1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include <cctype>
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "systemz-lower"
31 
32 namespace {
33 // Represents information about a comparison.
34 struct Comparison {
35   Comparison(SDValue Op0In, SDValue Op1In)
36     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
37 
38   // The operands to the comparison.
39   SDValue Op0, Op1;
40 
41   // The opcode that should be used to compare Op0 and Op1.
42   unsigned Opcode;
43 
44   // A SystemZICMP value.  Only used for integer comparisons.
45   unsigned ICmpType;
46 
47   // The mask of CC values that Opcode can produce.
48   unsigned CCValid;
49 
50   // The mask of CC values for which the original condition is true.
51   unsigned CCMask;
52 };
53 } // end anonymous namespace
54 
55 // Classify VT as either 32 or 64 bit.
56 static bool is32Bit(EVT VT) {
57   switch (VT.getSimpleVT().SimpleTy) {
58   case MVT::i32:
59     return true;
60   case MVT::i64:
61     return false;
62   default:
63     llvm_unreachable("Unsupported type");
64   }
65 }
66 
67 // Return a version of MachineOperand that can be safely used before the
68 // final use.
69 static MachineOperand earlyUseOperand(MachineOperand Op) {
70   if (Op.isReg())
71     Op.setIsKill(false);
72   return Op;
73 }
74 
75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
76                                              const SystemZSubtarget &STI)
77     : TargetLowering(TM), Subtarget(STI) {
78   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
79 
80   // Set up the register classes.
81   if (Subtarget.hasHighWord())
82     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
83   else
84     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
85   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
86   if (Subtarget.hasVector()) {
87     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
88     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
89   } else {
90     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
91     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
92   }
93   if (Subtarget.hasVectorEnhancements1())
94     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
95   else
96     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97 
98   if (Subtarget.hasVector()) {
99     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
100     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
105   }
106 
107   // Compute derived properties from the register classes
108   computeRegisterProperties(Subtarget.getRegisterInfo());
109 
110   // Set up special registers.
111   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
112 
113   // TODO: It may be better to default to latency-oriented scheduling, however
114   // LLVM's current latency-oriented scheduler can't handle physreg definitions
115   // such as SystemZ has with CC, so set this to the register-pressure
116   // scheduler, because it can.
117   setSchedulingPreference(Sched::RegPressure);
118 
119   setBooleanContents(ZeroOrOneBooleanContent);
120   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
121 
122   // Instructions are strings of 2-byte aligned 2-byte values.
123   setMinFunctionAlignment(2);
124   // For performance reasons we prefer 16-byte alignment.
125   setPrefFunctionAlignment(4);
126 
127   // Handle operations that are handled in a similar way for all types.
128   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
129        I <= MVT::LAST_FP_VALUETYPE;
130        ++I) {
131     MVT VT = MVT::SimpleValueType(I);
132     if (isTypeLegal(VT)) {
133       // Lower SET_CC into an IPM-based sequence.
134       setOperationAction(ISD::SETCC, VT, Custom);
135 
136       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
137       setOperationAction(ISD::SELECT, VT, Expand);
138 
139       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
140       setOperationAction(ISD::SELECT_CC, VT, Custom);
141       setOperationAction(ISD::BR_CC,     VT, Custom);
142     }
143   }
144 
145   // Expand jump table branches as address arithmetic followed by an
146   // indirect jump.
147   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
148 
149   // Expand BRCOND into a BR_CC (see above).
150   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
151 
152   // Handle integer types.
153   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
154        I <= MVT::LAST_INTEGER_VALUETYPE;
155        ++I) {
156     MVT VT = MVT::SimpleValueType(I);
157     if (isTypeLegal(VT)) {
158       // Expand individual DIV and REMs into DIVREMs.
159       setOperationAction(ISD::SDIV, VT, Expand);
160       setOperationAction(ISD::UDIV, VT, Expand);
161       setOperationAction(ISD::SREM, VT, Expand);
162       setOperationAction(ISD::UREM, VT, Expand);
163       setOperationAction(ISD::SDIVREM, VT, Custom);
164       setOperationAction(ISD::UDIVREM, VT, Custom);
165 
166       // Support addition/subtraction with overflow.
167       setOperationAction(ISD::SADDO, VT, Custom);
168       setOperationAction(ISD::SSUBO, VT, Custom);
169 
170       // Support addition/subtraction with carry.
171       setOperationAction(ISD::UADDO, VT, Custom);
172       setOperationAction(ISD::USUBO, VT, Custom);
173 
174       // Support carry in as value rather than glue.
175       setOperationAction(ISD::ADDCARRY, VT, Custom);
176       setOperationAction(ISD::SUBCARRY, VT, Custom);
177 
178       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
179       // stores, putting a serialization instruction after the stores.
180       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
181       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
182 
183       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
184       // available, or if the operand is constant.
185       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
186 
187       // Use POPCNT on z196 and above.
188       if (Subtarget.hasPopulationCount())
189         setOperationAction(ISD::CTPOP, VT, Custom);
190       else
191         setOperationAction(ISD::CTPOP, VT, Expand);
192 
193       // No special instructions for these.
194       setOperationAction(ISD::CTTZ,            VT, Expand);
195       setOperationAction(ISD::ROTR,            VT, Expand);
196 
197       // Use *MUL_LOHI where possible instead of MULH*.
198       setOperationAction(ISD::MULHS, VT, Expand);
199       setOperationAction(ISD::MULHU, VT, Expand);
200       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
201       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
202 
203       // Only z196 and above have native support for conversions to unsigned.
204       // On z10, promoting to i64 doesn't generate an inexact condition for
205       // values that are outside the i32 range but in the i64 range, so use
206       // the default expansion.
207       if (!Subtarget.hasFPExtension())
208         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
209     }
210   }
211 
212   // Type legalization will convert 8- and 16-bit atomic operations into
213   // forms that operate on i32s (but still keeping the original memory VT).
214   // Lower them into full i32 operations.
215   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
216   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
217   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
218   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
219   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
220   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
221   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
223   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
224   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
225   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
226 
227   // Even though i128 is not a legal type, we still need to custom lower
228   // the atomic operations in order to exploit SystemZ instructions.
229   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
230   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
231 
232   // We can use the CC result of compare-and-swap to implement
233   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
234   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
235   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
236   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
237 
238   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
239 
240   // Traps are legal, as we will convert them to "j .+2".
241   setOperationAction(ISD::TRAP, MVT::Other, Legal);
242 
243   // z10 has instructions for signed but not unsigned FP conversion.
244   // Handle unsigned 32-bit types as signed 64-bit types.
245   if (!Subtarget.hasFPExtension()) {
246     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
247     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
248   }
249 
250   // We have native support for a 64-bit CTLZ, via FLOGR.
251   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
252   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
253   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
254 
255   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
256   setOperationAction(ISD::OR, MVT::i64, Custom);
257 
258   // FIXME: Can we support these natively?
259   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
260   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262 
263   // We have native instructions for i8, i16 and i32 extensions, but not i1.
264   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
265   for (MVT VT : MVT::integer_valuetypes()) {
266     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
267     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
268     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
269   }
270 
271   // Handle the various types of symbolic address.
272   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
273   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
274   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
275   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
276   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
277 
278   // We need to handle dynamic allocations specially because of the
279   // 160-byte area at the bottom of the stack.
280   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
281   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
282 
283   // Use custom expanders so that we can force the function to use
284   // a frame pointer.
285   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
286   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
287 
288   // Handle prefetches with PFD or PFDRL.
289   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
290 
291   for (MVT VT : MVT::vector_valuetypes()) {
292     // Assume by default that all vector operations need to be expanded.
293     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
294       if (getOperationAction(Opcode, VT) == Legal)
295         setOperationAction(Opcode, VT, Expand);
296 
297     // Likewise all truncating stores and extending loads.
298     for (MVT InnerVT : MVT::vector_valuetypes()) {
299       setTruncStoreAction(VT, InnerVT, Expand);
300       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
301       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
302       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
303     }
304 
305     if (isTypeLegal(VT)) {
306       // These operations are legal for anything that can be stored in a
307       // vector register, even if there is no native support for the format
308       // as such.  In particular, we can do these for v4f32 even though there
309       // are no specific instructions for that format.
310       setOperationAction(ISD::LOAD, VT, Legal);
311       setOperationAction(ISD::STORE, VT, Legal);
312       setOperationAction(ISD::VSELECT, VT, Legal);
313       setOperationAction(ISD::BITCAST, VT, Legal);
314       setOperationAction(ISD::UNDEF, VT, Legal);
315 
316       // Likewise, except that we need to replace the nodes with something
317       // more specific.
318       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
319       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
320     }
321   }
322 
323   // Handle integer vector types.
324   for (MVT VT : MVT::integer_vector_valuetypes()) {
325     if (isTypeLegal(VT)) {
326       // These operations have direct equivalents.
327       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
328       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
329       setOperationAction(ISD::ADD, VT, Legal);
330       setOperationAction(ISD::SUB, VT, Legal);
331       if (VT != MVT::v2i64)
332         setOperationAction(ISD::MUL, VT, Legal);
333       setOperationAction(ISD::AND, VT, Legal);
334       setOperationAction(ISD::OR, VT, Legal);
335       setOperationAction(ISD::XOR, VT, Legal);
336       if (Subtarget.hasVectorEnhancements1())
337         setOperationAction(ISD::CTPOP, VT, Legal);
338       else
339         setOperationAction(ISD::CTPOP, VT, Custom);
340       setOperationAction(ISD::CTTZ, VT, Legal);
341       setOperationAction(ISD::CTLZ, VT, Legal);
342 
343       // Convert a GPR scalar to a vector by inserting it into element 0.
344       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
345 
346       // Use a series of unpacks for extensions.
347       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
348       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
349 
350       // Detect shifts by a scalar amount and convert them into
351       // V*_BY_SCALAR.
352       setOperationAction(ISD::SHL, VT, Custom);
353       setOperationAction(ISD::SRA, VT, Custom);
354       setOperationAction(ISD::SRL, VT, Custom);
355 
356       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
357       // converted into ROTL.
358       setOperationAction(ISD::ROTL, VT, Expand);
359       setOperationAction(ISD::ROTR, VT, Expand);
360 
361       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
362       // and inverting the result as necessary.
363       setOperationAction(ISD::SETCC, VT, Custom);
364     }
365   }
366 
367   if (Subtarget.hasVector()) {
368     // There should be no need to check for float types other than v2f64
369     // since <2 x f32> isn't a legal type.
370     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
371     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
372     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
373     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
374     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
375     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
376     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
377     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
378   }
379 
380   // Handle floating-point types.
381   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
382        I <= MVT::LAST_FP_VALUETYPE;
383        ++I) {
384     MVT VT = MVT::SimpleValueType(I);
385     if (isTypeLegal(VT)) {
386       // We can use FI for FRINT.
387       setOperationAction(ISD::FRINT, VT, Legal);
388 
389       // We can use the extended form of FI for other rounding operations.
390       if (Subtarget.hasFPExtension()) {
391         setOperationAction(ISD::FNEARBYINT, VT, Legal);
392         setOperationAction(ISD::FFLOOR, VT, Legal);
393         setOperationAction(ISD::FCEIL, VT, Legal);
394         setOperationAction(ISD::FTRUNC, VT, Legal);
395         setOperationAction(ISD::FROUND, VT, Legal);
396       }
397 
398       // No special instructions for these.
399       setOperationAction(ISD::FSIN, VT, Expand);
400       setOperationAction(ISD::FCOS, VT, Expand);
401       setOperationAction(ISD::FSINCOS, VT, Expand);
402       setOperationAction(ISD::FREM, VT, Expand);
403       setOperationAction(ISD::FPOW, VT, Expand);
404 
405       // Handle constrained floating-point operations.
406       setOperationAction(ISD::STRICT_FADD, VT, Legal);
407       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
408       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
409       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
410       setOperationAction(ISD::STRICT_FMA, VT, Legal);
411       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
412       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
413       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
414       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
415       if (Subtarget.hasFPExtension()) {
416         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
417         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
418         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
419         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
420         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
421       }
422     }
423   }
424 
425   // Handle floating-point vector types.
426   if (Subtarget.hasVector()) {
427     // Scalar-to-vector conversion is just a subreg.
428     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
429     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
430 
431     // Some insertions and extractions can be done directly but others
432     // need to go via integers.
433     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
434     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
435     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
436     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
437 
438     // These operations have direct equivalents.
439     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
440     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
441     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
442     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
443     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
444     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
445     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
446     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
447     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
448     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
449     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
450     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
451     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
452     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
453 
454     // Handle constrained floating-point operations.
455     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
456     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
457     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
458     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
459     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
460     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
461     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
462     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
463     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
464     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
465     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
466     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
467   }
468 
469   // The vector enhancements facility 1 has instructions for these.
470   if (Subtarget.hasVectorEnhancements1()) {
471     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
472     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
473     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
474     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
475     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
476     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
477     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
478     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
479     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
480     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
481     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
482     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
483     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
484     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
485 
486     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
487     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
488     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
489     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
490 
491     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
492     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
493     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
494     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
495 
496     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
497     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
498     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
499     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
500 
501     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
502     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
503     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
504     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
505 
506     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
507     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
508     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
509     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
510 
511     // Handle constrained floating-point operations.
512     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
513     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
514     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
515     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
516     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
517     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
518     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
519     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
520     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
521     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
522     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
523     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
524     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
525                      MVT::v4f32, MVT::v2f64 }) {
526       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
527       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
528     }
529   }
530 
531   // We have fused multiply-addition for f32 and f64 but not f128.
532   setOperationAction(ISD::FMA, MVT::f32,  Legal);
533   setOperationAction(ISD::FMA, MVT::f64,  Legal);
534   if (Subtarget.hasVectorEnhancements1())
535     setOperationAction(ISD::FMA, MVT::f128, Legal);
536   else
537     setOperationAction(ISD::FMA, MVT::f128, Expand);
538 
539   // We don't have a copysign instruction on vector registers.
540   if (Subtarget.hasVectorEnhancements1())
541     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
542 
543   // Needed so that we don't try to implement f128 constant loads using
544   // a load-and-extend of a f80 constant (in cases where the constant
545   // would fit in an f80).
546   for (MVT VT : MVT::fp_valuetypes())
547     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
548 
549   // We don't have extending load instruction on vector registers.
550   if (Subtarget.hasVectorEnhancements1()) {
551     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
552     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
553   }
554 
555   // Floating-point truncation and stores need to be done separately.
556   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
557   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
558   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
559 
560   // We have 64-bit FPR<->GPR moves, but need special handling for
561   // 32-bit forms.
562   if (!Subtarget.hasVector()) {
563     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
564     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
565   }
566 
567   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
568   // structure, but VAEND is a no-op.
569   setOperationAction(ISD::VASTART, MVT::Other, Custom);
570   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
571   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
572 
573   // Codes for which we want to perform some z-specific combinations.
574   setTargetDAGCombine(ISD::ZERO_EXTEND);
575   setTargetDAGCombine(ISD::SIGN_EXTEND);
576   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
577   setTargetDAGCombine(ISD::LOAD);
578   setTargetDAGCombine(ISD::STORE);
579   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
580   setTargetDAGCombine(ISD::FP_ROUND);
581   setTargetDAGCombine(ISD::FP_EXTEND);
582   setTargetDAGCombine(ISD::BSWAP);
583   setTargetDAGCombine(ISD::SDIV);
584   setTargetDAGCombine(ISD::UDIV);
585   setTargetDAGCombine(ISD::SREM);
586   setTargetDAGCombine(ISD::UREM);
587 
588   // Handle intrinsics.
589   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
590   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
591 
592   // We want to use MVC in preference to even a single load/store pair.
593   MaxStoresPerMemcpy = 0;
594   MaxStoresPerMemcpyOptSize = 0;
595 
596   // The main memset sequence is a byte store followed by an MVC.
597   // Two STC or MV..I stores win over that, but the kind of fused stores
598   // generated by target-independent code don't when the byte value is
599   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
600   // than "STC;MVC".  Handle the choice in target-specific code instead.
601   MaxStoresPerMemset = 0;
602   MaxStoresPerMemsetOptSize = 0;
603 }
604 
605 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
606                                               LLVMContext &, EVT VT) const {
607   if (!VT.isVector())
608     return MVT::i32;
609   return VT.changeVectorElementTypeToInteger();
610 }
611 
612 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
613   VT = VT.getScalarType();
614 
615   if (!VT.isSimple())
616     return false;
617 
618   switch (VT.getSimpleVT().SimpleTy) {
619   case MVT::f32:
620   case MVT::f64:
621     return true;
622   case MVT::f128:
623     return Subtarget.hasVectorEnhancements1();
624   default:
625     break;
626   }
627 
628   return false;
629 }
630 
631 // Return true if the constant can be generated with a vector instruction,
632 // such as VGM, VGMB or VREPI.
633 bool SystemZVectorConstantInfo::isVectorConstantLegal(
634     const SystemZSubtarget &Subtarget) {
635   const SystemZInstrInfo *TII =
636       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
637   if (!Subtarget.hasVector() ||
638       (isFP128 && !Subtarget.hasVectorEnhancements1()))
639     return false;
640 
641   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
642   // preferred way of creating all-zero and all-one vectors so give it
643   // priority over other methods below.
644   unsigned Mask = 0;
645   unsigned I = 0;
646   for (; I < SystemZ::VectorBytes; ++I) {
647     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
648     if (Byte == 0xff)
649       Mask |= 1ULL << I;
650     else if (Byte != 0)
651       break;
652   }
653   if (I == SystemZ::VectorBytes) {
654     Opcode = SystemZISD::BYTE_MASK;
655     OpVals.push_back(Mask);
656     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
657     return true;
658   }
659 
660   if (SplatBitSize > 64)
661     return false;
662 
663   auto tryValue = [&](uint64_t Value) -> bool {
664     // Try VECTOR REPLICATE IMMEDIATE
665     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
666     if (isInt<16>(SignedValue)) {
667       OpVals.push_back(((unsigned) SignedValue));
668       Opcode = SystemZISD::REPLICATE;
669       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
670                                SystemZ::VectorBits / SplatBitSize);
671       return true;
672     }
673     // Try VECTOR GENERATE MASK
674     unsigned Start, End;
675     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
676       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
677       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
678       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
679       OpVals.push_back(Start - (64 - SplatBitSize));
680       OpVals.push_back(End - (64 - SplatBitSize));
681       Opcode = SystemZISD::ROTATE_MASK;
682       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
683                                SystemZ::VectorBits / SplatBitSize);
684       return true;
685     }
686     return false;
687   };
688 
689   // First try assuming that any undefined bits above the highest set bit
690   // and below the lowest set bit are 1s.  This increases the likelihood of
691   // being able to use a sign-extended element value in VECTOR REPLICATE
692   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
693   uint64_t SplatBitsZ = SplatBits.getZExtValue();
694   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
695   uint64_t Lower =
696       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
697   uint64_t Upper =
698       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
699   if (tryValue(SplatBitsZ | Upper | Lower))
700     return true;
701 
702   // Now try assuming that any undefined bits between the first and
703   // last defined set bits are set.  This increases the chances of
704   // using a non-wraparound mask.
705   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
706   return tryValue(SplatBitsZ | Middle);
707 }
708 
709 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
710   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
711   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
712 
713   // Find the smallest splat.
714   SplatBits = FPImm.bitcastToAPInt();
715   unsigned Width = SplatBits.getBitWidth();
716   while (Width > 8) {
717     unsigned HalfSize = Width / 2;
718     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
719     APInt LowValue = SplatBits.trunc(HalfSize);
720 
721     // If the two halves do not match, stop here.
722     if (HighValue != LowValue || 8 > HalfSize)
723       break;
724 
725     SplatBits = HighValue;
726     Width = HalfSize;
727   }
728   SplatUndef = 0;
729   SplatBitSize = Width;
730 }
731 
732 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
733   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
734   bool HasAnyUndefs;
735 
736   // Get IntBits by finding the 128 bit splat.
737   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
738                        true);
739 
740   // Get SplatBits by finding the 8 bit or greater splat.
741   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
742                        true);
743 }
744 
745 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
746                                          bool ForCodeSize) const {
747   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
748   if (Imm.isZero() || Imm.isNegZero())
749     return true;
750 
751   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
752 }
753 
754 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
755   // We can use CGFI or CLGFI.
756   return isInt<32>(Imm) || isUInt<32>(Imm);
757 }
758 
759 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
760   // We can use ALGFI or SLGFI.
761   return isUInt<32>(Imm) || isUInt<32>(-Imm);
762 }
763 
764 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
765     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
766   // Unaligned accesses should never be slower than the expanded version.
767   // We check specifically for aligned accesses in the few cases where
768   // they are required.
769   if (Fast)
770     *Fast = true;
771   return true;
772 }
773 
774 // Information about the addressing mode for a memory access.
775 struct AddressingMode {
776   // True if a long displacement is supported.
777   bool LongDisplacement;
778 
779   // True if use of index register is supported.
780   bool IndexReg;
781 
782   AddressingMode(bool LongDispl, bool IdxReg) :
783     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
784 };
785 
786 // Return the desired addressing mode for a Load which has only one use (in
787 // the same block) which is a Store.
788 static AddressingMode getLoadStoreAddrMode(bool HasVector,
789                                           Type *Ty) {
790   // With vector support a Load->Store combination may be combined to either
791   // an MVC or vector operations and it seems to work best to allow the
792   // vector addressing mode.
793   if (HasVector)
794     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
795 
796   // Otherwise only the MVC case is special.
797   bool MVC = Ty->isIntegerTy(8);
798   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
799 }
800 
801 // Return the addressing mode which seems most desirable given an LLVM
802 // Instruction pointer.
803 static AddressingMode
804 supportedAddressingMode(Instruction *I, bool HasVector) {
805   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
806     switch (II->getIntrinsicID()) {
807     default: break;
808     case Intrinsic::memset:
809     case Intrinsic::memmove:
810     case Intrinsic::memcpy:
811       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
812     }
813   }
814 
815   if (isa<LoadInst>(I) && I->hasOneUse()) {
816     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
817     if (SingleUser->getParent() == I->getParent()) {
818       if (isa<ICmpInst>(SingleUser)) {
819         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
820           if (C->getBitWidth() <= 64 &&
821               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
822             // Comparison of memory with 16 bit signed / unsigned immediate
823             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
824       } else if (isa<StoreInst>(SingleUser))
825         // Load->Store
826         return getLoadStoreAddrMode(HasVector, I->getType());
827     }
828   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
829     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
830       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
831         // Load->Store
832         return getLoadStoreAddrMode(HasVector, LoadI->getType());
833   }
834 
835   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
836 
837     // * Use LDE instead of LE/LEY for z13 to avoid partial register
838     //   dependencies (LDE only supports small offsets).
839     // * Utilize the vector registers to hold floating point
840     //   values (vector load / store instructions only support small
841     //   offsets).
842 
843     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
844                          I->getOperand(0)->getType());
845     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
846     bool IsVectorAccess = MemAccessTy->isVectorTy();
847 
848     // A store of an extracted vector element will be combined into a VSTE type
849     // instruction.
850     if (!IsVectorAccess && isa<StoreInst>(I)) {
851       Value *DataOp = I->getOperand(0);
852       if (isa<ExtractElementInst>(DataOp))
853         IsVectorAccess = true;
854     }
855 
856     // A load which gets inserted into a vector element will be combined into a
857     // VLE type instruction.
858     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
859       User *LoadUser = *I->user_begin();
860       if (isa<InsertElementInst>(LoadUser))
861         IsVectorAccess = true;
862     }
863 
864     if (IsFPAccess || IsVectorAccess)
865       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
866   }
867 
868   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
869 }
870 
871 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
872        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
873   // Punt on globals for now, although they can be used in limited
874   // RELATIVE LONG cases.
875   if (AM.BaseGV)
876     return false;
877 
878   // Require a 20-bit signed offset.
879   if (!isInt<20>(AM.BaseOffs))
880     return false;
881 
882   AddressingMode SupportedAM(true, true);
883   if (I != nullptr)
884     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
885 
886   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
887     return false;
888 
889   if (!SupportedAM.IndexReg)
890     // No indexing allowed.
891     return AM.Scale == 0;
892   else
893     // Indexing is OK but no scale factor can be applied.
894     return AM.Scale == 0 || AM.Scale == 1;
895 }
896 
897 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
898   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
899     return false;
900   unsigned FromBits = FromType->getPrimitiveSizeInBits();
901   unsigned ToBits = ToType->getPrimitiveSizeInBits();
902   return FromBits > ToBits;
903 }
904 
905 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
906   if (!FromVT.isInteger() || !ToVT.isInteger())
907     return false;
908   unsigned FromBits = FromVT.getSizeInBits();
909   unsigned ToBits = ToVT.getSizeInBits();
910   return FromBits > ToBits;
911 }
912 
913 //===----------------------------------------------------------------------===//
914 // Inline asm support
915 //===----------------------------------------------------------------------===//
916 
917 TargetLowering::ConstraintType
918 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
919   if (Constraint.size() == 1) {
920     switch (Constraint[0]) {
921     case 'a': // Address register
922     case 'd': // Data register (equivalent to 'r')
923     case 'f': // Floating-point register
924     case 'h': // High-part register
925     case 'r': // General-purpose register
926     case 'v': // Vector register
927       return C_RegisterClass;
928 
929     case 'Q': // Memory with base and unsigned 12-bit displacement
930     case 'R': // Likewise, plus an index
931     case 'S': // Memory with base and signed 20-bit displacement
932     case 'T': // Likewise, plus an index
933     case 'm': // Equivalent to 'T'.
934       return C_Memory;
935 
936     case 'I': // Unsigned 8-bit constant
937     case 'J': // Unsigned 12-bit constant
938     case 'K': // Signed 16-bit constant
939     case 'L': // Signed 20-bit displacement (on all targets we support)
940     case 'M': // 0x7fffffff
941       return C_Other;
942 
943     default:
944       break;
945     }
946   }
947   return TargetLowering::getConstraintType(Constraint);
948 }
949 
950 TargetLowering::ConstraintWeight SystemZTargetLowering::
951 getSingleConstraintMatchWeight(AsmOperandInfo &info,
952                                const char *constraint) const {
953   ConstraintWeight weight = CW_Invalid;
954   Value *CallOperandVal = info.CallOperandVal;
955   // If we don't have a value, we can't do a match,
956   // but allow it at the lowest weight.
957   if (!CallOperandVal)
958     return CW_Default;
959   Type *type = CallOperandVal->getType();
960   // Look at the constraint type.
961   switch (*constraint) {
962   default:
963     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
964     break;
965 
966   case 'a': // Address register
967   case 'd': // Data register (equivalent to 'r')
968   case 'h': // High-part register
969   case 'r': // General-purpose register
970     if (CallOperandVal->getType()->isIntegerTy())
971       weight = CW_Register;
972     break;
973 
974   case 'f': // Floating-point register
975     if (type->isFloatingPointTy())
976       weight = CW_Register;
977     break;
978 
979   case 'v': // Vector register
980     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
981         Subtarget.hasVector())
982       weight = CW_Register;
983     break;
984 
985   case 'I': // Unsigned 8-bit constant
986     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
987       if (isUInt<8>(C->getZExtValue()))
988         weight = CW_Constant;
989     break;
990 
991   case 'J': // Unsigned 12-bit constant
992     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
993       if (isUInt<12>(C->getZExtValue()))
994         weight = CW_Constant;
995     break;
996 
997   case 'K': // Signed 16-bit constant
998     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
999       if (isInt<16>(C->getSExtValue()))
1000         weight = CW_Constant;
1001     break;
1002 
1003   case 'L': // Signed 20-bit displacement (on all targets we support)
1004     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1005       if (isInt<20>(C->getSExtValue()))
1006         weight = CW_Constant;
1007     break;
1008 
1009   case 'M': // 0x7fffffff
1010     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1011       if (C->getZExtValue() == 0x7fffffff)
1012         weight = CW_Constant;
1013     break;
1014   }
1015   return weight;
1016 }
1017 
1018 // Parse a "{tNNN}" register constraint for which the register type "t"
1019 // has already been verified.  MC is the class associated with "t" and
1020 // Map maps 0-based register numbers to LLVM register numbers.
1021 static std::pair<unsigned, const TargetRegisterClass *>
1022 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1023                     const unsigned *Map, unsigned Size) {
1024   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1025   if (isdigit(Constraint[2])) {
1026     unsigned Index;
1027     bool Failed =
1028         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1029     if (!Failed && Index < Size && Map[Index])
1030       return std::make_pair(Map[Index], RC);
1031   }
1032   return std::make_pair(0U, nullptr);
1033 }
1034 
1035 std::pair<unsigned, const TargetRegisterClass *>
1036 SystemZTargetLowering::getRegForInlineAsmConstraint(
1037     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1038   if (Constraint.size() == 1) {
1039     // GCC Constraint Letters
1040     switch (Constraint[0]) {
1041     default: break;
1042     case 'd': // Data register (equivalent to 'r')
1043     case 'r': // General-purpose register
1044       if (VT == MVT::i64)
1045         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1046       else if (VT == MVT::i128)
1047         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1048       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1049 
1050     case 'a': // Address register
1051       if (VT == MVT::i64)
1052         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1053       else if (VT == MVT::i128)
1054         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1055       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1056 
1057     case 'h': // High-part register (an LLVM extension)
1058       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1059 
1060     case 'f': // Floating-point register
1061       if (VT == MVT::f64)
1062         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1063       else if (VT == MVT::f128)
1064         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1065       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1066 
1067     case 'v': // Vector register
1068       if (Subtarget.hasVector()) {
1069         if (VT == MVT::f32)
1070           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1071         if (VT == MVT::f64)
1072           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1073         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1074       }
1075       break;
1076     }
1077   }
1078   if (Constraint.size() > 0 && Constraint[0] == '{') {
1079     // We need to override the default register parsing for GPRs and FPRs
1080     // because the interpretation depends on VT.  The internal names of
1081     // the registers are also different from the external names
1082     // (F0D and F0S instead of F0, etc.).
