1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "systemz-lower" 15 16 #include "SystemZISelLowering.h" 17 #include "SystemZCallingConv.h" 18 #include "SystemZConstantPoolValue.h" 19 #include "SystemZMachineFunctionInfo.h" 20 #include "SystemZTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 25 26 #include <cctype> 27 28 using namespace llvm; 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 } 42 43 // Classify VT as either 32 or 64 bit. 44 static bool is32Bit(EVT VT) { 45 switch (VT.getSimpleVT().SimpleTy) { 46 case MVT::i32: 47 return true; 48 case MVT::i64: 49 return false; 50 default: 51 llvm_unreachable("Unsupported type"); 52 } 53 } 54 55 // Return a version of MachineOperand that can be safely used before the 56 // final use. 57 static MachineOperand earlyUseOperand(MachineOperand Op) { 58 if (Op.isReg()) 59 Op.setIsKill(false); 60 return Op; 61 } 62 63 SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) 64 : TargetLowering(tm, new TargetLoweringObjectFileELF()), 65 Subtarget(*tm.getSubtargetImpl()), TM(tm) { 66 MVT PtrVT = getPointerTy(); 67 68 // Set up the register classes. 69 if (Subtarget.hasHighWord()) 70 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 71 else 72 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 73 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 74 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 75 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 76 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 77 78 // Compute derived properties from the register classes 79 computeRegisterProperties(); 80 81 // Set up special registers. 82 setExceptionPointerRegister(SystemZ::R6D); 83 setExceptionSelectorRegister(SystemZ::R7D); 84 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 85 86 // TODO: It may be better to default to latency-oriented scheduling, however 87 // LLVM's current latency-oriented scheduler can't handle physreg definitions 88 // such as SystemZ has with CC, so set this to the register-pressure 89 // scheduler, because it can. 90 setSchedulingPreference(Sched::RegPressure); 91 92 setBooleanContents(ZeroOrOneBooleanContent); 93 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 94 95 // Instructions are strings of 2-byte aligned 2-byte values. 96 setMinFunctionAlignment(2); 97 98 // Handle operations that are handled in a similar way for all types. 99 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 100 I <= MVT::LAST_FP_VALUETYPE; 101 ++I) { 102 MVT VT = MVT::SimpleValueType(I); 103 if (isTypeLegal(VT)) { 104 // Lower SET_CC into an IPM-based sequence. 105 setOperationAction(ISD::SETCC, VT, Custom); 106 107 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 108 setOperationAction(ISD::SELECT, VT, Expand); 109 110 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 111 setOperationAction(ISD::SELECT_CC, VT, Custom); 112 setOperationAction(ISD::BR_CC, VT, Custom); 113 } 114 } 115 116 // Expand jump table branches as address arithmetic followed by an 117 // indirect jump. 118 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 119 120 // Expand BRCOND into a BR_CC (see above). 121 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 122 123 // Handle integer types. 124 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 125 I <= MVT::LAST_INTEGER_VALUETYPE; 126 ++I) { 127 MVT VT = MVT::SimpleValueType(I); 128 if (isTypeLegal(VT)) { 129 // Expand individual DIV and REMs into DIVREMs. 130 setOperationAction(ISD::SDIV, VT, Expand); 131 setOperationAction(ISD::UDIV, VT, Expand); 132 setOperationAction(ISD::SREM, VT, Expand); 133 setOperationAction(ISD::UREM, VT, Expand); 134 setOperationAction(ISD::SDIVREM, VT, Custom); 135 setOperationAction(ISD::UDIVREM, VT, Custom); 136 137 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 138 // stores, putting a serialization instruction after the stores. 139 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 140 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 141 142 // No special instructions for these. 143 setOperationAction(ISD::CTPOP, VT, Expand); 144 setOperationAction(ISD::CTTZ, VT, Expand); 145 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 146 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 147 setOperationAction(ISD::ROTR, VT, Expand); 148 149 // Use *MUL_LOHI where possible instead of MULH*. 150 setOperationAction(ISD::MULHS, VT, Expand); 151 setOperationAction(ISD::MULHU, VT, Expand); 152 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 153 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 154 155 // We have instructions for signed but not unsigned FP conversion. 156 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 157 } 158 } 159 160 // Type legalization will convert 8- and 16-bit atomic operations into 161 // forms that operate on i32s (but still keeping the original memory VT). 162 // Lower them into full i32 operations. 163 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 164 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 165 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 166 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 167 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 168 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 169 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 170 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 171 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 172 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 173 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 174 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 175 176 // We have instructions for signed but not unsigned FP conversion. 177 // Handle unsigned 32-bit types as signed 64-bit types. 178 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 179 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 180 181 // We have native support for a 64-bit CTLZ, via FLOGR. 182 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 183 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 184 185 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 186 setOperationAction(ISD::OR, MVT::i64, Custom); 187 188 // FIXME: Can we support these natively? 189 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 190 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 191 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 192 193 // We have native instructions for i8, i16 and i32 extensions, but not i1. 194 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 195 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 196 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 198 199 // Handle the various types of symbolic address. 200 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 201 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 202 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 203 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 204 setOperationAction(ISD::JumpTable, PtrVT, Custom); 205 206 // We need to handle dynamic allocations specially because of the 207 // 160-byte area at the bottom of the stack. 208 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 209 210 // Use custom expanders so that we can force the function to use 211 // a frame pointer. 212 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 213 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 214 215 // Handle prefetches with PFD or PFDRL. 216 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 217 218 // Handle floating-point types. 219 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 220 I <= MVT::LAST_FP_VALUETYPE; 221 ++I) { 222 MVT VT = MVT::SimpleValueType(I); 223 if (isTypeLegal(VT)) { 224 // We can use FI for FRINT. 225 setOperationAction(ISD::FRINT, VT, Legal); 226 227 // We can use the extended form of FI for other rounding operations. 228 if (Subtarget.hasFPExtension()) { 229 setOperationAction(ISD::FNEARBYINT, VT, Legal); 230 setOperationAction(ISD::FFLOOR, VT, Legal); 231 setOperationAction(ISD::FCEIL, VT, Legal); 232 setOperationAction(ISD::FTRUNC, VT, Legal); 233 setOperationAction(ISD::FROUND, VT, Legal); 234 } 235 236 // No special instructions for these. 237 setOperationAction(ISD::FSIN, VT, Expand); 238 setOperationAction(ISD::FCOS, VT, Expand); 239 setOperationAction(ISD::FREM, VT, Expand); 240 } 241 } 242 243 // We have fused multiply-addition for f32 and f64 but not f128. 244 setOperationAction(ISD::FMA, MVT::f32, Legal); 245 setOperationAction(ISD::FMA, MVT::f64, Legal); 246 setOperationAction(ISD::FMA, MVT::f128, Expand); 247 248 // Needed so that we don't try to implement f128 constant loads using 249 // a load-and-extend of a f80 constant (in cases where the constant 250 // would fit in an f80). 251 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); 252 253 // Floating-point truncation and stores need to be done separately. 254 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 255 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 256 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 257 258 // We have 64-bit FPR<->GPR moves, but need special handling for 259 // 32-bit forms. 260 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 261 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 262 263 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 264 // structure, but VAEND is a no-op. 265 setOperationAction(ISD::VASTART, MVT::Other, Custom); 266 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 267 setOperationAction(ISD::VAEND, MVT::Other, Expand); 268 269 // We want to use MVC in preference to even a single load/store pair. 270 MaxStoresPerMemcpy = 0; 271 MaxStoresPerMemcpyOptSize = 0; 272 273 // The main memset sequence is a byte store followed by an MVC. 274 // Two STC or MV..I stores win over that, but the kind of fused stores 275 // generated by target-independent code don't when the byte value is 276 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 277 // than "STC;MVC". Handle the choice in target-specific code instead. 278 MaxStoresPerMemset = 0; 279 MaxStoresPerMemsetOptSize = 0; 280 } 281 282 EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { 283 if (!VT.isVector()) 284 return MVT::i32; 285 return VT.changeVectorElementTypeToInteger(); 286 } 287 288 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 289 VT = VT.getScalarType(); 290 291 if (!VT.isSimple()) 292 return false; 293 294 switch (VT.getSimpleVT().SimpleTy) { 295 case MVT::f32: 296 case MVT::f64: 297 return true; 298 case MVT::f128: 299 return false; 300 default: 301 break; 302 } 303 304 return false; 305 } 306 307 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 308 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 309 return Imm.isZero() || Imm.isNegZero(); 310 } 311 312 bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, 313 bool *Fast) const { 314 // Unaligned accesses should never be slower than the expanded version. 315 // We check specifically for aligned accesses in the few cases where 316 // they are required. 317 if (Fast) 318 *Fast = true; 319 return true; 320 } 321 322 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM, 323 Type *Ty) const { 324 // Punt on globals for now, although they can be used in limited 325 // RELATIVE LONG cases. 326 if (AM.BaseGV) 327 return false; 328 329 // Require a 20-bit signed offset. 330 if (!isInt<20>(AM.BaseOffs)) 331 return false; 332 333 // Indexing is OK but no scale factor can be applied. 334 return AM.Scale == 0 || AM.Scale == 1; 335 } 336 337 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 338 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 339 return false; 340 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 341 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 342 return FromBits > ToBits; 343 } 344 345 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 346 if (!FromVT.isInteger() || !ToVT.isInteger()) 347 return false; 348 unsigned FromBits = FromVT.getSizeInBits(); 349 unsigned ToBits = ToVT.getSizeInBits(); 350 return FromBits > ToBits; 351 } 352 353 //===----------------------------------------------------------------------===// 354 // Inline asm support 355 //===----------------------------------------------------------------------===// 356 357 TargetLowering::ConstraintType 358 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { 359 if (Constraint.size() == 1) { 360 switch (Constraint[0]) { 361 case 'a': // Address register 362 case 'd': // Data register (equivalent to 'r') 363 case 'f': // Floating-point register 364 case 'h': // High-part register 365 case 'r': // General-purpose register 366 return C_RegisterClass; 367 368 case 'Q': // Memory with base and unsigned 12-bit displacement 369 case 'R': // Likewise, plus an index 370 case 'S': // Memory with base and signed 20-bit displacement 371 case 'T': // Likewise, plus an index 372 case 'm': // Equivalent to 'T'. 373 return C_Memory; 374 375 case 'I': // Unsigned 8-bit constant 376 case 'J': // Unsigned 12-bit constant 377 case 'K': // Signed 16-bit constant 378 case 'L': // Signed 20-bit displacement (on all targets we support) 379 case 'M': // 0x7fffffff 380 return C_Other; 381 382 default: 383 break; 384 } 385 } 386 return TargetLowering::getConstraintType(Constraint); 387 } 388 389 TargetLowering::ConstraintWeight SystemZTargetLowering:: 390 getSingleConstraintMatchWeight(AsmOperandInfo &info, 391 const char *constraint) const { 392 ConstraintWeight weight = CW_Invalid; 393 Value *CallOperandVal = info.CallOperandVal; 394 // If we don't have a value, we can't do a match, 395 // but allow it at the lowest weight. 396 if (CallOperandVal == NULL) 397 return CW_Default; 398 Type *type = CallOperandVal->getType(); 399 // Look at the constraint type. 400 switch (*constraint) { 401 default: 402 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 403 break; 404 405 case 'a': // Address register 406 case 'd': // Data register (equivalent to 'r') 407 case 'h': // High-part register 408 case 'r': // General-purpose register 409 if (CallOperandVal->getType()->isIntegerTy()) 410 weight = CW_Register; 411 break; 412 413 case 'f': // Floating-point register 414 if (type->isFloatingPointTy()) 415 weight = CW_Register; 416 break; 417 418 case 'I': // Unsigned 8-bit constant 419 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 420 if (isUInt<8>(C->getZExtValue())) 421 weight = CW_Constant; 422 break; 423 424 case 'J': // Unsigned 12-bit constant 425 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 426 if (isUInt<12>(C->getZExtValue())) 427 weight = CW_Constant; 428 break; 429 430 case 'K': // Signed 16-bit constant 431 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 432 if (isInt<16>(C->getSExtValue())) 433 weight = CW_Constant; 434 break; 435 436 case 'L': // Signed 20-bit displacement (on all targets we support) 437 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 438 if (isInt<20>(C->getSExtValue())) 439 weight = CW_Constant; 440 break; 441 442 case 'M': // 0x7fffffff 443 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 444 if (C->getZExtValue() == 0x7fffffff) 445 weight = CW_Constant; 446 break; 447 } 448 return weight; 449 } 450 451 // Parse a "{tNNN}" register constraint for which the register type "t" 452 // has already been verified. MC is the class associated with "t" and 453 // Map maps 0-based register numbers to LLVM register numbers. 