 MI.eraseFromParent(); 7721 return DoneMBB; 7722 } 7723 7724 // Emit a move from two GR64s to a GR128. 7725 MachineBasicBlock * 7726 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7727 MachineBasicBlock *MBB) const { 7728 MachineFunction &MF = *MBB->getParent(); 7729 const SystemZInstrInfo *TII = 7730 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7731 MachineRegisterInfo &MRI = MF.getRegInfo(); 7732 DebugLoc DL = MI.getDebugLoc(); 7733 7734 Register Dest = MI.getOperand(0).getReg(); 7735 Register Hi = MI.getOperand(1).getReg(); 7736 Register Lo = MI.getOperand(2).getReg(); 7737 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7738 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7739 7740 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7741 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7742 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7743 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7744 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7745 7746 MI.eraseFromParent(); 7747 return MBB; 7748 } 7749 7750 // Emit an extension from a GR64 to a GR128. ClearEven is true 7751 // if the high register of the GR128 value must be cleared or false if 7752 // it's "don't care". 7753 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7754 MachineBasicBlock *MBB, 7755 bool ClearEven) const { 7756 MachineFunction &MF = *MBB->getParent(); 7757 const SystemZInstrInfo *TII = 7758 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7759 MachineRegisterInfo &MRI = MF.getRegInfo(); 7760 DebugLoc DL = MI.getDebugLoc(); 7761 7762 Register Dest = MI.getOperand(0).getReg(); 7763 Register Src = MI.getOperand(1).getReg(); 7764 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7765 7766 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7767 if (ClearEven) { 7768 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7769 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7770 7771 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7772 .addImm(0); 7773 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7774 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7775 In128 = NewIn128; 7776 } 7777 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7778 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7779 7780 MI.eraseFromParent(); 7781 return MBB; 7782 } 7783 7784 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7785 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7786 MachineFunction &MF = *MBB->getParent(); 7787 const SystemZInstrInfo *TII = 7788 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7789 MachineRegisterInfo &MRI = MF.getRegInfo(); 7790 DebugLoc DL = MI.getDebugLoc(); 7791 7792 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7793 uint64_t DestDisp = MI.getOperand(1).getImm(); 7794 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7795 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7796 MachineOperand &LengthMO = MI.getOperand(4); 7797 uint64_t ImmLength = LengthMO.isImm() ? LengthMO.getImm() : 0; 7798 Register LenMinus1Reg = 7799 LengthMO.isReg() ? LengthMO.getReg() : SystemZ::NoRegister; 7800 7801 // When generating more than one CLC, all but the last will need to 7802 // branch to the end when a difference is found. 7803 MachineBasicBlock *EndMBB = (ImmLength > 256 && Opcode == SystemZ::CLC 7804 ? SystemZ::splitBlockAfter(MI, MBB) 7805 : nullptr); 7806 7807 // Check for the loop form, in which operand 5 is the trip count. 7808 if (MI.getNumExplicitOperands() > 5) { 7809 Register StartCountReg = MI.getOperand(5).getReg(); 7810 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7811 7812 auto loadZeroAddress = [&]() -> MachineOperand { 7813 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7814 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 7815 return MachineOperand::CreateReg(Reg, false); 7816 }; 7817 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 7818 DestBase = loadZeroAddress(); 7819 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 7820 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 7821 7822 MachineBasicBlock *StartMBB = nullptr; 7823 MachineBasicBlock *LoopMBB = nullptr; 7824 MachineBasicBlock *NextMBB = nullptr; 7825 MachineBasicBlock *DoneMBB = nullptr; 7826 MachineBasicBlock *AllDoneMBB = nullptr; 7827 7828 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7829 Register StartDestReg = 7830 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 7831 7832 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7833 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7834 Register ThisDestReg = 7835 