1083     if (Constraint[1] == 'r') {
1084       if (VT == MVT::i32)
1085         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1086                                    SystemZMC::GR32Regs, 16);
1087       if (VT == MVT::i128)
1088         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1089                                    SystemZMC::GR128Regs, 16);
1090       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1091                                  SystemZMC::GR64Regs, 16);
1092     }
1093     if (Constraint[1] == 'f') {
1094       if (VT == MVT::f32)
1095         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1096                                    SystemZMC::FP32Regs, 16);
1097       if (VT == MVT::f128)
1098         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1099                                    SystemZMC::FP128Regs, 16);
1100       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1101                                  SystemZMC::FP64Regs, 16);
1102     }
1103     if (Constraint[1] == 'v') {
1104       if (VT == MVT::f32)
1105         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1106                                    SystemZMC::VR32Regs, 32);
1107       if (VT == MVT::f64)
1108         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1109                                    SystemZMC::VR64Regs, 32);
1110       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1111                                  SystemZMC::VR128Regs, 32);
1112     }
1113   }
1114   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1115 }
1116 
1117 void SystemZTargetLowering::
1118 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1119                              std::vector<SDValue> &Ops,
1120                              SelectionDAG &DAG) const {
1121   // Only support length 1 constraints for now.
1122   if (Constraint.length() == 1) {
1123     switch (Constraint[0]) {
1124     case 'I': // Unsigned 8-bit constant
1125       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1126         if (isUInt<8>(C->getZExtValue()))
1127           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1128                                               Op.getValueType()));
1129       return;
1130 
1131     case 'J': // Unsigned 12-bit constant
1132       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1133         if (isUInt<12>(C->getZExtValue()))
1134           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1135                                               Op.getValueType()));
1136       return;
1137 
1138     case 'K': // Signed 16-bit constant
1139       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1140         if (isInt<16>(C->getSExtValue()))
1141           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1142                                               Op.getValueType()));
1143       return;
1144 
1145     case 'L': // Signed 20-bit displacement (on all targets we support)
1146       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1147         if (isInt<20>(C->getSExtValue()))
1148           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1149                                               Op.getValueType()));
1150       return;
1151 
1152     case 'M': // 0x7fffffff
1153       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1154         if (C->getZExtValue() == 0x7fffffff)
1155           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1156                                               Op.getValueType()));
1157       return;
1158     }
1159   }
1160   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1161 }
1162 
1163 //===----------------------------------------------------------------------===//
1164 // Calling conventions
1165 //===----------------------------------------------------------------------===//
1166 
1167 #include "SystemZGenCallingConv.inc"
1168 
1169 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1170   CallingConv::ID) const {
1171   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1172                                            SystemZ::R14D, 0 };
1173   return ScratchRegs;
1174 }
1175 
1176 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1177                                                      Type *ToType) const {
1178   return isTruncateFree(FromType, ToType);
1179 }
1180 
1181 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1182   return CI->isTailCall();
1183 }
1184 
1185 // We do not yet support 128-bit single-element vector types.  If the user
1186 // attempts to use such types as function argument or return type, prefer
1187 // to error out instead of emitting code violating the ABI.
1188 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1189   if (ArgVT.isVector() && !VT.isVector())
1190     report_fatal_error("Unsupported vector argument or return type");
1191 }
1192 
1193 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1194   for (unsigned i = 0; i < Ins.size(); ++i)
1195     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1196 }
1197 
1198 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1199   for (unsigned i = 0; i < Outs.size(); ++i)
1200     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1201 }
1202 
1203 // Value is a value that has been passed to us in the location described by VA
1204 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1205 // any loads onto Chain.
1206 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1207                                    CCValAssign &VA, SDValue Chain,
1208                                    SDValue Value) {
1209   // If the argument has been promoted from a smaller type, insert an
1210   // assertion to capture this.
1211   if (VA.getLocInfo() == CCValAssign::SExt)
1212     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1213                         DAG.getValueType(VA.getValVT()));
1214   else if (VA.getLocInfo() == CCValAssign::ZExt)
1215     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1216                         DAG.getValueType(VA.getValVT()));
1217 
1218   if (VA.isExtInLoc())
1219     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1220   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1221     // If this is a short vector argument loaded from the stack,
1222     // extend from i64 to full vector size and then bitcast.
1223     assert(VA.getLocVT() == MVT::i64);
1224     assert(VA.getValVT().isVector());
1225     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1226     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1227   } else
1228     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1229   return Value;
1230 }
1231 
1232 // Value is a value of type VA.getValVT() that we need to copy into
1233 // the location described by VA.  Return a copy of Value converted to
1234 // VA.getValVT().  The caller is responsible for handling indirect values.
1235 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1236                                    CCValAssign &VA, SDValue Value) {
1237   switch (VA.getLocInfo()) {
1238   case CCValAssign::SExt:
1239     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1240   case CCValAssign::ZExt:
1241     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1242   case CCValAssign::AExt:
1243     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1244   case CCValAssign::BCvt:
1245     // If this is a short vector argument to be stored to the stack,
1246     // bitcast to v2i64 and then extract first element.
1247     assert(VA.getLocVT() == MVT::i64);
1248     assert(VA.getValVT().isVector());
1249     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1250     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1251                        DAG.getConstant(0, DL, MVT::i32));
1252   case CCValAssign::Full:
1253     return Value;
1254   default:
1255     llvm_unreachable("Unhandled getLocInfo()");
1256   }
1257 }
1258 
1259 SDValue SystemZTargetLowering::LowerFormalArguments(
1260     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1261     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1262     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1263   MachineFunction &MF = DAG.getMachineFunction();
1264   MachineFrameInfo &MFI = MF.getFrameInfo();
1265   MachineRegisterInfo &MRI = MF.getRegInfo();
1266   SystemZMachineFunctionInfo *FuncInfo =
1267       MF.getInfo<SystemZMachineFunctionInfo>();
1268   auto *TFL =
1269       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1270   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1271 
1272   // Detect unsupported vector argument types.
1273   if (Subtarget.hasVector())
1274     VerifyVectorTypes(Ins);
1275 
1276   // Assign locations to all of the incoming arguments.
1277   SmallVector<CCValAssign, 16> ArgLocs;
1278   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1279   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1280 
1281   unsigned NumFixedGPRs = 0;
1282   unsigned NumFixedFPRs = 0;
1283   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1284     SDValue ArgValue;
1285     CCValAssign &VA = ArgLocs[I];
1286     EVT LocVT = VA.getLocVT();
1287     if (VA.isRegLoc()) {
1288       // Arguments passed in registers
1289       const TargetRegisterClass *RC;
1290       switch (LocVT.getSimpleVT().SimpleTy) {
1291       default:
1292         // Integers smaller than i64 should be promoted to i64.
1293         llvm_unreachable("Unexpected argument type");
1294       case MVT::i32:
1295         NumFixedGPRs += 1;
1296         RC = &SystemZ::GR32BitRegClass;
1297         break;
1298       case MVT::i64:
1299         NumFixedGPRs += 1;
1300         RC = &SystemZ::GR64BitRegClass;
1301         break;
1302       case MVT::f32:
1303         NumFixedFPRs += 1;
1304         RC = &SystemZ::FP32BitRegClass;
1305         break;
1306       case MVT::f64:
1307         NumFixedFPRs += 1;
1308         RC = &SystemZ::FP64BitRegClass;
1309         break;
1310       case MVT::v16i8:
1311       case MVT::v8i16:
1312       case MVT::v4i32:
1313       case MVT::v2i64:
1314       case MVT::v4f32:
1315       case MVT::v2f64:
1316         RC = &SystemZ::VR128BitRegClass;
1317         break;
1318       }
1319 
1320       unsigned VReg = MRI.createVirtualRegister(RC);
1321       MRI.addLiveIn(VA.getLocReg(), VReg);
1322       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1323     } else {
1324       assert(VA.isMemLoc() && "Argument not register or memory");
1325 
1326       // Create the frame index object for this incoming parameter.
1327       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1328                                      VA.getLocMemOffset(), true);
1329 
1330       // Create the SelectionDAG nodes corresponding to a load
1331       // from this parameter.  Unpromoted ints and floats are
1332       // passed as right-justified 8-byte values.
1333       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1334       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1335         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1336                           DAG.getIntPtrConstant(4, DL));
1337       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1338                              MachinePointerInfo::getFixedStack(MF, FI));
1339     }
1340 
1341     // Convert the value of the argument register into the value that's
1342     // being passed.
1343     if (VA.getLocInfo() == CCValAssign::Indirect) {
1344       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1345                                    MachinePointerInfo()));
1346       // If the original argument was split (e.g. i128), we need
1347       // to load all parts of it here (using the same address).
1348       unsigned ArgIndex = Ins[I].OrigArgIndex;
1349       assert (Ins[I].PartOffset == 0);
1350       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1351         CCValAssign &PartVA = ArgLocs[I + 1];
1352         unsigned PartOffset = Ins[I + 1].PartOffset;
1353         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1354                                       DAG.getIntPtrConstant(PartOffset, DL));
1355         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1356                                      MachinePointerInfo()));
1357         ++I;
1358       }
1359     } else
1360       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1361   }
1362 
1363   if (IsVarArg) {
1364     // Save the number of non-varargs registers for later use by va_start, etc.
1365     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1366     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1367 
1368     // Likewise the address (in the form of a frame index) of where the
1369     // first stack vararg would be.  The 1-byte size here is arbitrary.
1370     int64_t StackSize = CCInfo.getNextStackOffset();
1371     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1372 
1373     // ...and a similar frame index for the caller-allocated save area
1374     // that will be used to store the incoming registers.
1375     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1376     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1377     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1378 
1379     // Store the FPR varargs in the reserved frame slots.  (We store the
1380     // GPRs as part of the prologue.)
1381     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1382       SDValue MemOps[SystemZ::NumArgFPRs];
1383       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1384         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1385         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1386         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1387         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1388                                      &SystemZ::FP64BitRegClass);
1389         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1390         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1391                                  MachinePointerInfo::getFixedStack(MF, FI));
1392       }
1393       // Join the stores, which are independent of one another.
1394       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1395                           makeArrayRef(&MemOps[NumFixedFPRs],
1396                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1397     }
1398   }
1399 
1400   return Chain;
1401 }
1402 
1403 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1404                               SmallVectorImpl<CCValAssign> &ArgLocs,
1405                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1406   // Punt if there are any indirect or stack arguments, or if the call
1407   // needs the callee-saved argument register R6, or if the call uses
1408   // the callee-saved register arguments SwiftSelf and SwiftError.
1409   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1410     CCValAssign &VA = ArgLocs[I];
1411     if (VA.getLocInfo() == CCValAssign::Indirect)
1412       return false;
1413     if (!VA.isRegLoc())
1414       return false;
1415     unsigned Reg = VA.getLocReg();
1416     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1417       return false;
1418     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1419       return false;
1420   }
1421   return true;
1422 }
1423 
1424 SDValue
1425 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1426                                  SmallVectorImpl<SDValue> &InVals) const {
1427   SelectionDAG &DAG = CLI.DAG;
1428   SDLoc &DL = CLI.DL;
1429   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1430   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1431   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1432   SDValue Chain = CLI.Chain;
1433   SDValue Callee = CLI.Callee;
1434   bool &IsTailCall = CLI.IsTailCall;
1435   CallingConv::ID CallConv = CLI.CallConv;
1436   bool IsVarArg = CLI.IsVarArg;
1437   MachineFunction &MF = DAG.getMachineFunction();
1438   EVT PtrVT = getPointerTy(MF.getDataLayout());
1439 
1440   // Detect unsupported vector argument and return types.
1441   if (Subtarget.hasVector()) {
1442     VerifyVectorTypes(Outs);
1443     VerifyVectorTypes(Ins);
1444   }
1445 
1446   // Analyze the operands of the call, assigning locations to each operand.
1447   SmallVector<CCValAssign, 16> ArgLocs;
1448   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1449   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1450 
1451   // We don't support GuaranteedTailCallOpt, only automatically-detected
1452   // sibling calls.
1453   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1454     IsTailCall = false;
1455 
1456   // Get a count of how many bytes are to be pushed on the stack.
1457   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1458 
1459   // Mark the start of the call.
1460   if (!IsTailCall)
1461     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1462 
1463   // Copy argument values to their designated locations.
1464   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1465   SmallVector<SDValue, 8> MemOpChains;
1466   SDValue StackPtr;
1467   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1468     CCValAssign &VA = ArgLocs[I];
1469     SDValue ArgValue = OutVals[I];
1470 
1471     if (VA.getLocInfo() == CCValAssign::Indirect) {
1472       // Store the argument in a stack slot and pass its address.
1473       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1474       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1475       MemOpChains.push_back(
1476           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1477                        MachinePointerInfo::getFixedStack(MF, FI)));
1478       // If the original argument was split (e.g. i128), we need
1479       // to store all parts of it here (and pass just one address).
1480       unsigned ArgIndex = Outs[I].OrigArgIndex;
1481       assert (Outs[I].PartOffset == 0);
1482       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1483         SDValue PartValue = OutVals[I + 1];
1484         unsigned PartOffset = Outs[I + 1].PartOffset;
1485         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1486                                       DAG.getIntPtrConstant(PartOffset, DL));
1487         MemOpChains.push_back(
1488             DAG.getStore(Chain, DL, PartValue, Address,
1489                          MachinePointerInfo::getFixedStack(MF, FI)));
1490         ++I;
1491       }
1492       ArgValue = SpillSlot;
1493     } else
1494       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1495 
1496     if (VA.isRegLoc())
1497       // Queue up the argument copies and emit them at the end.
1498       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1499     else {
1500       assert(VA.isMemLoc() && "Argument not register or memory");
1501 
1502       // Work out the address of the stack slot.  Unpromoted ints and
1503       // floats are passed as right-justified 8-byte values.
1504       if (!StackPtr.getNode())
1505         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1506       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1507       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1508         Offset += 4;
1509       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1510                                     DAG.getIntPtrConstant(Offset, DL));
1511 
1512       // Emit the store.
1513       MemOpChains.push_back(
1514           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1515     }
1516   }
1517 
1518   // Join the stores, which are independent of one another.
1519   if (!MemOpChains.empty())
1520     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1521 
1522   // Accept direct calls by converting symbolic call addresses to the
1523   // associated Target* opcodes.  Force %r1 to be used for indirect
1524   // tail calls.
1525   SDValue Glue;
1526   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1527     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1528     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1529   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1530     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1531     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1532   } else if (IsTailCall) {
1533     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1534     Glue = Chain.getValue(1);
1535     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1536   }
1537 
1538   // Build a sequence of copy-to-reg nodes, chained and glued together.
1539   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1540     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1541                              RegsToPass[I].second, Glue);
1542     Glue = Chain.getValue(1);
1543   }
1544 
1545   // The first call operand is the chain and the second is the target address.
1546   SmallVector<SDValue, 8> Ops;
1547   Ops.push_back(Chain);
1548   Ops.push_back(Callee);
1549 
1550   // Add argument registers to the end of the list so that they are
1551   // known live into the call.
1552   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1553     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1554                                   RegsToPass[I].second.getValueType()));
1555 
1556   // Add a register mask operand representing the call-preserved registers.
1557   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1558   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1559   assert(Mask && "Missing call preserved mask for calling convention");
1560   Ops.push_back(DAG.getRegisterMask(Mask));
1561 
1562   // Glue the call to the argument copies, if any.
1563   if (Glue.getNode())
1564     Ops.push_back(Glue);
1565 
1566   // Emit the call.
1567   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1568   if (IsTailCall)
1569     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1570   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1571   Glue = Chain.getValue(1);
1572 
1573   // Mark the end of the call, which is glued to the call itself.
1574   Chain = DAG.getCALLSEQ_END(Chain,
1575                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1576                              DAG.getConstant(0, DL, PtrVT, true),
1577                              Glue, DL);
1578   Glue = Chain.getValue(1);
1579 
1580   // Assign locations to each value returned by this call.
1581   SmallVector<CCValAssign, 16> RetLocs;
1582   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1583   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1584 
1585   // Copy all of the result registers out of their specified physreg.
1586   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1587     CCValAssign &VA = RetLocs[I];
1588 
1589     // Copy the value out, gluing the copy to the end of the call sequence.
1590     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1591                                           VA.getLocVT(), Glue);
1592     Chain = RetValue.getValue(1);
1593     Glue = RetValue.getValue(2);
1594 
1595     // Convert the value of the return register into the value that's
1596     // being returned.
1597     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1598   }
1599 
1600   return Chain;
1601 }
1602 
1603 bool SystemZTargetLowering::
1604 CanLowerReturn(CallingConv::ID CallConv,
1605                MachineFunction &MF, bool isVarArg,
1606                const SmallVectorImpl<ISD::OutputArg> &Outs,
1607                LLVMContext &Context) const {
1608   // Detect unsupported vector return types.
1609   if (Subtarget.hasVector())
1610     VerifyVectorTypes(Outs);
1611 
1612   // Special case that we cannot easily detect in RetCC_SystemZ since
1613   // i128 is not a legal type.
1614   for (auto &Out : Outs)
1615     if (Out.ArgVT == MVT::i128)
1616       return false;
1617 
1618   SmallVector<CCValAssign, 16> RetLocs;
1619   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1620   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1621 }
1622 
1623 SDValue
1624 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1625                                    bool IsVarArg,
1626                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1627                                    const SmallVectorImpl<SDValue> &OutVals,
1628                                    const SDLoc &DL, SelectionDAG &DAG) const {
1629   MachineFunction &MF = DAG.getMachineFunction();
1630 
1631   // Detect unsupported vector return types.
1632   if (Subtarget.hasVector())
1633     VerifyVectorTypes(Outs);
1634 
1635   // Assign locations to each returned value.
1636   SmallVector<CCValAssign, 16> RetLocs;
1637   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1638   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1639 
1640   // Quick exit for void returns
1641   if (RetLocs.empty())
1642     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1643 
1644   // Copy the result values into the output registers.
1645   SDValue Glue;
1646   SmallVector<SDValue, 4> RetOps;
1647   RetOps.push_back(Chain);
1648   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1649     CCValAssign &VA = RetLocs[I];
1650     SDValue RetValue = OutVals[I];
1651 
1652     // Make the return register live on exit.
1653     assert(VA.isRegLoc() && "Can only return in registers!");
1654 
1655     // Promote the value as required.
1656     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1657 
1658     // Chain and glue the copies together.
1659     unsigned Reg = VA.getLocReg();
1660     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1661     Glue = Chain.getValue(1);
1662     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1663   }
1664 
1665   // Update chain and glue.
1666   RetOps[0] = Chain;
1667   if (Glue.getNode())
1668     RetOps.push_back(Glue);
1669 
1670   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1671 }
1672 
1673 // Return true if Op is an intrinsic node with chain that returns the CC value
1674 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1675 // the mask of valid CC values if so.
1676 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1677                                       unsigned &CCValid) {
1678   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1679   switch (Id) {
1680   case Intrinsic::s390_tbegin:
1681     Opcode = SystemZISD::TBEGIN;
1682     CCValid = SystemZ::CCMASK_TBEGIN;
1683     return true;
1684 
1685   case Intrinsic::s390_tbegin_nofloat:
1686     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1687     CCValid = SystemZ::CCMASK_TBEGIN;
1688     return true;
1689 
1690   case Intrinsic::s390_tend:
1691     Opcode = SystemZISD::TEND;
1692     CCValid = SystemZ::CCMASK_TEND;
1693     return true;
1694 
1695   default:
1696     return false;
1697   }
1698 }
1699 
1700 // Return true if Op is an intrinsic node without chain that returns the
1701 // CC value as its final argument.  Provide the associated SystemZISD
1702 // opcode and the mask of valid CC values if so.
1703 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1704   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1705   switch (Id) {
1706   case Intrinsic::s390_vpkshs:
1707   case Intrinsic::s390_vpksfs:
1708   case Intrinsic::s390_vpksgs:
1709     Opcode = SystemZISD::PACKS_CC;
1710     CCValid = SystemZ::CCMASK_VCMP;
1711     return true;
1712 
1713   case Intrinsic::s390_vpklshs:
1714   case Intrinsic::s390_vpklsfs:
1715   case Intrinsic::s390_vpklsgs:
1716     Opcode = SystemZISD::PACKLS_CC;
1717     CCValid = SystemZ::CCMASK_VCMP;
1718     return true;
1719 
1720   case Intrinsic::s390_vceqbs:
1721   case Intrinsic::s390_vceqhs:
1722   case Intrinsic::s390_vceqfs:
1723   case Intrinsic::s390_vceqgs:
1724     Opcode = SystemZISD::VICMPES;
1725     CCValid = SystemZ::CCMASK_VCMP;
1726     return true;
1727 
1728   case Intrinsic::s390_vchbs:
1729   case Intrinsic::s390_vchhs:
1730   case Intrinsic::s390_vchfs:
1731   case Intrinsic::s390_vchgs:
1732     Opcode = SystemZISD::VICMPHS;
1733     CCValid = SystemZ::CCMASK_VCMP;
1734     return true;
1735 
1736   case Intrinsic::s390_vchlbs:
1737   case Intrinsic::s390_vchlhs:
1738   case Intrinsic::s390_vchlfs:
1739   case Intrinsic::s390_vchlgs:
1740     Opcode = SystemZISD::VICMPHLS;
1741     CCValid = SystemZ::CCMASK_VCMP;
1742     return true;
1743 
1744   case Intrinsic::s390_vtm:
1745     Opcode = SystemZISD::VTM;
1746     CCValid = SystemZ::CCMASK_VCMP;
1747     return true;
1748 
1749   case Intrinsic::s390_vfaebs:
1750   case Intrinsic::s390_vfaehs:
1751   case Intrinsic::s390_vfaefs:
1752     Opcode = SystemZISD::VFAE_CC;
1753     CCValid = SystemZ::CCMASK_ANY;
1754     return true;
1755 
1756   case Intrinsic::s390_vfaezbs:
1757   case Intrinsic::s390_vfaezhs:
1758   case Intrinsic::s390_vfaezfs:
1759     Opcode = SystemZISD::VFAEZ_CC;
1760     CCValid = SystemZ::CCMASK_ANY;
1761     return true;
1762 
1763   case Intrinsic::s390_vfeebs:
1764   case Intrinsic::s390_vfeehs:
1765   case Intrinsic::s390_vfeefs:
1766     Opcode = SystemZISD::VFEE_CC;
1767     CCValid = SystemZ::CCMASK_ANY;
1768     return true;
1769 
1770   case Intrinsic::s390_vfeezbs:
1771   case Intrinsic::s390_vfeezhs:
1772   case Intrinsic::s390_vfeezfs:
1773     Opcode = SystemZISD::VFEEZ_CC;
1774     CCValid = SystemZ::CCMASK_ANY;
1775     return true;
1776 
1777   case Intrinsic::s390_vfenebs:
1778   case Intrinsic::s390_vfenehs:
1779   case Intrinsic::s390_vfenefs:
1780     Opcode = SystemZISD::VFENE_CC;
1781     CCValid = SystemZ::CCMASK_ANY;
1782     return true;
1783 
1784   case Intrinsic::s390_vfenezbs:
1785   case Intrinsic::s390_vfenezhs:
1786   case Intrinsic::s390_vfenezfs:
1787     Opcode = SystemZISD::VFENEZ_CC;
1788     CCValid = SystemZ::CCMASK_ANY;
1789     return true;
1790 
1791   case Intrinsic::s390_vistrbs:
1792   case Intrinsic::s390_vistrhs:
1793   case Intrinsic::s390_vistrfs:
1794     Opcode = SystemZISD::VISTR_CC;
1795     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1796     return true;
1797 
1798   case Intrinsic::s390_vstrcbs:
1799   case Intrinsic::s390_vstrchs:
1800   case Intrinsic::s390_vstrcfs:
1801     Opcode = SystemZISD::VSTRC_CC;
1802     CCValid = SystemZ::CCMASK_ANY;
1803     return true;
1804 
1805   case Intrinsic::s390_vstrczbs:
1806   case Intrinsic::s390_vstrczhs:
1807   case Intrinsic::s390_vstrczfs:
1808     Opcode = SystemZISD::VSTRCZ_CC;
1809     CCValid = SystemZ::CCMASK_ANY;
1810     return true;
1811 
1812   case Intrinsic::s390_vfcedbs:
1813   case Intrinsic::s390_vfcesbs:
1814     Opcode = SystemZISD::VFCMPES;
1815     CCValid = SystemZ::CCMASK_VCMP;
1816     return true;
1817 
1818   case Intrinsic::s390_vfchdbs:
1819   case Intrinsic::s390_vfchsbs:
1820     Opcode = SystemZISD::VFCMPHS;
1821     CCValid = SystemZ::CCMASK_VCMP;
1822     return true;
1823 
1824   case Intrinsic::s390_vfchedbs:
1825   case Intrinsic::s390_vfchesbs:
1826     Opcode = SystemZISD::VFCMPHES;
1827     CCValid = SystemZ::CCMASK_VCMP;
1828     return true;
1829 
1830   case Intrinsic::s390_vftcidb:
1831   case Intrinsic::s390_vftcisb:
1832     Opcode = SystemZISD::VFTCI;
1833     CCValid = SystemZ::CCMASK_VCMP;
1834     return true;
1835 
1836   case Intrinsic::s390_tdc:
1837     Opcode = SystemZISD::TDC;
1838     CCValid = SystemZ::CCMASK_TDC;
1839     return true;
1840 
1841   default:
1842     return false;
1843   }
1844 }
1845 
1846 // Emit an intrinsic with chain and an explicit CC register result.
1847 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1848                                            unsigned Opcode) {
1849   // Copy all operands except the intrinsic ID.
1850   unsigned NumOps = Op.getNumOperands();
1851   SmallVector<SDValue, 6> Ops;
1852   Ops.reserve(NumOps - 1);
1853   Ops.push_back(Op.getOperand(0));
1854   for (unsigned I = 2; I < NumOps; ++I)
1855     Ops.push_back(Op.getOperand(I));
1856 
1857   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1858   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1859   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1860   SDValue OldChain = SDValue(Op.getNode(), 1);
1861   SDValue NewChain = SDValue(Intr.getNode(), 1);
1862   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1863   return Intr.getNode();
1864 }
1865 
1866 // Emit an intrinsic with an explicit CC register result.
1867 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1868                                    unsigned Opcode) {
1869   // Copy all operands except the intrinsic ID.
1870   unsigned NumOps = Op.getNumOperands();
1871   SmallVector<SDValue, 6> Ops;
1872   Ops.reserve(NumOps - 1);
1873   for (unsigned I = 1; I < NumOps; ++I)
1874     Ops.push_back(Op.getOperand(I));
1875 
1876   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1877   return Intr.getNode();
1878 }
1879 
1880 // CC is a comparison that will be implemented using an integer or
1881 // floating-point comparison.  Return the condition code mask for
1882 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1883 // unsigned comparisons and clear for signed ones.  In the floating-point
1884 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1885 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1886 #define CONV(X) \
1887   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1888   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1889   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1890 
1891   switch (CC) {
1892   default:
1893     llvm_unreachable("Invalid integer condition!");
1894 
1895   CONV(EQ);
1896   CONV(NE);
1897   CONV(GT);
1898   CONV(GE);
1899   CONV(LT);
1900   CONV(LE);
1901 
1902   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1903   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1904   }
1905 #undef CONV
1906 }
1907 
1908 // If C can be converted to a comparison against zero, adjust the operands
1909 // as necessary.
1910 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1911   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1912     return;
1913 
1914   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1915   if (!ConstOp1)
1916     return;
1917 
1918   int64_t Value = ConstOp1->getSExtValue();
1919   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1920       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1921       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1922       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1923     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1924     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1925   }
1926 }
1927 
1928 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1929 // adjust the operands as necessary.
1930 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1931                              Comparison &C) {
1932   // For us to make any changes, it must a comparison between a single-use
1933   // load and a constant.
1934   if (!C.Op0.hasOneUse() ||
1935       C.Op0.getOpcode() != ISD::LOAD ||
1936       C.Op1.getOpcode() != ISD::Constant)
1937     return;
1938 
1939   // We must have an 8- or 16-bit load.
1940   auto *Load = cast<LoadSDNode>(C.Op0);
1941   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1942   if (NumBits != 8 && NumBits != 16)
1943     return;
1944 
1945   // The load must be an extending one and the constant must be within the
1946   // range of the unextended value.
1947   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1948   uint64_t Value = ConstOp1->getZExtValue();
1949   uint64_t Mask = (1 << NumBits) - 1;
1950   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1951     // Make sure that ConstOp1 is in range of C.Op0.
1952     int64_t SignedValue = ConstOp1->getSExtValue();
1953     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1954       return;
1955     if (C.ICmpType != SystemZICMP::SignedOnly) {
1956       // Unsigned comparison between two sign-extended values is equivalent
1957       // to unsigned comparison between two zero-extended values.
1958       Value &= Mask;
1959     } else if (NumBits == 8) {
1960       // Try to treat the comparison as unsigned, so that we can use CLI.
1961       // Adjust CCMask and Value as necessary.