454 static std::pair<unsigned, const TargetRegisterClass *> 455 parseRegisterNumber(const std::string &Constraint, 456 const TargetRegisterClass *RC, const unsigned *Map) { 457 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 458 if (isdigit(Constraint[2])) { 459 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2); 460 unsigned Index = atoi(Suffix.c_str()); 461 if (Index < 16 && Map[Index]) 462 return std::make_pair(Map[Index], RC); 463 } 464 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 465 } 466 467 std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering:: 468 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { 469 if (Constraint.size() == 1) { 470 // GCC Constraint Letters 471 switch (Constraint[0]) { 472 default: break; 473 case 'd': // Data register (equivalent to 'r') 474 case 'r': // General-purpose register 475 if (VT == MVT::i64) 476 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 477 else if (VT == MVT::i128) 478 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 479 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 480 481 case 'a': // Address register 482 if (VT == MVT::i64) 483 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 484 else if (VT == MVT::i128) 485 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 486 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 487 488 case 'h': // High-part register (an LLVM extension) 489 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 490 491 case 'f': // Floating-point register 492 if (VT == MVT::f64) 493 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 494 else if (VT == MVT::f128) 495 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 496 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 497 } 498 } 499 if (Constraint[0] == '{') { 500 // We need to override the default register parsing for GPRs and FPRs 501 // because the interpretation depends on VT. The internal names of 502 // the registers are also different from the external names 503 // (F0D and F0S instead of F0, etc.). 504 if (Constraint[1] == 'r') { 505 if (VT == MVT::i32) 506 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 507 SystemZMC::GR32Regs); 508 if (VT == MVT::i128) 509 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 510 SystemZMC::GR128Regs); 511 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 512 SystemZMC::GR64Regs); 513 } 514 if (Constraint[1] == 'f') { 515 if (VT == MVT::f32) 516 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 517 SystemZMC::FP32Regs); 518 if (VT == MVT::f128) 519 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 520 SystemZMC::FP128Regs); 521 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 522 SystemZMC::FP64Regs); 523 } 524 } 525 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 526 } 527 528 void SystemZTargetLowering:: 529 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 530 std::vector<SDValue> &Ops, 531 SelectionDAG &DAG) const { 532 // Only support length 1 constraints for now. 533 if (Constraint.length() == 1) { 534 switch (Constraint[0]) { 535 case 'I': // Unsigned 8-bit constant 536 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 537 if (isUInt<8>(C->getZExtValue())) 538 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 539 Op.getValueType())); 540 return; 541 542 case 'J': // Unsigned 12-bit constant 543 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 544 if (isUInt<12>(C->getZExtValue())) 545 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 546 Op.getValueType())); 547 return; 548 549 case 'K': // Signed 16-bit constant 550 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 551 if (isInt<16>(C->getSExtValue())) 552 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 553 Op.getValueType())); 554 return; 555 556 case 'L': // Signed 20-bit displacement (on all targets we support) 557 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 558 if (isInt<20>(C->getSExtValue())) 559 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 560 Op.getValueType())); 561 return; 562 563 case 'M': // 0x7fffffff 564 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 565 if (C->getZExtValue() == 0x7fffffff) 566 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 567 Op.getValueType())); 568 return; 569 } 570 } 571 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 572 } 573 574 //===----------------------------------------------------------------------===// 575 // Calling conventions 576 //===----------------------------------------------------------------------===// 577 578 #include "SystemZGenCallingConv.inc" 579 580 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 581 Type *ToType) const { 582 return isTruncateFree(FromType, ToType); 583 } 584 585 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 586 if (!CI->isTailCall()) 587 return false; 588 return true; 589 } 590 591 // Value is a value that has been passed to us in the location described by VA 592 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 593 // any loads onto Chain. 594 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 595 CCValAssign &VA, SDValue Chain, 596 SDValue Value) { 597 // If the argument has been promoted from a smaller type, insert an 598 // assertion to capture this. 599 if (VA.getLocInfo() == CCValAssign::SExt) 600 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 601 DAG.getValueType(VA.getValVT())); 602 else if (VA.getLocInfo() == CCValAssign::ZExt) 603 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 604 DAG.getValueType(VA.getValVT())); 605 606 if (VA.isExtInLoc()) 607 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 608 else if (VA.getLocInfo() == CCValAssign::Indirect) 609 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 610 MachinePointerInfo(), false, false, false, 0); 611 else 612 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 613 return Value; 614 } 615 616 // Value is a value of type VA.getValVT() that we need to copy into 617 // the location described by VA. Return a copy of Value converted to 618 // VA.getValVT(). The caller is responsible for handling indirect values. 619 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 620 CCValAssign &VA, SDValue Value) { 621 switch (VA.getLocInfo()) { 622 case CCValAssign::SExt: 623 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 624 case CCValAssign::ZExt: 625 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 626 case CCValAssign::AExt: 627 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 628 case CCValAssign::Full: 629 return Value; 630 default: 631 llvm_unreachable("Unhandled getLocInfo()"); 632 } 633 } 634 635 SDValue SystemZTargetLowering:: 636 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 637 const SmallVectorImpl<ISD::InputArg> &Ins, 638 SDLoc DL, SelectionDAG &DAG, 639 SmallVectorImpl<SDValue> &InVals) const { 640 MachineFunction &MF = DAG.getMachineFunction(); 641 MachineFrameInfo *MFI = MF.getFrameInfo(); 642 MachineRegisterInfo &MRI = MF.getRegInfo(); 643 SystemZMachineFunctionInfo *FuncInfo = 644 MF.getInfo<SystemZMachineFunctionInfo>(); 645 const SystemZFrameLowering *TFL = 646 static_cast<const SystemZFrameLowering *>(TM.getFrameLowering()); 647 648 // Assign locations to all of the incoming arguments. 649 SmallVector<CCValAssign, 16> ArgLocs; 650 CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); 651 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 652 653 unsigned NumFixedGPRs = 0; 654 unsigned NumFixedFPRs = 0; 655 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 656 SDValue ArgValue; 657 CCValAssign &VA = ArgLocs[I]; 658 EVT LocVT = VA.getLocVT(); 659 if (VA.isRegLoc()) { 660 // Arguments passed in registers 661 const TargetRegisterClass *RC; 662 switch (LocVT.getSimpleVT().SimpleTy) { 663 default: 664 // Integers smaller than i64 should be promoted to i64. 665 llvm_unreachable("Unexpected argument type"); 666 case MVT::i32: 667 NumFixedGPRs += 1; 668 RC = &SystemZ::GR32BitRegClass; 669 break; 670 case MVT::i64: 671 NumFixedGPRs += 1; 672 RC = &SystemZ::GR64BitRegClass; 673 break; 674 case MVT::f32: 675 NumFixedFPRs += 1; 676 RC = &SystemZ::FP32BitRegClass; 677 break; 678 case MVT::f64: 679 NumFixedFPRs += 1; 680 RC = &SystemZ::FP64BitRegClass; 681 break; 682 } 683 684 unsigned VReg = MRI.createVirtualRegister(RC); 685 MRI.addLiveIn(VA.getLocReg(), VReg); 686 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 687 } else { 688 assert(VA.isMemLoc() && "Argument not register or memory"); 689 690 // Create the frame index object for this incoming parameter. 691 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 692 VA.getLocMemOffset(), true); 693 694 // Create the SelectionDAG nodes corresponding to a load 695 // from this parameter. Unpromoted ints and floats are 696 // passed as right-justified 8-byte values. 697 EVT PtrVT = getPointerTy(); 698 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 699 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 700 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4)); 701 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 702 MachinePointerInfo::getFixedStack(FI), 703 false, false, false, 0); 704 } 705 706 // Convert the value of the argument register into the value that's 707 // being passed. 708 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 709 } 710 711 if (IsVarArg) { 712 // Save the number of non-varargs registers for later use by va_start, etc. 713 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 714 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 715 716 // Likewise the address (in the form of a frame index) of where the 717 // first stack vararg would be. The 1-byte size here is arbitrary. 718 int64_t StackSize = CCInfo.getNextStackOffset(); 719 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 720 721 // ...and a similar frame index for the caller-allocated save area 722 // that will be used to store the incoming registers. 723 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 724 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 725 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 726 727 // Store the FPR varargs in the reserved frame slots. (We store the 728 // GPRs as part of the prologue.) 729 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 730 SDValue MemOps[SystemZ::NumArgFPRs]; 731 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 732 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 733 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 734 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 735 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 736 &SystemZ::FP64BitRegClass); 737 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 738 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 739 MachinePointerInfo::getFixedStack(FI), 740 false, false, 0); 741 742 } 743 // Join the stores, which are independent of one another. 744 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 745 &MemOps[NumFixedFPRs], 746 SystemZ::NumArgFPRs - NumFixedFPRs); 747 } 748 } 749 750 return Chain; 751 } 752 753 static bool canUseSiblingCall(CCState ArgCCInfo, 754 SmallVectorImpl<CCValAssign> &ArgLocs) { 755 // Punt if there are any indirect or stack arguments, or if the call 756 // needs the call-saved argument register R6. 757 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 758 CCValAssign &VA = ArgLocs[I]; 759 if (VA.getLocInfo() == CCValAssign::Indirect) 760 return false; 761 if (!VA.isRegLoc()) 762 return false; 763 unsigned Reg = VA.getLocReg(); 764 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 765 return false; 766 } 767 return true; 768 } 769 770 SDValue 771 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 772 SmallVectorImpl<SDValue> &InVals) const { 773 SelectionDAG &DAG = CLI.DAG; 774 SDLoc &DL = CLI.DL; 775 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 776 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 777 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 778 SDValue Chain = CLI.Chain; 779 SDValue Callee = CLI.Callee; 780 bool &IsTailCall = CLI.IsTailCall; 781 CallingConv::ID CallConv = CLI.CallConv; 782 bool IsVarArg = CLI.IsVarArg; 783 MachineFunction &MF = DAG.getMachineFunction(); 784 EVT PtrVT = getPointerTy(); 785 786 // Analyze the operands of the call, assigning locations to each operand. 787 SmallVector<CCValAssign, 16> ArgLocs; 788 CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); 789 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 790 791 // We don't support GuaranteedTailCallOpt, only automatically-detected 792 // sibling calls. 793 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 794 IsTailCall = false; 795 796 // Get a count of how many bytes are to be pushed on the stack. 797 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 798 799 // Mark the start of the call. 800 if (!IsTailCall) 801 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true), 802 DL); 803 804 // Copy argument values to their designated locations. 805 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 806 SmallVector<SDValue, 8> MemOpChains; 807 SDValue StackPtr; 808 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 809 CCValAssign &VA = ArgLocs[I]; 810 SDValue ArgValue = OutVals[I]; 811 812 if (VA.getLocInfo() == CCValAssign::Indirect) { 813 // Store the argument in a stack slot and pass its address. 814 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 815 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 816 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, 817 MachinePointerInfo::getFixedStack(FI), 818 false, false, 0)); 819 ArgValue = SpillSlot; 820 } else 821 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 822 823 if (VA.isRegLoc()) 824 // Queue up the argument copies and emit them at the end. 825 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 826 else { 827 assert(VA.isMemLoc() && "Argument not register or memory"); 828 829 // Work out the address of the stack slot. Unpromoted ints and 830 // floats are passed as right-justified 8-byte values. 831 if (!StackPtr.getNode()) 832 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 833 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 834 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 835 Offset += 4; 836 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 837 DAG.getIntPtrConstant(Offset)); 838 839 // Emit the store. 840 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 841 MachinePointerInfo(), 842 false, false, 0)); 843 } 844 } 845 846 // Join the stores, which are independent of one another. 847 if (!MemOpChains.empty()) 848 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 849 &MemOpChains[0], MemOpChains.size()); 850 851 // Accept direct calls by converting symbolic call addresses to the 852 // associated Target* opcodes. Force %r1 to be used for indirect 853 // tail calls. 854 SDValue Glue; 855 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 856 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 857 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 858 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 859 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 860 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 861 } else if (IsTailCall) { 862 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 863 Glue = Chain.getValue(1); 864 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 865 } 866 867 // Build a sequence of copy-to-reg nodes, chained and glued together. 868 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 869 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 870 RegsToPass[I].second, Glue); 871 Glue = Chain.getValue(1); 872 } 873 874 // The first call operand is the chain and the second is the target address. 875 SmallVector<SDValue, 8> Ops; 876 Ops.push_back(Chain); 877 Ops.push_back(Callee); 878 879 // Add argument registers to the end of the list so that they are 880 // known live into the call. 881 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 882 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 883 RegsToPass[I].second.getValueType())); 884 885 // Glue the call to the argument copies, if any. 886 if (Glue.getNode()) 887 Ops.push_back(Glue); 888 889 // Emit the call. 890 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 891 if (IsTailCall) 892 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size()); 893 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size()); 894 Glue = Chain.getValue(1); 895 896 // Mark the end of the call, which is glued to the call itself. 897 Chain = DAG.getCALLSEQ_END(Chain, 898 DAG.getConstant(NumBytes, PtrVT, true), 899 DAG.getConstant(0, PtrVT, true), 900 Glue, DL); 901 Glue = Chain.getValue(1); 902 903 // Assign locations to each value returned by this call. 904 SmallVector<CCValAssign, 16> RetLocs; 905 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); 906 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 907 908 // Copy all of the result registers out of their specified physreg. 