1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (Subtarget.hasVector()) { 92 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 93 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 94 } else { 95 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 96 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 97 } 98 if (Subtarget.hasVectorEnhancements1()) 99 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 100 else 101 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 102 103 if (Subtarget.hasVector()) { 104 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 105 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 110 } 111 112 // Compute derived properties from the register classes 113 computeRegisterProperties(Subtarget.getRegisterInfo()); 114 115 // Set up special registers. 116 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 117 118 // TODO: It may be better to default to latency-oriented scheduling, however 119 // LLVM's current latency-oriented scheduler can't handle physreg definitions 120 // such as SystemZ has with CC, so set this to the register-pressure 121 // scheduler, because it can. 122 setSchedulingPreference(Sched::RegPressure); 123 124 setBooleanContents(ZeroOrOneBooleanContent); 125 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 126 127 // Instructions are strings of 2-byte aligned 2-byte values. 128 setMinFunctionAlignment(Align(2)); 129 // For performance reasons we prefer 16-byte alignment. 130 setPrefFunctionAlignment(Align(16)); 131 132 // Handle operations that are handled in a similar way for all types. 133 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 134 I <= MVT::LAST_FP_VALUETYPE; 135 ++I) { 136 MVT VT = MVT::SimpleValueType(I); 137 if (isTypeLegal(VT)) { 138 // Lower SET_CC into an IPM-based sequence. 139 setOperationAction(ISD::SETCC, VT, Custom); 140 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 141 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 142 143 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 144 setOperationAction(ISD::SELECT, VT, Expand); 145 146 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 147 setOperationAction(ISD::SELECT_CC, VT, Custom); 148 setOperationAction(ISD::BR_CC, VT, Custom); 149 } 150 } 151 152 // Expand jump table branches as address arithmetic followed by an 153 // indirect jump. 154 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 155 156 // Expand BRCOND into a BR_CC (see above). 157 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 158 159 // Handle integer types. 160 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 161 I <= MVT::LAST_INTEGER_VALUETYPE; 162 ++I) { 163 MVT VT = MVT::SimpleValueType(I); 164 if (isTypeLegal(VT)) { 165 // Expand individual DIV and REMs into DIVREMs. 166 setOperationAction(ISD::SDIV, VT, Expand); 167 setOperationAction(ISD::UDIV, VT, Expand); 168 setOperationAction(ISD::SREM, VT, Expand); 169 setOperationAction(ISD::UREM, VT, Expand); 170 setOperationAction(ISD::SDIVREM, VT, Custom); 171 setOperationAction(ISD::UDIVREM, VT, Custom); 172 173 // Support addition/subtraction with overflow. 174 setOperationAction(ISD::SADDO, VT, Custom); 175 setOperationAction(ISD::SSUBO, VT, Custom); 176 177 // Support addition/subtraction with carry. 178 setOperationAction(ISD::UADDO, VT, Custom); 179 setOperationAction(ISD::USUBO, VT, Custom); 180 181 // Support carry in as value rather than glue. 182 setOperationAction(ISD::ADDCARRY, VT, Custom); 183 setOperationAction(ISD::SUBCARRY, VT, Custom); 184 185 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 186 // stores, putting a serialization instruction after the stores. 187 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 188 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 189 190 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 191 // available, or if the operand is constant. 192 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 193 194 // Use POPCNT on z196 and above. 195 if (Subtarget.hasPopulationCount()) 196 setOperationAction(ISD::CTPOP, VT, Custom); 197 else 198 setOperationAction(ISD::CTPOP, VT, Expand); 199 200 // No special instructions for these. 201 setOperationAction(ISD::CTTZ, VT, Expand); 202 setOperationAction(ISD::ROTR, VT, Expand); 203 204 // Use *MUL_LOHI where possible instead of MULH*. 205 setOperationAction(ISD::MULHS, VT, Expand); 206 setOperationAction(ISD::MULHU, VT, Expand); 207 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 208 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 209 210 // Only z196 and above have native support for conversions to unsigned. 211 // On z10, promoting to i64 doesn't generate an inexact condition for 212 // values that are outside the i32 range but in the i64 range, so use 213 // the default expansion. 214 if (!Subtarget.hasFPExtension()) 215 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 216 217 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 218 // default to Expand, so need to be modified to Legal where appropriate. 219 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 220 if (Subtarget.hasFPExtension()) 221 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 222 } 223 } 224 225 // Type legalization will convert 8- and 16-bit atomic operations into 226 // forms that operate on i32s (but still keeping the original memory VT). 227 // Lower them into full i32 operations. 228 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 229 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 230 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 231 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 232 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 233 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 234 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 235 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 239 240 // Even though i128 is not a legal type, we still need to custom lower 241 // the atomic operations in order to exploit SystemZ instructions. 242 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 243 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 244 245 // We can use the CC result of compare-and-swap to implement 246 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 247 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 248 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 249 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 250 251 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 252 253 // Traps are legal, as we will convert them to "j .+2". 254 setOperationAction(ISD::TRAP, MVT::Other, Legal); 255 256 // z10 has instructions for signed but not unsigned FP conversion. 257 // Handle unsigned 32-bit types as signed 64-bit types. 258 if (!Subtarget.hasFPExtension()) { 259 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 260 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 261 } 262 263 // We have native support for a 64-bit CTLZ, via FLOGR. 264 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 265 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 266 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 267 268 // On z15 we have native support for a 64-bit CTPOP. 269 if (Subtarget.hasMiscellaneousExtensions3()) { 270 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 271 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 272 } 273 274 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 275 setOperationAction(ISD::OR, MVT::i64, Custom); 276 277 // FIXME: Can we support these natively? 278 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 279 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 280 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 281 282 // We have native instructions for i8, i16 and i32 extensions, but not i1. 283 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 284 for (MVT VT : MVT::integer_valuetypes()) { 285 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 286 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 287 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 288 } 289 290 // Handle the various types of symbolic address. 291 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 292 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 293 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 294 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 295 setOperationAction(ISD::JumpTable, PtrVT, Custom); 296 297 // We need to handle dynamic allocations specially because of the 298 // 160-byte area at the bottom of the stack. 299 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 300 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 301 302 // Use custom expanders so that we can force the function to use 303 // a frame pointer. 304 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 305 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 306 307 // Handle prefetches with PFD or PFDRL. 308 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 309 310 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 311 // Assume by default that all vector operations need to be expanded. 312 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 313 if (getOperationAction(Opcode, VT) == Legal) 314 setOperationAction(Opcode, VT, Expand); 315 316 // Likewise all truncating stores and extending loads. 317 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 318 setTruncStoreAction(VT, InnerVT, Expand); 319 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 320 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 321 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 322 } 323 324 if (isTypeLegal(VT)) { 325 // These operations are legal for anything that can be stored in a 326 // vector register, even if there is no native support for the format 327 // as such. In particular, we can do these for v4f32 even though there 328 // are no specific instructions for that format. 329 setOperationAction(ISD::LOAD, VT, Legal); 330 setOperationAction(ISD::STORE, VT, Legal); 331 setOperationAction(ISD::VSELECT, VT, Legal); 332 setOperationAction(ISD::BITCAST, VT, Legal); 333 setOperationAction(ISD::UNDEF, VT, Legal); 334 335 // Likewise, except that we need to replace the nodes with something 336 // more specific. 337 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 338 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 339 } 340 } 341 342 // Handle integer vector types. 343 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 344 if (isTypeLegal(VT)) { 345 // These operations have direct equivalents. 346 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 347 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 348 setOperationAction(ISD::ADD, VT, Legal); 349 setOperationAction(ISD::SUB, VT, Legal); 350 if (VT != MVT::v2i64) 351 setOperationAction(ISD::MUL, VT, Legal); 352 setOperationAction(ISD::AND, VT, Legal); 353 setOperationAction(ISD::OR, VT, Legal); 354 setOperationAction(ISD::XOR, VT, Legal); 355 if (Subtarget.hasVectorEnhancements1()) 356 setOperationAction(ISD::CTPOP, VT, Legal); 357 else 358 setOperationAction(ISD::CTPOP, VT, Custom); 359 setOperationAction(ISD::CTTZ, VT, Legal); 360 setOperationAction(ISD::CTLZ, VT, Legal); 361 362 // Convert a GPR scalar to a vector by inserting it into element 0. 363 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 364 365 // Use a series of unpacks for extensions. 366 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 367 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 368 369 // Detect shifts by a scalar amount and convert them into 370 // V*_BY_SCALAR. 371 setOperationAction(ISD::SHL, VT, Custom); 372 setOperationAction(ISD::SRA, VT, Custom); 373 setOperationAction(ISD::SRL, VT, Custom); 374 375 // At present ROTL isn't matched by DAGCombiner. ROTR should be 376 // converted into ROTL. 377 setOperationAction(ISD::ROTL, VT, Expand); 378 setOperationAction(ISD::ROTR, VT, Expand); 379 380 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 381 // and inverting the result as necessary. 382 setOperationAction(ISD::SETCC, VT, Custom); 383 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 384 if (Subtarget.hasVectorEnhancements1()) 385 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 386 } 387 } 388 389 if (Subtarget.hasVector()) { 390 // There should be no need to check for float types other than v2f64 391 // since <2 x f32> isn't a legal type. 392 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 393 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 394 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 395 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 396 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 397 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 398 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 399 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 400 401 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 405 } 406 407 if (Subtarget.hasVectorEnhancements2()) { 408 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 409 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 410 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 411 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 412 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 413 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 414 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 415 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 416 417 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 418 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 419 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 420 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 421 } 422 423 // Handle floating-point types. 424 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 425 I <= MVT::LAST_FP_VALUETYPE; 426 ++I) { 427 MVT VT = MVT::SimpleValueType(I); 428 if (isTypeLegal(VT)) { 429 // We can use FI for FRINT. 430 setOperationAction(ISD::FRINT, VT, Legal); 431 432 // We can use the extended form of FI for other rounding operations. 433 if (Subtarget.hasFPExtension()) { 434 setOperationAction(ISD::FNEARBYINT, VT, Legal); 435 setOperationAction(ISD::FFLOOR, VT, Legal); 436 setOperationAction(ISD::FCEIL, VT, Legal); 437 setOperationAction(ISD::FTRUNC, VT, Legal); 438 setOperationAction(ISD::FROUND, VT, Legal); 439 } 440 441 // No special instructions for these. 442 setOperationAction(ISD::FSIN, VT, Expand); 443 setOperationAction(ISD::FCOS, VT, Expand); 444 setOperationAction(ISD::FSINCOS, VT, Expand); 445 setOperationAction(ISD::FREM, VT, Expand); 446 setOperationAction(ISD::FPOW, VT, Expand); 447 448 // Handle constrained floating-point operations. 449 setOperationAction(ISD::STRICT_FADD, VT, Legal); 450 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 451 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 452 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 453 setOperationAction(ISD::STRICT_FMA, VT, Legal); 454 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 455 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 456 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 457 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 458 if (Subtarget.hasFPExtension()) { 459 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 460 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 461 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 462 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 463 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 464 } 465 } 466 } 467 468 // Handle floating-point vector types. 469 if (Subtarget.hasVector()) { 470 // Scalar-to-vector conversion is just a subreg. 471 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 472 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 473 474 // Some insertions and extractions can be done directly but others 475 // need to go via integers. 476 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 477 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 478 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 479 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 480 481 // These operations have direct equivalents. 482 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 483 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 484 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 485 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 486 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 487 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 488 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 489 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 490 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 491 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 492 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 493 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 494 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 495 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 496 497 // Handle constrained floating-point operations. 498 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 499 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 500 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 501 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 502 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 503 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 504 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 505 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 506 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 507 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 508 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 509 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 510 } 511 512 // The vector enhancements facility 1 has instructions for these. 513 if (Subtarget.hasVectorEnhancements1()) { 514 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 515 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 516 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 517 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 518 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 519 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 520 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 521 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 522 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 523 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 524 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 525 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 526 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 527 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 528 529 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 530 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 531 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 532 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 533 534 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 535 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 536 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 537 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 538 539 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 540 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 541 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 542 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 543 544 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 545 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 546 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 547 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 548 549 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 550 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 551 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 552 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 553 554 // Handle constrained floating-point operations. 555 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 556 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 557 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 558 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 559 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 560 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 561 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 562 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 563 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 564 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 565 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 566 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 567 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 568 MVT::v4f32, MVT::v2f64 }) { 569 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 570 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 571 } 572 } 573 574 // We only have fused f128 multiply-addition on vector registers. 575 if (!Subtarget.hasVectorEnhancements1()) { 576 setOperationAction(ISD::FMA, MVT::f128, Expand); 577 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 578 } 579 580 // We don't have a copysign instruction on vector registers. 581 if (Subtarget.hasVectorEnhancements1()) 582 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 583 584 // Needed so that we don't try to implement f128 constant loads using 585 // a load-and-extend of a f80 constant (in cases where the constant 586 // would fit in an f80). 587 for (MVT VT : MVT::fp_valuetypes()) 588 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 589 590 // We don't have extending load instruction on vector registers. 591 if (Subtarget.hasVectorEnhancements1()) { 592 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 593 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 594 } 595 596 // Floating-point truncation and stores need to be done separately. 597 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 598 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 599 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 600 601 // We have 64-bit FPR<->GPR moves, but need special handling for 602 // 32-bit forms. 603 if (!Subtarget.hasVector()) { 604 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 605 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 606 } 607 608 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 609 // structure, but VAEND is a no-op. 610 setOperationAction(ISD::VASTART, MVT::Other, Custom); 611 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 612 setOperationAction(ISD::VAEND, MVT::Other, Expand); 613 614 // Codes for which we want to perform some z-specific combinations. 615 setTargetDAGCombine(ISD::ZERO_EXTEND); 616 setTargetDAGCombine(ISD::SIGN_EXTEND); 617 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 618 setTargetDAGCombine(ISD::LOAD); 619 setTargetDAGCombine(ISD::STORE); 620 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 621 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 622 setTargetDAGCombine(ISD::FP_ROUND); 623 setTargetDAGCombine(ISD::FP_EXTEND); 624 setTargetDAGCombine(ISD::BSWAP); 625 setTargetDAGCombine(ISD::SDIV); 626 setTargetDAGCombine(ISD::UDIV); 627 setTargetDAGCombine(ISD::SREM); 628 setTargetDAGCombine(ISD::UREM); 629 630 // Handle intrinsics. 631 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 632 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 633 634 // We want to use MVC in preference to even a single load/store pair. 635 MaxStoresPerMemcpy = 0; 636 MaxStoresPerMemcpyOptSize = 0; 637 638 // The main memset sequence is a byte store followed by an MVC. 639 // Two STC or MV..I stores win over that, but the kind of fused stores 640 // generated by target-independent code don't when the byte value is 641 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 642 // than "STC;MVC". Handle the choice in target-specific code instead. 643 MaxStoresPerMemset = 0; 644 MaxStoresPerMemsetOptSize = 0; 645 646 // Default to having -disable-strictnode-mutation on 647 IsStrictFPEnabled = true; 648 } 649 650 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 651 LLVMContext &, EVT VT) const { 652 if (!VT.isVector()) 653 return MVT::i32; 654 return VT.changeVectorElementTypeToInteger(); 655 } 656 657 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 658 const MachineFunction &MF, EVT VT) const { 659 VT = VT.getScalarType(); 660 661 if (!VT.isSimple()) 662 return false; 663 664 switch (VT.getSimpleVT().SimpleTy) { 665 case MVT::f32: 666 case MVT::f64: 667 return true; 668 case MVT::f128: 669 return Subtarget.hasVectorEnhancements1(); 670 default: 671 break; 672 } 673 674 return false; 675 } 676 677 // Return true if the constant can be generated with a vector instruction, 678 // such as VGM, VGMB or VREPI. 679 bool SystemZVectorConstantInfo::isVectorConstantLegal( 680 const SystemZSubtarget &Subtarget) { 681 const SystemZInstrInfo *TII = 682 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 683 if (!Subtarget.hasVector() || 684 (isFP128 && !Subtarget.hasVectorEnhancements1())) 685 return false; 686 687 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 688 // preferred way of creating all-zero and all-one vectors so give it 689 // priority over other methods below. 690 unsigned Mask = 0; 691 unsigned I = 0; 692 for (; I < SystemZ::VectorBytes; ++I) { 693 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 694 if (Byte == 0xff) 695 Mask |= 1ULL << I; 696 else if (Byte != 0) 697 break; 698 } 699 if (I == SystemZ::VectorBytes) { 700 Opcode = SystemZISD::BYTE_MASK; 701 OpVals.push_back(Mask); 702 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 703 return true; 704 } 705 706 if (SplatBitSize > 64) 707 return false; 708 709 auto tryValue = [&](uint64_t Value) -> bool { 710 // Try VECTOR REPLICATE IMMEDIATE 711 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 712 if (isInt<16>(SignedValue)) { 713 OpVals.push_back(((unsigned) SignedValue)); 714 Opcode = SystemZISD::REPLICATE; 715 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 716 SystemZ::VectorBits / SplatBitSize); 717 return true; 718 } 719 // Try VECTOR GENERATE MASK 720 unsigned Start, End; 721 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 722 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 723 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 724 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 725 OpVals.push_back(Start - (64 - SplatBitSize)); 726 OpVals.push_back(End - (64 - SplatBitSize)); 727 Opcode = SystemZISD::ROTATE_MASK; 728 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 729 SystemZ::VectorBits / SplatBitSize); 730 return true; 731 } 732 return false; 733 }; 734 735 // First try assuming that any undefined bits above the highest set bit 736 // and below the lowest set bit are 1s. This increases the likelihood of 737 // being able to use a sign-extended element value in VECTOR REPLICATE 738 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 739 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 740 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 741 uint64_t Lower = 742 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 743 uint64_t Upper = 744 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 745 if (tryValue(SplatBitsZ | Upper | Lower)) 746 return true; 747 748 // Now try assuming that any undefined bits between the first and 749 // last defined set bits are set. This increases the chances of 750 // using a non-wraparound mask. 751 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 752 return tryValue(SplatBitsZ | Middle); 753 } 754 755 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 756 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 757 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 758 759 // Find the smallest splat. 760 SplatBits = FPImm.bitcastToAPInt(); 761 unsigned Width = SplatBits.getBitWidth(); 762 while (Width > 8) { 763 unsigned HalfSize = Width / 2; 764 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 765 APInt LowValue = SplatBits.trunc(HalfSize); 766 767 // If the two halves do not match, stop here. 768 if (HighValue != LowValue || 8 > HalfSize) 769 break; 770 771 SplatBits = HighValue; 772 Width = HalfSize; 773 } 774 SplatUndef = 0; 775 SplatBitSize = Width; 776 } 777 778 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 779 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 780 bool HasAnyUndefs; 781 782 // Get IntBits by finding the 128 bit splat. 783 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 784 true); 785 786 // Get SplatBits by finding the 8 bit or greater splat. 787 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 788 true); 789 } 790 791 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 792 bool ForCodeSize) const { 793 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 794 if (Imm.isZero() || Imm.isNegZero()) 795 return true; 796 797 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 798 } 799 800 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 801 // We can use CGFI or CLGFI. 802 return isInt<32>(Imm) || isUInt<32>(Imm); 803 } 804 805 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 806 // We can use ALGFI or SLGFI. 807 return isUInt<32>(Imm) || isUInt<32>(-Imm); 808 } 809 810 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 811 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 812 // Unaligned accesses should never be slower than the expanded version. 813 // We check specifically for aligned accesses in the few cases where 814 // they are required. 815 if (Fast) 816 *Fast = true; 817 return true; 818 } 819 820 // Information about the addressing mode for a memory access. 821 struct AddressingMode { 822 // True if a long displacement is supported. 823 bool LongDisplacement; 824 825 // True if use of index register is supported. 826 bool IndexReg; 827 828 AddressingMode(bool LongDispl, bool IdxReg) : 829 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 830 }; 831 832 // Return the desired addressing mode for a Load which has only one use (in 833 // the same block) which is a Store. 834 static AddressingMode getLoadStoreAddrMode(bool HasVector, 835 Type *Ty) { 836 // With vector support a Load->Store combination may be combined to either 837 // an MVC or vector operations and it seems to work best to allow the 838 // vector addressing mode. 839 if (HasVector) 840 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 841 842 // Otherwise only the MVC case is special. 843 bool MVC = Ty->isIntegerTy(8); 844 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 845 } 846 847 // Return the addressing mode which seems most desirable given an LLVM 848 // Instruction pointer. 849 static AddressingMode 850 supportedAddressingMode(Instruction *I, bool HasVector) { 851 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 852 switch (II->getIntrinsicID()) { 853 default: break; 854 case Intrinsic::memset: 855 case Intrinsic::memmove: 856 case Intrinsic::memcpy: 857 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 858 } 859 } 860 861 if (isa<LoadInst>(I) && I->hasOneUse()) { 862 auto *SingleUser = cast<Instruction>(*I->user_begin()); 863 if (SingleUser->getParent() == I->getParent()) { 864 if (isa<ICmpInst>(SingleUser)) { 865 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 866 if (C->getBitWidth() <= 64 && 867 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 868 // Comparison of memory with 16 bit signed / unsigned immediate 869 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 870 } else if (isa<StoreInst>(SingleUser)) 871 // Load->Store 872 return getLoadStoreAddrMode(HasVector, I->getType()); 873 } 874 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 875 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 876 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 877 // Load->Store 878 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 879 } 880 881 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 882 883 // * Use LDE instead of LE/LEY for z13 to avoid partial register 884 // dependencies (LDE only supports small offsets). 885 // * Utilize the vector registers to hold floating point 886 // values (vector load / store instructions only support small 887 // offsets). 888 889 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 890 I->getOperand(0)->getType()); 891 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 892 bool IsVectorAccess = MemAccessTy->isVectorTy(); 893 894 // A store of an extracted vector element will be combined into a VSTE type 895 // instruction. 896 if (!IsVectorAccess && isa<StoreInst>(I)) { 897 Value *DataOp = I->getOperand(0); 898 if (isa<ExtractElementInst>(DataOp)) 899 IsVectorAccess = true; 900 } 901 902 // A load which gets inserted into a vector element will be combined into a 903 // VLE type instruction. 904 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 905 User *LoadUser = *I->user_begin(); 906 if (isa<InsertElementInst>(LoadUser)) 907 IsVectorAccess = true; 908 } 909 910 if (IsFPAccess || IsVectorAccess) 911 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 912 } 913 914 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 915 } 916 917 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 918 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 919 // Punt on globals for now, although they can be used in limited 920 // RELATIVE LONG cases. 921 if (AM.BaseGV) 922 return false; 923 924 // Require a 20-bit signed offset. 925 if (!isInt<20>(AM.BaseOffs)) 926 return false; 927 928 AddressingMode SupportedAM(true, true); 929 if (I != nullptr) 930 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 931 932 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 933 return false; 934 935 if (!SupportedAM.IndexReg) 936 // No indexing allowed. 937 return AM.Scale == 0; 938 else 939 // Indexing is OK but no scale factor can be applied. 940 return AM.Scale == 0 || AM.Scale == 1; 941 } 942 943 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 944 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 945 return false; 946 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 947 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 948 return FromBits > ToBits; 949 } 950 951 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 952 if (!FromVT.isInteger() || !ToVT.isInteger()) 953 return false; 954 unsigned FromBits = FromVT.getSizeInBits(); 955 unsigned ToBits = ToVT.getSizeInBits(); 956 return FromBits > ToBits; 957 } 958 959 //===----------------------------------------------------------------------===// 960 // Inline asm support 961 //===----------------------------------------------------------------------===// 962 963 TargetLowering::ConstraintType 964 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 965 if (Constraint.size() == 1) { 966 switch (Constraint[0]) { 967 case 'a': // Address register 968 case 'd': // Data register (equivalent to 'r') 969 case 'f': // Floating-point register 970 case 'h': // High-part register 971 case 'r': // General-purpose register 972 case 'v': // Vector register 973 return C_RegisterClass; 974 975 case 'Q': // Memory with base and unsigned 12-bit displacement 976 case 'R': // Likewise, plus an index 977 case 'S': // Memory with base and signed 20-bit displacement 978 case 'T': // Likewise, plus an index 979 case 'm': // Equivalent to 'T'. 980 return C_Memory; 981 982 case 'I': // Unsigned 8-bit constant 983 case 'J': // Unsigned 12-bit constant 984 case 'K': // Signed 16-bit constant 985 case 'L': // Signed 20-bit displacement (on all targets we support) 986 case 'M': // 0x7fffffff 987 return C_Immediate; 988 989 default: 990 break; 991 } 992 } 993 return TargetLowering::getConstraintType(Constraint); 994 } 995 996 TargetLowering::ConstraintWeight SystemZTargetLowering:: 997 getSingleConstraintMatchWeight(AsmOperandInfo &info, 998 const char *constraint) const { 999 ConstraintWeight weight = CW_Invalid; 1000 Value *CallOperandVal = info.CallOperandVal; 1001 // If we don't have a value, we can't do a match, 1002 // but allow it at the lowest weight. 