1962       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1963         // Test whether the high bit of the byte is set.
1964         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1965       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1966         // Test whether the high bit of the byte is clear.
1967         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1968       else
1969         // No instruction exists for this combination.
1970         return;
1971       C.ICmpType = SystemZICMP::UnsignedOnly;
1972     }
1973   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1974     if (Value > Mask)
1975       return;
1976     // If the constant is in range, we can use any comparison.
1977     C.ICmpType = SystemZICMP::Any;
1978   } else
1979     return;
1980 
1981   // Make sure that the first operand is an i32 of the right extension type.
1982   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1983                               ISD::SEXTLOAD :
1984                               ISD::ZEXTLOAD);
1985   if (C.Op0.getValueType() != MVT::i32 ||
1986       Load->getExtensionType() != ExtType) {
1987     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1988                            Load->getBasePtr(), Load->getPointerInfo(),
1989                            Load->getMemoryVT(), Load->getAlignment(),
1990                            Load->getMemOperand()->getFlags());
1991     // Update the chain uses.
1992     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1993   }
1994 
1995   // Make sure that the second operand is an i32 with the right value.
1996   if (C.Op1.getValueType() != MVT::i32 ||
1997       Value != ConstOp1->getZExtValue())
1998     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1999 }
2000 
2001 // Return true if Op is either an unextended load, or a load suitable
2002 // for integer register-memory comparisons of type ICmpType.
2003 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2004   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2005   if (Load) {
2006     // There are no instructions to compare a register with a memory byte.
2007     if (Load->getMemoryVT() == MVT::i8)
2008       return false;
2009     // Otherwise decide on extension type.
2010     switch (Load->getExtensionType()) {
2011     case ISD::NON_EXTLOAD:
2012       return true;
2013     case ISD::SEXTLOAD:
2014       return ICmpType != SystemZICMP::UnsignedOnly;
2015     case ISD::ZEXTLOAD:
2016       return ICmpType != SystemZICMP::SignedOnly;
2017     default:
2018       break;
2019     }
2020   }
2021   return false;
2022 }
2023 
2024 // Return true if it is better to swap the operands of C.
2025 static bool shouldSwapCmpOperands(const Comparison &C) {
2026   // Leave f128 comparisons alone, since they have no memory forms.
2027   if (C.Op0.getValueType() == MVT::f128)
2028     return false;
2029 
2030   // Always keep a floating-point constant second, since comparisons with
2031   // zero can use LOAD TEST and comparisons with other constants make a
2032   // natural memory operand.
2033   if (isa<ConstantFPSDNode>(C.Op1))
2034     return false;
2035 
2036   // Never swap comparisons with zero since there are many ways to optimize
2037   // those later.
2038   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2039   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2040     return false;
2041 
2042   // Also keep natural memory operands second if the loaded value is
2043   // only used here.  Several comparisons have memory forms.
2044   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2045     return false;
2046 
2047   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2048   // In that case we generally prefer the memory to be second.
2049   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2050     // The only exceptions are when the second operand is a constant and
2051     // we can use things like CHHSI.
2052     if (!ConstOp1)
2053       return true;
2054     // The unsigned memory-immediate instructions can handle 16-bit
2055     // unsigned integers.
2056     if (C.ICmpType != SystemZICMP::SignedOnly &&
2057         isUInt<16>(ConstOp1->getZExtValue()))
2058       return false;
2059     // The signed memory-immediate instructions can handle 16-bit
2060     // signed integers.
2061     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2062         isInt<16>(ConstOp1->getSExtValue()))
2063       return false;
2064     return true;
2065   }
2066 
2067   // Try to promote the use of CGFR and CLGFR.
2068   unsigned Opcode0 = C.Op0.getOpcode();
2069   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2070     return true;
2071   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2072     return true;
2073   if (C.ICmpType != SystemZICMP::SignedOnly &&
2074       Opcode0 == ISD::AND &&
2075       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2076       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2077     return true;
2078 
2079   return false;
2080 }
2081 
2082 // Return a version of comparison CC mask CCMask in which the LT and GT
2083 // actions are swapped.
2084 static unsigned reverseCCMask(unsigned CCMask) {
2085   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2086           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2087           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2088           (CCMask & SystemZ::CCMASK_CMP_UO));
2089 }
2090 
2091 // Check whether C tests for equality between X and Y and whether X - Y
2092 // or Y - X is also computed.  In that case it's better to compare the
2093 // result of the subtraction against zero.
2094 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2095                                  Comparison &C) {
2096   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2097       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2098     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2099       SDNode *N = *I;
2100       if (N->getOpcode() == ISD::SUB &&
2101           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2102            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2103         C.Op0 = SDValue(N, 0);
2104         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2105         return;
2106       }
2107     }
2108   }
2109 }
2110 
2111 // Check whether C compares a floating-point value with zero and if that
2112 // floating-point value is also negated.  In this case we can use the
2113 // negation to set CC, so avoiding separate LOAD AND TEST and
2114 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2115 static void adjustForFNeg(Comparison &C) {
2116   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2117   if (C1 && C1->isZero()) {
2118     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2119       SDNode *N = *I;
2120       if (N->getOpcode() == ISD::FNEG) {
2121         C.Op0 = SDValue(N, 0);
2122         C.CCMask = reverseCCMask(C.CCMask);
2123         return;
2124       }
2125     }
2126   }
2127 }
2128 
2129 // Check whether C compares (shl X, 32) with 0 and whether X is
2130 // also sign-extended.  In that case it is better to test the result
2131 // of the sign extension using LTGFR.
2132 //
2133 // This case is important because InstCombine transforms a comparison
2134 // with (sext (trunc X)) into a comparison with (shl X, 32).
2135 static void adjustForLTGFR(Comparison &C) {
2136   // Check for a comparison between (shl X, 32) and 0.
2137   if (C.Op0.getOpcode() == ISD::SHL &&
2138       C.Op0.getValueType() == MVT::i64 &&
2139       C.Op1.getOpcode() == ISD::Constant &&
2140       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2141     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2142     if (C1 && C1->getZExtValue() == 32) {
2143       SDValue ShlOp0 = C.Op0.getOperand(0);
2144       // See whether X has any SIGN_EXTEND_INREG uses.
2145       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2146         SDNode *N = *I;
2147         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2148             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2149           C.Op0 = SDValue(N, 0);
2150           return;
2151         }
2152       }
2153     }
2154   }
2155 }
2156 
2157 // If C compares the truncation of an extending load, try to compare
2158 // the untruncated value instead.  This exposes more opportunities to
2159 // reuse CC.
2160 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2161                                Comparison &C) {
2162   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2163       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2164       C.Op1.getOpcode() == ISD::Constant &&
2165       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2166     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2167     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2168       unsigned Type = L->getExtensionType();
2169       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2170           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2171         C.Op0 = C.Op0.getOperand(0);
2172         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2173       }
2174     }
2175   }
2176 }
2177 
2178 // Return true if shift operation N has an in-range constant shift value.
2179 // Store it in ShiftVal if so.
2180 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2181   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2182   if (!Shift)
2183     return false;
2184 
2185   uint64_t Amount = Shift->getZExtValue();
2186   if (Amount >= N.getValueSizeInBits())
2187     return false;
2188 
2189   ShiftVal = Amount;
2190   return true;
2191 }
2192 
2193 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2194 // instruction and whether the CC value is descriptive enough to handle
2195 // a comparison of type Opcode between the AND result and CmpVal.
2196 // CCMask says which comparison result is being tested and BitSize is
2197 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2198 // return the corresponding CC mask, otherwise return 0.
2199 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2200                                      uint64_t Mask, uint64_t CmpVal,
2201                                      unsigned ICmpType) {
2202   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2203 
2204   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2205   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2206       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2207     return 0;
2208 
2209   // Work out the masks for the lowest and highest bits.
2210   unsigned HighShift = 63 - countLeadingZeros(Mask);
2211   uint64_t High = uint64_t(1) << HighShift;
2212   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2213 
2214   // Signed ordered comparisons are effectively unsigned if the sign
2215   // bit is dropped.
2216   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2217 
2218   // Check for equality comparisons with 0, or the equivalent.
2219   if (CmpVal == 0) {
2220     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2221       return SystemZ::CCMASK_TM_ALL_0;
2222     if (CCMask == SystemZ::CCMASK_CMP_NE)
2223       return SystemZ::CCMASK_TM_SOME_1;
2224   }
2225   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2226     if (CCMask == SystemZ::CCMASK_CMP_LT)
2227       return SystemZ::CCMASK_TM_ALL_0;
2228     if (CCMask == SystemZ::CCMASK_CMP_GE)
2229       return SystemZ::CCMASK_TM_SOME_1;
2230   }
2231   if (EffectivelyUnsigned && CmpVal < Low) {
2232     if (CCMask == SystemZ::CCMASK_CMP_LE)
2233       return SystemZ::CCMASK_TM_ALL_0;
2234     if (CCMask == SystemZ::CCMASK_CMP_GT)
2235       return SystemZ::CCMASK_TM_SOME_1;
2236   }
2237 
2238   // Check for equality comparisons with the mask, or the equivalent.
2239   if (CmpVal == Mask) {
2240     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2241       return SystemZ::CCMASK_TM_ALL_1;
2242     if (CCMask == SystemZ::CCMASK_CMP_NE)
2243       return SystemZ::CCMASK_TM_SOME_0;
2244   }
2245   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2246     if (CCMask == SystemZ::CCMASK_CMP_GT)
2247       return SystemZ::CCMASK_TM_ALL_1;
2248     if (CCMask == SystemZ::CCMASK_CMP_LE)
2249       return SystemZ::CCMASK_TM_SOME_0;
2250   }
2251   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2252     if (CCMask == SystemZ::CCMASK_CMP_GE)
2253       return SystemZ::CCMASK_TM_ALL_1;
2254     if (CCMask == SystemZ::CCMASK_CMP_LT)
2255       return SystemZ::CCMASK_TM_SOME_0;
2256   }
2257 
2258   // Check for ordered comparisons with the top bit.
2259   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2260     if (CCMask == SystemZ::CCMASK_CMP_LE)
2261       return SystemZ::CCMASK_TM_MSB_0;
2262     if (CCMask == SystemZ::CCMASK_CMP_GT)
2263       return SystemZ::CCMASK_TM_MSB_1;
2264   }
2265   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2266     if (CCMask == SystemZ::CCMASK_CMP_LT)
2267       return SystemZ::CCMASK_TM_MSB_0;
2268     if (CCMask == SystemZ::CCMASK_CMP_GE)
2269       return SystemZ::CCMASK_TM_MSB_1;
2270   }
2271 
2272   // If there are just two bits, we can do equality checks for Low and High
2273   // as well.
2274   if (Mask == Low + High) {
2275     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2276       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2277     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2278       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2279     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2280       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2281     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2282       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2283   }
2284 
2285   // Looks like we've exhausted our options.
2286   return 0;
2287 }
2288 
2289 // See whether C can be implemented as a TEST UNDER MASK instruction.
2290 // Update the arguments with the TM version if so.
2291 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2292                                    Comparison &C) {
2293   // Check that we have a comparison with a constant.
2294   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2295   if (!ConstOp1)
2296     return;
2297   uint64_t CmpVal = ConstOp1->getZExtValue();
2298 
2299   // Check whether the nonconstant input is an AND with a constant mask.
2300   Comparison NewC(C);
2301   uint64_t MaskVal;
2302   ConstantSDNode *Mask = nullptr;
2303   if (C.Op0.getOpcode() == ISD::AND) {
2304     NewC.Op0 = C.Op0.getOperand(0);
2305     NewC.Op1 = C.Op0.getOperand(1);
2306     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2307     if (!Mask)
2308       return;
2309     MaskVal = Mask->getZExtValue();
2310   } else {
2311     // There is no instruction to compare with a 64-bit immediate
2312     // so use TMHH instead if possible.  We need an unsigned ordered
2313     // comparison with an i64 immediate.
2314     if (NewC.Op0.getValueType() != MVT::i64 ||
2315         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2316         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2317         NewC.ICmpType == SystemZICMP::SignedOnly)
2318       return;
2319     // Convert LE and GT comparisons into LT and GE.
2320     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2321         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2322       if (CmpVal == uint64_t(-1))
2323         return;
2324       CmpVal += 1;
2325       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2326     }
2327     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2328     // be masked off without changing the result.
2329     MaskVal = -(CmpVal & -CmpVal);
2330     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2331   }
2332   if (!MaskVal)
2333     return;
2334 
2335   // Check whether the combination of mask, comparison value and comparison
2336   // type are suitable.
2337   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2338   unsigned NewCCMask, ShiftVal;
2339   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2340       NewC.Op0.getOpcode() == ISD::SHL &&
2341       isSimpleShift(NewC.Op0, ShiftVal) &&
2342       (MaskVal >> ShiftVal != 0) &&
2343       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2344       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2345                                         MaskVal >> ShiftVal,
2346                                         CmpVal >> ShiftVal,
2347                                         SystemZICMP::Any))) {
2348     NewC.Op0 = NewC.Op0.getOperand(0);
2349     MaskVal >>= ShiftVal;
2350   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2351              NewC.Op0.getOpcode() == ISD::SRL &&
2352              isSimpleShift(NewC.Op0, ShiftVal) &&
2353              (MaskVal << ShiftVal != 0) &&
2354              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2355              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2356                                                MaskVal << ShiftVal,
2357                                                CmpVal << ShiftVal,
2358                                                SystemZICMP::UnsignedOnly))) {
2359     NewC.Op0 = NewC.Op0.getOperand(0);
2360     MaskVal <<= ShiftVal;
2361   } else {
2362     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2363                                      NewC.ICmpType);
2364     if (!NewCCMask)
2365       return;
2366   }
2367 
2368   // Go ahead and make the change.
2369   C.Opcode = SystemZISD::TM;
2370   C.Op0 = NewC.Op0;
2371   if (Mask && Mask->getZExtValue() == MaskVal)
2372     C.Op1 = SDValue(Mask, 0);
2373   else
2374     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2375   C.CCValid = SystemZ::CCMASK_TM;
2376   C.CCMask = NewCCMask;
2377 }
2378 
2379 // See whether the comparison argument contains a redundant AND
2380 // and remove it if so.  This sometimes happens due to the generic
2381 // BRCOND expansion.
2382 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2383                                   Comparison &C) {
2384   if (C.Op0.getOpcode() != ISD::AND)
2385     return;
2386   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2387   if (!Mask)
2388     return;
2389   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2390   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2391     return;
2392 
2393   C.Op0 = C.Op0.getOperand(0);
2394 }
2395 
2396 // Return a Comparison that tests the condition-code result of intrinsic
2397 // node Call against constant integer CC using comparison code Cond.
2398 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2399 // and CCValid is the set of possible condition-code results.
2400 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2401                                   SDValue Call, unsigned CCValid, uint64_t CC,
2402                                   ISD::CondCode Cond) {
2403   Comparison C(Call, SDValue());
2404   C.Opcode = Opcode;
2405   C.CCValid = CCValid;
2406   if (Cond == ISD::SETEQ)
2407     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2408     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2409   else if (Cond == ISD::SETNE)
2410     // ...and the inverse of that.
2411     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2412   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2413     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2414     // always true for CC>3.
2415     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2416   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2417     // ...and the inverse of that.
2418     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2419   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2420     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2421     // always true for CC>3.
2422     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2423   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2424     // ...and the inverse of that.
2425     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2426   else
2427     llvm_unreachable("Unexpected integer comparison type");
2428   C.CCMask &= CCValid;
2429   return C;
2430 }
2431 
2432 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2433 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2434                          ISD::CondCode Cond, const SDLoc &DL) {
2435   if (CmpOp1.getOpcode() == ISD::Constant) {
2436     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2437     unsigned Opcode, CCValid;
2438     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2439         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2440         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2441       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2442     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2443         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2444         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2445       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2446   }
2447   Comparison C(CmpOp0, CmpOp1);
2448   C.CCMask = CCMaskForCondCode(Cond);
2449   if (C.Op0.getValueType().isFloatingPoint()) {
2450     C.CCValid = SystemZ::CCMASK_FCMP;
2451     C.Opcode = SystemZISD::FCMP;
2452     adjustForFNeg(C);
2453   } else {
2454     C.CCValid = SystemZ::CCMASK_ICMP;
2455     C.Opcode = SystemZISD::ICMP;
2456     // Choose the type of comparison.  Equality and inequality tests can
2457     // use either signed or unsigned comparisons.  The choice also doesn't
2458     // matter if both sign bits are known to be clear.  In those cases we
2459     // want to give the main isel code the freedom to choose whichever
2460     // form fits best.
2461     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2462         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2463         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2464       C.ICmpType = SystemZICMP::Any;
2465     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2466       C.ICmpType = SystemZICMP::UnsignedOnly;
2467     else
2468       C.ICmpType = SystemZICMP::SignedOnly;
2469     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2470     adjustForRedundantAnd(DAG, DL, C);
2471     adjustZeroCmp(DAG, DL, C);
2472     adjustSubwordCmp(DAG, DL, C);
2473     adjustForSubtraction(DAG, DL, C);
2474     adjustForLTGFR(C);
2475     adjustICmpTruncate(DAG, DL, C);
2476   }
2477 
2478   if (shouldSwapCmpOperands(C)) {
2479     std::swap(C.Op0, C.Op1);
2480     C.CCMask = reverseCCMask(C.CCMask);
2481   }
2482 
2483   adjustForTestUnderMask(DAG, DL, C);
2484   return C;
2485 }
2486 
2487 // Emit the comparison instruction described by C.
2488 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2489   if (!C.Op1.getNode()) {
2490     SDNode *Node;
2491     switch (C.Op0.getOpcode()) {
2492     case ISD::INTRINSIC_W_CHAIN:
2493       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2494       return SDValue(Node, 0);
2495     case ISD::INTRINSIC_WO_CHAIN:
2496       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2497       return SDValue(Node, Node->getNumValues() - 1);
2498     default:
2499       llvm_unreachable("Invalid comparison operands");
2500     }
2501   }
2502   if (C.Opcode == SystemZISD::ICMP)
2503     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2504                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2505   if (C.Opcode == SystemZISD::TM) {
2506     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2507                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2508     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2509                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2510   }
2511   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2512 }
2513 
2514 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2515 // 64 bits.  Extend is the extension type to use.  Store the high part
2516 // in Hi and the low part in Lo.
2517 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2518                             SDValue Op0, SDValue Op1, SDValue &Hi,
2519                             SDValue &Lo) {
2520   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2521   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2522   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2523   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2524                    DAG.getConstant(32, DL, MVT::i64));
2525   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2526   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2527 }
2528 
2529 // Lower a binary operation that produces two VT results, one in each
2530 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2531 // and Opcode performs the GR128 operation.  Store the even register result
2532 // in Even and the odd register result in Odd.
2533 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2534                              unsigned Opcode, SDValue Op0, SDValue Op1,
2535                              SDValue &Even, SDValue &Odd) {
2536   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2537   bool Is32Bit = is32Bit(VT);
2538   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2539   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2540 }
2541 
2542 // Return an i32 value that is 1 if the CC value produced by CCReg is
2543 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2544 // in CCValid, so other values can be ignored.
2545 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2546                          unsigned CCValid, unsigned CCMask) {
2547   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2548                     DAG.getConstant(0, DL, MVT::i32),
2549                     DAG.getConstant(CCValid, DL, MVT::i32),
2550                     DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2551   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2552 }
2553 
2554 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2555 // be done directly.  IsFP is true if CC is for a floating-point rather than
2556 // integer comparison.
2557 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2558   switch (CC) {
2559   case ISD::SETOEQ:
2560   case ISD::SETEQ:
2561     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2562 
2563   case ISD::SETOGE:
2564   case ISD::SETGE:
2565     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2566 
2567   case ISD::SETOGT:
2568   case ISD::SETGT:
2569     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2570 
2571   case ISD::SETUGT:
2572     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2573 
2574   default:
2575     return 0;
2576   }
2577 }
2578 
2579 // Return the SystemZISD vector comparison operation for CC or its inverse,
2580 // or 0 if neither can be done directly.  Indicate in Invert whether the
2581 // result is for the inverse of CC.  IsFP is true if CC is for a
2582 // floating-point rather than integer comparison.
2583 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2584                                             bool &Invert) {
2585   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2586     Invert = false;
2587     return Opcode;
2588   }
2589 
2590   CC = ISD::getSetCCInverse(CC, !IsFP);
2591   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2592     Invert = true;
2593     return Opcode;
2594   }
2595 
2596   return 0;
2597 }
2598 
2599 // Return a v2f64 that contains the extended form of elements Start and Start+1
2600 // of v4f32 value Op.
2601 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2602                                   SDValue Op) {
2603   int Mask[] = { Start, -1, Start + 1, -1 };
2604   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2605   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2606 }
2607 
2608 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2609 // producing a result of type VT.
2610 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2611                                             const SDLoc &DL, EVT VT,
2612                                             SDValue CmpOp0,
2613                                             SDValue CmpOp1) const {
2614   // There is no hardware support for v4f32 (unless we have the vector
2615   // enhancements facility 1), so extend the vector into two v2f64s
2616   // and compare those.
2617   if (CmpOp0.getValueType() == MVT::v4f32 &&
2618       !Subtarget.hasVectorEnhancements1()) {
2619     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2620     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2621     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2622     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2623     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2624     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2625     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2626   }
2627   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2628 }
2629 
2630 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2631 // an integer mask of type VT.
2632 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2633                                                 const SDLoc &DL, EVT VT,
2634                                                 ISD::CondCode CC,
2635                                                 SDValue CmpOp0,
2636                                                 SDValue CmpOp1) const {
2637   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2638   bool Invert = false;
2639   SDValue Cmp;
2640   switch (CC) {
2641     // Handle tests for order using (or (ogt y x) (oge x y)).
2642   case ISD::SETUO:
2643     Invert = true;
2644     LLVM_FALLTHROUGH;
2645   case ISD::SETO: {
2646     assert(IsFP && "Unexpected integer comparison");
2647     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2648     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2649     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2650     break;
2651   }
2652 
2653     // Handle <> tests using (or (ogt y x) (ogt x y)).
2654   case ISD::SETUEQ:
2655     Invert = true;
2656     LLVM_FALLTHROUGH;
2657   case ISD::SETONE: {
2658     assert(IsFP && "Unexpected integer comparison");
2659     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2660     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2661     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2662     break;
2663   }
2664 
2665     // Otherwise a single comparison is enough.  It doesn't really
2666     // matter whether we try the inversion or the swap first, since
2667     // there are no cases where both work.
2668   default:
2669     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2670       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2671     else {
2672       CC = ISD::getSetCCSwappedOperands(CC);
2673       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2674         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2675       else
2676         llvm_unreachable("Unhandled comparison");
2677     }
2678     break;
2679   }
2680   if (Invert) {
2681     SDValue Mask =
2682       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2683     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2684   }
2685   return Cmp;
2686 }
2687 
2688 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2689                                           SelectionDAG &DAG) const {
2690   SDValue CmpOp0   = Op.getOperand(0);
2691   SDValue CmpOp1   = Op.getOperand(1);
2692   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2693   SDLoc DL(Op);
2694   EVT VT = Op.getValueType();
2695   if (VT.isVector())
2696     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2697 
2698   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2699   SDValue CCReg = emitCmp(DAG, DL, C);
2700   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2701 }
2702 
2703 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2704   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2705   SDValue CmpOp0   = Op.getOperand(2);
2706   SDValue CmpOp1   = Op.getOperand(3);
2707   SDValue Dest     = Op.getOperand(4);
2708   SDLoc DL(Op);
2709 
2710   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2711   SDValue CCReg = emitCmp(DAG, DL, C);
2712   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2713                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2714                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2715 }
2716 
2717 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2718 // allowing Pos and Neg to be wider than CmpOp.
2719 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2720   return (Neg.getOpcode() == ISD::SUB &&
2721           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2722           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2723           Neg.getOperand(1) == Pos &&
2724           (Pos == CmpOp ||
2725            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2726             Pos.getOperand(0) == CmpOp)));
2727 }
2728 
2729 // Return the absolute or negative absolute of Op; IsNegative decides which.
2730 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2731                            bool IsNegative) {
2732   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2733   if (IsNegative)
2734     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2735                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2736   return Op;
2737 }
2738 
2739 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2740                                               SelectionDAG &DAG) const {
2741   SDValue CmpOp0   = Op.getOperand(0);
2742   SDValue CmpOp1   = Op.getOperand(1);
2743   SDValue TrueOp   = Op.getOperand(2);
2744   SDValue FalseOp  = Op.getOperand(3);
2745   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2746   SDLoc DL(Op);
2747 
2748   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2749 
2750   // Check for absolute and negative-absolute selections, including those
2751   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2752   // This check supplements the one in DAGCombiner.
2753   if (C.Opcode == SystemZISD::ICMP &&
2754       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2755       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2756       C.Op1.getOpcode() == ISD::Constant &&
2757       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2758     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2759       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2760     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2761       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2762   }
2763 
2764   SDValue CCReg = emitCmp(DAG, DL, C);
2765   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2766                    DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2767 
2768   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2769 }
2770 
2771 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2772                                                   SelectionDAG &DAG) const {
2773   SDLoc DL(Node);
2774   const GlobalValue *GV = Node->getGlobal();
2775   int64_t Offset = Node->getOffset();
2776   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2777   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2778 
2779   SDValue Result;
2780   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2781     // Assign anchors at 1<<12 byte boundaries.
2782     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2783     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2784     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2785 
2786     // The offset can be folded into the address if it is aligned to a halfword.
2787     Offset -= Anchor;
2788     if (Offset != 0 && (Offset & 1) == 0) {
2789       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2790       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2791       Offset = 0;
2792     }
2793   } else {
2794     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2795     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2796     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2797                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2798   }
2799 
2800   // If there was a non-zero offset that we didn't fold, create an explicit
2801   // addition for it.
2802   if (Offset != 0)
2803     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2804                          DAG.getConstant(Offset, DL, PtrVT));
2805 
2806   return Result;
2807 }
2808 
2809 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2810                                                  SelectionDAG &DAG,
2811                                                  unsigned Opcode,
2812                                                  SDValue GOTOffset) const {
2813   SDLoc DL(Node);
2814   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2815   SDValue Chain = DAG.getEntryNode();
2816   SDValue Glue;
2817 
2818   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2819   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2820   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2821   Glue = Chain.getValue(1);
2822   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2823   Glue = Chain.getValue(1);
2824 
2825   // The first call operand is the chain and the second is the TLS symbol.
2826   SmallVector<SDValue, 8> Ops;
2827   Ops.push_back(Chain);
2828   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2829                                            Node->getValueType(0),
2830                                            0, 0));
2831 
2832   // Add argument registers to the end of the list so that they are
2833   // known live into the call.
2834   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2835   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2836 
2837   // Add a register mask operand representing the call-preserved registers.
2838   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2839   const uint32_t *Mask =
2840       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2841   assert(Mask && "Missing call preserved mask for calling convention");
2842   Ops.push_back(DAG.getRegisterMask(Mask));
2843 
2844   // Glue the call to the argument copies.
2845   Ops.push_back(Glue);
2846 
2847   // Emit the call.
2848   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2849   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2850   Glue = Chain.getValue(1);
2851 
2852   // Copy the return value from %r2.
2853   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2854 }
2855 
2856 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2857                                                   SelectionDAG &DAG) const {
2858   SDValue Chain = DAG.getEntryNode();
2859   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2860 
2861   // The high part of the thread pointer is in access register 0.
2862   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2863   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2864 
2865   // The low part of the thread pointer is in access register 1.
2866   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2867   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2868 
2869   // Merge them into a single 64-bit address.
2870   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2871                                     DAG.getConstant(32, DL, PtrVT));
2872   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2873 }
2874 
2875 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2876                                                      SelectionDAG &DAG) const {
2877   if (DAG.getTarget().useEmulatedTLS())
2878     return LowerToTLSEmulatedModel(Node, DAG);
2879   SDLoc DL(Node);
2880   const GlobalValue *GV = Node->getGlobal();
2881   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2882   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2883 
2884   SDValue TP = lowerThreadPointer(DL, DAG);
2885 
2886   // Get the offset of GA from the thread pointer, based on the TLS model.
2887   SDValue Offset;
2888   switch (model) {
2889     case TLSModel::GeneralDynamic: {
2890       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2891       SystemZConstantPoolValue *CPV =
2892         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2893 
2894       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2895       Offset = DAG.getLoad(
2896           PtrVT, DL, DAG.getEntryNode(), Offset,
2897           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2898 
2899       // Call __tls_get_offset to retrieve the offset.
2900       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2901       break;
2902     }
2903 
2904     case TLSModel::LocalDynamic: {
2905       // Load the GOT offset of the module ID.
2906       SystemZConstantPoolValue *CPV =
2907         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2908 
2909       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2910       Offset = DAG.getLoad(
2911           PtrVT, DL, DAG.getEntryNode(), Offset,
2912           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2913 
2914       // Call __tls_get_offset to retrieve the module base offset.
2915       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2916 
2917       // Note: The SystemZLDCleanupPass will remove redundant computations
2918       // of the module base offset.  Count total number of local-dynamic
2919       // accesses to trigger execution of that pass.
2920       SystemZMachineFunctionInfo* MFI =
2921         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2922       MFI->incNumLocalDynamicTLSAccesses();
2923 
2924       // Add the per-symbol offset.
2925       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2926 
2927       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2928       DTPOffset = DAG.getLoad(
2929           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2930           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2931 
2932       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2933       break;
2934     }
2935 
2936     case TLSModel::InitialExec: {
2937       // Load the offset from the GOT.