909 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 910 CCValAssign &VA = RetLocs[I]; 911 912 // Copy the value out, gluing the copy to the end of the call sequence. 913 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 914 VA.getLocVT(), Glue); 915 Chain = RetValue.getValue(1); 916 Glue = RetValue.getValue(2); 917 918 // Convert the value of the return register into the value that's 919 // being returned. 920 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 921 } 922 923 return Chain; 924 } 925 926 SDValue 927 SystemZTargetLowering::LowerReturn(SDValue Chain, 928 CallingConv::ID CallConv, bool IsVarArg, 929 const SmallVectorImpl<ISD::OutputArg> &Outs, 930 const SmallVectorImpl<SDValue> &OutVals, 931 SDLoc DL, SelectionDAG &DAG) const { 932 MachineFunction &MF = DAG.getMachineFunction(); 933 934 // Assign locations to each returned value. 935 SmallVector<CCValAssign, 16> RetLocs; 936 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); 937 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 938 939 // Quick exit for void returns 940 if (RetLocs.empty()) 941 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 942 943 // Copy the result values into the output registers. 944 SDValue Glue; 945 SmallVector<SDValue, 4> RetOps; 946 RetOps.push_back(Chain); 947 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 948 CCValAssign &VA = RetLocs[I]; 949 SDValue RetValue = OutVals[I]; 950 951 // Make the return register live on exit. 952 assert(VA.isRegLoc() && "Can only return in registers!"); 953 954 // Promote the value as required. 955 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 956 957 // Chain and glue the copies together. 958 unsigned Reg = VA.getLocReg(); 959 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 960 Glue = Chain.getValue(1); 961 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 962 } 963 964 // Update chain and glue. 965 RetOps[0] = Chain; 966 if (Glue.getNode()) 967 RetOps.push_back(Glue); 968 969 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, 970 RetOps.data(), RetOps.size()); 971 } 972 973 SDValue SystemZTargetLowering:: 974 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 975 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 976 } 977 978 // CC is a comparison that will be implemented using an integer or 979 // floating-point comparison. Return the condition code mask for 980 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 981 // unsigned comparisons and clear for signed ones. In the floating-point 982 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 983 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 984 #define CONV(X) \ 985 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 986 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 987 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 988 989 switch (CC) { 990 default: 991 llvm_unreachable("Invalid integer condition!"); 992 993 CONV(EQ); 994 CONV(NE); 995 CONV(GT); 996 CONV(GE); 997 CONV(LT); 998 CONV(LE); 999 1000 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1001 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1002 } 1003 #undef CONV 1004 } 1005 1006 // Return a sequence for getting a 1 from an IPM result when CC has a 1007 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1008 // The handling of CC values outside CCValid doesn't matter. 1009 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1010 // Deal with cases where the result can be taken directly from a bit 1011 // of the IPM result. 1012 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1013 return IPMConversion(0, 0, SystemZ::IPM_CC); 1014 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1015 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1016 1017 // Deal with cases where we can add a value to force the sign bit 1018 // to contain the right value. Putting the bit in 31 means we can 1019 // use SRL rather than RISBG(L), and also makes it easier to get a 1020 // 0/-1 value, so it has priority over the other tests below. 1021 // 1022 // These sequences rely on the fact that the upper two bits of the 1023 // IPM result are zero. 1024 uint64_t TopBit = uint64_t(1) << 31; 1025 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1026 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1027 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1028 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1029 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1030 | SystemZ::CCMASK_1 1031 | SystemZ::CCMASK_2))) 1032 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1033 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1034 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1035 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1036 | SystemZ::CCMASK_2 1037 | SystemZ::CCMASK_3))) 1038 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1039 1040 // Next try inverting the value and testing a bit. 0/1 could be 1041 // handled this way too, but we dealt with that case above. 1042 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1043 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1044 1045 // Handle cases where adding a value forces a non-sign bit to contain 1046 // the right value. 1047 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1048 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1049 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1050 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1051 1052 // The remaing cases are 1, 2, 0/1/3 and 0/2/3. All these are 1053 // can be done by inverting the low CC bit and applying one of the 1054 // sign-based extractions above. 1055 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1056 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1057 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1058 return IPMConversion(1 << SystemZ::IPM_CC, 1059 TopBit - (3 << SystemZ::IPM_CC), 31); 1060 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1061 | SystemZ::CCMASK_1 1062 | SystemZ::CCMASK_3))) 1063 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1064 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1065 | SystemZ::CCMASK_2 1066 | SystemZ::CCMASK_3))) 1067 return IPMConversion(1 << SystemZ::IPM_CC, 1068 TopBit - (1 << SystemZ::IPM_CC), 31); 1069 1070 llvm_unreachable("Unexpected CC combination"); 1071 } 1072 1073 // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 1074 // can be converted to a comparison against zero, adjust the operands 1075 // as necessary. 1076 static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned, 1077 SDValue &CmpOp0, SDValue &CmpOp1, 1078 unsigned &CCMask) { 1079 if (IsUnsigned) 1080 return; 1081 1082 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode()); 1083 if (!ConstOp1) 1084 return; 1085 1086 int64_t Value = ConstOp1->getSExtValue(); 1087 if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) || 1088 (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) || 1089 (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) || 1090 (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) { 1091 CCMask ^= SystemZ::CCMASK_CMP_EQ; 1092 CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType()); 1093 } 1094 } 1095 1096 // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 1097 // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary. 1098 static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, 1099 SDValue &CmpOp0, SDValue &CmpOp1, 1100 unsigned &CCMask) { 1101 // For us to make any changes, it must a comparison between a single-use 1102 // load and a constant. 1103 if (!CmpOp0.hasOneUse() || 1104 CmpOp0.getOpcode() != ISD::LOAD || 1105 CmpOp1.getOpcode() != ISD::Constant) 1106 return; 1107 1108 // We must have an 8- or 16-bit load. 1109 LoadSDNode *Load = cast<LoadSDNode>(CmpOp0); 1110 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1111 if (NumBits != 8 && NumBits != 16) 1112 return; 1113 1114 // The load must be an extending one and the constant must be within the 1115 // range of the unextended value. 1116 ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1); 1117 uint64_t Value = Constant->getZExtValue(); 1118 uint64_t Mask = (1 << NumBits) - 1; 1119 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1120 int64_t SignedValue = Constant->getSExtValue(); 1121 if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask) 1122 return; 1123 // Unsigned comparison between two sign-extended values is equivalent 1124 // to unsigned comparison between two zero-extended values. 1125 if (IsUnsigned) 1126 Value &= Mask; 1127 else if (CCMask == SystemZ::CCMASK_CMP_EQ || 1128 CCMask == SystemZ::CCMASK_CMP_NE) 1129 // Any choice of IsUnsigned is OK for equality comparisons. 1130 // We could use either CHHSI or CLHHSI for 16-bit comparisons, 1131 // but since we use CLHHSI for zero extensions, it seems better 1132 // to be consistent and do the same here. 1133 Value &= Mask, IsUnsigned = true; 1134 else if (NumBits == 8) { 1135 // Try to treat the comparison as unsigned, so that we can use CLI. 1136 // Adjust CCMask and Value as necessary. 1137 if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT) 1138 // Test whether the high bit of the byte is set. 1139 Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true; 1140 else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE) 1141 // Test whether the high bit of the byte is clear. 1142 Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true; 1143 else 1144 // No instruction exists for this combination. 1145 return; 1146 } 1147 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1148 if (Value > Mask) 1149 return; 1150 // Signed comparison between two zero-extended values is equivalent 1151 // to unsigned comparison. 1152 IsUnsigned = true; 1153 } else 1154 return; 1155 1156 // Make sure that the first operand is an i32 of the right extension type. 1157 ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD; 1158 if (CmpOp0.getValueType() != MVT::i32 || 1159 Load->getExtensionType() != ExtType) 1160 CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1161 Load->getChain(), Load->getBasePtr(), 1162 Load->getPointerInfo(), Load->getMemoryVT(), 1163 Load->isVolatile(), Load->isNonTemporal(), 1164 Load->getAlignment()); 1165 1166 // Make sure that the second operand is an i32 with the right value. 1167 if (CmpOp1.getValueType() != MVT::i32 || 1168 Value != Constant->getZExtValue()) 1169 CmpOp1 = DAG.getConstant(Value, MVT::i32); 1170 } 1171 1172 // Return true if Op is either an unextended load, or a load suitable 1173 // for integer register-memory comparisons of type ICmpType. 1174 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1175 LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1176 if (Load) { 1177 // There are no instructions to compare a register with a memory byte. 1178 if (Load->getMemoryVT() == MVT::i8) 1179 return false; 1180 // Otherwise decide on extension type. 1181 switch (Load->getExtensionType()) { 1182 case ISD::NON_EXTLOAD: 1183 return true; 1184 case ISD::SEXTLOAD: 1185 return ICmpType != SystemZICMP::UnsignedOnly; 1186 case ISD::ZEXTLOAD: 1187 return ICmpType != SystemZICMP::SignedOnly; 1188 default: 1189 break; 1190 } 1191 } 1192 return false; 1193 } 1194 1195 // Return true if it is better to swap comparison operands Op0 and Op1. 1196 // ICmpType is the type of an integer comparison. 1197 static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1, 1198 unsigned ICmpType) { 1199 // Leave f128 comparisons alone, since they have no memory forms. 1200 if (Op0.getValueType() == MVT::f128) 1201 return false; 1202 1203 // Always keep a floating-point constant second, since comparisons with 1204 // zero can use LOAD TEST and comparisons with other constants make a 1205 // natural memory operand. 1206 if (isa<ConstantFPSDNode>(Op1)) 1207 return false; 1208 1209 // Never swap comparisons with zero since there are many ways to optimize 1210 // those later. 1211 ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1); 1212 if (COp1 && COp1->getZExtValue() == 0) 1213 return false; 1214 1215 // Also keep natural memory operands second if the loaded value is 1216 // only used here. Several comparisons have memory forms. 1217 if (isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse()) 1218 return false; 1219 1220 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1221 // In that case we generally prefer the memory to be second. 1222 if (isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) { 1223 // The only exceptions are when the second operand is a constant and 1224 // we can use things like CHHSI. 1225 if (!COp1) 1226 return true; 1227 // The unsigned memory-immediate instructions can handle 16-bit 1228 // unsigned integers. 1229 if (ICmpType != SystemZICMP::SignedOnly && 1230 isUInt<16>(COp1->getZExtValue())) 1231 return false; 1232 // The signed memory-immediate instructions can handle 16-bit 1233 // signed integers. 1234 if (ICmpType != SystemZICMP::UnsignedOnly && 1235 isInt<16>(COp1->getSExtValue())) 1236 return false; 1237 return true; 1238 } 1239 1240 // Try to promote the use of CGFR and CLGFR. 1241 unsigned Opcode0 = Op0.getOpcode(); 1242 if (ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1243 return true; 1244 if (ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1245 return true; 1246 if (ICmpType != SystemZICMP::SignedOnly && 1247 Opcode0 == ISD::AND && 1248 Op0.getOperand(1).getOpcode() == ISD::Constant && 1249 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1250 return true; 1251 1252 return false; 1253 } 1254 1255 // Return a version of comparison CC mask CCMask in which the LT and GT 1256 // actions are swapped. 1257 static unsigned reverseCCMask(unsigned CCMask) { 1258 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1259 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1260 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1261 (CCMask & SystemZ::CCMASK_CMP_UO)); 1262 } 1263 1264 // CmpOp0 and CmpOp1 are being compared using CC mask CCMask. Check whether 1265 // CmpOp0 is a floating-point result that is also negated and if CmpOp1 1266 // is zero. In this case we can use the negation to set CC, so avoiding 1267 // separate LOAD AND TEST and LOAD (NEGATIVE/COMPLEMENT) instructions. 1268 static void adjustForFNeg(SDValue &CmpOp0, SDValue &CmpOp1, unsigned &CCMask) { 1269 ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(CmpOp1); 1270 if (C1 && C1->isZero()) { 1271 for (SDNode::use_iterator I = CmpOp0->use_begin(), E = CmpOp0->use_end(); 1272 I != E; ++I) { 1273 SDNode *N = *I; 1274 if (N->getOpcode() == ISD::FNEG) { 1275 CmpOp0 = SDValue(N, 0); 1276 CCMask = reverseCCMask(CCMask); 1277 return; 1278 } 1279 } 1280 } 1281 } 1282 1283 // Return true if shift operation N has an in-range constant shift value. 1284 // Store it in ShiftVal if so. 1285 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1286 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1287 if (!Shift) 1288 return false; 1289 1290 uint64_t Amount = Shift->getZExtValue(); 1291 if (Amount >= N.getValueType().getSizeInBits()) 1292 return false; 1293 1294 ShiftVal = Amount; 1295 return true; 1296 } 1297 1298 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1299 // instruction and whether the CC value is descriptive enough to handle 1300 // a comparison of type Opcode between the AND result and CmpVal. 1301 // CCMask says which comparison result is being tested and BitSize is 1302 // the number of bits in the operands. If TEST UNDER MASK can be used, 1303 // return the corresponding CC mask, otherwise return 0. 1304 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1305 uint64_t Mask, uint64_t CmpVal, 1306 unsigned ICmpType) { 1307 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1308 1309 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1310 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1311 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1312 return 0; 1313 1314 // Work out the masks for the lowest and highest bits. 1315 unsigned HighShift = 63 - countLeadingZeros(Mask); 1316 uint64_t High = uint64_t(1) << HighShift; 1317 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1318 1319 // Signed ordered comparisons are effectively unsigned if the sign 1320 // bit is dropped. 