1003 if (!CallOperandVal) 1004 return CW_Default; 1005 Type *type = CallOperandVal->getType(); 1006 // Look at the constraint type. 1007 switch (*constraint) { 1008 default: 1009 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1010 break; 1011 1012 case 'a': // Address register 1013 case 'd': // Data register (equivalent to 'r') 1014 case 'h': // High-part register 1015 case 'r': // General-purpose register 1016 if (CallOperandVal->getType()->isIntegerTy()) 1017 weight = CW_Register; 1018 break; 1019 1020 case 'f': // Floating-point register 1021 if (type->isFloatingPointTy()) 1022 weight = CW_Register; 1023 break; 1024 1025 case 'v': // Vector register 1026 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1027 Subtarget.hasVector()) 1028 weight = CW_Register; 1029 break; 1030 1031 case 'I': // Unsigned 8-bit constant 1032 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1033 if (isUInt<8>(C->getZExtValue())) 1034 weight = CW_Constant; 1035 break; 1036 1037 case 'J': // Unsigned 12-bit constant 1038 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1039 if (isUInt<12>(C->getZExtValue())) 1040 weight = CW_Constant; 1041 break; 1042 1043 case 'K': // Signed 16-bit constant 1044 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1045 if (isInt<16>(C->getSExtValue())) 1046 weight = CW_Constant; 1047 break; 1048 1049 case 'L': // Signed 20-bit displacement (on all targets we support) 1050 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1051 if (isInt<20>(C->getSExtValue())) 1052 weight = CW_Constant; 1053 break; 1054 1055 case 'M': // 0x7fffffff 1056 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1057 if (C->getZExtValue() == 0x7fffffff) 1058 weight = CW_Constant; 1059 break; 1060 } 1061 return weight; 1062 } 1063 1064 // Parse a "{tNNN}" register constraint for which the register type "t" 1065 // has already been verified. MC is the class associated with "t" and 1066 // Map maps 0-based register numbers to LLVM register numbers. 1067 static std::pair<unsigned, const TargetRegisterClass *> 1068 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1069 const unsigned *Map, unsigned Size) { 1070 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1071 if (isdigit(Constraint[2])) { 1072 unsigned Index; 1073 bool Failed = 1074 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1075 if (!Failed && Index < Size && Map[Index]) 1076 return std::make_pair(Map[Index], RC); 1077 } 1078 return std::make_pair(0U, nullptr); 1079 } 1080 1081 std::pair<unsigned, const TargetRegisterClass *> 1082 SystemZTargetLowering::getRegForInlineAsmConstraint( 1083 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1084 if (Constraint.size() == 1) { 1085 // GCC Constraint Letters 1086 switch (Constraint[0]) { 1087 default: break; 1088 case 'd': // Data register (equivalent to 'r') 1089 case 'r': // General-purpose register 1090 if (VT == MVT::i64) 1091 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1092 else if (VT == MVT::i128) 1093 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1094 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1095 1096 case 'a': // Address register 1097 if (VT == MVT::i64) 1098 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1099 else if (VT == MVT::i128) 1100 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1101 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1102 1103 case 'h': // High-part register (an LLVM extension) 1104 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1105 1106 case 'f': // Floating-point register 1107 if (VT == MVT::f64) 1108 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1109 else if (VT == MVT::f128) 1110 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1111 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1112 1113 case 'v': // Vector register 1114 if (Subtarget.hasVector()) { 1115 if (VT == MVT::f32) 1116 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1117 if (VT == MVT::f64) 1118 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1119 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1120 } 1121 break; 1122 } 1123 } 1124 if (Constraint.size() > 0 && Constraint[0] == '{') { 1125 // We need to override the default register parsing for GPRs and FPRs 1126 // because the interpretation depends on VT. The internal names of 1127 // the registers are also different from the external names 1128 // (F0D and F0S instead of F0, etc.). 1129 if (Constraint[1] == 'r') { 1130 if (VT == MVT::i32) 1131 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1132 SystemZMC::GR32Regs, 16); 1133 if (VT == MVT::i128) 1134 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1135 SystemZMC::GR128Regs, 16); 1136 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1137 SystemZMC::GR64Regs, 16); 1138 } 1139 if (Constraint[1] == 'f') { 1140 if (VT == MVT::f32) 1141 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1142 SystemZMC::FP32Regs, 16); 1143 if (VT == MVT::f128) 1144 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1145 SystemZMC::FP128Regs, 16); 1146 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1147 SystemZMC::FP64Regs, 16); 1148 } 1149 if (Constraint[1] == 'v') { 1150 if (VT == MVT::f32) 1151 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1152 SystemZMC::VR32Regs, 32); 1153 if (VT == MVT::f64) 1154 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1155 SystemZMC::VR64Regs, 32); 1156 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1157 SystemZMC::VR128Regs, 32); 1158 } 1159 } 1160 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1161 } 1162 1163 void SystemZTargetLowering:: 1164 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1165 std::vector<SDValue> &Ops, 1166 SelectionDAG &DAG) const { 1167 // Only support length 1 constraints for now. 1168 if (Constraint.length() == 1) { 1169 switch (Constraint[0]) { 1170 case 'I': // Unsigned 8-bit constant 1171 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1172 if (isUInt<8>(C->getZExtValue())) 1173 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1174 Op.getValueType())); 1175 return; 1176 1177 case 'J': // Unsigned 12-bit constant 1178 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1179 if (isUInt<12>(C->getZExtValue())) 1180 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1181 Op.getValueType())); 1182 return; 1183 1184 case 'K': // Signed 16-bit constant 1185 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1186 if (isInt<16>(C->getSExtValue())) 1187 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1188 Op.getValueType())); 1189 return; 1190 1191 case 'L': // Signed 20-bit displacement (on all targets we support) 1192 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1193 if (isInt<20>(C->getSExtValue())) 1194 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1195 Op.getValueType())); 1196 return; 1197 1198 case 'M': // 0x7fffffff 1199 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1200 if (C->getZExtValue() == 0x7fffffff) 1201 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1202 Op.getValueType())); 1203 return; 1204 } 1205 } 1206 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1207 } 1208 1209 //===----------------------------------------------------------------------===// 1210 // Calling conventions 1211 //===----------------------------------------------------------------------===// 1212 1213 #include "SystemZGenCallingConv.inc" 1214 1215 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1216 CallingConv::ID) const { 1217 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1218 SystemZ::R14D, 0 }; 1219 return ScratchRegs; 1220 } 1221 1222 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1223 Type *ToType) const { 1224 return isTruncateFree(FromType, ToType); 1225 } 1226 1227 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1228 return CI->isTailCall(); 1229 } 1230 1231 // We do not yet support 128-bit single-element vector types. If the user 1232 // attempts to use such types as function argument or return type, prefer 1233 // to error out instead of emitting code violating the ABI. 1234 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1235 if (ArgVT.isVector() && !VT.isVector()) 1236 report_fatal_error("Unsupported vector argument or return type"); 1237 } 1238 1239 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1240 for (unsigned i = 0; i < Ins.size(); ++i) 1241 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1242 } 1243 1244 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1245 for (unsigned i = 0; i < Outs.size(); ++i) 1246 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1247 } 1248 1249 // Value is a value that has been passed to us in the location described by VA 1250 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1251 // any loads onto Chain. 1252 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1253 CCValAssign &VA, SDValue Chain, 1254 SDValue Value) { 1255 // If the argument has been promoted from a smaller type, insert an 1256 // assertion to capture this. 1257 if (VA.getLocInfo() == CCValAssign::SExt) 1258 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1259 DAG.getValueType(VA.getValVT())); 1260 else if (VA.getLocInfo() == CCValAssign::ZExt) 1261 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1262 DAG.getValueType(VA.getValVT())); 1263 1264 if (VA.isExtInLoc()) 1265 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1266 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1267 // If this is a short vector argument loaded from the stack, 1268 // extend from i64 to full vector size and then bitcast. 1269 assert(VA.getLocVT() == MVT::i64); 1270 assert(VA.getValVT().isVector()); 1271 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1272 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1273 } else 1274 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1275 return Value; 1276 } 1277 1278 // Value is a value of type VA.getValVT() that we need to copy into 1279 // the location described by VA. Return a copy of Value converted to 1280 // VA.getValVT(). The caller is responsible for handling indirect values. 1281 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1282 CCValAssign &VA, SDValue Value) { 1283 switch (VA.getLocInfo()) { 1284 case CCValAssign::SExt: 1285 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1286 case CCValAssign::ZExt: 1287 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1288 case CCValAssign::AExt: 1289 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1290 case CCValAssign::BCvt: 1291 // If this is a short vector argument to be stored to the stack, 1292 // bitcast to v2i64 and then extract first element. 1293 assert(VA.getLocVT() == MVT::i64); 1294 assert(VA.getValVT().isVector()); 1295 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1296 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1297 DAG.getConstant(0, DL, MVT::i32)); 1298 case CCValAssign::Full: 1299 return Value; 1300 default: 1301 llvm_unreachable("Unhandled getLocInfo()"); 1302 } 1303 } 1304 1305 SDValue SystemZTargetLowering::LowerFormalArguments( 1306 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1307 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1308 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1309 MachineFunction &MF = DAG.getMachineFunction(); 1310 MachineFrameInfo &MFI = MF.getFrameInfo(); 1311 MachineRegisterInfo &MRI = MF.getRegInfo(); 1312 SystemZMachineFunctionInfo *FuncInfo = 1313 MF.getInfo<SystemZMachineFunctionInfo>(); 1314 auto *TFL = 1315 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1316 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1317 1318 // Detect unsupported vector argument types. 1319 if (Subtarget.hasVector()) 1320 VerifyVectorTypes(Ins); 1321 1322 // Assign locations to all of the incoming arguments. 1323 SmallVector<CCValAssign, 16> ArgLocs; 1324 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1325 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1326 1327 unsigned NumFixedGPRs = 0; 1328 unsigned NumFixedFPRs = 0; 1329 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1330 SDValue ArgValue; 1331 CCValAssign &VA = ArgLocs[I]; 1332 EVT LocVT = VA.getLocVT(); 1333 if (VA.isRegLoc()) { 1334 // Arguments passed in registers 1335 const TargetRegisterClass *RC; 1336 switch (LocVT.getSimpleVT().SimpleTy) { 1337 default: 1338 // Integers smaller than i64 should be promoted to i64. 1339 llvm_unreachable("Unexpected argument type"); 1340 case MVT::i32: 1341 NumFixedGPRs += 1; 1342 RC = &SystemZ::GR32BitRegClass; 1343 break; 1344 case MVT::i64: 1345 NumFixedGPRs += 1; 1346 RC = &SystemZ::GR64BitRegClass; 1347 break; 1348 case MVT::f32: 1349 NumFixedFPRs += 1; 1350 RC = &SystemZ::FP32BitRegClass; 1351 break; 1352 case MVT::f64: 1353 NumFixedFPRs += 1; 1354 RC = &SystemZ::FP64BitRegClass; 1355 break; 1356 case MVT::v16i8: 1357 case MVT::v8i16: 1358 case MVT::v4i32: 1359 case MVT::v2i64: 1360 case MVT::v4f32: 1361 case MVT::v2f64: 1362 RC = &SystemZ::VR128BitRegClass; 1363 break; 1364 } 1365 1366 Register VReg = MRI.createVirtualRegister(RC); 1367 MRI.addLiveIn(VA.getLocReg(), VReg); 1368 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1369 } else { 1370 assert(VA.isMemLoc() && "Argument not register or memory"); 1371 1372 // Create the frame index object for this incoming parameter. 1373 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1374 VA.getLocMemOffset(), true); 1375 1376 // Create the SelectionDAG nodes corresponding to a load 1377 // from this parameter. Unpromoted ints and floats are 1378 // passed as right-justified 8-byte values. 1379 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1380 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1381 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1382 DAG.getIntPtrConstant(4, DL)); 1383 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1384 MachinePointerInfo::getFixedStack(MF, FI)); 1385 } 1386 1387 // Convert the value of the argument register into the value that's 1388 // being passed. 1389 if (VA.getLocInfo() == CCValAssign::Indirect) { 1390 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1391 MachinePointerInfo())); 1392 // If the original argument was split (e.g. i128), we need 1393 // to load all parts of it here (using the same address). 1394 unsigned ArgIndex = Ins[I].OrigArgIndex; 1395 assert (Ins[I].PartOffset == 0); 1396 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1397 CCValAssign &PartVA = ArgLocs[I + 1]; 1398 unsigned PartOffset = Ins[I + 1].PartOffset; 1399 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1400 DAG.getIntPtrConstant(PartOffset, DL)); 1401 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1402 MachinePointerInfo())); 1403 ++I; 1404 } 1405 } else 1406 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1407 } 1408 1409 if (IsVarArg) { 1410 // Save the number of non-varargs registers for later use by va_start, etc. 1411 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1412 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1413 1414 // Likewise the address (in the form of a frame index) of where the 1415 // first stack vararg would be. The 1-byte size here is arbitrary. 1416 int64_t StackSize = CCInfo.getNextStackOffset(); 1417 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1418 1419 // ...and a similar frame index for the caller-allocated save area 1420 // that will be used to store the incoming registers. 1421 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1422 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1423 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1424 1425 // Store the FPR varargs in the reserved frame slots. (We store the 1426 // GPRs as part of the prologue.) 1427 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1428 SDValue MemOps[SystemZ::NumArgFPRs]; 1429 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1430 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1431 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1432 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1433 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1434 &SystemZ::FP64BitRegClass); 1435 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1436 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1437 MachinePointerInfo::getFixedStack(MF, FI)); 1438 } 1439 // Join the stores, which are independent of one another. 1440 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1441 makeArrayRef(&MemOps[NumFixedFPRs], 1442 SystemZ::NumArgFPRs-NumFixedFPRs)); 1443 } 1444 } 1445 1446 return Chain; 1447 } 1448 1449 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1450 SmallVectorImpl<CCValAssign> &ArgLocs, 1451 SmallVectorImpl<ISD::OutputArg> &Outs) { 1452 // Punt if there are any indirect or stack arguments, or if the call 1453 // needs the callee-saved argument register R6, or if the call uses 1454 // the callee-saved register arguments SwiftSelf and SwiftError. 1455 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1456 CCValAssign &VA = ArgLocs[I]; 1457 if (VA.getLocInfo() == CCValAssign::Indirect) 1458 return false; 1459 if (!VA.isRegLoc()) 1460 return false; 1461 Register Reg = VA.getLocReg(); 1462 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1463 return false; 1464 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1465 return false; 1466 } 1467 return true; 1468 } 1469 1470 SDValue 1471 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1472 SmallVectorImpl<SDValue> &InVals) const { 1473 SelectionDAG &DAG = CLI.DAG; 1474 SDLoc &DL = CLI.DL; 1475 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1476 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1477 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1478 SDValue Chain = CLI.Chain; 1479 SDValue Callee = CLI.Callee; 1480 bool &IsTailCall = CLI.IsTailCall; 1481 CallingConv::ID CallConv = CLI.CallConv; 1482 bool IsVarArg = CLI.IsVarArg; 1483 MachineFunction &MF = DAG.getMachineFunction(); 1484 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1485 1486 // Detect unsupported vector argument and return types. 1487 if (Subtarget.hasVector()) { 1488 VerifyVectorTypes(Outs); 1489 VerifyVectorTypes(Ins); 1490 } 1491 1492 // Analyze the operands of the call, assigning locations to each operand. 1493 SmallVector<CCValAssign, 16> ArgLocs; 1494 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1495 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1496 1497 // We don't support GuaranteedTailCallOpt, only automatically-detected 1498 // sibling calls. 1499 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1500 IsTailCall = false; 1501 1502 // Get a count of how many bytes are to be pushed on the stack. 1503 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1504 1505 // Mark the start of the call. 1506 if (!IsTailCall) 1507 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1508 1509 // Copy argument values to their designated locations. 1510 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1511 SmallVector<SDValue, 8> MemOpChains; 1512 SDValue StackPtr; 1513 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1514 CCValAssign &VA = ArgLocs[I]; 1515 SDValue ArgValue = OutVals[I]; 1516 1517 if (VA.getLocInfo() == CCValAssign::Indirect) { 1518 // Store the argument in a stack slot and pass its address. 1519 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1520 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1521 MemOpChains.push_back( 1522 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1523 MachinePointerInfo::getFixedStack(MF, FI))); 1524 // If the original argument was split (e.g. i128), we need 1525 // to store all parts of it here (and pass just one address). 1526 unsigned ArgIndex = Outs[I].OrigArgIndex; 1527 assert (Outs[I].PartOffset == 0); 1528 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1529 SDValue PartValue = OutVals[I + 1]; 1530 unsigned PartOffset = Outs[I + 1].PartOffset; 1531 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1532 DAG.getIntPtrConstant(PartOffset, DL)); 1533 MemOpChains.push_back( 1534 DAG.getStore(Chain, DL, PartValue, Address, 1535 MachinePointerInfo::getFixedStack(MF, FI))); 1536 ++I; 1537 } 1538 ArgValue = SpillSlot; 1539 } else 1540 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1541 1542 if (VA.isRegLoc()) 1543 // Queue up the argument copies and emit them at the end. 1544 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1545 else { 1546 assert(VA.isMemLoc() && "Argument not register or memory"); 1547 1548 // Work out the address of the stack slot. Unpromoted ints and 1549 // floats are passed as right-justified 8-byte values. 1550 if (!StackPtr.getNode()) 1551 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1552 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1553 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1554 Offset += 4; 1555 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1556 DAG.getIntPtrConstant(Offset, DL)); 1557 1558 // Emit the store. 1559 MemOpChains.push_back( 1560 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1561 } 1562 } 1563 1564 // Join the stores, which are independent of one another. 1565 if (!MemOpChains.empty()) 1566 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1567 1568 // Accept direct calls by converting symbolic call addresses to the 1569 // associated Target* opcodes. Force %r1 to be used for indirect 1570 // tail calls. 1571 SDValue Glue; 1572 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1573 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1574 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1575 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1576 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1577 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1578 } else if (IsTailCall) { 1579 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1580 Glue = Chain.getValue(1); 1581 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1582 } 1583 1584 // Build a sequence of copy-to-reg nodes, chained and glued together. 1585 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1586 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1587 RegsToPass[I].second, Glue); 1588 Glue = Chain.getValue(1); 1589 } 1590 1591 // The first call operand is the chain and the second is the target address. 1592 SmallVector<SDValue, 8> Ops; 1593 Ops.push_back(Chain); 1594 Ops.push_back(Callee); 1595 1596 // Add argument registers to the end of the list so that they are 1597 // known live into the call. 1598 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1599 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1600 RegsToPass[I].second.getValueType())); 1601 1602 // Add a register mask operand representing the call-preserved registers. 1603 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1604 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1605 assert(Mask && "Missing call preserved mask for calling convention"); 1606 Ops.push_back(DAG.getRegisterMask(Mask)); 1607 1608 // Glue the call to the argument copies, if any. 1609 if (Glue.getNode()) 1610 Ops.push_back(Glue); 1611 1612 // Emit the call. 1613 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1614 if (IsTailCall) 1615 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1616 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1617 Glue = Chain.getValue(1); 1618 1619 // Mark the end of the call, which is glued to the call itself. 1620 Chain = DAG.getCALLSEQ_END(Chain, 1621 DAG.getConstant(NumBytes, DL, PtrVT, true), 1622 DAG.getConstant(0, DL, PtrVT, true), 1623 Glue, DL); 1624 Glue = Chain.getValue(1); 1625 1626 // Assign locations to each value returned by this call. 1627 SmallVector<CCValAssign, 16> RetLocs; 1628 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1629 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1630 1631 // Copy all of the result registers out of their specified physreg. 1632 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1633 CCValAssign &VA = RetLocs[I]; 1634 1635 // Copy the value out, gluing the copy to the end of the call sequence. 1636 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1637 VA.getLocVT(), Glue); 1638 Chain = RetValue.getValue(1); 1639 Glue = RetValue.getValue(2); 1640 1641 // Convert the value of the return register into the value that's 1642 // being returned. 1643 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1644 } 1645 1646 return Chain; 1647 } 1648 1649 bool SystemZTargetLowering:: 1650 CanLowerReturn(CallingConv::ID CallConv, 1651 MachineFunction &MF, bool isVarArg, 1652 const SmallVectorImpl<ISD::OutputArg> &Outs, 1653 LLVMContext &Context) const { 1654 // Detect unsupported vector return types. 1655 if (Subtarget.hasVector()) 1656 VerifyVectorTypes(Outs); 1657 1658 // Special case that we cannot easily detect in RetCC_SystemZ since 1659 // i128 is not a legal type. 1660 for (auto &Out : Outs) 1661 if (Out.ArgVT == MVT::i128) 1662 return false; 1663 1664 SmallVector<CCValAssign, 16> RetLocs; 1665 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1666 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1667 } 1668 1669 SDValue 1670 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1671 bool IsVarArg, 1672 const SmallVectorImpl<ISD::OutputArg> &Outs, 1673 const SmallVectorImpl<SDValue> &OutVals, 1674 const SDLoc &DL, SelectionDAG &DAG) const { 1675 MachineFunction &MF = DAG.getMachineFunction(); 1676 1677 // Detect unsupported vector return types. 1678 if (Subtarget.hasVector()) 1679 VerifyVectorTypes(Outs); 1680 1681 // Assign locations to each returned value. 1682 SmallVector<CCValAssign, 16> RetLocs; 1683 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1684 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1685 1686 // Quick exit for void returns 1687 if (RetLocs.empty()) 1688 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1689 1690 if (CallConv == CallingConv::GHC) 1691 report_fatal_error("GHC functions return void only"); 1692 1693 // Copy the result values into the output registers. 1694 SDValue Glue; 1695 SmallVector<SDValue, 4> RetOps; 1696 RetOps.push_back(Chain); 1697 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1698 CCValAssign &VA = RetLocs[I]; 1699 SDValue RetValue = OutVals[I]; 1700 1701 // Make the return register live on exit. 1702 assert(VA.isRegLoc() && "Can only return in registers!"); 1703 1704 // Promote the value as required. 1705 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1706 1707 // Chain and glue the copies together. 1708 Register Reg = VA.getLocReg(); 1709 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1710 Glue = Chain.getValue(1); 1711 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1712 } 1713 1714 // Update chain and glue. 1715 RetOps[0] = Chain; 1716 if (Glue.getNode()) 1717 RetOps.push_back(Glue); 1718 1719 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1720 } 1721 1722 // Return true if Op is an intrinsic node with chain that returns the CC value 1723 // as its only (other) argument. Provide the associated SystemZISD opcode and 1724 // the mask of valid CC values if so. 1725 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1726 unsigned &CCValid) { 1727 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1728 switch (Id) { 1729 case Intrinsic::s390_tbegin: 1730 Opcode = SystemZISD::TBEGIN; 1731 CCValid = SystemZ::CCMASK_TBEGIN; 1732 return true; 1733 1734 case Intrinsic::s390_tbegin_nofloat: 1735 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1736 CCValid = SystemZ::CCMASK_TBEGIN; 1737 return true; 1738 1739 case Intrinsic::s390_tend: 1740 Opcode = SystemZISD::TEND; 1741 CCValid = SystemZ::CCMASK_TEND; 1742 return true; 1743 1744 default: 1745 return false; 1746 } 1747 } 1748 1749 // Return true if Op is an intrinsic node without chain that returns the 1750 // CC value as its final argument. Provide the associated SystemZISD 1751 // opcode and the mask of valid CC values if so. 1752 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1753 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1754 switch (Id) { 1755 case Intrinsic::s390_vpkshs: 1756 case Intrinsic::s390_vpksfs: 1757 case Intrinsic::s390_vpksgs: 1758 Opcode = SystemZISD::PACKS_CC; 1759 CCValid = SystemZ::CCMASK_VCMP; 1760 return true; 1761 1762 case Intrinsic::s390_vpklshs: 1763 case Intrinsic::s390_vpklsfs: 1764 case Intrinsic::s390_vpklsgs: 1765 Opcode = SystemZISD::PACKLS_CC; 1766 CCValid = SystemZ::CCMASK_VCMP; 1767 return true; 1768 1769 case Intrinsic::s390_vceqbs: 1770 case Intrinsic::s390_vceqhs: 1771 case Intrinsic::s390_vceqfs: 1772 case Intrinsic::s390_vceqgs: 1773 Opcode = SystemZISD::VICMPES; 1774 CCValid = SystemZ::CCMASK_VCMP; 1775 return true; 1776 1777 case Intrinsic::s390_vchbs: 1778 case Intrinsic::s390_vchhs: 1779 case Intrinsic::s390_vchfs: 1780 case Intrinsic::s390_vchgs: 1781 Opcode = SystemZISD::VICMPHS; 1782 CCValid = SystemZ::CCMASK_VCMP; 1783 return true; 1784 1785 case Intrinsic::s390_vchlbs: 1786 case Intrinsic::s390_vchlhs: 1787 case Intrinsic::s390_vchlfs: 1788 case Intrinsic::s390_vchlgs: 1789 Opcode = SystemZISD::VICMPHLS; 1790 CCValid = SystemZ::CCMASK_VCMP; 1791 return true; 1792 1793 case Intrinsic::s390_vtm: 1794 Opcode = SystemZISD::VTM; 1795 CCValid = SystemZ::CCMASK_VCMP; 1796 return true; 1797 1798 case Intrinsic::s390_vfaebs: 1799 case Intrinsic::s390_vfaehs: 1800 case Intrinsic::s390_vfaefs: 1801 Opcode = SystemZISD::VFAE_CC; 1802 CCValid = SystemZ::CCMASK_ANY; 1803 return true; 1804 1805 case Intrinsic::s390_vfaezbs: 1806 case Intrinsic::s390_vfaezhs: 1807 case Intrinsic::s390_vfaezfs: 1808 Opcode = SystemZISD::VFAEZ_CC; 1809 CCValid = SystemZ::CCMASK_ANY; 1810 return true; 1811 1812 case Intrinsic::s390_vfeebs: 1813 case Intrinsic::s390_vfeehs: 1814 case Intrinsic::s390_vfeefs: 1815 Opcode = SystemZISD::VFEE_CC; 1816 CCValid = SystemZ::CCMASK_ANY; 1817 return true; 1818 1819 case Intrinsic::s390_vfeezbs: 1820 case Intrinsic::s390_vfeezhs: 1821 case Intrinsic::s390_vfeezfs: 1822 Opcode = SystemZISD::VFEEZ_CC; 1823 CCValid = SystemZ::CCMASK_ANY; 1824 return true; 1825 1826 case Intrinsic::s390_vfenebs: 1827 case Intrinsic::s390_vfenehs: 1828 case Intrinsic::s390_vfenefs: 1829 Opcode = SystemZISD::VFENE_CC; 1830 CCValid = SystemZ::CCMASK_ANY; 1831 return true; 1832 1833 case Intrinsic::s390_vfenezbs: 1834 case Intrinsic::s390_vfenezhs: 1835 case Intrinsic::s390_vfenezfs: 1836 Opcode = SystemZISD::VFENEZ_CC; 1837 CCValid = SystemZ::CCMASK_ANY; 1838 return true; 1839 1840 case Intrinsic::s390_vistrbs: 1841 case Intrinsic::s390_vistrhs: 1842 case Intrinsic::s390_vistrfs: 1843 Opcode = SystemZISD::VISTR_CC; 1844 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1845 return true; 1846 1847 case Intrinsic::s390_vstrcbs: 1848 case Intrinsic::s390_vstrchs: 1849 case Intrinsic::s390_vstrcfs: 1850 Opcode = SystemZISD::VSTRC_CC; 1851 CCValid = SystemZ::CCMASK_ANY; 1852 return true; 1853 1854 case Intrinsic::s390_vstrczbs: 1855 case Intrinsic::s390_vstrczhs: 1856 case Intrinsic::s390_vstrczfs: 1857 Opcode = SystemZISD::VSTRCZ_CC; 1858 CCValid = SystemZ::CCMASK_ANY; 1859 return true; 1860 1861 case Intrinsic::s390_vstrsb: 1862 case Intrinsic::s390_vstrsh: 1863 case Intrinsic::s390_vstrsf: 1864 Opcode = SystemZISD::VSTRS_CC; 1865 CCValid = SystemZ::CCMASK_ANY; 1866 return true; 1867 1868 case Intrinsic::s390_vstrszb: 1869 case Intrinsic::s390_vstrszh: 1870 case Intrinsic::s390_vstrszf: 1871 Opcode = SystemZISD::VSTRSZ_CC; 1872 CCValid = SystemZ::CCMASK_ANY; 1873 return true; 1874 1875 case Intrinsic::s390_vfcedbs: 1876 case Intrinsic::s390_vfcesbs: 1877 Opcode = SystemZISD::VFCMPES; 1878 CCValid = SystemZ::CCMASK_VCMP; 1879 return true; 1880 1881 case Intrinsic::s390_vfchdbs: 1882 case Intrinsic::s390_vfchsbs: 1883 Opcode = SystemZISD::VFCMPHS; 1884 CCValid = SystemZ::CCMASK_VCMP; 1885 return true; 1886 1887 case Intrinsic::s390_vfchedbs: 1888 case Intrinsic::s390_vfchesbs: 1889 Opcode = SystemZISD::VFCMPHES; 1890 CCValid = SystemZ::CCMASK_VCMP; 1891 return true; 1892 1893 case Intrinsic::s390_vftcidb: 1894 case Intrinsic::s390_vftcisb: 1895 Opcode = SystemZISD::VFTCI; 1896 CCValid = SystemZ::CCMASK_VCMP; 1897 return true; 1898 1899 case Intrinsic::s390_tdc: 1900 Opcode = SystemZISD::TDC; 1901 CCValid = SystemZ::CCMASK_TDC; 1902 return true; 1903 1904 default: 1905 return false; 1906 } 1907 } 1908 1909 // Emit an intrinsic with chain and an explicit CC register result. 1910 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1911 unsigned Opcode) { 1912 // Copy all operands except the intrinsic ID. 1913 unsigned NumOps = Op.getNumOperands(); 1914 SmallVector<SDValue, 6> Ops; 1915 Ops.reserve(NumOps - 1); 1916 Ops.push_back(Op.getOperand(0)); 1917 for (unsigned I = 2; I < NumOps; ++I) 1918 Ops.push_back(Op.getOperand(I)); 1919 1920 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1921 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1922 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1923 SDValue OldChain = SDValue(Op.getNode(), 1); 1924 SDValue NewChain = SDValue(Intr.getNode(), 1); 1925 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1926 return Intr.getNode(); 1927 } 1928 1929 // Emit an intrinsic with an explicit CC register result. 1930 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1931 unsigned Opcode) { 1932 // Copy all operands except the intrinsic ID. 1933 unsigned NumOps = Op.getNumOperands(); 1934 SmallVector<SDValue, 6> Ops; 1935 Ops.reserve(NumOps - 1); 1936 for (unsigned I = 1; I < NumOps; ++I) 1937 Ops.push_back(Op.getOperand(I)); 1938 1939 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1940 return Intr.getNode(); 1941 } 1942 1943 // CC is a comparison that will be implemented using an integer or 1944 // floating-point comparison. Return the condition code mask for 1945 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1946 // unsigned comparisons and clear for signed ones. In the floating-point 1947 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1948 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1949 #define CONV(X) \ 1950 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1951 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1952 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1953 1954 switch (CC) { 1955 default: 1956 llvm_unreachable("Invalid integer condition!"); 1957 1958 CONV(EQ); 1959 CONV(NE); 1960 CONV(GT); 1961 CONV(GE); 1962 CONV(LT); 1963 CONV(LE); 1964 1965 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1966 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1967 } 1968 #undef CONV 1969 } 1970 1971 // If C can be converted to a comparison against zero, adjust the operands 1972 // as necessary. 1973 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1974 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1975 return; 1976 1977 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1978 if (!ConstOp1) 1979 return; 1980 1981 int64_t Value = ConstOp1->getSExtValue(); 1982 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1983 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1984 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1985 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1986 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1987 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1988 } 1989 } 1990 1991 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1992 // adjust the operands as necessary. 1993 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1994 Comparison &C) { 1995 // For us to make any changes, it must a comparison between a single-use 1996 // load and a constant. 1997 if (!C.Op0.hasOneUse() || 1998 C.Op0.getOpcode() != ISD::LOAD || 1999 C.Op1.getOpcode() != ISD::Constant) 2000 return; 2001 2002 // We must have an 8- or 16-bit load. 2003 auto *Load = cast<LoadSDNode>(C.Op0); 2004 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 2005 if (NumBits != 8 && NumBits != 16) 2006 return; 2007 2008 // The load must be an extending one and the constant must be within the 2009 // range of the unextended value. 2010 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2011 uint64_t Value = ConstOp1->getZExtValue(); 2012 uint64_t Mask = (1 << NumBits) - 1; 2013 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2014 // Make sure that ConstOp1 is in range of C.Op0. 2015 int64_t SignedValue = ConstOp1->getSExtValue(); 2016 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2017 return; 2018 if (C.ICmpType != SystemZICMP::SignedOnly) { 2019 // Unsigned comparison between two sign-extended values is equivalent 2020 // to unsigned comparison between two zero-extended values. 2021 Value &= Mask; 2022 } else if (NumBits == 8) { 2023 // Try to treat the comparison as unsigned, so that we can use CLI. 2024 // Adjust CCMask and Value as necessary. 2025 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2026 // Test whether the high bit of the byte is set. 2027 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2028 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2029 // Test whether the high bit of the byte is clear. 2030 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2031 else 2032 // No instruction exists for this combination. 2033 return; 2034 C.ICmpType = SystemZICMP::UnsignedOnly; 2035 } 2036 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2037 if (Value > Mask) 2038 return; 2039 // If the constant is in range, we can use any comparison. 2040 C.ICmpType = SystemZICMP::Any; 2041 } else 2042 return; 2043 2044 // Make sure that the first operand is an i32 of the right extension type. 2045 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2046 ISD::SEXTLOAD : 2047 ISD::ZEXTLOAD); 2048 if (C.Op0.getValueType() != MVT::i32 || 2049 Load->getExtensionType() != ExtType) { 2050 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2051 Load->getBasePtr(), Load->getPointerInfo(), 2052 Load->getMemoryVT(), Load->getAlignment(), 2053 Load->getMemOperand()->getFlags()); 2054 // Update the chain uses. 2055 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2056 } 2057 2058 // Make sure that the second operand is an i32 with the right value. 