2938       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2939                                           SystemZII::MO_INDNTPOFF);
2940       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2941       Offset =
2942           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2943                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2944       break;
2945     }
2946 
2947     case TLSModel::LocalExec: {
2948       // Force the offset into the constant pool and load it from there.
2949       SystemZConstantPoolValue *CPV =
2950         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2951 
2952       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2953       Offset = DAG.getLoad(
2954           PtrVT, DL, DAG.getEntryNode(), Offset,
2955           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2956       break;
2957     }
2958   }
2959 
2960   // Add the base and offset together.
2961   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2962 }
2963 
2964 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2965                                                  SelectionDAG &DAG) const {
2966   SDLoc DL(Node);
2967   const BlockAddress *BA = Node->getBlockAddress();
2968   int64_t Offset = Node->getOffset();
2969   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2970 
2971   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2972   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2973   return Result;
2974 }
2975 
2976 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2977                                               SelectionDAG &DAG) const {
2978   SDLoc DL(JT);
2979   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2980   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2981 
2982   // Use LARL to load the address of the table.
2983   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2984 }
2985 
2986 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2987                                                  SelectionDAG &DAG) const {
2988   SDLoc DL(CP);
2989   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2990 
2991   SDValue Result;
2992   if (CP->isMachineConstantPoolEntry())
2993     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2994                                        CP->getAlignment());
2995   else
2996     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2997                                        CP->getAlignment(), CP->getOffset());
2998 
2999   // Use LARL to load the address of the constant pool entry.
3000   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3001 }
3002 
3003 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3004                                               SelectionDAG &DAG) const {
3005   MachineFunction &MF = DAG.getMachineFunction();
3006   MachineFrameInfo &MFI = MF.getFrameInfo();
3007   MFI.setFrameAddressIsTaken(true);
3008 
3009   SDLoc DL(Op);
3010   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3011   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3012 
3013   // If the back chain frame index has not been allocated yet, do so.
3014   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
3015   int BackChainIdx = FI->getFramePointerSaveIndex();
3016   if (!BackChainIdx) {
3017     // By definition, the frame address is the address of the back chain.
3018     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
3019     FI->setFramePointerSaveIndex(BackChainIdx);
3020   }
3021   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3022 
3023   // FIXME The frontend should detect this case.
3024   if (Depth > 0) {
3025     report_fatal_error("Unsupported stack frame traversal count");
3026   }
3027 
3028   return BackChain;
3029 }
3030 
3031 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3032                                                SelectionDAG &DAG) const {
3033   MachineFunction &MF = DAG.getMachineFunction();
3034   MachineFrameInfo &MFI = MF.getFrameInfo();
3035   MFI.setReturnAddressIsTaken(true);
3036 
3037   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3038     return SDValue();
3039 
3040   SDLoc DL(Op);
3041   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3042   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3043 
3044   // FIXME The frontend should detect this case.
3045   if (Depth > 0) {
3046     report_fatal_error("Unsupported stack frame traversal count");
3047   }
3048 
3049   // Return R14D, which has the return address. Mark it an implicit live-in.
3050   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3051   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3052 }
3053 
3054 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3055                                             SelectionDAG &DAG) const {
3056   SDLoc DL(Op);
3057   SDValue In = Op.getOperand(0);
3058   EVT InVT = In.getValueType();
3059   EVT ResVT = Op.getValueType();
3060 
3061   // Convert loads directly.  This is normally done by DAGCombiner,
3062   // but we need this case for bitcasts that are created during lowering
3063   // and which are then lowered themselves.
3064   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3065     if (ISD::isNormalLoad(LoadN)) {
3066       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3067                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3068       // Update the chain uses.
3069       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3070       return NewLoad;
3071     }
3072 
3073   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3074     SDValue In64;
3075     if (Subtarget.hasHighWord()) {
3076       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3077                                        MVT::i64);
3078       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3079                                        MVT::i64, SDValue(U64, 0), In);
3080     } else {
3081       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3082       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3083                          DAG.getConstant(32, DL, MVT::i64));
3084     }
3085     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3086     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3087                                       DL, MVT::f32, Out64);
3088   }
3089   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3090     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3091     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3092                                              MVT::f64, SDValue(U64, 0), In);
3093     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3094     if (Subtarget.hasHighWord())
3095       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3096                                         MVT::i32, Out64);
3097     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3098                                 DAG.getConstant(32, DL, MVT::i64));
3099     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3100   }
3101   llvm_unreachable("Unexpected bitcast combination");
3102 }
3103 
3104 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3105                                             SelectionDAG &DAG) const {
3106   MachineFunction &MF = DAG.getMachineFunction();
3107   SystemZMachineFunctionInfo *FuncInfo =
3108     MF.getInfo<SystemZMachineFunctionInfo>();
3109   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3110 
3111   SDValue Chain   = Op.getOperand(0);
3112   SDValue Addr    = Op.getOperand(1);
3113   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3114   SDLoc DL(Op);
3115 
3116   // The initial values of each field.
3117   const unsigned NumFields = 4;
3118   SDValue Fields[NumFields] = {
3119     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3120     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3121     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3122     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3123   };
3124 
3125   // Store each field into its respective slot.
3126   SDValue MemOps[NumFields];
3127   unsigned Offset = 0;
3128   for (unsigned I = 0; I < NumFields; ++I) {
3129     SDValue FieldAddr = Addr;
3130     if (Offset != 0)
3131       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3132                               DAG.getIntPtrConstant(Offset, DL));
3133     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3134                              MachinePointerInfo(SV, Offset));
3135     Offset += 8;
3136   }
3137   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3138 }
3139 
3140 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3141                                            SelectionDAG &DAG) const {
3142   SDValue Chain      = Op.getOperand(0);
3143   SDValue DstPtr     = Op.getOperand(1);
3144   SDValue SrcPtr     = Op.getOperand(2);
3145   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3146   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3147   SDLoc DL(Op);
3148 
3149   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3150                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3151                        /*isTailCall*/false,
3152                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3153 }
3154 
3155 SDValue SystemZTargetLowering::
3156 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3157   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3158   MachineFunction &MF = DAG.getMachineFunction();
3159   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3160   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3161 
3162   SDValue Chain = Op.getOperand(0);
3163   SDValue Size  = Op.getOperand(1);
3164   SDValue Align = Op.getOperand(2);
3165   SDLoc DL(Op);
3166 
3167   // If user has set the no alignment function attribute, ignore
3168   // alloca alignments.
3169   uint64_t AlignVal = (RealignOpt ?
3170                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3171 
3172   uint64_t StackAlign = TFI->getStackAlignment();
3173   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3174   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3175 
3176   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3177   SDValue NeededSpace = Size;
3178 
3179   // Get a reference to the stack pointer.
3180   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3181 
3182   // If we need a backchain, save it now.
3183   SDValue Backchain;
3184   if (StoreBackchain)
3185     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3186 
3187   // Add extra space for alignment if needed.
3188   if (ExtraAlignSpace)
3189     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3190                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3191 
3192   // Get the new stack pointer value.
3193   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3194 
3195   // Copy the new stack pointer back.
3196   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3197 
3198   // The allocated data lives above the 160 bytes allocated for the standard
3199   // frame, plus any outgoing stack arguments.  We don't know how much that
3200   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3201   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3202   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3203 
3204   // Dynamically realign if needed.
3205   if (RequiredAlign > StackAlign) {
3206     Result =
3207       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3208                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3209     Result =
3210       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3211                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3212   }
3213 
3214   if (StoreBackchain)
3215     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3216 
3217   SDValue Ops[2] = { Result, Chain };
3218   return DAG.getMergeValues(Ops, DL);
3219 }
3220 
3221 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3222     SDValue Op, SelectionDAG &DAG) const {
3223   SDLoc DL(Op);
3224 
3225   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3226 }
3227 
3228 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3229                                               SelectionDAG &DAG) const {
3230   EVT VT = Op.getValueType();
3231   SDLoc DL(Op);
3232   SDValue Ops[2];
3233   if (is32Bit(VT))
3234     // Just do a normal 64-bit multiplication and extract the results.
3235     // We define this so that it can be used for constant division.
3236     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3237                     Op.getOperand(1), Ops[1], Ops[0]);
3238   else if (Subtarget.hasMiscellaneousExtensions2())
3239     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3240     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3241     // return the low half first, so the results are in reverse order.
3242     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3243                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3244   else {
3245     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3246     //
3247     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3248     //
3249     // but using the fact that the upper halves are either all zeros
3250     // or all ones:
3251     //
3252     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3253     //
3254     // and grouping the right terms together since they are quicker than the
3255     // multiplication:
3256     //
3257     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3258     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3259     SDValue LL = Op.getOperand(0);
3260     SDValue RL = Op.getOperand(1);
3261     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3262     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3263     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3264     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3265     // return the low half first, so the results are in reverse order.
3266     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3267                      LL, RL, Ops[1], Ops[0]);
3268     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3269     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3270     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3271     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3272   }
3273   return DAG.getMergeValues(Ops, DL);
3274 }
3275 
3276 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3277                                               SelectionDAG &DAG) const {
3278   EVT VT = Op.getValueType();
3279   SDLoc DL(Op);
3280   SDValue Ops[2];
3281   if (is32Bit(VT))
3282     // Just do a normal 64-bit multiplication and extract the results.
3283     // We define this so that it can be used for constant division.
3284     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3285                     Op.getOperand(1), Ops[1], Ops[0]);
3286   else
3287     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3288     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3289     // return the low half first, so the results are in reverse order.
3290     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3291                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3292   return DAG.getMergeValues(Ops, DL);
3293 }
3294 
3295 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3296                                             SelectionDAG &DAG) const {
3297   SDValue Op0 = Op.getOperand(0);
3298   SDValue Op1 = Op.getOperand(1);
3299   EVT VT = Op.getValueType();
3300   SDLoc DL(Op);
3301 
3302   // We use DSGF for 32-bit division.  This means the first operand must
3303   // always be 64-bit, and the second operand should be 32-bit whenever
3304   // that is possible, to improve performance.
3305   if (is32Bit(VT))
3306     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3307   else if (DAG.ComputeNumSignBits(Op1) > 32)
3308     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3309 
3310   // DSG(F) returns the remainder in the even register and the
3311   // quotient in the odd register.
3312   SDValue Ops[2];
3313   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3314   return DAG.getMergeValues(Ops, DL);
3315 }
3316 
3317 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3318                                             SelectionDAG &DAG) const {
3319   EVT VT = Op.getValueType();
3320   SDLoc DL(Op);
3321 
3322   // DL(G) returns the remainder in the even register and the
3323   // quotient in the odd register.
3324   SDValue Ops[2];
3325   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3326                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3327   return DAG.getMergeValues(Ops, DL);
3328 }
3329 
3330 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3331   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3332 
3333   // Get the known-zero masks for each operand.
3334   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3335   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3336                         DAG.computeKnownBits(Ops[1])};
3337 
3338   // See if the upper 32 bits of one operand and the lower 32 bits of the
3339   // other are known zero.  They are the low and high operands respectively.
3340   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3341                        Known[1].Zero.getZExtValue() };
3342   unsigned High, Low;
3343   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3344     High = 1, Low = 0;
3345   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3346     High = 0, Low = 1;
3347   else
3348     return Op;
3349 
3350   SDValue LowOp = Ops[Low];
3351   SDValue HighOp = Ops[High];
3352 
3353   // If the high part is a constant, we're better off using IILH.
3354   if (HighOp.getOpcode() == ISD::Constant)
3355     return Op;
3356 
3357   // If the low part is a constant that is outside the range of LHI,
3358   // then we're better off using IILF.
3359   if (LowOp.getOpcode() == ISD::Constant) {
3360     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3361     if (!isInt<16>(Value))
3362       return Op;
3363   }
3364 
3365   // Check whether the high part is an AND that doesn't change the
3366   // high 32 bits and just masks out low bits.  We can skip it if so.
3367   if (HighOp.getOpcode() == ISD::AND &&
3368       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3369     SDValue HighOp0 = HighOp.getOperand(0);
3370     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3371     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3372       HighOp = HighOp0;
3373   }
3374 
3375   // Take advantage of the fact that all GR32 operations only change the
3376   // low 32 bits by truncating Low to an i32 and inserting it directly
3377   // using a subreg.  The interesting cases are those where the truncation
3378   // can be folded.
3379   SDLoc DL(Op);
3380   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3381   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3382                                    MVT::i64, HighOp, Low32);
3383 }
3384 
3385 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3386 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3387                                           SelectionDAG &DAG) const {
3388   SDNode *N = Op.getNode();
3389   SDValue LHS = N->getOperand(0);
3390   SDValue RHS = N->getOperand(1);
3391   SDLoc DL(N);
3392   unsigned BaseOp = 0;
3393   unsigned CCValid = 0;
3394   unsigned CCMask = 0;
3395 
3396   switch (Op.getOpcode()) {
3397   default: llvm_unreachable("Unknown instruction!");
3398   case ISD::SADDO:
3399     BaseOp = SystemZISD::SADDO;
3400     CCValid = SystemZ::CCMASK_ARITH;
3401     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3402     break;
3403   case ISD::SSUBO:
3404     BaseOp = SystemZISD::SSUBO;
3405     CCValid = SystemZ::CCMASK_ARITH;
3406     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3407     break;
3408   case ISD::UADDO:
3409     BaseOp = SystemZISD::UADDO;
3410     CCValid = SystemZ::CCMASK_LOGICAL;
3411     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3412     break;
3413   case ISD::USUBO:
3414     BaseOp = SystemZISD::USUBO;
3415     CCValid = SystemZ::CCMASK_LOGICAL;
3416     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3417     break;
3418   }
3419 
3420   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3421   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3422 
3423   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3424   if (N->getValueType(1) == MVT::i1)
3425     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3426 
3427   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3428 }
3429 
3430 // Lower ADDCARRY/SUBCARRY nodes.
3431 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3432                                                 SelectionDAG &DAG) const {
3433 
3434   SDNode *N = Op.getNode();
3435   MVT VT = N->getSimpleValueType(0);
3436 
3437   // Let legalize expand this if it isn't a legal type yet.
3438   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3439     return SDValue();
3440 
3441   SDValue LHS = N->getOperand(0);
3442   SDValue RHS = N->getOperand(1);
3443   SDValue Carry = Op.getOperand(2);
3444   SDLoc DL(N);
3445   unsigned BaseOp = 0;
3446   unsigned CCValid = 0;
3447   unsigned CCMask = 0;
3448 
3449   switch (Op.getOpcode()) {
3450   default: llvm_unreachable("Unknown instruction!");
3451   case ISD::ADDCARRY:
3452     BaseOp = SystemZISD::ADDCARRY;
3453     CCValid = SystemZ::CCMASK_LOGICAL;
3454     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3455     break;
3456   case ISD::SUBCARRY:
3457     BaseOp = SystemZISD::SUBCARRY;
3458     CCValid = SystemZ::CCMASK_LOGICAL;
3459     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3460     break;
3461   }
3462 
3463   // Set the condition code from the carry flag.
3464   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3465                       DAG.getConstant(CCValid, DL, MVT::i32),
3466                       DAG.getConstant(CCMask, DL, MVT::i32));
3467 
3468   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3469   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3470 
3471   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3472   if (N->getValueType(1) == MVT::i1)
3473     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3474 
3475   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3476 }
3477 
3478 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3479                                           SelectionDAG &DAG) const {
3480   EVT VT = Op.getValueType();
3481   SDLoc DL(Op);
3482   Op = Op.getOperand(0);
3483 
3484   // Handle vector types via VPOPCT.
3485   if (VT.isVector()) {
3486     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3487     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3488     switch (VT.getScalarSizeInBits()) {
3489     case 8:
3490       break;
3491     case 16: {
3492       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3493       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3494       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3495       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3496       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3497       break;
3498     }
3499     case 32: {
3500       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3501                                             DAG.getConstant(0, DL, MVT::i32));
3502       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3503       break;
3504     }
3505     case 64: {
3506       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3507                                             DAG.getConstant(0, DL, MVT::i32));
3508       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3509       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3510       break;
3511     }
3512     default:
3513       llvm_unreachable("Unexpected type");
3514     }
3515     return Op;
3516   }
3517 
3518   // Get the known-zero mask for the operand.
3519   KnownBits Known = DAG.computeKnownBits(Op);
3520   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3521   if (NumSignificantBits == 0)
3522     return DAG.getConstant(0, DL, VT);
3523 
3524   // Skip known-zero high parts of the operand.
3525   int64_t OrigBitSize = VT.getSizeInBits();
3526   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3527   BitSize = std::min(BitSize, OrigBitSize);
3528 
3529   // The POPCNT instruction counts the number of bits in each byte.
3530   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3531   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3532   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3533 
3534   // Add up per-byte counts in a binary tree.  All bits of Op at
3535   // position larger than BitSize remain zero throughout.
3536   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3537     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3538     if (BitSize != OrigBitSize)
3539       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3540                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3541     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3542   }
3543 
3544   // Extract overall result from high byte.
3545   if (BitSize > 8)
3546     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3547                      DAG.getConstant(BitSize - 8, DL, VT));
3548 
3549   return Op;
3550 }
3551 
3552 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3553                                                  SelectionDAG &DAG) const {
3554   SDLoc DL(Op);
3555   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3556     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3557   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3558     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3559 
3560   // The only fence that needs an instruction is a sequentially-consistent
3561   // cross-thread fence.
3562   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3563       FenceSSID == SyncScope::System) {
3564     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3565                                       Op.getOperand(0)),
3566                    0);
3567   }
3568 
3569   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3570   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3571 }
3572 
3573 // Op is an atomic load.  Lower it into a normal volatile load.
3574 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3575                                                 SelectionDAG &DAG) const {
3576   auto *Node = cast<AtomicSDNode>(Op.getNode());
3577   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3578                         Node->getChain(), Node->getBasePtr(),
3579                         Node->getMemoryVT(), Node->getMemOperand());
3580 }
3581 
3582 // Op is an atomic store.  Lower it into a normal volatile store.
3583 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3584                                                  SelectionDAG &DAG) const {
3585   auto *Node = cast<AtomicSDNode>(Op.getNode());
3586   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3587                                     Node->getBasePtr(), Node->getMemoryVT(),
3588                                     Node->getMemOperand());
3589   // We have to enforce sequential consistency by performing a
3590   // serialization operation after the store.
3591   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3592     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3593                                        MVT::Other, Chain), 0);
3594   return Chain;
3595 }
3596 
3597 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3598 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3599 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3600                                                    SelectionDAG &DAG,
3601                                                    unsigned Opcode) const {
3602   auto *Node = cast<AtomicSDNode>(Op.getNode());
3603 
3604   // 32-bit operations need no code outside the main loop.
3605   EVT NarrowVT = Node->getMemoryVT();
3606   EVT WideVT = MVT::i32;
3607   if (NarrowVT == WideVT)
3608     return Op;
3609 
3610   int64_t BitSize = NarrowVT.getSizeInBits();
3611   SDValue ChainIn = Node->getChain();
3612   SDValue Addr = Node->getBasePtr();
3613   SDValue Src2 = Node->getVal();
3614   MachineMemOperand *MMO = Node->getMemOperand();
3615   SDLoc DL(Node);
3616   EVT PtrVT = Addr.getValueType();
3617 
3618   // Convert atomic subtracts of constants into additions.
3619   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3620     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3621       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3622       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3623     }
3624 
3625   // Get the address of the containing word.
3626   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3627                                     DAG.getConstant(-4, DL, PtrVT));
3628 
3629   // Get the number of bits that the word must be rotated left in order
3630   // to bring the field to the top bits of a GR32.
3631   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3632                                  DAG.getConstant(3, DL, PtrVT));
3633   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3634 
3635   // Get the complementing shift amount, for rotating a field in the top
3636   // bits back to its proper position.
3637   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3638                                     DAG.getConstant(0, DL, WideVT), BitShift);
3639 
3640   // Extend the source operand to 32 bits and prepare it for the inner loop.
3641   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3642   // operations require the source to be shifted in advance.  (This shift
3643   // can be folded if the source is constant.)  For AND and NAND, the lower
3644   // bits must be set, while for other opcodes they should be left clear.
3645   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3646     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3647                        DAG.getConstant(32 - BitSize, DL, WideVT));
3648   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3649       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3650     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3651                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3652 
3653   // Construct the ATOMIC_LOADW_* node.
3654   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3655   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3656                     DAG.getConstant(BitSize, DL, WideVT) };
3657   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3658                                              NarrowVT, MMO);
3659 
3660   // Rotate the result of the final CS so that the field is in the lower
3661   // bits of a GR32, then truncate it.
3662   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3663                                     DAG.getConstant(BitSize, DL, WideVT));
3664   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3665 
3666   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3667   return DAG.getMergeValues(RetOps, DL);
3668 }
3669 
3670 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3671 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3672 // operations into additions.
3673 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3674                                                     SelectionDAG &DAG) const {
3675   auto *Node = cast<AtomicSDNode>(Op.getNode());
3676   EVT MemVT = Node->getMemoryVT();
3677   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3678     // A full-width operation.
3679     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3680     SDValue Src2 = Node->getVal();
3681     SDValue NegSrc2;
3682     SDLoc DL(Src2);
3683 
3684     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3685       // Use an addition if the operand is constant and either LAA(G) is
3686       // available or the negative value is in the range of A(G)FHI.
3687       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3688       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3689         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3690     } else if (Subtarget.hasInterlockedAccess1())
3691       // Use LAA(G) if available.
3692       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3693                             Src2);
3694 
3695     if (NegSrc2.getNode())
3696       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3697                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3698                            Node->getMemOperand());
3699 
3700     // Use the node as-is.
3701     return Op;
3702   }
3703 
3704   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3705 }
3706 
3707 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3708 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3709                                                     SelectionDAG &DAG) const {
3710   auto *Node = cast<AtomicSDNode>(Op.getNode());
3711   SDValue ChainIn = Node->getOperand(0);
3712   SDValue Addr = Node->getOperand(1);
3713   SDValue CmpVal = Node->getOperand(2);
3714   SDValue SwapVal = Node->getOperand(3);
3715   MachineMemOperand *MMO = Node->getMemOperand();
3716   SDLoc DL(Node);
3717 
3718   // We have native support for 32-bit and 64-bit compare and swap, but we
3719   // still need to expand extracting the "success" result from the CC.
3720   EVT NarrowVT = Node->getMemoryVT();
3721   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3722   if (NarrowVT == WideVT) {
3723     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3724     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3725     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3726                                                DL, Tys, Ops, NarrowVT, MMO);
3727     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3728                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3729 
3730     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3731     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3732     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3733     return SDValue();
3734   }
3735 
3736   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3737   // via a fullword ATOMIC_CMP_SWAPW operation.
3738   int64_t BitSize = NarrowVT.getSizeInBits();
3739   EVT PtrVT = Addr.getValueType();
3740 
3741   // Get the address of the containing word.
3742   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3743                                     DAG.getConstant(-4, DL, PtrVT));
3744 
3745   // Get the number of bits that the word must be rotated left in order
3746   // to bring the field to the top bits of a GR32.
3747   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3748                                  DAG.getConstant(3, DL, PtrVT));
3749   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3750 
3751   // Get the complementing shift amount, for rotating a field in the top
3752   // bits back to its proper position.
3753   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3754                                     DAG.getConstant(0, DL, WideVT), BitShift);
3755 
3756   // Construct the ATOMIC_CMP_SWAPW node.
3757   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3758   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3759                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3760   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3761                                              VTList, Ops, NarrowVT, MMO);
3762   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3763                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3764 
3765   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3766   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3767   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3768   return SDValue();
3769 }
3770 
3771 MachineMemOperand::Flags
3772 SystemZTargetLowering::getMMOFlags(const Instruction &I) const {
3773   // Because of how we convert atomic_load and atomic_store to normal loads and
3774   // stores in the DAG, we need to ensure that the MMOs are marked volatile
3775   // since DAGCombine hasn't been updated to account for atomic, but non
3776   // volatile loads.  (See D57601)
3777   if (auto *SI = dyn_cast<StoreInst>(&I))
3778     if (SI->isAtomic())
3779       return MachineMemOperand::MOVolatile;
3780   if (auto *LI = dyn_cast<LoadInst>(&I))
3781     if (LI->isAtomic())
3782       return MachineMemOperand::MOVolatile;
3783   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
3784     if (AI->isAtomic())
3785       return MachineMemOperand::MOVolatile;
3786   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
3787     if (AI->isAtomic())
3788       return MachineMemOperand::MOVolatile;
3789   return MachineMemOperand::MONone;
3790 }
3791 
3792 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3793                                               SelectionDAG &DAG) const {
3794   MachineFunction &MF = DAG.getMachineFunction();
3795   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3796   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3797                             SystemZ::R15D, Op.getValueType());
3798 }
3799 
3800 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3801                                                  SelectionDAG &DAG) const {
3802   MachineFunction &MF = DAG.getMachineFunction();
3803   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3804   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3805 
3806   SDValue Chain = Op.getOperand(0);
3807   SDValue NewSP = Op.getOperand(1);
3808   SDValue Backchain;
3809   SDLoc DL(Op);
3810 
3811   if (StoreBackchain) {
3812     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3813     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3814   }
3815 
3816   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3817 
3818   if (StoreBackchain)
3819     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3820 
3821   return Chain;
3822 }
3823 
3824 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3825                                              SelectionDAG &DAG) const {
3826   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3827   if (!IsData)
3828     // Just preserve the chain.
3829     return Op.getOperand(0);
3830 
3831   SDLoc DL(Op);
3832   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3833   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3834   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3835   SDValue Ops[] = {
3836     Op.getOperand(0),
3837     DAG.getConstant(Code, DL, MVT::i32),
3838     Op.getOperand(1)
3839   };
3840   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3841                                  Node->getVTList(), Ops,
3842                                  Node->getMemoryVT(), Node->getMemOperand());
3843 }
3844 
3845 // Convert condition code in CCReg to an i32 value.
3846 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3847   SDLoc DL(CCReg);
3848   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3849   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3850                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3851 }
3852 
3853 SDValue
3854 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3855                                               SelectionDAG &DAG) const {
3856   unsigned Opcode, CCValid;
3857   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3858     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3859     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3860     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3861     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3862     return SDValue();
3863   }
3864 
3865   return SDValue();
3866 }
3867 
3868 SDValue
3869 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3870                                                SelectionDAG &DAG) const {
3871   unsigned Opcode, CCValid;
3872   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3873     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3874     if (Op->getNumValues() == 1)
3875       return getCCResult(DAG, SDValue(Node, 0));
3876     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3877     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3878                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3879   }
3880 
3881   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3882   switch (Id) {
3883   case Intrinsic::thread_pointer:
3884     return lowerThreadPointer(SDLoc(Op), DAG);
3885 
3886   case Intrinsic::s390_vpdi:
3887     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3888                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3889 
3890   case Intrinsic::s390_vperm:
3891     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3892                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3893 
3894   case Intrinsic::s390_vuphb:
3895   case Intrinsic::s390_vuphh:
3896   case Intrinsic::s390_vuphf:
3897     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3898                        Op.getOperand(1));
3899 
3900   case Intrinsic::s390_vuplhb:
3901   case Intrinsic::s390_vuplhh:
3902   case Intrinsic::s390_vuplhf:
3903     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3904                        Op.getOperand(1));
3905 
3906   case Intrinsic::s390_vuplb:
3907   case Intrinsic::s390_vuplhw:
3908   case Intrinsic::s390_vuplf:
3909     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3910                        Op.getOperand(1));
3911 
3912   case Intrinsic::s390_vupllb:
3913   case Intrinsic::s390_vupllh:
3914   case Intrinsic::s390_vupllf:
3915     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3916                        Op.getOperand(1));
3917 
3918   case Intrinsic::s390_vsumb:
3919   case Intrinsic::s390_vsumh:
3920   case Intrinsic::s390_vsumgh:
3921   case Intrinsic::s390_vsumgf:
3922   case Intrinsic::s390_vsumqf:
3923   case Intrinsic::s390_vsumqg:
3924     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3925                        Op.getOperand(1), Op.getOperand(2));
3926   }
3927 
3928   return SDValue();
3929 }
3930 
3931 namespace {
3932 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3933 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3934 // Operand is the constant third operand, otherwise it is the number of
3935 // bytes in each element of the result.
3936 struct Permute {
3937   unsigned Opcode;
3938   unsigned Operand;
3939   unsigned char Bytes[SystemZ::VectorBytes];
3940 };
3941 }
3942 
3943 static const Permute PermuteForms[] = {
3944   // VMRHG
3945   { SystemZISD::MERGE_HIGH, 8,
3946     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3947   // VMRHF
3948   { SystemZISD::MERGE_HIGH, 4,
3949     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3950   // VMRHH
3951   { SystemZISD::MERGE_HIGH, 2,
3952     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3953   // VMRHB
3954   { SystemZISD::MERGE_HIGH, 1,
3955     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3956   // VMRLG
3957   { SystemZISD::MERGE_LOW, 8,
3958     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3959   // VMRLF
3960   { SystemZISD::MERGE_LOW, 4,
3961     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3962   // VMRLH
3963   { SystemZISD::MERGE_LOW, 2,
3964     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3965   // VMRLB
3966   { SystemZISD::MERGE_LOW, 1,
3967     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3968   // VPKG
3969   { SystemZISD::PACK, 4,
3970     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3971   // VPKF
3972   { SystemZISD::PACK, 2,
3973     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3974   // VPKH
3975   { SystemZISD::PACK, 1,
3976     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3977   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3978   { SystemZISD::PERMUTE_DWORDS, 4,
3979     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3980   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3981   { SystemZISD::PERMUTE_DWORDS, 1,
3982     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3983 };
3984 
3985 // Called after matching a vector shuffle against a particular pattern.