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 7836 Register NextSrcReg = MRI.createVirtualRegister(RC); 7837 Register NextDestReg = 7838 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 7839 RC = &SystemZ::GR64BitRegClass; 7840 Register ThisCountReg = MRI.createVirtualRegister(RC); 7841 Register NextCountReg = MRI.createVirtualRegister(RC); 7842 7843 if (LengthMO.isReg()) { 7844 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7845 StartMBB = SystemZ::emitBlockAfter(MBB); 7846 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7847 NextMBB = LoopMBB; 7848 DoneMBB = SystemZ::emitBlockAfter(LoopMBB); 7849 7850 // MBB: 7851 // # Jump to AllDoneMBB if LenMinus1Reg is -1, or fall thru to StartMBB. 7852 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7853 .addReg(LenMinus1Reg).addImm(-1); 7854 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7855 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 7856 .addMBB(AllDoneMBB); 7857 MBB->addSuccessor(AllDoneMBB); 7858 MBB->addSuccessor(StartMBB); 7859 7860 // StartMBB: 7861 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 7862 MBB = StartMBB; 7863 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7864 .addReg(StartCountReg).addImm(0); 7865 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7866 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 7867 .addMBB(DoneMBB); 7868 MBB->addSuccessor(DoneMBB); 7869 MBB->addSuccessor(LoopMBB); 7870 } 7871 else { 7872 StartMBB = MBB; 7873 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7874 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7875 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 7876 7877 // StartMBB: 7878 // # fall through to LoopMBB 7879 MBB->addSuccessor(LoopMBB); 7880 7881 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7882 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7883 ImmLength &= 255; 7884 if (EndMBB && !ImmLength) 7885 // If the loop handled the whole CLC range, DoneMBB will be empty with 7886 // CC live-through into EndMBB, so add it as live-in. 7887 DoneMBB->addLiveIn(SystemZ::CC); 7888 } 7889 7890 // LoopMBB: 7891 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7892 // [ %NextDestReg, NextMBB ] 7893 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7894 // [ %NextSrcReg, NextMBB ] 7895 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7896 // [ %NextCountReg, NextMBB ] 7897 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7898 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7899 // ( JLH EndMBB ) 7900 // 7901 // The prefetch is used only for MVC. The JLH is used only for CLC. 7902 MBB = LoopMBB; 7903 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7904 .addReg(StartDestReg).addMBB(StartMBB) 7905 .addReg(NextDestReg).addMBB(NextMBB); 7906 if (!HaveSingleBase) 7907 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7908 .addReg(StartSrcReg).addMBB(StartMBB) 7909 .addReg(NextSrcReg).addMBB(NextMBB); 7910 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7911 .addReg(StartCountReg).addMBB(StartMBB) 7912 .addReg(NextCountReg).addMBB(NextMBB); 7913 if (Opcode == SystemZ::MVC) 7914 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7915 .addImm(SystemZ::PFD_WRITE) 7916 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7917 BuildMI(MBB, DL, TII->get(Opcode)) 7918 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7919 .addReg(ThisSrcReg).addImm(SrcDisp); 7920 if (EndMBB) { 7921 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7922 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7923 .addMBB(EndMBB); 7924 MBB->addSuccessor(EndMBB); 7925 MBB->addSuccessor(NextMBB); 7926 } 7927 7928 // NextMBB: 7929 // %NextDestReg = LA 256(%ThisDestReg) 7930 // %NextSrcReg = LA 256(%ThisSrcReg) 7931 // %NextCountReg = AGHI %ThisCountReg, -1 7932 // CGHI %NextCountReg, 0 7933 // JLH LoopMBB 7934 // # fall through to DoneMBB 7935 // 7936 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7937 MBB = NextMBB; 7938 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7939 .addReg(ThisDestReg).addImm(256).addReg(0); 7940 if (!HaveSingleBase) 7941 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7942 .addReg(ThisSrcReg).addImm(256).addReg(0); 7943 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7944 .addReg(ThisCountReg).addImm(-1); 7945 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7946 .addReg(NextCountReg).addImm(0); 7947 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7948 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7949 .addMBB(LoopMBB); 7950 MBB->addSuccessor(LoopMBB); 7951 MBB->addSuccessor(DoneMBB); 7952 7953 MBB = DoneMBB; 7954 if (LengthMO.isReg()) { 7955 // DoneMBB: 7956 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 7957 // # Use EXecute Relative Long for the remainder of the bytes. The target 7958 // instruction of the EXRL will have a length field of 1 since 0 is an 7959 // illegal value. The number of bytes processed becomes (%LenMinus1Reg & 7960 // 0xff) + 1. 