2059 if (C.Op1.getValueType() != MVT::i32 || 2060 Value != ConstOp1->getZExtValue()) 2061 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2062 } 2063 2064 // Return true if Op is either an unextended load, or a load suitable 2065 // for integer register-memory comparisons of type ICmpType. 2066 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2067 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2068 if (Load) { 2069 // There are no instructions to compare a register with a memory byte. 2070 if (Load->getMemoryVT() == MVT::i8) 2071 return false; 2072 // Otherwise decide on extension type. 2073 switch (Load->getExtensionType()) { 2074 case ISD::NON_EXTLOAD: 2075 return true; 2076 case ISD::SEXTLOAD: 2077 return ICmpType != SystemZICMP::UnsignedOnly; 2078 case ISD::ZEXTLOAD: 2079 return ICmpType != SystemZICMP::SignedOnly; 2080 default: 2081 break; 2082 } 2083 } 2084 return false; 2085 } 2086 2087 // Return true if it is better to swap the operands of C. 2088 static bool shouldSwapCmpOperands(const Comparison &C) { 2089 // Leave f128 comparisons alone, since they have no memory forms. 2090 if (C.Op0.getValueType() == MVT::f128) 2091 return false; 2092 2093 // Always keep a floating-point constant second, since comparisons with 2094 // zero can use LOAD TEST and comparisons with other constants make a 2095 // natural memory operand. 2096 if (isa<ConstantFPSDNode>(C.Op1)) 2097 return false; 2098 2099 // Never swap comparisons with zero since there are many ways to optimize 2100 // those later. 2101 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2102 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2103 return false; 2104 2105 // Also keep natural memory operands second if the loaded value is 2106 // only used here. Several comparisons have memory forms. 2107 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2108 return false; 2109 2110 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2111 // In that case we generally prefer the memory to be second. 2112 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2113 // The only exceptions are when the second operand is a constant and 2114 // we can use things like CHHSI. 2115 if (!ConstOp1) 2116 return true; 2117 // The unsigned memory-immediate instructions can handle 16-bit 2118 // unsigned integers. 2119 if (C.ICmpType != SystemZICMP::SignedOnly && 2120 isUInt<16>(ConstOp1->getZExtValue())) 2121 return false; 2122 // The signed memory-immediate instructions can handle 16-bit 2123 // signed integers. 2124 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2125 isInt<16>(ConstOp1->getSExtValue())) 2126 return false; 2127 return true; 2128 } 2129 2130 // Try to promote the use of CGFR and CLGFR. 2131 unsigned Opcode0 = C.Op0.getOpcode(); 2132 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2133 return true; 2134 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2135 return true; 2136 if (C.ICmpType != SystemZICMP::SignedOnly && 2137 Opcode0 == ISD::AND && 2138 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2139 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2140 return true; 2141 2142 return false; 2143 } 2144 2145 // Return a version of comparison CC mask CCMask in which the LT and GT 2146 // actions are swapped. 2147 static unsigned reverseCCMask(unsigned CCMask) { 2148 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 2149 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 2150 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 2151 (CCMask & SystemZ::CCMASK_CMP_UO)); 2152 } 2153 2154 // Check whether C tests for equality between X and Y and whether X - Y 2155 // or Y - X is also computed. In that case it's better to compare the 2156 // result of the subtraction against zero. 2157 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2158 Comparison &C) { 2159 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2160 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2161 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2162 SDNode *N = *I; 2163 if (N->getOpcode() == ISD::SUB && 2164 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2165 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2166 C.Op0 = SDValue(N, 0); 2167 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2168 return; 2169 } 2170 } 2171 } 2172 } 2173 2174 // Check whether C compares a floating-point value with zero and if that 2175 // floating-point value is also negated. In this case we can use the 2176 // negation to set CC, so avoiding separate LOAD AND TEST and 2177 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2178 static void adjustForFNeg(Comparison &C) { 2179 // This optimization is invalid for strict comparisons, since FNEG 2180 // does not raise any exceptions. 2181 if (C.Chain) 2182 return; 2183 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2184 if (C1 && C1->isZero()) { 2185 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2186 SDNode *N = *I; 2187 if (N->getOpcode() == ISD::FNEG) { 2188 C.Op0 = SDValue(N, 0); 2189 C.CCMask = reverseCCMask(C.CCMask); 2190 return; 2191 } 2192 } 2193 } 2194 } 2195 2196 // Check whether C compares (shl X, 32) with 0 and whether X is 2197 // also sign-extended. In that case it is better to test the result 2198 // of the sign extension using LTGFR. 2199 // 2200 // This case is important because InstCombine transforms a comparison 2201 // with (sext (trunc X)) into a comparison with (shl X, 32). 2202 static void adjustForLTGFR(Comparison &C) { 2203 // Check for a comparison between (shl X, 32) and 0. 2204 if (C.Op0.getOpcode() == ISD::SHL && 2205 C.Op0.getValueType() == MVT::i64 && 2206 C.Op1.getOpcode() == ISD::Constant && 2207 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2208 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2209 if (C1 && C1->getZExtValue() == 32) { 2210 SDValue ShlOp0 = C.Op0.getOperand(0); 2211 // See whether X has any SIGN_EXTEND_INREG uses. 2212 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2213 SDNode *N = *I; 2214 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2215 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2216 C.Op0 = SDValue(N, 0); 2217 return; 2218 } 2219 } 2220 } 2221 } 2222 } 2223 2224 // If C compares the truncation of an extending load, try to compare 2225 // the untruncated value instead. This exposes more opportunities to 2226 // reuse CC. 2227 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2228 Comparison &C) { 2229 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2230 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2231 C.Op1.getOpcode() == ISD::Constant && 2232 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2233 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2234 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2235 unsigned Type = L->getExtensionType(); 2236 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2237 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2238 C.Op0 = C.Op0.getOperand(0); 2239 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2240 } 2241 } 2242 } 2243 } 2244 2245 // Return true if shift operation N has an in-range constant shift value. 2246 // Store it in ShiftVal if so. 2247 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2248 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2249 if (!Shift) 2250 return false; 2251 2252 uint64_t Amount = Shift->getZExtValue(); 2253 if (Amount >= N.getValueSizeInBits()) 2254 return false; 2255 2256 ShiftVal = Amount; 2257 return true; 2258 } 2259 2260 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2261 // instruction and whether the CC value is descriptive enough to handle 2262 // a comparison of type Opcode between the AND result and CmpVal. 2263 // CCMask says which comparison result is being tested and BitSize is 2264 // the number of bits in the operands. If TEST UNDER MASK can be used, 2265 // return the corresponding CC mask, otherwise return 0. 2266 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2267 uint64_t Mask, uint64_t CmpVal, 2268 unsigned ICmpType) { 2269 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2270 2271 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2272 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2273 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2274 return 0; 2275 2276 // Work out the masks for the lowest and highest bits. 2277 unsigned HighShift = 63 - countLeadingZeros(Mask); 2278 uint64_t High = uint64_t(1) << HighShift; 2279 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2280 2281 // Signed ordered comparisons are effectively unsigned if the sign 2282 // bit is dropped. 2283 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2284 2285 // Check for equality comparisons with 0, or the equivalent. 2286 if (CmpVal == 0) { 2287 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2288 return SystemZ::CCMASK_TM_ALL_0; 2289 if (CCMask == SystemZ::CCMASK_CMP_NE) 2290 return SystemZ::CCMASK_TM_SOME_1; 2291 } 2292 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2293 if (CCMask == SystemZ::CCMASK_CMP_LT) 2294 return SystemZ::CCMASK_TM_ALL_0; 2295 if (CCMask == SystemZ::CCMASK_CMP_GE) 2296 return SystemZ::CCMASK_TM_SOME_1; 2297 } 2298 if (EffectivelyUnsigned && CmpVal < Low) { 2299 if (CCMask == SystemZ::CCMASK_CMP_LE) 2300 return SystemZ::CCMASK_TM_ALL_0; 2301 if (CCMask == SystemZ::CCMASK_CMP_GT) 2302 return SystemZ::CCMASK_TM_SOME_1; 2303 } 2304 2305 // Check for equality comparisons with the mask, or the equivalent. 2306 if (CmpVal == Mask) { 2307 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2308 return SystemZ::CCMASK_TM_ALL_1; 2309 if (CCMask == SystemZ::CCMASK_CMP_NE) 2310 return SystemZ::CCMASK_TM_SOME_0; 2311 } 2312 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2313 if (CCMask == SystemZ::CCMASK_CMP_GT) 2314 return SystemZ::CCMASK_TM_ALL_1; 2315 if (CCMask == SystemZ::CCMASK_CMP_LE) 2316 return SystemZ::CCMASK_TM_SOME_0; 2317 } 2318 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2319 if (CCMask == SystemZ::CCMASK_CMP_GE) 2320 return SystemZ::CCMASK_TM_ALL_1; 2321 if (CCMask == SystemZ::CCMASK_CMP_LT) 2322 return SystemZ::CCMASK_TM_SOME_0; 2323 } 2324 2325 // Check for ordered comparisons with the top bit. 2326 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2327 if (CCMask == SystemZ::CCMASK_CMP_LE) 2328 return SystemZ::CCMASK_TM_MSB_0; 2329 if (CCMask == SystemZ::CCMASK_CMP_GT) 2330 return SystemZ::CCMASK_TM_MSB_1; 2331 } 2332 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2333 if (CCMask == SystemZ::CCMASK_CMP_LT) 2334 return SystemZ::CCMASK_TM_MSB_0; 2335 if (CCMask == SystemZ::CCMASK_CMP_GE) 2336 return SystemZ::CCMASK_TM_MSB_1; 2337 } 2338 2339 // If there are just two bits, we can do equality checks for Low and High 2340 // as well. 2341 if (Mask == Low + High) { 2342 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2343 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2344 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2345 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2346 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2347 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2348 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2349 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2350 } 2351 2352 // Looks like we've exhausted our options. 2353 return 0; 2354 } 2355 2356 // See whether C can be implemented as a TEST UNDER MASK instruction. 2357 // Update the arguments with the TM version if so. 2358 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2359 Comparison &C) { 2360 // Check that we have a comparison with a constant. 2361 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2362 if (!ConstOp1) 2363 return; 2364 uint64_t CmpVal = ConstOp1->getZExtValue(); 2365 2366 // Check whether the nonconstant input is an AND with a constant mask. 2367 Comparison NewC(C); 2368 uint64_t MaskVal; 2369 ConstantSDNode *Mask = nullptr; 2370 if (C.Op0.getOpcode() == ISD::AND) { 2371 NewC.Op0 = C.Op0.getOperand(0); 2372 NewC.Op1 = C.Op0.getOperand(1); 2373 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2374 if (!Mask) 2375 return; 2376 MaskVal = Mask->getZExtValue(); 2377 } else { 2378 // There is no instruction to compare with a 64-bit immediate 2379 // so use TMHH instead if possible. We need an unsigned ordered 2380 // comparison with an i64 immediate. 2381 if (NewC.Op0.getValueType() != MVT::i64 || 2382 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2383 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2384 NewC.ICmpType == SystemZICMP::SignedOnly) 2385 return; 2386 // Convert LE and GT comparisons into LT and GE. 2387 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2388 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2389 if (CmpVal == uint64_t(-1)) 2390 return; 2391 CmpVal += 1; 2392 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2393 } 2394 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2395 // be masked off without changing the result. 2396 MaskVal = -(CmpVal & -CmpVal); 2397 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2398 } 2399 if (!MaskVal) 2400 return; 2401 2402 // Check whether the combination of mask, comparison value and comparison 2403 // type are suitable. 2404 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2405 unsigned NewCCMask, ShiftVal; 2406 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2407 NewC.Op0.getOpcode() == ISD::SHL && 2408 isSimpleShift(NewC.Op0, ShiftVal) && 2409 (MaskVal >> ShiftVal != 0) && 2410 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2411 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2412 MaskVal >> ShiftVal, 2413 CmpVal >> ShiftVal, 2414 SystemZICMP::Any))) { 2415 NewC.Op0 = NewC.Op0.getOperand(0); 2416 MaskVal >>= ShiftVal; 2417 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2418 NewC.Op0.getOpcode() == ISD::SRL && 2419 isSimpleShift(NewC.Op0, ShiftVal) && 2420 (MaskVal << ShiftVal != 0) && 2421 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2422 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2423 MaskVal << ShiftVal, 2424 CmpVal << ShiftVal, 2425 SystemZICMP::UnsignedOnly))) { 2426 NewC.Op0 = NewC.Op0.getOperand(0); 2427 MaskVal <<= ShiftVal; 2428 } else { 2429 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2430 NewC.ICmpType); 2431 if (!NewCCMask) 2432 return; 2433 } 2434 2435 // Go ahead and make the change. 2436 C.Opcode = SystemZISD::TM; 2437 C.Op0 = NewC.Op0; 2438 if (Mask && Mask->getZExtValue() == MaskVal) 2439 C.Op1 = SDValue(Mask, 0); 2440 else 2441 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2442 C.CCValid = SystemZ::CCMASK_TM; 2443 C.CCMask = NewCCMask; 2444 } 2445 2446 // See whether the comparison argument contains a redundant AND 2447 // and remove it if so. This sometimes happens due to the generic 2448 // BRCOND expansion. 2449 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2450 Comparison &C) { 2451 if (C.Op0.getOpcode() != ISD::AND) 2452 return; 2453 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2454 if (!Mask) 2455 return; 2456 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2457 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2458 return; 2459 2460 C.Op0 = C.Op0.getOperand(0); 2461 } 2462 2463 // Return a Comparison that tests the condition-code result of intrinsic 2464 // node Call against constant integer CC using comparison code Cond. 2465 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2466 // and CCValid is the set of possible condition-code results. 2467 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2468 SDValue Call, unsigned CCValid, uint64_t CC, 2469 ISD::CondCode Cond) { 2470 Comparison C(Call, SDValue(), SDValue()); 2471 C.Opcode = Opcode; 2472 C.CCValid = CCValid; 2473 if (Cond == ISD::SETEQ) 2474 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2475 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2476 else if (Cond == ISD::SETNE) 2477 // ...and the inverse of that. 2478 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2479 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2480 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2481 // always true for CC>3. 2482 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2483 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2484 // ...and the inverse of that. 2485 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2486 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2487 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2488 // always true for CC>3. 2489 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2490 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2491 // ...and the inverse of that. 2492 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2493 else 2494 llvm_unreachable("Unexpected integer comparison type"); 2495 C.CCMask &= CCValid; 2496 return C; 2497 } 2498 2499 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2500 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2501 ISD::CondCode Cond, const SDLoc &DL, 2502 SDValue Chain = SDValue(), 2503 bool IsSignaling = false) { 2504 if (CmpOp1.getOpcode() == ISD::Constant) { 2505 assert(!Chain); 2506 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2507 unsigned Opcode, CCValid; 2508 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2509 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2510 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2511 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2512 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2513 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2514 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2515 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2516 } 2517 Comparison C(CmpOp0, CmpOp1, Chain); 2518 C.CCMask = CCMaskForCondCode(Cond); 2519 if (C.Op0.getValueType().isFloatingPoint()) { 2520 C.CCValid = SystemZ::CCMASK_FCMP; 2521 if (!C.Chain) 2522 C.Opcode = SystemZISD::FCMP; 2523 else if (!IsSignaling) 2524 C.Opcode = SystemZISD::STRICT_FCMP; 2525 else 2526 C.Opcode = SystemZISD::STRICT_FCMPS; 2527 adjustForFNeg(C); 2528 } else { 2529 assert(!C.Chain); 2530 C.CCValid = SystemZ::CCMASK_ICMP; 2531 C.Opcode = SystemZISD::ICMP; 2532 // Choose the type of comparison. Equality and inequality tests can 2533 // use either signed or unsigned comparisons. The choice also doesn't 2534 // matter if both sign bits are known to be clear. In those cases we 2535 // want to give the main isel code the freedom to choose whichever 2536 // form fits best. 2537 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2538 C.CCMask == SystemZ::CCMASK_CMP_NE || 2539 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2540 C.ICmpType = SystemZICMP::Any; 2541 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2542 C.ICmpType = SystemZICMP::UnsignedOnly; 2543 else 2544 C.ICmpType = SystemZICMP::SignedOnly; 2545 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2546 adjustForRedundantAnd(DAG, DL, C); 2547 adjustZeroCmp(DAG, DL, C); 2548 adjustSubwordCmp(DAG, DL, C); 2549 adjustForSubtraction(DAG, DL, C); 2550 adjustForLTGFR(C); 2551 adjustICmpTruncate(DAG, DL, C); 2552 } 2553 2554 if (shouldSwapCmpOperands(C)) { 2555 std::swap(C.Op0, C.Op1); 2556 C.CCMask = reverseCCMask(C.CCMask); 2557 } 2558 2559 adjustForTestUnderMask(DAG, DL, C); 2560 return C; 2561 } 2562 2563 // Emit the comparison instruction described by C. 2564 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2565 if (!C.Op1.getNode()) { 2566 SDNode *Node; 2567 switch (C.Op0.getOpcode()) { 2568 case ISD::INTRINSIC_W_CHAIN: 2569 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2570 return SDValue(Node, 0); 2571 case ISD::INTRINSIC_WO_CHAIN: 2572 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2573 return SDValue(Node, Node->getNumValues() - 1); 2574 default: 2575 llvm_unreachable("Invalid comparison operands"); 2576 } 2577 } 2578 if (C.Opcode == SystemZISD::ICMP) 2579 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2580 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2581 if (C.Opcode == SystemZISD::TM) { 2582 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2583 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2584 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2585 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2586 } 2587 if (C.Chain) { 2588 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2589 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2590 } 2591 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2592 } 2593 2594 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2595 // 64 bits. Extend is the extension type to use. Store the high part 2596 // in Hi and the low part in Lo. 2597 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2598 SDValue Op0, SDValue Op1, SDValue &Hi, 2599 SDValue &Lo) { 2600 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2601 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2602 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2603 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2604 DAG.getConstant(32, DL, MVT::i64)); 2605 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2606 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2607 } 2608 2609 // Lower a binary operation that produces two VT results, one in each 2610 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2611 // and Opcode performs the GR128 operation. Store the even register result 2612 // in Even and the odd register result in Odd. 2613 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2614 unsigned Opcode, SDValue Op0, SDValue Op1, 2615 SDValue &Even, SDValue &Odd) { 2616 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2617 bool Is32Bit = is32Bit(VT); 2618 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2619 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2620 } 2621 2622 // Return an i32 value that is 1 if the CC value produced by CCReg is 2623 // in the mask CCMask and 0 otherwise. CC is known to have a value 2624 // in CCValid, so other values can be ignored. 2625 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2626 unsigned CCValid, unsigned CCMask) { 2627 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2628 DAG.getConstant(0, DL, MVT::i32), 2629 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2630 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2631 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2632 } 2633 2634 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2635 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2636 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2637 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2638 // floating-point comparisons. 2639 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2640 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2641 switch (CC) { 2642 case ISD::SETOEQ: 2643 case ISD::SETEQ: 2644 switch (Mode) { 2645 case CmpMode::Int: return SystemZISD::VICMPE; 2646 case CmpMode::FP: return SystemZISD::VFCMPE; 2647 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2648 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2649 } 2650 llvm_unreachable("Bad mode"); 2651 2652 case ISD::SETOGE: 2653 case ISD::SETGE: 2654 switch (Mode) { 2655 case CmpMode::Int: return 0; 2656 case CmpMode::FP: return SystemZISD::VFCMPHE; 2657 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2658 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2659 } 2660 llvm_unreachable("Bad mode"); 2661 2662 case ISD::SETOGT: 2663 case ISD::SETGT: 2664 switch (Mode) { 2665 case CmpMode::Int: return SystemZISD::VICMPH; 2666 case CmpMode::FP: return SystemZISD::VFCMPH; 2667 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2668 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2669 } 2670 llvm_unreachable("Bad mode"); 2671 2672 case ISD::SETUGT: 2673 switch (Mode) { 2674 case CmpMode::Int: return SystemZISD::VICMPHL; 2675 case CmpMode::FP: return 0; 2676 case CmpMode::StrictFP: return 0; 2677 case CmpMode::SignalingFP: return 0; 2678 } 2679 llvm_unreachable("Bad mode"); 2680 2681 default: 2682 return 0; 2683 } 2684 } 2685 2686 // Return the SystemZISD vector comparison operation for CC or its inverse, 2687 // or 0 if neither can be done directly. Indicate in Invert whether the 2688 // result is for the inverse of CC. Mode is as above. 2689 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2690 bool &Invert) { 2691 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2692 Invert = false; 2693 return Opcode; 2694 } 2695 2696 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int); 2697 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2698 Invert = true; 2699 return Opcode; 2700 } 2701 2702 return 0; 2703 } 2704 2705 // Return a v2f64 that contains the extended form of elements Start and Start+1 2706 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2707 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2708 SDValue Op, SDValue Chain) { 2709 int Mask[] = { Start, -1, Start + 1, -1 }; 2710 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2711 if (Chain) { 2712 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2713 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2714 } 2715 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2716 } 2717 2718 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2719 // producing a result of type VT. If Chain is nonnull, return the strict form. 2720 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2721 const SDLoc &DL, EVT VT, 2722 SDValue CmpOp0, 2723 SDValue CmpOp1, 2724 SDValue Chain) const { 2725 // There is no hardware support for v4f32 (unless we have the vector 2726 // enhancements facility 1), so extend the vector into two v2f64s 2727 // and compare those. 2728 if (CmpOp0.getValueType() == MVT::v4f32 && 2729 !Subtarget.hasVectorEnhancements1()) { 2730 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2731 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2732 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2733 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2734 if (Chain) { 2735 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2736 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2737 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2738 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2739 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2740 H1.getValue(1), L1.getValue(1), 2741 HRes.getValue(1), LRes.getValue(1) }; 2742 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2743 SDValue Ops[2] = { Res, NewChain }; 2744 return DAG.getMergeValues(Ops, DL); 2745 } 2746 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2747 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2748 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2749 } 2750 if (Chain) { 2751 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2752 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2753 } 2754 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2755 } 2756 2757 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2758 // an integer mask of type VT. If Chain is nonnull, we have a strict 2759 // floating-point comparison. If in addition IsSignaling is true, we have 2760 // a strict signaling floating-point comparison. 2761 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2762 const SDLoc &DL, EVT VT, 2763 ISD::CondCode CC, 2764 SDValue CmpOp0, 2765 SDValue CmpOp1, 2766 SDValue Chain, 2767 bool IsSignaling) const { 2768 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2769 assert (!Chain || IsFP); 2770 assert (!IsSignaling || Chain); 2771 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2772 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2773 bool Invert = false; 2774 SDValue Cmp; 2775 switch (CC) { 2776 // Handle tests for order using (or (ogt y x) (oge x y)). 2777 case ISD::SETUO: 2778 Invert = true; 2779 LLVM_FALLTHROUGH; 2780 case ISD::SETO: { 2781 assert(IsFP && "Unexpected integer comparison"); 2782 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2783 DL, VT, CmpOp1, CmpOp0, Chain); 2784 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2785 DL, VT, CmpOp0, CmpOp1, Chain); 2786 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2787 if (Chain) 2788 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2789 LT.getValue(1), GE.getValue(1)); 2790 break; 2791 } 2792 2793 // Handle <> tests using (or (ogt y x) (ogt x y)). 2794 case ISD::SETUEQ: 2795 Invert = true; 2796 LLVM_FALLTHROUGH; 2797 case ISD::SETONE: { 2798 assert(IsFP && "Unexpected integer comparison"); 2799 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2800 DL, VT, CmpOp1, CmpOp0, Chain); 2801 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2802 DL, VT, CmpOp0, CmpOp1, Chain); 2803 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2804 if (Chain) 2805 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2806 LT.getValue(1), GT.getValue(1)); 2807 break; 2808 } 2809 2810 // Otherwise a single comparison is enough. It doesn't really 2811 // matter whether we try the inversion or the swap first, since 2812 // there are no cases where both work. 2813 default: 2814 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2815 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2816 else { 2817 CC = ISD::getSetCCSwappedOperands(CC); 2818 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2819 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2820 else 2821 llvm_unreachable("Unhandled comparison"); 2822 } 2823 if (Chain) 2824 Chain = Cmp.getValue(1); 2825 break; 2826 } 2827 if (Invert) { 2828 SDValue Mask = 2829 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2830 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2831 } 2832 if (Chain && Chain.getNode() != Cmp.getNode()) { 2833 SDValue Ops[2] = { Cmp, Chain }; 2834 Cmp = DAG.getMergeValues(Ops, DL); 2835 } 2836 return Cmp; 2837 } 2838 2839 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2840 SelectionDAG &DAG) const { 2841 SDValue CmpOp0 = Op.getOperand(0); 2842 SDValue CmpOp1 = Op.getOperand(1); 2843 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2844 SDLoc DL(Op); 2845 EVT VT = Op.getValueType(); 2846 if (VT.isVector()) 2847 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2848 2849 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2850 SDValue CCReg = emitCmp(DAG, DL, C); 2851 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2852 } 2853 2854 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2855 SelectionDAG &DAG, 2856 bool IsSignaling) const { 2857 SDValue Chain = Op.getOperand(0); 2858 SDValue CmpOp0 = Op.getOperand(1); 2859 SDValue CmpOp1 = Op.getOperand(2); 2860 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2861 SDLoc DL(Op); 2862 EVT VT = Op.getNode()->getValueType(0); 2863 if (VT.isVector()) { 2864 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2865 Chain, IsSignaling); 2866 return Res.getValue(Op.getResNo()); 2867 } 2868 2869 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2870 SDValue CCReg = emitCmp(DAG, DL, C); 2871 CCReg->setFlags(Op->getFlags()); 2872 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2873 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2874 return DAG.getMergeValues(Ops, DL); 2875 } 2876 2877 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2878 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2879 SDValue CmpOp0 = Op.getOperand(2); 2880 SDValue CmpOp1 = Op.getOperand(3); 2881 SDValue Dest = Op.getOperand(4); 2882 SDLoc DL(Op); 2883 2884 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2885 SDValue CCReg = emitCmp(DAG, DL, C); 2886 return DAG.getNode( 2887 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2888 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2889 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2890 } 2891 2892 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2893 // allowing Pos and Neg to be wider than CmpOp. 2894 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2895 return (Neg.getOpcode() == ISD::SUB && 2896 Neg.getOperand(0).getOpcode() == ISD::Constant && 2897 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2898 Neg.getOperand(1) == Pos && 2899 (Pos == CmpOp || 2900 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2901 Pos.getOperand(0) == CmpOp))); 2902 } 2903 2904 // Return the absolute or negative absolute of Op; IsNegative decides which. 2905 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2906 bool IsNegative) { 2907 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2908 if (IsNegative) 2909 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2910 DAG.getConstant(0, DL, Op.getValueType()), Op); 2911 return Op; 2912 } 2913 2914 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2915 SelectionDAG &DAG) const { 2916 SDValue CmpOp0 = Op.getOperand(0); 2917 SDValue CmpOp1 = Op.getOperand(1); 2918 SDValue TrueOp = Op.getOperand(2); 2919 SDValue FalseOp = Op.getOperand(3); 2920 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2921 SDLoc DL(Op); 2922 2923 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2924 2925 // Check for absolute and negative-absolute selections, including those 2926 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2927 // This check supplements the one in DAGCombiner. 2928 if (C.Opcode == SystemZISD::ICMP && 2929 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2930 C.CCMask != SystemZ::CCMASK_CMP_NE && 2931 C.Op1.getOpcode() == ISD::Constant && 2932 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2933 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2934 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2935 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2936 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2937 } 2938 2939 SDValue CCReg = emitCmp(DAG, DL, C); 2940 SDValue Ops[] = {TrueOp, FalseOp, 2941 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2942 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2943 2944 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2945 } 2946 2947 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2948 SelectionDAG &DAG) const { 2949 SDLoc DL(Node); 2950 const GlobalValue *GV = Node->getGlobal(); 2951 int64_t Offset = Node->getOffset(); 2952 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2953 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2954 2955 SDValue Result; 2956 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2957 if (isInt<32>(Offset)) { 2958 // Assign anchors at 1<<12 byte boundaries. 2959 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2960 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2961 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2962 2963 // The offset can be folded into the address if it is aligned to a 2964 // halfword. 2965 Offset -= Anchor; 2966 if (Offset != 0 && (Offset & 1) == 0) { 2967 SDValue Full = 2968 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2969 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2970 Offset = 0; 2971 } 2972 } else { 2973 // Conservatively load a constant offset greater than 32 bits into a 2974 // register below. 2975 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 2976 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2977 } 2978 } else { 2979 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2980 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2981 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2982 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2983 } 2984 2985 // If there was a non-zero offset that we didn't fold, create an explicit 2986 // addition for it. 2987 if (Offset != 0) 2988 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2989 DAG.getConstant(Offset, DL, PtrVT)); 2990 2991 return Result; 2992 } 2993 2994 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2995 SelectionDAG &DAG, 2996 unsigned Opcode, 2997 SDValue GOTOffset) const { 2998 SDLoc DL(Node); 2999 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3000 SDValue Chain = DAG.getEntryNode(); 3001 SDValue Glue; 3002 3003 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3004 CallingConv::GHC) 3005 report_fatal_error("In GHC calling convention TLS is not supported"); 3006 3007 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3008 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3009 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3010 Glue = Chain.getValue(1); 3011 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3012 Glue = Chain.getValue(1); 3013 3014 // The first call operand is the chain and the second is the TLS symbol. 3015 SmallVector<SDValue, 8> Ops; 3016 Ops.push_back(Chain); 3017 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3018 Node->getValueType(0), 3019 0, 0)); 3020 3021 // Add argument registers to the end of the list so that they are 3022 // known live into the call. 3023 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3024 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3025 3026 // Add a register mask operand representing the call-preserved registers. 