3986 // Both the original shuffle and the pattern have two vector operands.
3987 // OpNos[0] is the operand of the original shuffle that should be used for
3988 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3989 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3990 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3991 // for operands 0 and 1 of the pattern.
3992 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3993   if (OpNos[0] < 0) {
3994     if (OpNos[1] < 0)
3995       return false;
3996     OpNo0 = OpNo1 = OpNos[1];
3997   } else if (OpNos[1] < 0) {
3998     OpNo0 = OpNo1 = OpNos[0];
3999   } else {
4000     OpNo0 = OpNos[0];
4001     OpNo1 = OpNos[1];
4002   }
4003   return true;
4004 }
4005 
4006 // Bytes is a VPERM-like permute vector, except that -1 is used for
4007 // undefined bytes.  Return true if the VPERM can be implemented using P.
4008 // When returning true set OpNo0 to the VPERM operand that should be
4009 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4010 //
4011 // For example, if swapping the VPERM operands allows P to match, OpNo0
4012 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4013 // operand, but rewriting it to use two duplicated operands allows it to
4014 // match P, then OpNo0 and OpNo1 will be the same.
4015 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4016                          unsigned &OpNo0, unsigned &OpNo1) {
4017   int OpNos[] = { -1, -1 };
4018   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4019     int Elt = Bytes[I];
4020     if (Elt >= 0) {
4021       // Make sure that the two permute vectors use the same suboperand
4022       // byte number.  Only the operand numbers (the high bits) are
4023       // allowed to differ.
4024       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4025         return false;
4026       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4027       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4028       // Make sure that the operand mappings are consistent with previous
4029       // elements.
4030       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4031         return false;
4032       OpNos[ModelOpNo] = RealOpNo;
4033     }
4034   }
4035   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4036 }
4037 
4038 // As above, but search for a matching permute.
4039 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4040                                    unsigned &OpNo0, unsigned &OpNo1) {
4041   for (auto &P : PermuteForms)
4042     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4043       return &P;
4044   return nullptr;
4045 }
4046 
4047 // Bytes is a VPERM-like permute vector, except that -1 is used for
4048 // undefined bytes.  This permute is an operand of an outer permute.
4049 // See whether redistributing the -1 bytes gives a shuffle that can be
4050 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4051 // that, when applied to the result of P, gives the original permute in Bytes.
4052 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4053                                const Permute &P,
4054                                SmallVectorImpl<int> &Transform) {
4055   unsigned To = 0;
4056   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4057     int Elt = Bytes[From];
4058     if (Elt < 0)
4059       // Byte number From of the result is undefined.
4060       Transform[From] = -1;
4061     else {
4062       while (P.Bytes[To] != Elt) {
4063         To += 1;
4064         if (To == SystemZ::VectorBytes)
4065           return false;
4066       }
4067       Transform[From] = To;
4068     }
4069   }
4070   return true;
4071 }
4072 
4073 // As above, but search for a matching permute.
4074 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4075                                          SmallVectorImpl<int> &Transform) {
4076   for (auto &P : PermuteForms)
4077     if (matchDoublePermute(Bytes, P, Transform))
4078       return &P;
4079   return nullptr;
4080 }
4081 
4082 // Convert the mask of the given shuffle op into a byte-level mask,
4083 // as if it had type vNi8.
4084 static bool getVPermMask(SDValue ShuffleOp,
4085                          SmallVectorImpl<int> &Bytes) {
4086   EVT VT = ShuffleOp.getValueType();
4087   unsigned NumElements = VT.getVectorNumElements();
4088   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4089 
4090   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4091     Bytes.resize(NumElements * BytesPerElement, -1);
4092     for (unsigned I = 0; I < NumElements; ++I) {
4093       int Index = VSN->getMaskElt(I);
4094       if (Index >= 0)
4095         for (unsigned J = 0; J < BytesPerElement; ++J)
4096           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4097     }
4098     return true;
4099   }
4100   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4101       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4102     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4103     Bytes.resize(NumElements * BytesPerElement, -1);
4104     for (unsigned I = 0; I < NumElements; ++I)
4105       for (unsigned J = 0; J < BytesPerElement; ++J)
4106         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4107     return true;
4108   }
4109   return false;
4110 }
4111 
4112 // Bytes is a VPERM-like permute vector, except that -1 is used for
4113 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4114 // the result come from a contiguous sequence of bytes from one input.
4115 // Set Base to the selector for the first byte if so.
4116 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4117                             unsigned BytesPerElement, int &Base) {
4118   Base = -1;
4119   for (unsigned I = 0; I < BytesPerElement; ++I) {
4120     if (Bytes[Start + I] >= 0) {
4121       unsigned Elem = Bytes[Start + I];
4122       if (Base < 0) {
4123         Base = Elem - I;
4124         // Make sure the bytes would come from one input operand.
4125         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4126           return false;
4127       } else if (unsigned(Base) != Elem - I)
4128         return false;
4129     }
4130   }
4131   return true;
4132 }
4133 
4134 // Bytes is a VPERM-like permute vector, except that -1 is used for
4135 // undefined bytes.  Return true if it can be performed using VSLDI.
4136 // When returning true, set StartIndex to the shift amount and OpNo0
4137 // and OpNo1 to the VPERM operands that should be used as the first
4138 // and second shift operand respectively.
4139 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4140                                unsigned &StartIndex, unsigned &OpNo0,
4141                                unsigned &OpNo1) {
4142   int OpNos[] = { -1, -1 };
4143   int Shift = -1;
4144   for (unsigned I = 0; I < 16; ++I) {
4145     int Index = Bytes[I];
4146     if (Index >= 0) {
4147       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4148       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4149       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4150       if (Shift < 0)
4151         Shift = ExpectedShift;
4152       else if (Shift != ExpectedShift)
4153         return false;
4154       // Make sure that the operand mappings are consistent with previous
4155       // elements.
4156       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4157         return false;
4158       OpNos[ModelOpNo] = RealOpNo;
4159     }
4160   }
4161   StartIndex = Shift;
4162   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4163 }
4164 
4165 // Create a node that performs P on operands Op0 and Op1, casting the
4166 // operands to the appropriate type.  The type of the result is determined by P.
4167 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4168                               const Permute &P, SDValue Op0, SDValue Op1) {
4169   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4170   // elements of a PACK are twice as wide as the outputs.
4171   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4172                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4173                       P.Operand);
4174   // Cast both operands to the appropriate type.
4175   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4176                               SystemZ::VectorBytes / InBytes);
4177   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4178   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4179   SDValue Op;
4180   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4181     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
4182     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4183   } else if (P.Opcode == SystemZISD::PACK) {
4184     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4185                                  SystemZ::VectorBytes / P.Operand);
4186     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4187   } else {
4188     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4189   }
4190   return Op;
4191 }
4192 
4193 // Bytes is a VPERM-like permute vector, except that -1 is used for
4194 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4195 // VSLDI or VPERM.
4196 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4197                                      SDValue *Ops,
4198                                      const SmallVectorImpl<int> &Bytes) {
4199   for (unsigned I = 0; I < 2; ++I)
4200     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4201 
4202   // First see whether VSLDI can be used.
4203   unsigned StartIndex, OpNo0, OpNo1;
4204   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4205     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4206                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4207 
4208   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4209   SDValue IndexNodes[SystemZ::VectorBytes];
4210   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4211     if (Bytes[I] >= 0)
4212       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4213     else
4214       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4215   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4216   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4217 }
4218 
4219 namespace {
4220 // Describes a general N-operand vector shuffle.
4221 struct GeneralShuffle {
4222   GeneralShuffle(EVT vt) : VT(vt) {}
4223   void addUndef();
4224   bool add(SDValue, unsigned);
4225   SDValue getNode(SelectionDAG &, const SDLoc &);
4226 
4227   // The operands of the shuffle.
4228   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4229 
4230   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4231   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4232   // Bytes[I] / SystemZ::VectorBytes.
4233   SmallVector<int, SystemZ::VectorBytes> Bytes;
4234 
4235   // The type of the shuffle result.
4236   EVT VT;
4237 };
4238 }
4239 
4240 // Add an extra undefined element to the shuffle.
4241 void GeneralShuffle::addUndef() {
4242   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4243   for (unsigned I = 0; I < BytesPerElement; ++I)
4244     Bytes.push_back(-1);
4245 }
4246 
4247 // Add an extra element to the shuffle, taking it from element Elem of Op.
4248 // A null Op indicates a vector input whose value will be calculated later;
4249 // there is at most one such input per shuffle and it always has the same
4250 // type as the result. Aborts and returns false if the source vector elements
4251 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4252 // LLVM they become implicitly extended, but this is rare and not optimized.
4253 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4254   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4255 
4256   // The source vector can have wider elements than the result,
4257   // either through an explicit TRUNCATE or because of type legalization.
4258   // We want the least significant part.
4259   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4260   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4261 
4262   // Return false if the source elements are smaller than their destination
4263   // elements.
4264   if (FromBytesPerElement < BytesPerElement)
4265     return false;
4266 
4267   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4268                    (FromBytesPerElement - BytesPerElement));
4269 
4270   // Look through things like shuffles and bitcasts.
4271   while (Op.getNode()) {
4272     if (Op.getOpcode() == ISD::BITCAST)
4273       Op = Op.getOperand(0);
4274     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4275       // See whether the bytes we need come from a contiguous part of one
4276       // operand.
4277       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4278       if (!getVPermMask(Op, OpBytes))
4279         break;
4280       int NewByte;
4281       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4282         break;
4283       if (NewByte < 0) {
4284         addUndef();
4285         return true;
4286       }
4287       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4288       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4289     } else if (Op.isUndef()) {
4290       addUndef();
4291       return true;
4292     } else
4293       break;
4294   }
4295 
4296   // Make sure that the source of the extraction is in Ops.
4297   unsigned OpNo = 0;
4298   for (; OpNo < Ops.size(); ++OpNo)
4299     if (Ops[OpNo] == Op)
4300       break;
4301   if (OpNo == Ops.size())
4302     Ops.push_back(Op);
4303 
4304   // Add the element to Bytes.
4305   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4306   for (unsigned I = 0; I < BytesPerElement; ++I)
4307     Bytes.push_back(Base + I);
4308 
4309   return true;
4310 }
4311 
4312 // Return SDNodes for the completed shuffle.
4313 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4314   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4315 
4316   if (Ops.size() == 0)
4317     return DAG.getUNDEF(VT);
4318 
4319   // Make sure that there are at least two shuffle operands.
4320   if (Ops.size() == 1)
4321     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4322 
4323   // Create a tree of shuffles, deferring root node until after the loop.
4324   // Try to redistribute the undefined elements of non-root nodes so that
4325   // the non-root shuffles match something like a pack or merge, then adjust
4326   // the parent node's permute vector to compensate for the new order.
4327   // Among other things, this copes with vectors like <2 x i16> that were
4328   // padded with undefined elements during type legalization.
4329   //
4330   // In the best case this redistribution will lead to the whole tree
4331   // using packs and merges.  It should rarely be a loss in other cases.
4332   unsigned Stride = 1;
4333   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4334     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4335       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4336 
4337       // Create a mask for just these two operands.
4338       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4339       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4340         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4341         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4342         if (OpNo == I)
4343           NewBytes[J] = Byte;
4344         else if (OpNo == I + Stride)
4345           NewBytes[J] = SystemZ::VectorBytes + Byte;
4346         else
4347           NewBytes[J] = -1;
4348       }
4349       // See if it would be better to reorganize NewMask to avoid using VPERM.
4350       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4351       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4352         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4353         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4354         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4355           if (NewBytes[J] >= 0) {
4356             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4357                    "Invalid double permute");
4358             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4359           } else
4360             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4361         }
4362       } else {
4363         // Just use NewBytes on the operands.
4364         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4365         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4366           if (NewBytes[J] >= 0)
4367             Bytes[J] = I * SystemZ::VectorBytes + J;
4368       }
4369     }
4370   }
4371 
4372   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4373   if (Stride > 1) {
4374     Ops[1] = Ops[Stride];
4375     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4376       if (Bytes[I] >= int(SystemZ::VectorBytes))
4377         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4378   }
4379 
4380   // Look for an instruction that can do the permute without resorting
4381   // to VPERM.
4382   unsigned OpNo0, OpNo1;
4383   SDValue Op;
4384   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4385     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4386   else
4387     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4388   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4389 }
4390 
4391 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4392 static bool isScalarToVector(SDValue Op) {
4393   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4394     if (!Op.getOperand(I).isUndef())
4395       return false;
4396   return true;
4397 }
4398 
4399 // Return a vector of type VT that contains Value in the first element.
4400 // The other elements don't matter.
4401 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4402                                    SDValue Value) {
4403   // If we have a constant, replicate it to all elements and let the
4404   // BUILD_VECTOR lowering take care of it.
4405   if (Value.getOpcode() == ISD::Constant ||
4406       Value.getOpcode() == ISD::ConstantFP) {
4407     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4408     return DAG.getBuildVector(VT, DL, Ops);
4409   }
4410   if (Value.isUndef())
4411     return DAG.getUNDEF(VT);
4412   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4413 }
4414 
4415 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4416 // element 1.  Used for cases in which replication is cheap.
4417 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4418                                  SDValue Op0, SDValue Op1) {
4419   if (Op0.isUndef()) {
4420     if (Op1.isUndef())
4421       return DAG.getUNDEF(VT);
4422     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4423   }
4424   if (Op1.isUndef())
4425     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4426   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4427                      buildScalarToVector(DAG, DL, VT, Op0),
4428                      buildScalarToVector(DAG, DL, VT, Op1));
4429 }
4430 
4431 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4432 // vector for them.
4433 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4434                           SDValue Op1) {
4435   if (Op0.isUndef() && Op1.isUndef())
4436     return DAG.getUNDEF(MVT::v2i64);
4437   // If one of the two inputs is undefined then replicate the other one,
4438   // in order to avoid using another register unnecessarily.
4439   if (Op0.isUndef())
4440     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4441   else if (Op1.isUndef())
4442     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4443   else {
4444     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4445     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4446   }
4447   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4448 }
4449 
4450 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4451 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4452 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4453 // would benefit from this representation and return it if so.
4454 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4455                                      BuildVectorSDNode *BVN) {
4456   EVT VT = BVN->getValueType(0);
4457   unsigned NumElements = VT.getVectorNumElements();
4458 
4459   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4460   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4461   // need a BUILD_VECTOR, add an additional placeholder operand for that
4462   // BUILD_VECTOR and store its operands in ResidueOps.
4463   GeneralShuffle GS(VT);
4464   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4465   bool FoundOne = false;
4466   for (unsigned I = 0; I < NumElements; ++I) {
4467     SDValue Op = BVN->getOperand(I);
4468     if (Op.getOpcode() == ISD::TRUNCATE)
4469       Op = Op.getOperand(0);
4470     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4471         Op.getOperand(1).getOpcode() == ISD::Constant) {
4472       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4473       if (!GS.add(Op.getOperand(0), Elem))
4474         return SDValue();
4475       FoundOne = true;
4476     } else if (Op.isUndef()) {
4477       GS.addUndef();
4478     } else {
4479       if (!GS.add(SDValue(), ResidueOps.size()))
4480         return SDValue();
4481       ResidueOps.push_back(BVN->getOperand(I));
4482     }
4483   }
4484 
4485   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4486   if (!FoundOne)
4487     return SDValue();
4488 
4489   // Create the BUILD_VECTOR for the remaining elements, if any.
4490   if (!ResidueOps.empty()) {
4491     while (ResidueOps.size() < NumElements)
4492       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4493     for (auto &Op : GS.Ops) {
4494       if (!Op.getNode()) {
4495         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4496         break;
4497       }
4498     }
4499   }
4500   return GS.getNode(DAG, SDLoc(BVN));
4501 }
4502 
4503 // Combine GPR scalar values Elems into a vector of type VT.
4504 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4505                            SmallVectorImpl<SDValue> &Elems) {
4506   // See whether there is a single replicated value.
4507   SDValue Single;
4508   unsigned int NumElements = Elems.size();
4509   unsigned int Count = 0;
4510   for (auto Elem : Elems) {
4511     if (!Elem.isUndef()) {
4512       if (!Single.getNode())
4513         Single = Elem;
4514       else if (Elem != Single) {
4515         Single = SDValue();
4516         break;
4517       }
4518       Count += 1;
4519     }
4520   }
4521   // There are three cases here:
4522   //
4523   // - if the only defined element is a loaded one, the best sequence
4524   //   is a replicating load.
4525   //
4526   // - otherwise, if the only defined element is an i64 value, we will
4527   //   end up with the same VLVGP sequence regardless of whether we short-cut
4528   //   for replication or fall through to the later code.
4529   //
4530   // - otherwise, if the only defined element is an i32 or smaller value,
4531   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4532   //   This is only a win if the single defined element is used more than once.
4533   //   In other cases we're better off using a single VLVGx.
4534   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4535     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4536 
4537   // If all elements are loads, use VLREP/VLEs (below).
4538   bool AllLoads = true;
4539   for (auto Elem : Elems)
4540     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4541       AllLoads = false;
4542       break;
4543     }
4544 
4545   // The best way of building a v2i64 from two i64s is to use VLVGP.
4546   if (VT == MVT::v2i64 && !AllLoads)
4547     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4548 
4549   // Use a 64-bit merge high to combine two doubles.
4550   if (VT == MVT::v2f64 && !AllLoads)
4551     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4552 
4553   // Build v4f32 values directly from the FPRs:
4554   //
4555   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4556   //         V              V         VMRHF
4557   //      <ABxx>         <CDxx>
4558   //                V                 VMRHG
4559   //              <ABCD>
4560   if (VT == MVT::v4f32 && !AllLoads) {
4561     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4562     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4563     // Avoid unnecessary undefs by reusing the other operand.
4564     if (Op01.isUndef())
4565       Op01 = Op23;
4566     else if (Op23.isUndef())
4567       Op23 = Op01;
4568     // Merging identical replications is a no-op.
4569     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4570       return Op01;
4571     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4572     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4573     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4574                              DL, MVT::v2i64, Op01, Op23);
4575     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4576   }
4577 
4578   // Collect the constant terms.
4579   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4580   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4581 
4582   unsigned NumConstants = 0;
4583   for (unsigned I = 0; I < NumElements; ++I) {
4584     SDValue Elem = Elems[I];
4585     if (Elem.getOpcode() == ISD::Constant ||
4586         Elem.getOpcode() == ISD::ConstantFP) {
4587       NumConstants += 1;
4588       Constants[I] = Elem;
4589       Done[I] = true;
4590     }
4591   }
4592   // If there was at least one constant, fill in the other elements of
4593   // Constants with undefs to get a full vector constant and use that
4594   // as the starting point.
4595   SDValue Result;
4596   SDValue ReplicatedVal;
4597   if (NumConstants > 0) {
4598     for (unsigned I = 0; I < NumElements; ++I)
4599       if (!Constants[I].getNode())
4600         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4601     Result = DAG.getBuildVector(VT, DL, Constants);
4602   } else {
4603     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4604     // avoid a false dependency on any previous contents of the vector
4605     // register.
4606 
4607     // Use a VLREP if at least one element is a load. Make sure to replicate
4608     // the load with the most elements having its value.
4609     std::map<const SDNode*, unsigned> UseCounts;
4610     SDNode *LoadMaxUses = nullptr;
4611     for (unsigned I = 0; I < NumElements; ++I)
4612       if (Elems[I].getOpcode() == ISD::LOAD &&
4613           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4614         SDNode *Ld = Elems[I].getNode();
4615         UseCounts[Ld]++;
4616         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4617           LoadMaxUses = Ld;
4618       }
4619     if (LoadMaxUses != nullptr) {
4620       ReplicatedVal = SDValue(LoadMaxUses, 0);
4621       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4622     } else {
4623       // Try to use VLVGP.
4624       unsigned I1 = NumElements / 2 - 1;
4625       unsigned I2 = NumElements - 1;
4626       bool Def1 = !Elems[I1].isUndef();
4627       bool Def2 = !Elems[I2].isUndef();
4628       if (Def1 || Def2) {
4629         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4630         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4631         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4632                              joinDwords(DAG, DL, Elem1, Elem2));
4633         Done[I1] = true;
4634         Done[I2] = true;
4635       } else
4636         Result = DAG.getUNDEF(VT);
4637     }
4638   }
4639 
4640   // Use VLVGx to insert the other elements.
4641   for (unsigned I = 0; I < NumElements; ++I)
4642     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4643       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4644                            DAG.getConstant(I, DL, MVT::i32));
4645   return Result;
4646 }
4647 
4648 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4649                                                  SelectionDAG &DAG) const {
4650   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4651   SDLoc DL(Op);
4652   EVT VT = Op.getValueType();
4653 
4654   if (BVN->isConstant()) {
4655     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4656       return Op;
4657 
4658     // Fall back to loading it from memory.
4659     return SDValue();
4660   }
4661 
4662   // See if we should use shuffles to construct the vector from other vectors.
4663   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4664     return Res;
4665 
4666   // Detect SCALAR_TO_VECTOR conversions.
4667   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4668     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4669 
4670   // Otherwise use buildVector to build the vector up from GPRs.
4671   unsigned NumElements = Op.getNumOperands();
4672   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4673   for (unsigned I = 0; I < NumElements; ++I)
4674     Ops[I] = Op.getOperand(I);
4675   return buildVector(DAG, DL, VT, Ops);
4676 }
4677 
4678 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4679                                                    SelectionDAG &DAG) const {
4680   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4681   SDLoc DL(Op);
4682   EVT VT = Op.getValueType();
4683   unsigned NumElements = VT.getVectorNumElements();
4684 
4685   if (VSN->isSplat()) {
4686     SDValue Op0 = Op.getOperand(0);
4687     unsigned Index = VSN->getSplatIndex();
4688     assert(Index < VT.getVectorNumElements() &&
4689            "Splat index should be defined and in first operand");
4690     // See whether the value we're splatting is directly available as a scalar.
4691     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4692         Op0.getOpcode() == ISD::BUILD_VECTOR)
4693       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4694     // Otherwise keep it as a vector-to-vector operation.
4695     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4696                        DAG.getConstant(Index, DL, MVT::i32));
4697   }
4698 
4699   GeneralShuffle GS(VT);
4700   for (unsigned I = 0; I < NumElements; ++I) {
4701     int Elt = VSN->getMaskElt(I);
4702     if (Elt < 0)
4703       GS.addUndef();
4704     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4705                      unsigned(Elt) % NumElements))
4706       return SDValue();
4707   }
4708   return GS.getNode(DAG, SDLoc(VSN));
4709 }
4710 
4711 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4712                                                      SelectionDAG &DAG) const {
4713   SDLoc DL(Op);
4714   // Just insert the scalar into element 0 of an undefined vector.
4715   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4716                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4717                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4718 }
4719 
4720 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4721                                                       SelectionDAG &DAG) const {
4722   // Handle insertions of floating-point values.
4723   SDLoc DL(Op);
4724   SDValue Op0 = Op.getOperand(0);
4725   SDValue Op1 = Op.getOperand(1);
4726   SDValue Op2 = Op.getOperand(2);
4727   EVT VT = Op.getValueType();
4728 
4729   // Insertions into constant indices of a v2f64 can be done using VPDI.
4730   // However, if the inserted value is a bitcast or a constant then it's
4731   // better to use GPRs, as below.
4732   if (VT == MVT::v2f64 &&
4733       Op1.getOpcode() != ISD::BITCAST &&
4734       Op1.getOpcode() != ISD::ConstantFP &&
4735       Op2.getOpcode() == ISD::Constant) {
4736     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4737     unsigned Mask = VT.getVectorNumElements() - 1;
4738     if (Index <= Mask)
4739       return Op;
4740   }
4741 
4742   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4743   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4744   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4745   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4746                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4747                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4748   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4749 }
4750 
4751 SDValue
4752 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4753                                                SelectionDAG &DAG) const {
4754   // Handle extractions of floating-point values.
4755   SDLoc DL(Op);
4756   SDValue Op0 = Op.getOperand(0);
4757   SDValue Op1 = Op.getOperand(1);
4758   EVT VT = Op.getValueType();
4759   EVT VecVT = Op0.getValueType();
4760 
4761   // Extractions of constant indices can be done directly.
4762   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4763     uint64_t Index = CIndexN->getZExtValue();
4764     unsigned Mask = VecVT.getVectorNumElements() - 1;
4765     if (Index <= Mask)
4766       return Op;
4767   }
4768 
4769   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4770   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4771   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4772   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4773                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4774   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4775 }
4776 
4777 SDValue
4778 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4779                                               unsigned UnpackHigh) const {
4780   SDValue PackedOp = Op.getOperand(0);
4781   EVT OutVT = Op.getValueType();
4782   EVT InVT = PackedOp.getValueType();
4783   unsigned ToBits = OutVT.getScalarSizeInBits();
4784   unsigned FromBits = InVT.getScalarSizeInBits();
4785   do {
4786     FromBits *= 2;
4787     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4788                                  SystemZ::VectorBits / FromBits);
4789     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4790   } while (FromBits != ToBits);
4791   return PackedOp;
4792 }
4793 
4794 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4795                                           unsigned ByScalar) const {
4796   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4797   SDValue Op0 = Op.getOperand(0);
4798   SDValue Op1 = Op.getOperand(1);
4799   SDLoc DL(Op);
4800   EVT VT = Op.getValueType();
4801   unsigned ElemBitSize = VT.getScalarSizeInBits();
4802 
4803   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4804   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4805     APInt SplatBits, SplatUndef;
4806     unsigned SplatBitSize;
4807     bool HasAnyUndefs;
4808     // Check for constant splats.  Use ElemBitSize as the minimum element
4809     // width and reject splats that need wider elements.
4810     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4811                              ElemBitSize, true) &&
4812         SplatBitSize == ElemBitSize) {
4813       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4814                                       DL, MVT::i32);
4815       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4816     }
4817     // Check for variable splats.
4818     BitVector UndefElements;
4819     SDValue Splat = BVN->getSplatValue(&UndefElements);
4820     if (Splat) {
4821       // Since i32 is the smallest legal type, we either need a no-op
4822       // or a truncation.
4823       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4824       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4825     }
4826   }
4827 
4828   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4829   // and the shift amount is directly available in a GPR.
4830   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4831     if (VSN->isSplat()) {
4832       SDValue VSNOp0 = VSN->getOperand(0);
4833       unsigned Index = VSN->getSplatIndex();
4834       assert(Index < VT.getVectorNumElements() &&
4835              "Splat index should be defined and in first operand");
4836       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4837           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4838         // Since i32 is the smallest legal type, we either need a no-op
4839         // or a truncation.
4840         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4841                                     VSNOp0.getOperand(Index));
4842         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4843       }
4844     }
4845   }
4846 
4847   // Otherwise just treat the current form as legal.
4848   return Op;
4849 }
4850 
4851 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4852                                               SelectionDAG &DAG) const {
4853   switch (Op.getOpcode()) {
4854   case ISD::FRAMEADDR:
4855     return lowerFRAMEADDR(Op, DAG);
4856   case ISD::RETURNADDR:
4857     return lowerRETURNADDR(Op, DAG);
4858   case ISD::BR_CC:
4859     return lowerBR_CC(Op, DAG);
4860   case ISD::SELECT_CC:
4861     return lowerSELECT_CC(Op, DAG);
4862   case ISD::SETCC:
4863     return lowerSETCC(Op, DAG);
4864   case ISD::GlobalAddress:
4865     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4866   case ISD::GlobalTLSAddress:
4867     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4868   case ISD::BlockAddress:
4869     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4870   case ISD::JumpTable:
4871     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4872   case ISD::ConstantPool:
4873     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4874   case ISD::BITCAST:
4875     return lowerBITCAST(Op, DAG);
4876   case ISD::VASTART:
4877     return lowerVASTART(Op, DAG);
4878   case ISD::VACOPY:
4879     return lowerVACOPY(Op, DAG);
4880   case ISD::DYNAMIC_STACKALLOC:
4881     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4882   case ISD::GET_DYNAMIC_AREA_OFFSET:
4883     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4884   case ISD::SMUL_LOHI:
4885     return lowerSMUL_LOHI(Op, DAG);
4886   case ISD::UMUL_LOHI:
4887     return lowerUMUL_LOHI(Op, DAG);
4888   case ISD::SDIVREM:
4889     return lowerSDIVREM(Op, DAG);
4890   case ISD::UDIVREM:
4891     return lowerUDIVREM(Op, DAG);
4892   case ISD::SADDO:
4893   case ISD::SSUBO:
4894   case ISD::UADDO:
4895   case ISD::USUBO:
4896     return lowerXALUO(Op, DAG);
4897   case ISD::ADDCARRY:
4898   case ISD::SUBCARRY:
4899     return lowerADDSUBCARRY(Op, DAG);
4900   case ISD::OR:
4901     return lowerOR(Op, DAG);
4902   case ISD::CTPOP:
4903     return lowerCTPOP(Op, DAG);
4904   case ISD::ATOMIC_FENCE:
4905     return lowerATOMIC_FENCE(Op, DAG);
4906   case ISD::ATOMIC_SWAP:
4907     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4908   case ISD::ATOMIC_STORE:
4909     return lowerATOMIC_STORE(Op, DAG);
4910   case ISD::ATOMIC_LOAD:
4911     return lowerATOMIC_LOAD(Op, DAG);
4912   case ISD::ATOMIC_LOAD_ADD:
4913     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4914   case ISD::ATOMIC_LOAD_SUB:
4915     return lowerATOMIC_LOAD_SUB(Op, DAG);
4916   case ISD::ATOMIC_LOAD_AND:
4917     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4918   case ISD::ATOMIC_LOAD_OR:
4919     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4920   case ISD::ATOMIC_LOAD_XOR:
4921     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4922   case ISD::ATOMIC_LOAD_NAND:
4923     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4924   case ISD::ATOMIC_LOAD_MIN:
4925     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4926   case ISD::ATOMIC_LOAD_MAX:
4927     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4928   case ISD::ATOMIC_LOAD_UMIN:
4929     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4930   case ISD::ATOMIC_LOAD_UMAX:
4931     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4932   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4933     return lowerATOMIC_CMP_SWAP(Op, DAG);
4934   case ISD::STACKSAVE:
4935     return lowerSTACKSAVE(Op, DAG);
4936   case ISD::STACKRESTORE:
4937     return lowerSTACKRESTORE(Op, DAG);
4938   case ISD::PREFETCH:
4939     return lowerPREFETCH(Op, DAG);
4940   case ISD::INTRINSIC_W_CHAIN:
4941     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4942   case ISD::INTRINSIC_WO_CHAIN:
4943     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4944   case ISD::BUILD_VECTOR:
4945     return lowerBUILD_VECTOR(Op, DAG);
4946   case ISD::VECTOR_SHUFFLE:
4947     return lowerVECTOR_SHUFFLE(Op, DAG);
4948   case ISD::SCALAR_TO_VECTOR:
4949     return lowerSCALAR_TO_VECTOR(Op, DAG);
4950   case ISD::INSERT_VECTOR_ELT:
4951     return lowerINSERT_VECTOR_ELT(Op, DAG);
4952   case ISD::EXTRACT_VECTOR_ELT:
4953     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4954   case ISD::SIGN_EXTEND_VECTOR_INREG:
4955     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4956   case ISD::ZERO_EXTEND_VECTOR_INREG:
4957     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4958   case ISD::SHL:
4959     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4960   case ISD::SRL:
4961     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4962   case ISD::SRA:
4963     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4964   default:
4965     llvm_unreachable("Unexpected node to lower");
4966   }
4967 }
4968 
4969 // Lower operations with invalid operand or result types (currently used
4970 // only for 128-bit integer types).