1321 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1322 1323 // Check for equality comparisons with 0, or the equivalent. 1324 if (CmpVal == 0) { 1325 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1326 return SystemZ::CCMASK_TM_ALL_0; 1327 if (CCMask == SystemZ::CCMASK_CMP_NE) 1328 return SystemZ::CCMASK_TM_SOME_1; 1329 } 1330 if (EffectivelyUnsigned && CmpVal <= Low) { 1331 if (CCMask == SystemZ::CCMASK_CMP_LT) 1332 return SystemZ::CCMASK_TM_ALL_0; 1333 if (CCMask == SystemZ::CCMASK_CMP_GE) 1334 return SystemZ::CCMASK_TM_SOME_1; 1335 } 1336 if (EffectivelyUnsigned && CmpVal < Low) { 1337 if (CCMask == SystemZ::CCMASK_CMP_LE) 1338 return SystemZ::CCMASK_TM_ALL_0; 1339 if (CCMask == SystemZ::CCMASK_CMP_GT) 1340 return SystemZ::CCMASK_TM_SOME_1; 1341 } 1342 1343 // Check for equality comparisons with the mask, or the equivalent. 1344 if (CmpVal == Mask) { 1345 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1346 return SystemZ::CCMASK_TM_ALL_1; 1347 if (CCMask == SystemZ::CCMASK_CMP_NE) 1348 return SystemZ::CCMASK_TM_SOME_0; 1349 } 1350 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1351 if (CCMask == SystemZ::CCMASK_CMP_GT) 1352 return SystemZ::CCMASK_TM_ALL_1; 1353 if (CCMask == SystemZ::CCMASK_CMP_LE) 1354 return SystemZ::CCMASK_TM_SOME_0; 1355 } 1356 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1357 if (CCMask == SystemZ::CCMASK_CMP_GE) 1358 return SystemZ::CCMASK_TM_ALL_1; 1359 if (CCMask == SystemZ::CCMASK_CMP_LT) 1360 return SystemZ::CCMASK_TM_SOME_0; 1361 } 1362 1363 // Check for ordered comparisons with the top bit. 1364 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1365 if (CCMask == SystemZ::CCMASK_CMP_LE) 1366 return SystemZ::CCMASK_TM_MSB_0; 1367 if (CCMask == SystemZ::CCMASK_CMP_GT) 1368 return SystemZ::CCMASK_TM_MSB_1; 1369 } 1370 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1371 if (CCMask == SystemZ::CCMASK_CMP_LT) 1372 return SystemZ::CCMASK_TM_MSB_0; 1373 if (CCMask == SystemZ::CCMASK_CMP_GE) 1374 return SystemZ::CCMASK_TM_MSB_1; 1375 } 1376 1377 // If there are just two bits, we can do equality checks for Low and High 1378 // as well. 1379 if (Mask == Low + High) { 1380 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1381 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1382 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1383 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1384 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1385 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1386 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1387 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1388 } 1389 1390 // Looks like we've exhausted our options. 1391 return 0; 1392 } 1393 1394 // See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be 1395 // implemented as a TEST UNDER MASK instruction when the condition being 1396 // tested is as described by CCValid and CCMask. Update the arguments 1397 // with the TM version if so. 1398 static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode, 1399 SDValue &CmpOp0, SDValue &CmpOp1, 1400 unsigned &CCValid, unsigned &CCMask, 1401 unsigned &ICmpType) { 1402 // Check that we have a comparison with a constant. 1403 ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1); 1404 if (!ConstCmpOp1) 1405 return; 1406 uint64_t CmpVal = ConstCmpOp1->getZExtValue(); 1407 1408 // Check whether the nonconstant input is an AND with a constant mask. 1409 if (CmpOp0.getOpcode() != ISD::AND) 1410 return; 1411 SDValue AndOp0 = CmpOp0.getOperand(0); 1412 SDValue AndOp1 = CmpOp0.getOperand(1); 1413 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode()); 1414 if (!Mask) 1415 return; 1416 uint64_t MaskVal = Mask->getZExtValue(); 1417 1418 // Check whether the combination of mask, comparison value and comparison 1419 // type are suitable. 1420 unsigned BitSize = CmpOp0.getValueType().getSizeInBits(); 1421 unsigned NewCCMask, ShiftVal; 1422 if (ICmpType != SystemZICMP::SignedOnly && 1423 AndOp0.getOpcode() == ISD::SHL && 1424 isSimpleShift(AndOp0, ShiftVal) && 1425 (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal, 1426 CmpVal >> ShiftVal, 1427 SystemZICMP::Any))) { 1428 AndOp0 = AndOp0.getOperand(0); 1429 AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType()); 1430 } else if (ICmpType != SystemZICMP::SignedOnly && 1431 AndOp0.getOpcode() == ISD::SRL && 1432 isSimpleShift(AndOp0, ShiftVal) && 1433 (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, 1434 MaskVal << ShiftVal, 1435 CmpVal << ShiftVal, 1436 SystemZICMP::UnsignedOnly))) { 1437 AndOp0 = AndOp0.getOperand(0); 1438 AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType()); 1439 } else { 1440 NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal, 1441 ICmpType); 1442 if (!NewCCMask) 1443 return; 1444 } 1445 1446 // Go ahead and make the change. 1447 Opcode = SystemZISD::TM; 1448 CmpOp0 = AndOp0; 1449 CmpOp1 = AndOp1; 1450 ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 1451 bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 1452 CCValid = SystemZ::CCMASK_TM; 1453 CCMask = NewCCMask; 1454 } 1455 1456 // Return a target node that compares CmpOp0 with CmpOp1 and stores a 1457 // 2-bit result in CC. Set CCValid to the CCMASK_* of all possible 1458 // 2-bit results and CCMask to the subset of those results that are 1459 // associated with Cond. 1460 static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG, 1461 SDLoc DL, SDValue CmpOp0, SDValue CmpOp1, 1462 ISD::CondCode Cond, unsigned &CCValid, 1463 unsigned &CCMask) { 1464 bool IsUnsigned = false; 1465 CCMask = CCMaskForCondCode(Cond); 1466 unsigned Opcode, ICmpType = 0; 1467 if (CmpOp0.getValueType().isFloatingPoint()) { 1468 CCValid = SystemZ::CCMASK_FCMP; 1469 Opcode = SystemZISD::FCMP; 1470 } else { 1471 IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO; 1472 CCValid = SystemZ::CCMASK_ICMP; 1473 CCMask &= CCValid; 1474 adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); 1475 adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); 1476 Opcode = SystemZISD::ICMP; 1477 // Choose the type of comparison. Equality and inequality tests can 1478 // use either signed or unsigned comparisons. The choice also doesn't 1479 // matter if both sign bits are known to be clear. In those cases we 1480 // want to give the main isel code the freedom to choose whichever 1481 // form fits best. 1482 if (CCMask == SystemZ::CCMASK_CMP_EQ || 1483 CCMask == SystemZ::CCMASK_CMP_NE || 1484 (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1))) 1485 ICmpType = SystemZICMP::Any; 1486 else if (IsUnsigned) 1487 ICmpType = SystemZICMP::UnsignedOnly; 1488 else 1489 ICmpType = SystemZICMP::SignedOnly; 1490 } 1491 1492 if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) { 1493 std::swap(CmpOp0, CmpOp1); 1494 CCMask = reverseCCMask(CCMask); 1495 } 1496 1497 adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask, 1498 ICmpType); 1499 adjustForFNeg(CmpOp0, CmpOp1, CCMask); 1500 if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM) 1501 return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1, 1502 DAG.getConstant(ICmpType, MVT::i32)); 1503 return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1); 1504 } 1505 1506 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 1507 // 64 bits. Extend is the extension type to use. Store the high part 1508 // in Hi and the low part in Lo. 1509 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 1510 unsigned Extend, SDValue Op0, SDValue Op1, 1511 SDValue &Hi, SDValue &Lo) { 1512 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 1513 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 1514 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 1515 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64)); 1516 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 1517 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 1518 } 1519 1520 // Lower a binary operation that produces two VT results, one in each 1521 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 1522 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 1523 // on the extended Op0 and (unextended) Op1. Store the even register result 1524 // in Even and the odd register result in Odd. 1525 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 1526 unsigned Extend, unsigned Opcode, 1527 SDValue Op0, SDValue Op1, 1528 SDValue &Even, SDValue &Odd) { 1529 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 1530 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 1531 SDValue(In128, 0), Op1); 1532 bool Is32Bit = is32Bit(VT); 1533 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 1534 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 1535 } 1536 1537 // Return an i32 value that is 1 if the CC value produced by Glue is 1538 // in the mask CCMask and 0 otherwise. CC is known to have a value 1539 // in CCValid, so other values can be ignored. 1540 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 1541 unsigned CCValid, unsigned CCMask) { 1542 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 1543 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 1544 1545 if (Conversion.XORValue) 1546 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 1547 DAG.getConstant(Conversion.XORValue, MVT::i32)); 1548 1549 if (Conversion.AddValue) 1550 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 1551 DAG.getConstant(Conversion.AddValue, MVT::i32)); 1552 1553 // The SHR/AND sequence should get optimized to an RISBG. 1554 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 1555 DAG.getConstant(Conversion.Bit, MVT::i32)); 1556 if (Conversion.Bit != 31) 1557 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 1558 DAG.getConstant(1, MVT::i32)); 1559 return Result; 1560 } 1561 1562 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 1563 SelectionDAG &DAG) const { 1564 SDValue CmpOp0 = Op.getOperand(0); 1565 SDValue CmpOp1 = Op.getOperand(1); 1566 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1567 SDLoc DL(Op); 1568 1569 unsigned CCValid, CCMask; 1570 SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); 1571 return emitSETCC(DAG, DL, Glue, CCValid, CCMask); 1572 } 1573 1574 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 1575 SDValue Chain = Op.getOperand(0); 1576 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 1577 SDValue CmpOp0 = Op.getOperand(2); 1578 SDValue CmpOp1 = Op.getOperand(3); 1579 SDValue Dest = Op.getOperand(4); 1580 SDLoc DL(Op); 1581 1582 unsigned CCValid, CCMask; 1583 SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); 1584 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 1585 Chain, DAG.getConstant(CCValid, MVT::i32), 1586 DAG.getConstant(CCMask, MVT::i32), Dest, Glue); 1587 } 1588 1589 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 1590 SelectionDAG &DAG) const { 1591 SDValue CmpOp0 = Op.getOperand(0); 1592 SDValue CmpOp1 = Op.getOperand(1); 1593 SDValue TrueOp = Op.getOperand(2); 1594 SDValue FalseOp = Op.getOperand(3); 1595 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 1596 SDLoc DL(Op); 1597 1598 unsigned CCValid, CCMask; 1599 SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); 1600 1601 // Special case for handling -1/0 results. The shifts we use here 1602 // should get optimized with the IPM conversion sequence. 1603 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 1604 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 1605 if (TrueC && FalseC) { 1606 int64_t TrueVal = TrueC->getSExtValue(); 1607 int64_t FalseVal = FalseC->getSExtValue(); 1608 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 1609 // Invert the condition if we want -1 on false. 1610 if (TrueVal == 0) 1611 CCMask ^= CCValid; 1612 SDValue Result = emitSETCC(DAG, DL, Glue, CCValid, CCMask); 1613 EVT VT = Op.getValueType(); 1614 // Extend the result to VT. Upper bits are ignored. 1615 if (!is32Bit(VT)) 1616 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 1617 // Sign-extend from the low bit. 1618 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32); 1619 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 1620 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 1621 } 1622 } 1623 1624 SmallVector<SDValue, 5> Ops; 1625 Ops.push_back(TrueOp); 1626 Ops.push_back(FalseOp); 1627 Ops.push_back(DAG.getConstant(CCValid, MVT::i32)); 1628 Ops.push_back(DAG.getConstant(CCMask, MVT::i32)); 1629 Ops.push_back(Glue); 1630 1631 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1632 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size()); 1633 } 1634 1635 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 1636 SelectionDAG &DAG) const { 1637 SDLoc DL(Node); 1638 const GlobalValue *GV = Node->getGlobal(); 1639 int64_t Offset = Node->getOffset(); 1640 EVT PtrVT = getPointerTy(); 1641 Reloc::Model RM = TM.getRelocationModel(); 1642 CodeModel::Model CM = TM.getCodeModel(); 1643 1644 SDValue Result; 1645 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 1646 // Assign anchors at 1<<12 byte boundaries. 1647 uint64_t Anchor = Offset & ~uint64_t(0xfff); 1648 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 1649 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1650 1651 // The offset can be folded into the address if it is aligned to a halfword. 1652 Offset -= Anchor; 1653 if (Offset != 0 && (Offset & 1) == 0) { 1654 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 1655 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 1656 Offset = 0; 1657 } 1658 } else { 1659 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 1660 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1661 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 1662 MachinePointerInfo::getGOT(), false, false, false, 0); 1663 } 1664 1665 // If there was a non-zero offset that we didn't fold, create an explicit 1666 // addition for it. 1667 if (Offset != 0) 1668 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 1669 DAG.getConstant(Offset, PtrVT)); 1670 1671 return Result; 1672 } 1673 1674 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 1675 SelectionDAG &DAG) const { 1676 SDLoc DL(Node); 1677 const GlobalValue *GV = Node->getGlobal(); 1678 EVT PtrVT = getPointerTy(); 1679 TLSModel::Model model = TM.getTLSModel(GV); 1680 1681 if (model != TLSModel::LocalExec) 1682 llvm_unreachable("only local-exec TLS mode supported"); 1683 1684 // The high part of the thread pointer is in access register 0. 1685 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 1686 DAG.getConstant(0, MVT::i32)); 1687 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 1688 1689 // The low part of the thread pointer is in access register 1. 1690 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 1691 DAG.getConstant(1, MVT::i32)); 1692 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 1693 1694 // Merge them into a single 64-bit address. 1695 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 1696 DAG.getConstant(32, PtrVT)); 1697 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 1698 1699 // Get the offset of GA from the thread pointer. 1700 SystemZConstantPoolValue *CPV = 1701 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 1702 1703 // Force the offset into the constant pool and load it from there. 1704 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8); 1705 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 1706 CPAddr, MachinePointerInfo::getConstantPool(), 1707 false, false, false, 0); 1708 1709 // Add the base and offset together. 