3027 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3028 const uint32_t *Mask = 3029 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3030 assert(Mask && "Missing call preserved mask for calling convention"); 3031 Ops.push_back(DAG.getRegisterMask(Mask)); 3032 3033 // Glue the call to the argument copies. 3034 Ops.push_back(Glue); 3035 3036 // Emit the call. 3037 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3038 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3039 Glue = Chain.getValue(1); 3040 3041 // Copy the return value from %r2. 3042 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3043 } 3044 3045 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3046 SelectionDAG &DAG) const { 3047 SDValue Chain = DAG.getEntryNode(); 3048 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3049 3050 // The high part of the thread pointer is in access register 0. 3051 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3052 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3053 3054 // The low part of the thread pointer is in access register 1. 3055 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3056 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3057 3058 // Merge them into a single 64-bit address. 3059 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3060 DAG.getConstant(32, DL, PtrVT)); 3061 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3062 } 3063 3064 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3065 SelectionDAG &DAG) const { 3066 if (DAG.getTarget().useEmulatedTLS()) 3067 return LowerToTLSEmulatedModel(Node, DAG); 3068 SDLoc DL(Node); 3069 const GlobalValue *GV = Node->getGlobal(); 3070 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3071 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3072 3073 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3074 CallingConv::GHC) 3075 report_fatal_error("In GHC calling convention TLS is not supported"); 3076 3077 SDValue TP = lowerThreadPointer(DL, DAG); 3078 3079 // Get the offset of GA from the thread pointer, based on the TLS model. 3080 SDValue Offset; 3081 switch (model) { 3082 case TLSModel::GeneralDynamic: { 3083 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3084 SystemZConstantPoolValue *CPV = 3085 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3086 3087 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3088 Offset = DAG.getLoad( 3089 PtrVT, DL, DAG.getEntryNode(), Offset, 3090 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3091 3092 // Call __tls_get_offset to retrieve the offset. 3093 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3094 break; 3095 } 3096 3097 case TLSModel::LocalDynamic: { 3098 // Load the GOT offset of the module ID. 3099 SystemZConstantPoolValue *CPV = 3100 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3101 3102 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3103 Offset = DAG.getLoad( 3104 PtrVT, DL, DAG.getEntryNode(), Offset, 3105 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3106 3107 // Call __tls_get_offset to retrieve the module base offset. 3108 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3109 3110 // Note: The SystemZLDCleanupPass will remove redundant computations 3111 // of the module base offset. Count total number of local-dynamic 3112 // accesses to trigger execution of that pass. 3113 SystemZMachineFunctionInfo* MFI = 3114 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3115 MFI->incNumLocalDynamicTLSAccesses(); 3116 3117 // Add the per-symbol offset. 3118 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3119 3120 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 3121 DTPOffset = DAG.getLoad( 3122 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3123 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3124 3125 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3126 break; 3127 } 3128 3129 case TLSModel::InitialExec: { 3130 // Load the offset from the GOT. 3131 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3132 SystemZII::MO_INDNTPOFF); 3133 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3134 Offset = 3135 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3136 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3137 break; 3138 } 3139 3140 case TLSModel::LocalExec: { 3141 // Force the offset into the constant pool and load it from there. 3142 SystemZConstantPoolValue *CPV = 3143 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3144 3145 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3146 Offset = DAG.getLoad( 3147 PtrVT, DL, DAG.getEntryNode(), Offset, 3148 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3149 break; 3150 } 3151 } 3152 3153 // Add the base and offset together. 3154 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3155 } 3156 3157 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3158 SelectionDAG &DAG) const { 3159 SDLoc DL(Node); 3160 const BlockAddress *BA = Node->getBlockAddress(); 3161 int64_t Offset = Node->getOffset(); 3162 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3163 3164 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3165 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3166 return Result; 3167 } 3168 3169 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3170 SelectionDAG &DAG) const { 3171 SDLoc DL(JT); 3172 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3173 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3174 3175 // Use LARL to load the address of the table. 3176 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3177 } 3178 3179 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3180 SelectionDAG &DAG) const { 3181 SDLoc DL(CP); 3182 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3183 3184 SDValue Result; 3185 if (CP->isMachineConstantPoolEntry()) 3186 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3187 CP->getAlignment()); 3188 else 3189 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3190 CP->getAlignment(), CP->getOffset()); 3191 3192 // Use LARL to load the address of the constant pool entry. 3193 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3194 } 3195 3196 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3197 SelectionDAG &DAG) const { 3198 MachineFunction &MF = DAG.getMachineFunction(); 3199 MachineFrameInfo &MFI = MF.getFrameInfo(); 3200 MFI.setFrameAddressIsTaken(true); 3201 3202 SDLoc DL(Op); 3203 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3204 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3205 3206 // If the back chain frame index has not been allocated yet, do so. 3207 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 3208 int BackChainIdx = FI->getFramePointerSaveIndex(); 3209 if (!BackChainIdx) { 3210 // By definition, the frame address is the address of the back chain. 3211 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 3212 FI->setFramePointerSaveIndex(BackChainIdx); 3213 } 3214 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3215 3216 // FIXME The frontend should detect this case. 3217 if (Depth > 0) { 3218 report_fatal_error("Unsupported stack frame traversal count"); 3219 } 3220 3221 return BackChain; 3222 } 3223 3224 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3225 SelectionDAG &DAG) const { 3226 MachineFunction &MF = DAG.getMachineFunction(); 3227 MachineFrameInfo &MFI = MF.getFrameInfo(); 3228 MFI.setReturnAddressIsTaken(true); 3229 3230 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3231 return SDValue(); 3232 3233 SDLoc DL(Op); 3234 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3235 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3236 3237 // FIXME The frontend should detect this case. 3238 if (Depth > 0) { 3239 report_fatal_error("Unsupported stack frame traversal count"); 3240 } 3241 3242 // Return R14D, which has the return address. Mark it an implicit live-in. 3243 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3244 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3245 } 3246 3247 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3248 SelectionDAG &DAG) const { 3249 SDLoc DL(Op); 3250 SDValue In = Op.getOperand(0); 3251 EVT InVT = In.getValueType(); 3252 EVT ResVT = Op.getValueType(); 3253 3254 // Convert loads directly. This is normally done by DAGCombiner, 3255 // but we need this case for bitcasts that are created during lowering 3256 // and which are then lowered themselves. 3257 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3258 if (ISD::isNormalLoad(LoadN)) { 3259 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3260 LoadN->getBasePtr(), LoadN->getMemOperand()); 3261 // Update the chain uses. 3262 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3263 return NewLoad; 3264 } 3265 3266 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3267 SDValue In64; 3268 if (Subtarget.hasHighWord()) { 3269 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3270 MVT::i64); 3271 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3272 MVT::i64, SDValue(U64, 0), In); 3273 } else { 3274 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3275 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3276 DAG.getConstant(32, DL, MVT::i64)); 3277 } 3278 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3279 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3280 DL, MVT::f32, Out64); 3281 } 3282 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3283 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3284 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3285 MVT::f64, SDValue(U64, 0), In); 3286 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3287 if (Subtarget.hasHighWord()) 3288 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3289 MVT::i32, Out64); 3290 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3291 DAG.getConstant(32, DL, MVT::i64)); 3292 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3293 } 3294 llvm_unreachable("Unexpected bitcast combination"); 3295 } 3296 3297 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3298 SelectionDAG &DAG) const { 3299 MachineFunction &MF = DAG.getMachineFunction(); 3300 SystemZMachineFunctionInfo *FuncInfo = 3301 MF.getInfo<SystemZMachineFunctionInfo>(); 3302 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3303 3304 SDValue Chain = Op.getOperand(0); 3305 SDValue Addr = Op.getOperand(1); 3306 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3307 SDLoc DL(Op); 3308 3309 // The initial values of each field. 3310 const unsigned NumFields = 4; 3311 SDValue Fields[NumFields] = { 3312 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3313 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3314 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3315 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3316 }; 3317 3318 // Store each field into its respective slot. 3319 SDValue MemOps[NumFields]; 3320 unsigned Offset = 0; 3321 for (unsigned I = 0; I < NumFields; ++I) { 3322 SDValue FieldAddr = Addr; 3323 if (Offset != 0) 3324 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3325 DAG.getIntPtrConstant(Offset, DL)); 3326 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3327 MachinePointerInfo(SV, Offset)); 3328 Offset += 8; 3329 } 3330 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3331 } 3332 3333 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3334 SelectionDAG &DAG) const { 3335 SDValue Chain = Op.getOperand(0); 3336 SDValue DstPtr = Op.getOperand(1); 3337 SDValue SrcPtr = Op.getOperand(2); 3338 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3339 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3340 SDLoc DL(Op); 3341 3342 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3343 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3344 /*isTailCall*/false, 3345 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3346 } 3347 3348 SDValue SystemZTargetLowering:: 3349 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3350 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3351 MachineFunction &MF = DAG.getMachineFunction(); 3352 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3353 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3354 3355 SDValue Chain = Op.getOperand(0); 3356 SDValue Size = Op.getOperand(1); 3357 SDValue Align = Op.getOperand(2); 3358 SDLoc DL(Op); 3359 3360 // If user has set the no alignment function attribute, ignore 3361 // alloca alignments. 3362 uint64_t AlignVal = (RealignOpt ? 3363 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3364 3365 uint64_t StackAlign = TFI->getStackAlignment(); 3366 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3367 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3368 3369 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3370 SDValue NeededSpace = Size; 3371 3372 // Get a reference to the stack pointer. 3373 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3374 3375 // If we need a backchain, save it now. 3376 SDValue Backchain; 3377 if (StoreBackchain) 3378 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3379 3380 // Add extra space for alignment if needed. 3381 if (ExtraAlignSpace) 3382 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3383 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3384 3385 // Get the new stack pointer value. 3386 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3387 3388 // Copy the new stack pointer back. 3389 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3390 3391 // The allocated data lives above the 160 bytes allocated for the standard 3392 // frame, plus any outgoing stack arguments. We don't know how much that 3393 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3394 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3395 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3396 3397 // Dynamically realign if needed. 3398 if (RequiredAlign > StackAlign) { 3399 Result = 3400 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3401 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3402 Result = 3403 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3404 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3405 } 3406 3407 if (StoreBackchain) 3408 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3409 3410 SDValue Ops[2] = { Result, Chain }; 3411 return DAG.getMergeValues(Ops, DL); 3412 } 3413 3414 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3415 SDValue Op, SelectionDAG &DAG) const { 3416 SDLoc DL(Op); 3417 3418 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3419 } 3420 3421 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3422 SelectionDAG &DAG) const { 3423 EVT VT = Op.getValueType(); 3424 SDLoc DL(Op); 3425 SDValue Ops[2]; 3426 if (is32Bit(VT)) 3427 // Just do a normal 64-bit multiplication and extract the results. 3428 // We define this so that it can be used for constant division. 3429 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3430 Op.getOperand(1), Ops[1], Ops[0]); 3431 else if (Subtarget.hasMiscellaneousExtensions2()) 3432 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3433 // the high result in the even register. ISD::SMUL_LOHI is defined to 3434 // return the low half first, so the results are in reverse order. 3435 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3436 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3437 else { 3438 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3439 // 3440 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3441 // 3442 // but using the fact that the upper halves are either all zeros 3443 // or all ones: 3444 // 3445 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3446 // 3447 // and grouping the right terms together since they are quicker than the 3448 // multiplication: 3449 // 3450 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3451 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3452 SDValue LL = Op.getOperand(0); 3453 SDValue RL = Op.getOperand(1); 3454 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3455 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3456 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3457 // the high result in the even register. ISD::SMUL_LOHI is defined to 3458 // return the low half first, so the results are in reverse order. 3459 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3460 LL, RL, Ops[1], Ops[0]); 3461 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3462 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3463 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3464 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3465 } 3466 return DAG.getMergeValues(Ops, DL); 3467 } 3468 3469 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3470 SelectionDAG &DAG) const { 3471 EVT VT = Op.getValueType(); 3472 SDLoc DL(Op); 3473 SDValue Ops[2]; 3474 if (is32Bit(VT)) 3475 // Just do a normal 64-bit multiplication and extract the results. 3476 // We define this so that it can be used for constant division. 3477 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3478 Op.getOperand(1), Ops[1], Ops[0]); 3479 else 3480 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3481 // the high result in the even register. ISD::UMUL_LOHI is defined to 3482 // return the low half first, so the results are in reverse order. 3483 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3484 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3485 return DAG.getMergeValues(Ops, DL); 3486 } 3487 3488 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3489 SelectionDAG &DAG) const { 3490 SDValue Op0 = Op.getOperand(0); 3491 SDValue Op1 = Op.getOperand(1); 3492 EVT VT = Op.getValueType(); 3493 SDLoc DL(Op); 3494 3495 // We use DSGF for 32-bit division. This means the first operand must 3496 // always be 64-bit, and the second operand should be 32-bit whenever 3497 // that is possible, to improve performance. 3498 if (is32Bit(VT)) 3499 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3500 else if (DAG.ComputeNumSignBits(Op1) > 32) 3501 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3502 3503 // DSG(F) returns the remainder in the even register and the 3504 // quotient in the odd register. 3505 SDValue Ops[2]; 3506 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3507 return DAG.getMergeValues(Ops, DL); 3508 } 3509 3510 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3511 SelectionDAG &DAG) const { 3512 EVT VT = Op.getValueType(); 3513 SDLoc DL(Op); 3514 3515 // DL(G) returns the remainder in the even register and the 3516 // quotient in the odd register. 3517 SDValue Ops[2]; 3518 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3519 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3520 return DAG.getMergeValues(Ops, DL); 3521 } 3522 3523 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3524 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3525 3526 // Get the known-zero masks for each operand. 3527 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3528 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3529 DAG.computeKnownBits(Ops[1])}; 3530 3531 // See if the upper 32 bits of one operand and the lower 32 bits of the 3532 // other are known zero. They are the low and high operands respectively. 3533 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3534 Known[1].Zero.getZExtValue() }; 3535 unsigned High, Low; 3536 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3537 High = 1, Low = 0; 3538 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3539 High = 0, Low = 1; 3540 else 3541 return Op; 3542 3543 SDValue LowOp = Ops[Low]; 3544 SDValue HighOp = Ops[High]; 3545 3546 // If the high part is a constant, we're better off using IILH. 3547 if (HighOp.getOpcode() == ISD::Constant) 3548 return Op; 3549 3550 // If the low part is a constant that is outside the range of LHI, 3551 // then we're better off using IILF. 3552 if (LowOp.getOpcode() == ISD::Constant) { 3553 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3554 if (!isInt<16>(Value)) 3555 return Op; 3556 } 3557 3558 // Check whether the high part is an AND that doesn't change the 3559 // high 32 bits and just masks out low bits. We can skip it if so. 3560 if (HighOp.getOpcode() == ISD::AND && 3561 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3562 SDValue HighOp0 = HighOp.getOperand(0); 3563 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3564 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3565 HighOp = HighOp0; 3566 } 3567 3568 // Take advantage of the fact that all GR32 operations only change the 3569 // low 32 bits by truncating Low to an i32 and inserting it directly 3570 // using a subreg. The interesting cases are those where the truncation 3571 // can be folded. 3572 SDLoc DL(Op); 3573 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3574 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3575 MVT::i64, HighOp, Low32); 3576 } 3577 3578 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3579 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3580 SelectionDAG &DAG) const { 3581 SDNode *N = Op.getNode(); 3582 SDValue LHS = N->getOperand(0); 3583 SDValue RHS = N->getOperand(1); 3584 SDLoc DL(N); 3585 unsigned BaseOp = 0; 3586 unsigned CCValid = 0; 3587 unsigned CCMask = 0; 3588 3589 switch (Op.getOpcode()) { 3590 default: llvm_unreachable("Unknown instruction!"); 3591 case ISD::SADDO: 3592 BaseOp = SystemZISD::SADDO; 3593 CCValid = SystemZ::CCMASK_ARITH; 3594 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3595 break; 3596 case ISD::SSUBO: 3597 BaseOp = SystemZISD::SSUBO; 3598 CCValid = SystemZ::CCMASK_ARITH; 3599 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3600 break; 3601 case ISD::UADDO: 3602 BaseOp = SystemZISD::UADDO; 3603 CCValid = SystemZ::CCMASK_LOGICAL; 3604 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3605 break; 3606 case ISD::USUBO: 3607 BaseOp = SystemZISD::USUBO; 3608 CCValid = SystemZ::CCMASK_LOGICAL; 3609 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3610 break; 3611 } 3612 3613 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3614 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3615 3616 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3617 if (N->getValueType(1) == MVT::i1) 3618 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3619 3620 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3621 } 3622 3623 static bool isAddCarryChain(SDValue Carry) { 3624 while (Carry.getOpcode() == ISD::ADDCARRY) 3625 Carry = Carry.getOperand(2); 3626 return Carry.getOpcode() == ISD::UADDO; 3627 } 3628 3629 static bool isSubBorrowChain(SDValue Carry) { 3630 while (Carry.getOpcode() == ISD::SUBCARRY) 3631 Carry = Carry.getOperand(2); 3632 return Carry.getOpcode() == ISD::USUBO; 3633 } 3634 3635 // Lower ADDCARRY/SUBCARRY nodes. 3636 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3637 SelectionDAG &DAG) const { 3638 3639 SDNode *N = Op.getNode(); 3640 MVT VT = N->getSimpleValueType(0); 3641 3642 // Let legalize expand this if it isn't a legal type yet. 3643 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3644 return SDValue(); 3645 3646 SDValue LHS = N->getOperand(0); 3647 SDValue RHS = N->getOperand(1); 3648 SDValue Carry = Op.getOperand(2); 3649 SDLoc DL(N); 3650 unsigned BaseOp = 0; 3651 unsigned CCValid = 0; 3652 unsigned CCMask = 0; 3653 3654 switch (Op.getOpcode()) { 3655 default: llvm_unreachable("Unknown instruction!"); 3656 case ISD::ADDCARRY: 3657 if (!isAddCarryChain(Carry)) 3658 return SDValue(); 3659 3660 BaseOp = SystemZISD::ADDCARRY; 3661 CCValid = SystemZ::CCMASK_LOGICAL; 3662 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3663 break; 3664 case ISD::SUBCARRY: 3665 if (!isSubBorrowChain(Carry)) 3666 return SDValue(); 3667 3668 BaseOp = SystemZISD::SUBCARRY; 3669 CCValid = SystemZ::CCMASK_LOGICAL; 3670 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3671 break; 3672 } 3673 3674 // Set the condition code from the carry flag. 3675 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3676 DAG.getConstant(CCValid, DL, MVT::i32), 3677 DAG.getConstant(CCMask, DL, MVT::i32)); 3678 3679 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3680 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3681 3682 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3683 if (N->getValueType(1) == MVT::i1) 3684 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3685 3686 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3687 } 3688 3689 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3690 SelectionDAG &DAG) const { 3691 EVT VT = Op.getValueType(); 3692 SDLoc DL(Op); 3693 Op = Op.getOperand(0); 3694 3695 // Handle vector types via VPOPCT. 3696 if (VT.isVector()) { 3697 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3698 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3699 switch (VT.getScalarSizeInBits()) { 3700 case 8: 3701 break; 3702 case 16: { 3703 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3704 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3705 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3706 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3707 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3708 break; 3709 } 3710 case 32: { 3711 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3712 DAG.getConstant(0, DL, MVT::i32)); 3713 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3714 break; 3715 } 3716 case 64: { 3717 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3718 DAG.getConstant(0, DL, MVT::i32)); 3719 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3720 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3721 break; 3722 } 3723 default: 3724 llvm_unreachable("Unexpected type"); 3725 } 3726 return Op; 3727 } 3728 3729 // Get the known-zero mask for the operand. 3730 KnownBits Known = DAG.computeKnownBits(Op); 3731 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3732 if (NumSignificantBits == 0) 3733 return DAG.getConstant(0, DL, VT); 3734 3735 // Skip known-zero high parts of the operand. 3736 int64_t OrigBitSize = VT.getSizeInBits(); 3737 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3738 BitSize = std::min(BitSize, OrigBitSize); 3739 3740 // The POPCNT instruction counts the number of bits in each byte. 3741 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3742 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3743 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3744 3745 // Add up per-byte counts in a binary tree. All bits of Op at 3746 // position larger than BitSize remain zero throughout. 3747 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3748 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3749 if (BitSize != OrigBitSize) 3750 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3751 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3752 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3753 } 3754 3755 // Extract overall result from high byte. 3756 if (BitSize > 8) 3757 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3758 DAG.getConstant(BitSize - 8, DL, VT)); 3759 3760 return Op; 3761 } 3762 3763 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3764 SelectionDAG &DAG) const { 3765 SDLoc DL(Op); 3766 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3767 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3768 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3769 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3770 3771 // The only fence that needs an instruction is a sequentially-consistent 3772 // cross-thread fence. 3773 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3774 FenceSSID == SyncScope::System) { 3775 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3776 Op.getOperand(0)), 3777 0); 3778 } 3779 3780 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3781 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3782 } 3783 3784 // Op is an atomic load. Lower it into a normal volatile load. 3785 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3786 SelectionDAG &DAG) const { 3787 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3788 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3789 Node->getChain(), Node->getBasePtr(), 3790 Node->getMemoryVT(), Node->getMemOperand()); 3791 } 3792 3793 // Op is an atomic store. Lower it into a normal volatile store. 3794 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3795 SelectionDAG &DAG) const { 3796 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3797 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3798 Node->getBasePtr(), Node->getMemoryVT(), 3799 Node->getMemOperand()); 3800 // We have to enforce sequential consistency by performing a 3801 // serialization operation after the store. 3802 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3803 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3804 MVT::Other, Chain), 0); 3805 return Chain; 3806 } 3807 3808 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3809 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3810 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3811 SelectionDAG &DAG, 3812 unsigned Opcode) const { 3813 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3814 3815 // 32-bit operations need no code outside the main loop. 3816 EVT NarrowVT = Node->getMemoryVT(); 3817 EVT WideVT = MVT::i32; 3818 if (NarrowVT == WideVT) 3819 return Op; 3820 3821 int64_t BitSize = NarrowVT.getSizeInBits(); 3822 SDValue ChainIn = Node->getChain(); 3823 SDValue Addr = Node->getBasePtr(); 3824 SDValue Src2 = Node->getVal(); 3825 MachineMemOperand *MMO = Node->getMemOperand(); 3826 SDLoc DL(Node); 3827 EVT PtrVT = Addr.getValueType(); 3828 3829 // Convert atomic subtracts of constants into additions. 3830 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3831 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3832 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3833 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3834 } 3835 3836 // Get the address of the containing word. 3837 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3838 DAG.getConstant(-4, DL, PtrVT)); 3839 3840 // Get the number of bits that the word must be rotated left in order 3841 // to bring the field to the top bits of a GR32. 3842 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3843 DAG.getConstant(3, DL, PtrVT)); 3844 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3845 3846 // Get the complementing shift amount, for rotating a field in the top 3847 // bits back to its proper position. 3848 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3849 DAG.getConstant(0, DL, WideVT), BitShift); 3850 3851 // Extend the source operand to 32 bits and prepare it for the inner loop. 3852 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3853 // operations require the source to be shifted in advance. (This shift 3854 // can be folded if the source is constant.) For AND and NAND, the lower 3855 // bits must be set, while for other opcodes they should be left clear. 3856 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3857 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3858 DAG.getConstant(32 - BitSize, DL, WideVT)); 3859 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3860 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3861 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3862 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3863 3864 // Construct the ATOMIC_LOADW_* node. 3865 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3866 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3867 DAG.getConstant(BitSize, DL, WideVT) }; 3868 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3869 NarrowVT, MMO); 3870 3871 // Rotate the result of the final CS so that the field is in the lower 3872 // bits of a GR32, then truncate it. 3873 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3874 DAG.getConstant(BitSize, DL, WideVT)); 3875 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3876 3877 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3878 return DAG.getMergeValues(RetOps, DL); 3879 } 3880 3881 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3882 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3883 // operations into additions. 3884 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3885 SelectionDAG &DAG) const { 3886 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3887 EVT MemVT = Node->getMemoryVT(); 3888 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3889 // A full-width operation. 3890 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3891 SDValue Src2 = Node->getVal(); 3892 SDValue NegSrc2; 3893 SDLoc DL(Src2); 3894 3895 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3896 // Use an addition if the operand is constant and either LAA(G) is 3897 // available or the negative value is in the range of A(G)FHI. 3898 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3899 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3900 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3901 } else if (Subtarget.hasInterlockedAccess1()) 3902 // Use LAA(G) if available. 3903 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3904 Src2); 3905 3906 if (NegSrc2.getNode()) 3907 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3908 Node->getChain(), Node->getBasePtr(), NegSrc2, 3909 Node->getMemOperand()); 3910 3911 // Use the node as-is. 3912 return Op; 3913 } 3914 3915 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3916 } 3917 3918 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3919 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3920 SelectionDAG &DAG) const { 3921 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3922 SDValue ChainIn = Node->getOperand(0); 3923 SDValue Addr = Node->getOperand(1); 3924 SDValue CmpVal = Node->getOperand(2); 3925 SDValue SwapVal = Node->getOperand(3); 3926 MachineMemOperand *MMO = Node->getMemOperand(); 3927 SDLoc DL(Node); 3928 3929 // We have native support for 32-bit and 64-bit compare and swap, but we 3930 // still need to expand extracting the "success" result from the CC. 3931 EVT NarrowVT = Node->getMemoryVT(); 3932 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3933 if (NarrowVT == WideVT) { 3934 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3935 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3936 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3937 DL, Tys, Ops, NarrowVT, MMO); 3938 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3939 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3940 3941 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3942 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3943 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3944 return SDValue(); 3945 } 3946 3947 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3948 // via a fullword ATOMIC_CMP_SWAPW operation. 3949 int64_t BitSize = NarrowVT.getSizeInBits(); 3950 EVT PtrVT = Addr.getValueType(); 3951 3952 // Get the address of the containing word. 3953 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3954 DAG.getConstant(-4, DL, PtrVT)); 3955 3956 // Get the number of bits that the word must be rotated left in order 3957 // to bring the field to the top bits of a GR32. 3958 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3959 DAG.getConstant(3, DL, PtrVT)); 3960 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3961 3962 // Get the complementing shift amount, for rotating a field in the top 3963 // bits back to its proper position. 