4971 
4972 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4973   SDLoc DL(In);
4974   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4975                            DAG.getIntPtrConstant(0, DL));
4976   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4977                            DAG.getIntPtrConstant(1, DL));
4978   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4979                                     MVT::Untyped, Hi, Lo);
4980   return SDValue(Pair, 0);
4981 }
4982 
4983 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4984   SDLoc DL(In);
4985   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4986                                           DL, MVT::i64, In);
4987   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4988                                           DL, MVT::i64, In);
4989   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4990 }
4991 
4992 void
4993 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4994                                              SmallVectorImpl<SDValue> &Results,
4995                                              SelectionDAG &DAG) const {
4996   switch (N->getOpcode()) {
4997   case ISD::ATOMIC_LOAD: {
4998     SDLoc DL(N);
4999     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5000     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5001     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5002     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5003                                           DL, Tys, Ops, MVT::i128, MMO);
5004     Results.push_back(lowerGR128ToI128(DAG, Res));
5005     Results.push_back(Res.getValue(1));
5006     break;
5007   }
5008   case ISD::ATOMIC_STORE: {
5009     SDLoc DL(N);
5010     SDVTList Tys = DAG.getVTList(MVT::Other);
5011     SDValue Ops[] = { N->getOperand(0),
5012                       lowerI128ToGR128(DAG, N->getOperand(2)),
5013                       N->getOperand(1) };
5014     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5015     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5016                                           DL, Tys, Ops, MVT::i128, MMO);
5017     // We have to enforce sequential consistency by performing a
5018     // serialization operation after the store.
5019     if (cast<AtomicSDNode>(N)->getOrdering() ==
5020         AtomicOrdering::SequentiallyConsistent)
5021       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5022                                        MVT::Other, Res), 0);
5023     Results.push_back(Res);
5024     break;
5025   }
5026   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5027     SDLoc DL(N);
5028     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5029     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5030                       lowerI128ToGR128(DAG, N->getOperand(2)),
5031                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5032     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5033     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5034                                           DL, Tys, Ops, MVT::i128, MMO);
5035     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5036                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5037     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5038     Results.push_back(lowerGR128ToI128(DAG, Res));
5039     Results.push_back(Success);
5040     Results.push_back(Res.getValue(2));
5041     break;
5042   }
5043   default:
5044     llvm_unreachable("Unexpected node to lower");
5045   }
5046 }
5047 
5048 void
5049 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5050                                           SmallVectorImpl<SDValue> &Results,
5051                                           SelectionDAG &DAG) const {
5052   return LowerOperationWrapper(N, Results, DAG);
5053 }
5054 
5055 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5056 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5057   switch ((SystemZISD::NodeType)Opcode) {
5058     case SystemZISD::FIRST_NUMBER: break;
5059     OPCODE(RET_FLAG);
5060     OPCODE(CALL);
5061     OPCODE(SIBCALL);
5062     OPCODE(TLS_GDCALL);
5063     OPCODE(TLS_LDCALL);
5064     OPCODE(PCREL_WRAPPER);
5065     OPCODE(PCREL_OFFSET);
5066     OPCODE(IABS);
5067     OPCODE(ICMP);
5068     OPCODE(FCMP);
5069     OPCODE(TM);
5070     OPCODE(BR_CCMASK);
5071     OPCODE(SELECT_CCMASK);
5072     OPCODE(ADJDYNALLOC);
5073     OPCODE(POPCNT);
5074     OPCODE(SMUL_LOHI);
5075     OPCODE(UMUL_LOHI);
5076     OPCODE(SDIVREM);
5077     OPCODE(UDIVREM);
5078     OPCODE(SADDO);
5079     OPCODE(SSUBO);
5080     OPCODE(UADDO);
5081     OPCODE(USUBO);
5082     OPCODE(ADDCARRY);
5083     OPCODE(SUBCARRY);
5084     OPCODE(GET_CCMASK);
5085     OPCODE(MVC);
5086     OPCODE(MVC_LOOP);
5087     OPCODE(NC);
5088     OPCODE(NC_LOOP);
5089     OPCODE(OC);
5090     OPCODE(OC_LOOP);
5091     OPCODE(XC);
5092     OPCODE(XC_LOOP);
5093     OPCODE(CLC);
5094     OPCODE(CLC_LOOP);
5095     OPCODE(STPCPY);
5096     OPCODE(STRCMP);
5097     OPCODE(SEARCH_STRING);
5098     OPCODE(IPM);
5099     OPCODE(MEMBARRIER);
5100     OPCODE(TBEGIN);
5101     OPCODE(TBEGIN_NOFLOAT);
5102     OPCODE(TEND);
5103     OPCODE(BYTE_MASK);
5104     OPCODE(ROTATE_MASK);
5105     OPCODE(REPLICATE);
5106     OPCODE(JOIN_DWORDS);
5107     OPCODE(SPLAT);
5108     OPCODE(MERGE_HIGH);
5109     OPCODE(MERGE_LOW);
5110     OPCODE(SHL_DOUBLE);
5111     OPCODE(PERMUTE_DWORDS);
5112     OPCODE(PERMUTE);
5113     OPCODE(PACK);
5114     OPCODE(PACKS_CC);
5115     OPCODE(PACKLS_CC);
5116     OPCODE(UNPACK_HIGH);
5117     OPCODE(UNPACKL_HIGH);
5118     OPCODE(UNPACK_LOW);
5119     OPCODE(UNPACKL_LOW);
5120     OPCODE(VSHL_BY_SCALAR);
5121     OPCODE(VSRL_BY_SCALAR);
5122     OPCODE(VSRA_BY_SCALAR);
5123     OPCODE(VSUM);
5124     OPCODE(VICMPE);
5125     OPCODE(VICMPH);
5126     OPCODE(VICMPHL);
5127     OPCODE(VICMPES);
5128     OPCODE(VICMPHS);
5129     OPCODE(VICMPHLS);
5130     OPCODE(VFCMPE);
5131     OPCODE(VFCMPH);
5132     OPCODE(VFCMPHE);
5133     OPCODE(VFCMPES);
5134     OPCODE(VFCMPHS);
5135     OPCODE(VFCMPHES);
5136     OPCODE(VFTCI);
5137     OPCODE(VEXTEND);
5138     OPCODE(VROUND);
5139     OPCODE(VTM);
5140     OPCODE(VFAE_CC);
5141     OPCODE(VFAEZ_CC);
5142     OPCODE(VFEE_CC);
5143     OPCODE(VFEEZ_CC);
5144     OPCODE(VFENE_CC);
5145     OPCODE(VFENEZ_CC);
5146     OPCODE(VISTR_CC);
5147     OPCODE(VSTRC_CC);
5148     OPCODE(VSTRCZ_CC);
5149     OPCODE(TDC);
5150     OPCODE(ATOMIC_SWAPW);
5151     OPCODE(ATOMIC_LOADW_ADD);
5152     OPCODE(ATOMIC_LOADW_SUB);
5153     OPCODE(ATOMIC_LOADW_AND);
5154     OPCODE(ATOMIC_LOADW_OR);
5155     OPCODE(ATOMIC_LOADW_XOR);
5156     OPCODE(ATOMIC_LOADW_NAND);
5157     OPCODE(ATOMIC_LOADW_MIN);
5158     OPCODE(ATOMIC_LOADW_MAX);
5159     OPCODE(ATOMIC_LOADW_UMIN);
5160     OPCODE(ATOMIC_LOADW_UMAX);
5161     OPCODE(ATOMIC_CMP_SWAPW);
5162     OPCODE(ATOMIC_CMP_SWAP);
5163     OPCODE(ATOMIC_LOAD_128);
5164     OPCODE(ATOMIC_STORE_128);
5165     OPCODE(ATOMIC_CMP_SWAP_128);
5166     OPCODE(LRV);
5167     OPCODE(STRV);
5168     OPCODE(PREFETCH);
5169   }
5170   return nullptr;
5171 #undef OPCODE
5172 }
5173 
5174 // Return true if VT is a vector whose elements are a whole number of bytes
5175 // in width. Also check for presence of vector support.
5176 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5177   if (!Subtarget.hasVector())
5178     return false;
5179 
5180   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5181 }
5182 
5183 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5184 // producing a result of type ResVT.  Op is a possibly bitcast version
5185 // of the input vector and Index is the index (based on type VecVT) that
5186 // should be extracted.  Return the new extraction if a simplification
5187 // was possible or if Force is true.
5188 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5189                                               EVT VecVT, SDValue Op,
5190                                               unsigned Index,
5191                                               DAGCombinerInfo &DCI,
5192                                               bool Force) const {
5193   SelectionDAG &DAG = DCI.DAG;
5194 
5195   // The number of bytes being extracted.
5196   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5197 
5198   for (;;) {
5199     unsigned Opcode = Op.getOpcode();
5200     if (Opcode == ISD::BITCAST)
5201       // Look through bitcasts.
5202       Op = Op.getOperand(0);
5203     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5204              canTreatAsByteVector(Op.getValueType())) {
5205       // Get a VPERM-like permute mask and see whether the bytes covered
5206       // by the extracted element are a contiguous sequence from one
5207       // source operand.
5208       SmallVector<int, SystemZ::VectorBytes> Bytes;
5209       if (!getVPermMask(Op, Bytes))
5210         break;
5211       int First;
5212       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5213                            BytesPerElement, First))
5214         break;
5215       if (First < 0)
5216         return DAG.getUNDEF(ResVT);
5217       // Make sure the contiguous sequence starts at a multiple of the
5218       // original element size.
5219       unsigned Byte = unsigned(First) % Bytes.size();
5220       if (Byte % BytesPerElement != 0)
5221         break;
5222       // We can get the extracted value directly from an input.
5223       Index = Byte / BytesPerElement;
5224       Op = Op.getOperand(unsigned(First) / Bytes.size());
5225       Force = true;
5226     } else if (Opcode == ISD::BUILD_VECTOR &&
5227                canTreatAsByteVector(Op.getValueType())) {
5228       // We can only optimize this case if the BUILD_VECTOR elements are
5229       // at least as wide as the extracted value.
5230       EVT OpVT = Op.getValueType();
5231       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5232       if (OpBytesPerElement < BytesPerElement)
5233         break;
5234       // Make sure that the least-significant bit of the extracted value
5235       // is the least significant bit of an input.
5236       unsigned End = (Index + 1) * BytesPerElement;
5237       if (End % OpBytesPerElement != 0)
5238         break;
5239       // We're extracting the low part of one operand of the BUILD_VECTOR.
5240       Op = Op.getOperand(End / OpBytesPerElement - 1);
5241       if (!Op.getValueType().isInteger()) {
5242         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5243         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5244         DCI.AddToWorklist(Op.getNode());
5245       }
5246       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5247       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5248       if (VT != ResVT) {
5249         DCI.AddToWorklist(Op.getNode());
5250         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5251       }
5252       return Op;
5253     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5254                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5255                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5256                canTreatAsByteVector(Op.getValueType()) &&
5257                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5258       // Make sure that only the unextended bits are significant.
5259       EVT ExtVT = Op.getValueType();
5260       EVT OpVT = Op.getOperand(0).getValueType();
5261       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5262       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5263       unsigned Byte = Index * BytesPerElement;
5264       unsigned SubByte = Byte % ExtBytesPerElement;
5265       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5266       if (SubByte < MinSubByte ||
5267           SubByte + BytesPerElement > ExtBytesPerElement)
5268         break;
5269       // Get the byte offset of the unextended element
5270       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5271       // ...then add the byte offset relative to that element.
5272       Byte += SubByte - MinSubByte;
5273       if (Byte % BytesPerElement != 0)
5274         break;
5275       Op = Op.getOperand(0);
5276       Index = Byte / BytesPerElement;
5277       Force = true;
5278     } else
5279       break;
5280   }
5281   if (Force) {
5282     if (Op.getValueType() != VecVT) {
5283       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5284       DCI.AddToWorklist(Op.getNode());
5285     }
5286     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5287                        DAG.getConstant(Index, DL, MVT::i32));
5288   }
5289   return SDValue();
5290 }
5291 
5292 // Optimize vector operations in scalar value Op on the basis that Op
5293 // is truncated to TruncVT.
5294 SDValue SystemZTargetLowering::combineTruncateExtract(
5295     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5296   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5297   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5298   // of type TruncVT.
5299   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5300       TruncVT.getSizeInBits() % 8 == 0) {
5301     SDValue Vec = Op.getOperand(0);
5302     EVT VecVT = Vec.getValueType();
5303     if (canTreatAsByteVector(VecVT)) {
5304       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5305         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5306         unsigned TruncBytes = TruncVT.getStoreSize();
5307         if (BytesPerElement % TruncBytes == 0) {
5308           // Calculate the value of Y' in the above description.  We are
5309           // splitting the original elements into Scale equal-sized pieces
5310           // and for truncation purposes want the last (least-significant)
5311           // of these pieces for IndexN.  This is easiest to do by calculating
5312           // the start index of the following element and then subtracting 1.
5313           unsigned Scale = BytesPerElement / TruncBytes;
5314           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5315 
5316           // Defer the creation of the bitcast from X to combineExtract,
5317           // which might be able to optimize the extraction.
5318           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5319                                    VecVT.getStoreSize() / TruncBytes);
5320           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5321           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5322         }
5323       }
5324     }
5325   }
5326   return SDValue();
5327 }
5328 
5329 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5330     SDNode *N, DAGCombinerInfo &DCI) const {
5331   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5332   SelectionDAG &DAG = DCI.DAG;
5333   SDValue N0 = N->getOperand(0);
5334   EVT VT = N->getValueType(0);
5335   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5336     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5337     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5338     if (TrueOp && FalseOp) {
5339       SDLoc DL(N0);
5340       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5341                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5342                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5343       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5344       // If N0 has multiple uses, change other uses as well.
5345       if (!N0.hasOneUse()) {
5346         SDValue TruncSelect =
5347           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5348         DCI.CombineTo(N0.getNode(), TruncSelect);
5349       }
5350       return NewSelect;
5351     }
5352   }
5353   return SDValue();
5354 }
5355 
5356 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5357     SDNode *N, DAGCombinerInfo &DCI) const {
5358   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5359   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5360   // into (select_cc LHS, RHS, -1, 0, COND)
5361   SelectionDAG &DAG = DCI.DAG;
5362   SDValue N0 = N->getOperand(0);
5363   EVT VT = N->getValueType(0);
5364   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5365   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5366     N0 = N0.getOperand(0);
5367   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5368     SDLoc DL(N0);
5369     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5370                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5371                       N0.getOperand(2) };
5372     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5373   }
5374   return SDValue();
5375 }
5376 
5377 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5378     SDNode *N, DAGCombinerInfo &DCI) const {
5379   // Convert (sext (ashr (shl X, C1), C2)) to
5380   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5381   // cheap as narrower ones.
5382   SelectionDAG &DAG = DCI.DAG;
5383   SDValue N0 = N->getOperand(0);
5384   EVT VT = N->getValueType(0);
5385   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5386     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5387     SDValue Inner = N0.getOperand(0);
5388     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5389       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5390         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5391         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5392         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5393         EVT ShiftVT = N0.getOperand(1).getValueType();
5394         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5395                                   Inner.getOperand(0));
5396         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5397                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5398                                                   ShiftVT));
5399         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5400                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5401       }
5402     }
5403   }
5404   return SDValue();
5405 }
5406 
5407 SDValue SystemZTargetLowering::combineMERGE(
5408     SDNode *N, DAGCombinerInfo &DCI) const {
5409   SelectionDAG &DAG = DCI.DAG;
5410   unsigned Opcode = N->getOpcode();
5411   SDValue Op0 = N->getOperand(0);
5412   SDValue Op1 = N->getOperand(1);
5413   if (Op0.getOpcode() == ISD::BITCAST)
5414     Op0 = Op0.getOperand(0);
5415   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5416     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5417     // for v4f32.
5418     if (Op1 == N->getOperand(0))
5419       return Op1;
5420     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5421     EVT VT = Op1.getValueType();
5422     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5423     if (ElemBytes <= 4) {
5424       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5425                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5426       EVT InVT = VT.changeVectorElementTypeToInteger();
5427       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5428                                    SystemZ::VectorBytes / ElemBytes / 2);
5429       if (VT != InVT) {
5430         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5431         DCI.AddToWorklist(Op1.getNode());
5432       }
5433       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5434       DCI.AddToWorklist(Op.getNode());
5435       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5436     }
5437   }
5438   return SDValue();
5439 }
5440 
5441 SDValue SystemZTargetLowering::combineLOAD(
5442     SDNode *N, DAGCombinerInfo &DCI) const {
5443   SelectionDAG &DAG = DCI.DAG;
5444   EVT LdVT = N->getValueType(0);
5445   if (LdVT.isVector() || LdVT.isInteger())
5446     return SDValue();
5447   // Transform a scalar load that is REPLICATEd as well as having other
5448   // use(s) to the form where the other use(s) use the first element of the
5449   // REPLICATE instead of the load. Otherwise instruction selection will not
5450   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5451   // point loads.
5452 
5453   SDValue Replicate;
5454   SmallVector<SDNode*, 8> OtherUses;
5455   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5456        UI != UE; ++UI) {
5457     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5458       if (Replicate)
5459         return SDValue(); // Should never happen
5460       Replicate = SDValue(*UI, 0);
5461     }
5462     else if (UI.getUse().getResNo() == 0)
5463       OtherUses.push_back(*UI);
5464   }
5465   if (!Replicate || OtherUses.empty())
5466     return SDValue();
5467 
5468   SDLoc DL(N);
5469   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5470                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5471   // Update uses of the loaded Value while preserving old chains.
5472   for (SDNode *U : OtherUses) {
5473     SmallVector<SDValue, 8> Ops;
5474     for (SDValue Op : U->ops())
5475       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5476     DAG.UpdateNodeOperands(U, Ops);
5477   }
5478   return SDValue(N, 0);
5479 }
5480 
5481 SDValue SystemZTargetLowering::combineSTORE(
5482     SDNode *N, DAGCombinerInfo &DCI) const {
5483   SelectionDAG &DAG = DCI.DAG;
5484   auto *SN = cast<StoreSDNode>(N);
5485   auto &Op1 = N->getOperand(1);
5486   EVT MemVT = SN->getMemoryVT();
5487   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5488   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5489   // If X has wider elements then convert it to:
5490   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5491   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5492     if (SDValue Value =
5493             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5494       DCI.AddToWorklist(Value.getNode());
5495 
5496       // Rewrite the store with the new form of stored value.
5497       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5498                                SN->getBasePtr(), SN->getMemoryVT(),
5499                                SN->getMemOperand());
5500     }
5501   }
5502   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5503   if (!SN->isTruncatingStore() &&
5504       Op1.getOpcode() == ISD::BSWAP &&
5505       Op1.getNode()->hasOneUse() &&
5506       (Op1.getValueType() == MVT::i16 ||
5507        Op1.getValueType() == MVT::i32 ||
5508        Op1.getValueType() == MVT::i64)) {
5509 
5510       SDValue BSwapOp = Op1.getOperand(0);
5511 
5512       if (BSwapOp.getValueType() == MVT::i16)
5513         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5514 
5515       SDValue Ops[] = {
5516         N->getOperand(0), BSwapOp, N->getOperand(2)
5517       };
5518 
5519       return
5520         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5521                                 Ops, MemVT, SN->getMemOperand());
5522     }
5523   return SDValue();
5524 }
5525 
5526 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5527     SDNode *N, DAGCombinerInfo &DCI) const {
5528 
5529   if (!Subtarget.hasVector())
5530     return SDValue();
5531 
5532   // Try to simplify a vector extraction.
5533   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5534     SDValue Op0 = N->getOperand(0);
5535     EVT VecVT = Op0.getValueType();
5536     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5537                           IndexN->getZExtValue(), DCI, false);
5538   }
5539   return SDValue();
5540 }
5541 
5542 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5543     SDNode *N, DAGCombinerInfo &DCI) const {
5544   SelectionDAG &DAG = DCI.DAG;
5545   // (join_dwords X, X) == (replicate X)
5546   if (N->getOperand(0) == N->getOperand(1))
5547     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5548                        N->getOperand(0));
5549   return SDValue();
5550 }
5551 
5552 SDValue SystemZTargetLowering::combineFP_ROUND(
5553     SDNode *N, DAGCombinerInfo &DCI) const {
5554 
5555   if (!Subtarget.hasVector())
5556     return SDValue();
5557 
5558   // (fpround (extract_vector_elt X 0))
5559   // (fpround (extract_vector_elt X 1)) ->
5560   // (extract_vector_elt (VROUND X) 0)
5561   // (extract_vector_elt (VROUND X) 2)
5562   //
5563   // This is a special case since the target doesn't really support v2f32s.
5564   SelectionDAG &DAG = DCI.DAG;
5565   SDValue Op0 = N->getOperand(0);
5566   if (N->getValueType(0) == MVT::f32 &&
5567       Op0.hasOneUse() &&
5568       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5569       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5570       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5571       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5572     SDValue Vec = Op0.getOperand(0);
5573     for (auto *U : Vec->uses()) {
5574       if (U != Op0.getNode() &&
5575           U->hasOneUse() &&
5576           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5577           U->getOperand(0) == Vec &&
5578           U->getOperand(1).getOpcode() == ISD::Constant &&
5579           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5580         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5581         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5582             OtherRound.getOperand(0) == SDValue(U, 0) &&
5583             OtherRound.getValueType() == MVT::f32) {
5584           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5585                                        MVT::v4f32, Vec);
5586           DCI.AddToWorklist(VRound.getNode());
5587           SDValue Extract1 =
5588             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5589                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5590           DCI.AddToWorklist(Extract1.getNode());
5591           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5592           SDValue Extract0 =
5593             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5594                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5595           return Extract0;
5596         }
5597       }
5598     }
5599   }
5600   return SDValue();
5601 }
5602 
5603 SDValue SystemZTargetLowering::combineFP_EXTEND(
5604     SDNode *N, DAGCombinerInfo &DCI) const {
5605 
5606   if (!Subtarget.hasVector())
5607     return SDValue();
5608 
5609   // (fpextend (extract_vector_elt X 0))
5610   // (fpextend (extract_vector_elt X 2)) ->
5611   // (extract_vector_elt (VEXTEND X) 0)
5612   // (extract_vector_elt (VEXTEND X) 1)
5613   //
5614   // This is a special case since the target doesn't really support v2f32s.
5615   SelectionDAG &DAG = DCI.DAG;
5616   SDValue Op0 = N->getOperand(0);
5617   if (N->getValueType(0) == MVT::f64 &&
5618       Op0.hasOneUse() &&
5619       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5620       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
5621       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5622       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5623     SDValue Vec = Op0.getOperand(0);
5624     for (auto *U : Vec->uses()) {
5625       if (U != Op0.getNode() &&
5626           U->hasOneUse() &&
5627           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5628           U->getOperand(0) == Vec &&
5629           U->getOperand(1).getOpcode() == ISD::Constant &&
5630           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
5631         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
5632         if (OtherExtend.getOpcode() == ISD::FP_EXTEND &&
5633             OtherExtend.getOperand(0) == SDValue(U, 0) &&
5634             OtherExtend.getValueType() == MVT::f64) {
5635           SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
5636                                         MVT::v2f64, Vec);
5637           DCI.AddToWorklist(VExtend.getNode());
5638           SDValue Extract1 =
5639             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
5640                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
5641           DCI.AddToWorklist(Extract1.getNode());
5642           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
5643           SDValue Extract0 =
5644             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
5645                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5646           return Extract0;
5647         }
5648       }
5649     }
5650   }
5651   return SDValue();
5652 }
5653 
5654 SDValue SystemZTargetLowering::combineBSWAP(
5655     SDNode *N, DAGCombinerInfo &DCI) const {
5656   SelectionDAG &DAG = DCI.DAG;
5657   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5658   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5659       N->getOperand(0).hasOneUse() &&
5660       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5661        N->getValueType(0) == MVT::i64)) {
5662       SDValue Load = N->getOperand(0);
5663       LoadSDNode *LD = cast<LoadSDNode>(Load);
5664 
5665       // Create the byte-swapping load.
5666       SDValue Ops[] = {
5667         LD->getChain(),    // Chain
5668         LD->getBasePtr()   // Ptr
5669       };
5670       EVT LoadVT = N->getValueType(0);
5671       if (LoadVT == MVT::i16)
5672         LoadVT = MVT::i32;
5673       SDValue BSLoad =
5674         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5675                                 DAG.getVTList(LoadVT, MVT::Other),
5676                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5677 
5678       // If this is an i16 load, insert the truncate.
5679       SDValue ResVal = BSLoad;
5680       if (N->getValueType(0) == MVT::i16)
5681         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5682 
5683       // First, combine the bswap away.  This makes the value produced by the
5684       // load dead.
5685       DCI.CombineTo(N, ResVal);
5686 
5687       // Next, combine the load away, we give it a bogus result value but a real
5688       // chain result.  The result value is dead because the bswap is dead.
5689       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5690 
5691       // Return N so it doesn't get rechecked!
5692       return SDValue(N, 0);
5693     }
5694   return SDValue();
5695 }
5696 
5697 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5698   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5699   // set by the CCReg instruction using the CCValid / CCMask masks,
5700   // If the CCReg instruction is itself a ICMP testing the condition
5701   // code set by some other instruction, see whether we can directly
5702   // use that condition code.
5703 
5704   // Verify that we have an ICMP against some constant.
5705   if (CCValid != SystemZ::CCMASK_ICMP)
5706     return false;
5707   auto *ICmp = CCReg.getNode();
5708   if (ICmp->getOpcode() != SystemZISD::ICMP)
5709     return false;
5710   auto *CompareLHS = ICmp->getOperand(0).getNode();
5711   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5712   if (!CompareRHS)
5713     return false;
5714 
5715   // Optimize the case where CompareLHS is a SELECT_CCMASK.
5716   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
5717     // Verify that we have an appropriate mask for a EQ or NE comparison.
5718     bool Invert = false;
5719     if (CCMask == SystemZ::CCMASK_CMP_NE)
5720       Invert = !Invert;
5721     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5722       return false;
5723 
5724     // Verify that the ICMP compares against one of select values.
5725     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
5726     if (!TrueVal)
5727       return false;
5728     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5729     if (!FalseVal)
5730       return false;
5731     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
5732       Invert = !Invert;
5733     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
5734       return false;
5735 
5736     // Compute the effective CC mask for the new branch or select.
5737     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
5738     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
5739     if (!NewCCValid || !NewCCMask)
5740       return false;
5741     CCValid = NewCCValid->getZExtValue();
5742     CCMask = NewCCMask->getZExtValue();
5743     if (Invert)
5744       CCMask ^= CCValid;
5745 
5746     // Return the updated CCReg link.
5747     CCReg = CompareLHS->getOperand(4);
5748     return true;
5749   }
5750 
5751   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
5752   if (CompareLHS->getOpcode() == ISD::SRA) {
5753     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5754     if (!SRACount || SRACount->getZExtValue() != 30)
5755       return false;
5756     auto *SHL = CompareLHS->getOperand(0).getNode();
5757     if (SHL->getOpcode() != ISD::SHL)
5758       return false;
5759     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
5760     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
5761       return false;
5762     auto *IPM = SHL->getOperand(0).getNode();
5763     if (IPM->getOpcode() != SystemZISD::IPM)
5764       return false;
5765 
5766     // Avoid introducing CC spills (because SRA would clobber CC).
