1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "systemz-lower" 15 16 #include "SystemZISelLowering.h" 17 #include "SystemZCallingConv.h" 18 #include "SystemZConstantPoolValue.h" 19 #include "SystemZMachineFunctionInfo.h" 20 #include "SystemZTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 25 #include <cctype> 26 27 using namespace llvm; 28 29 namespace { 30 // Represents a sequence for extracting a 0/1 value from an IPM result: 31 // (((X ^ XORValue) + AddValue) >> Bit) 32 struct IPMConversion { 33 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 34 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 35 36 int64_t XORValue; 37 int64_t AddValue; 38 unsigned Bit; 39 }; 40 41 // Represents information about a comparison. 42 struct Comparison { 43 Comparison(SDValue Op0In, SDValue Op1In) 44 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 45 46 // The operands to the comparison. 47 SDValue Op0, Op1; 48 49 // The opcode that should be used to compare Op0 and Op1. 50 unsigned Opcode; 51 52 // A SystemZICMP value. Only used for integer comparisons. 53 unsigned ICmpType; 54 55 // The mask of CC values that Opcode can produce. 56 unsigned CCValid; 57 58 // The mask of CC values for which the original condition is true. 59 unsigned CCMask; 60 }; 61 } 62 63 // Classify VT as either 32 or 64 bit. 64 static bool is32Bit(EVT VT) { 65 switch (VT.getSimpleVT().SimpleTy) { 66 case MVT::i32: 67 return true; 68 case MVT::i64: 69 return false; 70 default: 71 llvm_unreachable("Unsupported type"); 72 } 73 } 74 75 // Return a version of MachineOperand that can be safely used before the 76 // final use. 77 static MachineOperand earlyUseOperand(MachineOperand Op) { 78 if (Op.isReg()) 79 Op.setIsKill(false); 80 return Op; 81 } 82 83 SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) 84 : TargetLowering(tm, new TargetLoweringObjectFileELF()), 85 Subtarget(*tm.getSubtargetImpl()), TM(tm) { 86 MVT PtrVT = getPointerTy(); 87 88 // Set up the register classes. 89 if (Subtarget.hasHighWord()) 90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 91 else 92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 93 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 94 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 95 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 97 98 // Compute derived properties from the register classes 99 computeRegisterProperties(); 100 101 // Set up special registers. 102 setExceptionPointerRegister(SystemZ::R6D); 103 setExceptionSelectorRegister(SystemZ::R7D); 104 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 105 106 // TODO: It may be better to default to latency-oriented scheduling, however 107 // LLVM's current latency-oriented scheduler can't handle physreg definitions 108 // such as SystemZ has with CC, so set this to the register-pressure 109 // scheduler, because it can. 110 setSchedulingPreference(Sched::RegPressure); 111 112 setBooleanContents(ZeroOrOneBooleanContent); 113 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 114 115 // Instructions are strings of 2-byte aligned 2-byte values. 116 setMinFunctionAlignment(2); 117 118 // Handle operations that are handled in a similar way for all types. 119 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 120 I <= MVT::LAST_FP_VALUETYPE; 121 ++I) { 122 MVT VT = MVT::SimpleValueType(I); 123 if (isTypeLegal(VT)) { 124 // Lower SET_CC into an IPM-based sequence. 125 setOperationAction(ISD::SETCC, VT, Custom); 126 127 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 128 setOperationAction(ISD::SELECT, VT, Expand); 129 130 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 131 setOperationAction(ISD::SELECT_CC, VT, Custom); 132 setOperationAction(ISD::BR_CC, VT, Custom); 133 } 134 } 135 136 // Expand jump table branches as address arithmetic followed by an 137 // indirect jump. 138 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 139 140 // Expand BRCOND into a BR_CC (see above). 141 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 142 143 // Handle integer types. 144 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 145 I <= MVT::LAST_INTEGER_VALUETYPE; 146 ++I) { 147 MVT VT = MVT::SimpleValueType(I); 148 if (isTypeLegal(VT)) { 149 // Expand individual DIV and REMs into DIVREMs. 150 setOperationAction(ISD::SDIV, VT, Expand); 151 setOperationAction(ISD::UDIV, VT, Expand); 152 setOperationAction(ISD::SREM, VT, Expand); 153 setOperationAction(ISD::UREM, VT, Expand); 154 setOperationAction(ISD::SDIVREM, VT, Custom); 155 setOperationAction(ISD::UDIVREM, VT, Custom); 156 157 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 158 // stores, putting a serialization instruction after the stores. 159 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 160 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 161 162 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 163 // available, or if the operand is constant. 164 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 165 166 // No special instructions for these. 167 setOperationAction(ISD::CTPOP, VT, Expand); 168 setOperationAction(ISD::CTTZ, VT, Expand); 169 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 170 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 171 setOperationAction(ISD::ROTR, VT, Expand); 172 173 // Use *MUL_LOHI where possible instead of MULH*. 174 setOperationAction(ISD::MULHS, VT, Expand); 175 setOperationAction(ISD::MULHU, VT, Expand); 176 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 177 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 178 179 // We have instructions for signed but not unsigned FP conversion. 180 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 181 } 182 } 183 184 // Type legalization will convert 8- and 16-bit atomic operations into 185 // forms that operate on i32s (but still keeping the original memory VT). 186 // Lower them into full i32 operations. 187 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 188 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 189 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 190 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 191 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 192 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 193 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 194 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 195 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 196 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 197 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 198 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 199 200 // We have instructions for signed but not unsigned FP conversion. 201 // Handle unsigned 32-bit types as signed 64-bit types. 202 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 203 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 204 205 // We have native support for a 64-bit CTLZ, via FLOGR. 206 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 207 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 208 209 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 210 setOperationAction(ISD::OR, MVT::i64, Custom); 211 212 // Give LowerOperation the chance to optimize SIGN_EXTEND sequences. 213 setOperationAction(ISD::SIGN_EXTEND, MVT::i64, Custom); 214 215 // FIXME: Can we support these natively? 216 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 217 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 218 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 219 220 // We have native instructions for i8, i16 and i32 extensions, but not i1. 221 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 222 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 223 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 224 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 225 226 // Handle the various types of symbolic address. 227 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 228 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 229 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 230 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 231 setOperationAction(ISD::JumpTable, PtrVT, Custom); 232 233 // We need to handle dynamic allocations specially because of the 234 // 160-byte area at the bottom of the stack. 235 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 236 237 // Use custom expanders so that we can force the function to use 238 // a frame pointer. 239 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 240 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 241 242 // Handle prefetches with PFD or PFDRL. 243 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 244 245 // Handle floating-point types. 246 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 247 I <= MVT::LAST_FP_VALUETYPE; 248 ++I) { 249 MVT VT = MVT::SimpleValueType(I); 250 if (isTypeLegal(VT)) { 251 // We can use FI for FRINT. 252 setOperationAction(ISD::FRINT, VT, Legal); 253 254 // We can use the extended form of FI for other rounding operations. 255 if (Subtarget.hasFPExtension()) { 256 setOperationAction(ISD::FNEARBYINT, VT, Legal); 257 setOperationAction(ISD::FFLOOR, VT, Legal); 258 setOperationAction(ISD::FCEIL, VT, Legal); 259 setOperationAction(ISD::FTRUNC, VT, Legal); 260 setOperationAction(ISD::FROUND, VT, Legal); 261 } 262 263 // No special instructions for these. 264 setOperationAction(ISD::FSIN, VT, Expand); 265 setOperationAction(ISD::FCOS, VT, Expand); 266 setOperationAction(ISD::FREM, VT, Expand); 267 } 268 } 269 270 // We have fused multiply-addition for f32 and f64 but not f128. 271 setOperationAction(ISD::FMA, MVT::f32, Legal); 272 setOperationAction(ISD::FMA, MVT::f64, Legal); 273 setOperationAction(ISD::FMA, MVT::f128, Expand); 274 275 // Needed so that we don't try to implement f128 constant loads using 276 // a load-and-extend of a f80 constant (in cases where the constant 277 // would fit in an f80). 278 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); 279 280 // Floating-point truncation and stores need to be done separately. 281 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 282 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 283 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 284 285 // We have 64-bit FPR<->GPR moves, but need special handling for 286 // 32-bit forms. 287 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 288 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 289 290 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 291 // structure, but VAEND is a no-op. 292 setOperationAction(ISD::VASTART, MVT::Other, Custom); 293 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 294 setOperationAction(ISD::VAEND, MVT::Other, Expand); 295 296 // We want to use MVC in preference to even a single load/store pair. 297 MaxStoresPerMemcpy = 0; 298 MaxStoresPerMemcpyOptSize = 0; 299 300 // The main memset sequence is a byte store followed by an MVC. 301 // Two STC or MV..I stores win over that, but the kind of fused stores 302 // generated by target-independent code don't when the byte value is 303 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 304 // than "STC;MVC". Handle the choice in target-specific code instead. 305 MaxStoresPerMemset = 0; 306 MaxStoresPerMemsetOptSize = 0; 307 } 308 309 EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { 310 if (!VT.isVector()) 311 return MVT::i32; 312 return VT.changeVectorElementTypeToInteger(); 313 } 314 315 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 316 VT = VT.getScalarType(); 317 318 if (!VT.isSimple()) 319 return false; 320 321 switch (VT.getSimpleVT().SimpleTy) { 322 case MVT::f32: 323 case MVT::f64: 324 return true; 325 case MVT::f128: 326 return false; 327 default: 328 break; 329 } 330 331 return false; 332 } 333 334 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 335 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 336 return Imm.isZero() || Imm.isNegZero(); 337 } 338 339 bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, 340 bool *Fast) const { 341 // Unaligned accesses should never be slower than the expanded version. 342 // We check specifically for aligned accesses in the few cases where 343 // they are required. 344 if (Fast) 345 *Fast = true; 346 return true; 347 } 348 349 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM, 350 Type *Ty) const { 351 // Punt on globals for now, although they can be used in limited 352 // RELATIVE LONG cases. 353 if (AM.BaseGV) 354 return false; 355 356 // Require a 20-bit signed offset. 357 if (!isInt<20>(AM.BaseOffs)) 358 return false; 359 360 // Indexing is OK but no scale factor can be applied. 361 return AM.Scale == 0 || AM.Scale == 1; 362 } 363 364 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 365 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 366 return false; 367 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 368 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 369 return FromBits > ToBits; 370 } 371 372 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 373 if (!FromVT.isInteger() || !ToVT.isInteger()) 374 return false; 375 unsigned FromBits = FromVT.getSizeInBits(); 376 unsigned ToBits = ToVT.getSizeInBits(); 377 return FromBits > ToBits; 378 } 379 380 //===----------------------------------------------------------------------===// 381 // Inline asm support 382 //===----------------------------------------------------------------------===// 383 384 TargetLowering::ConstraintType 385 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { 386 if (Constraint.size() == 1) { 387 switch (Constraint[0]) { 388 case 'a': // Address register 389 case 'd': // Data register (equivalent to 'r') 390 case 'f': // Floating-point register 391 case 'h': // High-part register 392 case 'r': // General-purpose register 393 return C_RegisterClass; 394 395 case 'Q': // Memory with base and unsigned 12-bit displacement 396 case 'R': // Likewise, plus an index 397 case 'S': // Memory with base and signed 20-bit displacement 398 case 'T': // Likewise, plus an index 399 case 'm': // Equivalent to 'T'. 400 return C_Memory; 401 402 case 'I': // Unsigned 8-bit constant 403 case 'J': // Unsigned 12-bit constant 404 case 'K': // Signed 16-bit constant 405 case 'L': // Signed 20-bit displacement (on all targets we support) 406 case 'M': // 0x7fffffff 407 return C_Other; 408 409 default: 410 break; 411 } 412 } 413 return TargetLowering::getConstraintType(Constraint); 414 } 415 416 TargetLowering::ConstraintWeight SystemZTargetLowering:: 417 getSingleConstraintMatchWeight(AsmOperandInfo &info, 418 const char *constraint) const { 419 ConstraintWeight weight = CW_Invalid; 420 Value *CallOperandVal = info.CallOperandVal; 421 // If we don't have a value, we can't do a match, 422 // but allow it at the lowest weight. 423 if (CallOperandVal == NULL) 424 return CW_Default; 425 Type *type = CallOperandVal->getType(); 426 // Look at the constraint type. 427 switch (*constraint) { 428 default: 429 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 430 break; 431 432 case 'a': // Address register 433 case 'd': // Data register (equivalent to 'r') 434 case 'h': // High-part register 435 case 'r': // General-purpose register 436 if (CallOperandVal->getType()->isIntegerTy()) 437 weight = CW_Register; 438 break; 439 440 case 'f': // Floating-point register 441 if (type->isFloatingPointTy()) 442 weight = CW_Register; 443 break; 444 445 case 'I': // Unsigned 8-bit constant 446 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 447 if (isUInt<8>(C->getZExtValue())) 448 weight = CW_Constant; 449 break; 450 451 case 'J': // Unsigned 12-bit constant 452 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 453 if (isUInt<12>(C->getZExtValue())) 454 weight = CW_Constant; 455 break; 456 457 case 'K': // Signed 16-bit constant 458 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 459 if (isInt<16>(C->getSExtValue())) 460 weight = CW_Constant; 461 break; 462 463 case 'L': // Signed 20-bit displacement (on all targets we support) 464 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 465 if (isInt<20>(C->getSExtValue())) 466 weight = CW_Constant; 467 break; 468 469 case 'M': // 0x7fffffff 470 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 471 if (C->getZExtValue() == 0x7fffffff) 472 weight = CW_Constant; 473 break; 474 } 475 return weight; 476 } 477 478 // Parse a "{tNNN}" register constraint for which the register type "t" 479 // has already been verified. MC is the class associated with "t" and 480 // Map maps 0-based register numbers to LLVM register numbers. 