7961 // # Fall through to AllDoneMBB. 7962 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7963 Register RemDestReg = HaveSingleBase ? RemSrcReg 7964 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7965 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 7966 .addReg(StartDestReg).addMBB(StartMBB) 7967 .addReg(NextDestReg).addMBB(LoopMBB); 7968 if (!HaveSingleBase) 7969 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 7970 .addReg(StartSrcReg).addMBB(StartMBB) 7971 .addReg(NextSrcReg).addMBB(LoopMBB); 7972 MRI.constrainRegClass(LenMinus1Reg, &SystemZ::ADDR64BitRegClass); 7973 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 7974 .addImm(Opcode) 7975 .addReg(LenMinus1Reg) 7976 .addReg(RemDestReg).addImm(DestDisp) 7977 .addReg(RemSrcReg).addImm(SrcDisp); 7978 MBB->addSuccessor(AllDoneMBB); 7979 MBB = AllDoneMBB; 7980 } 7981 } 7982 7983 // Handle any remaining bytes with straight-line code. 7984 while (ImmLength > 0) { 7985 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 7986 // The previous iteration might have created out-of-range displacements. 7987 // Apply them using LAY if so. 7988 if (!isUInt<12>(DestDisp)) { 7989 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7990 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7991 .add(DestBase) 7992 .addImm(DestDisp) 7993 .addReg(0); 7994 DestBase = MachineOperand::CreateReg(Reg, false); 7995 DestDisp = 0; 7996 } 7997 if (!isUInt<12>(SrcDisp)) { 7998 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7999 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 8000 .add(SrcBase) 8001 .addImm(SrcDisp) 8002 .addReg(0); 8003 SrcBase = MachineOperand::CreateReg(Reg, false); 8004 SrcDisp = 0; 8005 } 8006 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 8007 .add(DestBase) 8008 .addImm(DestDisp) 8009 .addImm(ThisLength) 8010 .add(SrcBase) 8011 .addImm(SrcDisp) 8012 .setMemRefs(MI.memoperands()); 8013 DestDisp += ThisLength; 8014 SrcDisp += ThisLength; 8015 ImmLength -= ThisLength; 8016 // If there's another CLC to go, branch to the end if a difference 8017 // was found. 8018 if (EndMBB && ImmLength > 0) { 8019 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 8020 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8021 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8022 .addMBB(EndMBB); 8023 MBB->addSuccessor(EndMBB); 8024 MBB->addSuccessor(NextMBB); 8025 MBB = NextMBB; 8026 } 8027 } 8028 if (EndMBB) { 8029 MBB->addSuccessor(EndMBB); 8030 MBB = EndMBB; 8031 MBB->addLiveIn(SystemZ::CC); 8032 } 8033 8034 MI.eraseFromParent(); 8035 return MBB; 8036 } 8037 8038 // Decompose string pseudo-instruction MI into a loop that continually performs 8039 // Opcode until CC != 3. 8040 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 8041 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8042 MachineFunction &MF = *MBB->getParent(); 8043 const SystemZInstrInfo *TII = 8044 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8045 MachineRegisterInfo &MRI = MF.getRegInfo(); 8046 DebugLoc DL = MI.getDebugLoc(); 8047 8048 uint64_t End1Reg = MI.getOperand(0).getReg(); 8049 uint64_t Start1Reg = MI.getOperand(1).getReg(); 8050 uint64_t Start2Reg = MI.getOperand(2).getReg(); 8051 uint64_t CharReg = MI.getOperand(3).getReg(); 8052 8053 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 8054 uint64_t This1Reg = MRI.createVirtualRegister(RC); 8055 uint64_t This2Reg = MRI.createVirtualRegister(RC); 8056 uint64_t End2Reg = MRI.createVirtualRegister(RC); 8057 8058 MachineBasicBlock *StartMBB = MBB; 8059 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8060 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8061 8062 // StartMBB: 8063 // # fall through to LoopMBB 8064 MBB->addSuccessor(LoopMBB); 8065 8066 // LoopMBB: 8067 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 8068 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 8069 // R0L = %CharReg 8070 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 8071 // JO LoopMBB 8072 // # fall through to DoneMBB 8073 // 8074 // The load of R0L can be hoisted by post-RA LICM. 8075 MBB = LoopMBB; 8076 8077 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 8078 .addReg(Start1Reg).addMBB(StartMBB) 8079 .addReg(End1Reg).addMBB(LoopMBB); 8080 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 8081 .addReg(Start2Reg).addMBB(StartMBB) 8082 .addReg(End2Reg).addMBB(LoopMBB); 8083 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 8084 BuildMI(MBB, DL, TII->get(Opcode)) 8085 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 8086 .addReg(This1Reg).addReg(This2Reg); 8087 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8088 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 8089 MBB->addSuccessor(LoopMBB); 8090 MBB->addSuccessor(DoneMBB); 8091 8092 DoneMBB->addLiveIn(SystemZ::CC); 8093 8094 MI.eraseFromParent(); 8095 return DoneMBB; 8096 } 8097 8098 // Update TBEGIN instruction with final opcode and register clobbers. 