5767     if (!CompareLHS->hasOneUse())
5768       return false;
5769     // Verify that the ICMP compares against zero.
5770     if (CompareRHS->getZExtValue() != 0)
5771       return false;
5772 
5773     // Compute the effective CC mask for the new branch or select.
5774     switch (CCMask) {
5775     case SystemZ::CCMASK_CMP_EQ: break;
5776     case SystemZ::CCMASK_CMP_NE: break;
5777     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
5778     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
5779     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
5780     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
5781     default: return false;
5782     }
5783 
5784     // Return the updated CCReg link.
5785     CCReg = IPM->getOperand(0);
5786     return true;
5787   }
5788 
5789   return false;
5790 }
5791 
5792 SDValue SystemZTargetLowering::combineBR_CCMASK(
5793     SDNode *N, DAGCombinerInfo &DCI) const {
5794   SelectionDAG &DAG = DCI.DAG;
5795 
5796   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5797   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5798   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5799   if (!CCValid || !CCMask)
5800     return SDValue();
5801 
5802   int CCValidVal = CCValid->getZExtValue();
5803   int CCMaskVal = CCMask->getZExtValue();
5804   SDValue Chain = N->getOperand(0);
5805   SDValue CCReg = N->getOperand(4);
5806 
5807   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5808     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5809                        Chain,
5810                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5811                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5812                        N->getOperand(3), CCReg);
5813   return SDValue();
5814 }
5815 
5816 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5817     SDNode *N, DAGCombinerInfo &DCI) const {
5818   SelectionDAG &DAG = DCI.DAG;
5819 
5820   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5821   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5822   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5823   if (!CCValid || !CCMask)
5824     return SDValue();
5825 
5826   int CCValidVal = CCValid->getZExtValue();
5827   int CCMaskVal = CCMask->getZExtValue();
5828   SDValue CCReg = N->getOperand(4);
5829 
5830   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5831     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5832                        N->getOperand(0),
5833                        N->getOperand(1),
5834                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5835                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5836                        CCReg);
5837   return SDValue();
5838 }
5839 
5840 
5841 SDValue SystemZTargetLowering::combineGET_CCMASK(
5842     SDNode *N, DAGCombinerInfo &DCI) const {
5843 
5844   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
5845   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5846   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5847   if (!CCValid || !CCMask)
5848     return SDValue();
5849   int CCValidVal = CCValid->getZExtValue();
5850   int CCMaskVal = CCMask->getZExtValue();
5851 
5852   SDValue Select = N->getOperand(0);
5853   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5854     return SDValue();
5855 
5856   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5857   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5858   if (!SelectCCValid || !SelectCCMask)
5859     return SDValue();
5860   int SelectCCValidVal = SelectCCValid->getZExtValue();
5861   int SelectCCMaskVal = SelectCCMask->getZExtValue();
5862 
5863   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5864   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5865   if (!TrueVal || !FalseVal)
5866     return SDValue();
5867   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
5868     ;
5869   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
5870     SelectCCMaskVal ^= SelectCCValidVal;
5871   else
5872     return SDValue();
5873 
5874   if (SelectCCValidVal & ~CCValidVal)
5875     return SDValue();
5876   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
5877     return SDValue();
5878 
5879   return Select->getOperand(4);
5880 }
5881 
5882 SDValue SystemZTargetLowering::combineIntDIVREM(
5883     SDNode *N, DAGCombinerInfo &DCI) const {
5884   SelectionDAG &DAG = DCI.DAG;
5885   EVT VT = N->getValueType(0);
5886   // In the case where the divisor is a vector of constants a cheaper
5887   // sequence of instructions can replace the divide. BuildSDIV is called to
5888   // do this during DAG combining, but it only succeeds when it can build a
5889   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
5890   // since it is not Legal but Custom it can only happen before
5891   // legalization. Therefore we must scalarize this early before Combine
5892   // 1. For widened vectors, this is already the result of type legalization.
5893   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
5894       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
5895     return DAG.UnrollVectorOp(N);
5896   return SDValue();
5897 }
5898 
5899 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
5900   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
5901     return N->getOperand(0);
5902   return N;
5903 }
5904 
5905 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5906                                                  DAGCombinerInfo &DCI) const {
5907   switch(N->getOpcode()) {
5908   default: break;
5909   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
5910   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5911   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
5912   case SystemZISD::MERGE_HIGH:
5913   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5914   case ISD::LOAD:               return combineLOAD(N, DCI);
5915   case ISD::STORE:              return combineSTORE(N, DCI);
5916   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5917   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5918   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5919   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
5920   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5921   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
5922   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5923   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
5924   case ISD::SDIV:
5925   case ISD::UDIV:
5926   case ISD::SREM:
5927   case ISD::UREM:               return combineIntDIVREM(N, DCI);
5928   }
5929 
5930   return SDValue();
5931 }
5932 
5933 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
5934 // are for Op.
5935 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
5936                                     unsigned OpNo) {
5937   EVT VT = Op.getValueType();
5938   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
5939   APInt SrcDemE;
5940   unsigned Opcode = Op.getOpcode();
5941   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5942     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5943     switch (Id) {
5944     case Intrinsic::s390_vpksh:   // PACKS
5945     case Intrinsic::s390_vpksf:
5946     case Intrinsic::s390_vpksg:
5947     case Intrinsic::s390_vpkshs:  // PACKS_CC
5948     case Intrinsic::s390_vpksfs:
5949     case Intrinsic::s390_vpksgs:
5950     case Intrinsic::s390_vpklsh:  // PACKLS
5951     case Intrinsic::s390_vpklsf:
5952     case Intrinsic::s390_vpklsg:
5953     case Intrinsic::s390_vpklshs: // PACKLS_CC
5954     case Intrinsic::s390_vpklsfs:
5955     case Intrinsic::s390_vpklsgs:
5956       // VECTOR PACK truncates the elements of two source vectors into one.
5957       SrcDemE = DemandedElts;
5958       if (OpNo == 2)
5959         SrcDemE.lshrInPlace(NumElts / 2);
5960       SrcDemE = SrcDemE.trunc(NumElts / 2);
5961       break;
5962       // VECTOR UNPACK extends half the elements of the source vector.
5963     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5964     case Intrinsic::s390_vuphh:
5965     case Intrinsic::s390_vuphf:
5966     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5967     case Intrinsic::s390_vuplhh:
5968     case Intrinsic::s390_vuplhf:
5969       SrcDemE = APInt(NumElts * 2, 0);
5970       SrcDemE.insertBits(DemandedElts, 0);
5971       break;
5972     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5973     case Intrinsic::s390_vuplhw:
5974     case Intrinsic::s390_vuplf:
5975     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5976     case Intrinsic::s390_vupllh:
5977     case Intrinsic::s390_vupllf:
5978       SrcDemE = APInt(NumElts * 2, 0);
5979       SrcDemE.insertBits(DemandedElts, NumElts);
5980       break;
5981     case Intrinsic::s390_vpdi: {
5982       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
5983       SrcDemE = APInt(NumElts, 0);
5984       if (!DemandedElts[OpNo - 1])
5985         break;
5986       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5987       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
5988       // Demand input element 0 or 1, given by the mask bit value.
5989       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
5990       break;
5991     }
5992     case Intrinsic::s390_vsldb: {
5993       // VECTOR SHIFT LEFT DOUBLE BY BYTE
5994       assert(VT == MVT::v16i8 && "Unexpected type.");
5995       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5996       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
5997       unsigned NumSrc0Els = 16 - FirstIdx;
5998       SrcDemE = APInt(NumElts, 0);
5999       if (OpNo == 1) {
6000         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6001         SrcDemE.insertBits(DemEls, FirstIdx);
6002       } else {
6003         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6004         SrcDemE.insertBits(DemEls, 0);
6005       }
6006       break;
6007     }
6008     case Intrinsic::s390_vperm:
6009       SrcDemE = APInt(NumElts, 1);
6010       break;
6011     default:
6012       llvm_unreachable("Unhandled intrinsic.");
6013       break;
6014     }
6015   } else {
6016     switch (Opcode) {
6017     case SystemZISD::JOIN_DWORDS:
6018       // Scalar operand.
6019       SrcDemE = APInt(1, 1);
6020       break;
6021     case SystemZISD::SELECT_CCMASK:
6022       SrcDemE = DemandedElts;
6023       break;
6024     default:
6025       llvm_unreachable("Unhandled opcode.");
6026       break;
6027     }
6028   }
6029   return SrcDemE;
6030 }
6031 
6032 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6033                                   const APInt &DemandedElts,
6034                                   const SelectionDAG &DAG, unsigned Depth,
6035                                   unsigned OpNo) {
6036   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6037   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6038   KnownBits LHSKnown =
6039       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6040   KnownBits RHSKnown =
6041       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6042   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6043   Known.One = LHSKnown.One & RHSKnown.One;
6044 }
6045 
6046 void
6047 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6048                                                      KnownBits &Known,
6049                                                      const APInt &DemandedElts,
6050                                                      const SelectionDAG &DAG,
6051                                                      unsigned Depth) const {
6052   Known.resetAll();
6053 
6054   // Intrinsic CC result is returned in the two low bits.
6055   unsigned tmp0, tmp1; // not used
6056   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6057     Known.Zero.setBitsFrom(2);
6058     return;
6059   }
6060   EVT VT = Op.getValueType();
6061   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6062     return;
6063   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6064           "KnownBits does not match VT in bitwidth");
6065   assert ((!VT.isVector() ||
6066            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6067           "DemandedElts does not match VT number of elements");
6068   unsigned BitWidth = Known.getBitWidth();
6069   unsigned Opcode = Op.getOpcode();
6070   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6071     bool IsLogical = false;
6072     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6073     switch (Id) {
6074     case Intrinsic::s390_vpksh:   // PACKS
6075     case Intrinsic::s390_vpksf:
6076     case Intrinsic::s390_vpksg:
6077     case Intrinsic::s390_vpkshs:  // PACKS_CC
6078     case Intrinsic::s390_vpksfs:
6079     case Intrinsic::s390_vpksgs:
6080     case Intrinsic::s390_vpklsh:  // PACKLS
6081     case Intrinsic::s390_vpklsf:
6082     case Intrinsic::s390_vpklsg:
6083     case Intrinsic::s390_vpklshs: // PACKLS_CC
6084     case Intrinsic::s390_vpklsfs:
6085     case Intrinsic::s390_vpklsgs:
6086     case Intrinsic::s390_vpdi:
6087     case Intrinsic::s390_vsldb:
6088     case Intrinsic::s390_vperm:
6089       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6090       break;
6091     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6092     case Intrinsic::s390_vuplhh:
6093     case Intrinsic::s390_vuplhf:
6094     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6095     case Intrinsic::s390_vupllh:
6096     case Intrinsic::s390_vupllf:
6097       IsLogical = true;
6098       LLVM_FALLTHROUGH;
6099     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6100     case Intrinsic::s390_vuphh:
6101     case Intrinsic::s390_vuphf:
6102     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6103     case Intrinsic::s390_vuplhw:
6104     case Intrinsic::s390_vuplf: {
6105       SDValue SrcOp = Op.getOperand(1);
6106       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6107       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6108       if (IsLogical) {
6109         Known = Known.zext(BitWidth, true);
6110       } else
6111         Known = Known.sext(BitWidth);
6112       break;
6113     }
6114     default:
6115       break;
6116     }
6117   } else {
6118     switch (Opcode) {
6119     case SystemZISD::JOIN_DWORDS:
6120     case SystemZISD::SELECT_CCMASK:
6121       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6122       break;
6123     case SystemZISD::REPLICATE: {
6124       SDValue SrcOp = Op.getOperand(0);
6125       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6126       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6127         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6128       break;
6129     }
6130     default:
6131       break;
6132     }
6133   }
6134 
6135   // Known has the width of the source operand(s). Adjust if needed to match
6136   // the passed bitwidth.
6137   if (Known.getBitWidth() != BitWidth)
6138     Known = Known.zextOrTrunc(BitWidth, false);
6139 }
6140 
6141 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6142                                         const SelectionDAG &DAG, unsigned Depth,
6143                                         unsigned OpNo) {
6144   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6145   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6146   if (LHS == 1) return 1; // Early out.
6147   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6148   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6149   if (RHS == 1) return 1; // Early out.
6150   unsigned Common = std::min(LHS, RHS);
6151   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6152   EVT VT = Op.getValueType();
6153   unsigned VTBits = VT.getScalarSizeInBits();
6154   if (SrcBitWidth > VTBits) { // PACK
6155     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6156     if (Common > SrcExtraBits)
6157       return (Common - SrcExtraBits);
6158     return 1;
6159   }
6160   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6161   return Common;
6162 }
6163 
6164 unsigned
6165 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6166     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6167     unsigned Depth) const {
6168   if (Op.getResNo() != 0)
6169     return 1;
6170   unsigned Opcode = Op.getOpcode();
6171   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6172     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6173     switch (Id) {
6174     case Intrinsic::s390_vpksh:   // PACKS
6175     case Intrinsic::s390_vpksf:
6176     case Intrinsic::s390_vpksg:
6177     case Intrinsic::s390_vpkshs:  // PACKS_CC
6178     case Intrinsic::s390_vpksfs:
6179     case Intrinsic::s390_vpksgs:
6180     case Intrinsic::s390_vpklsh:  // PACKLS
6181     case Intrinsic::s390_vpklsf:
6182     case Intrinsic::s390_vpklsg:
6183     case Intrinsic::s390_vpklshs: // PACKLS_CC
6184     case Intrinsic::s390_vpklsfs:
6185     case Intrinsic::s390_vpklsgs:
6186     case Intrinsic::s390_vpdi:
6187     case Intrinsic::s390_vsldb:
6188     case Intrinsic::s390_vperm:
6189       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6190     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6191     case Intrinsic::s390_vuphh:
6192     case Intrinsic::s390_vuphf:
6193     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6194     case Intrinsic::s390_vuplhw:
6195     case Intrinsic::s390_vuplf: {
6196       SDValue PackedOp = Op.getOperand(1);
6197       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6198       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6199       EVT VT = Op.getValueType();
6200       unsigned VTBits = VT.getScalarSizeInBits();
6201       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6202       return Tmp;
6203     }
6204     default:
6205       break;
6206     }
6207   } else {
6208     switch (Opcode) {
6209     case SystemZISD::SELECT_CCMASK:
6210       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6211     default:
6212       break;
6213     }
6214   }
6215 
6216   return 1;
6217 }
6218 
6219 //===----------------------------------------------------------------------===//
6220 // Custom insertion
6221 //===----------------------------------------------------------------------===//
6222 
6223 // Create a new basic block after MBB.
6224 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6225   MachineFunction &MF = *MBB->getParent();
6226   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6227   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6228   return NewMBB;
6229 }
6230 
6231 // Split MBB after MI and return the new block (the one that contains
6232 // instructions after MI).
6233 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6234                                           MachineBasicBlock *MBB) {
6235   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6236   NewMBB->splice(NewMBB->begin(), MBB,
6237                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6238   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6239   return NewMBB;
6240 }
6241 
6242 // Split MBB before MI and return the new block (the one that contains MI).
6243 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6244                                            MachineBasicBlock *MBB) {
6245   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6246   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6247   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6248   return NewMBB;
6249 }
6250 
6251 // Force base value Base into a register before MI.  Return the register.
6252 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6253                          const SystemZInstrInfo *TII) {
6254   if (Base.isReg())
6255     return Base.getReg();
6256 
6257   MachineBasicBlock *MBB = MI.getParent();
6258   MachineFunction &MF = *MBB->getParent();
6259   MachineRegisterInfo &MRI = MF.getRegInfo();
6260 
6261   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6262   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6263       .add(Base)
6264       .addImm(0)
6265       .addReg(0);
6266   return Reg;
6267 }
6268 
6269 // The CC operand of MI might be missing a kill marker because there
6270 // were multiple uses of CC, and ISel didn't know which to mark.
6271 // Figure out whether MI should have had a kill marker.
6272 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6273   // Scan forward through BB for a use/def of CC.
6274   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6275   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6276     const MachineInstr& mi = *miI;
6277     if (mi.readsRegister(SystemZ::CC))
6278       return false;
6279     if (mi.definesRegister(SystemZ::CC))
6280       break; // Should have kill-flag - update below.
6281   }
6282 
6283   // If we hit the end of the block, check whether CC is live into a
6284   // successor.
6285   if (miI == MBB->end()) {
6286     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6287       if ((*SI)->isLiveIn(SystemZ::CC))
6288         return false;
6289   }
6290 
6291   return true;
6292 }
6293 
6294 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6295 // together with other Select pseudo-opcodes into a single basic-block with
6296 // a conditional jump around it.
6297 static bool isSelectPseudo(MachineInstr &MI) {
6298   switch (MI.getOpcode()) {
6299   case SystemZ::Select32:
6300   case SystemZ::Select64:
6301   case SystemZ::SelectF32:
6302   case SystemZ::SelectF64:
6303   case SystemZ::SelectF128:
6304   case SystemZ::SelectVR32:
6305   case SystemZ::SelectVR64:
6306   case SystemZ::SelectVR128:
6307     return true;
6308 
6309   default:
6310     return false;
6311   }
6312 }
6313 
6314 // Helper function, which inserts PHI functions into SinkMBB:
6315 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6316 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6317 // in [MIItBegin, MIItEnd) range.
6318 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6319                                  MachineBasicBlock::iterator MIItEnd,
6320                                  MachineBasicBlock *TrueMBB,
6321                                  MachineBasicBlock *FalseMBB,
6322                                  MachineBasicBlock *SinkMBB) {
6323   MachineFunction *MF = TrueMBB->getParent();
6324   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6325 
6326   unsigned CCValid = MIItBegin->getOperand(3).getImm();
6327   unsigned CCMask = MIItBegin->getOperand(4).getImm();
6328   DebugLoc DL = MIItBegin->getDebugLoc();
6329 
6330   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6331 
6332   // As we are creating the PHIs, we have to be careful if there is more than
6333   // one.  Later Selects may reference the results of earlier Selects, but later
6334   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6335   // That also means that PHI construction must work forward from earlier to
6336   // later, and that the code must maintain a mapping from earlier PHI's
6337   // destination registers, and the registers that went into the PHI.
6338   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6339 
6340   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;
6341        MIIt = skipDebugInstructionsForward(++MIIt, MIItEnd)) {
6342     unsigned DestReg = MIIt->getOperand(0).getReg();
6343     unsigned TrueReg = MIIt->getOperand(1).getReg();
6344     unsigned FalseReg = MIIt->getOperand(2).getReg();
6345 
6346     // If this Select we are generating is the opposite condition from
6347     // the jump we generated, then we have to swap the operands for the
6348     // PHI that is going to be generated.
6349     if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6350       std::swap(TrueReg, FalseReg);
6351 
6352     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6353       TrueReg = RegRewriteTable[TrueReg].first;
6354 
6355     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6356       FalseReg = RegRewriteTable[FalseReg].second;
6357 
6358     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6359       .addReg(TrueReg).addMBB(TrueMBB)
6360       .addReg(FalseReg).addMBB(FalseMBB);
6361 
6362     // Add this PHI to the rewrite table.
6363     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6364   }
6365 
6366   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6367 }
6368 
6369 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6370 MachineBasicBlock *
6371 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6372                                   MachineBasicBlock *MBB) const {
6373   const SystemZInstrInfo *TII =
6374       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6375 
6376   unsigned CCValid = MI.getOperand(3).getImm();
6377   unsigned CCMask = MI.getOperand(4).getImm();
6378   DebugLoc DL = MI.getDebugLoc();
6379 
6380   // If we have a sequence of Select* pseudo instructions using the
6381   // same condition code value, we want to expand all of them into
6382   // a single pair of basic blocks using the same condition.
6383   MachineInstr *LastMI = &MI;
6384   MachineBasicBlock::iterator NextMIIt = skipDebugInstructionsForward(
6385       std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6386 
6387   if (isSelectPseudo(MI))
6388     while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6389            NextMIIt->getOperand(3).getImm() == CCValid &&
6390            (NextMIIt->getOperand(4).getImm() == CCMask ||
6391             NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6392       LastMI = &*NextMIIt;
6393       NextMIIt = skipDebugInstructionsForward(++NextMIIt, MBB->end());
6394     }
6395 
6396   MachineBasicBlock *StartMBB = MBB;
6397   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6398   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6399 
6400   // Unless CC was killed in the last Select instruction, mark it as
6401   // live-in to both FalseMBB and JoinMBB.
6402   if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6403     FalseMBB->addLiveIn(SystemZ::CC);
6404     JoinMBB->addLiveIn(SystemZ::CC);
6405   }
6406 
6407   //  StartMBB:
6408   //   BRC CCMask, JoinMBB
6409   //   # fallthrough to FalseMBB
6410   MBB = StartMBB;
6411   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6412     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6413   MBB->addSuccessor(JoinMBB);
6414   MBB->addSuccessor(FalseMBB);
6415 
6416   //  FalseMBB:
6417   //   # fallthrough to JoinMBB
6418   MBB = FalseMBB;
6419   MBB->addSuccessor(JoinMBB);
6420 
6421   //  JoinMBB:
6422   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6423   //  ...
6424   MBB = JoinMBB;
6425   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6426   MachineBasicBlock::iterator MIItEnd = skipDebugInstructionsForward(
6427       std::next(MachineBasicBlock::iterator(LastMI)), MBB->end());
6428   createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6429 
6430   StartMBB->erase(MIItBegin, MIItEnd);
6431   return JoinMBB;
6432 }
6433 
6434 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6435 // StoreOpcode is the store to use and Invert says whether the store should
6436 // happen when the condition is false rather than true.  If a STORE ON
6437 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6438 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6439                                                         MachineBasicBlock *MBB,
6440                                                         unsigned StoreOpcode,
6441                                                         unsigned STOCOpcode,
6442                                                         bool Invert) const {
6443   const SystemZInstrInfo *TII =
6444       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6445 
6446   unsigned SrcReg = MI.getOperand(0).getReg();
6447   MachineOperand Base = MI.getOperand(1);
6448   int64_t Disp = MI.getOperand(2).getImm();
6449   unsigned IndexReg = MI.getOperand(3).getReg();
6450   unsigned CCValid = MI.getOperand(4).getImm();
6451   unsigned CCMask = MI.getOperand(5).getImm();
6452   DebugLoc DL = MI.getDebugLoc();
6453 
6454   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6455 
6456   // Use STOCOpcode if possible.  We could use different store patterns in
6457   // order to avoid matching the index register, but the performance trade-offs
6458   // might be more complicated in that case.
6459   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6460     if (Invert)
6461       CCMask ^= CCValid;
6462 
6463     // ISel pattern matching also adds a load memory operand of the same
6464     // address, so take special care to find the storing memory operand.
6465     MachineMemOperand *MMO = nullptr;
6466     for (auto *I : MI.memoperands())
6467       if (I->isStore()) {
6468           MMO = I;
6469           break;
6470         }
6471 
6472     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6473       .addReg(SrcReg)
6474       .add(Base)
6475       .addImm(Disp)
6476       .addImm(CCValid)
6477       .addImm(CCMask)
6478       .addMemOperand(MMO);
6479 
6480     MI.eraseFromParent();
6481     return MBB;
6482   }
6483 
6484   // Get the condition needed to branch around the store.
6485   if (!Invert)
6486     CCMask ^= CCValid;
6487 
6488   MachineBasicBlock *StartMBB = MBB;
6489   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6490   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6491 
6492   // Unless CC was killed in the CondStore instruction, mark it as
6493   // live-in to both FalseMBB and JoinMBB.
6494   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6495     FalseMBB->addLiveIn(SystemZ::CC);
6496     JoinMBB->addLiveIn(SystemZ::CC);
6497   }
6498 
6499   //  StartMBB:
6500   //   BRC CCMask, JoinMBB
6501   //   # fallthrough to FalseMBB
6502   MBB = StartMBB;
6503   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6504     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6505   MBB->addSuccessor(JoinMBB);
6506   MBB->addSuccessor(FalseMBB);
6507 
6508   //  FalseMBB:
6509   //   store %SrcReg, %Disp(%Index,%Base)
6510   //   # fallthrough to JoinMBB
6511   MBB = FalseMBB;
6512   BuildMI(MBB, DL, TII->get(StoreOpcode))
6513       .addReg(SrcReg)
6514       .add(Base)
6515       .addImm(Disp)
6516       .addReg(IndexReg);
6517   MBB->addSuccessor(JoinMBB);
6518 
6519   MI.eraseFromParent();
6520   return JoinMBB;
6521 }
6522 
6523 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6524 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
6525 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6526 // BitSize is the width of the field in bits, or 0 if this is a partword
6527 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6528 // is one of the operands.  Invert says whether the field should be
6529 // inverted after performing BinOpcode (e.g. for NAND).
6530 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6531     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6532     unsigned BitSize, bool Invert) const {
6533   MachineFunction &MF = *MBB->getParent();
6534   const SystemZInstrInfo *TII =
6535       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6536   MachineRegisterInfo &MRI = MF.getRegInfo();
6537   bool IsSubWord = (BitSize < 32);
6538 
6539   // Extract the operands.  Base can be a register or a frame index.
6540   // Src2 can be a register or immediate.
6541   unsigned Dest = MI.getOperand(0).getReg();
6542   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6543   int64_t Disp = MI.getOperand(2).getImm();
6544   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6545   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
6546   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
6547   DebugLoc DL = MI.getDebugLoc();
6548   if (IsSubWord)
6549     BitSize = MI.getOperand(6).getImm();
6550 
6551   // Subword operations use 32-bit registers.
6552   const TargetRegisterClass *RC = (BitSize <= 32 ?
6553                                    &SystemZ::GR32BitRegClass :
6554                                    &SystemZ::GR64BitRegClass);
6555   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6556   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6557 
6558   // Get the right opcodes for the displacement.
6559   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6560   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6561   assert(LOpcode && CSOpcode && "Displacement out of range");
6562 
6563   // Create virtual registers for temporary results.
6564   Register OrigVal       = MRI.createVirtualRegister(RC);
6565   Register OldVal        = MRI.createVirtualRegister(RC);
6566   Register NewVal        = (BinOpcode || IsSubWord ?
6567                             MRI.createVirtualRegister(RC) : Src2.getReg());
6568   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6569   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6570 
6571   // Insert a basic block for the main loop.
6572   MachineBasicBlock *StartMBB = MBB;
6573   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6574   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6575 
6576   //  StartMBB:
6577   //   ...
6578   //   %OrigVal = L Disp(%Base)
6579   //   # fall through to LoopMMB
6580   MBB = StartMBB;
6581   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6582   MBB->addSuccessor(LoopMBB);
6583 
6584   //  LoopMBB:
6585   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6586   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6587   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
6588   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6589   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6590   //   JNE LoopMBB
6591   //   # fall through to DoneMMB
6592   MBB = LoopMBB;
6593   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6594     .addReg(OrigVal).addMBB(StartMBB)
6595     .addReg(Dest).addMBB(LoopMBB);
6596   if (IsSubWord)
6597     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6598       .addReg(OldVal).addReg(BitShift).addImm(0);
6599   if (Invert) {
6600     // Perform the operation normally and then invert every bit of the field.
6601     unsigned Tmp = MRI.createVirtualRegister(RC);
6602     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6603     if (BitSize <= 32)
6604       // XILF with the upper BitSize bits set.
6605       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6606         .addReg(Tmp).addImm(-1U << (32 - BitSize));
6607     else {
6608       // Use LCGR and add -1 to the result, which is more compact than
6609       // an XILF, XILH pair.
6610       unsigned Tmp2 = MRI.createVirtualRegister(RC);
6611       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6612       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6613         .addReg(Tmp2).addImm(-1);
6614     }
6615   } else if (BinOpcode)
6616     // A simply binary operation.
6617     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6618         .addReg(RotatedOldVal)
6619         .add(Src2);
6620   else if (IsSubWord)
6621     // Use RISBG to rotate Src2 into position and use it to replace the
6622     // field in RotatedOldVal.
6623     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6624       .addReg(RotatedOldVal).addReg(Src2.getReg())
6625       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6626   if (IsSubWord)
6627     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6628       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6629   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6630       .addReg(OldVal)
6631       .addReg(NewVal)
6632       .add(Base)
6633       .addImm(Disp);
6634   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6635     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6636   MBB->addSuccessor(LoopMBB);
6637   MBB->addSuccessor(DoneMBB);
6638 
6639   MI.eraseFromParent();
6640   return DoneMBB;
6641 }
6642 
6643 // Implement EmitInstrWithCustomInserter for pseudo
6644 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
6645 // instruction that should be used to compare the current field with the
6646 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
6647 // for when the current field should be kept.  BitSize is the width of
6648 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
6649 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6650     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6651     unsigned KeepOldMask, unsigned BitSize) const {
6652   MachineFunction &MF = *MBB->getParent();
6653   const SystemZInstrInfo *TII =
6654       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6655   MachineRegisterInfo &MRI = MF.getRegInfo();
6656   bool IsSubWord = (BitSize < 32);
6657 
6658   // Extract the operands.  Base can be a register or a frame index.
6659   unsigned Dest = MI.getOperand(0).getReg();
6660   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6661   int64_t Disp = MI.getOperand(2).getImm();
6662   Register Src2 = MI.getOperand(3).getReg();
6663   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
6664   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
6665   DebugLoc DL = MI.getDebugLoc();
6666   if (IsSubWord)
6667     BitSize = MI.getOperand(6).getImm();
6668 
6669   // Subword operations use 32-bit registers.