1710 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 1711 } 1712 1713 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 1714 SelectionDAG &DAG) const { 1715 SDLoc DL(Node); 1716 const BlockAddress *BA = Node->getBlockAddress(); 1717 int64_t Offset = Node->getOffset(); 1718 EVT PtrVT = getPointerTy(); 1719 1720 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 1721 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1722 return Result; 1723 } 1724 1725 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 1726 SelectionDAG &DAG) const { 1727 SDLoc DL(JT); 1728 EVT PtrVT = getPointerTy(); 1729 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1730 1731 // Use LARL to load the address of the table. 1732 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1733 } 1734 1735 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 1736 SelectionDAG &DAG) const { 1737 SDLoc DL(CP); 1738 EVT PtrVT = getPointerTy(); 1739 1740 SDValue Result; 1741 if (CP->isMachineConstantPoolEntry()) 1742 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 1743 CP->getAlignment()); 1744 else 1745 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 1746 CP->getAlignment(), CP->getOffset()); 1747 1748 // Use LARL to load the address of the constant pool entry. 1749 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1750 } 1751 1752 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 1753 SelectionDAG &DAG) const { 1754 SDLoc DL(Op); 1755 SDValue In = Op.getOperand(0); 1756 EVT InVT = In.getValueType(); 1757 EVT ResVT = Op.getValueType(); 1758 1759 if (InVT == MVT::i32 && ResVT == MVT::f32) { 1760 SDValue In64; 1761 if (Subtarget.hasHighWord()) { 1762 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 1763 MVT::i64); 1764 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 1765 MVT::i64, SDValue(U64, 0), In); 1766 } else { 1767 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 1768 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 1769 DAG.getConstant(32, MVT::i64)); 1770 } 1771 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 1772 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 1773 DL, MVT::f32, Out64); 1774 } 1775 if (InVT == MVT::f32 && ResVT == MVT::i32) { 1776 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 1777 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 1778 MVT::f64, SDValue(U64, 0), In); 1779 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 1780 if (Subtarget.hasHighWord()) 1781 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 1782 MVT::i32, Out64); 1783 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 1784 DAG.getConstant(32, MVT::i64)); 1785 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 1786 } 1787 llvm_unreachable("Unexpected bitcast combination"); 1788 } 1789 1790 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 1791 SelectionDAG &DAG) const { 1792 MachineFunction &MF = DAG.getMachineFunction(); 1793 SystemZMachineFunctionInfo *FuncInfo = 1794 MF.getInfo<SystemZMachineFunctionInfo>(); 1795 EVT PtrVT = getPointerTy(); 1796 1797 SDValue Chain = Op.getOperand(0); 1798 SDValue Addr = Op.getOperand(1); 1799 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1800 SDLoc DL(Op); 1801 1802 // The initial values of each field. 1803 const unsigned NumFields = 4; 1804 SDValue Fields[NumFields] = { 1805 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT), 1806 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT), 1807 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 1808 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 1809 }; 1810 1811 // Store each field into its respective slot. 1812 SDValue MemOps[NumFields]; 1813 unsigned Offset = 0; 1814 for (unsigned I = 0; I < NumFields; ++I) { 1815 SDValue FieldAddr = Addr; 1816 if (Offset != 0) 1817 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 1818 DAG.getIntPtrConstant(Offset)); 1819 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 1820 MachinePointerInfo(SV, Offset), 1821 false, false, 0); 1822 Offset += 8; 1823 } 1824 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields); 1825 } 1826 1827 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 1828 SelectionDAG &DAG) const { 1829 SDValue Chain = Op.getOperand(0); 1830 SDValue DstPtr = Op.getOperand(1); 1831 SDValue SrcPtr = Op.getOperand(2); 1832 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 1833 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 1834 SDLoc DL(Op); 1835 1836 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32), 1837 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 1838 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 1839 } 1840 1841 SDValue SystemZTargetLowering:: 1842 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 1843 SDValue Chain = Op.getOperand(0); 1844 SDValue Size = Op.getOperand(1); 1845 SDLoc DL(Op); 1846 1847 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 1848 1849 // Get a reference to the stack pointer. 1850 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 1851 1852 // Get the new stack pointer value. 1853 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 1854 1855 // Copy the new stack pointer back. 1856 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 1857 1858 // The allocated data lives above the 160 bytes allocated for the standard 1859 // frame, plus any outgoing stack arguments. We don't know how much that 1860 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 1861 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 1862 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 1863 1864 SDValue Ops[2] = { Result, Chain }; 1865 return DAG.getMergeValues(Ops, 2, DL); 1866 } 1867 1868 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 1869 SelectionDAG &DAG) const { 1870 EVT VT = Op.getValueType(); 1871 SDLoc DL(Op); 1872 SDValue Ops[2]; 1873 if (is32Bit(VT)) 1874 // Just do a normal 64-bit multiplication and extract the results. 1875 // We define this so that it can be used for constant division. 1876 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 1877 Op.getOperand(1), Ops[1], Ops[0]); 1878 else { 1879 // Do a full 128-bit multiplication based on UMUL_LOHI64: 1880 // 1881 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 1882 // 1883 // but using the fact that the upper halves are either all zeros 1884 // or all ones: 1885 // 1886 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 1887 // 1888 // and grouping the right terms together since they are quicker than the 1889 // multiplication: 1890 // 1891 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 1892 SDValue C63 = DAG.getConstant(63, MVT::i64); 1893 SDValue LL = Op.getOperand(0); 1894 SDValue RL = Op.getOperand(1); 1895 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 1896 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 1897 // UMUL_LOHI64 returns the low result in the odd register and the high 1898 // result in the even register. SMUL_LOHI is defined to return the 1899 // low half first, so the results are in reverse order. 1900 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 1901 LL, RL, Ops[1], Ops[0]); 1902 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 1903 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 1904 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 1905 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 1906 } 1907 return DAG.getMergeValues(Ops, 2, DL); 1908 } 1909 1910 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 1911 SelectionDAG &DAG) const { 1912 EVT VT = Op.getValueType(); 1913 SDLoc DL(Op); 1914 SDValue Ops[2]; 1915 if (is32Bit(VT)) 1916 // Just do a normal 64-bit multiplication and extract the results. 1917 // We define this so that it can be used for constant division. 1918 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 1919 Op.getOperand(1), Ops[1], Ops[0]); 1920 else 1921 // UMUL_LOHI64 returns the low result in the odd register and the high 1922 // result in the even register. UMUL_LOHI is defined to return the 1923 // low half first, so the results are in reverse order. 1924 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 1925 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 1926 return DAG.getMergeValues(Ops, 2, DL); 1927 } 1928 1929 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 1930 SelectionDAG &DAG) const { 1931 SDValue Op0 = Op.getOperand(0); 1932 SDValue Op1 = Op.getOperand(1); 1933 EVT VT = Op.getValueType(); 1934 SDLoc DL(Op); 1935 unsigned Opcode; 1936 1937 // We use DSGF for 32-bit division. 1938 if (is32Bit(VT)) { 1939 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 1940 Opcode = SystemZISD::SDIVREM32; 1941 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 1942 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 1943 Opcode = SystemZISD::SDIVREM32; 1944 } else 1945 Opcode = SystemZISD::SDIVREM64; 1946 1947 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 1948 // input is "don't care". The instruction returns the remainder in 1949 // the even register and the quotient in the odd register. 1950 SDValue Ops[2]; 1951 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 1952 Op0, Op1, Ops[1], Ops[0]); 1953 return DAG.getMergeValues(Ops, 2, DL); 1954 } 1955 1956 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 1957 SelectionDAG &DAG) const { 1958 EVT VT = Op.getValueType(); 1959 SDLoc DL(Op); 1960 1961 // DL(G) uses a double-width dividend, so we need to clear the even 1962 // register in the GR128 input. The instruction returns the remainder 1963 // in the even register and the quotient in the odd register. 1964 SDValue Ops[2]; 1965 if (is32Bit(VT)) 1966 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 1967 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 1968 else 1969 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 1970 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 1971 return DAG.getMergeValues(Ops, 2, DL); 1972 } 1973 1974 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 1975 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 1976 1977 // Get the known-zero masks for each operand. 1978 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 1979 APInt KnownZero[2], KnownOne[2]; 1980 DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]); 1981 DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]); 1982 1983 // See if the upper 32 bits of one operand and the lower 32 bits of the 1984 // other are known zero. They are the low and high operands respectively. 1985 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 1986 KnownZero[1].getZExtValue() }; 1987 unsigned High, Low; 1988 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 1989 High = 1, Low = 0; 1990 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 1991 High = 0, Low = 1; 1992 else 1993 return Op; 1994 1995 SDValue LowOp = Ops[Low]; 1996 SDValue HighOp = Ops[High]; 1997 1998 // If the high part is a constant, we're better off using IILH. 1999 if (HighOp.getOpcode() == ISD::Constant) 2000 return Op; 2001 2002 // If the low part is a constant that is outside the range of LHI, 2003 // then we're better off using IILF. 2004 if (LowOp.getOpcode() == ISD::Constant) { 2005 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2006 if (!isInt<16>(Value)) 2007 return Op; 2008 } 2009 2010 // Check whether the high part is an AND that doesn't change the 2011 // high 32 bits and just masks out low bits. We can skip it if so. 2012 if (HighOp.getOpcode() == ISD::AND && 2013 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2014 SDValue HighOp0 = HighOp.getOperand(0); 2015 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2016 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2017 HighOp = HighOp0; 2018 } 2019 2020 // Take advantage of the fact that all GR32 operations only change the 2021 // low 32 bits by truncating Low to an i32 and inserting it directly 2022 // using a subreg. The interesting cases are those where the truncation 2023 // can be folded. 2024 SDLoc DL(Op); 2025 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2026 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2027 MVT::i64, HighOp, Low32); 2028 } 2029 2030 // Op is an atomic load. Lower it into a normal volatile load. 2031 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 2032 SelectionDAG &DAG) const { 2033 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2034 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 2035 Node->getChain(), Node->getBasePtr(), 2036 Node->getMemoryVT(), Node->getMemOperand()); 2037 } 2038 2039 // Op is an atomic store. Lower it into a normal volatile store followed 2040 // by a serialization. 2041 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 2042 SelectionDAG &DAG) const { 2043 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2044 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 2045 Node->getBasePtr(), Node->getMemoryVT(), 2046 Node->getMemOperand()); 2047 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 2048 Chain), 0); 2049 } 2050 2051 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 2052 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 2053 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 2054 SelectionDAG &DAG, 2055 unsigned Opcode) const { 2056 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2057 2058 // 32-bit operations need no code outside the main loop. 2059 EVT NarrowVT = Node->getMemoryVT(); 2060 EVT WideVT = MVT::i32; 2061 if (NarrowVT == WideVT) 2062 return Op; 2063 2064 int64_t BitSize = NarrowVT.getSizeInBits(); 2065 SDValue ChainIn = Node->getChain(); 2066 SDValue Addr = Node->getBasePtr(); 2067 SDValue Src2 = Node->getVal(); 2068 MachineMemOperand *MMO = Node->getMemOperand(); 2069 SDLoc DL(Node); 2070 EVT PtrVT = Addr.getValueType(); 2071 2072 // Convert atomic subtracts of constants into additions. 2073 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 2074 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) { 2075 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 2076 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType()); 2077 } 2078 2079 // Get the address of the containing word. 2080 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 2081 DAG.getConstant(-4, PtrVT)); 2082 2083 // Get the number of bits that the word must be rotated left in order 2084 // to bring the field to the top bits of a GR32. 2085 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 2086 DAG.getConstant(3, PtrVT)); 2087 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 2088 2089 // Get the complementing shift amount, for rotating a field in the top 2090 // bits back to its proper position. 2091 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 2092 DAG.getConstant(0, WideVT), BitShift); 2093 2094 // Extend the source operand to 32 bits and prepare it for the inner loop. 2095 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 2096 // operations require the source to be shifted in advance. (This shift 2097 // can be folded if the source is constant.) For AND and NAND, the lower 2098 // bits must be set, while for other opcodes they should be left clear. 2099 if (Opcode != SystemZISD::ATOMIC_SWAPW) 2100 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 2101 DAG.getConstant(32 - BitSize, WideVT)); 2102 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 2103 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 2104 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 2105 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT)); 2106 2107 // Construct the ATOMIC_LOADW_* node. 2108 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 2109 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 2110 DAG.getConstant(BitSize, WideVT) }; 2111 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 2112 array_lengthof(Ops), 2113 NarrowVT, MMO); 2114 2115 // Rotate the result of the final CS so that the field is in the lower 2116 // bits of a GR32, then truncate it. 2117 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 2118 DAG.getConstant(BitSize, WideVT)); 2119 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 2120 2121 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 2122 return DAG.getMergeValues(RetOps, 2, DL); 2123 } 2124 2125 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 2126 // into a fullword ATOMIC_CMP_SWAPW operation. 