3964 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3965 DAG.getConstant(0, DL, WideVT), BitShift); 3966 3967 // Construct the ATOMIC_CMP_SWAPW node. 3968 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3969 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3970 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3971 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3972 VTList, Ops, NarrowVT, MMO); 3973 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3974 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3975 3976 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3977 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3978 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3979 return SDValue(); 3980 } 3981 3982 MachineMemOperand::Flags 3983 SystemZTargetLowering::getMMOFlags(const Instruction &I) const { 3984 // Because of how we convert atomic_load and atomic_store to normal loads and 3985 // stores in the DAG, we need to ensure that the MMOs are marked volatile 3986 // since DAGCombine hasn't been updated to account for atomic, but non 3987 // volatile loads. (See D57601) 3988 if (auto *SI = dyn_cast<StoreInst>(&I)) 3989 if (SI->isAtomic()) 3990 return MachineMemOperand::MOVolatile; 3991 if (auto *LI = dyn_cast<LoadInst>(&I)) 3992 if (LI->isAtomic()) 3993 return MachineMemOperand::MOVolatile; 3994 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 3995 if (AI->isAtomic()) 3996 return MachineMemOperand::MOVolatile; 3997 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 3998 if (AI->isAtomic()) 3999 return MachineMemOperand::MOVolatile; 4000 return MachineMemOperand::MONone; 4001 } 4002 4003 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4004 SelectionDAG &DAG) const { 4005 MachineFunction &MF = DAG.getMachineFunction(); 4006 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4007 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4008 report_fatal_error("Variable-sized stack allocations are not supported " 4009 "in GHC calling convention"); 4010 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4011 SystemZ::R15D, Op.getValueType()); 4012 } 4013 4014 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4015 SelectionDAG &DAG) const { 4016 MachineFunction &MF = DAG.getMachineFunction(); 4017 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4018 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4019 4020 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4021 report_fatal_error("Variable-sized stack allocations are not supported " 4022 "in GHC calling convention"); 4023 4024 SDValue Chain = Op.getOperand(0); 4025 SDValue NewSP = Op.getOperand(1); 4026 SDValue Backchain; 4027 SDLoc DL(Op); 4028 4029 if (StoreBackchain) { 4030 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4031 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4032 } 4033 4034 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4035 4036 if (StoreBackchain) 4037 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4038 4039 return Chain; 4040 } 4041 4042 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4043 SelectionDAG &DAG) const { 4044 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4045 if (!IsData) 4046 // Just preserve the chain. 4047 return Op.getOperand(0); 4048 4049 SDLoc DL(Op); 4050 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4051 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4052 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4053 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4054 Op.getOperand(1)}; 4055 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4056 Node->getVTList(), Ops, 4057 Node->getMemoryVT(), Node->getMemOperand()); 4058 } 4059 4060 // Convert condition code in CCReg to an i32 value. 4061 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4062 SDLoc DL(CCReg); 4063 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4064 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4065 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4066 } 4067 4068 SDValue 4069 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4070 SelectionDAG &DAG) const { 4071 unsigned Opcode, CCValid; 4072 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4073 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4074 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4075 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4076 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4077 return SDValue(); 4078 } 4079 4080 return SDValue(); 4081 } 4082 4083 SDValue 4084 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4085 SelectionDAG &DAG) const { 4086 unsigned Opcode, CCValid; 4087 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4088 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4089 if (Op->getNumValues() == 1) 4090 return getCCResult(DAG, SDValue(Node, 0)); 4091 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4092 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4093 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4094 } 4095 4096 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4097 switch (Id) { 4098 case Intrinsic::thread_pointer: 4099 return lowerThreadPointer(SDLoc(Op), DAG); 4100 4101 case Intrinsic::s390_vpdi: 4102 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4103 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4104 4105 case Intrinsic::s390_vperm: 4106 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4107 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4108 4109 case Intrinsic::s390_vuphb: 4110 case Intrinsic::s390_vuphh: 4111 case Intrinsic::s390_vuphf: 4112 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4113 Op.getOperand(1)); 4114 4115 case Intrinsic::s390_vuplhb: 4116 case Intrinsic::s390_vuplhh: 4117 case Intrinsic::s390_vuplhf: 4118 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4119 Op.getOperand(1)); 4120 4121 case Intrinsic::s390_vuplb: 4122 case Intrinsic::s390_vuplhw: 4123 case Intrinsic::s390_vuplf: 4124 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4125 Op.getOperand(1)); 4126 4127 case Intrinsic::s390_vupllb: 4128 case Intrinsic::s390_vupllh: 4129 case Intrinsic::s390_vupllf: 4130 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4131 Op.getOperand(1)); 4132 4133 case Intrinsic::s390_vsumb: 4134 case Intrinsic::s390_vsumh: 4135 case Intrinsic::s390_vsumgh: 4136 case Intrinsic::s390_vsumgf: 4137 case Intrinsic::s390_vsumqf: 4138 case Intrinsic::s390_vsumqg: 4139 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4140 Op.getOperand(1), Op.getOperand(2)); 4141 } 4142 4143 return SDValue(); 4144 } 4145 4146 namespace { 4147 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4148 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4149 // Operand is the constant third operand, otherwise it is the number of 4150 // bytes in each element of the result. 4151 struct Permute { 4152 unsigned Opcode; 4153 unsigned Operand; 4154 unsigned char Bytes[SystemZ::VectorBytes]; 4155 }; 4156 } 4157 4158 static const Permute PermuteForms[] = { 4159 // VMRHG 4160 { SystemZISD::MERGE_HIGH, 8, 4161 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4162 // VMRHF 4163 { SystemZISD::MERGE_HIGH, 4, 4164 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4165 // VMRHH 4166 { SystemZISD::MERGE_HIGH, 2, 4167 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4168 // VMRHB 4169 { SystemZISD::MERGE_HIGH, 1, 4170 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4171 // VMRLG 4172 { SystemZISD::MERGE_LOW, 8, 4173 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4174 // VMRLF 4175 { SystemZISD::MERGE_LOW, 4, 4176 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4177 // VMRLH 4178 { SystemZISD::MERGE_LOW, 2, 4179 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4180 // VMRLB 4181 { SystemZISD::MERGE_LOW, 1, 4182 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4183 // VPKG 4184 { SystemZISD::PACK, 4, 4185 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4186 // VPKF 4187 { SystemZISD::PACK, 2, 4188 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4189 // VPKH 4190 { SystemZISD::PACK, 1, 4191 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4192 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4193 { SystemZISD::PERMUTE_DWORDS, 4, 4194 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4195 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4196 { SystemZISD::PERMUTE_DWORDS, 1, 4197 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4198 }; 4199 4200 // Called after matching a vector shuffle against a particular pattern. 4201 // Both the original shuffle and the pattern have two vector operands. 4202 // OpNos[0] is the operand of the original shuffle that should be used for 4203 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4204 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4205 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4206 // for operands 0 and 1 of the pattern. 4207 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4208 if (OpNos[0] < 0) { 4209 if (OpNos[1] < 0) 4210 return false; 4211 OpNo0 = OpNo1 = OpNos[1]; 4212 } else if (OpNos[1] < 0) { 4213 OpNo0 = OpNo1 = OpNos[0]; 4214 } else { 4215 OpNo0 = OpNos[0]; 4216 OpNo1 = OpNos[1]; 4217 } 4218 return true; 4219 } 4220 4221 // Bytes is a VPERM-like permute vector, except that -1 is used for 4222 // undefined bytes. Return true if the VPERM can be implemented using P. 4223 // When returning true set OpNo0 to the VPERM operand that should be 4224 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4225 // 4226 // For example, if swapping the VPERM operands allows P to match, OpNo0 4227 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4228 // operand, but rewriting it to use two duplicated operands allows it to 4229 // match P, then OpNo0 and OpNo1 will be the same. 4230 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4231 unsigned &OpNo0, unsigned &OpNo1) { 4232 int OpNos[] = { -1, -1 }; 4233 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4234 int Elt = Bytes[I]; 4235 if (Elt >= 0) { 4236 // Make sure that the two permute vectors use the same suboperand 4237 // byte number. Only the operand numbers (the high bits) are 4238 // allowed to differ. 4239 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4240 return false; 4241 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4242 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4243 // Make sure that the operand mappings are consistent with previous 4244 // elements. 4245 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4246 return false; 4247 OpNos[ModelOpNo] = RealOpNo; 4248 } 4249 } 4250 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4251 } 4252 4253 // As above, but search for a matching permute. 4254 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4255 unsigned &OpNo0, unsigned &OpNo1) { 4256 for (auto &P : PermuteForms) 4257 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4258 return &P; 4259 return nullptr; 4260 } 4261 4262 // Bytes is a VPERM-like permute vector, except that -1 is used for 4263 // undefined bytes. This permute is an operand of an outer permute. 4264 // See whether redistributing the -1 bytes gives a shuffle that can be 4265 // implemented using P. If so, set Transform to a VPERM-like permute vector 4266 // that, when applied to the result of P, gives the original permute in Bytes. 4267 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4268 const Permute &P, 4269 SmallVectorImpl<int> &Transform) { 4270 unsigned To = 0; 4271 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4272 int Elt = Bytes[From]; 4273 if (Elt < 0) 4274 // Byte number From of the result is undefined. 4275 Transform[From] = -1; 4276 else { 4277 while (P.Bytes[To] != Elt) { 4278 To += 1; 4279 if (To == SystemZ::VectorBytes) 4280 return false; 4281 } 4282 Transform[From] = To; 4283 } 4284 } 4285 return true; 4286 } 4287 4288 // As above, but search for a matching permute. 4289 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4290 SmallVectorImpl<int> &Transform) { 4291 for (auto &P : PermuteForms) 4292 if (matchDoublePermute(Bytes, P, Transform)) 4293 return &P; 4294 return nullptr; 4295 } 4296 4297 // Convert the mask of the given shuffle op into a byte-level mask, 4298 // as if it had type vNi8. 4299 static bool getVPermMask(SDValue ShuffleOp, 4300 SmallVectorImpl<int> &Bytes) { 4301 EVT VT = ShuffleOp.getValueType(); 4302 unsigned NumElements = VT.getVectorNumElements(); 4303 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4304 4305 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4306 Bytes.resize(NumElements * BytesPerElement, -1); 4307 for (unsigned I = 0; I < NumElements; ++I) { 4308 int Index = VSN->getMaskElt(I); 4309 if (Index >= 0) 4310 for (unsigned J = 0; J < BytesPerElement; ++J) 4311 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4312 } 4313 return true; 4314 } 4315 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4316 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4317 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4318 Bytes.resize(NumElements * BytesPerElement, -1); 4319 for (unsigned I = 0; I < NumElements; ++I) 4320 for (unsigned J = 0; J < BytesPerElement; ++J) 4321 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4322 return true; 4323 } 4324 return false; 4325 } 4326 4327 // Bytes is a VPERM-like permute vector, except that -1 is used for 4328 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4329 // the result come from a contiguous sequence of bytes from one input. 4330 // Set Base to the selector for the first byte if so. 4331 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4332 unsigned BytesPerElement, int &Base) { 4333 Base = -1; 4334 for (unsigned I = 0; I < BytesPerElement; ++I) { 4335 if (Bytes[Start + I] >= 0) { 4336 unsigned Elem = Bytes[Start + I]; 4337 if (Base < 0) { 4338 Base = Elem - I; 4339 // Make sure the bytes would come from one input operand. 4340 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4341 return false; 4342 } else if (unsigned(Base) != Elem - I) 4343 return false; 4344 } 4345 } 4346 return true; 4347 } 4348 4349 // Bytes is a VPERM-like permute vector, except that -1 is used for 4350 // undefined bytes. Return true if it can be performed using VSLDI. 4351 // When returning true, set StartIndex to the shift amount and OpNo0 4352 // and OpNo1 to the VPERM operands that should be used as the first 4353 // and second shift operand respectively. 4354 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4355 unsigned &StartIndex, unsigned &OpNo0, 4356 unsigned &OpNo1) { 4357 int OpNos[] = { -1, -1 }; 4358 int Shift = -1; 4359 for (unsigned I = 0; I < 16; ++I) { 4360 int Index = Bytes[I]; 4361 if (Index >= 0) { 4362 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4363 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4364 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4365 if (Shift < 0) 4366 Shift = ExpectedShift; 4367 else if (Shift != ExpectedShift) 4368 return false; 4369 // Make sure that the operand mappings are consistent with previous 4370 // elements. 4371 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4372 return false; 4373 OpNos[ModelOpNo] = RealOpNo; 4374 } 4375 } 4376 StartIndex = Shift; 4377 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4378 } 4379 4380 // Create a node that performs P on operands Op0 and Op1, casting the 4381 // operands to the appropriate type. The type of the result is determined by P. 4382 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4383 const Permute &P, SDValue Op0, SDValue Op1) { 4384 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4385 // elements of a PACK are twice as wide as the outputs. 4386 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4387 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4388 P.Operand); 4389 // Cast both operands to the appropriate type. 4390 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4391 SystemZ::VectorBytes / InBytes); 4392 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4393 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4394 SDValue Op; 4395 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4396 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4397 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4398 } else if (P.Opcode == SystemZISD::PACK) { 4399 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4400 SystemZ::VectorBytes / P.Operand); 4401 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4402 } else { 4403 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4404 } 4405 return Op; 4406 } 4407 4408 // Bytes is a VPERM-like permute vector, except that -1 is used for 4409 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4410 // VSLDI or VPERM. 4411 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4412 SDValue *Ops, 4413 const SmallVectorImpl<int> &Bytes) { 4414 for (unsigned I = 0; I < 2; ++I) 4415 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4416 4417 // First see whether VSLDI can be used. 4418 unsigned StartIndex, OpNo0, OpNo1; 4419 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4420 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4421 Ops[OpNo1], 4422 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4423 4424 // Fall back on VPERM. Construct an SDNode for the permute vector. 4425 SDValue IndexNodes[SystemZ::VectorBytes]; 4426 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4427 if (Bytes[I] >= 0) 4428 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4429 else 4430 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4431 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4432 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4433 } 4434 4435 namespace { 4436 // Describes a general N-operand vector shuffle. 4437 struct GeneralShuffle { 4438 GeneralShuffle(EVT vt) : VT(vt) {} 4439 void addUndef(); 4440 bool add(SDValue, unsigned); 4441 SDValue getNode(SelectionDAG &, const SDLoc &); 4442 4443 // The operands of the shuffle. 4444 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4445 4446 // Index I is -1 if byte I of the result is undefined. Otherwise the 4447 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4448 // Bytes[I] / SystemZ::VectorBytes. 4449 SmallVector<int, SystemZ::VectorBytes> Bytes; 4450 4451 // The type of the shuffle result. 4452 EVT VT; 4453 }; 4454 } 4455 4456 // Add an extra undefined element to the shuffle. 4457 void GeneralShuffle::addUndef() { 4458 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4459 for (unsigned I = 0; I < BytesPerElement; ++I) 4460 Bytes.push_back(-1); 4461 } 4462 4463 // Add an extra element to the shuffle, taking it from element Elem of Op. 4464 // A null Op indicates a vector input whose value will be calculated later; 4465 // there is at most one such input per shuffle and it always has the same 4466 // type as the result. Aborts and returns false if the source vector elements 4467 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4468 // LLVM they become implicitly extended, but this is rare and not optimized. 4469 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4470 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4471 4472 // The source vector can have wider elements than the result, 4473 // either through an explicit TRUNCATE or because of type legalization. 4474 // We want the least significant part. 4475 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4476 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4477 4478 // Return false if the source elements are smaller than their destination 4479 // elements. 4480 if (FromBytesPerElement < BytesPerElement) 4481 return false; 4482 4483 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4484 (FromBytesPerElement - BytesPerElement)); 4485 4486 // Look through things like shuffles and bitcasts. 4487 while (Op.getNode()) { 4488 if (Op.getOpcode() == ISD::BITCAST) 4489 Op = Op.getOperand(0); 4490 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4491 // See whether the bytes we need come from a contiguous part of one 4492 // operand. 4493 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4494 if (!getVPermMask(Op, OpBytes)) 4495 break; 4496 int NewByte; 4497 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4498 break; 4499 if (NewByte < 0) { 4500 addUndef(); 4501 return true; 4502 } 4503 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4504 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4505 } else if (Op.isUndef()) { 4506 addUndef(); 4507 return true; 4508 } else 4509 break; 4510 } 4511 4512 // Make sure that the source of the extraction is in Ops. 4513 unsigned OpNo = 0; 4514 for (; OpNo < Ops.size(); ++OpNo) 4515 if (Ops[OpNo] == Op) 4516 break; 4517 if (OpNo == Ops.size()) 4518 Ops.push_back(Op); 4519 4520 // Add the element to Bytes. 4521 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4522 for (unsigned I = 0; I < BytesPerElement; ++I) 4523 Bytes.push_back(Base + I); 4524 4525 return true; 4526 } 4527 4528 // Return SDNodes for the completed shuffle. 4529 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4530 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4531 4532 if (Ops.size() == 0) 4533 return DAG.getUNDEF(VT); 4534 4535 // Make sure that there are at least two shuffle operands. 4536 if (Ops.size() == 1) 4537 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4538 4539 // Create a tree of shuffles, deferring root node until after the loop. 4540 // Try to redistribute the undefined elements of non-root nodes so that 4541 // the non-root shuffles match something like a pack or merge, then adjust 4542 // the parent node's permute vector to compensate for the new order. 4543 // Among other things, this copes with vectors like <2 x i16> that were 4544 // padded with undefined elements during type legalization. 4545 // 4546 // In the best case this redistribution will lead to the whole tree 4547 // using packs and merges. It should rarely be a loss in other cases. 4548 unsigned Stride = 1; 4549 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4550 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4551 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4552 4553 // Create a mask for just these two operands. 4554 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4555 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4556 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4557 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4558 if (OpNo == I) 4559 NewBytes[J] = Byte; 4560 else if (OpNo == I + Stride) 4561 NewBytes[J] = SystemZ::VectorBytes + Byte; 4562 else 4563 NewBytes[J] = -1; 4564 } 4565 // See if it would be better to reorganize NewMask to avoid using VPERM. 4566 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4567 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4568 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4569 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4570 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4571 if (NewBytes[J] >= 0) { 4572 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4573 "Invalid double permute"); 4574 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4575 } else 4576 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4577 } 4578 } else { 4579 // Just use NewBytes on the operands. 4580 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4581 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4582 if (NewBytes[J] >= 0) 4583 Bytes[J] = I * SystemZ::VectorBytes + J; 4584 } 4585 } 4586 } 4587 4588 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4589 if (Stride > 1) { 4590 Ops[1] = Ops[Stride]; 4591 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4592 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4593 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4594 } 4595 4596 // Look for an instruction that can do the permute without resorting 4597 // to VPERM. 4598 unsigned OpNo0, OpNo1; 4599 SDValue Op; 4600 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4601 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4602 else 4603 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4604 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4605 } 4606 4607 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4608 static bool isScalarToVector(SDValue Op) { 4609 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4610 if (!Op.getOperand(I).isUndef()) 4611 return false; 4612 return true; 4613 } 4614 4615 // Return a vector of type VT that contains Value in the first element. 4616 // The other elements don't matter. 4617 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4618 SDValue Value) { 4619 // If we have a constant, replicate it to all elements and let the 4620 // BUILD_VECTOR lowering take care of it. 4621 if (Value.getOpcode() == ISD::Constant || 4622 Value.getOpcode() == ISD::ConstantFP) { 4623 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4624 return DAG.getBuildVector(VT, DL, Ops); 4625 } 4626 if (Value.isUndef()) 4627 return DAG.getUNDEF(VT); 4628 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4629 } 4630 4631 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4632 // element 1. Used for cases in which replication is cheap. 4633 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4634 SDValue Op0, SDValue Op1) { 4635 if (Op0.isUndef()) { 4636 if (Op1.isUndef()) 4637 return DAG.getUNDEF(VT); 4638 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4639 } 4640 if (Op1.isUndef()) 4641 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4642 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4643 buildScalarToVector(DAG, DL, VT, Op0), 4644 buildScalarToVector(DAG, DL, VT, Op1)); 4645 } 4646 4647 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4648 // vector for them. 4649 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4650 SDValue Op1) { 4651 if (Op0.isUndef() && Op1.isUndef()) 4652 return DAG.getUNDEF(MVT::v2i64); 4653 // If one of the two inputs is undefined then replicate the other one, 4654 // in order to avoid using another register unnecessarily. 4655 if (Op0.isUndef()) 4656 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4657 else if (Op1.isUndef()) 4658 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4659 else { 4660 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4661 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4662 } 4663 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4664 } 4665 4666 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4667 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4668 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4669 // would benefit from this representation and return it if so. 4670 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4671 BuildVectorSDNode *BVN) { 4672 EVT VT = BVN->getValueType(0); 4673 unsigned NumElements = VT.getVectorNumElements(); 4674 4675 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4676 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4677 // need a BUILD_VECTOR, add an additional placeholder operand for that 4678 // BUILD_VECTOR and store its operands in ResidueOps. 4679 GeneralShuffle GS(VT); 4680 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4681 bool FoundOne = false; 4682 for (unsigned I = 0; I < NumElements; ++I) { 4683 SDValue Op = BVN->getOperand(I); 4684 if (Op.getOpcode() == ISD::TRUNCATE) 4685 Op = Op.getOperand(0); 4686 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4687 Op.getOperand(1).getOpcode() == ISD::Constant) { 4688 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4689 if (!GS.add(Op.getOperand(0), Elem)) 4690 return SDValue(); 4691 FoundOne = true; 4692 } else if (Op.isUndef()) { 4693 GS.addUndef(); 4694 } else { 4695 if (!GS.add(SDValue(), ResidueOps.size())) 4696 return SDValue(); 4697 ResidueOps.push_back(BVN->getOperand(I)); 4698 } 4699 } 4700 4701 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4702 if (!FoundOne) 4703 return SDValue(); 4704 4705 // Create the BUILD_VECTOR for the remaining elements, if any. 4706 if (!ResidueOps.empty()) { 4707 while (ResidueOps.size() < NumElements) 4708 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4709 for (auto &Op : GS.Ops) { 4710 if (!Op.getNode()) { 4711 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4712 break; 4713 } 4714 } 4715 } 4716 return GS.getNode(DAG, SDLoc(BVN)); 4717 } 4718 4719 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4720 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4721 return true; 4722 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4723 return true; 4724 return false; 4725 } 4726 4727 // Combine GPR scalar values Elems into a vector of type VT. 4728 SDValue 4729 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4730 SmallVectorImpl<SDValue> &Elems) const { 4731 // See whether there is a single replicated value. 4732 SDValue Single; 4733 unsigned int NumElements = Elems.size(); 4734 unsigned int Count = 0; 4735 for (auto Elem : Elems) { 4736 if (!Elem.isUndef()) { 4737 if (!Single.getNode()) 4738 Single = Elem; 4739 else if (Elem != Single) { 4740 Single = SDValue(); 4741 break; 4742 } 4743 Count += 1; 4744 } 4745 } 4746 // There are three cases here: 4747 // 4748 // - if the only defined element is a loaded one, the best sequence 4749 // is a replicating load. 4750 // 4751 // - otherwise, if the only defined element is an i64 value, we will 4752 // end up with the same VLVGP sequence regardless of whether we short-cut 4753 // for replication or fall through to the later code. 4754 // 4755 // - otherwise, if the only defined element is an i32 or smaller value, 4756 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4757 // This is only a win if the single defined element is used more than once. 4758 // In other cases we're better off using a single VLVGx. 4759 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4760 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4761 4762 // If all elements are loads, use VLREP/VLEs (below). 4763 bool AllLoads = true; 4764 for (auto Elem : Elems) 4765 if (!isVectorElementLoad(Elem)) { 4766 AllLoads = false; 4767 break; 4768 } 4769 4770 // The best way of building a v2i64 from two i64s is to use VLVGP. 4771 if (VT == MVT::v2i64 && !AllLoads) 4772 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4773 4774 // Use a 64-bit merge high to combine two doubles. 4775 if (VT == MVT::v2f64 && !AllLoads) 4776 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4777 4778 // Build v4f32 values directly from the FPRs: 4779 // 4780 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4781 // V V VMRHF 4782 // <ABxx> <CDxx> 4783 // V VMRHG 4784 // <ABCD> 4785 if (VT == MVT::v4f32 && !AllLoads) { 4786 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4787 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4788 // Avoid unnecessary undefs by reusing the other operand. 4789 if (Op01.isUndef()) 4790 Op01 = Op23; 4791 else if (Op23.isUndef()) 4792 Op23 = Op01; 4793 // Merging identical replications is a no-op. 4794 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4795 return Op01; 4796 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4797 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4798 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4799 DL, MVT::v2i64, Op01, Op23); 4800 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4801 } 4802 4803 // Collect the constant terms. 4804 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4805 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4806 4807 unsigned NumConstants = 0; 4808 for (unsigned I = 0; I < NumElements; ++I) { 4809 SDValue Elem = Elems[I]; 4810 if (Elem.getOpcode() == ISD::Constant || 4811 Elem.getOpcode() == ISD::ConstantFP) { 4812 NumConstants += 1; 4813 Constants[I] = Elem; 4814 Done[I] = true; 4815 } 4816 } 4817 // If there was at least one constant, fill in the other elements of 4818 // Constants with undefs to get a full vector constant and use that 4819 // as the starting point. 4820 SDValue Result; 4821 SDValue ReplicatedVal; 4822 if (NumConstants > 0) { 4823 for (unsigned I = 0; I < NumElements; ++I) 4824 if (!Constants[I].getNode()) 4825 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4826 Result = DAG.getBuildVector(VT, DL, Constants); 4827 } else { 4828 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4829 // avoid a false dependency on any previous contents of the vector 4830 // register. 4831 4832 // Use a VLREP if at least one element is a load. Make sure to replicate 4833 // the load with the most elements having its value. 4834 std::map<const SDNode*, unsigned> UseCounts; 4835 SDNode *LoadMaxUses = nullptr; 4836 for (unsigned I = 0; I < NumElements; ++I) 4837 if (isVectorElementLoad(Elems[I])) { 4838 SDNode *Ld = Elems[I].getNode(); 4839 UseCounts[Ld]++; 4840 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4841 LoadMaxUses = Ld; 4842 } 4843 if (LoadMaxUses != nullptr) { 4844 ReplicatedVal = SDValue(LoadMaxUses, 0); 4845 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4846 } else { 4847 // Try to use VLVGP. 4848 unsigned I1 = NumElements / 2 - 1; 4849 unsigned I2 = NumElements - 1; 4850 bool Def1 = !Elems[I1].isUndef(); 4851 bool Def2 = !Elems[I2].isUndef(); 4852 if (Def1 || Def2) { 4853 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4854 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4855 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4856 joinDwords(DAG, DL, Elem1, Elem2)); 4857 Done[I1] = true; 4858 Done[I2] = true; 4859 } else 4860 Result = DAG.getUNDEF(VT); 4861 } 4862 } 4863 4864 // Use VLVGx to insert the other elements. 4865 for (unsigned I = 0; I < NumElements; ++I) 4866 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4867 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4868 DAG.getConstant(I, DL, MVT::i32)); 4869 return Result; 4870 } 4871 4872 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4873 SelectionDAG &DAG) const { 4874 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4875 SDLoc DL(Op); 4876 EVT VT = Op.getValueType(); 4877 4878 if (BVN->isConstant()) { 4879 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4880 return Op; 4881 4882 // Fall back to loading it from memory. 4883 return SDValue(); 4884 } 4885 4886 // See if we should use shuffles to construct the vector from other vectors. 4887 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4888 return Res; 4889 4890 // Detect SCALAR_TO_VECTOR conversions. 4891 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4892 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4893 4894 // Otherwise use buildVector to build the vector up from GPRs. 4895 unsigned NumElements = Op.getNumOperands(); 4896 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4897 for (unsigned I = 0; I < NumElements; ++I) 4898 Ops[I] = Op.getOperand(I); 4899 return buildVector(DAG, DL, VT, Ops); 4900 } 4901 4902 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4903 SelectionDAG &DAG) const { 4904 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4905 SDLoc DL(Op); 4906 EVT VT = Op.getValueType(); 4907 unsigned NumElements = VT.getVectorNumElements(); 4908 4909 if (VSN->isSplat()) { 4910 SDValue Op0 = Op.getOperand(0); 4911 unsigned Index = VSN->getSplatIndex(); 4912 assert(Index < VT.getVectorNumElements() && 4913 "Splat index should be defined and in first operand"); 4914 // See whether the value we're splatting is directly available as a scalar. 4915 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4916 Op0.getOpcode() == ISD::BUILD_VECTOR) 4917 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4918 // Otherwise keep it as a vector-to-vector operation. 4919 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4920 DAG.getTargetConstant(Index, DL, MVT::i32)); 4921 } 4922 4923 GeneralShuffle GS(VT); 4924 for (unsigned I = 0; I < NumElements; ++I) { 4925 int Elt = VSN->getMaskElt(I); 4926 if (Elt < 0) 4927 GS.addUndef(); 4928 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4929 unsigned(Elt) % NumElements)) 4930 return SDValue(); 4931 } 4932 return GS.getNode(DAG, SDLoc(VSN)); 4933 } 4934 4935 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4936 SelectionDAG &DAG) const { 4937 SDLoc DL(Op); 4938 // Just insert the scalar into element 0 of an undefined vector. 4939 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4940 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4941 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4942 } 4943 4944 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4945 SelectionDAG &DAG) const { 4946 // Handle insertions of floating-point values. 4947 SDLoc DL(Op); 4948 SDValue Op0 = Op.getOperand(0); 4949 SDValue Op1 = Op.getOperand(1); 4950 SDValue Op2 = Op.getOperand(2); 4951 EVT VT = Op.getValueType(); 4952 4953 // Insertions into constant indices of a v2f64 can be done using VPDI. 4954 // However, if the inserted value is a bitcast or a constant then it's 4955 // better to use GPRs, as below. 4956 if (VT == MVT::v2f64 && 4957 Op1.getOpcode() != ISD::BITCAST && 4958 Op1.getOpcode() != ISD::ConstantFP && 4959 Op2.getOpcode() == ISD::Constant) { 4960 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4961 unsigned Mask = VT.getVectorNumElements() - 1; 4962 if (Index <= Mask) 4963 return Op; 4964 } 4965 4966 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4967 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4968 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4969 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4970 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4971 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4972 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4973 } 4974 4975 SDValue 4976 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4977 SelectionDAG &DAG) const { 4978 // Handle extractions of floating-point values. 4979 SDLoc DL(Op); 4980 SDValue Op0 = Op.getOperand(0); 4981 SDValue Op1 = Op.getOperand(1); 4982 EVT VT = Op.getValueType(); 4983 EVT VecVT = Op0.getValueType(); 4984 4985 // Extractions of constant indices can be done directly. 