8099 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 8100 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 8101 bool NoFloat) const { 8102 MachineFunction &MF = *MBB->getParent(); 8103 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8104 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8105 8106 // Update opcode. 8107 MI.setDesc(TII->get(Opcode)); 8108 8109 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 8110 // Make sure to add the corresponding GRSM bits if they are missing. 8111 uint64_t Control = MI.getOperand(2).getImm(); 8112 static const unsigned GPRControlBit[16] = { 8113 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 8114 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 8115 }; 8116 Control |= GPRControlBit[15]; 8117 if (TFI->hasFP(MF)) 8118 Control |= GPRControlBit[11]; 8119 MI.getOperand(2).setImm(Control); 8120 8121 // Add GPR clobbers. 8122 for (int I = 0; I < 16; I++) { 8123 if ((Control & GPRControlBit[I]) == 0) { 8124 unsigned Reg = SystemZMC::GR64Regs[I]; 8125 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8126 } 8127 } 8128 8129 // Add FPR/VR clobbers. 8130 if (!NoFloat && (Control & 4) != 0) { 8131 if (Subtarget.hasVector()) { 8132 for (int I = 0; I < 32; I++) { 8133 unsigned Reg = SystemZMC::VR128Regs[I]; 8134 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8135 } 8136 } else { 8137 for (int I = 0; I < 16; I++) { 8138 unsigned Reg = SystemZMC::FP64Regs[I]; 8139 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8140 } 8141 } 8142 } 8143 8144 return MBB; 8145 } 8146 8147 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8148 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8149 MachineFunction &MF = *MBB->getParent(); 8150 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8151 const SystemZInstrInfo *TII = 8152 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8153 DebugLoc DL = MI.getDebugLoc(); 8154 8155 Register SrcReg = MI.getOperand(0).getReg(); 8156 8157 // Create new virtual register of the same class as source. 8158 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8159 Register DstReg = MRI->createVirtualRegister(RC); 8160 8161 // Replace pseudo with a normal load-and-test that models the def as 8162 // well. 8163 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8164 .addReg(SrcReg) 8165 .setMIFlags(MI.getFlags()); 8166 MI.eraseFromParent(); 8167 8168 return MBB; 8169 } 8170 8171 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8172 MachineInstr &MI, MachineBasicBlock *MBB) const { 8173 MachineFunction &MF = *MBB->getParent(); 8174 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8175 const SystemZInstrInfo *TII = 8176 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8177 DebugLoc DL = MI.getDebugLoc(); 8178 const unsigned ProbeSize = getStackProbeSize(MF); 8179 Register DstReg = MI.getOperand(0).getReg(); 8180 Register SizeReg = MI.getOperand(2).getReg(); 8181 8182 MachineBasicBlock *StartMBB = MBB; 8183 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8184 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8185 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8186 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8187 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8188 8189 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8190 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8191 8192 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8193 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8194 8195 // LoopTestMBB 8196 // BRC TailTestMBB 8197 // # fallthrough to LoopBodyMBB 8198 StartMBB->addSuccessor(LoopTestMBB); 8199 MBB = LoopTestMBB; 8200 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8201 .addReg(SizeReg) 8202 .addMBB(StartMBB) 8203 .addReg(IncReg) 8204 .addMBB(LoopBodyMBB); 8205 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8206 .addReg(PHIReg) 8207 .addImm(ProbeSize); 8208 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8209 