2127 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 2128 SelectionDAG &DAG) const { 2129 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2130 2131 // We have native support for 32-bit compare and swap. 2132 EVT NarrowVT = Node->getMemoryVT(); 2133 EVT WideVT = MVT::i32; 2134 if (NarrowVT == WideVT) 2135 return Op; 2136 2137 int64_t BitSize = NarrowVT.getSizeInBits(); 2138 SDValue ChainIn = Node->getOperand(0); 2139 SDValue Addr = Node->getOperand(1); 2140 SDValue CmpVal = Node->getOperand(2); 2141 SDValue SwapVal = Node->getOperand(3); 2142 MachineMemOperand *MMO = Node->getMemOperand(); 2143 SDLoc DL(Node); 2144 EVT PtrVT = Addr.getValueType(); 2145 2146 // Get the address of the containing word. 2147 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 2148 DAG.getConstant(-4, PtrVT)); 2149 2150 // Get the number of bits that the word must be rotated left in order 2151 // to bring the field to the top bits of a GR32. 2152 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 2153 DAG.getConstant(3, PtrVT)); 2154 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 2155 2156 // Get the complementing shift amount, for rotating a field in the top 2157 // bits back to its proper position. 2158 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 2159 DAG.getConstant(0, WideVT), BitShift); 2160 2161 // Construct the ATOMIC_CMP_SWAPW node. 2162 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 2163 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 2164 NegBitShift, DAG.getConstant(BitSize, WideVT) }; 2165 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 2166 VTList, Ops, array_lengthof(Ops), 2167 NarrowVT, MMO); 2168 return AtomicOp; 2169 } 2170 2171 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 2172 SelectionDAG &DAG) const { 2173 MachineFunction &MF = DAG.getMachineFunction(); 2174 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 2175 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 2176 SystemZ::R15D, Op.getValueType()); 2177 } 2178 2179 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 2180 SelectionDAG &DAG) const { 2181 MachineFunction &MF = DAG.getMachineFunction(); 2182 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 2183 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 2184 SystemZ::R15D, Op.getOperand(1)); 2185 } 2186 2187 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 2188 SelectionDAG &DAG) const { 2189 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2190 if (!IsData) 2191 // Just preserve the chain. 2192 return Op.getOperand(0); 2193 2194 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2195 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 2196 MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 2197 SDValue Ops[] = { 2198 Op.getOperand(0), 2199 DAG.getConstant(Code, MVT::i32), 2200 Op.getOperand(1) 2201 }; 2202 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op), 2203 Node->getVTList(), Ops, array_lengthof(Ops), 2204 Node->getMemoryVT(), Node->getMemOperand()); 2205 } 2206 2207 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 2208 SelectionDAG &DAG) const { 2209 switch (Op.getOpcode()) { 2210 case ISD::BR_CC: 2211 return lowerBR_CC(Op, DAG); 2212 case ISD::SELECT_CC: 2213 return lowerSELECT_CC(Op, DAG); 2214 case ISD::SETCC: 2215 return lowerSETCC(Op, DAG); 2216 case ISD::GlobalAddress: 2217 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 2218 case ISD::GlobalTLSAddress: 2219 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 2220 case ISD::BlockAddress: 2221 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 2222 case ISD::JumpTable: 2223 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 2224 case ISD::ConstantPool: 2225 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 2226 case ISD::BITCAST: 2227 return lowerBITCAST(Op, DAG); 2228 case ISD::VASTART: 2229 return lowerVASTART(Op, DAG); 2230 case ISD::VACOPY: 2231 return lowerVACOPY(Op, DAG); 2232 case ISD::DYNAMIC_STACKALLOC: 2233 return lowerDYNAMIC_STACKALLOC(Op, DAG); 2234 case ISD::SMUL_LOHI: 2235 return lowerSMUL_LOHI(Op, DAG); 2236 case ISD::UMUL_LOHI: 2237 return lowerUMUL_LOHI(Op, DAG); 2238 case ISD::SDIVREM: 2239 return lowerSDIVREM(Op, DAG); 2240 case ISD::UDIVREM: 2241 return lowerUDIVREM(Op, DAG); 2242 case ISD::OR: 2243 return lowerOR(Op, DAG); 2244 case ISD::ATOMIC_SWAP: 2245 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 2246 case ISD::ATOMIC_STORE: 2247 return lowerATOMIC_STORE(Op, DAG); 2248 case ISD::ATOMIC_LOAD: 2249 return lowerATOMIC_LOAD(Op, DAG); 2250 case ISD::ATOMIC_LOAD_ADD: 2251 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 2252 case ISD::ATOMIC_LOAD_SUB: 2253 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 2254 case ISD::ATOMIC_LOAD_AND: 2255 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 2256 case ISD::ATOMIC_LOAD_OR: 2257 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 2258 case ISD::ATOMIC_LOAD_XOR: 2259 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 2260 case ISD::ATOMIC_LOAD_NAND: 2261 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 2262 case ISD::ATOMIC_LOAD_MIN: 2263 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 2264 case ISD::ATOMIC_LOAD_MAX: 2265 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 2266 case ISD::ATOMIC_LOAD_UMIN: 2267 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 2268 case ISD::ATOMIC_LOAD_UMAX: 2269 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 2270 case ISD::ATOMIC_CMP_SWAP: 2271 return lowerATOMIC_CMP_SWAP(Op, DAG); 2272 case ISD::STACKSAVE: 2273 return lowerSTACKSAVE(Op, DAG); 2274 case ISD::STACKRESTORE: 2275 return lowerSTACKRESTORE(Op, DAG); 2276 case ISD::PREFETCH: 2277 return lowerPREFETCH(Op, DAG); 2278 default: 2279 llvm_unreachable("Unexpected node to lower"); 2280 } 2281 } 2282 2283 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 2284 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 2285 switch (Opcode) { 2286 OPCODE(RET_FLAG); 2287 OPCODE(CALL); 2288 OPCODE(SIBCALL); 2289 OPCODE(PCREL_WRAPPER); 2290 OPCODE(PCREL_OFFSET); 2291 OPCODE(ICMP); 2292 OPCODE(FCMP); 2293 OPCODE(TM); 2294 OPCODE(BR_CCMASK); 2295 OPCODE(SELECT_CCMASK); 2296 OPCODE(ADJDYNALLOC); 2297 OPCODE(EXTRACT_ACCESS); 2298 OPCODE(UMUL_LOHI64); 2299 OPCODE(SDIVREM64); 2300 OPCODE(UDIVREM32); 2301 OPCODE(UDIVREM64); 2302 OPCODE(MVC); 2303 OPCODE(MVC_LOOP); 2304 OPCODE(NC); 2305 OPCODE(NC_LOOP); 2306 OPCODE(OC); 2307 OPCODE(OC_LOOP); 2308 OPCODE(XC); 2309 OPCODE(XC_LOOP); 2310 OPCODE(CLC); 2311 OPCODE(CLC_LOOP); 2312 OPCODE(STRCMP); 2313 OPCODE(STPCPY); 2314 OPCODE(SEARCH_STRING); 2315 OPCODE(IPM); 2316 OPCODE(SERIALIZE); 2317 OPCODE(ATOMIC_SWAPW); 2318 OPCODE(ATOMIC_LOADW_ADD); 2319 OPCODE(ATOMIC_LOADW_SUB); 2320 OPCODE(ATOMIC_LOADW_AND); 2321 OPCODE(ATOMIC_LOADW_OR); 2322 OPCODE(ATOMIC_LOADW_XOR); 2323 OPCODE(ATOMIC_LOADW_NAND); 2324 OPCODE(ATOMIC_LOADW_MIN); 2325 OPCODE(ATOMIC_LOADW_MAX); 2326 OPCODE(ATOMIC_LOADW_UMIN); 2327 OPCODE(ATOMIC_LOADW_UMAX); 2328 OPCODE(ATOMIC_CMP_SWAPW); 2329 OPCODE(PREFETCH); 2330 } 2331 return NULL; 2332 #undef OPCODE 2333 } 2334 2335 //===----------------------------------------------------------------------===// 2336 // Custom insertion 2337 //===----------------------------------------------------------------------===// 2338 2339 // Create a new basic block after MBB. 2340 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 2341 MachineFunction &MF = *MBB->getParent(); 2342 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 2343 MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB); 2344 return NewMBB; 2345 } 2346 2347 // Split MBB after MI and return the new block (the one that contains 2348 // instructions after MI). 2349 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 2350 MachineBasicBlock *MBB) { 2351 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 2352 NewMBB->splice(NewMBB->begin(), MBB, 2353 llvm::next(MachineBasicBlock::iterator(MI)), 2354 MBB->end()); 2355 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 2356 return NewMBB; 2357 } 2358 2359 // Split MBB before MI and return the new block (the one that contains MI). 2360 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 2361 MachineBasicBlock *MBB) { 2362 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 2363 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 2364 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 2365 return NewMBB; 2366 } 2367 2368 // Force base value Base into a register before MI. Return the register. 2369 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 2370 const SystemZInstrInfo *TII) { 2371 if (Base.isReg()) 2372 return Base.getReg(); 2373 2374 MachineBasicBlock *MBB = MI->getParent(); 2375 MachineFunction &MF = *MBB->getParent(); 2376 MachineRegisterInfo &MRI = MF.getRegInfo(); 2377 2378 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 2379 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 2380 .addOperand(Base).addImm(0).addReg(0); 2381 return Reg; 2382 } 2383 2384 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 2385 MachineBasicBlock * 2386 SystemZTargetLowering::emitSelect(MachineInstr *MI, 2387 MachineBasicBlock *MBB) const { 2388 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2389 2390 unsigned DestReg = MI->getOperand(0).getReg(); 2391 unsigned TrueReg = MI->getOperand(1).getReg(); 2392 unsigned FalseReg = MI->getOperand(2).getReg(); 2393 unsigned CCValid = MI->getOperand(3).getImm(); 2394 unsigned CCMask = MI->getOperand(4).getImm(); 2395 DebugLoc DL = MI->getDebugLoc(); 2396 2397 MachineBasicBlock *StartMBB = MBB; 2398 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 2399 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 2400 2401 // StartMBB: 2402 // BRC CCMask, JoinMBB 2403 // # fallthrough to FalseMBB 2404 MBB = StartMBB; 2405 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2406 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 2407 MBB->addSuccessor(JoinMBB); 2408 MBB->addSuccessor(FalseMBB); 2409 2410 // FalseMBB: 2411 // # fallthrough to JoinMBB 2412 MBB = FalseMBB; 2413 MBB->addSuccessor(JoinMBB); 2414 2415 // JoinMBB: 2416 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 2417 // ... 2418 MBB = JoinMBB; 2419 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 2420 .addReg(TrueReg).addMBB(StartMBB) 2421 .addReg(FalseReg).addMBB(FalseMBB); 2422 2423 MI->eraseFromParent(); 2424 return JoinMBB; 2425 } 2426 2427 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 2428 // StoreOpcode is the store to use and Invert says whether the store should 2429 // happen when the condition is false rather than true. If a STORE ON 2430 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 2431 MachineBasicBlock * 2432 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 2433 MachineBasicBlock *MBB, 2434 unsigned StoreOpcode, unsigned STOCOpcode, 2435 bool Invert) const { 2436 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2437 2438 unsigned SrcReg = MI->getOperand(0).getReg(); 2439 MachineOperand Base = MI->getOperand(1); 2440 int64_t Disp = MI->getOperand(2).getImm(); 2441 unsigned IndexReg = MI->getOperand(3).getReg(); 2442 unsigned CCValid = MI->getOperand(4).getImm(); 2443 unsigned CCMask = MI->getOperand(5).getImm(); 2444 DebugLoc DL = MI->getDebugLoc(); 2445 2446 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 2447 2448 // Use STOCOpcode if possible. We could use different store patterns in 2449 // order to avoid matching the index register, but the performance trade-offs 2450 // might be more complicated in that case. 2451 if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) { 2452 if (Invert) 2453 CCMask ^= CCValid; 2454 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 2455 .addReg(SrcReg).addOperand(Base).addImm(Disp) 2456 .addImm(CCValid).addImm(CCMask); 2457 MI->eraseFromParent(); 2458 return MBB; 2459 } 2460 2461 // Get the condition needed to branch around the store. 2462 if (!Invert) 2463 CCMask ^= CCValid; 2464 2465 MachineBasicBlock *StartMBB = MBB; 2466 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 2467 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 2468 2469 // StartMBB: 2470 // BRC CCMask, JoinMBB 2471 // # fallthrough to FalseMBB 2472 MBB = StartMBB; 2473 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2474 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 2475 MBB->addSuccessor(JoinMBB); 2476 MBB->addSuccessor(FalseMBB); 2477 2478 // FalseMBB: 2479 // store %SrcReg, %Disp(%Index,%Base) 2480 // # fallthrough to JoinMBB 2481 MBB = FalseMBB; 2482 BuildMI(MBB, DL, TII->get(StoreOpcode)) 2483 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 2484 MBB->addSuccessor(JoinMBB); 2485 2486 MI->eraseFromParent(); 2487 return JoinMBB; 2488 } 2489 2490 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 2491 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 2492 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 2493 // BitSize is the width of the field in bits, or 0 if this is a partword 2494 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 2495 // is one of the operands. Invert says whether the field should be 2496 // inverted after performing BinOpcode (e.g. for NAND). 2497 MachineBasicBlock * 2498 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 2499 MachineBasicBlock *MBB, 2500 unsigned BinOpcode, 2501 unsigned BitSize, 2502 bool Invert) const { 2503 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2504 MachineFunction &MF = *MBB->getParent(); 2505 MachineRegisterInfo &MRI = MF.getRegInfo(); 2506 bool IsSubWord = (BitSize < 32); 2507 2508 // Extract the operands. Base can be a register or a frame index. 2509 // Src2 can be a register or immediate. 2510 unsigned Dest = MI->getOperand(0).getReg(); 2511 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2512 int64_t Disp = MI->getOperand(2).getImm(); 2513 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 2514 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 2515 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 2516 DebugLoc DL = MI->getDebugLoc(); 2517 if (IsSubWord) 2518 BitSize = MI->getOperand(6).getImm(); 2519 2520 // Subword operations use 32-bit registers. 2521 const TargetRegisterClass *RC = (BitSize <= 32 ? 2522 &SystemZ::GR32BitRegClass : 2523 &SystemZ::GR64BitRegClass); 2524 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 2525 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 2526 2527 // Get the right opcodes for the displacement. 2528 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 2529 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 2530 assert(LOpcode && CSOpcode && "Displacement out of range"); 2531 2532 // Create virtual registers for temporary results. 2533 unsigned OrigVal = MRI.createVirtualRegister(RC); 2534 unsigned OldVal = MRI.createVirtualRegister(RC); 2535 unsigned NewVal = (BinOpcode || IsSubWord ? 2536 MRI.createVirtualRegister(RC) : Src2.getReg()); 2537 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 2538 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 2539 2540 // Insert a basic block for the main loop. 2541 MachineBasicBlock *StartMBB = MBB; 2542 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2543 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2544 2545 // StartMBB: 2546 // ... 2547 // %OrigVal = L Disp(%Base) 2548 // # fall through to LoopMMB 2549 MBB = StartMBB; 2550 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 2551 .addOperand(Base).addImm(Disp).addReg(0); 2552 MBB->addSuccessor(LoopMBB); 2553 2554 // LoopMBB: 2555 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 2556 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 2557 // %RotatedNewVal = OP %RotatedOldVal, %Src2 2558 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 2559 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 2560 // JNE LoopMBB 2561 // # fall through to DoneMMB 2562 MBB = LoopMBB; 2563 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2564 .addReg(OrigVal).addMBB(StartMBB) 2565 .addReg(Dest).addMBB(LoopMBB); 2566 if (IsSubWord) 2567 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 2568 .addReg(OldVal).addReg(BitShift).addImm(0); 2569 if (Invert) { 2570 // Perform the operation normally and then invert every bit of the field. 