4986 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4987 uint64_t Index = CIndexN->getZExtValue(); 4988 unsigned Mask = VecVT.getVectorNumElements() - 1; 4989 if (Index <= Mask) 4990 return Op; 4991 } 4992 4993 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4994 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4995 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4996 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4997 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4998 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4999 } 5000 5001 SDValue 5002 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 5003 unsigned UnpackHigh) const { 5004 SDValue PackedOp = Op.getOperand(0); 5005 EVT OutVT = Op.getValueType(); 5006 EVT InVT = PackedOp.getValueType(); 5007 unsigned ToBits = OutVT.getScalarSizeInBits(); 5008 unsigned FromBits = InVT.getScalarSizeInBits(); 5009 do { 5010 FromBits *= 2; 5011 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5012 SystemZ::VectorBits / FromBits); 5013 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 5014 } while (FromBits != ToBits); 5015 return PackedOp; 5016 } 5017 5018 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5019 unsigned ByScalar) const { 5020 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5021 SDValue Op0 = Op.getOperand(0); 5022 SDValue Op1 = Op.getOperand(1); 5023 SDLoc DL(Op); 5024 EVT VT = Op.getValueType(); 5025 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5026 5027 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5028 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5029 APInt SplatBits, SplatUndef; 5030 unsigned SplatBitSize; 5031 bool HasAnyUndefs; 5032 // Check for constant splats. Use ElemBitSize as the minimum element 5033 // width and reject splats that need wider elements. 5034 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5035 ElemBitSize, true) && 5036 SplatBitSize == ElemBitSize) { 5037 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5038 DL, MVT::i32); 5039 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5040 } 5041 // Check for variable splats. 5042 BitVector UndefElements; 5043 SDValue Splat = BVN->getSplatValue(&UndefElements); 5044 if (Splat) { 5045 // Since i32 is the smallest legal type, we either need a no-op 5046 // or a truncation. 5047 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5048 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5049 } 5050 } 5051 5052 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5053 // and the shift amount is directly available in a GPR. 5054 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5055 if (VSN->isSplat()) { 5056 SDValue VSNOp0 = VSN->getOperand(0); 5057 unsigned Index = VSN->getSplatIndex(); 5058 assert(Index < VT.getVectorNumElements() && 5059 "Splat index should be defined and in first operand"); 5060 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5061 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5062 // Since i32 is the smallest legal type, we either need a no-op 5063 // or a truncation. 5064 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5065 VSNOp0.getOperand(Index)); 5066 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5067 } 5068 } 5069 } 5070 5071 // Otherwise just treat the current form as legal. 5072 return Op; 5073 } 5074 5075 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5076 SelectionDAG &DAG) const { 5077 switch (Op.getOpcode()) { 5078 case ISD::FRAMEADDR: 5079 return lowerFRAMEADDR(Op, DAG); 5080 case ISD::RETURNADDR: 5081 return lowerRETURNADDR(Op, DAG); 5082 case ISD::BR_CC: 5083 return lowerBR_CC(Op, DAG); 5084 case ISD::SELECT_CC: 5085 return lowerSELECT_CC(Op, DAG); 5086 case ISD::SETCC: 5087 return lowerSETCC(Op, DAG); 5088 case ISD::STRICT_FSETCC: 5089 return lowerSTRICT_FSETCC(Op, DAG, false); 5090 case ISD::STRICT_FSETCCS: 5091 return lowerSTRICT_FSETCC(Op, DAG, true); 5092 case ISD::GlobalAddress: 5093 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5094 case ISD::GlobalTLSAddress: 5095 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5096 case ISD::BlockAddress: 5097 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5098 case ISD::JumpTable: 5099 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5100 case ISD::ConstantPool: 5101 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5102 case ISD::BITCAST: 5103 return lowerBITCAST(Op, DAG); 5104 case ISD::VASTART: 5105 return lowerVASTART(Op, DAG); 5106 case ISD::VACOPY: 5107 return lowerVACOPY(Op, DAG); 5108 case ISD::DYNAMIC_STACKALLOC: 5109 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5110 case ISD::GET_DYNAMIC_AREA_OFFSET: 5111 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5112 case ISD::SMUL_LOHI: 5113 return lowerSMUL_LOHI(Op, DAG); 5114 case ISD::UMUL_LOHI: 5115 return lowerUMUL_LOHI(Op, DAG); 5116 case ISD::SDIVREM: 5117 return lowerSDIVREM(Op, DAG); 5118 case ISD::UDIVREM: 5119 return lowerUDIVREM(Op, DAG); 5120 case ISD::SADDO: 5121 case ISD::SSUBO: 5122 case ISD::UADDO: 5123 case ISD::USUBO: 5124 return lowerXALUO(Op, DAG); 5125 case ISD::ADDCARRY: 5126 case ISD::SUBCARRY: 5127 return lowerADDSUBCARRY(Op, DAG); 5128 case ISD::OR: 5129 return lowerOR(Op, DAG); 5130 case ISD::CTPOP: 5131 return lowerCTPOP(Op, DAG); 5132 case ISD::ATOMIC_FENCE: 5133 return lowerATOMIC_FENCE(Op, DAG); 5134 case ISD::ATOMIC_SWAP: 5135 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5136 case ISD::ATOMIC_STORE: 5137 return lowerATOMIC_STORE(Op, DAG); 5138 case ISD::ATOMIC_LOAD: 5139 return lowerATOMIC_LOAD(Op, DAG); 5140 case ISD::ATOMIC_LOAD_ADD: 5141 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5142 case ISD::ATOMIC_LOAD_SUB: 5143 return lowerATOMIC_LOAD_SUB(Op, DAG); 5144 case ISD::ATOMIC_LOAD_AND: 5145 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5146 case ISD::ATOMIC_LOAD_OR: 5147 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5148 case ISD::ATOMIC_LOAD_XOR: 5149 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5150 case ISD::ATOMIC_LOAD_NAND: 5151 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5152 case ISD::ATOMIC_LOAD_MIN: 5153 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5154 case ISD::ATOMIC_LOAD_MAX: 5155 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5156 case ISD::ATOMIC_LOAD_UMIN: 5157 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5158 case ISD::ATOMIC_LOAD_UMAX: 5159 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5160 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5161 return lowerATOMIC_CMP_SWAP(Op, DAG); 5162 case ISD::STACKSAVE: 5163 return lowerSTACKSAVE(Op, DAG); 5164 case ISD::STACKRESTORE: 5165 return lowerSTACKRESTORE(Op, DAG); 5166 case ISD::PREFETCH: 5167 return lowerPREFETCH(Op, DAG); 5168 case ISD::INTRINSIC_W_CHAIN: 5169 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5170 case ISD::INTRINSIC_WO_CHAIN: 5171 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5172 case ISD::BUILD_VECTOR: 5173 return lowerBUILD_VECTOR(Op, DAG); 5174 case ISD::VECTOR_SHUFFLE: 5175 return lowerVECTOR_SHUFFLE(Op, DAG); 5176 case ISD::SCALAR_TO_VECTOR: 5177 return lowerSCALAR_TO_VECTOR(Op, DAG); 5178 case ISD::INSERT_VECTOR_ELT: 5179 return lowerINSERT_VECTOR_ELT(Op, DAG); 5180 case ISD::EXTRACT_VECTOR_ELT: 5181 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5182 case ISD::SIGN_EXTEND_VECTOR_INREG: 5183 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5184 case ISD::ZERO_EXTEND_VECTOR_INREG: 5185 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5186 case ISD::SHL: 5187 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5188 case ISD::SRL: 5189 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5190 case ISD::SRA: 5191 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5192 default: 5193 llvm_unreachable("Unexpected node to lower"); 5194 } 5195 } 5196 5197 // Lower operations with invalid operand or result types (currently used 5198 // only for 128-bit integer types). 5199 5200 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5201 SDLoc DL(In); 5202 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5203 DAG.getIntPtrConstant(0, DL)); 5204 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5205 DAG.getIntPtrConstant(1, DL)); 5206 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5207 MVT::Untyped, Hi, Lo); 5208 return SDValue(Pair, 0); 5209 } 5210 5211 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5212 SDLoc DL(In); 5213 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5214 DL, MVT::i64, In); 5215 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5216 DL, MVT::i64, In); 5217 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5218 } 5219 5220 void 5221 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5222 SmallVectorImpl<SDValue> &Results, 5223 SelectionDAG &DAG) const { 5224 switch (N->getOpcode()) { 5225 case ISD::ATOMIC_LOAD: { 5226 SDLoc DL(N); 5227 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5228 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5229 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5230 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5231 DL, Tys, Ops, MVT::i128, MMO); 5232 Results.push_back(lowerGR128ToI128(DAG, Res)); 5233 Results.push_back(Res.getValue(1)); 5234 break; 5235 } 5236 case ISD::ATOMIC_STORE: { 5237 SDLoc DL(N); 5238 SDVTList Tys = DAG.getVTList(MVT::Other); 5239 SDValue Ops[] = { N->getOperand(0), 5240 lowerI128ToGR128(DAG, N->getOperand(2)), 5241 N->getOperand(1) }; 5242 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5243 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5244 DL, Tys, Ops, MVT::i128, MMO); 5245 // We have to enforce sequential consistency by performing a 5246 // serialization operation after the store. 5247 if (cast<AtomicSDNode>(N)->getOrdering() == 5248 AtomicOrdering::SequentiallyConsistent) 5249 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5250 MVT::Other, Res), 0); 5251 Results.push_back(Res); 5252 break; 5253 } 5254 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5255 SDLoc DL(N); 5256 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5257 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5258 lowerI128ToGR128(DAG, N->getOperand(2)), 5259 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5260 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5261 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5262 DL, Tys, Ops, MVT::i128, MMO); 5263 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5264 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5265 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5266 Results.push_back(lowerGR128ToI128(DAG, Res)); 5267 Results.push_back(Success); 5268 Results.push_back(Res.getValue(2)); 5269 break; 5270 } 5271 default: 5272 llvm_unreachable("Unexpected node to lower"); 5273 } 5274 } 5275 5276 void 5277 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5278 SmallVectorImpl<SDValue> &Results, 5279 SelectionDAG &DAG) const { 5280 return LowerOperationWrapper(N, Results, DAG); 5281 } 5282 5283 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5284 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5285 switch ((SystemZISD::NodeType)Opcode) { 5286 case SystemZISD::FIRST_NUMBER: break; 5287 OPCODE(RET_FLAG); 5288 OPCODE(CALL); 5289 OPCODE(SIBCALL); 5290 OPCODE(TLS_GDCALL); 5291 OPCODE(TLS_LDCALL); 5292 OPCODE(PCREL_WRAPPER); 5293 OPCODE(PCREL_OFFSET); 5294 OPCODE(IABS); 5295 OPCODE(ICMP); 5296 OPCODE(FCMP); 5297 OPCODE(STRICT_FCMP); 5298 OPCODE(STRICT_FCMPS); 5299 OPCODE(TM); 5300 OPCODE(BR_CCMASK); 5301 OPCODE(SELECT_CCMASK); 5302 OPCODE(ADJDYNALLOC); 5303 OPCODE(POPCNT); 5304 OPCODE(SMUL_LOHI); 5305 OPCODE(UMUL_LOHI); 5306 OPCODE(SDIVREM); 5307 OPCODE(UDIVREM); 5308 OPCODE(SADDO); 5309 OPCODE(SSUBO); 5310 OPCODE(UADDO); 5311 OPCODE(USUBO); 5312 OPCODE(ADDCARRY); 5313 OPCODE(SUBCARRY); 5314 OPCODE(GET_CCMASK); 5315 OPCODE(MVC); 5316 OPCODE(MVC_LOOP); 5317 OPCODE(NC); 5318 OPCODE(NC_LOOP); 5319 OPCODE(OC); 5320 OPCODE(OC_LOOP); 5321 OPCODE(XC); 5322 OPCODE(XC_LOOP); 5323 OPCODE(CLC); 5324 OPCODE(CLC_LOOP); 5325 OPCODE(STPCPY); 5326 OPCODE(STRCMP); 5327 OPCODE(SEARCH_STRING); 5328 OPCODE(IPM); 5329 OPCODE(MEMBARRIER); 5330 OPCODE(TBEGIN); 5331 OPCODE(TBEGIN_NOFLOAT); 5332 OPCODE(TEND); 5333 OPCODE(BYTE_MASK); 5334 OPCODE(ROTATE_MASK); 5335 OPCODE(REPLICATE); 5336 OPCODE(JOIN_DWORDS); 5337 OPCODE(SPLAT); 5338 OPCODE(MERGE_HIGH); 5339 OPCODE(MERGE_LOW); 5340 OPCODE(SHL_DOUBLE); 5341 OPCODE(PERMUTE_DWORDS); 5342 OPCODE(PERMUTE); 5343 OPCODE(PACK); 5344 OPCODE(PACKS_CC); 5345 OPCODE(PACKLS_CC); 5346 OPCODE(UNPACK_HIGH); 5347 OPCODE(UNPACKL_HIGH); 5348 OPCODE(UNPACK_LOW); 5349 OPCODE(UNPACKL_LOW); 5350 OPCODE(VSHL_BY_SCALAR); 5351 OPCODE(VSRL_BY_SCALAR); 5352 OPCODE(VSRA_BY_SCALAR); 5353 OPCODE(VSUM); 5354 OPCODE(VICMPE); 5355 OPCODE(VICMPH); 5356 OPCODE(VICMPHL); 5357 OPCODE(VICMPES); 5358 OPCODE(VICMPHS); 5359 OPCODE(VICMPHLS); 5360 OPCODE(VFCMPE); 5361 OPCODE(STRICT_VFCMPE); 5362 OPCODE(STRICT_VFCMPES); 5363 OPCODE(VFCMPH); 5364 OPCODE(STRICT_VFCMPH); 5365 OPCODE(STRICT_VFCMPHS); 5366 OPCODE(VFCMPHE); 5367 OPCODE(STRICT_VFCMPHE); 5368 OPCODE(STRICT_VFCMPHES); 5369 OPCODE(VFCMPES); 5370 OPCODE(VFCMPHS); 5371 OPCODE(VFCMPHES); 5372 OPCODE(VFTCI); 5373 OPCODE(VEXTEND); 5374 OPCODE(STRICT_VEXTEND); 5375 OPCODE(VROUND); 5376 OPCODE(VTM); 5377 OPCODE(VFAE_CC); 5378 OPCODE(VFAEZ_CC); 5379 OPCODE(VFEE_CC); 5380 OPCODE(VFEEZ_CC); 5381 OPCODE(VFENE_CC); 5382 OPCODE(VFENEZ_CC); 5383 OPCODE(VISTR_CC); 5384 OPCODE(VSTRC_CC); 5385 OPCODE(VSTRCZ_CC); 5386 OPCODE(VSTRS_CC); 5387 OPCODE(VSTRSZ_CC); 5388 OPCODE(TDC); 5389 OPCODE(ATOMIC_SWAPW); 5390 OPCODE(ATOMIC_LOADW_ADD); 5391 OPCODE(ATOMIC_LOADW_SUB); 5392 OPCODE(ATOMIC_LOADW_AND); 5393 OPCODE(ATOMIC_LOADW_OR); 5394 OPCODE(ATOMIC_LOADW_XOR); 5395 OPCODE(ATOMIC_LOADW_NAND); 5396 OPCODE(ATOMIC_LOADW_MIN); 5397 OPCODE(ATOMIC_LOADW_MAX); 5398 OPCODE(ATOMIC_LOADW_UMIN); 5399 OPCODE(ATOMIC_LOADW_UMAX); 5400 OPCODE(ATOMIC_CMP_SWAPW); 5401 OPCODE(ATOMIC_CMP_SWAP); 5402 OPCODE(ATOMIC_LOAD_128); 5403 OPCODE(ATOMIC_STORE_128); 5404 OPCODE(ATOMIC_CMP_SWAP_128); 5405 OPCODE(LRV); 5406 OPCODE(STRV); 5407 OPCODE(VLER); 5408 OPCODE(VSTER); 5409 OPCODE(PREFETCH); 5410 } 5411 return nullptr; 5412 #undef OPCODE 5413 } 5414 5415 // Return true if VT is a vector whose elements are a whole number of bytes 5416 // in width. Also check for presence of vector support. 5417 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5418 if (!Subtarget.hasVector()) 5419 return false; 5420 5421 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5422 } 5423 5424 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5425 // producing a result of type ResVT. Op is a possibly bitcast version 5426 // of the input vector and Index is the index (based on type VecVT) that 5427 // should be extracted. Return the new extraction if a simplification 5428 // was possible or if Force is true. 5429 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5430 EVT VecVT, SDValue Op, 5431 unsigned Index, 5432 DAGCombinerInfo &DCI, 5433 bool Force) const { 5434 SelectionDAG &DAG = DCI.DAG; 5435 5436 // The number of bytes being extracted. 5437 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5438 5439 for (;;) { 5440 unsigned Opcode = Op.getOpcode(); 5441 if (Opcode == ISD::BITCAST) 5442 // Look through bitcasts. 5443 Op = Op.getOperand(0); 5444 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5445 canTreatAsByteVector(Op.getValueType())) { 5446 // Get a VPERM-like permute mask and see whether the bytes covered 5447 // by the extracted element are a contiguous sequence from one 5448 // source operand. 5449 SmallVector<int, SystemZ::VectorBytes> Bytes; 5450 if (!getVPermMask(Op, Bytes)) 5451 break; 5452 int First; 5453 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5454 BytesPerElement, First)) 5455 break; 5456 if (First < 0) 5457 return DAG.getUNDEF(ResVT); 5458 // Make sure the contiguous sequence starts at a multiple of the 5459 // original element size. 5460 unsigned Byte = unsigned(First) % Bytes.size(); 5461 if (Byte % BytesPerElement != 0) 5462 break; 5463 // We can get the extracted value directly from an input. 5464 Index = Byte / BytesPerElement; 5465 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5466 Force = true; 5467 } else if (Opcode == ISD::BUILD_VECTOR && 5468 canTreatAsByteVector(Op.getValueType())) { 5469 // We can only optimize this case if the BUILD_VECTOR elements are 5470 // at least as wide as the extracted value. 5471 EVT OpVT = Op.getValueType(); 5472 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5473 if (OpBytesPerElement < BytesPerElement) 5474 break; 5475 // Make sure that the least-significant bit of the extracted value 5476 // is the least significant bit of an input. 5477 unsigned End = (Index + 1) * BytesPerElement; 5478 if (End % OpBytesPerElement != 0) 5479 break; 5480 // We're extracting the low part of one operand of the BUILD_VECTOR. 5481 Op = Op.getOperand(End / OpBytesPerElement - 1); 5482 if (!Op.getValueType().isInteger()) { 5483 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5484 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5485 DCI.AddToWorklist(Op.getNode()); 5486 } 5487 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5488 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5489 if (VT != ResVT) { 5490 DCI.AddToWorklist(Op.getNode()); 5491 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5492 } 5493 return Op; 5494 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5495 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5496 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5497 canTreatAsByteVector(Op.getValueType()) && 5498 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5499 // Make sure that only the unextended bits are significant. 5500 EVT ExtVT = Op.getValueType(); 5501 EVT OpVT = Op.getOperand(0).getValueType(); 5502 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5503 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5504 unsigned Byte = Index * BytesPerElement; 5505 unsigned SubByte = Byte % ExtBytesPerElement; 5506 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5507 if (SubByte < MinSubByte || 5508 SubByte + BytesPerElement > ExtBytesPerElement) 5509 break; 5510 // Get the byte offset of the unextended element 5511 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5512 // ...then add the byte offset relative to that element. 5513 Byte += SubByte - MinSubByte; 5514 if (Byte % BytesPerElement != 0) 5515 break; 5516 Op = Op.getOperand(0); 5517 Index = Byte / BytesPerElement; 5518 Force = true; 5519 } else 5520 break; 5521 } 5522 if (Force) { 5523 if (Op.getValueType() != VecVT) { 5524 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5525 DCI.AddToWorklist(Op.getNode()); 5526 } 5527 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5528 DAG.getConstant(Index, DL, MVT::i32)); 5529 } 5530 return SDValue(); 5531 } 5532 5533 // Optimize vector operations in scalar value Op on the basis that Op 5534 // is truncated to TruncVT. 5535 SDValue SystemZTargetLowering::combineTruncateExtract( 5536 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5537 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5538 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5539 // of type TruncVT. 5540 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5541 TruncVT.getSizeInBits() % 8 == 0) { 5542 SDValue Vec = Op.getOperand(0); 5543 EVT VecVT = Vec.getValueType(); 5544 if (canTreatAsByteVector(VecVT)) { 5545 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5546 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5547 unsigned TruncBytes = TruncVT.getStoreSize(); 5548 if (BytesPerElement % TruncBytes == 0) { 5549 // Calculate the value of Y' in the above description. We are 5550 // splitting the original elements into Scale equal-sized pieces 5551 // and for truncation purposes want the last (least-significant) 5552 // of these pieces for IndexN. This is easiest to do by calculating 5553 // the start index of the following element and then subtracting 1. 5554 unsigned Scale = BytesPerElement / TruncBytes; 5555 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5556 5557 // Defer the creation of the bitcast from X to combineExtract, 5558 // which might be able to optimize the extraction. 5559 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5560 VecVT.getStoreSize() / TruncBytes); 5561 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5562 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5563 } 5564 } 5565 } 5566 } 5567 return SDValue(); 5568 } 5569 5570 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5571 SDNode *N, DAGCombinerInfo &DCI) const { 5572 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5573 SelectionDAG &DAG = DCI.DAG; 5574 SDValue N0 = N->getOperand(0); 5575 EVT VT = N->getValueType(0); 5576 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5577 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5578 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5579 if (TrueOp && FalseOp) { 5580 SDLoc DL(N0); 5581 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5582 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5583 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5584 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5585 // If N0 has multiple uses, change other uses as well. 5586 if (!N0.hasOneUse()) { 5587 SDValue TruncSelect = 5588 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5589 DCI.CombineTo(N0.getNode(), TruncSelect); 5590 } 5591 return NewSelect; 5592 } 5593 } 5594 return SDValue(); 5595 } 5596 5597 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5598 SDNode *N, DAGCombinerInfo &DCI) const { 5599 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5600 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5601 // into (select_cc LHS, RHS, -1, 0, COND) 5602 SelectionDAG &DAG = DCI.DAG; 5603 SDValue N0 = N->getOperand(0); 5604 EVT VT = N->getValueType(0); 5605 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5606 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5607 N0 = N0.getOperand(0); 5608 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5609 SDLoc DL(N0); 5610 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5611 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5612 N0.getOperand(2) }; 5613 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5614 } 5615 return SDValue(); 5616 } 5617 5618 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5619 SDNode *N, DAGCombinerInfo &DCI) const { 5620 // Convert (sext (ashr (shl X, C1), C2)) to 5621 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5622 // cheap as narrower ones. 5623 SelectionDAG &DAG = DCI.DAG; 5624 SDValue N0 = N->getOperand(0); 5625 EVT VT = N->getValueType(0); 5626 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5627 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5628 SDValue Inner = N0.getOperand(0); 5629 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5630 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5631 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5632 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5633 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5634 EVT ShiftVT = N0.getOperand(1).getValueType(); 5635 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5636 Inner.getOperand(0)); 5637 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5638 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5639 ShiftVT)); 5640 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5641 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5642 } 5643 } 5644 } 5645 return SDValue(); 5646 } 5647 5648 SDValue SystemZTargetLowering::combineMERGE( 5649 SDNode *N, DAGCombinerInfo &DCI) const { 5650 SelectionDAG &DAG = DCI.DAG; 5651 unsigned Opcode = N->getOpcode(); 5652 SDValue Op0 = N->getOperand(0); 5653 SDValue Op1 = N->getOperand(1); 5654 if (Op0.getOpcode() == ISD::BITCAST) 5655 Op0 = Op0.getOperand(0); 5656 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5657 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5658 // for v4f32. 5659 if (Op1 == N->getOperand(0)) 5660 return Op1; 5661 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5662 EVT VT = Op1.getValueType(); 5663 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5664 if (ElemBytes <= 4) { 5665 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5666 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5667 EVT InVT = VT.changeVectorElementTypeToInteger(); 5668 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5669 SystemZ::VectorBytes / ElemBytes / 2); 5670 if (VT != InVT) { 5671 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5672 DCI.AddToWorklist(Op1.getNode()); 5673 } 5674 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5675 DCI.AddToWorklist(Op.getNode()); 5676 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5677 } 5678 } 5679 return SDValue(); 5680 } 5681 5682 SDValue SystemZTargetLowering::combineLOAD( 5683 SDNode *N, DAGCombinerInfo &DCI) const { 5684 SelectionDAG &DAG = DCI.DAG; 5685 EVT LdVT = N->getValueType(0); 5686 if (LdVT.isVector() || LdVT.isInteger()) 5687 return SDValue(); 5688 // Transform a scalar load that is REPLICATEd as well as having other 5689 // use(s) to the form where the other use(s) use the first element of the 5690 // REPLICATE instead of the load. Otherwise instruction selection will not 5691 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5692 // point loads. 5693 5694 SDValue Replicate; 5695 SmallVector<SDNode*, 8> OtherUses; 5696 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5697 UI != UE; ++UI) { 5698 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5699 if (Replicate) 5700 return SDValue(); // Should never happen 5701 Replicate = SDValue(*UI, 0); 5702 } 5703 else if (UI.getUse().getResNo() == 0) 5704 OtherUses.push_back(*UI); 5705 } 5706 if (!Replicate || OtherUses.empty()) 5707 return SDValue(); 5708 5709 SDLoc DL(N); 5710 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5711 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5712 // Update uses of the loaded Value while preserving old chains. 5713 for (SDNode *U : OtherUses) { 5714 SmallVector<SDValue, 8> Ops; 5715 for (SDValue Op : U->ops()) 5716 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5717 DAG.UpdateNodeOperands(U, Ops); 5718 } 5719 return SDValue(N, 0); 5720 } 5721 5722 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5723 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5724 return true; 5725 if (Subtarget.hasVectorEnhancements2()) 5726 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5727 return true; 5728 return false; 5729 } 5730 5731 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5732 if (!VT.isVector() || !VT.isSimple() || 5733 VT.getSizeInBits() != 128 || 5734 VT.getScalarSizeInBits() % 8 != 0) 5735 return false; 5736 5737 unsigned NumElts = VT.getVectorNumElements(); 5738 for (unsigned i = 0; i < NumElts; ++i) { 5739 if (M[i] < 0) continue; // ignore UNDEF indices 5740 if ((unsigned) M[i] != NumElts - 1 - i) 5741 return false; 5742 } 5743 5744 return true; 5745 } 5746 5747 SDValue SystemZTargetLowering::combineSTORE( 5748 SDNode *N, DAGCombinerInfo &DCI) const { 5749 SelectionDAG &DAG = DCI.DAG; 5750 auto *SN = cast<StoreSDNode>(N); 5751 auto &Op1 = N->getOperand(1); 5752 EVT MemVT = SN->getMemoryVT(); 5753 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5754 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5755 // If X has wider elements then convert it to: 5756 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5757 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5758 if (SDValue Value = 5759 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5760 DCI.AddToWorklist(Value.getNode()); 5761 5762 // Rewrite the store with the new form of stored value. 5763 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5764 SN->getBasePtr(), SN->getMemoryVT(), 5765 SN->getMemOperand()); 5766 } 5767 } 5768 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5769 if (!SN->isTruncatingStore() && 5770 Op1.getOpcode() == ISD::BSWAP && 5771 Op1.getNode()->hasOneUse() && 5772 canLoadStoreByteSwapped(Op1.getValueType())) { 5773 5774 SDValue BSwapOp = Op1.getOperand(0); 5775 5776 if (BSwapOp.getValueType() == MVT::i16) 5777 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5778 5779 SDValue Ops[] = { 5780 N->getOperand(0), BSwapOp, N->getOperand(2) 5781 }; 5782 5783 return 5784 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5785 Ops, MemVT, SN->getMemOperand()); 5786 } 5787 // Combine STORE (element-swap) into VSTER 5788 if (!SN->isTruncatingStore() && 5789 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5790 Op1.getNode()->hasOneUse() && 5791 Subtarget.hasVectorEnhancements2()) { 5792 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5793 ArrayRef<int> ShuffleMask = SVN->getMask(); 5794 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5795 SDValue Ops[] = { 5796 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5797 }; 5798 5799 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5800 DAG.getVTList(MVT::Other), 5801 Ops, MemVT, SN->getMemOperand()); 5802 } 5803 } 5804 5805 return SDValue(); 5806 } 5807 5808 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5809 SDNode *N, DAGCombinerInfo &DCI) const { 5810 SelectionDAG &DAG = DCI.DAG; 5811 // Combine element-swap (LOAD) into VLER 5812 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5813 N->getOperand(0).hasOneUse() && 5814 Subtarget.hasVectorEnhancements2()) { 5815 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5816 ArrayRef<int> ShuffleMask = SVN->getMask(); 5817 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5818 SDValue Load = N->getOperand(0); 5819 LoadSDNode *LD = cast<LoadSDNode>(Load); 5820 5821 // Create the element-swapping load. 5822 SDValue Ops[] = { 5823 LD->getChain(), // Chain 5824 LD->getBasePtr() // Ptr 5825 }; 5826 SDValue ESLoad = 5827 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5828 DAG.getVTList(LD->getValueType(0), MVT::Other), 5829 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5830 5831 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5832 // by the load dead. 5833 DCI.CombineTo(N, ESLoad); 5834 5835 // Next, combine the load away, we give it a bogus result value but a real 5836 // chain result. The result value is dead because the shuffle is dead. 5837 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5838 5839 // Return N so it doesn't get rechecked! 5840 return SDValue(N, 0); 5841 } 5842 } 5843 5844 return SDValue(); 5845 } 5846 5847 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5848 SDNode *N, DAGCombinerInfo &DCI) const { 5849 SelectionDAG &DAG = DCI.DAG; 5850 5851 if (!Subtarget.hasVector()) 5852 return SDValue(); 5853 5854 // Look through bitcasts that retain the number of vector elements. 5855 SDValue Op = N->getOperand(0); 5856 if (Op.getOpcode() == ISD::BITCAST && 5857 Op.getValueType().isVector() && 5858 Op.getOperand(0).getValueType().isVector() && 5859 Op.getValueType().getVectorNumElements() == 5860 Op.getOperand(0).getValueType().getVectorNumElements()) 5861 Op = Op.getOperand(0); 5862 5863 // Pull BSWAP out of a vector extraction. 5864 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5865 EVT VecVT = Op.getValueType(); 5866 EVT EltVT = VecVT.getVectorElementType(); 5867 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5868 Op.getOperand(0), N->getOperand(1)); 5869 DCI.AddToWorklist(Op.getNode()); 5870 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5871 if (EltVT != N->getValueType(0)) { 5872 DCI.AddToWorklist(Op.getNode()); 5873 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5874 } 5875 return Op; 5876 } 5877 5878 // Try to simplify a vector extraction. 5879 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5880 SDValue Op0 = N->getOperand(0); 5881 EVT VecVT = Op0.getValueType(); 5882 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5883 IndexN->getZExtValue(), DCI, false); 5884 } 5885 return SDValue(); 5886 } 5887 5888 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5889 SDNode *N, DAGCombinerInfo &DCI) const { 5890 SelectionDAG &DAG = DCI.DAG; 5891 // (join_dwords X, X) == (replicate X) 5892 if (N->getOperand(0) == N->getOperand(1)) 5893 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5894 N->getOperand(0)); 5895 return SDValue(); 5896 } 5897 5898 SDValue SystemZTargetLowering::combineFP_ROUND( 5899 SDNode *N, DAGCombinerInfo &DCI) const { 5900 5901 if (!Subtarget.hasVector()) 5902 return SDValue(); 5903 5904 // (fpround (extract_vector_elt X 0)) 5905 // (fpround (extract_vector_elt X 1)) -> 5906 // (extract_vector_elt (VROUND X) 0) 5907 // (extract_vector_elt (VROUND X) 2) 5908 // 5909 // This is a special case since the target doesn't really support v2f32s. 5910 SelectionDAG &DAG = DCI.DAG; 5911 SDValue Op0 = N->getOperand(0); 5912 if (N->getValueType(0) == MVT::f32 && 5913 Op0.hasOneUse() && 5914 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5915 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5916 Op0.getOperand(1).getOpcode() == ISD::Constant && 5917 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5918 SDValue Vec = Op0.getOperand(0); 5919 for (auto *U : Vec->uses()) { 5920 if (U != Op0.getNode() && 5921 U->hasOneUse() && 5922 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5923 U->getOperand(0) == Vec && 5924 U->getOperand(1).getOpcode() == ISD::Constant && 5925 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5926 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5927 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5928 OtherRound.getOperand(0) == SDValue(U, 0) && 5929 OtherRound.getValueType() == MVT::f32) { 5930 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5931 MVT::v4f32, Vec); 5932 DCI.AddToWorklist(VRound.getNode()); 5933 SDValue Extract1 = 5934 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5935 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5936 DCI.AddToWorklist(Extract1.getNode()); 5937 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5938 SDValue Extract0 = 5939 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5940 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5941 return Extract0; 5942 } 5943 } 5944 } 5945 } 5946 return SDValue(); 5947 } 5948 5949 SDValue SystemZTargetLowering::combineFP_EXTEND( 5950 SDNode *N, DAGCombinerInfo &DCI) const { 5951 5952 if (!Subtarget.hasVector()) 5953 return SDValue(); 5954 5955 // (fpextend (extract_vector_elt X 0)) 5956 // (fpextend (extract_vector_elt X 2)) -> 5957 // (extract_vector_elt (VEXTEND X) 0) 5958 // (extract_vector_elt (VEXTEND X) 1) 5959 // 5960 // This is a special case since the target doesn't really support v2f32s. 5961 SelectionDAG &DAG = DCI.DAG; 5962 SDValue Op0 = N->getOperand(0); 5963 if (N->getValueType(0) == MVT::f64 && 5964 Op0.hasOneUse() && 5965 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5966 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5967 Op0.getOperand(1).getOpcode() == ISD::Constant && 5968 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5969 SDValue Vec = Op0.getOperand(0); 5970 for (auto *U : Vec->uses()) { 5971 if (U != Op0.getNode() && 5972 U->hasOneUse() && 5973 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5974 U->getOperand(0) == Vec && 5975 U->getOperand(1).getOpcode() == ISD::Constant && 5976 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5977 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5978 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5979 OtherExtend.getOperand(0) == SDValue(U, 0) && 5980 OtherExtend.getValueType() == MVT::f64) { 5981 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5982 MVT::v2f64, Vec); 5983 DCI.AddToWorklist(VExtend.getNode()); 5984 SDValue Extract1 = 5985 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5986 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5987 DCI.AddToWorklist(Extract1.getNode()); 5988 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5989 SDValue Extract0 = 5990 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5991 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5992 return Extract0; 5993 } 5994 } 5995 } 5996 } 5997 return SDValue(); 5998 } 5999 6000 SDValue SystemZTargetLowering::combineBSWAP( 6001 SDNode *N, DAGCombinerInfo &DCI) const { 6002 SelectionDAG &DAG = DCI.DAG; 6003 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6004 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6005 N->getOperand(0).hasOneUse() && 6006 canLoadStoreByteSwapped(N->getValueType(0))) { 6007 SDValue Load = N->getOperand(0); 6008 LoadSDNode *LD = cast<LoadSDNode>(Load); 6009 6010 // Create the byte-swapping load. 6011 SDValue Ops[] = { 6012 LD->getChain(), // Chain 6013 LD->getBasePtr() // Ptr 6014 }; 6015 EVT LoadVT = N->getValueType(0); 6016 if (LoadVT == MVT::i16) 6017 LoadVT = MVT::i32; 6018 SDValue BSLoad = 6019 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6020 DAG.getVTList(LoadVT, MVT::Other), 6021 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6022 6023 // If this is an i16 load, insert the truncate. 