481 static std::pair<unsigned, const TargetRegisterClass *> 482 parseRegisterNumber(const std::string &Constraint, 483 const TargetRegisterClass *RC, const unsigned *Map) { 484 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 485 if (isdigit(Constraint[2])) { 486 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2); 487 unsigned Index = atoi(Suffix.c_str()); 488 if (Index < 16 && Map[Index]) 489 return std::make_pair(Map[Index], RC); 490 } 491 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 492 } 493 494 std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering:: 495 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { 496 if (Constraint.size() == 1) { 497 // GCC Constraint Letters 498 switch (Constraint[0]) { 499 default: break; 500 case 'd': // Data register (equivalent to 'r') 501 case 'r': // General-purpose register 502 if (VT == MVT::i64) 503 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 504 else if (VT == MVT::i128) 505 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 506 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 507 508 case 'a': // Address register 509 if (VT == MVT::i64) 510 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 511 else if (VT == MVT::i128) 512 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 513 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 514 515 case 'h': // High-part register (an LLVM extension) 516 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 517 518 case 'f': // Floating-point register 519 if (VT == MVT::f64) 520 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 521 else if (VT == MVT::f128) 522 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 523 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 524 } 525 } 526 if (Constraint[0] == '{') { 527 // We need to override the default register parsing for GPRs and FPRs 528 // because the interpretation depends on VT. The internal names of 529 // the registers are also different from the external names 530 // (F0D and F0S instead of F0, etc.). 531 if (Constraint[1] == 'r') { 532 if (VT == MVT::i32) 533 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 534 SystemZMC::GR32Regs); 535 if (VT == MVT::i128) 536 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 537 SystemZMC::GR128Regs); 538 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 539 SystemZMC::GR64Regs); 540 } 541 if (Constraint[1] == 'f') { 542 if (VT == MVT::f32) 543 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 544 SystemZMC::FP32Regs); 545 if (VT == MVT::f128) 546 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 547 SystemZMC::FP128Regs); 548 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 549 SystemZMC::FP64Regs); 550 } 551 } 552 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 553 } 554 555 void SystemZTargetLowering:: 556 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 557 std::vector<SDValue> &Ops, 558 SelectionDAG &DAG) const { 559 // Only support length 1 constraints for now. 560 if (Constraint.length() == 1) { 561 switch (Constraint[0]) { 562 case 'I': // Unsigned 8-bit constant 563 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 564 if (isUInt<8>(C->getZExtValue())) 565 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 566 Op.getValueType())); 567 return; 568 569 case 'J': // Unsigned 12-bit constant 570 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 571 if (isUInt<12>(C->getZExtValue())) 572 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 573 Op.getValueType())); 574 return; 575 576 case 'K': // Signed 16-bit constant 577 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 578 if (isInt<16>(C->getSExtValue())) 579 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 580 Op.getValueType())); 581 return; 582 583 case 'L': // Signed 20-bit displacement (on all targets we support) 584 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 585 if (isInt<20>(C->getSExtValue())) 586 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 587 Op.getValueType())); 588 return; 589 590 case 'M': // 0x7fffffff 591 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 592 if (C->getZExtValue() == 0x7fffffff) 593 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 594 Op.getValueType())); 595 return; 596 } 597 } 598 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 599 } 600 601 //===----------------------------------------------------------------------===// 602 // Calling conventions 603 //===----------------------------------------------------------------------===// 604 605 #include "SystemZGenCallingConv.inc" 606 607 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 608 Type *ToType) const { 609 return isTruncateFree(FromType, ToType); 610 } 611 612 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 613 if (!CI->isTailCall()) 614 return false; 615 return true; 616 } 617 618 // Value is a value that has been passed to us in the location described by VA 619 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 620 // any loads onto Chain. 621 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 622 CCValAssign &VA, SDValue Chain, 623 SDValue Value) { 624 // If the argument has been promoted from a smaller type, insert an 625 // assertion to capture this. 626 if (VA.getLocInfo() == CCValAssign::SExt) 627 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 628 DAG.getValueType(VA.getValVT())); 629 else if (VA.getLocInfo() == CCValAssign::ZExt) 630 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 631 DAG.getValueType(VA.getValVT())); 632 633 if (VA.isExtInLoc()) 634 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 635 else if (VA.getLocInfo() == CCValAssign::Indirect) 636 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 637 MachinePointerInfo(), false, false, false, 0); 638 else 639 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 640 return Value; 641 } 642 643 // Value is a value of type VA.getValVT() that we need to copy into 644 // the location described by VA. Return a copy of Value converted to 645 // VA.getValVT(). The caller is responsible for handling indirect values. 646 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 647 CCValAssign &VA, SDValue Value) { 648 switch (VA.getLocInfo()) { 649 case CCValAssign::SExt: 650 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 651 case CCValAssign::ZExt: 652 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 653 case CCValAssign::AExt: 654 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 655 case CCValAssign::Full: 656 return Value; 657 default: 658 llvm_unreachable("Unhandled getLocInfo()"); 659 } 660 } 661 662 SDValue SystemZTargetLowering:: 663 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 664 const SmallVectorImpl<ISD::InputArg> &Ins, 665 SDLoc DL, SelectionDAG &DAG, 666 SmallVectorImpl<SDValue> &InVals) const { 667 MachineFunction &MF = DAG.getMachineFunction(); 668 MachineFrameInfo *MFI = MF.getFrameInfo(); 669 MachineRegisterInfo &MRI = MF.getRegInfo(); 670 SystemZMachineFunctionInfo *FuncInfo = 671 MF.getInfo<SystemZMachineFunctionInfo>(); 672 const SystemZFrameLowering *TFL = 673 static_cast<const SystemZFrameLowering *>(TM.getFrameLowering()); 674 675 // Assign locations to all of the incoming arguments. 676 SmallVector<CCValAssign, 16> ArgLocs; 677 CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); 678 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 679 680 unsigned NumFixedGPRs = 0; 681 unsigned NumFixedFPRs = 0; 682 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 683 SDValue ArgValue; 684 CCValAssign &VA = ArgLocs[I]; 685 EVT LocVT = VA.getLocVT(); 686 if (VA.isRegLoc()) { 687 // Arguments passed in registers 688 const TargetRegisterClass *RC; 689 switch (LocVT.getSimpleVT().SimpleTy) { 690 default: 691 // Integers smaller than i64 should be promoted to i64. 692 llvm_unreachable("Unexpected argument type"); 693 case MVT::i32: 694 NumFixedGPRs += 1; 695 RC = &SystemZ::GR32BitRegClass; 696 break; 697 case MVT::i64: 698 NumFixedGPRs += 1; 699 RC = &SystemZ::GR64BitRegClass; 700 break; 701 case MVT::f32: 702 NumFixedFPRs += 1; 703 RC = &SystemZ::FP32BitRegClass; 704 break; 705 case MVT::f64: 706 NumFixedFPRs += 1; 707 RC = &SystemZ::FP64BitRegClass; 708 break; 709 } 710 711 unsigned VReg = MRI.createVirtualRegister(RC); 712 MRI.addLiveIn(VA.getLocReg(), VReg); 713 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 714 } else { 715 assert(VA.isMemLoc() && "Argument not register or memory"); 716 717 // Create the frame index object for this incoming parameter. 718 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 719 VA.getLocMemOffset(), true); 720 721 // Create the SelectionDAG nodes corresponding to a load 722 // from this parameter. Unpromoted ints and floats are 723 // passed as right-justified 8-byte values. 724 EVT PtrVT = getPointerTy(); 725 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 726 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 727 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4)); 728 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 729 MachinePointerInfo::getFixedStack(FI), 730 false, false, false, 0); 731 } 732 733 // Convert the value of the argument register into the value that's 734 // being passed. 735 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 736 } 737 738 if (IsVarArg) { 739 // Save the number of non-varargs registers for later use by va_start, etc. 740 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 741 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 742 743 // Likewise the address (in the form of a frame index) of where the 744 // first stack vararg would be. The 1-byte size here is arbitrary. 745 int64_t StackSize = CCInfo.getNextStackOffset(); 746 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 747 748 // ...and a similar frame index for the caller-allocated save area 749 // that will be used to store the incoming registers. 750 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 751 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 752 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 753 754 // Store the FPR varargs in the reserved frame slots. (We store the 755 // GPRs as part of the prologue.) 756 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 757 SDValue MemOps[SystemZ::NumArgFPRs]; 758 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 759 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 760 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 761 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 762 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 763 &SystemZ::FP64BitRegClass); 764 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 765 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 766 MachinePointerInfo::getFixedStack(FI), 767 false, false, 0); 768 769 } 770 // Join the stores, which are independent of one another. 771 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 772 &MemOps[NumFixedFPRs], 773 SystemZ::NumArgFPRs - NumFixedFPRs); 774 } 775 } 776 777 return Chain; 778 } 779 780 static bool canUseSiblingCall(CCState ArgCCInfo, 781 SmallVectorImpl<CCValAssign> &ArgLocs) { 782 // Punt if there are any indirect or stack arguments, or if the call 783 // needs the call-saved argument register R6. 784 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 785 CCValAssign &VA = ArgLocs[I]; 786 if (VA.getLocInfo() == CCValAssign::Indirect) 787 return false; 788 if (!VA.isRegLoc()) 789 return false; 790 unsigned Reg = VA.getLocReg(); 791 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 792 return false; 793 } 794 return true; 795 } 796 797 SDValue 798 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 799 SmallVectorImpl<SDValue> &InVals) const { 800 SelectionDAG &DAG = CLI.DAG; 801 SDLoc &DL = CLI.DL; 802 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 803 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 804 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 805 SDValue Chain = CLI.Chain; 806 SDValue Callee = CLI.Callee; 807 bool &IsTailCall = CLI.IsTailCall; 808 CallingConv::ID CallConv = CLI.CallConv; 809 bool IsVarArg = CLI.IsVarArg; 810 MachineFunction &MF = DAG.getMachineFunction(); 811 EVT PtrVT = getPointerTy(); 812 813 // Analyze the operands of the call, assigning locations to each operand. 814 SmallVector<CCValAssign, 16> ArgLocs; 815 CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); 816 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 817 818 // We don't support GuaranteedTailCallOpt, only automatically-detected 819 // sibling calls. 820 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 821 IsTailCall = false; 822 823 // Get a count of how many bytes are to be pushed on the stack. 824 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 825 826 // Mark the start of the call. 827 if (!IsTailCall) 828 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true), 829 DL); 830 831 // Copy argument values to their designated locations. 832 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 833 SmallVector<SDValue, 8> MemOpChains; 834 SDValue StackPtr; 835 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 836 CCValAssign &VA = ArgLocs[I]; 837 SDValue ArgValue = OutVals[I]; 838 839 if (VA.getLocInfo() == CCValAssign::Indirect) { 840 // Store the argument in a stack slot and pass its address. 841 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 842 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 843 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, 844 MachinePointerInfo::getFixedStack(FI), 845 false, false, 0)); 846 ArgValue = SpillSlot; 847 } else 848 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 849 850 if (VA.isRegLoc()) 851 // Queue up the argument copies and emit them at the end. 852 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 853 else { 854 assert(VA.isMemLoc() && "Argument not register or memory"); 855 856 // Work out the address of the stack slot. Unpromoted ints and 857 // floats are passed as right-justified 8-byte values. 858 if (!StackPtr.getNode()) 859 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 860 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 861 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 862 Offset += 4; 863 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 864 DAG.getIntPtrConstant(Offset)); 865 866 // Emit the store. 867 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 868 MachinePointerInfo(), 869 false, false, 0)); 870 } 871 } 872 873 // Join the stores, which are independent of one another. 874 if (!MemOpChains.empty()) 875 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 876 &MemOpChains[0], MemOpChains.size()); 877 878 // Accept direct calls by converting symbolic call addresses to the 879 // associated Target* opcodes. Force %r1 to be used for indirect 880 // tail calls. 881 SDValue Glue; 882 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 883 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 884 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 885 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 886 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 887 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 888 } else if (IsTailCall) { 889 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 890 Glue = Chain.getValue(1); 891 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 892 } 893 894 // Build a sequence of copy-to-reg nodes, chained and glued together. 895 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 896 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 897 RegsToPass[I].second, Glue); 898 Glue = Chain.getValue(1); 899 } 900 901 // The first call operand is the chain and the second is the target address. 902 SmallVector<SDValue, 8> Ops; 903 Ops.push_back(Chain); 904 Ops.push_back(Callee); 905 906 // Add argument registers to the end of the list so that they are 907 // known live into the call. 908 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 909 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 910 RegsToPass[I].second.getValueType())); 911 912 // Glue the call to the argument copies, if any. 913 if (Glue.getNode()) 914 Ops.push_back(Glue); 915 916 // Emit the call. 917 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 918 if (IsTailCall) 919 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size()); 920 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size()); 921 Glue = Chain.getValue(1); 922 923 // Mark the end of the call, which is glued to the call itself. 924 Chain = DAG.getCALLSEQ_END(Chain, 925 DAG.getConstant(NumBytes, PtrVT, true), 926 DAG.getConstant(0, PtrVT, true), 927 Glue, DL); 928 Glue = Chain.getValue(1); 929 930 // Assign locations to each value returned by this call. 931 SmallVector<CCValAssign, 16> RetLocs; 932 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); 933 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 934 935 // Copy all of the result registers out of their specified physreg. 936 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 937 CCValAssign &VA = RetLocs[I]; 938 939 // Copy the value out, gluing the copy to the end of the call sequence. 940 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 941 VA.getLocVT(), Glue); 942 Chain = RetValue.getValue(1); 943 Glue = RetValue.getValue(2); 944 945 // Convert the value of the return register into the value that's 946 // being returned. 