2571 unsigned Tmp = MRI.createVirtualRegister(RC); 2572 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 2573 .addReg(RotatedOldVal).addOperand(Src2); 2574 if (BitSize < 32) 2575 // XILF with the upper BitSize bits set. 2576 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 2577 .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize))); 2578 else if (BitSize == 32) 2579 // XILF with every bit set. 2580 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 2581 .addReg(Tmp).addImm(~uint32_t(0)); 2582 else { 2583 // Use LCGR and add -1 to the result, which is more compact than 2584 // an XILF, XILH pair. 2585 unsigned Tmp2 = MRI.createVirtualRegister(RC); 2586 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 2587 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 2588 .addReg(Tmp2).addImm(-1); 2589 } 2590 } else if (BinOpcode) 2591 // A simply binary operation. 2592 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 2593 .addReg(RotatedOldVal).addOperand(Src2); 2594 else if (IsSubWord) 2595 // Use RISBG to rotate Src2 into position and use it to replace the 2596 // field in RotatedOldVal. 2597 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 2598 .addReg(RotatedOldVal).addReg(Src2.getReg()) 2599 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 2600 if (IsSubWord) 2601 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 2602 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 2603 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 2604 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 2605 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2606 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2607 MBB->addSuccessor(LoopMBB); 2608 MBB->addSuccessor(DoneMBB); 2609 2610 MI->eraseFromParent(); 2611 return DoneMBB; 2612 } 2613 2614 // Implement EmitInstrWithCustomInserter for pseudo 2615 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 2616 // instruction that should be used to compare the current field with the 2617 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 2618 // for when the current field should be kept. BitSize is the width of 2619 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 2620 MachineBasicBlock * 2621 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 2622 MachineBasicBlock *MBB, 2623 unsigned CompareOpcode, 2624 unsigned KeepOldMask, 2625 unsigned BitSize) const { 2626 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2627 MachineFunction &MF = *MBB->getParent(); 2628 MachineRegisterInfo &MRI = MF.getRegInfo(); 2629 bool IsSubWord = (BitSize < 32); 2630 2631 // Extract the operands. Base can be a register or a frame index. 2632 unsigned Dest = MI->getOperand(0).getReg(); 2633 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2634 int64_t Disp = MI->getOperand(2).getImm(); 2635 unsigned Src2 = MI->getOperand(3).getReg(); 2636 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 2637 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 2638 DebugLoc DL = MI->getDebugLoc(); 2639 if (IsSubWord) 2640 BitSize = MI->getOperand(6).getImm(); 2641 2642 // Subword operations use 32-bit registers. 2643 const TargetRegisterClass *RC = (BitSize <= 32 ? 2644 &SystemZ::GR32BitRegClass : 2645 &SystemZ::GR64BitRegClass); 2646 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 2647 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 2648 2649 // Get the right opcodes for the displacement. 2650 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 2651 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 2652 assert(LOpcode && CSOpcode && "Displacement out of range"); 2653 2654 // Create virtual registers for temporary results. 2655 unsigned OrigVal = MRI.createVirtualRegister(RC); 2656 unsigned OldVal = MRI.createVirtualRegister(RC); 2657 unsigned NewVal = MRI.createVirtualRegister(RC); 2658 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 2659 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 2660 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 2661 2662 // Insert 3 basic blocks for the loop. 2663 MachineBasicBlock *StartMBB = MBB; 2664 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2665 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2666 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 2667 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 2668 2669 // StartMBB: 2670 // ... 2671 // %OrigVal = L Disp(%Base) 2672 // # fall through to LoopMMB 2673 MBB = StartMBB; 2674 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 2675 .addOperand(Base).addImm(Disp).addReg(0); 2676 MBB->addSuccessor(LoopMBB); 2677 2678 // LoopMBB: 2679 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 2680 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 2681 // CompareOpcode %RotatedOldVal, %Src2 2682 // BRC KeepOldMask, UpdateMBB 2683 MBB = LoopMBB; 2684 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2685 .addReg(OrigVal).addMBB(StartMBB) 2686 .addReg(Dest).addMBB(UpdateMBB); 2687 if (IsSubWord) 2688 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 2689 .addReg(OldVal).addReg(BitShift).addImm(0); 2690 BuildMI(MBB, DL, TII->get(CompareOpcode)) 2691 .addReg(RotatedOldVal).addReg(Src2); 2692 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2693 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 2694 MBB->addSuccessor(UpdateMBB); 2695 MBB->addSuccessor(UseAltMBB); 2696 2697 // UseAltMBB: 2698 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 2699 // # fall through to UpdateMMB 2700 MBB = UseAltMBB; 2701 if (IsSubWord) 2702 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 2703 .addReg(RotatedOldVal).addReg(Src2) 2704 .addImm(32).addImm(31 + BitSize).addImm(0); 2705 MBB->addSuccessor(UpdateMBB); 2706 2707 // UpdateMBB: 2708 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 2709 // [ %RotatedAltVal, UseAltMBB ] 2710 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 2711 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 2712 // JNE LoopMBB 2713 // # fall through to DoneMMB 2714 MBB = UpdateMBB; 2715 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 2716 .addReg(RotatedOldVal).addMBB(LoopMBB) 2717 .addReg(RotatedAltVal).addMBB(UseAltMBB); 2718 if (IsSubWord) 2719 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 2720 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 2721 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 2722 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 2723 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2724 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2725 MBB->addSuccessor(LoopMBB); 2726 MBB->addSuccessor(DoneMBB); 2727 2728 MI->eraseFromParent(); 2729 return DoneMBB; 2730 } 2731 2732 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 2733 // instruction MI. 2734 MachineBasicBlock * 2735 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 2736 MachineBasicBlock *MBB) const { 2737 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2738 MachineFunction &MF = *MBB->getParent(); 2739 MachineRegisterInfo &MRI = MF.getRegInfo(); 2740 2741 // Extract the operands. Base can be a register or a frame index. 2742 unsigned Dest = MI->getOperand(0).getReg(); 2743 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2744 int64_t Disp = MI->getOperand(2).getImm(); 2745 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 2746 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 2747 unsigned BitShift = MI->getOperand(5).getReg(); 2748 unsigned NegBitShift = MI->getOperand(6).getReg(); 2749 int64_t BitSize = MI->getOperand(7).getImm(); 2750 DebugLoc DL = MI->getDebugLoc(); 2751 2752 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 2753 2754 // Get the right opcodes for the displacement. 2755 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 2756 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 2757 assert(LOpcode && CSOpcode && "Displacement out of range"); 2758 2759 // Create virtual registers for temporary results. 2760 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 2761 unsigned OldVal = MRI.createVirtualRegister(RC); 2762 unsigned CmpVal = MRI.createVirtualRegister(RC); 2763 unsigned SwapVal = MRI.createVirtualRegister(RC); 2764 unsigned StoreVal = MRI.createVirtualRegister(RC); 2765 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 2766 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 2767 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 2768 2769 // Insert 2 basic blocks for the loop. 2770 MachineBasicBlock *StartMBB = MBB; 2771 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2772 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2773 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 2774 2775 // StartMBB: 2776 // ... 2777 // %OrigOldVal = L Disp(%Base) 2778 // # fall through to LoopMMB 2779 MBB = StartMBB; 2780 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 2781 .addOperand(Base).addImm(Disp).addReg(0); 2782 MBB->addSuccessor(LoopMBB); 2783 2784 // LoopMBB: 2785 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 2786 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 2787 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 2788 // %Dest = RLL %OldVal, BitSize(%BitShift) 2789 // ^^ The low BitSize bits contain the field 2790 // of interest. 2791 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 2792 // ^^ Replace the upper 32-BitSize bits of the 2793 // comparison value with those that we loaded, 2794 // so that we can use a full word comparison. 2795 // CR %Dest, %RetryCmpVal 2796 // JNE DoneMBB 2797 // # Fall through to SetMBB 2798 MBB = LoopMBB; 2799 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2800 .addReg(OrigOldVal).addMBB(StartMBB) 2801 .addReg(RetryOldVal).addMBB(SetMBB); 2802 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 2803 .addReg(OrigCmpVal).addMBB(StartMBB) 2804 .addReg(RetryCmpVal).addMBB(SetMBB); 2805 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 2806 .addReg(OrigSwapVal).addMBB(StartMBB) 2807 .addReg(RetrySwapVal).addMBB(SetMBB); 2808 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 2809 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 2810 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 2811 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 2812 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 2813 .addReg(Dest).addReg(RetryCmpVal); 2814 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2815 .addImm(SystemZ::CCMASK_ICMP) 2816 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 2817 MBB->addSuccessor(DoneMBB); 2818 MBB->addSuccessor(SetMBB); 2819 2820 // SetMBB: 2821 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 2822 // ^^ Replace the upper 32-BitSize bits of the new 2823 // value with those that we loaded. 2824 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 2825 // ^^ Rotate the new field to its proper position. 2826 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 2827 // JNE LoopMBB 2828 // # fall through to ExitMMB 2829 MBB = SetMBB; 2830 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 2831 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 2832 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 2833 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 2834 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 2835 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 2836 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2837 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2838 MBB->addSuccessor(LoopMBB); 2839 MBB->addSuccessor(DoneMBB); 2840 2841 MI->eraseFromParent(); 2842 return DoneMBB; 2843 } 2844 2845 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 2846 // if the high register of the GR128 value must be cleared or false if 2847 // it's "don't care". SubReg is subreg_l32 when extending a GR32 2848 // and subreg_l64 when extending a GR64. 2849 MachineBasicBlock * 2850 SystemZTargetLowering::emitExt128(MachineInstr *MI, 2851 MachineBasicBlock *MBB, 2852 bool ClearEven, unsigned SubReg) const { 2853 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2854 MachineFunction &MF = *MBB->getParent(); 2855 MachineRegisterInfo &MRI = MF.getRegInfo(); 2856 DebugLoc DL = MI->getDebugLoc(); 2857 2858 unsigned Dest = MI->getOperand(0).getReg(); 2859 unsigned Src = MI->getOperand(1).getReg(); 2860 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 2861 2862 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 2863 if (ClearEven) { 2864 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 2865 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 2866 2867 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 2868 .addImm(0); 2869 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 2870 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 2871 In128 = NewIn128; 2872 } 2873 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 2874 .addReg(In128).addReg(Src).addImm(SubReg); 2875 2876 MI->eraseFromParent(); 2877 return MBB; 2878 } 2879 2880 MachineBasicBlock * 2881 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 2882 MachineBasicBlock *MBB, 2883 unsigned Opcode) const { 2884 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2885 MachineFunction &MF = *MBB->getParent(); 2886 MachineRegisterInfo &MRI = MF.getRegInfo(); 2887 DebugLoc DL = MI->getDebugLoc(); 2888 2889 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 2890 uint64_t DestDisp = MI->getOperand(1).getImm(); 2891 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 2892 uint64_t SrcDisp = MI->getOperand(3).getImm(); 2893 uint64_t Length = MI->getOperand(4).getImm(); 2894 2895 // When generating more than one CLC, all but the last will need to 2896 // branch to the end when a difference is found. 2897 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 2898 splitBlockAfter(MI, MBB) : 0); 2899 2900 // Check for the loop form, in which operand 5 is the trip count. 2901 if (MI->getNumExplicitOperands() > 5) { 2902 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 2903 2904 uint64_t StartCountReg = MI->getOperand(5).getReg(); 2905 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 2906 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 2907 forceReg(MI, DestBase, TII)); 2908 2909 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 2910 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 2911 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 2912 MRI.createVirtualRegister(RC)); 2913 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 2914 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 2915 MRI.createVirtualRegister(RC)); 2916 2917 RC = &SystemZ::GR64BitRegClass; 2918 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 2919 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 2920 2921 MachineBasicBlock *StartMBB = MBB; 2922 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2923 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2924 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 2925 2926 // StartMBB: 2927 // # fall through to LoopMMB 2928 MBB->addSuccessor(LoopMBB); 2929 2930 // LoopMBB: 2931 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 2932 // [ %NextDestReg, NextMBB ] 2933 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 2934 // [ %NextSrcReg, NextMBB ] 2935 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 2936 // [ %NextCountReg, NextMBB ] 2937 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 2938 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 2939 // ( JLH EndMBB ) 2940 // 2941 // The prefetch is used only for MVC. The JLH is used only for CLC. 2942 MBB = LoopMBB; 2943 2944 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 2945 .addReg(StartDestReg).addMBB(StartMBB) 2946 .addReg(NextDestReg).addMBB(NextMBB); 2947 if (!HaveSingleBase) 2948 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 2949 .addReg(StartSrcReg).addMBB(StartMBB) 2950 .addReg(NextSrcReg).addMBB(NextMBB); 2951 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 2952 .addReg(StartCountReg).addMBB(StartMBB) 2953 .addReg(NextCountReg).addMBB(NextMBB); 2954 if (Opcode == SystemZ::MVC) 2955 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 2956 .addImm(SystemZ::PFD_WRITE) 2957 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 2958 BuildMI(MBB, DL, TII->get(Opcode)) 2959 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 2960 .addReg(ThisSrcReg).addImm(SrcDisp); 2961 if (EndMBB) { 2962 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2963 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 2964 .addMBB(EndMBB); 2965 MBB->addSuccessor(EndMBB); 2966 MBB->addSuccessor(NextMBB); 2967 } 2968 2969 // NextMBB: 2970 // %NextDestReg = LA 256(%ThisDestReg) 2971 // %NextSrcReg = LA 256(%ThisSrcReg) 2972 // %NextCountReg = AGHI %ThisCountReg, -1 2973 // CGHI %NextCountReg, 0 2974 // JLH LoopMBB 2975 // # fall through to DoneMMB 2976 // 2977 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 2978 MBB = NextMBB; 2979 2980 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 2981 .addReg(ThisDestReg).addImm(256).addReg(0); 2982 if (!HaveSingleBase) 2983 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 2984 .addReg(ThisSrcReg).addImm(256).addReg(0); 2985 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 2986 .addReg(ThisCountReg).addImm(-1); 2987 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 2988 .addReg(NextCountReg).addImm(0); 2989 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2990 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 2991 .addMBB(LoopMBB); 2992 MBB->addSuccessor(LoopMBB); 2993 MBB->addSuccessor(DoneMBB); 2994 2995 DestBase = MachineOperand::CreateReg(NextDestReg, false); 2996 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 2997 Length &= 255; 2998 MBB = DoneMBB; 2999 } 3000 // Handle any remaining bytes with straight-line code. 3001 while (Length > 0) { 3002 uint64_t ThisLength = std::min(Length, uint64_t(256)); 3003 // The previous iteration might have created out-of-range displacements. 