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8210 .addMBB(TailTestMBB); 8211 MBB->addSuccessor(LoopBodyMBB); 8212 MBB->addSuccessor(TailTestMBB); 8213 8214 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8215 // J LoopTestMBB 8216 MBB = LoopBodyMBB; 8217 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8218 .addReg(PHIReg) 8219 .addImm(ProbeSize); 8220 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8221 .addReg(SystemZ::R15D) 8222 .addImm(ProbeSize); 8223 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8224 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8225 .setMemRefs(VolLdMMO); 8226 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8227 MBB->addSuccessor(LoopTestMBB); 8228 8229 // TailTestMBB 8230 // BRC DoneMBB 8231 // # fallthrough to TailMBB 8232 MBB = TailTestMBB; 8233 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8234 .addReg(PHIReg) 8235 .addImm(0); 8236 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8237 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8238 .addMBB(DoneMBB); 8239 MBB->addSuccessor(TailMBB); 8240 MBB->addSuccessor(DoneMBB); 8241 8242 // TailMBB 8243 // # fallthrough to DoneMBB 8244 MBB = TailMBB; 8245 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8246 .addReg(SystemZ::R15D) 8247 .addReg(PHIReg); 8248 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8249 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8250 .setMemRefs(VolLdMMO); 8251 MBB->addSuccessor(DoneMBB); 8252 8253 // DoneMBB 8254 MBB = DoneMBB; 8255 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8256 .addReg(SystemZ::R15D); 8257 8258 MI.eraseFromParent(); 8259 return DoneMBB; 8260 } 8261 8262 SDValue SystemZTargetLowering:: 8263 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8264 MachineFunction &MF = DAG.getMachineFunction(); 8265 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 8266 SDLoc DL(SP); 8267 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8268 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8269 } 8270 8271 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8272 MachineInstr &MI, MachineBasicBlock *MBB) const { 8273 switch (MI.getOpcode()) { 8274 case SystemZ::Select32: 8275 case SystemZ::Select64: 8276 case SystemZ::SelectF32: 8277 case SystemZ::SelectF64: 8278 case SystemZ::SelectF128: 8279 case SystemZ::SelectVR32: 8280 case SystemZ::SelectVR64: 8281 case SystemZ::SelectVR128: 8282 return emitSelect(MI, MBB); 8283 8284 case SystemZ::CondStore8Mux: 8285 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8286 case SystemZ::CondStore8MuxInv: 8287 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8288 case SystemZ::CondStore16Mux: 8289 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8290 case SystemZ::CondStore16MuxInv: 8291 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8292 case SystemZ::CondStore32Mux: 8293 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8294 case SystemZ::CondStore32MuxInv: 8295 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8296 case SystemZ::CondStore8: 8297 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8298 case SystemZ::CondStore8Inv: 8299 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8300 case SystemZ::CondStore16: 8301 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8302 case SystemZ::CondStore16Inv: 8303 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8304 case SystemZ::CondStore32: 8305 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8306 case SystemZ::CondStore32Inv: 8307 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8308 case SystemZ::CondStore64: 8309 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8310 case SystemZ::CondStore64Inv: 8311 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8312 case SystemZ::CondStoreF32: 8313 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8314 case SystemZ::CondStoreF32Inv: 8315 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8316 case SystemZ::CondStoreF64: 8317 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8318 case SystemZ::CondStoreF64Inv: 8319 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8320 8321 case SystemZ::PAIR128: 8322 return emitPair128(MI, MBB); 8323 case SystemZ::AEXT128: 8324 return emitExt128(MI, MBB, false); 8325 case SystemZ::ZEXT128: 8326 return emitExt128(MI, MBB, true); 8327 8328 case SystemZ::ATOMIC_SWAPW: 8329 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8330 case SystemZ::ATOMIC_SWAP_32: 8331 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8332 case SystemZ::ATOMIC_SWAP_64: 8333 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8334 