947 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 948 } 949 950 return Chain; 951 } 952 953 SDValue 954 SystemZTargetLowering::LowerReturn(SDValue Chain, 955 CallingConv::ID CallConv, bool IsVarArg, 956 const SmallVectorImpl<ISD::OutputArg> &Outs, 957 const SmallVectorImpl<SDValue> &OutVals, 958 SDLoc DL, SelectionDAG &DAG) const { 959 MachineFunction &MF = DAG.getMachineFunction(); 960 961 // Assign locations to each returned value. 962 SmallVector<CCValAssign, 16> RetLocs; 963 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); 964 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 965 966 // Quick exit for void returns 967 if (RetLocs.empty()) 968 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 969 970 // Copy the result values into the output registers. 971 SDValue Glue; 972 SmallVector<SDValue, 4> RetOps; 973 RetOps.push_back(Chain); 974 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 975 CCValAssign &VA = RetLocs[I]; 976 SDValue RetValue = OutVals[I]; 977 978 // Make the return register live on exit. 979 assert(VA.isRegLoc() && "Can only return in registers!"); 980 981 // Promote the value as required. 982 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 983 984 // Chain and glue the copies together. 985 unsigned Reg = VA.getLocReg(); 986 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 987 Glue = Chain.getValue(1); 988 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 989 } 990 991 // Update chain and glue. 992 RetOps[0] = Chain; 993 if (Glue.getNode()) 994 RetOps.push_back(Glue); 995 996 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, 997 RetOps.data(), RetOps.size()); 998 } 999 1000 SDValue SystemZTargetLowering:: 1001 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1002 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1003 } 1004 1005 // CC is a comparison that will be implemented using an integer or 1006 // floating-point comparison. Return the condition code mask for 1007 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1008 // unsigned comparisons and clear for signed ones. In the floating-point 1009 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1010 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1011 #define CONV(X) \ 1012 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1013 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1014 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1015 1016 switch (CC) { 1017 default: 1018 llvm_unreachable("Invalid integer condition!"); 1019 1020 CONV(EQ); 1021 CONV(NE); 1022 CONV(GT); 1023 CONV(GE); 1024 CONV(LT); 1025 CONV(LE); 1026 1027 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1028 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1029 } 1030 #undef CONV 1031 } 1032 1033 // Return a sequence for getting a 1 from an IPM result when CC has a 1034 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1035 // The handling of CC values outside CCValid doesn't matter. 1036 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1037 // Deal with cases where the result can be taken directly from a bit 1038 // of the IPM result. 1039 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1040 return IPMConversion(0, 0, SystemZ::IPM_CC); 1041 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1042 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1043 1044 // Deal with cases where we can add a value to force the sign bit 1045 // to contain the right value. Putting the bit in 31 means we can 1046 // use SRL rather than RISBG(L), and also makes it easier to get a 1047 // 0/-1 value, so it has priority over the other tests below. 1048 // 1049 // These sequences rely on the fact that the upper two bits of the 1050 // IPM result are zero. 1051 uint64_t TopBit = uint64_t(1) << 31; 1052 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1053 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1054 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1055 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1056 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1057 | SystemZ::CCMASK_1 1058 | SystemZ::CCMASK_2))) 1059 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1060 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1061 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1062 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1063 | SystemZ::CCMASK_2 1064 | SystemZ::CCMASK_3))) 1065 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1066 1067 // Next try inverting the value and testing a bit. 0/1 could be 1068 // handled this way too, but we dealt with that case above. 1069 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1070 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1071 1072 // Handle cases where adding a value forces a non-sign bit to contain 1073 // the right value. 1074 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1075 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1076 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1077 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1078 1079 // The remaing cases are 1, 2, 0/1/3 and 0/2/3. All these are 1080 // can be done by inverting the low CC bit and applying one of the 1081 // sign-based extractions above. 1082 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1083 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1084 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1085 return IPMConversion(1 << SystemZ::IPM_CC, 1086 TopBit - (3 << SystemZ::IPM_CC), 31); 1087 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1088 | SystemZ::CCMASK_1 1089 | SystemZ::CCMASK_3))) 1090 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1091 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1092 | SystemZ::CCMASK_2 1093 | SystemZ::CCMASK_3))) 1094 return IPMConversion(1 << SystemZ::IPM_CC, 1095 TopBit - (1 << SystemZ::IPM_CC), 31); 1096 1097 llvm_unreachable("Unexpected CC combination"); 1098 } 1099 1100 // If C can be converted to a comparison against zero, adjust the operands 1101 // as necessary. 1102 static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) { 1103 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1104 return; 1105 1106 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1107 if (!ConstOp1) 1108 return; 1109 1110 int64_t Value = ConstOp1->getSExtValue(); 1111 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1112 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1113 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1114 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1115 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1116 C.Op1 = DAG.getConstant(0, C.Op1.getValueType()); 1117 } 1118 } 1119 1120 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1121 // adjust the operands as necessary. 1122 static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) { 1123 // For us to make any changes, it must a comparison between a single-use 1124 // load and a constant. 1125 if (!C.Op0.hasOneUse() || 1126 C.Op0.getOpcode() != ISD::LOAD || 1127 C.Op1.getOpcode() != ISD::Constant) 1128 return; 1129 1130 // We must have an 8- or 16-bit load. 1131 LoadSDNode *Load = cast<LoadSDNode>(C.Op0); 1132 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1133 if (NumBits != 8 && NumBits != 16) 1134 return; 1135 1136 // The load must be an extending one and the constant must be within the 1137 // range of the unextended value. 1138 ConstantSDNode *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1139 uint64_t Value = ConstOp1->getZExtValue(); 1140 uint64_t Mask = (1 << NumBits) - 1; 1141 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1142 // Make sure that ConstOp1 is in range of C.Op0. 1143 int64_t SignedValue = ConstOp1->getSExtValue(); 1144 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1145 return; 1146 if (C.ICmpType != SystemZICMP::SignedOnly) { 1147 // Unsigned comparison between two sign-extended values is equivalent 1148 // to unsigned comparison between two zero-extended values. 1149 Value &= Mask; 1150 } else if (NumBits == 8) { 1151 // Try to treat the comparison as unsigned, so that we can use CLI. 1152 // Adjust CCMask and Value as necessary. 1153 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1154 // Test whether the high bit of the byte is set. 1155 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1156 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1157 // Test whether the high bit of the byte is clear. 1158 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1159 else 1160 // No instruction exists for this combination. 1161 return; 1162 C.ICmpType = SystemZICMP::UnsignedOnly; 1163 } 1164 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1165 if (Value > Mask) 1166 return; 1167 assert(C.ICmpType == SystemZICMP::Any && 1168 "Signedness shouldn't matter here."); 1169 } else 1170 return; 1171 1172 // Make sure that the first operand is an i32 of the right extension type. 1173 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1174 ISD::SEXTLOAD : 1175 ISD::ZEXTLOAD); 1176 if (C.Op0.getValueType() != MVT::i32 || 1177 Load->getExtensionType() != ExtType) 1178 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1179 Load->getChain(), Load->getBasePtr(), 1180 Load->getPointerInfo(), Load->getMemoryVT(), 1181 Load->isVolatile(), Load->isNonTemporal(), 1182 Load->getAlignment()); 1183 1184 // Make sure that the second operand is an i32 with the right value. 1185 if (C.Op1.getValueType() != MVT::i32 || 1186 Value != ConstOp1->getZExtValue()) 1187 C.Op1 = DAG.getConstant(Value, MVT::i32); 1188 } 1189 1190 // Return true if Op is either an unextended load, or a load suitable 1191 // for integer register-memory comparisons of type ICmpType. 1192 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1193 LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1194 if (Load) { 1195 // There are no instructions to compare a register with a memory byte. 1196 if (Load->getMemoryVT() == MVT::i8) 1197 return false; 1198 // Otherwise decide on extension type. 1199 switch (Load->getExtensionType()) { 1200 case ISD::NON_EXTLOAD: 1201 return true; 1202 case ISD::SEXTLOAD: 1203 return ICmpType != SystemZICMP::UnsignedOnly; 1204 case ISD::ZEXTLOAD: 1205 return ICmpType != SystemZICMP::SignedOnly; 1206 default: 1207 break; 1208 } 1209 } 1210 return false; 1211 } 1212 1213 // Return true if it is better to swap the operands of C. 1214 static bool shouldSwapCmpOperands(const Comparison &C) { 1215 // Leave f128 comparisons alone, since they have no memory forms. 1216 if (C.Op0.getValueType() == MVT::f128) 1217 return false; 1218 1219 // Always keep a floating-point constant second, since comparisons with 1220 // zero can use LOAD TEST and comparisons with other constants make a 1221 // natural memory operand. 1222 if (isa<ConstantFPSDNode>(C.Op1)) 1223 return false; 1224 1225 // Never swap comparisons with zero since there are many ways to optimize 1226 // those later. 1227 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1228 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1229 return false; 1230 1231 // Also keep natural memory operands second if the loaded value is 1232 // only used here. Several comparisons have memory forms. 1233 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1234 return false; 1235 1236 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1237 // In that case we generally prefer the memory to be second. 1238 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1239 // The only exceptions are when the second operand is a constant and 1240 // we can use things like CHHSI. 1241 if (!ConstOp1) 1242 return true; 1243 // The unsigned memory-immediate instructions can handle 16-bit 1244 // unsigned integers. 1245 if (C.ICmpType != SystemZICMP::SignedOnly && 1246 isUInt<16>(ConstOp1->getZExtValue())) 1247 return false; 1248 // The signed memory-immediate instructions can handle 16-bit 1249 // signed integers. 1250 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1251 isInt<16>(ConstOp1->getSExtValue())) 1252 return false; 1253 return true; 1254 } 1255 1256 // Try to promote the use of CGFR and CLGFR. 1257 unsigned Opcode0 = C.Op0.getOpcode(); 1258 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1259 return true; 1260 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1261 return true; 1262 if (C.ICmpType != SystemZICMP::SignedOnly && 1263 Opcode0 == ISD::AND && 1264 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1265 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1266 return true; 1267 1268 return false; 1269 } 1270 1271 // Return a version of comparison CC mask CCMask in which the LT and GT 1272 // actions are swapped. 1273 static unsigned reverseCCMask(unsigned CCMask) { 1274 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1275 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1276 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1277 (CCMask & SystemZ::CCMASK_CMP_UO)); 1278 } 1279 1280 // Check whether C tests for equality between X and Y and whether X - Y 1281 // or Y - X is also computed. In that case it's better to compare the 1282 // result of the subtraction against zero. 1283 static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) { 1284 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1285 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1286 for (SDNode::use_iterator I = C.Op0->use_begin(), E = C.Op0->use_end(); 1287 I != E; ++I) { 1288 SDNode *N = *I; 1289 if (N->getOpcode() == ISD::SUB && 1290 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1291 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1292 C.Op0 = SDValue(N, 0); 1293 C.Op1 = DAG.getConstant(0, N->getValueType(0)); 1294 return; 1295 } 1296 } 1297 } 1298 } 1299 1300 // Check whether C compares a floating-point value with zero and if that 1301 // floating-point value is also negated. In this case we can use the 1302 // negation to set CC, so avoiding separate LOAD AND TEST and 1303 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1304 static void adjustForFNeg(Comparison &C) { 1305 ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1306 if (C1 && C1->isZero()) { 1307 for (SDNode::use_iterator I = C.Op0->use_begin(), E = C.Op0->use_end(); 1308 I != E; ++I) { 1309 SDNode *N = *I; 1310 if (N->getOpcode() == ISD::FNEG) { 1311 C.Op0 = SDValue(N, 0); 1312 C.CCMask = reverseCCMask(C.CCMask); 1313 return; 1314 } 1315 } 1316 } 1317 } 1318 1319 // Check whether C compares (shl X, 32) with 0 and whether X is 1320 // also sign-extended. In that case it is better to test the result 1321 // of the sign extension using LTGFR. 1322 // 1323 // This case is important because InstCombine transforms a comparison 1324 // with (sext (trunc X)) into a comparison with (shl X, 32). 1325 static void adjustForLTGFR(Comparison &C) { 1326 // Check for a comparison between (shl X, 32) and 0. 1327 if (C.Op0.getOpcode() == ISD::SHL && 1328 C.Op0.getValueType() == MVT::i64 && 1329 C.Op1.getOpcode() == ISD::Constant && 1330 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1331 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1332 if (C1 && C1->getZExtValue() == 32) { 1333 SDValue ShlOp0 = C.Op0.getOperand(0); 1334 // See whether X has any SIGN_EXTEND_INREG uses. 1335 for (SDNode::use_iterator I = ShlOp0->use_begin(), E = ShlOp0->use_end(); 1336 I != E; ++I) { 1337 SDNode *N = *I; 1338 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1339 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1340 C.Op0 = SDValue(N, 0); 1341 return; 1342 } 1343 } 1344 } 1345 } 1346 } 1347 1348 // If C compares the truncation of an extending load, try to compare 1349 // the untruncated value instead. This exposes more opportunities to 1350 // reuse CC. 1351 static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) { 1352 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1353 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1354 C.Op1.getOpcode() == ISD::Constant && 1355 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1356 LoadSDNode *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1357 if (L->getMemoryVT().getStoreSizeInBits() 1358 <= C.Op0.getValueType().getSizeInBits()) { 1359 unsigned Type = L->getExtensionType(); 1360 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1361 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1362 C.Op0 = C.Op0.getOperand(0); 1363 C.Op1 = DAG.getConstant(0, C.Op0.getValueType()); 1364 } 1365 } 1366 } 1367 } 1368 1369 // Return true if shift operation N has an in-range constant shift value. 1370 // Store it in ShiftVal if so. 1371 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1372 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1373 if (!Shift) 1374 return false; 1375 1376 uint64_t Amount = Shift->getZExtValue(); 1377 if (Amount >= N.getValueType().getSizeInBits()) 1378 return false; 1379 1380 ShiftVal = Amount; 1381 return true; 1382 } 1383 1384 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1385 // instruction and whether the CC value is descriptive enough to handle 1386 // a comparison of type Opcode between the AND result and CmpVal. 