6024 SDValue ResVal = BSLoad; 6025 if (N->getValueType(0) == MVT::i16) 6026 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6027 6028 // First, combine the bswap away. This makes the value produced by the 6029 // load dead. 6030 DCI.CombineTo(N, ResVal); 6031 6032 // Next, combine the load away, we give it a bogus result value but a real 6033 // chain result. The result value is dead because the bswap is dead. 6034 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6035 6036 // Return N so it doesn't get rechecked! 6037 return SDValue(N, 0); 6038 } 6039 6040 // Look through bitcasts that retain the number of vector elements. 6041 SDValue Op = N->getOperand(0); 6042 if (Op.getOpcode() == ISD::BITCAST && 6043 Op.getValueType().isVector() && 6044 Op.getOperand(0).getValueType().isVector() && 6045 Op.getValueType().getVectorNumElements() == 6046 Op.getOperand(0).getValueType().getVectorNumElements()) 6047 Op = Op.getOperand(0); 6048 6049 // Push BSWAP into a vector insertion if at least one side then simplifies. 6050 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6051 SDValue Vec = Op.getOperand(0); 6052 SDValue Elt = Op.getOperand(1); 6053 SDValue Idx = Op.getOperand(2); 6054 6055 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6056 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6057 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6058 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6059 (canLoadStoreByteSwapped(N->getValueType(0)) && 6060 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6061 EVT VecVT = N->getValueType(0); 6062 EVT EltVT = N->getValueType(0).getVectorElementType(); 6063 if (VecVT != Vec.getValueType()) { 6064 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6065 DCI.AddToWorklist(Vec.getNode()); 6066 } 6067 if (EltVT != Elt.getValueType()) { 6068 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6069 DCI.AddToWorklist(Elt.getNode()); 6070 } 6071 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6072 DCI.AddToWorklist(Vec.getNode()); 6073 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6074 DCI.AddToWorklist(Elt.getNode()); 6075 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6076 Vec, Elt, Idx); 6077 } 6078 } 6079 6080 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6081 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6082 if (SV && Op.hasOneUse()) { 6083 SDValue Op0 = Op.getOperand(0); 6084 SDValue Op1 = Op.getOperand(1); 6085 6086 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6087 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6088 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6089 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6090 EVT VecVT = N->getValueType(0); 6091 if (VecVT != Op0.getValueType()) { 6092 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6093 DCI.AddToWorklist(Op0.getNode()); 6094 } 6095 if (VecVT != Op1.getValueType()) { 6096 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6097 DCI.AddToWorklist(Op1.getNode()); 6098 } 6099 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6100 DCI.AddToWorklist(Op0.getNode()); 6101 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6102 DCI.AddToWorklist(Op1.getNode()); 6103 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6104 } 6105 } 6106 6107 return SDValue(); 6108 } 6109 6110 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6111 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6112 // set by the CCReg instruction using the CCValid / CCMask masks, 6113 // If the CCReg instruction is itself a ICMP testing the condition 6114 // code set by some other instruction, see whether we can directly 6115 // use that condition code. 6116 6117 // Verify that we have an ICMP against some constant. 6118 if (CCValid != SystemZ::CCMASK_ICMP) 6119 return false; 6120 auto *ICmp = CCReg.getNode(); 6121 if (ICmp->getOpcode() != SystemZISD::ICMP) 6122 return false; 6123 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6124 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6125 if (!CompareRHS) 6126 return false; 6127 6128 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6129 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6130 // Verify that we have an appropriate mask for a EQ or NE comparison. 6131 bool Invert = false; 6132 if (CCMask == SystemZ::CCMASK_CMP_NE) 6133 Invert = !Invert; 6134 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6135 return false; 6136 6137 // Verify that the ICMP compares against one of select values. 6138 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6139 if (!TrueVal) 6140 return false; 6141 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6142 if (!FalseVal) 6143 return false; 6144 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6145 Invert = !Invert; 6146 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6147 return false; 6148 6149 // Compute the effective CC mask for the new branch or select. 6150 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6151 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6152 if (!NewCCValid || !NewCCMask) 6153 return false; 6154 CCValid = NewCCValid->getZExtValue(); 6155 CCMask = NewCCMask->getZExtValue(); 6156 if (Invert) 6157 CCMask ^= CCValid; 6158 6159 // Return the updated CCReg link. 6160 CCReg = CompareLHS->getOperand(4); 6161 return true; 6162 } 6163 6164 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6165 if (CompareLHS->getOpcode() == ISD::SRA) { 6166 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6167 if (!SRACount || SRACount->getZExtValue() != 30) 6168 return false; 6169 auto *SHL = CompareLHS->getOperand(0).getNode(); 6170 if (SHL->getOpcode() != ISD::SHL) 6171 return false; 6172 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6173 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6174 return false; 6175 auto *IPM = SHL->getOperand(0).getNode(); 6176 if (IPM->getOpcode() != SystemZISD::IPM) 6177 return false; 6178 6179 // Avoid introducing CC spills (because SRA would clobber CC). 6180 if (!CompareLHS->hasOneUse()) 6181 return false; 6182 // Verify that the ICMP compares against zero. 6183 if (CompareRHS->getZExtValue() != 0) 6184 return false; 6185 6186 // Compute the effective CC mask for the new branch or select. 6187 switch (CCMask) { 6188 case SystemZ::CCMASK_CMP_EQ: break; 6189 case SystemZ::CCMASK_CMP_NE: break; 6190 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 6191 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 6192 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 6193 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 6194 default: return false; 6195 } 6196 6197 // Return the updated CCReg link. 6198 CCReg = IPM->getOperand(0); 6199 return true; 6200 } 6201 6202 return false; 6203 } 6204 6205 SDValue SystemZTargetLowering::combineBR_CCMASK( 6206 SDNode *N, DAGCombinerInfo &DCI) const { 6207 SelectionDAG &DAG = DCI.DAG; 6208 6209 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6210 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6211 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6212 if (!CCValid || !CCMask) 6213 return SDValue(); 6214 6215 int CCValidVal = CCValid->getZExtValue(); 6216 int CCMaskVal = CCMask->getZExtValue(); 6217 SDValue Chain = N->getOperand(0); 6218 SDValue CCReg = N->getOperand(4); 6219 6220 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6221 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6222 Chain, 6223 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6224 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6225 N->getOperand(3), CCReg); 6226 return SDValue(); 6227 } 6228 6229 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6230 SDNode *N, DAGCombinerInfo &DCI) const { 6231 SelectionDAG &DAG = DCI.DAG; 6232 6233 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6234 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6235 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6236 if (!CCValid || !CCMask) 6237 return SDValue(); 6238 6239 int CCValidVal = CCValid->getZExtValue(); 6240 int CCMaskVal = CCMask->getZExtValue(); 6241 SDValue CCReg = N->getOperand(4); 6242 6243 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6244 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6245 N->getOperand(0), N->getOperand(1), 6246 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6247 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6248 CCReg); 6249 return SDValue(); 6250 } 6251 6252 6253 SDValue SystemZTargetLowering::combineGET_CCMASK( 6254 SDNode *N, DAGCombinerInfo &DCI) const { 6255 6256 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6257 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6258 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6259 if (!CCValid || !CCMask) 6260 return SDValue(); 6261 int CCValidVal = CCValid->getZExtValue(); 6262 int CCMaskVal = CCMask->getZExtValue(); 6263 6264 SDValue Select = N->getOperand(0); 6265 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6266 return SDValue(); 6267 6268 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6269 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6270 if (!SelectCCValid || !SelectCCMask) 6271 return SDValue(); 6272 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6273 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6274 6275 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6276 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6277 if (!TrueVal || !FalseVal) 6278 return SDValue(); 6279 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6280 ; 6281 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6282 SelectCCMaskVal ^= SelectCCValidVal; 6283 else 6284 return SDValue(); 6285 6286 if (SelectCCValidVal & ~CCValidVal) 6287 return SDValue(); 6288 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6289 return SDValue(); 6290 6291 return Select->getOperand(4); 6292 } 6293 6294 SDValue SystemZTargetLowering::combineIntDIVREM( 6295 SDNode *N, DAGCombinerInfo &DCI) const { 6296 SelectionDAG &DAG = DCI.DAG; 6297 EVT VT = N->getValueType(0); 6298 // In the case where the divisor is a vector of constants a cheaper 6299 // sequence of instructions can replace the divide. BuildSDIV is called to 6300 // do this during DAG combining, but it only succeeds when it can build a 6301 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6302 // since it is not Legal but Custom it can only happen before 6303 // legalization. Therefore we must scalarize this early before Combine 6304 // 1. For widened vectors, this is already the result of type legalization. 6305 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6306 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6307 return DAG.UnrollVectorOp(N); 6308 return SDValue(); 6309 } 6310 6311 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6312 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6313 return N->getOperand(0); 6314 return N; 6315 } 6316 6317 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6318 DAGCombinerInfo &DCI) const { 6319 switch(N->getOpcode()) { 6320 default: break; 6321 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6322 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6323 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6324 case SystemZISD::MERGE_HIGH: 6325 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6326 case ISD::LOAD: return combineLOAD(N, DCI); 6327 case ISD::STORE: return combineSTORE(N, DCI); 6328 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6329 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6330 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6331 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6332 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6333 case ISD::BSWAP: return combineBSWAP(N, DCI); 6334 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6335 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6336 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6337 case ISD::SDIV: 6338 case ISD::UDIV: 6339 case ISD::SREM: 6340 case ISD::UREM: return combineIntDIVREM(N, DCI); 6341 } 6342 6343 return SDValue(); 6344 } 6345 6346 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6347 // are for Op. 6348 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6349 unsigned OpNo) { 6350 EVT VT = Op.getValueType(); 6351 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6352 APInt SrcDemE; 6353 unsigned Opcode = Op.getOpcode(); 6354 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6355 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6356 switch (Id) { 6357 case Intrinsic::s390_vpksh: // PACKS 6358 case Intrinsic::s390_vpksf: 6359 case Intrinsic::s390_vpksg: 6360 case Intrinsic::s390_vpkshs: // PACKS_CC 6361 case Intrinsic::s390_vpksfs: 6362 case Intrinsic::s390_vpksgs: 6363 case Intrinsic::s390_vpklsh: // PACKLS 6364 case Intrinsic::s390_vpklsf: 6365 case Intrinsic::s390_vpklsg: 6366 case Intrinsic::s390_vpklshs: // PACKLS_CC 6367 case Intrinsic::s390_vpklsfs: 6368 case Intrinsic::s390_vpklsgs: 6369 // VECTOR PACK truncates the elements of two source vectors into one. 6370 SrcDemE = DemandedElts; 6371 if (OpNo == 2) 6372 SrcDemE.lshrInPlace(NumElts / 2); 6373 SrcDemE = SrcDemE.trunc(NumElts / 2); 6374 break; 6375 // VECTOR UNPACK extends half the elements of the source vector. 6376 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6377 case Intrinsic::s390_vuphh: 6378 case Intrinsic::s390_vuphf: 6379 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6380 case Intrinsic::s390_vuplhh: 6381 case Intrinsic::s390_vuplhf: 6382 SrcDemE = APInt(NumElts * 2, 0); 6383 SrcDemE.insertBits(DemandedElts, 0); 6384 break; 6385 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6386 case Intrinsic::s390_vuplhw: 6387 case Intrinsic::s390_vuplf: 6388 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6389 case Intrinsic::s390_vupllh: 6390 case Intrinsic::s390_vupllf: 6391 SrcDemE = APInt(NumElts * 2, 0); 6392 SrcDemE.insertBits(DemandedElts, NumElts); 6393 break; 6394 case Intrinsic::s390_vpdi: { 6395 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6396 SrcDemE = APInt(NumElts, 0); 6397 if (!DemandedElts[OpNo - 1]) 6398 break; 6399 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6400 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6401 // Demand input element 0 or 1, given by the mask bit value. 6402 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6403 break; 6404 } 6405 case Intrinsic::s390_vsldb: { 6406 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6407 assert(VT == MVT::v16i8 && "Unexpected type."); 6408 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6409 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6410 unsigned NumSrc0Els = 16 - FirstIdx; 6411 SrcDemE = APInt(NumElts, 0); 6412 if (OpNo == 1) { 6413 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6414 SrcDemE.insertBits(DemEls, FirstIdx); 6415 } else { 6416 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6417 SrcDemE.insertBits(DemEls, 0); 6418 } 6419 break; 6420 } 6421 case Intrinsic::s390_vperm: 6422 SrcDemE = APInt(NumElts, 1); 6423 break; 6424 default: 6425 llvm_unreachable("Unhandled intrinsic."); 6426 break; 6427 } 6428 } else { 6429 switch (Opcode) { 6430 case SystemZISD::JOIN_DWORDS: 6431 // Scalar operand. 6432 SrcDemE = APInt(1, 1); 6433 break; 6434 case SystemZISD::SELECT_CCMASK: 6435 SrcDemE = DemandedElts; 6436 break; 6437 default: 6438 llvm_unreachable("Unhandled opcode."); 6439 break; 6440 } 6441 } 6442 return SrcDemE; 6443 } 6444 6445 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6446 const APInt &DemandedElts, 6447 const SelectionDAG &DAG, unsigned Depth, 6448 unsigned OpNo) { 6449 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6450 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6451 KnownBits LHSKnown = 6452 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6453 KnownBits RHSKnown = 6454 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6455 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6456 Known.One = LHSKnown.One & RHSKnown.One; 6457 } 6458 6459 void 6460 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6461 KnownBits &Known, 6462 const APInt &DemandedElts, 6463 const SelectionDAG &DAG, 6464 unsigned Depth) const { 6465 Known.resetAll(); 6466 6467 // Intrinsic CC result is returned in the two low bits. 6468 unsigned tmp0, tmp1; // not used 6469 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6470 Known.Zero.setBitsFrom(2); 6471 return; 6472 } 6473 EVT VT = Op.getValueType(); 6474 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6475 return; 6476 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6477 "KnownBits does not match VT in bitwidth"); 6478 assert ((!VT.isVector() || 6479 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6480 "DemandedElts does not match VT number of elements"); 6481 unsigned BitWidth = Known.getBitWidth(); 6482 unsigned Opcode = Op.getOpcode(); 6483 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6484 bool IsLogical = false; 6485 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6486 switch (Id) { 6487 case Intrinsic::s390_vpksh: // PACKS 6488 case Intrinsic::s390_vpksf: 6489 case Intrinsic::s390_vpksg: 6490 case Intrinsic::s390_vpkshs: // PACKS_CC 6491 case Intrinsic::s390_vpksfs: 6492 case Intrinsic::s390_vpksgs: 6493 case Intrinsic::s390_vpklsh: // PACKLS 6494 case Intrinsic::s390_vpklsf: 6495 case Intrinsic::s390_vpklsg: 6496 case Intrinsic::s390_vpklshs: // PACKLS_CC 6497 case Intrinsic::s390_vpklsfs: 6498 case Intrinsic::s390_vpklsgs: 6499 case Intrinsic::s390_vpdi: 6500 case Intrinsic::s390_vsldb: 6501 case Intrinsic::s390_vperm: 6502 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6503 break; 6504 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6505 case Intrinsic::s390_vuplhh: 6506 case Intrinsic::s390_vuplhf: 6507 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6508 case Intrinsic::s390_vupllh: 6509 case Intrinsic::s390_vupllf: 6510 IsLogical = true; 6511 LLVM_FALLTHROUGH; 6512 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6513 case Intrinsic::s390_vuphh: 6514 case Intrinsic::s390_vuphf: 6515 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6516 case Intrinsic::s390_vuplhw: 6517 case Intrinsic::s390_vuplf: { 6518 SDValue SrcOp = Op.getOperand(1); 6519 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6520 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6521 if (IsLogical) { 6522 Known = Known.zext(BitWidth, true); 6523 } else 6524 Known = Known.sext(BitWidth); 6525 break; 6526 } 6527 default: 6528 break; 6529 } 6530 } else { 6531 switch (Opcode) { 6532 case SystemZISD::JOIN_DWORDS: 6533 case SystemZISD::SELECT_CCMASK: 6534 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6535 break; 6536 case SystemZISD::REPLICATE: { 6537 SDValue SrcOp = Op.getOperand(0); 6538 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6539 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6540 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6541 break; 6542 } 6543 default: 6544 break; 6545 } 6546 } 6547 6548 // Known has the width of the source operand(s). Adjust if needed to match 6549 // the passed bitwidth. 6550 if (Known.getBitWidth() != BitWidth) 6551 Known = Known.zextOrTrunc(BitWidth, false); 6552 } 6553 6554 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6555 const SelectionDAG &DAG, unsigned Depth, 6556 unsigned OpNo) { 6557 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6558 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6559 if (LHS == 1) return 1; // Early out. 6560 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6561 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6562 if (RHS == 1) return 1; // Early out. 6563 unsigned Common = std::min(LHS, RHS); 6564 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6565 EVT VT = Op.getValueType(); 6566 unsigned VTBits = VT.getScalarSizeInBits(); 6567 if (SrcBitWidth > VTBits) { // PACK 6568 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6569 if (Common > SrcExtraBits) 6570 return (Common - SrcExtraBits); 6571 return 1; 6572 } 6573 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6574 return Common; 6575 } 6576 6577 unsigned 6578 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6579 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6580 unsigned Depth) const { 6581 if (Op.getResNo() != 0) 6582 return 1; 6583 unsigned Opcode = Op.getOpcode(); 6584 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6585 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6586 switch (Id) { 6587 case Intrinsic::s390_vpksh: // PACKS 6588 case Intrinsic::s390_vpksf: 6589 case Intrinsic::s390_vpksg: 6590 case Intrinsic::s390_vpkshs: // PACKS_CC 6591 case Intrinsic::s390_vpksfs: 6592 case Intrinsic::s390_vpksgs: 6593 case Intrinsic::s390_vpklsh: // PACKLS 6594 case Intrinsic::s390_vpklsf: 6595 case Intrinsic::s390_vpklsg: 6596 case Intrinsic::s390_vpklshs: // PACKLS_CC 6597 case Intrinsic::s390_vpklsfs: 6598 case Intrinsic::s390_vpklsgs: 6599 case Intrinsic::s390_vpdi: 6600 case Intrinsic::s390_vsldb: 6601 case Intrinsic::s390_vperm: 6602 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6603 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6604 case Intrinsic::s390_vuphh: 6605 case Intrinsic::s390_vuphf: 6606 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6607 case Intrinsic::s390_vuplhw: 6608 case Intrinsic::s390_vuplf: { 6609 SDValue PackedOp = Op.getOperand(1); 6610 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6611 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6612 EVT VT = Op.getValueType(); 6613 unsigned VTBits = VT.getScalarSizeInBits(); 6614 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6615 return Tmp; 6616 } 6617 default: 6618 break; 6619 } 6620 } else { 6621 switch (Opcode) { 6622 case SystemZISD::SELECT_CCMASK: 6623 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6624 default: 6625 break; 6626 } 6627 } 6628 6629 return 1; 6630 } 6631 6632 //===----------------------------------------------------------------------===// 6633 // Custom insertion 6634 //===----------------------------------------------------------------------===// 6635 6636 // Create a new basic block after MBB. 6637 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6638 MachineFunction &MF = *MBB->getParent(); 6639 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6640 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6641 return NewMBB; 6642 } 6643 6644 // Split MBB after MI and return the new block (the one that contains 6645 // instructions after MI). 6646 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6647 MachineBasicBlock *MBB) { 6648 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6649 NewMBB->splice(NewMBB->begin(), MBB, 6650 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6651 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6652 return NewMBB; 6653 } 6654 6655 // Split MBB before MI and return the new block (the one that contains MI). 6656 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6657 MachineBasicBlock *MBB) { 6658 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6659 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6660 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6661 return NewMBB; 6662 } 6663 6664 // Force base value Base into a register before MI. Return the register. 6665 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6666 const SystemZInstrInfo *TII) { 6667 if (Base.isReg()) 6668 return Base.getReg(); 6669 6670 MachineBasicBlock *MBB = MI.getParent(); 6671 MachineFunction &MF = *MBB->getParent(); 6672 MachineRegisterInfo &MRI = MF.getRegInfo(); 6673 6674 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6675 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6676 .add(Base) 6677 .addImm(0) 6678 .addReg(0); 6679 return Reg; 6680 } 6681 6682 // The CC operand of MI might be missing a kill marker because there 6683 // were multiple uses of CC, and ISel didn't know which to mark. 6684 // Figure out whether MI should have had a kill marker. 6685 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6686 // Scan forward through BB for a use/def of CC. 6687 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6688 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6689 const MachineInstr& mi = *miI; 6690 if (mi.readsRegister(SystemZ::CC)) 6691 return false; 6692 if (mi.definesRegister(SystemZ::CC)) 6693 break; // Should have kill-flag - update below. 6694 } 6695 6696 // If we hit the end of the block, check whether CC is live into a 6697 // successor. 6698 if (miI == MBB->end()) { 6699 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6700 if ((*SI)->isLiveIn(SystemZ::CC)) 6701 return false; 6702 } 6703 6704 return true; 6705 } 6706 6707 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6708 // together with other Select pseudo-opcodes into a single basic-block with 6709 // a conditional jump around it. 6710 static bool isSelectPseudo(MachineInstr &MI) { 6711 switch (MI.getOpcode()) { 6712 case SystemZ::Select32: 6713 case SystemZ::Select64: 6714 case SystemZ::SelectF32: 6715 case SystemZ::SelectF64: 6716 case SystemZ::SelectF128: 6717 case SystemZ::SelectVR32: 6718 case SystemZ::SelectVR64: 6719 case SystemZ::SelectVR128: 6720 return true; 6721 6722 default: 6723 return false; 6724 } 6725 } 6726 6727 // Helper function, which inserts PHI functions into SinkMBB: 6728 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6729 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6730 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6731 MachineBasicBlock *TrueMBB, 6732 MachineBasicBlock *FalseMBB, 6733 MachineBasicBlock *SinkMBB) { 6734 MachineFunction *MF = TrueMBB->getParent(); 6735 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6736 6737 MachineInstr *FirstMI = Selects.front(); 6738 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6739 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6740 6741 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6742 6743 // As we are creating the PHIs, we have to be careful if there is more than 6744 // one. Later Selects may reference the results of earlier Selects, but later 6745 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6746 // That also means that PHI construction must work forward from earlier to 6747 // later, and that the code must maintain a mapping from earlier PHI's 6748 // destination registers, and the registers that went into the PHI. 6749 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6750 6751 for (auto MI : Selects) { 6752 Register DestReg = MI->getOperand(0).getReg(); 6753 Register TrueReg = MI->getOperand(1).getReg(); 6754 Register FalseReg = MI->getOperand(2).getReg(); 6755 6756 // If this Select we are generating is the opposite condition from 6757 // the jump we generated, then we have to swap the operands for the 6758 // PHI that is going to be generated. 6759 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6760 std::swap(TrueReg, FalseReg); 6761 6762 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6763 TrueReg = RegRewriteTable[TrueReg].first; 6764 6765 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6766 FalseReg = RegRewriteTable[FalseReg].second; 6767 6768 DebugLoc DL = MI->getDebugLoc(); 6769 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6770 .addReg(TrueReg).addMBB(TrueMBB) 6771 .addReg(FalseReg).addMBB(FalseMBB); 6772 6773 // Add this PHI to the rewrite table. 6774 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6775 } 6776 6777 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6778 } 6779 6780 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6781 MachineBasicBlock * 6782 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6783 MachineBasicBlock *MBB) const { 6784 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6785 const SystemZInstrInfo *TII = 6786 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6787 6788 unsigned CCValid = MI.getOperand(3).getImm(); 6789 unsigned CCMask = MI.getOperand(4).getImm(); 6790 6791 // If we have a sequence of Select* pseudo instructions using the 6792 // same condition code value, we want to expand all of them into 6793 // a single pair of basic blocks using the same condition. 6794 SmallVector<MachineInstr*, 8> Selects; 6795 SmallVector<MachineInstr*, 8> DbgValues; 6796 Selects.push_back(&MI); 6797 unsigned Count = 0; 6798 for (MachineBasicBlock::iterator NextMIIt = 6799 std::next(MachineBasicBlock::iterator(MI)); 6800 NextMIIt != MBB->end(); ++NextMIIt) { 6801 if (NextMIIt->definesRegister(SystemZ::CC)) 6802 break; 6803 if (isSelectPseudo(*NextMIIt)) { 6804 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6805 "Bad CCValid operands since CC was not redefined."); 6806 if (NextMIIt->getOperand(4).getImm() == CCMask || 6807 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6808 Selects.push_back(&*NextMIIt); 6809 continue; 6810 } 6811 break; 6812 } 6813 bool User = false; 6814 for (auto SelMI : Selects) 6815 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6816 User = true; 6817 break; 6818 } 6819 if (NextMIIt->isDebugInstr()) { 6820 if (User) { 6821 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6822 DbgValues.push_back(&*NextMIIt); 6823 } 6824 } 6825 else if (User || ++Count > 20) 6826 break; 6827 } 6828 6829 MachineInstr *LastMI = Selects.back(); 6830 bool CCKilled = 6831 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6832 MachineBasicBlock *StartMBB = MBB; 6833 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6834 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6835 6836 // Unless CC was killed in the last Select instruction, mark it as 6837 // live-in to both FalseMBB and JoinMBB. 6838 if (!CCKilled) { 6839 FalseMBB->addLiveIn(SystemZ::CC); 6840 JoinMBB->addLiveIn(SystemZ::CC); 6841 } 6842 6843 // StartMBB: 6844 // BRC CCMask, JoinMBB 6845 // # fallthrough to FalseMBB 6846 MBB = StartMBB; 6847 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6848 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6849 MBB->addSuccessor(JoinMBB); 6850 MBB->addSuccessor(FalseMBB); 6851 6852 // FalseMBB: 6853 // # fallthrough to JoinMBB 6854 MBB = FalseMBB; 6855 MBB->addSuccessor(JoinMBB); 6856 6857 // JoinMBB: 6858 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6859 // ... 6860 MBB = JoinMBB; 6861 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6862 for (auto SelMI : Selects) 6863 SelMI->eraseFromParent(); 6864 6865 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6866 for (auto DbgMI : DbgValues) 6867 MBB->splice(InsertPos, StartMBB, DbgMI); 6868 6869 return JoinMBB; 6870 } 6871 6872 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6873 // StoreOpcode is the store to use and Invert says whether the store should 6874 // happen when the condition is false rather than true. If a STORE ON 6875 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6876 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6877 MachineBasicBlock *MBB, 6878 unsigned StoreOpcode, 6879 unsigned STOCOpcode, 6880 bool Invert) const { 6881 const SystemZInstrInfo *TII = 6882 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6883 6884 Register SrcReg = MI.getOperand(0).getReg(); 6885 MachineOperand Base = MI.getOperand(1); 6886 int64_t Disp = MI.getOperand(2).getImm(); 6887 Register IndexReg = MI.getOperand(3).getReg(); 6888 unsigned CCValid = MI.getOperand(4).getImm(); 6889 unsigned CCMask = MI.getOperand(5).getImm(); 6890 DebugLoc DL = MI.getDebugLoc(); 6891 6892 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6893 6894 // Use STOCOpcode if possible. We could use different store patterns in 6895 // order to avoid matching the index register, but the performance trade-offs 6896 // might be more complicated in that case. 6897 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6898 if (Invert) 6899 CCMask ^= CCValid; 6900 6901 // ISel pattern matching also adds a load memory operand of the same 6902 // address, so take special care to find the storing memory operand. 6903 MachineMemOperand *MMO = nullptr; 6904 for (auto *I : MI.memoperands()) 6905 if (I->isStore()) { 6906 MMO = I; 6907 break; 6908 } 6909 6910 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6911 .addReg(SrcReg) 6912 .add(Base) 6913 .addImm(Disp) 6914 .addImm(CCValid) 6915 .addImm(CCMask) 6916 .addMemOperand(MMO); 6917 6918 MI.eraseFromParent(); 6919 return MBB; 6920 } 6921 6922 // Get the condition needed to branch around the store. 6923 if (!Invert) 6924 CCMask ^= CCValid; 6925 6926 MachineBasicBlock *StartMBB = MBB; 6927 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6928 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6929 6930 // Unless CC was killed in the CondStore instruction, mark it as 6931 // live-in to both FalseMBB and JoinMBB. 6932 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6933 FalseMBB->addLiveIn(SystemZ::CC); 6934 JoinMBB->addLiveIn(SystemZ::CC); 6935 } 6936 6937 // StartMBB: 6938 // BRC CCMask, JoinMBB 6939 // # fallthrough to FalseMBB 6940 MBB = StartMBB; 6941 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6942 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6943 MBB->addSuccessor(JoinMBB); 6944 MBB->addSuccessor(FalseMBB); 6945 6946 // FalseMBB: 6947 // store %SrcReg, %Disp(%Index,%Base) 6948 // # fallthrough to JoinMBB 6949 MBB = FalseMBB; 6950 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6951 .addReg(SrcReg) 6952 .add(Base) 6953 .addImm(Disp) 6954 .addReg(IndexReg); 6955 MBB->addSuccessor(JoinMBB); 6956 6957 MI.eraseFromParent(); 6958 return JoinMBB; 6959 } 6960 6961 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6962 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6963 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6964 // BitSize is the width of the field in bits, or 0 if this is a partword 6965 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6966 // is one of the operands. Invert says whether the field should be 6967 // inverted after performing BinOpcode (e.g. for NAND). 6968 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6969 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6970 unsigned BitSize, bool Invert) const { 6971 MachineFunction &MF = *MBB->getParent(); 6972 const SystemZInstrInfo *TII = 6973 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6974 MachineRegisterInfo &MRI = MF.getRegInfo(); 6975 bool IsSubWord = (BitSize < 32); 6976 6977 // Extract the operands. Base can be a register or a frame index. 6978 // Src2 can be a register or immediate. 6979 Register Dest = MI.getOperand(0).getReg(); 6980 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6981 int64_t Disp = MI.getOperand(2).getImm(); 6982 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6983 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 6984 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 6985 DebugLoc DL = MI.getDebugLoc(); 6986 if (IsSubWord) 6987 BitSize = MI.getOperand(6).getImm(); 6988 6989 // Subword operations use 32-bit registers. 6990 const TargetRegisterClass *RC = (BitSize <= 32 ? 6991 &SystemZ::GR32BitRegClass : 6992 &SystemZ::GR64BitRegClass); 6993 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6994 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6995 6996 // Get the right opcodes for the displacement. 6997 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6998 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6999 assert(LOpcode && CSOpcode && "Displacement out of range"); 7000 7001 // Create virtual registers for temporary results. 7002 Register OrigVal = MRI.createVirtualRegister(RC); 7003 Register OldVal = MRI.createVirtualRegister(RC); 7004 Register NewVal = (BinOpcode || IsSubWord ? 7005 MRI.createVirtualRegister(RC) : Src2.getReg()); 7006 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7007 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7008 7009 // Insert a basic block for the main loop. 7010 MachineBasicBlock *StartMBB = MBB; 7011 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7012 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7013 7014 // StartMBB: 7015 // ... 7016 // %OrigVal = L Disp(%Base) 7017 // # fall through to LoopMMB 7018 MBB = StartMBB; 7019 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7020 MBB->addSuccessor(LoopMBB); 7021 7022 // LoopMBB: 7023 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7024 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7025 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7026 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7027 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7028 // JNE LoopMBB 7029 // # fall through to DoneMMB 7030 MBB = LoopMBB; 7031 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7032 .addReg(OrigVal).addMBB(StartMBB) 7033 .addReg(Dest).addMBB(LoopMBB); 7034 if (IsSubWord) 7035 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7036 .addReg(OldVal).addReg(BitShift).addImm(0); 7037 if (Invert) { 7038 // Perform the operation normally and then invert every bit of the field. 