8335 case SystemZ::ATOMIC_LOADW_AR: 8336 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8337 case SystemZ::ATOMIC_LOADW_AFI: 8338 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8339 case SystemZ::ATOMIC_LOAD_AR: 8340 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8341 case SystemZ::ATOMIC_LOAD_AHI: 8342 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8343 case SystemZ::ATOMIC_LOAD_AFI: 8344 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8345 case SystemZ::ATOMIC_LOAD_AGR: 8346 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8347 case SystemZ::ATOMIC_LOAD_AGHI: 8348 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8349 case SystemZ::ATOMIC_LOAD_AGFI: 8350 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8351 8352 case SystemZ::ATOMIC_LOADW_SR: 8353 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8354 case SystemZ::ATOMIC_LOAD_SR: 8355 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8356 case SystemZ::ATOMIC_LOAD_SGR: 8357 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8358 8359 case SystemZ::ATOMIC_LOADW_NR: 8360 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8361 case SystemZ::ATOMIC_LOADW_NILH: 8362 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8363 case SystemZ::ATOMIC_LOAD_NR: 8364 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8365 case SystemZ::ATOMIC_LOAD_NILL: 8366 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8367 case SystemZ::ATOMIC_LOAD_NILH: 8368 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8369 case SystemZ::ATOMIC_LOAD_NILF: 8370 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8371 case SystemZ::ATOMIC_LOAD_NGR: 8372 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8373 case SystemZ::ATOMIC_LOAD_NILL64: 8374 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8375 case SystemZ::ATOMIC_LOAD_NILH64: 8376 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8377 case SystemZ::ATOMIC_LOAD_NIHL64: 8378 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8379 case SystemZ::ATOMIC_LOAD_NIHH64: 8380 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8381 case SystemZ::ATOMIC_LOAD_NILF64: 8382 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8383 case SystemZ::ATOMIC_LOAD_NIHF64: 8384 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8385 8386 case SystemZ::ATOMIC_LOADW_OR: 8387 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8388 case SystemZ::ATOMIC_LOADW_OILH: 8389 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8390 case SystemZ::ATOMIC_LOAD_OR: 8391 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8392 case SystemZ::ATOMIC_LOAD_OILL: 8393 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8394 case SystemZ::ATOMIC_LOAD_OILH: 8395 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8396 case SystemZ::ATOMIC_LOAD_OILF: 8397 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8398 case SystemZ::ATOMIC_LOAD_OGR: 8399 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8400 case SystemZ::ATOMIC_LOAD_OILL64: 8401 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8402 case SystemZ::ATOMIC_LOAD_OILH64: 8403 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8404 case SystemZ::ATOMIC_LOAD_OIHL64: 8405 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8406 case SystemZ::ATOMIC_LOAD_OIHH64: 8407 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8408 case SystemZ::ATOMIC_LOAD_OILF64: 8409 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8410 case SystemZ::ATOMIC_LOAD_OIHF64: 8411 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8412 8413 case SystemZ::ATOMIC_LOADW_XR: 8414 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8415 case SystemZ::ATOMIC_LOADW_XILF: 8416 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8417 case SystemZ::ATOMIC_LOAD_XR: 8418 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8419 case SystemZ::ATOMIC_LOAD_XILF: 8420 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8421 case SystemZ::ATOMIC_LOAD_XGR: 8422 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8423 case SystemZ::ATOMIC_LOAD_XILF64: 8424 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8425 case SystemZ::ATOMIC_LOAD_XIHF64: 8426 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8427 8428 case SystemZ::ATOMIC_LOADW_NRi: 8429 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8430 case SystemZ::ATOMIC_LOADW_NILHi: 8431 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8432 case SystemZ::ATOMIC_LOAD_NRi: 8433 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8434 case SystemZ::ATOMIC_LOAD_NILLi: 8435 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8436 case