6670   const TargetRegisterClass *RC = (BitSize <= 32 ?
6671                                    &SystemZ::GR32BitRegClass :
6672                                    &SystemZ::GR64BitRegClass);
6673   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6674   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6675 
6676   // Get the right opcodes for the displacement.
6677   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6678   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6679   assert(LOpcode && CSOpcode && "Displacement out of range");
6680 
6681   // Create virtual registers for temporary results.
6682   Register OrigVal       = MRI.createVirtualRegister(RC);
6683   Register OldVal        = MRI.createVirtualRegister(RC);
6684   Register NewVal        = MRI.createVirtualRegister(RC);
6685   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6686   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6687   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6688 
6689   // Insert 3 basic blocks for the loop.
6690   MachineBasicBlock *StartMBB  = MBB;
6691   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
6692   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
6693   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6694   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6695 
6696   //  StartMBB:
6697   //   ...
6698   //   %OrigVal     = L Disp(%Base)
6699   //   # fall through to LoopMMB
6700   MBB = StartMBB;
6701   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6702   MBB->addSuccessor(LoopMBB);
6703 
6704   //  LoopMBB:
6705   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6706   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6707   //   CompareOpcode %RotatedOldVal, %Src2
6708   //   BRC KeepOldMask, UpdateMBB
6709   MBB = LoopMBB;
6710   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6711     .addReg(OrigVal).addMBB(StartMBB)
6712     .addReg(Dest).addMBB(UpdateMBB);
6713   if (IsSubWord)
6714     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6715       .addReg(OldVal).addReg(BitShift).addImm(0);
6716   BuildMI(MBB, DL, TII->get(CompareOpcode))
6717     .addReg(RotatedOldVal).addReg(Src2);
6718   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6719     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6720   MBB->addSuccessor(UpdateMBB);
6721   MBB->addSuccessor(UseAltMBB);
6722 
6723   //  UseAltMBB:
6724   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6725   //   # fall through to UpdateMMB
6726   MBB = UseAltMBB;
6727   if (IsSubWord)
6728     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6729       .addReg(RotatedOldVal).addReg(Src2)
6730       .addImm(32).addImm(31 + BitSize).addImm(0);
6731   MBB->addSuccessor(UpdateMBB);
6732 
6733   //  UpdateMBB:
6734   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6735   //                        [ %RotatedAltVal, UseAltMBB ]
6736   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6737   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6738   //   JNE LoopMBB
6739   //   # fall through to DoneMMB
6740   MBB = UpdateMBB;
6741   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6742     .addReg(RotatedOldVal).addMBB(LoopMBB)
6743     .addReg(RotatedAltVal).addMBB(UseAltMBB);
6744   if (IsSubWord)
6745     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6746       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6747   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6748       .addReg(OldVal)
6749       .addReg(NewVal)
6750       .add(Base)
6751       .addImm(Disp);
6752   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6753     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6754   MBB->addSuccessor(LoopMBB);
6755   MBB->addSuccessor(DoneMBB);
6756 
6757   MI.eraseFromParent();
6758   return DoneMBB;
6759 }
6760 
6761 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6762 // instruction MI.
6763 MachineBasicBlock *
6764 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6765                                           MachineBasicBlock *MBB) const {
6766 
6767   MachineFunction &MF = *MBB->getParent();
6768   const SystemZInstrInfo *TII =
6769       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6770   MachineRegisterInfo &MRI = MF.getRegInfo();
6771 
6772   // Extract the operands.  Base can be a register or a frame index.
6773   unsigned Dest = MI.getOperand(0).getReg();
6774   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6775   int64_t Disp = MI.getOperand(2).getImm();
6776   unsigned OrigCmpVal = MI.getOperand(3).getReg();
6777   unsigned OrigSwapVal = MI.getOperand(4).getReg();
6778   unsigned BitShift = MI.getOperand(5).getReg();
6779   unsigned NegBitShift = MI.getOperand(6).getReg();
6780   int64_t BitSize = MI.getOperand(7).getImm();
6781   DebugLoc DL = MI.getDebugLoc();
6782 
6783   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6784 
6785   // Get the right opcodes for the displacement.
6786   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
6787   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6788   assert(LOpcode && CSOpcode && "Displacement out of range");
6789 
6790   // Create virtual registers for temporary results.
6791   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
6792   unsigned OldVal       = MRI.createVirtualRegister(RC);
6793   unsigned CmpVal       = MRI.createVirtualRegister(RC);
6794   unsigned SwapVal      = MRI.createVirtualRegister(RC);
6795   unsigned StoreVal     = MRI.createVirtualRegister(RC);
6796   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
6797   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
6798   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6799 
6800   // Insert 2 basic blocks for the loop.
6801   MachineBasicBlock *StartMBB = MBB;
6802   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6803   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6804   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
6805 
6806   //  StartMBB:
6807   //   ...
6808   //   %OrigOldVal     = L Disp(%Base)
6809   //   # fall through to LoopMMB
6810   MBB = StartMBB;
6811   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6812       .add(Base)
6813       .addImm(Disp)
6814       .addReg(0);
6815   MBB->addSuccessor(LoopMBB);
6816 
6817   //  LoopMBB:
6818   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6819   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6820   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6821   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
6822   //                      ^^ The low BitSize bits contain the field
6823   //                         of interest.
6824   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6825   //                      ^^ Replace the upper 32-BitSize bits of the
6826   //                         comparison value with those that we loaded,
6827   //                         so that we can use a full word comparison.
6828   //   CR %Dest, %RetryCmpVal
6829   //   JNE DoneMBB
6830   //   # Fall through to SetMBB
6831   MBB = LoopMBB;
6832   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6833     .addReg(OrigOldVal).addMBB(StartMBB)
6834     .addReg(RetryOldVal).addMBB(SetMBB);
6835   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6836     .addReg(OrigCmpVal).addMBB(StartMBB)
6837     .addReg(RetryCmpVal).addMBB(SetMBB);
6838   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6839     .addReg(OrigSwapVal).addMBB(StartMBB)
6840     .addReg(RetrySwapVal).addMBB(SetMBB);
6841   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6842     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6843   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6844     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6845   BuildMI(MBB, DL, TII->get(SystemZ::CR))
6846     .addReg(Dest).addReg(RetryCmpVal);
6847   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6848     .addImm(SystemZ::CCMASK_ICMP)
6849     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6850   MBB->addSuccessor(DoneMBB);
6851   MBB->addSuccessor(SetMBB);
6852 
6853   //  SetMBB:
6854   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6855   //                      ^^ Replace the upper 32-BitSize bits of the new
6856   //                         value with those that we loaded.
6857   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6858   //                      ^^ Rotate the new field to its proper position.
6859   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6860   //   JNE LoopMBB
6861   //   # fall through to ExitMMB
6862   MBB = SetMBB;
6863   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6864     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6865   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6866     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6867   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6868       .addReg(OldVal)
6869       .addReg(StoreVal)
6870       .add(Base)
6871       .addImm(Disp);
6872   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6873     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6874   MBB->addSuccessor(LoopMBB);
6875   MBB->addSuccessor(DoneMBB);
6876 
6877   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6878   // to the block after the loop.  At this point, CC may have been defined
6879   // either by the CR in LoopMBB or by the CS in SetMBB.
6880   if (!MI.registerDefIsDead(SystemZ::CC))
6881     DoneMBB->addLiveIn(SystemZ::CC);
6882 
6883   MI.eraseFromParent();
6884   return DoneMBB;
6885 }
6886 
6887 // Emit a move from two GR64s to a GR128.
6888 MachineBasicBlock *
6889 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6890                                    MachineBasicBlock *MBB) const {
6891   MachineFunction &MF = *MBB->getParent();
6892   const SystemZInstrInfo *TII =
6893       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6894   MachineRegisterInfo &MRI = MF.getRegInfo();
6895   DebugLoc DL = MI.getDebugLoc();
6896 
6897   unsigned Dest = MI.getOperand(0).getReg();
6898   unsigned Hi = MI.getOperand(1).getReg();
6899   unsigned Lo = MI.getOperand(2).getReg();
6900   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6901   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6902 
6903   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6904   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6905     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6906   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6907     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6908 
6909   MI.eraseFromParent();
6910   return MBB;
6911 }
6912 
6913 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6914 // if the high register of the GR128 value must be cleared or false if
6915 // it's "don't care".
6916 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6917                                                      MachineBasicBlock *MBB,
6918                                                      bool ClearEven) const {
6919   MachineFunction &MF = *MBB->getParent();
6920   const SystemZInstrInfo *TII =
6921       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6922   MachineRegisterInfo &MRI = MF.getRegInfo();
6923   DebugLoc DL = MI.getDebugLoc();
6924 
6925   unsigned Dest = MI.getOperand(0).getReg();
6926   unsigned Src = MI.getOperand(1).getReg();
6927   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6928 
6929   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6930   if (ClearEven) {
6931     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6932     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6933 
6934     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6935       .addImm(0);
6936     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6937       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6938     In128 = NewIn128;
6939   }
6940   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6941     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6942 
6943   MI.eraseFromParent();
6944   return MBB;
6945 }
6946 
6947 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6948     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6949   MachineFunction &MF = *MBB->getParent();
6950   const SystemZInstrInfo *TII =
6951       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6952   MachineRegisterInfo &MRI = MF.getRegInfo();
6953   DebugLoc DL = MI.getDebugLoc();
6954 
6955   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6956   uint64_t DestDisp = MI.getOperand(1).getImm();
6957   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6958   uint64_t SrcDisp = MI.getOperand(3).getImm();
6959   uint64_t Length = MI.getOperand(4).getImm();
6960 
6961   // When generating more than one CLC, all but the last will need to
6962   // branch to the end when a difference is found.
6963   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6964                                splitBlockAfter(MI, MBB) : nullptr);
6965 
6966   // Check for the loop form, in which operand 5 is the trip count.
6967   if (MI.getNumExplicitOperands() > 5) {
6968     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6969 
6970     Register StartCountReg = MI.getOperand(5).getReg();
6971     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
6972     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
6973                               forceReg(MI, DestBase, TII));
6974 
6975     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6976     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
6977     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6978                             MRI.createVirtualRegister(RC));
6979     Register NextSrcReg  = MRI.createVirtualRegister(RC);
6980     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
6981                             MRI.createVirtualRegister(RC));
6982 
6983     RC = &SystemZ::GR64BitRegClass;
6984     Register ThisCountReg = MRI.createVirtualRegister(RC);
6985     Register NextCountReg = MRI.createVirtualRegister(RC);
6986 
6987     MachineBasicBlock *StartMBB = MBB;
6988     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6989     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6990     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6991 
6992     //  StartMBB:
6993     //   # fall through to LoopMMB
6994     MBB->addSuccessor(LoopMBB);
6995 
6996     //  LoopMBB:
6997     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6998     //                      [ %NextDestReg, NextMBB ]
6999     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7000     //                     [ %NextSrcReg, NextMBB ]
7001     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7002     //                       [ %NextCountReg, NextMBB ]
7003     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7004     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7005     //   ( JLH EndMBB )
7006     //
7007     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7008     MBB = LoopMBB;
7009 
7010     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7011       .addReg(StartDestReg).addMBB(StartMBB)
7012       .addReg(NextDestReg).addMBB(NextMBB);
7013     if (!HaveSingleBase)
7014       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7015         .addReg(StartSrcReg).addMBB(StartMBB)
7016         .addReg(NextSrcReg).addMBB(NextMBB);
7017     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7018       .addReg(StartCountReg).addMBB(StartMBB)
7019       .addReg(NextCountReg).addMBB(NextMBB);
7020     if (Opcode == SystemZ::MVC)
7021       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7022         .addImm(SystemZ::PFD_WRITE)
7023         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7024     BuildMI(MBB, DL, TII->get(Opcode))
7025       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7026       .addReg(ThisSrcReg).addImm(SrcDisp);
7027     if (EndMBB) {
7028       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7029         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7030         .addMBB(EndMBB);
7031       MBB->addSuccessor(EndMBB);
7032       MBB->addSuccessor(NextMBB);
7033     }
7034 
7035     // NextMBB:
7036     //   %NextDestReg = LA 256(%ThisDestReg)
7037     //   %NextSrcReg = LA 256(%ThisSrcReg)
7038     //   %NextCountReg = AGHI %ThisCountReg, -1
7039     //   CGHI %NextCountReg, 0
7040     //   JLH LoopMBB
7041     //   # fall through to DoneMMB
7042     //
7043     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7044     MBB = NextMBB;
7045 
7046     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7047       .addReg(ThisDestReg).addImm(256).addReg(0);
7048     if (!HaveSingleBase)
7049       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7050         .addReg(ThisSrcReg).addImm(256).addReg(0);
7051     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7052       .addReg(ThisCountReg).addImm(-1);
7053     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7054       .addReg(NextCountReg).addImm(0);
7055     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7056       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7057       .addMBB(LoopMBB);
7058     MBB->addSuccessor(LoopMBB);
7059     MBB->addSuccessor(DoneMBB);
7060 
7061     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7062     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7063     Length &= 255;
7064     if (EndMBB && !Length)
7065       // If the loop handled the whole CLC range, DoneMBB will be empty with
7066       // CC live-through into EndMBB, so add it as live-in.
7067       DoneMBB->addLiveIn(SystemZ::CC);
7068     MBB = DoneMBB;
7069   }
7070   // Handle any remaining bytes with straight-line code.
7071   while (Length > 0) {
7072     uint64_t ThisLength = std::min(Length, uint64_t(256));
7073     // The previous iteration might have created out-of-range displacements.
7074     // Apply them using LAY if so.
7075     if (!isUInt<12>(DestDisp)) {
7076       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7077       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7078           .add(DestBase)
7079           .addImm(DestDisp)
7080           .addReg(0);
7081       DestBase = MachineOperand::CreateReg(Reg, false);
7082       DestDisp = 0;
7083     }
7084     if (!isUInt<12>(SrcDisp)) {
7085       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7086       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7087           .add(SrcBase)
7088           .addImm(SrcDisp)
7089           .addReg(0);
7090       SrcBase = MachineOperand::CreateReg(Reg, false);
7091       SrcDisp = 0;
7092     }
7093     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7094         .add(DestBase)
7095         .addImm(DestDisp)
7096         .addImm(ThisLength)
7097         .add(SrcBase)
7098         .addImm(SrcDisp)
7099         .setMemRefs(MI.memoperands());
7100     DestDisp += ThisLength;
7101     SrcDisp += ThisLength;
7102     Length -= ThisLength;
7103     // If there's another CLC to go, branch to the end if a difference
7104     // was found.
7105     if (EndMBB && Length > 0) {
7106       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7107       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7108         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7109         .addMBB(EndMBB);
7110       MBB->addSuccessor(EndMBB);
7111       MBB->addSuccessor(NextMBB);
7112       MBB = NextMBB;
7113     }
7114   }
7115   if (EndMBB) {
7116     MBB->addSuccessor(EndMBB);
7117     MBB = EndMBB;
7118     MBB->addLiveIn(SystemZ::CC);
7119   }
7120 
7121   MI.eraseFromParent();
7122   return MBB;
7123 }
7124 
7125 // Decompose string pseudo-instruction MI into a loop that continually performs
7126 // Opcode until CC != 3.
7127 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7128     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7129   MachineFunction &MF = *MBB->getParent();
7130   const SystemZInstrInfo *TII =
7131       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7132   MachineRegisterInfo &MRI = MF.getRegInfo();
7133   DebugLoc DL = MI.getDebugLoc();
7134 
7135   uint64_t End1Reg = MI.getOperand(0).getReg();
7136   uint64_t Start1Reg = MI.getOperand(1).getReg();
7137   uint64_t Start2Reg = MI.getOperand(2).getReg();
7138   uint64_t CharReg = MI.getOperand(3).getReg();
7139 
7140   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7141   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7142   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7143   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7144 
7145   MachineBasicBlock *StartMBB = MBB;
7146   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7147   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7148 
7149   //  StartMBB:
7150   //   # fall through to LoopMMB
7151   MBB->addSuccessor(LoopMBB);
7152 
7153   //  LoopMBB:
7154   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7155   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7156   //   R0L = %CharReg
7157   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7158   //   JO LoopMBB
7159   //   # fall through to DoneMMB
7160   //
7161   // The load of R0L can be hoisted by post-RA LICM.
7162   MBB = LoopMBB;
7163 
7164   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7165     .addReg(Start1Reg).addMBB(StartMBB)
7166     .addReg(End1Reg).addMBB(LoopMBB);
7167   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7168     .addReg(Start2Reg).addMBB(StartMBB)
7169     .addReg(End2Reg).addMBB(LoopMBB);
7170   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7171   BuildMI(MBB, DL, TII->get(Opcode))
7172     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7173     .addReg(This1Reg).addReg(This2Reg);
7174   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7175     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7176   MBB->addSuccessor(LoopMBB);
7177   MBB->addSuccessor(DoneMBB);
7178 
7179   DoneMBB->addLiveIn(SystemZ::CC);
7180 
7181   MI.eraseFromParent();
7182   return DoneMBB;
7183 }
7184 
7185 // Update TBEGIN instruction with final opcode and register clobbers.
7186 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7187     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7188     bool NoFloat) const {
7189   MachineFunction &MF = *MBB->getParent();
7190   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7191   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7192 
7193   // Update opcode.
7194   MI.setDesc(TII->get(Opcode));
7195 
7196   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7197   // Make sure to add the corresponding GRSM bits if they are missing.
7198   uint64_t Control = MI.getOperand(2).getImm();
7199   static const unsigned GPRControlBit[16] = {
7200     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7201     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7202   };
7203   Control |= GPRControlBit[15];
7204   if (TFI->hasFP(MF))
7205     Control |= GPRControlBit[11];
7206   MI.getOperand(2).setImm(Control);
7207 
7208   // Add GPR clobbers.
7209   for (int I = 0; I < 16; I++) {
7210     if ((Control & GPRControlBit[I]) == 0) {
7211       unsigned Reg = SystemZMC::GR64Regs[I];
7212       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7213     }
7214   }
7215 
7216   // Add FPR/VR clobbers.
7217   if (!NoFloat && (Control & 4) != 0) {
7218     if (Subtarget.hasVector()) {
7219       for (int I = 0; I < 32; I++) {
7220         unsigned Reg = SystemZMC::VR128Regs[I];
7221         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7222       }
7223     } else {
7224       for (int I = 0; I < 16; I++) {
7225         unsigned Reg = SystemZMC::FP64Regs[I];
7226         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7227       }
7228     }
7229   }
7230 
7231   return MBB;
7232 }
7233 
7234 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7235     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7236   MachineFunction &MF = *MBB->getParent();
7237   MachineRegisterInfo *MRI = &MF.getRegInfo();
7238   const SystemZInstrInfo *TII =
7239       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7240   DebugLoc DL = MI.getDebugLoc();
7241 
7242   unsigned SrcReg = MI.getOperand(0).getReg();
7243 
7244   // Create new virtual register of the same class as source.
7245   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7246   unsigned DstReg = MRI->createVirtualRegister(RC);
7247 
7248   // Replace pseudo with a normal load-and-test that models the def as
7249   // well.
7250   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7251     .addReg(SrcReg);
7252   MI.eraseFromParent();
7253 
7254   return MBB;
7255 }
7256 
7257 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7258     MachineInstr &MI, MachineBasicBlock *MBB) const {
7259   switch (MI.getOpcode()) {
7260   case SystemZ::Select32:
7261   case SystemZ::Select64:
7262   case SystemZ::SelectF32:
7263   case SystemZ::SelectF64:
7264   case SystemZ::SelectF128:
7265   case SystemZ::SelectVR32:
7266   case SystemZ::SelectVR64:
7267   case SystemZ::SelectVR128:
7268     return emitSelect(MI, MBB);
7269 
7270   case SystemZ::CondStore8Mux:
7271     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7272   case SystemZ::CondStore8MuxInv:
7273     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7274   case SystemZ::CondStore16Mux:
7275     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7276   case SystemZ::CondStore16MuxInv:
7277     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7278   case SystemZ::CondStore32Mux:
7279     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7280   case SystemZ::CondStore32MuxInv:
7281     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7282   case SystemZ::CondStore8:
7283     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7284   case SystemZ::CondStore8Inv:
7285     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7286   case SystemZ::CondStore16:
7287     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7288   case SystemZ::CondStore16Inv:
7289     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7290   case SystemZ::CondStore32:
7291     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7292   case SystemZ::CondStore32Inv:
7293     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7294   case SystemZ::CondStore64:
7295     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7296   case SystemZ::CondStore64Inv:
7297     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7298   case SystemZ::CondStoreF32:
7299     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7300   case SystemZ::CondStoreF32Inv:
7301     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7302   case SystemZ::CondStoreF64:
7303     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7304   case SystemZ::CondStoreF64Inv:
7305     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7306 
7307   case SystemZ::PAIR128:
7308     return emitPair128(MI, MBB);
7309   case SystemZ::AEXT128:
7310     return emitExt128(MI, MBB, false);
7311   case SystemZ::ZEXT128:
7312     return emitExt128(MI, MBB, true);
7313 
7314   case SystemZ::ATOMIC_SWAPW:
7315     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7316   case SystemZ::ATOMIC_SWAP_32:
7317     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7318   case SystemZ::ATOMIC_SWAP_64:
7319     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7320 
7321   case SystemZ::ATOMIC_LOADW_AR:
7322     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7323   case SystemZ::ATOMIC_LOADW_AFI:
7324     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7325   case SystemZ::ATOMIC_LOAD_AR:
7326     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7327   case SystemZ::ATOMIC_LOAD_AHI:
7328     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7329   case SystemZ::ATOMIC_LOAD_AFI:
7330     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7331   case SystemZ::ATOMIC_LOAD_AGR:
7332     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7333   case SystemZ::ATOMIC_LOAD_AGHI:
7334     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7335   case SystemZ::ATOMIC_LOAD_AGFI:
7336     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7337 
7338   case SystemZ::ATOMIC_LOADW_SR:
7339     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7340   case SystemZ::ATOMIC_LOAD_SR:
7341     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7342   case SystemZ::ATOMIC_LOAD_SGR:
7343     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7344 
7345   case SystemZ::ATOMIC_LOADW_NR:
7346     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7347   case SystemZ::ATOMIC_LOADW_NILH:
7348     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7349   case SystemZ::ATOMIC_LOAD_NR:
7350     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7351   case SystemZ::ATOMIC_LOAD_NILL:
7352     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7353   case SystemZ::ATOMIC_LOAD_NILH:
7354     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7355   case SystemZ::ATOMIC_LOAD_NILF:
7356     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7357   case SystemZ::ATOMIC_LOAD_NGR:
7358     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7359   case SystemZ::ATOMIC_LOAD_NILL64:
7360     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7361   case SystemZ::ATOMIC_LOAD_NILH64:
7362     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7363   case SystemZ::ATOMIC_LOAD_NIHL64:
7364     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7365   case SystemZ::ATOMIC_LOAD_NIHH64:
7366     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7367   case SystemZ::ATOMIC_LOAD_NILF64:
7368     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7369   case SystemZ::ATOMIC_LOAD_NIHF64:
7370     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7371 
7372   case SystemZ::ATOMIC_LOADW_OR:
7373     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7374   case SystemZ::ATOMIC_LOADW_OILH:
7375     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7376   case SystemZ::ATOMIC_LOAD_OR:
7377     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7378   case SystemZ::ATOMIC_LOAD_OILL:
7379     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7380   case SystemZ::ATOMIC_LOAD_OILH:
7381     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7382   case SystemZ::ATOMIC_LOAD_OILF:
7383     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7384   case SystemZ::ATOMIC_LOAD_OGR:
7385     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7386   case SystemZ::ATOMIC_LOAD_OILL64:
7387     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7388   case SystemZ::ATOMIC_LOAD_OILH64:
7389     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7390   case SystemZ::ATOMIC_LOAD_OIHL64:
7391     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7392   case SystemZ::ATOMIC_LOAD_OIHH64:
7393     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7394   case SystemZ::ATOMIC_LOAD_OILF64:
7395     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7396   case SystemZ::ATOMIC_LOAD_OIHF64:
7397     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7398 
7399   case SystemZ::ATOMIC_LOADW_XR:
7400     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7401   case SystemZ::ATOMIC_LOADW_XILF:
7402     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7403   case SystemZ::ATOMIC_LOAD_XR:
7404     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7405   case SystemZ::ATOMIC_LOAD_XILF:
7406     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7407   case SystemZ::ATOMIC_LOAD_XGR:
7408     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7409   case SystemZ::ATOMIC_LOAD_XILF64:
7410     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7411   case SystemZ::ATOMIC_LOAD_XIHF64:
7412     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7413 
7414   case SystemZ::ATOMIC_LOADW_NRi:
7415     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7416   case SystemZ::ATOMIC_LOADW_NILHi:
7417     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7418   case SystemZ::ATOMIC_LOAD_NRi:
7419     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7420   case SystemZ::ATOMIC_LOAD_NILLi:
7421     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7422   case SystemZ::ATOMIC_LOAD_NILHi:
7423     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7424   case SystemZ::ATOMIC_LOAD_NILFi:
7425     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7426   case SystemZ::ATOMIC_LOAD_NGRi:
7427     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7428   case SystemZ::ATOMIC_LOAD_NILL64i:
7429     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7430   case SystemZ::ATOMIC_LOAD_NILH64i:
7431     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7432   case SystemZ::ATOMIC_LOAD_NIHL64i:
7433     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7434   case SystemZ::ATOMIC_LOAD_NIHH64i:
7435     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7436   case SystemZ::ATOMIC_LOAD_NILF64i:
7437     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7438   case SystemZ::ATOMIC_LOAD_NIHF64i:
7439     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7440 
7441   case SystemZ::ATOMIC_LOADW_MIN:
7442     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7443                                 SystemZ::CCMASK_CMP_LE, 0);
7444   case SystemZ::ATOMIC_LOAD_MIN_32:
7445     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7446                                 SystemZ::CCMASK_CMP_LE, 32);
7447   case SystemZ::ATOMIC_LOAD_MIN_64:
7448     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7449                                 SystemZ::CCMASK_CMP_LE, 64);
7450 
7451   case SystemZ::ATOMIC_LOADW_MAX:
7452     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7453                                 SystemZ::CCMASK_CMP_GE, 0);
7454   case SystemZ::ATOMIC_LOAD_MAX_32:
7455     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7456                                 SystemZ::CCMASK_CMP_GE, 32);
7457   case SystemZ::ATOMIC_LOAD_MAX_64:
7458     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7459                                 SystemZ::CCMASK_CMP_GE, 64);
7460 
7461   case SystemZ::ATOMIC_LOADW_UMIN:
7462     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7463                                 SystemZ::CCMASK_CMP_LE, 0);
7464   case SystemZ::ATOMIC_LOAD_UMIN_32:
7465     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7466                                 SystemZ::CCMASK_CMP_LE, 32);
7467   case SystemZ::ATOMIC_LOAD_UMIN_64:
7468     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7469                                 SystemZ::CCMASK_CMP_LE, 64);
7470 
7471   case SystemZ::ATOMIC_LOADW_UMAX:
7472     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7473                                 SystemZ::CCMASK_CMP_GE, 0);
7474   case SystemZ::ATOMIC_LOAD_UMAX_32:
7475     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7476                                 SystemZ::CCMASK_CMP_GE, 32);
7477   case SystemZ::ATOMIC_LOAD_UMAX_64:
7478     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7479                                 SystemZ::CCMASK_CMP_GE, 64);
7480 
7481   case SystemZ::ATOMIC_CMP_SWAPW:
7482     return emitAtomicCmpSwapW(MI, MBB);
7483   case SystemZ::MVCSequence:
7484   case SystemZ::MVCLoop:
7485     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7486   case SystemZ::NCSequence:
7487   case SystemZ::NCLoop:
7488     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7489   case SystemZ::OCSequence:
7490   case SystemZ::OCLoop:
7491     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7492   case SystemZ::XCSequence:
7493   case SystemZ::XCLoop:
7494     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7495   case SystemZ::CLCSequence:
7496   case SystemZ::CLCLoop:
7497     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7498   case SystemZ::CLSTLoop:
7499     return emitStringWrapper(MI, MBB, SystemZ::CLST);
7500   case SystemZ::MVSTLoop:
7501     return emitStringWrapper(MI, MBB, SystemZ::MVST);
7502   case SystemZ::SRSTLoop:
7503     return emitStringWrapper(MI, MBB, SystemZ::SRST);
7504   case SystemZ::TBEGIN:
7505     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7506   case SystemZ::TBEGIN_nofloat:
7507     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7508   case SystemZ::TBEGINC:
7509     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7510   case SystemZ::LTEBRCompare_VecPseudo:
7511     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7512   case SystemZ::LTDBRCompare_VecPseudo:
7513     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7514   case SystemZ::LTXBRCompare_VecPseudo:
7515     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7516 
7517   case TargetOpcode::STACKMAP:
7518   case TargetOpcode::PATCHPOINT:
7519     return emitPatchPoint(MI, MBB);
7520 
7521   default:
7522     llvm_unreachable("Unexpected instr type to insert");
7523   }
7524 }
7525 
7526 // This is only used by the isel schedulers, and is needed only to prevent
7527 // compiler from crashing when list-ilp is used.
7528 const TargetRegisterClass *
7529 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7530   if (VT == MVT::Untyped)
7531     return &SystemZ::ADDR128BitRegClass;
7532   return TargetLowering::getRepRegClassFor(VT);
7533 }
7534