3004 // Apply them using LAY if so. 3005 if (!isUInt<12>(DestDisp)) { 3006 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 3007 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 3008 .addOperand(DestBase).addImm(DestDisp).addReg(0); 3009 DestBase = MachineOperand::CreateReg(Reg, false); 3010 DestDisp = 0; 3011 } 3012 if (!isUInt<12>(SrcDisp)) { 3013 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 3014 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 3015 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 3016 SrcBase = MachineOperand::CreateReg(Reg, false); 3017 SrcDisp = 0; 3018 } 3019 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 3020 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 3021 .addOperand(SrcBase).addImm(SrcDisp); 3022 DestDisp += ThisLength; 3023 SrcDisp += ThisLength; 3024 Length -= ThisLength; 3025 // If there's another CLC to go, branch to the end if a difference 3026 // was found. 3027 if (EndMBB && Length > 0) { 3028 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 3029 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3030 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 3031 .addMBB(EndMBB); 3032 MBB->addSuccessor(EndMBB); 3033 MBB->addSuccessor(NextMBB); 3034 MBB = NextMBB; 3035 } 3036 } 3037 if (EndMBB) { 3038 MBB->addSuccessor(EndMBB); 3039 MBB = EndMBB; 3040 MBB->addLiveIn(SystemZ::CC); 3041 } 3042 3043 MI->eraseFromParent(); 3044 return MBB; 3045 } 3046 3047 // Decompose string pseudo-instruction MI into a loop that continually performs 3048 // Opcode until CC != 3. 3049 MachineBasicBlock * 3050 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 3051 MachineBasicBlock *MBB, 3052 unsigned Opcode) const { 3053 const SystemZInstrInfo *TII = TM.getInstrInfo(); 3054 MachineFunction &MF = *MBB->getParent(); 3055 MachineRegisterInfo &MRI = MF.getRegInfo(); 3056 DebugLoc DL = MI->getDebugLoc(); 3057 3058 uint64_t End1Reg = MI->getOperand(0).getReg(); 3059 uint64_t Start1Reg = MI->getOperand(1).getReg(); 3060 uint64_t Start2Reg = MI->getOperand(2).getReg(); 3061 uint64_t CharReg = MI->getOperand(3).getReg(); 3062 3063 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 3064 uint64_t This1Reg = MRI.createVirtualRegister(RC); 3065 uint64_t This2Reg = MRI.createVirtualRegister(RC); 3066 uint64_t End2Reg = MRI.createVirtualRegister(RC); 3067 3068 MachineBasicBlock *StartMBB = MBB; 3069 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 3070 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 3071 3072 // StartMBB: 3073 // # fall through to LoopMMB 3074 MBB->addSuccessor(LoopMBB); 3075 3076 // LoopMBB: 3077 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 3078 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 3079 // R0L = %CharReg 3080 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 3081 // JO LoopMBB 3082 // # fall through to DoneMMB 3083 // 3084 // The load of R0L can be hoisted by post-RA LICM. 3085 MBB = LoopMBB; 3086 3087 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 3088 .addReg(Start1Reg).addMBB(StartMBB) 3089 .addReg(End1Reg).addMBB(LoopMBB); 3090 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 3091 .addReg(Start2Reg).addMBB(StartMBB) 3092 .addReg(End2Reg).addMBB(LoopMBB); 3093 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 3094 BuildMI(MBB, DL, TII->get(Opcode)) 3095 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 3096 .addReg(This1Reg).addReg(This2Reg); 3097 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3098 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 3099 MBB->addSuccessor(LoopMBB); 3100 MBB->addSuccessor(DoneMBB); 3101 3102 DoneMBB->addLiveIn(SystemZ::CC); 3103 3104 MI->eraseFromParent(); 3105 return DoneMBB; 3106 } 3107 3108 MachineBasicBlock *SystemZTargetLowering:: 3109 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 3110 switch (MI->getOpcode()) { 3111 case SystemZ::Select32Mux: 3112 case SystemZ::Select32: 3113 case SystemZ::SelectF32: 3114 case SystemZ::Select64: 3115 case SystemZ::SelectF64: 3116 case SystemZ::SelectF128: 3117 return emitSelect(MI, MBB); 3118 3119 case SystemZ::CondStore8Mux: 3120 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 3121 case SystemZ::CondStore8MuxInv: 3122 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 3123 case SystemZ::CondStore16Mux: 3124 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 3125 case SystemZ::CondStore16MuxInv: 3126 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 3127 case SystemZ::CondStore8: 3128 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 3129 case SystemZ::CondStore8Inv: 3130 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 3131 case SystemZ::CondStore16: 3132 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 3133 case SystemZ::CondStore16Inv: 3134 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 3135 case SystemZ::CondStore32: 3136 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 3137 case SystemZ::CondStore32Inv: 3138 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 3139 case SystemZ::CondStore64: 3140 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 3141 case SystemZ::CondStore64Inv: 3142 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 3143 case SystemZ::CondStoreF32: 3144 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 3145 case SystemZ::CondStoreF32Inv: 3146 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 3147 case SystemZ::CondStoreF64: 3148 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 3149 case SystemZ::CondStoreF64Inv: 3150 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 3151 3152 case SystemZ::AEXT128_64: 3153 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 3154 case SystemZ::ZEXT128_32: 3155 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 3156 case SystemZ::ZEXT128_64: 3157 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 3158 3159 case SystemZ::ATOMIC_SWAPW: 3160 return emitAtomicLoadBinary(MI, MBB, 0, 0); 3161 case SystemZ::ATOMIC_SWAP_32: 3162 return emitAtomicLoadBinary(MI, MBB, 0, 32); 3163 case SystemZ::ATOMIC_SWAP_64: 3164 return emitAtomicLoadBinary(MI, MBB, 0, 64); 3165 3166 case SystemZ::ATOMIC_LOADW_AR: 3167 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 3168 case SystemZ::ATOMIC_LOADW_AFI: 3169 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 3170 case SystemZ::ATOMIC_LOAD_AR: 3171 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 3172 case SystemZ::ATOMIC_LOAD_AHI: 3173 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 3174 case SystemZ::ATOMIC_LOAD_AFI: 3175 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 3176 case SystemZ::ATOMIC_LOAD_AGR: 3177 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 3178 case SystemZ::ATOMIC_LOAD_AGHI: 3179 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 3180 case SystemZ::ATOMIC_LOAD_AGFI: 3181 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 3182 3183 case SystemZ::ATOMIC_LOADW_SR: 3184 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 3185 case SystemZ::ATOMIC_LOAD_SR: 3186 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 3187 case SystemZ::ATOMIC_LOAD_SGR: 3188 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 3189 3190 case SystemZ::ATOMIC_LOADW_NR: 3191 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 3192 case SystemZ::ATOMIC_LOADW_NILH: 3193 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 3194 case SystemZ::ATOMIC_LOAD_NR: 3195 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 3196 case SystemZ::ATOMIC_LOAD_NILL: 3197 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 3198 case SystemZ::ATOMIC_LOAD_NILH: 3199 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 3200 case SystemZ::ATOMIC_LOAD_NILF: 3201 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 3202 case SystemZ::ATOMIC_LOAD_NGR: 3203 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 3204 case SystemZ::ATOMIC_LOAD_NILL64: 3205 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 3206 case SystemZ::ATOMIC_LOAD_NILH64: 3207 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 3208 case SystemZ::ATOMIC_LOAD_NIHL64: 3209 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 3210 case SystemZ::ATOMIC_LOAD_NIHH64: 3211 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 3212 case SystemZ::ATOMIC_LOAD_NILF64: 3213 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 3214 case SystemZ::ATOMIC_LOAD_NIHF64: 3215 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 3216 3217 case SystemZ::ATOMIC_LOADW_OR: 3218 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 3219 case SystemZ::ATOMIC_LOADW_OILH: 3220 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 3221 case SystemZ::ATOMIC_LOAD_OR: 3222 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 3223 case SystemZ::ATOMIC_LOAD_OILL: 3224 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 3225 case SystemZ::ATOMIC_LOAD_OILH: 3226 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 3227 case SystemZ::ATOMIC_LOAD_OILF: 3228 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 3229 case SystemZ::ATOMIC_LOAD_OGR: 3230 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 3231 case SystemZ::ATOMIC_LOAD_OILL64: 3232 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 3233 case SystemZ::ATOMIC_LOAD_OILH64: 3234 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 3235 case SystemZ::ATOMIC_LOAD_OIHL64: 3236 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 3237 case SystemZ::ATOMIC_LOAD_OIHH64: 3238 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 3239 case SystemZ::ATOMIC_LOAD_OILF64: 3240 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 3241 case SystemZ::ATOMIC_LOAD_OIHF64: 3242 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 3243 3244 case SystemZ::ATOMIC_LOADW_XR: 3245 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 3246 case SystemZ::ATOMIC_LOADW_XILF: 3247 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 3248 case SystemZ::ATOMIC_LOAD_XR: 3249 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 3250 case SystemZ::ATOMIC_LOAD_XILF: 3251 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 3252 case SystemZ::ATOMIC_LOAD_XGR: 3253 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 3254 case SystemZ::ATOMIC_LOAD_XILF64: 3255 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 3256 case SystemZ::ATOMIC_LOAD_XIHF64: 3257 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 3258 3259 case SystemZ::ATOMIC_LOADW_NRi: 3260 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 3261 case SystemZ::ATOMIC_LOADW_NILHi: 3262 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 3263 case SystemZ::ATOMIC_LOAD_NRi: 3264 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 3265 case SystemZ::ATOMIC_LOAD_NILLi: 3266 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 3267 case SystemZ::ATOMIC_LOAD_NILHi: 3268 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 3269 case SystemZ::ATOMIC_LOAD_NILFi: 3270 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 3271 case SystemZ::ATOMIC_LOAD_NGRi: 3272 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 3273 case SystemZ::ATOMIC_LOAD_NILL64i: 3274 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 3275 case SystemZ::ATOMIC_LOAD_NILH64i: 3276 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 3277 case SystemZ::ATOMIC_LOAD_NIHL64i: 3278 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 3279 case SystemZ::ATOMIC_LOAD_NIHH64i: 3280 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 3281 case SystemZ::ATOMIC_LOAD_NILF64i: 3282 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 3283 case SystemZ::ATOMIC_LOAD_NIHF64i: 3284 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 3285 3286 case SystemZ::ATOMIC_LOADW_MIN: 3287 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3288 SystemZ::CCMASK_CMP_LE, 0); 3289 case SystemZ::ATOMIC_LOAD_MIN_32: 3290 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3291 SystemZ::CCMASK_CMP_LE, 32); 3292 case SystemZ::ATOMIC_LOAD_MIN_64: 3293 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 3294 SystemZ::CCMASK_CMP_LE, 64); 3295 3296 case SystemZ::ATOMIC_LOADW_MAX: 3297 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3298 SystemZ::CCMASK_CMP_GE, 0); 3299 case SystemZ::ATOMIC_LOAD_MAX_32: 3300 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3301 SystemZ::CCMASK_CMP_GE, 32); 3302 case SystemZ::ATOMIC_LOAD_MAX_64: 3303 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 3304 SystemZ::CCMASK_CMP_GE, 64); 3305 3306 case SystemZ::ATOMIC_LOADW_UMIN: 3307 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3308 SystemZ::CCMASK_CMP_LE, 0); 3309 case SystemZ::ATOMIC_LOAD_UMIN_32: 3310 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3311 SystemZ::CCMASK_CMP_LE, 32); 3312 case SystemZ::ATOMIC_LOAD_UMIN_64: 3313 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 3314 SystemZ::CCMASK_CMP_LE, 64); 3315 3316 case SystemZ::ATOMIC_LOADW_UMAX: 3317 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3318 SystemZ::CCMASK_CMP_GE, 0); 3319 case SystemZ::ATOMIC_LOAD_UMAX_32: 3320 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3321 SystemZ::CCMASK_CMP_GE, 32); 3322 case SystemZ::ATOMIC_LOAD_UMAX_64: 3323 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 3324 SystemZ::CCMASK_CMP_GE, 64); 3325 3326 case SystemZ::ATOMIC_CMP_SWAPW: 3327 return emitAtomicCmpSwapW(MI, MBB); 3328 case SystemZ::MVCSequence: 3329 case SystemZ::MVCLoop: 3330 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 3331 case SystemZ::NCSequence: 3332 case SystemZ::NCLoop: 3333 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 3334 case SystemZ::OCSequence: 3335 case SystemZ::OCLoop: 3336 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 3337 case SystemZ::XCSequence: 3338 case SystemZ::XCLoop: 3339 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 3340 case SystemZ::CLCSequence: 3341 case SystemZ::CLCLoop: 3342 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 3343 case SystemZ::CLSTLoop: 3344 return emitStringWrapper(MI, MBB, SystemZ::CLST); 3345 case SystemZ::MVSTLoop: 3346 return emitStringWrapper(MI, MBB, SystemZ::MVST); 3347 case SystemZ::SRSTLoop: 3348 return emitStringWrapper(MI, MBB, SystemZ::SRST); 3349 default: 3350 llvm_unreachable("Unexpected instr type to insert"); 3351 } 3352 } 3353