1387 // CCMask says which comparison result is being tested and BitSize is 1388 // the number of bits in the operands. If TEST UNDER MASK can be used, 1389 // return the corresponding CC mask, otherwise return 0. 1390 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1391 uint64_t Mask, uint64_t CmpVal, 1392 unsigned ICmpType) { 1393 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1394 1395 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1396 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1397 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1398 return 0; 1399 1400 // Work out the masks for the lowest and highest bits. 1401 unsigned HighShift = 63 - countLeadingZeros(Mask); 1402 uint64_t High = uint64_t(1) << HighShift; 1403 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1404 1405 // Signed ordered comparisons are effectively unsigned if the sign 1406 // bit is dropped. 1407 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1408 1409 // Check for equality comparisons with 0, or the equivalent. 1410 if (CmpVal == 0) { 1411 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1412 return SystemZ::CCMASK_TM_ALL_0; 1413 if (CCMask == SystemZ::CCMASK_CMP_NE) 1414 return SystemZ::CCMASK_TM_SOME_1; 1415 } 1416 if (EffectivelyUnsigned && CmpVal <= Low) { 1417 if (CCMask == SystemZ::CCMASK_CMP_LT) 1418 return SystemZ::CCMASK_TM_ALL_0; 1419 if (CCMask == SystemZ::CCMASK_CMP_GE) 1420 return SystemZ::CCMASK_TM_SOME_1; 1421 } 1422 if (EffectivelyUnsigned && CmpVal < Low) { 1423 if (CCMask == SystemZ::CCMASK_CMP_LE) 1424 return SystemZ::CCMASK_TM_ALL_0; 1425 if (CCMask == SystemZ::CCMASK_CMP_GT) 1426 return SystemZ::CCMASK_TM_SOME_1; 1427 } 1428 1429 // Check for equality comparisons with the mask, or the equivalent. 1430 if (CmpVal == Mask) { 1431 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1432 return SystemZ::CCMASK_TM_ALL_1; 1433 if (CCMask == SystemZ::CCMASK_CMP_NE) 1434 return SystemZ::CCMASK_TM_SOME_0; 1435 } 1436 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1437 if (CCMask == SystemZ::CCMASK_CMP_GT) 1438 return SystemZ::CCMASK_TM_ALL_1; 1439 if (CCMask == SystemZ::CCMASK_CMP_LE) 1440 return SystemZ::CCMASK_TM_SOME_0; 1441 } 1442 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1443 if (CCMask == SystemZ::CCMASK_CMP_GE) 1444 return SystemZ::CCMASK_TM_ALL_1; 1445 if (CCMask == SystemZ::CCMASK_CMP_LT) 1446 return SystemZ::CCMASK_TM_SOME_0; 1447 } 1448 1449 // Check for ordered comparisons with the top bit. 1450 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1451 if (CCMask == SystemZ::CCMASK_CMP_LE) 1452 return SystemZ::CCMASK_TM_MSB_0; 1453 if (CCMask == SystemZ::CCMASK_CMP_GT) 1454 return SystemZ::CCMASK_TM_MSB_1; 1455 } 1456 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1457 if (CCMask == SystemZ::CCMASK_CMP_LT) 1458 return SystemZ::CCMASK_TM_MSB_0; 1459 if (CCMask == SystemZ::CCMASK_CMP_GE) 1460 return SystemZ::CCMASK_TM_MSB_1; 1461 } 1462 1463 // If there are just two bits, we can do equality checks for Low and High 1464 // as well. 1465 if (Mask == Low + High) { 1466 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1467 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1468 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1469 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1470 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1471 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1472 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1473 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1474 } 1475 1476 // Looks like we've exhausted our options. 1477 return 0; 1478 } 1479 1480 // See whether C can be implemented as a TEST UNDER MASK instruction. 1481 // Update the arguments with the TM version if so. 1482 static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) { 1483 // Check that we have a comparison with a constant. 1484 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1485 if (!ConstOp1) 1486 return; 1487 uint64_t CmpVal = ConstOp1->getZExtValue(); 1488 1489 // Check whether the nonconstant input is an AND with a constant mask. 1490 Comparison NewC(C); 1491 uint64_t MaskVal; 1492 ConstantSDNode *Mask = 0; 1493 if (C.Op0.getOpcode() == ISD::AND) { 1494 NewC.Op0 = C.Op0.getOperand(0); 1495 NewC.Op1 = C.Op0.getOperand(1); 1496 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1497 if (!Mask) 1498 return; 1499 MaskVal = Mask->getZExtValue(); 1500 } else { 1501 // There is no instruction to compare with a 64-bit immediate 1502 // so use TMHH instead if possible. We need an unsigned ordered 1503 // comparison with an i64 immediate. 1504 if (NewC.Op0.getValueType() != MVT::i64 || 1505 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1506 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1507 NewC.ICmpType == SystemZICMP::SignedOnly) 1508 return; 1509 // Convert LE and GT comparisons into LT and GE. 1510 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1511 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1512 if (CmpVal == uint64_t(-1)) 1513 return; 1514 CmpVal += 1; 1515 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1516 } 1517 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1518 // be masked off without changing the result. 1519 MaskVal = -(CmpVal & -CmpVal); 1520 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1521 } 1522 1523 // Check whether the combination of mask, comparison value and comparison 1524 // type are suitable. 1525 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1526 unsigned NewCCMask, ShiftVal; 1527 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1528 NewC.Op0.getOpcode() == ISD::SHL && 1529 isSimpleShift(NewC.Op0, ShiftVal) && 1530 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1531 MaskVal >> ShiftVal, 1532 CmpVal >> ShiftVal, 1533 SystemZICMP::Any))) { 1534 NewC.Op0 = NewC.Op0.getOperand(0); 1535 MaskVal >>= ShiftVal; 1536 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1537 NewC.Op0.getOpcode() == ISD::SRL && 1538 isSimpleShift(NewC.Op0, ShiftVal) && 1539 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1540 MaskVal << ShiftVal, 1541 CmpVal << ShiftVal, 1542 SystemZICMP::UnsignedOnly))) { 1543 NewC.Op0 = NewC.Op0.getOperand(0); 1544 MaskVal <<= ShiftVal; 1545 } else { 1546 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1547 NewC.ICmpType); 1548 if (!NewCCMask) 1549 return; 1550 } 1551 1552 // Go ahead and make the change. 1553 C.Opcode = SystemZISD::TM; 1554 C.Op0 = NewC.Op0; 1555 if (Mask && Mask->getZExtValue() == MaskVal) 1556 C.Op1 = SDValue(Mask, 0); 1557 else 1558 C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType()); 1559 C.CCValid = SystemZ::CCMASK_TM; 1560 C.CCMask = NewCCMask; 1561 } 1562 1563 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 1564 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 1565 ISD::CondCode Cond) { 1566 Comparison C(CmpOp0, CmpOp1); 1567 C.CCMask = CCMaskForCondCode(Cond); 1568 if (C.Op0.getValueType().isFloatingPoint()) { 1569 C.CCValid = SystemZ::CCMASK_FCMP; 1570 C.Opcode = SystemZISD::FCMP; 1571 adjustForFNeg(C); 1572 } else { 1573 C.CCValid = SystemZ::CCMASK_ICMP; 1574 C.Opcode = SystemZISD::ICMP; 1575 // Choose the type of comparison. Equality and inequality tests can 1576 // use either signed or unsigned comparisons. The choice also doesn't 1577 // matter if both sign bits are known to be clear. In those cases we 1578 // want to give the main isel code the freedom to choose whichever 1579 // form fits best. 1580 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1581 C.CCMask == SystemZ::CCMASK_CMP_NE || 1582 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 1583 C.ICmpType = SystemZICMP::Any; 1584 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 1585 C.ICmpType = SystemZICMP::UnsignedOnly; 1586 else 1587 C.ICmpType = SystemZICMP::SignedOnly; 1588 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 1589 adjustZeroCmp(DAG, C); 1590 adjustSubwordCmp(DAG, C); 1591 adjustForSubtraction(DAG, C); 1592 adjustForLTGFR(C); 1593 adjustICmpTruncate(DAG, C); 1594 } 1595 1596 if (shouldSwapCmpOperands(C)) { 1597 std::swap(C.Op0, C.Op1); 1598 C.CCMask = reverseCCMask(C.CCMask); 1599 } 1600 1601 adjustForTestUnderMask(DAG, C); 1602 return C; 1603 } 1604 1605 // Emit the comparison instruction described by C. 1606 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1607 if (C.Opcode == SystemZISD::ICMP) 1608 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 1609 DAG.getConstant(C.ICmpType, MVT::i32)); 1610 if (C.Opcode == SystemZISD::TM) { 1611 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 1612 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 1613 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 1614 DAG.getConstant(RegisterOnly, MVT::i32)); 1615 } 1616 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 1617 } 1618 1619 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 1620 // 64 bits. Extend is the extension type to use. Store the high part 1621 // in Hi and the low part in Lo. 1622 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 1623 unsigned Extend, SDValue Op0, SDValue Op1, 1624 SDValue &Hi, SDValue &Lo) { 1625 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 1626 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 1627 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 1628 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64)); 1629 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 1630 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 1631 } 1632 1633 // Lower a binary operation that produces two VT results, one in each 1634 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 1635 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 1636 // on the extended Op0 and (unextended) Op1. Store the even register result 1637 // in Even and the odd register result in Odd. 1638 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 1639 unsigned Extend, unsigned Opcode, 1640 SDValue Op0, SDValue Op1, 1641 SDValue &Even, SDValue &Odd) { 1642 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 1643 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 1644 SDValue(In128, 0), Op1); 1645 bool Is32Bit = is32Bit(VT); 1646 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 1647 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 1648 } 1649 1650 // Return an i32 value that is 1 if the CC value produced by Glue is 1651 // in the mask CCMask and 0 otherwise. CC is known to have a value 1652 // in CCValid, so other values can be ignored. 1653 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 1654 unsigned CCValid, unsigned CCMask) { 1655 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 1656 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 1657 1658 if (Conversion.XORValue) 1659 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 1660 DAG.getConstant(Conversion.XORValue, MVT::i32)); 1661 1662 if (Conversion.AddValue) 1663 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 1664 DAG.getConstant(Conversion.AddValue, MVT::i32)); 1665 1666 // The SHR/AND sequence should get optimized to an RISBG. 1667 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 1668 DAG.getConstant(Conversion.Bit, MVT::i32)); 1669 if (Conversion.Bit != 31) 1670 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 1671 DAG.getConstant(1, MVT::i32)); 1672 return Result; 1673 } 1674 1675 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 1676 SelectionDAG &DAG) const { 1677 SDValue CmpOp0 = Op.getOperand(0); 1678 SDValue CmpOp1 = Op.getOperand(1); 1679 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1680 SDLoc DL(Op); 1681 1682 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC)); 1683 SDValue Glue = emitCmp(DAG, DL, C); 1684 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 1685 } 1686 1687 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 1688 SDValue Chain = Op.getOperand(0); 1689 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 1690 SDValue CmpOp0 = Op.getOperand(2); 1691 SDValue CmpOp1 = Op.getOperand(3); 1692 SDValue Dest = Op.getOperand(4); 1693 SDLoc DL(Op); 1694 1695 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC)); 1696 SDValue Glue = emitCmp(DAG, DL, C); 1697 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 1698 Chain, DAG.getConstant(C.CCValid, MVT::i32), 1699 DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue); 1700 } 1701 1702 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 1703 // allowing Pos and Neg to be wider than CmpOp. 1704 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 1705 return (Neg.getOpcode() == ISD::SUB && 1706 Neg.getOperand(0).getOpcode() == ISD::Constant && 1707 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 1708 Neg.getOperand(1) == Pos && 1709 (Pos == CmpOp || 1710 (Pos.getOpcode() == ISD::SIGN_EXTEND && 1711 Pos.getOperand(0) == CmpOp))); 1712 } 1713 1714 // Return the absolute or negative absolute of Op; IsNegative decides which. 1715 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 1716 bool IsNegative) { 1717 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 1718 if (IsNegative) 1719 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 1720 DAG.getConstant(0, Op.getValueType()), Op); 1721 return Op; 1722 } 1723 1724 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 1725 SelectionDAG &DAG) const { 1726 SDValue CmpOp0 = Op.getOperand(0); 1727 SDValue CmpOp1 = Op.getOperand(1); 1728 SDValue TrueOp = Op.getOperand(2); 1729 SDValue FalseOp = Op.getOperand(3); 1730 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 1731 SDLoc DL(Op); 1732 1733 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC)); 1734 1735 // Check for absolute and negative-absolute selections, including those 1736 // where the comparison value is sign-extended (for LPGFR and LNGFR). 1737 // This check supplements the one in DAGCombiner. 1738 if (C.Opcode == SystemZISD::ICMP && 1739 C.CCMask != SystemZ::CCMASK_CMP_EQ && 1740 C.CCMask != SystemZ::CCMASK_CMP_NE && 1741 C.Op1.getOpcode() == ISD::Constant && 1742 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1743 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 1744 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 1745 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 1746 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 1747 } 1748 1749 SDValue Glue = emitCmp(DAG, DL, C); 1750 1751 // Special case for handling -1/0 results. The shifts we use here 1752 // should get optimized with the IPM conversion sequence. 1753 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 1754 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 1755 if (TrueC && FalseC) { 1756 int64_t TrueVal = TrueC->getSExtValue(); 1757 int64_t FalseVal = FalseC->getSExtValue(); 1758 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 1759 // Invert the condition if we want -1 on false. 1760 if (TrueVal == 0) 1761 C.CCMask ^= C.CCValid; 1762 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 1763 EVT VT = Op.getValueType(); 1764 // Extend the result to VT. Upper bits are ignored. 1765 if (!is32Bit(VT)) 1766 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 1767 // Sign-extend from the low bit. 1768 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32); 1769 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 1770 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 1771 } 1772 } 1773 1774 SmallVector<SDValue, 5> Ops; 1775 Ops.push_back(TrueOp); 1776 Ops.push_back(FalseOp); 1777 Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32)); 1778 Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32)); 1779 Ops.push_back(Glue); 1780 1781 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1782 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size()); 1783 } 1784 1785 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 1786 SelectionDAG &DAG) const { 1787 SDLoc DL(Node); 1788 const GlobalValue *GV = Node->getGlobal(); 1789 int64_t Offset = Node->getOffset(); 1790 EVT PtrVT = getPointerTy(); 1791 Reloc::Model RM = TM.getRelocationModel(); 1792 CodeModel::Model CM = TM.getCodeModel(); 1793 1794 SDValue Result; 1795 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 1796 // Assign anchors at 1<<12 byte boundaries. 1797 uint64_t Anchor = Offset & ~uint64_t(0xfff); 1798 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 1799 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1800 1801 // The offset can be folded into the address if it is aligned to a halfword. 