SystemZ::ATOMIC_LOAD_NILHi: 8437 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8438 case SystemZ::ATOMIC_LOAD_NILFi: 8439 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8440 case SystemZ::ATOMIC_LOAD_NGRi: 8441 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8442 case SystemZ::ATOMIC_LOAD_NILL64i: 8443 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8444 case SystemZ::ATOMIC_LOAD_NILH64i: 8445 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8446 case SystemZ::ATOMIC_LOAD_NIHL64i: 8447 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8448 case SystemZ::ATOMIC_LOAD_NIHH64i: 8449 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8450 case SystemZ::ATOMIC_LOAD_NILF64i: 8451 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8452 case SystemZ::ATOMIC_LOAD_NIHF64i: 8453 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8454 8455 case SystemZ::ATOMIC_LOADW_MIN: 8456 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8457 SystemZ::CCMASK_CMP_LE, 0); 8458 case SystemZ::ATOMIC_LOAD_MIN_32: 8459 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8460 SystemZ::CCMASK_CMP_LE, 32); 8461 case SystemZ::ATOMIC_LOAD_MIN_64: 8462 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8463 SystemZ::CCMASK_CMP_LE, 64); 8464 8465 case SystemZ::ATOMIC_LOADW_MAX: 8466 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8467 SystemZ::CCMASK_CMP_GE, 0); 8468 case SystemZ::ATOMIC_LOAD_MAX_32: 8469 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8470 SystemZ::CCMASK_CMP_GE, 32); 8471 case SystemZ::ATOMIC_LOAD_MAX_64: 8472 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8473 SystemZ::CCMASK_CMP_GE, 64); 8474 8475 case SystemZ::ATOMIC_LOADW_UMIN: 8476 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8477 SystemZ::CCMASK_CMP_LE, 0); 8478 case SystemZ::ATOMIC_LOAD_UMIN_32: 8479 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8480 SystemZ::CCMASK_CMP_LE, 32); 8481 case SystemZ::ATOMIC_LOAD_UMIN_64: 8482 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8483 SystemZ::CCMASK_CMP_LE, 64); 8484 8485 case SystemZ::ATOMIC_LOADW_UMAX: 8486 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8487 SystemZ::CCMASK_CMP_GE, 0); 8488 case SystemZ::ATOMIC_LOAD_UMAX_32: 8489 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8490 SystemZ::CCMASK_CMP_GE, 32); 8491 case SystemZ::ATOMIC_LOAD_UMAX_64: 8492 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8493 SystemZ::CCMASK_CMP_GE, 64); 8494 8495 case SystemZ::ATOMIC_CMP_SWAPW: 8496 return emitAtomicCmpSwapW(MI, MBB); 8497 case SystemZ::MVCSequence: 8498 case SystemZ::MVCLoop: 8499 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8500 case SystemZ::NCSequence: 8501 case SystemZ::NCLoop: 8502 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8503 case SystemZ::OCSequence: 8504 case SystemZ::OCLoop: 8505 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8506 case SystemZ::XCSequence: 8507 case SystemZ::XCLoop: 8508 case SystemZ::XCLoopVarLen: 8509 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8510 case SystemZ::CLCSequence: 8511 case SystemZ::CLCLoop: 8512 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8513 case SystemZ::CLSTLoop: 8514 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8515 case SystemZ::MVSTLoop: 8516 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8517 case SystemZ::SRSTLoop: 8518 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8519 case SystemZ::TBEGIN: 8520 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8521 case SystemZ::TBEGIN_nofloat: 8522 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8523 case SystemZ::TBEGINC: 8524 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8525 case SystemZ::LTEBRCompare_VecPseudo: 8526 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8527 case SystemZ::LTDBRCompare_VecPseudo: 8528 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8529 case SystemZ::LTXBRCompare_VecPseudo: 8530 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8531 8532 case SystemZ::PROBED_ALLOCA: 8533 return emitProbedAlloca(MI, MBB); 8534 8535 case TargetOpcode::STACKMAP: 8536 case TargetOpcode::PATCHPOINT: 8537 return emitPatchPoint(MI, MBB); 8538 8539 default: 8540 llvm_unreachable("Unexpected instr type to insert"); 8541 } 8542 } 8543 8544 // This is only used by the isel schedulers, and is needed only to prevent 8545 // compiler from crashing when list-ilp is used. 8546 const TargetRegisterClass * 8547 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8548 if (VT == MVT::Untyped) 8549 return &SystemZ::ADDR128BitRegClass; 8550 return TargetLowering::getRepRegClassFor(VT); 8551 } 8552