7039 Register Tmp = MRI.createVirtualRegister(RC); 7040 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7041 if (BitSize <= 32) 7042 // XILF with the upper BitSize bits set. 7043 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7044 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7045 else { 7046 // Use LCGR and add -1 to the result, which is more compact than 7047 // an XILF, XILH pair. 7048 Register Tmp2 = MRI.createVirtualRegister(RC); 7049 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7050 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7051 .addReg(Tmp2).addImm(-1); 7052 } 7053 } else if (BinOpcode) 7054 // A simply binary operation. 7055 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7056 .addReg(RotatedOldVal) 7057 .add(Src2); 7058 else if (IsSubWord) 7059 // Use RISBG to rotate Src2 into position and use it to replace the 7060 // field in RotatedOldVal. 7061 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7062 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7063 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7064 if (IsSubWord) 7065 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7066 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7067 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7068 .addReg(OldVal) 7069 .addReg(NewVal) 7070 .add(Base) 7071 .addImm(Disp); 7072 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7073 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7074 MBB->addSuccessor(LoopMBB); 7075 MBB->addSuccessor(DoneMBB); 7076 7077 MI.eraseFromParent(); 7078 return DoneMBB; 7079 } 7080 7081 // Implement EmitInstrWithCustomInserter for pseudo 7082 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7083 // instruction that should be used to compare the current field with the 7084 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7085 // for when the current field should be kept. BitSize is the width of 7086 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7087 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7088 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7089 unsigned KeepOldMask, unsigned BitSize) const { 7090 MachineFunction &MF = *MBB->getParent(); 7091 const SystemZInstrInfo *TII = 7092 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7093 MachineRegisterInfo &MRI = MF.getRegInfo(); 7094 bool IsSubWord = (BitSize < 32); 7095 7096 // Extract the operands. Base can be a register or a frame index. 7097 Register Dest = MI.getOperand(0).getReg(); 7098 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7099 int64_t Disp = MI.getOperand(2).getImm(); 7100 Register Src2 = MI.getOperand(3).getReg(); 7101 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7102 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7103 DebugLoc DL = MI.getDebugLoc(); 7104 if (IsSubWord) 7105 BitSize = MI.getOperand(6).getImm(); 7106 7107 // Subword operations use 32-bit registers. 7108 const TargetRegisterClass *RC = (BitSize <= 32 ? 7109 &SystemZ::GR32BitRegClass : 7110 &SystemZ::GR64BitRegClass); 7111 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7112 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7113 7114 // Get the right opcodes for the displacement. 7115 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7116 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7117 assert(LOpcode && CSOpcode && "Displacement out of range"); 7118 7119 // Create virtual registers for temporary results. 7120 Register OrigVal = MRI.createVirtualRegister(RC); 7121 Register OldVal = MRI.createVirtualRegister(RC); 7122 Register NewVal = MRI.createVirtualRegister(RC); 7123 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7124 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7125 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7126 7127 // Insert 3 basic blocks for the loop. 7128 MachineBasicBlock *StartMBB = MBB; 7129 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7130 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7131 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7132 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7133 7134 // StartMBB: 7135 // ... 7136 // %OrigVal = L Disp(%Base) 7137 // # fall through to LoopMMB 7138 MBB = StartMBB; 7139 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7140 MBB->addSuccessor(LoopMBB); 7141 7142 // LoopMBB: 7143 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7144 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7145 // CompareOpcode %RotatedOldVal, %Src2 7146 // BRC KeepOldMask, UpdateMBB 7147 MBB = LoopMBB; 7148 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7149 .addReg(OrigVal).addMBB(StartMBB) 7150 .addReg(Dest).addMBB(UpdateMBB); 7151 if (IsSubWord) 7152 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7153 .addReg(OldVal).addReg(BitShift).addImm(0); 7154 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7155 .addReg(RotatedOldVal).addReg(Src2); 7156 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7157 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7158 MBB->addSuccessor(UpdateMBB); 7159 MBB->addSuccessor(UseAltMBB); 7160 7161 // UseAltMBB: 7162 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7163 // # fall through to UpdateMMB 7164 MBB = UseAltMBB; 7165 if (IsSubWord) 7166 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7167 .addReg(RotatedOldVal).addReg(Src2) 7168 .addImm(32).addImm(31 + BitSize).addImm(0); 7169 MBB->addSuccessor(UpdateMBB); 7170 7171 // UpdateMBB: 7172 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7173 // [ %RotatedAltVal, UseAltMBB ] 7174 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7175 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7176 // JNE LoopMBB 7177 // # fall through to DoneMMB 7178 MBB = UpdateMBB; 7179 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7180 .addReg(RotatedOldVal).addMBB(LoopMBB) 7181 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7182 if (IsSubWord) 7183 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7184 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7185 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7186 .addReg(OldVal) 7187 .addReg(NewVal) 7188 .add(Base) 7189 .addImm(Disp); 7190 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7191 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7192 MBB->addSuccessor(LoopMBB); 7193 MBB->addSuccessor(DoneMBB); 7194 7195 MI.eraseFromParent(); 7196 return DoneMBB; 7197 } 7198 7199 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7200 // instruction MI. 7201 MachineBasicBlock * 7202 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7203 MachineBasicBlock *MBB) const { 7204 7205 MachineFunction &MF = *MBB->getParent(); 7206 const SystemZInstrInfo *TII = 7207 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7208 MachineRegisterInfo &MRI = MF.getRegInfo(); 7209 7210 // Extract the operands. Base can be a register or a frame index. 7211 Register Dest = MI.getOperand(0).getReg(); 7212 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7213 int64_t Disp = MI.getOperand(2).getImm(); 7214 Register OrigCmpVal = MI.getOperand(3).getReg(); 7215 Register OrigSwapVal = MI.getOperand(4).getReg(); 7216 Register BitShift = MI.getOperand(5).getReg(); 7217 Register NegBitShift = MI.getOperand(6).getReg(); 7218 int64_t BitSize = MI.getOperand(7).getImm(); 7219 DebugLoc DL = MI.getDebugLoc(); 7220 7221 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7222 7223 // Get the right opcodes for the displacement. 7224 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7225 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7226 assert(LOpcode && CSOpcode && "Displacement out of range"); 7227 7228 // Create virtual registers for temporary results. 7229 Register OrigOldVal = MRI.createVirtualRegister(RC); 7230 Register OldVal = MRI.createVirtualRegister(RC); 7231 Register CmpVal = MRI.createVirtualRegister(RC); 7232 Register SwapVal = MRI.createVirtualRegister(RC); 7233 Register StoreVal = MRI.createVirtualRegister(RC); 7234 Register RetryOldVal = MRI.createVirtualRegister(RC); 7235 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7236 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7237 7238 // Insert 2 basic blocks for the loop. 7239 MachineBasicBlock *StartMBB = MBB; 7240 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7241 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7242 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7243 7244 // StartMBB: 7245 // ... 7246 // %OrigOldVal = L Disp(%Base) 7247 // # fall through to LoopMMB 7248 MBB = StartMBB; 7249 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7250 .add(Base) 7251 .addImm(Disp) 7252 .addReg(0); 7253 MBB->addSuccessor(LoopMBB); 7254 7255 // LoopMBB: 7256 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7257 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7258 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7259 // %Dest = RLL %OldVal, BitSize(%BitShift) 7260 // ^^ The low BitSize bits contain the field 7261 // of interest. 7262 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7263 // ^^ Replace the upper 32-BitSize bits of the 7264 // comparison value with those that we loaded, 7265 // so that we can use a full word comparison. 7266 // CR %Dest, %RetryCmpVal 7267 // JNE DoneMBB 7268 // # Fall through to SetMBB 7269 MBB = LoopMBB; 7270 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7271 .addReg(OrigOldVal).addMBB(StartMBB) 7272 .addReg(RetryOldVal).addMBB(SetMBB); 7273 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7274 .addReg(OrigCmpVal).addMBB(StartMBB) 7275 .addReg(RetryCmpVal).addMBB(SetMBB); 7276 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7277 .addReg(OrigSwapVal).addMBB(StartMBB) 7278 .addReg(RetrySwapVal).addMBB(SetMBB); 7279 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7280 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7281 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7282 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7283 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7284 .addReg(Dest).addReg(RetryCmpVal); 7285 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7286 .addImm(SystemZ::CCMASK_ICMP) 7287 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7288 MBB->addSuccessor(DoneMBB); 7289 MBB->addSuccessor(SetMBB); 7290 7291 // SetMBB: 7292 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7293 // ^^ Replace the upper 32-BitSize bits of the new 7294 // value with those that we loaded. 7295 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7296 // ^^ Rotate the new field to its proper position. 7297 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7298 // JNE LoopMBB 7299 // # fall through to ExitMMB 7300 MBB = SetMBB; 7301 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7302 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7303 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7304 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7305 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7306 .addReg(OldVal) 7307 .addReg(StoreVal) 7308 .add(Base) 7309 .addImm(Disp); 7310 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7311 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7312 MBB->addSuccessor(LoopMBB); 7313 MBB->addSuccessor(DoneMBB); 7314 7315 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7316 // to the block after the loop. At this point, CC may have been defined 7317 // either by the CR in LoopMBB or by the CS in SetMBB. 7318 if (!MI.registerDefIsDead(SystemZ::CC)) 7319 DoneMBB->addLiveIn(SystemZ::CC); 7320 7321 MI.eraseFromParent(); 7322 return DoneMBB; 7323 } 7324 7325 // Emit a move from two GR64s to a GR128. 7326 MachineBasicBlock * 7327 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7328 MachineBasicBlock *MBB) const { 7329 MachineFunction &MF = *MBB->getParent(); 7330 const SystemZInstrInfo *TII = 7331 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7332 MachineRegisterInfo &MRI = MF.getRegInfo(); 7333 DebugLoc DL = MI.getDebugLoc(); 7334 7335 Register Dest = MI.getOperand(0).getReg(); 7336 Register Hi = MI.getOperand(1).getReg(); 7337 Register Lo = MI.getOperand(2).getReg(); 7338 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7339 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7340 7341 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7342 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7343 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7344 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7345 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7346 7347 MI.eraseFromParent(); 7348 return MBB; 7349 } 7350 7351 // Emit an extension from a GR64 to a GR128. ClearEven is true 7352 // if the high register of the GR128 value must be cleared or false if 7353 // it's "don't care". 7354 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7355 MachineBasicBlock *MBB, 7356 bool ClearEven) const { 7357 MachineFunction &MF = *MBB->getParent(); 7358 const SystemZInstrInfo *TII = 7359 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7360 MachineRegisterInfo &MRI = MF.getRegInfo(); 7361 DebugLoc DL = MI.getDebugLoc(); 7362 7363 Register Dest = MI.getOperand(0).getReg(); 7364 Register Src = MI.getOperand(1).getReg(); 7365 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7366 7367 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7368 if (ClearEven) { 7369 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7370 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7371 7372 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7373 .addImm(0); 7374 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7375 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7376 In128 = NewIn128; 7377 } 7378 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7379 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7380 7381 MI.eraseFromParent(); 7382 return MBB; 7383 } 7384 7385 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7386 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7387 MachineFunction &MF = *MBB->getParent(); 7388 const SystemZInstrInfo *TII = 7389 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7390 MachineRegisterInfo &MRI = MF.getRegInfo(); 7391 DebugLoc DL = MI.getDebugLoc(); 7392 7393 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7394 uint64_t DestDisp = MI.getOperand(1).getImm(); 7395 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7396 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7397 uint64_t Length = MI.getOperand(4).getImm(); 7398 7399 // When generating more than one CLC, all but the last will need to 7400 // branch to the end when a difference is found. 7401 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7402 splitBlockAfter(MI, MBB) : nullptr); 7403 7404 // Check for the loop form, in which operand 5 is the trip count. 7405 if (MI.getNumExplicitOperands() > 5) { 7406 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7407 7408 Register StartCountReg = MI.getOperand(5).getReg(); 7409 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7410 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7411 forceReg(MI, DestBase, TII)); 7412 7413 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7414 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7415 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7416 MRI.createVirtualRegister(RC)); 7417 Register NextSrcReg = MRI.createVirtualRegister(RC); 7418 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7419 MRI.createVirtualRegister(RC)); 7420 7421 RC = &SystemZ::GR64BitRegClass; 7422 Register ThisCountReg = MRI.createVirtualRegister(RC); 7423 Register NextCountReg = MRI.createVirtualRegister(RC); 7424 7425 MachineBasicBlock *StartMBB = MBB; 7426 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7427 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7428 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7429 7430 // StartMBB: 7431 // # fall through to LoopMMB 7432 MBB->addSuccessor(LoopMBB); 7433 7434 // LoopMBB: 7435 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7436 // [ %NextDestReg, NextMBB ] 7437 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7438 // [ %NextSrcReg, NextMBB ] 7439 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7440 // [ %NextCountReg, NextMBB ] 7441 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7442 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7443 // ( JLH EndMBB ) 7444 // 7445 // The prefetch is used only for MVC. The JLH is used only for CLC. 7446 MBB = LoopMBB; 7447 7448 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7449 .addReg(StartDestReg).addMBB(StartMBB) 7450 .addReg(NextDestReg).addMBB(NextMBB); 7451 if (!HaveSingleBase) 7452 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7453 .addReg(StartSrcReg).addMBB(StartMBB) 7454 .addReg(NextSrcReg).addMBB(NextMBB); 7455 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7456 .addReg(StartCountReg).addMBB(StartMBB) 7457 .addReg(NextCountReg).addMBB(NextMBB); 7458 if (Opcode == SystemZ::MVC) 7459 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7460 .addImm(SystemZ::PFD_WRITE) 7461 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7462 BuildMI(MBB, DL, TII->get(Opcode)) 7463 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7464 .addReg(ThisSrcReg).addImm(SrcDisp); 7465 if (EndMBB) { 7466 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7467 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7468 .addMBB(EndMBB); 7469 MBB->addSuccessor(EndMBB); 7470 MBB->addSuccessor(NextMBB); 7471 } 7472 7473 // NextMBB: 7474 // %NextDestReg = LA 256(%ThisDestReg) 7475 // %NextSrcReg = LA 256(%ThisSrcReg) 7476 // %NextCountReg = AGHI %ThisCountReg, -1 7477 // CGHI %NextCountReg, 0 7478 // JLH LoopMBB 7479 // # fall through to DoneMMB 7480 // 7481 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7482 MBB = NextMBB; 7483 7484 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7485 .addReg(ThisDestReg).addImm(256).addReg(0); 7486 if (!HaveSingleBase) 7487 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7488 .addReg(ThisSrcReg).addImm(256).addReg(0); 7489 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7490 .addReg(ThisCountReg).addImm(-1); 7491 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7492 .addReg(NextCountReg).addImm(0); 7493 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7494 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7495 .addMBB(LoopMBB); 7496 MBB->addSuccessor(LoopMBB); 7497 MBB->addSuccessor(DoneMBB); 7498 7499 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7500 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7501 Length &= 255; 7502 if (EndMBB && !Length) 7503 // If the loop handled the whole CLC range, DoneMBB will be empty with 7504 // CC live-through into EndMBB, so add it as live-in. 7505 DoneMBB->addLiveIn(SystemZ::CC); 7506 MBB = DoneMBB; 7507 } 7508 // Handle any remaining bytes with straight-line code. 7509 while (Length > 0) { 7510 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7511 // The previous iteration might have created out-of-range displacements. 7512 // Apply them using LAY if so. 7513 if (!isUInt<12>(DestDisp)) { 7514 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7515 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7516 .add(DestBase) 7517 .addImm(DestDisp) 7518 .addReg(0); 7519 DestBase = MachineOperand::CreateReg(Reg, false); 7520 DestDisp = 0; 7521 } 7522 if (!isUInt<12>(SrcDisp)) { 7523 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7524 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7525 .add(SrcBase) 7526 .addImm(SrcDisp) 7527 .addReg(0); 7528 SrcBase = MachineOperand::CreateReg(Reg, false); 7529 SrcDisp = 0; 7530 } 7531 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7532 .add(DestBase) 7533 .addImm(DestDisp) 7534 .addImm(ThisLength) 7535 .add(SrcBase) 7536 .addImm(SrcDisp) 7537 .setMemRefs(MI.memoperands()); 7538 DestDisp += ThisLength; 7539 SrcDisp += ThisLength; 7540 Length -= ThisLength; 7541 // If there's another CLC to go, branch to the end if a difference 7542 // was found. 7543 if (EndMBB && Length > 0) { 7544 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7545 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7546 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7547 .addMBB(EndMBB); 7548 MBB->addSuccessor(EndMBB); 7549 MBB->addSuccessor(NextMBB); 7550 MBB = NextMBB; 7551 } 7552 } 7553 if (EndMBB) { 7554 MBB->addSuccessor(EndMBB); 7555 MBB = EndMBB; 7556 MBB->addLiveIn(SystemZ::CC); 7557 } 7558 7559 MI.eraseFromParent(); 7560 return MBB; 7561 } 7562 7563 // Decompose string pseudo-instruction MI into a loop that continually performs 7564 // Opcode until CC != 3. 7565 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7566 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7567 MachineFunction &MF = *MBB->getParent(); 7568 const SystemZInstrInfo *TII = 7569 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7570 MachineRegisterInfo &MRI = MF.getRegInfo(); 7571 DebugLoc DL = MI.getDebugLoc(); 7572 7573 uint64_t End1Reg = MI.getOperand(0).getReg(); 7574 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7575 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7576 uint64_t CharReg = MI.getOperand(3).getReg(); 7577 7578 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7579 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7580 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7581 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7582 7583 MachineBasicBlock *StartMBB = MBB; 7584 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7585 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7586 7587 // StartMBB: 7588 // # fall through to LoopMMB 7589 MBB->addSuccessor(LoopMBB); 7590 7591 // LoopMBB: 7592 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7593 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7594 // R0L = %CharReg 7595 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7596 // JO LoopMBB 7597 // # fall through to DoneMMB 7598 // 7599 // The load of R0L can be hoisted by post-RA LICM. 7600 MBB = LoopMBB; 7601 7602 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7603 .addReg(Start1Reg).addMBB(StartMBB) 7604 .addReg(End1Reg).addMBB(LoopMBB); 7605 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7606 .addReg(Start2Reg).addMBB(StartMBB) 7607 .addReg(End2Reg).addMBB(LoopMBB); 7608 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7609 BuildMI(MBB, DL, TII->get(Opcode)) 7610 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7611 .addReg(This1Reg).addReg(This2Reg); 7612 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7613 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7614 MBB->addSuccessor(LoopMBB); 7615 MBB->addSuccessor(DoneMBB); 7616 7617 DoneMBB->addLiveIn(SystemZ::CC); 7618 7619 MI.eraseFromParent(); 7620 return DoneMBB; 7621 } 7622 7623 // Update TBEGIN instruction with final opcode and register clobbers. 7624 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7625 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7626 bool NoFloat) const { 7627 MachineFunction &MF = *MBB->getParent(); 7628 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7629 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7630 7631 // Update opcode. 7632 MI.setDesc(TII->get(Opcode)); 7633 7634 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7635 // Make sure to add the corresponding GRSM bits if they are missing. 7636 uint64_t Control = MI.getOperand(2).getImm(); 7637 static const unsigned GPRControlBit[16] = { 7638 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7639 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7640 }; 7641 Control |= GPRControlBit[15]; 7642 if (TFI->hasFP(MF)) 7643 Control |= GPRControlBit[11]; 7644 MI.getOperand(2).setImm(Control); 7645 7646 // Add GPR clobbers. 7647 for (int I = 0; I < 16; I++) { 7648 if ((Control & GPRControlBit[I]) == 0) { 7649 unsigned Reg = SystemZMC::GR64Regs[I]; 7650 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7651 } 7652 } 7653 7654 // Add FPR/VR clobbers. 7655 if (!NoFloat && (Control & 4) != 0) { 7656 if (Subtarget.hasVector()) { 7657 for (int I = 0; I < 32; I++) { 7658 unsigned Reg = SystemZMC::VR128Regs[I]; 7659 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7660 } 7661 } else { 7662 for (int I = 0; I < 16; I++) { 7663 unsigned Reg = SystemZMC::FP64Regs[I]; 7664 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7665 } 7666 } 7667 } 7668 7669 return MBB; 7670 } 7671 7672 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7673 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7674 MachineFunction &MF = *MBB->getParent(); 7675 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7676 const SystemZInstrInfo *TII = 7677 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7678 DebugLoc DL = MI.getDebugLoc(); 7679 7680 Register SrcReg = MI.getOperand(0).getReg(); 7681 7682 // Create new virtual register of the same class as source. 7683 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7684 Register DstReg = MRI->createVirtualRegister(RC); 7685 7686 // Replace pseudo with a normal load-and-test that models the def as 7687 // well. 7688 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7689 .addReg(SrcReg) 7690 .setMIFlags(MI.getFlags()); 7691 MI.eraseFromParent(); 7692 7693 return MBB; 7694 } 7695 7696 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7697 MachineInstr &MI, MachineBasicBlock *MBB) const { 7698 switch (MI.getOpcode()) { 7699 case SystemZ::Select32: 7700 case SystemZ::Select64: 7701 case SystemZ::SelectF32: 7702 case SystemZ::SelectF64: 7703 case SystemZ::SelectF128: 7704 case SystemZ::SelectVR32: 7705 case SystemZ::SelectVR64: 7706 case SystemZ::SelectVR128: 7707 return emitSelect(MI, MBB); 7708 7709 case SystemZ::CondStore8Mux: 7710 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7711 case SystemZ::CondStore8MuxInv: 7712 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7713 case SystemZ::CondStore16Mux: 7714 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7715 case SystemZ::CondStore16MuxInv: 7716 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7717 case SystemZ::CondStore32Mux: 7718 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7719 case SystemZ::CondStore32MuxInv: 7720 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7721 case SystemZ::CondStore8: 7722 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7723 case SystemZ::CondStore8Inv: 7724 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7725 case SystemZ::CondStore16: 7726 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7727 case SystemZ::CondStore16Inv: 7728 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7729 case SystemZ::CondStore32: 7730 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7731 case SystemZ::CondStore32Inv: 7732 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7733 case SystemZ::CondStore64: 7734 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7735 case SystemZ::CondStore64Inv: 7736 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7737 case SystemZ::CondStoreF32: 7738 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7739 case SystemZ::CondStoreF32Inv: 7740 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7741 case SystemZ::CondStoreF64: 7742 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7743 case SystemZ::CondStoreF64Inv: 7744 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7745 7746 case SystemZ::PAIR128: 7747 return emitPair128(MI, MBB); 7748 case SystemZ::AEXT128: 7749 return emitExt128(MI, MBB, false); 7750 case SystemZ::ZEXT128: 7751 return emitExt128(MI, MBB, true); 7752 7753 case SystemZ::ATOMIC_SWAPW: 7754 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7755 case SystemZ::ATOMIC_SWAP_32: 7756 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7757 case SystemZ::ATOMIC_SWAP_64: 7758 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7759 7760 case SystemZ::ATOMIC_LOADW_AR: 7761 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7762 case SystemZ::ATOMIC_LOADW_AFI: 7763 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7764 case SystemZ::ATOMIC_LOAD_AR: 7765 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7766 case SystemZ::ATOMIC_LOAD_AHI: 7767 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7768 case SystemZ::ATOMIC_LOAD_AFI: 7769 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7770 case SystemZ::ATOMIC_LOAD_AGR: 7771 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7772 case SystemZ::ATOMIC_LOAD_AGHI: 7773 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7774 case SystemZ::ATOMIC_LOAD_AGFI: 7775 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7776 7777 case SystemZ::ATOMIC_LOADW_SR: 7778 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7779 case SystemZ::ATOMIC_LOAD_SR: 7780 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7781 case SystemZ::ATOMIC_LOAD_SGR: 7782 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7783 7784 case SystemZ::ATOMIC_LOADW_NR: 7785 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7786 case SystemZ::ATOMIC_LOADW_NILH: 7787 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7788 case SystemZ::ATOMIC_LOAD_NR: 7789 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7790 case SystemZ::ATOMIC_LOAD_NILL: 7791 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7792 case SystemZ::ATOMIC_LOAD_NILH: 7793 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7794 case SystemZ::ATOMIC_LOAD_NILF: 7795 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7796 case SystemZ::ATOMIC_LOAD_NGR: 7797 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7798 case SystemZ::ATOMIC_LOAD_NILL64: 7799 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7800 case SystemZ::ATOMIC_LOAD_NILH64: 7801 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7802 case SystemZ::ATOMIC_LOAD_NIHL64: 7803 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7804 case SystemZ::ATOMIC_LOAD_NIHH64: 7805 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7806 case SystemZ::ATOMIC_LOAD_NILF64: 7807 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7808 case SystemZ::ATOMIC_LOAD_NIHF64: 7809 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7810 7811 case SystemZ::ATOMIC_LOADW_OR: 7812 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7813 case SystemZ::ATOMIC_LOADW_OILH: 7814 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7815 case SystemZ::ATOMIC_LOAD_OR: 7816 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7817 case SystemZ::ATOMIC_LOAD_OILL: 7818 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7819 case SystemZ::ATOMIC_LOAD_OILH: 7820 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7821 case SystemZ::ATOMIC_LOAD_OILF: 7822 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7823 case SystemZ::ATOMIC_LOAD_OGR: 7824 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7825 case SystemZ::ATOMIC_LOAD_OILL64: 7826 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7827 case SystemZ::ATOMIC_LOAD_OILH64: 7828 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7829 case SystemZ::ATOMIC_LOAD_OIHL64: 7830 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7831 case SystemZ::ATOMIC_LOAD_OIHH64: 7832 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7833 case SystemZ::ATOMIC_LOAD_OILF64: 7834 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7835 case SystemZ::ATOMIC_LOAD_OIHF64: 7836 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7837 7838 case SystemZ::ATOMIC_LOADW_XR: 7839 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7840 case SystemZ::ATOMIC_LOADW_XILF: 7841 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7842 case SystemZ::ATOMIC_LOAD_XR: 7843 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7844 case SystemZ::ATOMIC_LOAD_XILF: 7845 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7846 case SystemZ::ATOMIC_LOAD_XGR: 7847 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7848 case SystemZ::ATOMIC_LOAD_XILF64: 7849 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7850 case SystemZ::ATOMIC_LOAD_XIHF64: 7851 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7852 7853 case SystemZ::ATOMIC_LOADW_NRi: 7854 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7855 case SystemZ::ATOMIC_LOADW_NILHi: 7856 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7857 case SystemZ::ATOMIC_LOAD_NRi: 7858 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7859 case SystemZ::ATOMIC_LOAD_NILLi: 7860 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7861 case SystemZ::ATOMIC_LOAD_NILHi: 7862 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7863 case SystemZ::ATOMIC_LOAD_NILFi: 7864 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7865 case SystemZ::ATOMIC_LOAD_NGRi: 7866 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7867 case SystemZ::ATOMIC_LOAD_NILL64i: 7868 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7869 case SystemZ::ATOMIC_LOAD_NILH64i: 7870 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7871 case SystemZ::ATOMIC_LOAD_NIHL64i: 7872 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7873 case SystemZ::ATOMIC_LOAD_NIHH64i: 7874 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7875 case SystemZ::ATOMIC_LOAD_NILF64i: 7876 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7877 case SystemZ::ATOMIC_LOAD_NIHF64i: 7878 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7879 7880 case SystemZ::ATOMIC_LOADW_MIN: 7881 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7882 SystemZ::CCMASK_CMP_LE, 0); 7883 case SystemZ::ATOMIC_LOAD_MIN_32: 7884 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7885 SystemZ::CCMASK_CMP_LE, 32); 7886 case SystemZ::ATOMIC_LOAD_MIN_64: 7887 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7888 SystemZ::CCMASK_CMP_LE, 64); 7889 7890 case SystemZ::ATOMIC_LOADW_MAX: 7891 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7892 SystemZ::CCMASK_CMP_GE, 0); 7893 case SystemZ::ATOMIC_LOAD_MAX_32: 7894 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7895 SystemZ::CCMASK_CMP_GE, 32); 7896 case SystemZ::ATOMIC_LOAD_MAX_64: 7897 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7898 SystemZ::CCMASK_CMP_GE, 64); 7899 7900 case SystemZ::ATOMIC_LOADW_UMIN: 7901 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7902 SystemZ::CCMASK_CMP_LE, 0); 7903 case SystemZ::ATOMIC_LOAD_UMIN_32: 7904 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7905 SystemZ::CCMASK_CMP_LE, 32); 7906 case SystemZ::ATOMIC_LOAD_UMIN_64: 7907 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7908 SystemZ::CCMASK_CMP_LE, 64); 7909 7910 case SystemZ::ATOMIC_LOADW_UMAX: 7911 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7912 SystemZ::CCMASK_CMP_GE, 0); 7913 case SystemZ::ATOMIC_LOAD_UMAX_32: 7914 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7915 SystemZ::CCMASK_CMP_GE, 32); 7916 case SystemZ::ATOMIC_LOAD_UMAX_64: 7917 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7918 SystemZ::CCMASK_CMP_GE, 64); 7919 7920 case SystemZ::ATOMIC_CMP_SWAPW: 7921 return emitAtomicCmpSwapW(MI, MBB); 7922 case SystemZ::MVCSequence: 7923 case SystemZ::MVCLoop: 7924 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7925 case SystemZ::NCSequence: 7926 case SystemZ::NCLoop: 7927 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7928 case SystemZ::OCSequence: 7929 case SystemZ::OCLoop: 7930 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7931 case SystemZ::XCSequence: 7932 case SystemZ::XCLoop: 7933 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7934 case SystemZ::CLCSequence: 7935 case SystemZ::CLCLoop: 7936 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7937 case SystemZ::CLSTLoop: 7938 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7939 case SystemZ::MVSTLoop: 7940 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7941 case SystemZ::SRSTLoop: 7942 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7943 case SystemZ::TBEGIN: 7944 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7945 case SystemZ::TBEGIN_nofloat: 7946 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7947 case SystemZ::TBEGINC: 7948 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7949 case SystemZ::LTEBRCompare_VecPseudo: 7950 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7951 case SystemZ::LTDBRCompare_VecPseudo: 7952 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7953 case SystemZ::LTXBRCompare_VecPseudo: 7954 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7955 7956 case TargetOpcode::STACKMAP: 7957 case TargetOpcode::PATCHPOINT: 7958 return emitPatchPoint(MI, MBB); 7959 7960 default: 7961 llvm_unreachable("Unexpected instr type to insert"); 7962 } 7963 } 7964 7965 // This is only used by the isel schedulers, and is needed only to prevent 7966 // compiler from crashing when list-ilp is used. 7967 const TargetRegisterClass * 7968 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7969 if (VT == MVT::Untyped) 7970 return &SystemZ::ADDR128BitRegClass; 7971 return TargetLowering::getRepRegClassFor(VT); 7972 } 7973