1802 Offset -= Anchor; 1803 if (Offset != 0 && (Offset & 1) == 0) { 1804 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 1805 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 1806 Offset = 0; 1807 } 1808 } else { 1809 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 1810 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1811 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 1812 MachinePointerInfo::getGOT(), false, false, false, 0); 1813 } 1814 1815 // If there was a non-zero offset that we didn't fold, create an explicit 1816 // addition for it. 1817 if (Offset != 0) 1818 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 1819 DAG.getConstant(Offset, PtrVT)); 1820 1821 return Result; 1822 } 1823 1824 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 1825 SelectionDAG &DAG) const { 1826 SDLoc DL(Node); 1827 const GlobalValue *GV = Node->getGlobal(); 1828 EVT PtrVT = getPointerTy(); 1829 TLSModel::Model model = TM.getTLSModel(GV); 1830 1831 if (model != TLSModel::LocalExec) 1832 llvm_unreachable("only local-exec TLS mode supported"); 1833 1834 // The high part of the thread pointer is in access register 0. 1835 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 1836 DAG.getConstant(0, MVT::i32)); 1837 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 1838 1839 // The low part of the thread pointer is in access register 1. 1840 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 1841 DAG.getConstant(1, MVT::i32)); 1842 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 1843 1844 // Merge them into a single 64-bit address. 1845 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 1846 DAG.getConstant(32, PtrVT)); 1847 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 1848 1849 // Get the offset of GA from the thread pointer. 1850 SystemZConstantPoolValue *CPV = 1851 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 1852 1853 // Force the offset into the constant pool and load it from there. 1854 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8); 1855 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 1856 CPAddr, MachinePointerInfo::getConstantPool(), 1857 false, false, false, 0); 1858 1859 // Add the base and offset together. 1860 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 1861 } 1862 1863 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 1864 SelectionDAG &DAG) const { 1865 SDLoc DL(Node); 1866 const BlockAddress *BA = Node->getBlockAddress(); 1867 int64_t Offset = Node->getOffset(); 1868 EVT PtrVT = getPointerTy(); 1869 1870 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 1871 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1872 return Result; 1873 } 1874 1875 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 1876 SelectionDAG &DAG) const { 1877 SDLoc DL(JT); 1878 EVT PtrVT = getPointerTy(); 1879 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1880 1881 // Use LARL to load the address of the table. 1882 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1883 } 1884 1885 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 1886 SelectionDAG &DAG) const { 1887 SDLoc DL(CP); 1888 EVT PtrVT = getPointerTy(); 1889 1890 SDValue Result; 1891 if (CP->isMachineConstantPoolEntry()) 1892 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 1893 CP->getAlignment()); 1894 else 1895 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 1896 CP->getAlignment(), CP->getOffset()); 1897 1898 // Use LARL to load the address of the constant pool entry. 1899 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1900 } 1901 1902 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 1903 SelectionDAG &DAG) const { 1904 SDLoc DL(Op); 1905 SDValue In = Op.getOperand(0); 1906 EVT InVT = In.getValueType(); 1907 EVT ResVT = Op.getValueType(); 1908 1909 if (InVT == MVT::i32 && ResVT == MVT::f32) { 1910 SDValue In64; 1911 if (Subtarget.hasHighWord()) { 1912 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 1913 MVT::i64); 1914 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 1915 MVT::i64, SDValue(U64, 0), In); 1916 } else { 1917 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 1918 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 1919 DAG.getConstant(32, MVT::i64)); 1920 } 1921 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 1922 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 1923 DL, MVT::f32, Out64); 1924 } 1925 if (InVT == MVT::f32 && ResVT == MVT::i32) { 1926 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 1927 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 1928 MVT::f64, SDValue(U64, 0), In); 1929 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 1930 if (Subtarget.hasHighWord()) 1931 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 1932 MVT::i32, Out64); 1933 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 1934 DAG.getConstant(32, MVT::i64)); 1935 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 1936 } 1937 llvm_unreachable("Unexpected bitcast combination"); 1938 } 1939 1940 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 1941 SelectionDAG &DAG) const { 1942 MachineFunction &MF = DAG.getMachineFunction(); 1943 SystemZMachineFunctionInfo *FuncInfo = 1944 MF.getInfo<SystemZMachineFunctionInfo>(); 1945 EVT PtrVT = getPointerTy(); 1946 1947 SDValue Chain = Op.getOperand(0); 1948 SDValue Addr = Op.getOperand(1); 1949 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1950 SDLoc DL(Op); 1951 1952 // The initial values of each field. 1953 const unsigned NumFields = 4; 1954 SDValue Fields[NumFields] = { 1955 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT), 1956 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT), 1957 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 1958 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 1959 }; 1960 1961 // Store each field into its respective slot. 1962 SDValue MemOps[NumFields]; 1963 unsigned Offset = 0; 1964 for (unsigned I = 0; I < NumFields; ++I) { 1965 SDValue FieldAddr = Addr; 1966 if (Offset != 0) 1967 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 1968 DAG.getIntPtrConstant(Offset)); 1969 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 1970 MachinePointerInfo(SV, Offset), 1971 false, false, 0); 1972 Offset += 8; 1973 } 1974 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields); 1975 } 1976 1977 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 1978 SelectionDAG &DAG) const { 1979 SDValue Chain = Op.getOperand(0); 1980 SDValue DstPtr = Op.getOperand(1); 1981 SDValue SrcPtr = Op.getOperand(2); 1982 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 1983 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 1984 SDLoc DL(Op); 1985 1986 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32), 1987 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 1988 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 1989 } 1990 1991 SDValue SystemZTargetLowering:: 1992 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 1993 SDValue Chain = Op.getOperand(0); 1994 SDValue Size = Op.getOperand(1); 1995 SDLoc DL(Op); 1996 1997 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 1998 1999 // Get a reference to the stack pointer. 2000 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2001 2002 // Get the new stack pointer value. 2003 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2004 2005 // Copy the new stack pointer back. 2006 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2007 2008 // The allocated data lives above the 160 bytes allocated for the standard 2009 // frame, plus any outgoing stack arguments. We don't know how much that 2010 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2011 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2012 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2013 2014 SDValue Ops[2] = { Result, Chain }; 2015 return DAG.getMergeValues(Ops, 2, DL); 2016 } 2017 2018 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2019 SelectionDAG &DAG) const { 2020 EVT VT = Op.getValueType(); 2021 SDLoc DL(Op); 2022 SDValue Ops[2]; 2023 if (is32Bit(VT)) 2024 // Just do a normal 64-bit multiplication and extract the results. 2025 // We define this so that it can be used for constant division. 2026 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2027 Op.getOperand(1), Ops[1], Ops[0]); 2028 else { 2029 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2030 // 2031 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2032 // 2033 // but using the fact that the upper halves are either all zeros 2034 // or all ones: 2035 // 2036 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2037 // 2038 // and grouping the right terms together since they are quicker than the 2039 // multiplication: 2040 // 2041 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2042 SDValue C63 = DAG.getConstant(63, MVT::i64); 2043 SDValue LL = Op.getOperand(0); 2044 SDValue RL = Op.getOperand(1); 2045 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2046 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2047 // UMUL_LOHI64 returns the low result in the odd register and the high 2048 // result in the even register. SMUL_LOHI is defined to return the 2049 // low half first, so the results are in reverse order. 2050 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2051 LL, RL, Ops[1], Ops[0]); 2052 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2053 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2054 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2055 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2056 } 2057 return DAG.getMergeValues(Ops, 2, DL); 2058 } 2059 2060 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2061 SelectionDAG &DAG) const { 2062 EVT VT = Op.getValueType(); 2063 SDLoc DL(Op); 2064 SDValue Ops[2]; 2065 if (is32Bit(VT)) 2066 // Just do a normal 64-bit multiplication and extract the results. 2067 // We define this so that it can be used for constant division. 2068 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2069 Op.getOperand(1), Ops[1], Ops[0]); 2070 else 2071 // UMUL_LOHI64 returns the low result in the odd register and the high 2072 // result in the even register. UMUL_LOHI is defined to return the 2073 // low half first, so the results are in reverse order. 2074 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2075 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2076 return DAG.getMergeValues(Ops, 2, DL); 2077 } 2078 2079 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2080 SelectionDAG &DAG) const { 2081 SDValue Op0 = Op.getOperand(0); 2082 SDValue Op1 = Op.getOperand(1); 2083 EVT VT = Op.getValueType(); 2084 SDLoc DL(Op); 2085 unsigned Opcode; 2086 2087 // We use DSGF for 32-bit division. 2088 if (is32Bit(VT)) { 2089 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2090 Opcode = SystemZISD::SDIVREM32; 2091 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2092 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2093 Opcode = SystemZISD::SDIVREM32; 2094 } else 2095 Opcode = SystemZISD::SDIVREM64; 2096 2097 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2098 // input is "don't care". The instruction returns the remainder in 2099 // the even register and the quotient in the odd register. 2100 SDValue Ops[2]; 2101 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2102 Op0, Op1, Ops[1], Ops[0]); 2103 return DAG.getMergeValues(Ops, 2, DL); 2104 } 2105 2106 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2107 SelectionDAG &DAG) const { 2108 EVT VT = Op.getValueType(); 2109 SDLoc DL(Op); 2110 2111 // DL(G) uses a double-width dividend, so we need to clear the even 2112 // register in the GR128 input. The instruction returns the remainder 2113 // in the even register and the quotient in the odd register. 2114 SDValue Ops[2]; 2115 if (is32Bit(VT)) 2116 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2117 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2118 else 2119 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2120 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2121 return DAG.getMergeValues(Ops, 2, DL); 2122 } 2123 2124 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2125 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2126 2127 // Get the known-zero masks for each operand. 2128 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2129 APInt KnownZero[2], KnownOne[2]; 2130 DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]); 2131 DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]); 2132 2133 // See if the upper 32 bits of one operand and the lower 32 bits of the 2134 // other are known zero. They are the low and high operands respectively. 2135 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2136 KnownZero[1].getZExtValue() }; 2137 unsigned High, Low; 2138 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2139 High = 1, Low = 0; 2140 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2141 High = 0, Low = 1; 2142 else 2143 return Op; 2144 2145 SDValue LowOp = Ops[Low]; 2146 SDValue HighOp = Ops[High]; 2147 2148 // If the high part is a constant, we're better off using IILH. 2149 if (HighOp.getOpcode() == ISD::Constant) 2150 return Op; 2151 2152 // If the low part is a constant that is outside the range of LHI, 2153 // then we're better off using IILF. 2154 if (LowOp.getOpcode() == ISD::Constant) { 2155 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2156 if (!isInt<16>(Value)) 2157 return Op; 2158 } 2159 2160 // Check whether the high part is an AND that doesn't change the 2161 // high 32 bits and just masks out low bits. We can skip it if so. 2162 if (HighOp.getOpcode() == ISD::AND && 2163 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2164 SDValue HighOp0 = HighOp.getOperand(0); 2165 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2166 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2167 HighOp = HighOp0; 2168 } 2169 2170 // Take advantage of the fact that all GR32 operations only change the 2171 // low 32 bits by truncating Low to an i32 and inserting it directly 2172 // using a subreg. The interesting cases are those where the truncation 2173 // can be folded. 2174 SDLoc DL(Op); 2175 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2176 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2177 MVT::i64, HighOp, Low32); 2178 } 2179 2180 SDValue SystemZTargetLowering::lowerSIGN_EXTEND(SDValue Op, 2181 SelectionDAG &DAG) const { 2182 // Convert (sext (ashr (shl X, C1), C2)) to 2183 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 2184 // cheap as narrower ones. 2185 SDValue N0 = Op.getOperand(0); 2186 EVT VT = Op.getValueType(); 2187 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 2188 ConstantSDNode *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 2189 SDValue Inner = N0.getOperand(0); 2190 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 2191 ConstantSDNode *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1)); 2192 if (ShlAmt) { 2193 unsigned Extra = (VT.getSizeInBits() - 2194 N0.getValueType().getSizeInBits()); 2195 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 2196 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 2197 EVT ShiftVT = N0.getOperand(1).getValueType(); 2198 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 2199 Inner.getOperand(0)); 2200 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 2201 DAG.getConstant(NewShlAmt, ShiftVT)); 2202 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 2203 DAG.getConstant(NewSraAmt, ShiftVT)); 2204 } 2205 } 2206 } 2207 return SDValue(); 2208 } 2209 2210 // Op is an atomic load. Lower it into a normal volatile load. 2211 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 2212 SelectionDAG &DAG) const { 2213 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2214 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 2215 Node->getChain(), Node->getBasePtr(), 2216 Node->getMemoryVT(), Node->getMemOperand()); 2217 } 2218 2219 // Op is an atomic store. Lower it into a normal volatile store followed 2220 // by a serialization. 2221 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 2222 SelectionDAG &DAG) const { 2223 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2224 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 2225 Node->getBasePtr(), Node->getMemoryVT(), 2226 Node->getMemOperand()); 2227 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 2228 Chain), 0); 2229 } 2230 2231 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 2232 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 2233 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 2234 SelectionDAG &DAG, 2235 unsigned Opcode) const { 2236 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2237 2238 // 32-bit operations need no code outside the main loop. 2239 EVT NarrowVT = Node->getMemoryVT(); 2240 EVT WideVT = MVT::i32; 2241 if (NarrowVT == WideVT) 2242 return Op; 2243 2244 int64_t BitSize = NarrowVT.getSizeInBits(); 2245 SDValue ChainIn = Node->getChain(); 2246 SDValue Addr = Node->getBasePtr(); 2247 SDValue Src2 = Node->getVal(); 2248 MachineMemOperand *MMO = Node->getMemOperand(); 2249 SDLoc DL(Node); 2250 EVT PtrVT = Addr.getValueType(); 2251 2252 // Convert atomic subtracts of constants into additions. 2253 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 2254 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) { 2255 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 2256 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType()); 2257 } 2258 2259 // Get the address of the containing word. 2260 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 2261 DAG.getConstant(-4, PtrVT)); 2262 2263 // Get the number of bits that the word must be rotated left in order 2264 // to bring the field to the top bits of a GR32. 2265 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 2266 DAG.getConstant(3, PtrVT)); 2267 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 2268 2269 // Get the complementing shift amount, for rotating a field in the top 2270 // bits back to its proper position. 2271 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 2272 DAG.getConstant(0, WideVT), BitShift); 2273 2274 // Extend the source operand to 32 bits and prepare it for the inner loop. 2275 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 2276 // operations require the source to be shifted in advance. (This shift 2277 // can be folded if the source is constant.) For AND and NAND, the lower 2278 // bits must be set, while for other opcodes they should be left clear. 2279 if (Opcode != SystemZISD::ATOMIC_SWAPW) 2280 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 2281 DAG.getConstant(32 - BitSize, WideVT)); 2282 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 2283 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 2284 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 2285 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT)); 2286 2287 // Construct the ATOMIC_LOADW_* node. 2288 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 2289 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 2290 DAG.getConstant(BitSize, WideVT) }; 2291 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 2292 array_lengthof(Ops), 2293 NarrowVT, MMO); 2294 2295 // Rotate the result of the final CS so that the field is in the lower 2296 // bits of a GR32, then truncate it. 2297 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 2298 DAG.getConstant(BitSize, WideVT)); 2299 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 2300 2301 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 2302 return DAG.getMergeValues(RetOps, 2, DL); 2303 } 2304 2305 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 2306 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 2307 // operations into additions. 2308 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 2309 SelectionDAG &DAG) const { 2310 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2311 EVT MemVT = Node->getMemoryVT(); 2312 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 2313 // A full-width operation. 2314 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 2315 SDValue Src2 = Node->getVal(); 2316 SDValue NegSrc2; 2317 SDLoc DL(Src2); 2318 2319 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 2320 // Use an addition if the operand is constant and either LAA(G) is 2321 // available or the negative value is in the range of A(G)FHI. 2322 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 2323 if (isInt<32>(Value) || TM.getSubtargetImpl()->hasInterlockedAccess1()) 2324 NegSrc2 = DAG.getConstant(Value, MemVT); 2325 } else if (TM.getSubtargetImpl()->hasInterlockedAccess1()) 2326 // Use LAA(G) if available. 2327 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT), 2328 Src2); 2329 2330 if (NegSrc2.getNode()) 2331 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 2332 Node->getChain(), Node->getBasePtr(), NegSrc2, 2333 Node->getMemOperand(), Node->getOrdering(), 2334 Node->getSynchScope()); 2335 2336 // Use the node as-is. 2337 return Op; 2338 } 2339 2340 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 2341 } 2342 2343 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 2344 // into a fullword ATOMIC_CMP_SWAPW operation. 2345 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 2346 SelectionDAG &DAG) const { 2347 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2348 2349 // We have native support for 32-bit compare and swap. 2350 EVT NarrowVT = Node->getMemoryVT(); 2351 EVT WideVT = MVT::i32; 2352 if (NarrowVT == WideVT) 2353 return Op; 2354 2355 int64_t BitSize = NarrowVT.getSizeInBits(); 2356 SDValue ChainIn = Node->getOperand(0); 2357 SDValue Addr = Node->getOperand(1); 2358 SDValue CmpVal = Node->getOperand(2); 2359 SDValue SwapVal = Node->getOperand(3); 2360 MachineMemOperand *MMO = Node->getMemOperand(); 2361 SDLoc DL(Node); 2362 EVT PtrVT = Addr.getValueType(); 2363 2364 // Get the address of the containing word. 2365 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 2366 DAG.getConstant(-4, PtrVT)); 2367 2368 // Get the number of bits that the word must be rotated left in order 2369 // to bring the field to the top bits of a GR32. 2370 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 2371 DAG.getConstant(3, PtrVT)); 2372 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 2373 2374 // Get the complementing shift amount, for rotating a field in the top 2375 // bits back to its proper position. 2376 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 2377 DAG.getConstant(0, WideVT), BitShift); 2378 2379 // Construct the ATOMIC_CMP_SWAPW node. 2380 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 2381 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 2382 NegBitShift, DAG.getConstant(BitSize, WideVT) }; 2383 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 2384 VTList, Ops, array_lengthof(Ops), 2385 NarrowVT, MMO); 2386 return AtomicOp; 2387 } 2388 2389 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 2390 SelectionDAG &DAG) const { 2391 MachineFunction &MF = DAG.getMachineFunction(); 2392 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 2393 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 2394 SystemZ::R15D, Op.getValueType()); 2395 } 2396 2397 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 2398 SelectionDAG &DAG) const { 2399 MachineFunction &MF = DAG.getMachineFunction(); 2400 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 2401 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 2402 SystemZ::R15D, Op.getOperand(1)); 2403 } 2404 2405 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 2406 SelectionDAG &DAG) const { 2407 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2408 if (!IsData) 2409 // Just preserve the chain. 2410 return Op.getOperand(0); 2411 2412 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2413 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 2414 MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 2415 SDValue Ops[] = { 2416 Op.getOperand(0), 2417 DAG.getConstant(Code, MVT::i32), 2418 Op.getOperand(1) 2419 }; 2420 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op), 2421 Node->getVTList(), Ops, array_lengthof(Ops), 2422 Node->getMemoryVT(), Node->getMemOperand()); 2423 } 2424 2425 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 2426 SelectionDAG &DAG) const { 2427 switch (Op.getOpcode()) { 2428 case ISD::BR_CC: 2429 return lowerBR_CC(Op, DAG); 2430 case ISD::SELECT_CC: 2431 return lowerSELECT_CC(Op, DAG); 2432 case ISD::SETCC: 2433 return lowerSETCC(Op, DAG); 2434 case ISD::GlobalAddress: 2435 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 2436 case ISD::GlobalTLSAddress: 2437 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 2438 case ISD::BlockAddress: 2439 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 2440 case ISD::JumpTable: 2441 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 2442 case ISD::ConstantPool: 2443 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 2444 case ISD::BITCAST: 2445 return lowerBITCAST(Op, DAG); 2446 case ISD::VASTART: 2447 return lowerVASTART(Op, DAG); 2448 case ISD::VACOPY: 2449 return lowerVACOPY(Op, DAG); 2450 case ISD::DYNAMIC_STACKALLOC: 2451 return lowerDYNAMIC_STACKALLOC(Op, DAG); 2452 case ISD::SMUL_LOHI: 2453 return lowerSMUL_LOHI(Op, DAG); 2454 case ISD::UMUL_LOHI: 2455 return lowerUMUL_LOHI(Op, DAG); 2456 case ISD::SDIVREM: 2457 return lowerSDIVREM(Op, DAG); 2458 case ISD::UDIVREM: 2459 return lowerUDIVREM(Op, DAG); 2460 case ISD::OR: 2461 return lowerOR(Op, DAG); 2462 case ISD::SIGN_EXTEND: 2463 return lowerSIGN_EXTEND(Op, DAG); 2464 case ISD::ATOMIC_SWAP: 2465 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 2466 case ISD::ATOMIC_STORE: 2467 return lowerATOMIC_STORE(Op, DAG); 2468 case ISD::ATOMIC_LOAD: 2469 return lowerATOMIC_LOAD(Op, DAG); 2470 case ISD::ATOMIC_LOAD_ADD: 2471 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 2472 case ISD::ATOMIC_LOAD_SUB: 2473 return lowerATOMIC_LOAD_SUB(Op, DAG); 2474 case ISD::ATOMIC_LOAD_AND: 2475 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 2476 case ISD::ATOMIC_LOAD_OR: 2477 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 2478 case ISD::ATOMIC_LOAD_XOR: 2479 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 2480 case ISD::ATOMIC_LOAD_NAND: 2481 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 2482 case ISD::ATOMIC_LOAD_MIN: 2483 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 2484 case ISD::ATOMIC_LOAD_MAX: 2485 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 2486 case ISD::ATOMIC_LOAD_UMIN: 2487 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 2488 case ISD::ATOMIC_LOAD_UMAX: 2489 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 2490 case ISD::ATOMIC_CMP_SWAP: 2491 return lowerATOMIC_CMP_SWAP(Op, DAG); 2492 case ISD::STACKSAVE: 2493 return lowerSTACKSAVE(Op, DAG); 2494 case ISD::STACKRESTORE: 2495 return lowerSTACKRESTORE(Op, DAG); 2496 case ISD::PREFETCH: 2497 return lowerPREFETCH(Op, DAG); 2498 default: 2499 llvm_unreachable("Unexpected node to lower"); 2500 } 2501 } 2502 2503 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 2504 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 2505 switch (Opcode) { 2506 OPCODE(RET_FLAG); 2507 OPCODE(CALL); 2508 OPCODE(SIBCALL); 2509 OPCODE(PCREL_WRAPPER); 2510 OPCODE(PCREL_OFFSET); 2511 OPCODE(IABS); 2512 OPCODE(ICMP); 2513 OPCODE(FCMP); 2514 OPCODE(TM); 2515 OPCODE(BR_CCMASK); 2516 OPCODE(SELECT_CCMASK); 2517 OPCODE(ADJDYNALLOC); 2518 OPCODE(EXTRACT_ACCESS); 2519 OPCODE(UMUL_LOHI64); 2520 OPCODE(SDIVREM64); 2521 OPCODE(UDIVREM32); 2522 OPCODE(UDIVREM64); 2523 OPCODE(MVC); 2524 OPCODE(MVC_LOOP); 2525 OPCODE(NC); 2526 OPCODE(NC_LOOP); 2527 OPCODE(OC); 2528 OPCODE(OC_LOOP); 2529 OPCODE(XC); 2530 OPCODE(XC_LOOP); 2531 OPCODE(CLC); 2532 OPCODE(CLC_LOOP); 2533 OPCODE(STRCMP); 2534 OPCODE(STPCPY); 2535 OPCODE(SEARCH_STRING); 2536 OPCODE(IPM); 2537 OPCODE(SERIALIZE); 2538 OPCODE(ATOMIC_SWAPW); 2539 OPCODE(ATOMIC_LOADW_ADD); 2540 OPCODE(ATOMIC_LOADW_SUB); 2541 OPCODE(ATOMIC_LOADW_AND); 2542 OPCODE(ATOMIC_LOADW_OR); 2543 OPCODE(ATOMIC_LOADW_XOR); 2544 OPCODE(ATOMIC_LOADW_NAND); 2545 OPCODE(ATOMIC_LOADW_MIN); 2546 OPCODE(ATOMIC_LOADW_MAX); 2547 OPCODE(ATOMIC_LOADW_UMIN); 2548 OPCODE(ATOMIC_LOADW_UMAX); 2549 OPCODE(ATOMIC_CMP_SWAPW); 2550 OPCODE(PREFETCH); 2551 } 2552 return NULL; 2553 #undef OPCODE 2554 } 2555 2556 //===----------------------------------------------------------------------===// 2557 // Custom insertion 2558 //===----------------------------------------------------------------------===// 2559 2560 // Create a new basic block after MBB. 2561 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 2562 MachineFunction &MF = *MBB->getParent(); 2563 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 2564 MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB); 2565 return NewMBB; 2566 } 2567 2568 // Split MBB after MI and return the new block (the one that contains 2569 // instructions after MI). 2570 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 2571 MachineBasicBlock *MBB) { 2572 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 2573 NewMBB->splice(NewMBB->begin(), MBB, 2574 llvm::next(MachineBasicBlock::iterator(MI)), 2575 MBB->end()); 2576 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 2577 return NewMBB; 2578 } 2579 2580 // Split MBB before MI and return the new block (the one that contains MI). 2581 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 2582 MachineBasicBlock *MBB) { 2583 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 2584 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 2585 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 2586 return NewMBB; 2587 } 2588 2589 // Force base value Base into a register before MI. Return the register. 2590 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 2591 const SystemZInstrInfo *TII) { 2592 if (Base.isReg()) 2593 return Base.getReg(); 2594 2595 MachineBasicBlock *MBB = MI->getParent(); 2596 MachineFunction &MF = *MBB->getParent(); 2597 MachineRegisterInfo &MRI = MF.getRegInfo(); 2598 2599 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 2600 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 2601 .addOperand(Base).addImm(0).addReg(0); 2602 return Reg; 2603 } 2604 2605 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 2606 MachineBasicBlock * 2607 SystemZTargetLowering::emitSelect(MachineInstr *MI, 2608 MachineBasicBlock *MBB) const { 2609 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2610 2611 unsigned DestReg = MI->getOperand(0).getReg(); 2612 unsigned TrueReg = MI->getOperand(1).getReg(); 2613 unsigned FalseReg = MI->getOperand(2).getReg(); 2614 unsigned CCValid = MI->getOperand(3).getImm(); 2615 unsigned CCMask = MI->getOperand(4).getImm(); 2616 DebugLoc DL = MI->getDebugLoc(); 2617 2618 MachineBasicBlock *StartMBB = MBB; 2619 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 2620 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 2621 2622 // StartMBB: 2623 // BRC CCMask, JoinMBB 2624 // # fallthrough to FalseMBB 2625 MBB = StartMBB; 2626 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2627 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 2628 MBB->addSuccessor(JoinMBB); 2629 MBB->addSuccessor(FalseMBB); 2630 2631 // FalseMBB: 2632 // # fallthrough to JoinMBB 2633 MBB = FalseMBB; 2634 MBB->addSuccessor(JoinMBB); 2635 2636 // JoinMBB: 2637 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 2638 // ... 2639 MBB = JoinMBB; 2640 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 2641 .addReg(TrueReg).addMBB(StartMBB) 2642 .addReg(FalseReg).addMBB(FalseMBB); 2643 2644 MI->eraseFromParent(); 2645 return JoinMBB; 2646 } 2647 2648 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 2649 // StoreOpcode is the store to use and Invert says whether the store should 2650 // happen when the condition is false rather than true. If a STORE ON 2651 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 2652 MachineBasicBlock * 2653 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 2654 MachineBasicBlock *MBB, 2655 unsigned StoreOpcode, unsigned STOCOpcode, 2656 bool Invert) const { 2657 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2658 2659 unsigned SrcReg = MI->getOperand(0).getReg(); 2660 MachineOperand Base = MI->getOperand(1); 2661 int64_t Disp = MI->getOperand(2).getImm(); 2662 unsigned IndexReg = MI->getOperand(3).getReg(); 2663 unsigned CCValid = MI->getOperand(4).getImm(); 2664 unsigned CCMask = MI->getOperand(5).getImm(); 2665 DebugLoc DL = MI->getDebugLoc(); 2666 2667 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 2668 2669 // Use STOCOpcode if possible. We could use different store patterns in 2670 // order to avoid matching the index register, but the performance trade-offs 2671 // might be more complicated in that case. 2672 if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) { 2673 if (Invert) 2674 CCMask ^= CCValid; 2675 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 2676 .addReg(SrcReg).addOperand(Base).addImm(Disp) 2677 .addImm(CCValid).addImm(CCMask); 2678 MI->eraseFromParent(); 2679 return MBB; 2680 } 2681 2682 // Get the condition needed to branch around the store. 2683 if (!Invert) 2684 CCMask ^= CCValid; 2685 2686 MachineBasicBlock *StartMBB = MBB; 2687 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 2688 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 2689 2690 // StartMBB: 2691 // BRC CCMask, JoinMBB 2692 // # fallthrough to FalseMBB 2693 MBB = StartMBB; 2694 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2695 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 2696 MBB->addSuccessor(JoinMBB); 2697 MBB->addSuccessor(FalseMBB); 2698 2699 // FalseMBB: 2700 // store %SrcReg, %Disp(%Index,%Base) 2701 // # fallthrough to JoinMBB 2702 MBB = FalseMBB; 2703 BuildMI(MBB, DL, TII->get(StoreOpcode)) 2704 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 2705 MBB->addSuccessor(JoinMBB); 2706 2707 MI->eraseFromParent(); 2708 return JoinMBB; 2709 } 2710 2711 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 2712 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 2713 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 2714 // BitSize is the width of the field in bits, or 0 if this is a partword 2715 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 2716 // is one of the operands. Invert says whether the field should be 2717 // inverted after performing BinOpcode (e.g. for NAND). 2718 MachineBasicBlock * 2719 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 2720 MachineBasicBlock *MBB, 2721 unsigned BinOpcode, 2722 unsigned BitSize, 2723 bool Invert) const { 2724 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2725 MachineFunction &MF = *MBB->getParent(); 2726 MachineRegisterInfo &MRI = MF.getRegInfo(); 2727 bool IsSubWord = (BitSize < 32); 2728 2729 // Extract the operands. Base can be a register or a frame index. 2730 // Src2 can be a register or immediate. 2731 unsigned Dest = MI->getOperand(0).getReg(); 2732 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2733 int64_t Disp = MI->getOperand(2).getImm(); 2734 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 2735 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 2736 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 2737 DebugLoc DL = MI->getDebugLoc(); 2738 if (IsSubWord) 2739 BitSize = MI->getOperand(6).getImm(); 2740 2741 // Subword operations use 32-bit registers. 2742 const TargetRegisterClass *RC = (BitSize <= 32 ? 2743 &SystemZ::GR32BitRegClass : 2744 &SystemZ::GR64BitRegClass); 2745 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 2746 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 2747 2748 // Get the right opcodes for the displacement. 2749 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 2750 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 2751 assert(LOpcode && CSOpcode && "Displacement out of range"); 2752 2753 // Create virtual registers for temporary results. 2754 unsigned OrigVal = MRI.createVirtualRegister(RC); 2755 unsigned OldVal = MRI.createVirtualRegister(RC); 2756 unsigned NewVal = (BinOpcode || IsSubWord ? 2757 MRI.createVirtualRegister(RC) : Src2.getReg()); 2758 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 2759 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 2760 2761 // Insert a basic block for the main loop. 2762 MachineBasicBlock *StartMBB = MBB; 2763 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2764 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2765 2766 // StartMBB: 2767 // ... 2768 // %OrigVal = L Disp(%Base) 2769 // # fall through to LoopMMB 2770 MBB = StartMBB; 2771 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 2772 .addOperand(Base).addImm(Disp).addReg(0); 2773 MBB->addSuccessor(LoopMBB); 2774 2775 // LoopMBB: 2776 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 2777 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 2778 // %RotatedNewVal = OP %RotatedOldVal, %Src2 2779 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 2780 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 2781 // JNE LoopMBB 2782 // # fall through to DoneMMB 2783 MBB = LoopMBB; 2784 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2785 .addReg(OrigVal).addMBB(StartMBB) 2786 .addReg(Dest).addMBB(LoopMBB); 2787 if (IsSubWord) 2788 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 2789 .addReg(OldVal).addReg(BitShift).addImm(0); 2790 if (Invert) { 2791 // Perform the operation normally and then invert every bit of the field. 2792 unsigned Tmp = MRI.createVirtualRegister(RC); 2793 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 2794 .addReg(RotatedOldVal).addOperand(Src2); 2795 if (BitSize < 32) 2796 // XILF with the upper BitSize bits set. 2797 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 2798 .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize))); 2799 else if (BitSize == 32) 2800 // XILF with every bit set. 2801 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 2802 .addReg(Tmp).addImm(~uint32_t(0)); 2803 else { 2804 // Use LCGR and add -1 to the result, which is more compact than 2805 // an XILF, XILH pair. 2806 unsigned Tmp2 = MRI.createVirtualRegister(RC); 2807 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 2808 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 2809 .addReg(Tmp2).addImm(-1); 2810 } 2811 } else if (BinOpcode) 2812 // A simply binary operation. 2813 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 2814 .addReg(RotatedOldVal).addOperand(Src2); 2815 else if (IsSubWord) 2816 // Use RISBG to rotate Src2 into position and use it to replace the 2817 // field in RotatedOldVal. 2818 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 2819 .addReg(RotatedOldVal).addReg(Src2.getReg()) 2820 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 2821 if (IsSubWord) 2822 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 2823 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 2824 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 2825 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 2826 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2827 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2828 MBB->addSuccessor(LoopMBB); 2829 MBB->addSuccessor(DoneMBB); 2830 2831 MI->eraseFromParent(); 2832 return DoneMBB; 2833 } 2834 2835 // Implement EmitInstrWithCustomInserter for pseudo 2836 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 2837 // instruction that should be used to compare the current field with the 2838 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 2839 // for when the current field should be kept. BitSize is the width of 2840 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 2841 MachineBasicBlock * 2842 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 2843 MachineBasicBlock *MBB, 2844 unsigned CompareOpcode, 2845 unsigned KeepOldMask, 2846 unsigned BitSize) const { 2847 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2848 MachineFunction &MF = *MBB->getParent(); 2849 MachineRegisterInfo &MRI = MF.getRegInfo(); 2850 bool IsSubWord = (BitSize < 32); 2851 2852 // Extract the operands. Base can be a register or a frame index. 2853 unsigned Dest = MI->getOperand(0).getReg(); 2854 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2855 int64_t Disp = MI->getOperand(2).getImm(); 2856 unsigned Src2 = MI->getOperand(3).getReg(); 2857 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 2858 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 2859 DebugLoc DL = MI->getDebugLoc(); 2860 if (IsSubWord) 2861 BitSize = MI->getOperand(6).getImm(); 2862 2863 // Subword operations use 32-bit registers. 2864 const TargetRegisterClass *RC = (BitSize <= 32 ? 2865 &SystemZ::GR32BitRegClass : 2866 &SystemZ::GR64BitRegClass); 2867 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 2868 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 2869 2870 // Get the right opcodes for the displacement. 2871 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 2872 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 2873 assert(LOpcode && CSOpcode && "Displacement out of range"); 2874 2875 // Create virtual registers for temporary results. 2876 unsigned OrigVal = MRI.createVirtualRegister(RC); 2877 unsigned OldVal = MRI.createVirtualRegister(RC); 2878 unsigned NewVal = MRI.createVirtualRegister(RC); 2879 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 2880 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 2881 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 2882 2883 // Insert 3 basic blocks for the loop. 2884 MachineBasicBlock *StartMBB = MBB; 2885 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2886 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2887 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 2888 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 2889 2890 // StartMBB: 2891 // ... 2892 // %OrigVal = L Disp(%Base) 2893 // # fall through to LoopMMB 2894 MBB = StartMBB; 2895 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 2896 .addOperand(Base).addImm(Disp).addReg(0); 2897 MBB->addSuccessor(LoopMBB); 2898 2899 // LoopMBB: 2900 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 2901 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 2902 // CompareOpcode %RotatedOldVal, %Src2 2903 // BRC KeepOldMask, UpdateMBB 2904 MBB = LoopMBB; 2905 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2906 .addReg(OrigVal).addMBB(StartMBB) 2907 .addReg(Dest).addMBB(UpdateMBB); 2908 if (IsSubWord) 2909 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 2910 .addReg(OldVal).addReg(BitShift).addImm(0); 2911 BuildMI(MBB, DL, TII->get(CompareOpcode)) 2912 .addReg(RotatedOldVal).addReg(Src2); 2913 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2914 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 2915 MBB->addSuccessor(UpdateMBB); 2916 MBB->addSuccessor(UseAltMBB); 2917 2918 // UseAltMBB: 2919 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 2920 // # fall through to UpdateMMB 2921 MBB = UseAltMBB; 2922 if (IsSubWord) 2923 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 2924 .addReg(RotatedOldVal).addReg(Src2) 2925 .addImm(32).addImm(31 + BitSize).addImm(0); 2926 MBB->addSuccessor(UpdateMBB); 2927 2928 // UpdateMBB: 2929 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 2930 // [ %RotatedAltVal, UseAltMBB ] 2931 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 2932 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 2933 // JNE LoopMBB 2934 // # fall through to DoneMMB 2935 MBB = UpdateMBB; 2936 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 2937 .addReg(RotatedOldVal).addMBB(LoopMBB) 2938 .addReg(RotatedAltVal).addMBB(UseAltMBB); 2939 if (IsSubWord) 2940 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 2941 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 2942 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 2943 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 2944 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2945 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2946 MBB->addSuccessor(LoopMBB); 2947 MBB->addSuccessor(DoneMBB); 2948 2949 MI->eraseFromParent(); 2950 return DoneMBB; 2951 } 2952 2953 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 2954 // instruction MI. 2955 MachineBasicBlock * 2956 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 2957 MachineBasicBlock *MBB) const { 2958 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2959 MachineFunction &MF = *MBB->getParent(); 2960 MachineRegisterInfo &MRI = MF.getRegInfo(); 2961 2962 // Extract the operands. Base can be a register or a frame index. 2963 unsigned Dest = MI->getOperand(0).getReg(); 2964 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2965 int64_t Disp = MI->getOperand(2).getImm(); 2966 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 2967 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 2968 unsigned BitShift = MI->getOperand(5).getReg(); 2969 unsigned NegBitShift = MI->getOperand(6).getReg(); 2970 int64_t BitSize = MI->getOperand(7).getImm(); 2971 DebugLoc DL = MI->getDebugLoc(); 2972 2973 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 2974 2975 // Get the right opcodes for the displacement. 2976 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 2977 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 2978 assert(LOpcode && CSOpcode && "Displacement out of range"); 2979 2980 // Create virtual registers for temporary results. 2981 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 2982 unsigned OldVal = MRI.createVirtualRegister(RC); 2983 unsigned CmpVal = MRI.createVirtualRegister(RC); 2984 unsigned SwapVal = MRI.createVirtualRegister(RC); 2985 unsigned StoreVal = MRI.createVirtualRegister(RC); 2986 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 2987 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 2988 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 2989 2990 // Insert 2 basic blocks for the loop. 2991 MachineBasicBlock *StartMBB = MBB; 2992 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2993 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2994 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 2995 2996 // StartMBB: 2997 // ... 2998 // %OrigOldVal = L Disp(%Base) 2999 // # fall through to LoopMMB 3000 MBB = StartMBB; 3001 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 3002 .addOperand(Base).addImm(Disp).addReg(0); 3003 MBB->addSuccessor(LoopMBB); 3004 3005 // LoopMBB: 3006 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 3007 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 3008 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 3009 // %Dest = RLL %OldVal, BitSize(%BitShift) 3010 // ^^ The low BitSize bits contain the field 3011 // of interest. 3012 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 3013 // ^^ Replace the upper 32-BitSize bits of the 3014 // comparison value with those that we loaded, 3015 // so that we can use a full word comparison. 3016 // CR %Dest, %RetryCmpVal 3017 // JNE DoneMBB 3018 // # Fall through to SetMBB 3019 MBB = LoopMBB; 3020 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 3021 .addReg(OrigOldVal).addMBB(StartMBB) 3022 .addReg(RetryOldVal).addMBB(SetMBB); 3023 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 3024 .addReg(OrigCmpVal).addMBB(StartMBB) 3025 .addReg(RetryCmpVal).addMBB(SetMBB); 3026 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 3027 .addReg(OrigSwapVal).addMBB(StartMBB) 3028 .addReg(RetrySwapVal).addMBB(SetMBB); 3029 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 3030 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 3031 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 3032 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 3033 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 3034 .addReg(Dest).addReg(RetryCmpVal); 3035 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3036 .addImm(SystemZ::CCMASK_ICMP) 3037 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 3038 MBB->addSuccessor(DoneMBB); 3039 MBB->addSuccessor(SetMBB); 3040 3041 // SetMBB: 3042 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 3043 // ^^ Replace the upper 32-BitSize bits of the new 3044 // value with those that we loaded. 3045 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 3046 // ^^ Rotate the new field to its proper position. 3047 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 3048 // JNE LoopMBB 3049 // # fall through to ExitMMB 3050 MBB = SetMBB; 3051 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 3052 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 3053 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 3054 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 3055 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 3056 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 3057 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3058 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 3059 MBB->addSuccessor(LoopMBB); 3060 MBB->addSuccessor(DoneMBB); 3061 3062 MI->eraseFromParent(); 3063 return DoneMBB; 3064 } 3065 3066 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 3067 // if the high register of the GR128 value must be cleared or false if 3068 // it's "don't care". SubReg is subreg_l32 when extending a GR32 3069 // and subreg_l64 when extending a GR64. 3070 MachineBasicBlock * 3071 SystemZTargetLowering::emitExt128(MachineInstr *MI, 3072 MachineBasicBlock *MBB, 3073 bool ClearEven, unsigned SubReg) const { 3074 const SystemZInstrInfo *TII = TM.getInstrInfo(); 3075 MachineFunction &MF = *MBB->getParent(); 3076 MachineRegisterInfo &MRI = MF.getRegInfo(); 3077 DebugLoc DL = MI->getDebugLoc(); 3078 3079 unsigned Dest = MI->getOperand(0).getReg(); 3080 unsigned Src = MI->getOperand(1).getReg(); 3081 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 3082 3083 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 3084 if (ClearEven) { 3085 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 3086 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 3087 3088 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 3089 .addImm(0); 3090 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 3091 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 3092 In128 = NewIn128; 3093 } 3094 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 3095 .addReg(In128).addReg(Src).addImm(SubReg); 3096 3097 MI->eraseFromParent(); 3098 return MBB; 3099 } 3100 3101 MachineBasicBlock * 3102 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 3103 MachineBasicBlock *MBB, 3104 unsigned Opcode) const { 3105 const SystemZInstrInfo *TII = TM.getInstrInfo(); 3106 MachineFunction &MF = *MBB->getParent(); 3107 MachineRegisterInfo &MRI = MF.getRegInfo(); 3108 DebugLoc DL = MI->getDebugLoc(); 3109 3110 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 3111 uint64_t DestDisp = MI->getOperand(1).getImm(); 3112 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 3113 uint64_t SrcDisp = MI->getOperand(3).getImm(); 3114 uint64_t Length = MI->getOperand(4).getImm(); 3115 3116 // When generating more than one CLC, all but the last will need to 3117 // branch to the end when a difference is found. 3118 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 3119 splitBlockAfter(MI, MBB) : 0); 3120 3121 // Check for the loop form, in which operand 5 is the trip count. 3122 if (MI->getNumExplicitOperands() > 5) { 3123 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 3124 3125 uint64_t StartCountReg = MI->getOperand(5).getReg(); 3126 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 3127 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 3128 forceReg(MI, DestBase, TII)); 3129 3130 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 3131 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 3132 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 3133 MRI.createVirtualRegister(RC)); 3134 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 3135 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 3136 MRI.createVirtualRegister(RC)); 3137 3138 RC = &SystemZ::GR64BitRegClass; 3139 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 3140 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 3141 3142 MachineBasicBlock *StartMBB = MBB; 3143 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 3144 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 3145 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 3146 3147 // StartMBB: 3148 // # fall through to LoopMMB 3149 MBB->addSuccessor(LoopMBB); 3150 3151 // LoopMBB: 3152 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 3153 // [ %NextDestReg, NextMBB ] 3154 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 3155 // [ %NextSrcReg, NextMBB ] 3156 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 3157 // [ %NextCountReg, NextMBB ] 3158 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 3159 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 3160 // ( JLH EndMBB ) 3161 // 3162 // The prefetch is used only for MVC. The JLH is used only for CLC. 3163 MBB = LoopMBB; 3164 3165 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 3166 .addReg(StartDestReg).addMBB(StartMBB) 3167 .addReg(NextDestReg).addMBB(NextMBB); 3168 if (!HaveSingleBase) 3169 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 3170 .addReg(StartSrcReg).addMBB(StartMBB) 3171 .addReg(NextSrcReg).addMBB(NextMBB); 3172 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 3173 .addReg(StartCountReg).addMBB(StartMBB) 3174 .addReg(NextCountReg).addMBB(NextMBB); 3175 if (Opcode == SystemZ::MVC) 3176 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 3177 .addImm(SystemZ::PFD_WRITE) 3178 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 3179 BuildMI(MBB, DL, TII->get(Opcode)) 3180 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 3181 .addReg(ThisSrcReg).addImm(SrcDisp); 3182 if (EndMBB) { 3183 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3184 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 3185 .addMBB(EndMBB); 3186 MBB->addSuccessor(EndMBB); 3187 MBB->addSuccessor(NextMBB); 3188 } 3189 3190 // NextMBB: 3191 // %NextDestReg = LA 256(%ThisDestReg) 3192 // %NextSrcReg = LA 256(%ThisSrcReg) 3193 // %NextCountReg = AGHI %ThisCountReg, -1 3194 // CGHI %NextCountReg, 0 3195 // JLH LoopMBB 3196 // # fall through to DoneMMB 3197 // 3198 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 3199 MBB = NextMBB; 3200 3201 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 3202 .addReg(ThisDestReg).addImm(256).addReg(0); 3203 if (!HaveSingleBase) 3204 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 3205 .addReg(ThisSrcReg).addImm(256).addReg(0); 3206 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 3207 .addReg(ThisCountReg).addImm(-1); 3208 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 3209 .addReg(NextCountReg).addImm(0); 3210 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3211 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 3212 .addMBB(LoopMBB); 3213 MBB->addSuccessor(LoopMBB); 3214 MBB->addSuccessor(DoneMBB); 3215 3216 DestBase = MachineOperand::CreateReg(NextDestReg, false); 3217 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 3218 Length &= 255; 3219 MBB = DoneMBB; 3220 } 3221 // Handle any remaining bytes with straight-line code. 3222 while (Length > 0) { 3223 uint64_t ThisLength = std::min(Length, uint64_t(256)); 3224 // The previous iteration might have created out-of-range displacements. 3225 // Apply them using LAY if so. 3226 if (!isUInt<12>(DestDisp)) { 3227 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 3228 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 3229 .addOperand(DestBase).addImm(DestDisp).addReg(0); 3230 DestBase = MachineOperand::CreateReg(Reg, false); 3231 DestDisp = 0; 3232 } 3233 if (!isUInt<12>(SrcDisp)) { 3234 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 3235 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 3236 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 3237 SrcBase = MachineOperand::CreateReg(Reg, false); 3238 SrcDisp = 0; 3239 } 3240 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 3241 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 3242 .addOperand(SrcBase).addImm(SrcDisp); 3243 DestDisp += ThisLength; 3244 SrcDisp += ThisLength; 3245 Length -= ThisLength; 3246 // If there's another CLC to go, branch to the end if a difference 3247 // was found. 3248 if (EndMBB && Length > 0) { 3249 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 3250 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3251 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 3252 .addMBB(EndMBB); 3253 MBB->addSuccessor(EndMBB); 3254 MBB->addSuccessor(NextMBB); 3255 MBB = NextMBB; 3256 } 3257 } 3258 if (EndMBB) { 3259 MBB->addSuccessor(EndMBB); 3260 MBB = EndMBB; 3261 MBB->addLiveIn(SystemZ::CC); 3262 } 3263 3264 MI->eraseFromParent(); 3265 return MBB; 3266 } 3267 3268 // Decompose string pseudo-instruction MI into a loop that continually performs 3269 // Opcode until CC != 3. 3270 MachineBasicBlock * 3271 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 3272 MachineBasicBlock *MBB, 3273 unsigned Opcode) const { 3274 const SystemZInstrInfo *TII = TM.getInstrInfo(); 3275 MachineFunction &MF = *MBB->getParent(); 3276 MachineRegisterInfo &MRI = MF.getRegInfo(); 3277 DebugLoc DL = MI->getDebugLoc(); 3278 3279 uint64_t End1Reg = MI->getOperand(0).getReg(); 3280 uint64_t Start1Reg = MI->getOperand(1).getReg(); 3281 uint64_t Start2Reg = MI->getOperand(2).getReg(); 3282 uint64_t CharReg = MI->getOperand(3).getReg(); 3283 3284 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 3285 uint64_t This1Reg = MRI.createVirtualRegister(RC); 3286 uint64_t This2Reg = MRI.createVirtualRegister(RC); 3287 uint64_t End2Reg = MRI.createVirtualRegister(RC); 3288 3289 MachineBasicBlock *StartMBB = MBB; 3290 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 3291 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 3292 3293 // StartMBB: 3294 // # fall through to LoopMMB 3295 MBB->addSuccessor(LoopMBB); 3296 3297 // LoopMBB: 3298 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 3299 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 3300 // R0L = %CharReg 3301 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 3302 // JO LoopMBB 3303 // # fall through to DoneMMB 3304 // 3305 // The load of R0L can be hoisted by post-RA LICM. 3306 MBB = LoopMBB; 3307 3308 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 3309 .addReg(Start1Reg).addMBB(StartMBB) 3310 .addReg(End1Reg).addMBB(LoopMBB); 3311 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 3312 .addReg(Start2Reg).addMBB(StartMBB) 3313 .addReg(End2Reg).addMBB(LoopMBB); 3314 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 3315 BuildMI(MBB, DL, TII->get(Opcode)) 3316 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 3317 .addReg(This1Reg).addReg(This2Reg); 3318 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3319 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 3320 MBB->addSuccessor(LoopMBB); 3321 MBB->addSuccessor(DoneMBB); 3322 3323 DoneMBB->addLiveIn(SystemZ::CC); 3324 3325 MI->eraseFromParent(); 3326 return DoneMBB; 3327 } 3328 3329 MachineBasicBlock *SystemZTargetLowering:: 3330 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 3331 switch (MI->getOpcode()) { 3332 case SystemZ::Select32Mux: 3333 case SystemZ::Select32: 3334 case SystemZ::SelectF32: 3335 case SystemZ::Select64: 3336 case SystemZ::SelectF64: 3337 case SystemZ::SelectF128: 3338 return emitSelect(MI, MBB); 3339 3340 case SystemZ::CondStore8Mux: 3341 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 3342 case SystemZ::CondStore8MuxInv: 3343 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 3344 case SystemZ::CondStore16Mux: 3345 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 3346 case SystemZ::CondStore16MuxInv: 3347 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 3348 case SystemZ::CondStore8: 3349 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 3350 case SystemZ::CondStore8Inv: 3351 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 3352 case SystemZ::CondStore16: 3353 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 3354 case SystemZ::CondStore16Inv: 3355 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 3356 case SystemZ::CondStore32: 3357 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 3358 case SystemZ::CondStore32Inv: 3359 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 3360 case SystemZ::CondStore64: 3361 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 3362 case SystemZ::CondStore64Inv: 3363 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 3364 case SystemZ::CondStoreF32: 3365 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 3366 case SystemZ::CondStoreF32Inv: 3367 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 3368 case SystemZ::CondStoreF64: 3369 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 3370 case SystemZ::CondStoreF64Inv: 3371 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 3372 3373 case SystemZ::AEXT128_64: 3374 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 3375 case SystemZ::ZEXT128_32: 3376 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 3377 case SystemZ::ZEXT128_64: 3378 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 3379 3380 case SystemZ::ATOMIC_SWAPW: 3381 return emitAtomicLoadBinary(MI, MBB, 0, 0); 3382 case SystemZ::ATOMIC_SWAP_32: 3383 return emitAtomicLoadBinary(MI, MBB, 0, 32); 3384 case SystemZ::ATOMIC_SWAP_64: 3385 return emitAtomicLoadBinary(MI, MBB, 0, 64); 3386 3387 case SystemZ::ATOMIC_LOADW_AR: 3388 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 3389 case SystemZ::ATOMIC_LOADW_AFI: 3390 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 3391 case SystemZ::ATOMIC_LOAD_AR: 3392 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 3393 case SystemZ::ATOMIC_LOAD_AHI: 3394 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 3395 case SystemZ::ATOMIC_LOAD_AFI: 3396 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 3397 case SystemZ::ATOMIC_LOAD_AGR: 3398 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 3399 case SystemZ::ATOMIC_LOAD_AGHI: 3400 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 3401 case SystemZ::ATOMIC_LOAD_AGFI: 3402 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 3403 3404 case SystemZ::ATOMIC_LOADW_SR: 3405 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 3406 case SystemZ::ATOMIC_LOAD_SR: 3407 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 3408 case SystemZ::ATOMIC_LOAD_SGR: 3409 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 3410 3411 case SystemZ::ATOMIC_LOADW_NR: 3412 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 3413 case SystemZ::ATOMIC_LOADW_NILH: 3414 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 3415 case SystemZ::ATOMIC_LOAD_NR: 3416 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 3417 case SystemZ::ATOMIC_LOAD_NILL: 3418 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 3419 case SystemZ::ATOMIC_LOAD_NILH: 3420 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 3421 case SystemZ::ATOMIC_LOAD_NILF: 3422 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 3423 case SystemZ::ATOMIC_LOAD_NGR: 3424 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 3425 case SystemZ::ATOMIC_LOAD_NILL64: 3426 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 3427 case SystemZ::ATOMIC_LOAD_NILH64: 3428 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 3429 case SystemZ::ATOMIC_LOAD_NIHL64: 3430 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 3431 case SystemZ::ATOMIC_LOAD_NIHH64: 3432 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 3433 case SystemZ::ATOMIC_LOAD_NILF64: 3434 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 3435 case SystemZ::ATOMIC_LOAD_NIHF64: 3436 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 3437 3438 case SystemZ::ATOMIC_LOADW_OR: 3439 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 3440 case SystemZ::ATOMIC_LOADW_OILH: 3441 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 3442 case SystemZ::ATOMIC_LOAD_OR: 3443 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 3444 case SystemZ::ATOMIC_LOAD_OILL: 3445 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 3446 case SystemZ::ATOMIC_LOAD_OILH: 3447 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 3448 case SystemZ::ATOMIC_LOAD_OILF: 3449 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 3450 case SystemZ::ATOMIC_LOAD_OGR: 3451 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 3452 case SystemZ::ATOMIC_LOAD_OILL64: 3453 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 3454 case SystemZ::ATOMIC_LOAD_OILH64: 3455 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 3456 case SystemZ::ATOMIC_LOAD_OIHL64: 3457 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 3458 case SystemZ::ATOMIC_LOAD_OIHH64: 3459 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 3460 case SystemZ::ATOMIC_LOAD_OILF64: 3461 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 3462 case SystemZ::ATOMIC_LOAD_OIHF64: 3463 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 3464 3465 case SystemZ::ATOMIC_LOADW_XR: 3466 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 3467 case SystemZ::ATOMIC_LOADW_XILF: 3468 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 3469 case SystemZ::ATOMIC_LOAD_XR: 3470 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 3471 case SystemZ::ATOMIC_LOAD_XILF: 3472 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 3473 case SystemZ::ATOMIC_LOAD_XGR: 3474 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 3475 case SystemZ::ATOMIC_LOAD_XILF64: 3476 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 3477 case SystemZ::ATOMIC_LOAD_XIHF64: 3478 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 3479 3480 case SystemZ::ATOMIC_LOADW_NRi: 3481 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 3482 case SystemZ::ATOMIC_LOADW_NILHi: 3483 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 3484 case SystemZ::ATOMIC_LOAD_NRi: 3485 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 3486 case SystemZ::ATOMIC_LOAD_NILLi: 3487 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 3488 case SystemZ::ATOMIC_LOAD_NILHi: 3489 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 3490 case SystemZ::ATOMIC_LOAD_NILFi: 3491 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 3492 case SystemZ::ATOMIC_LOAD_NGRi: 3493 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 3494 case SystemZ::ATOMIC_LOAD_NILL64i: 3495 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 3496 case SystemZ::ATOMIC_LOAD_NILH64i: 3497 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 3498 case SystemZ::ATOMIC_LOAD_NIHL64i: 3499 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 3500 case SystemZ::ATOMIC_LOAD_NIHH64i: 3501 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 3502 case SystemZ::ATOMIC_LOAD_NILF64i: 3503 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 3504 case SystemZ::ATOMIC_LOAD_NIHF64i: 3505 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 3506 3507 case SystemZ::ATOMIC_LOADW_MIN: 3508 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3509 SystemZ::CCMASK_CMP_LE, 0); 3510 case SystemZ::ATOMIC_LOAD_MIN_32: 3511 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3512 SystemZ::CCMASK_CMP_LE, 32); 3513 case SystemZ::ATOMIC_LOAD_MIN_64: 3514 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 3515 SystemZ::CCMASK_CMP_LE, 64); 3516 3517 case SystemZ::ATOMIC_LOADW_MAX: 3518 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3519 SystemZ::CCMASK_CMP_GE, 0); 3520 case SystemZ::ATOMIC_LOAD_MAX_32: 3521 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3522 SystemZ::CCMASK_CMP_GE, 32); 3523 case SystemZ::ATOMIC_LOAD_MAX_64: 3524 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 3525 SystemZ::CCMASK_CMP_GE, 64); 3526 3527 case SystemZ::ATOMIC_LOADW_UMIN: 3528 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3529 SystemZ::CCMASK_CMP_LE, 0); 3530 case SystemZ::ATOMIC_LOAD_UMIN_32: 3531 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3532 SystemZ::CCMASK_CMP_LE, 32); 3533 case SystemZ::ATOMIC_LOAD_UMIN_64: 3534 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 3535 SystemZ::CCMASK_CMP_LE, 64); 3536 3537 case SystemZ::ATOMIC_LOADW_UMAX: 3538 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3539 SystemZ::CCMASK_CMP_GE, 0); 3540 case SystemZ::ATOMIC_LOAD_UMAX_32: 3541 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3542 SystemZ::CCMASK_CMP_GE, 32); 3543 case SystemZ::ATOMIC_LOAD_UMAX_64: 3544 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 3545 SystemZ::CCMASK_CMP_GE, 64); 3546 3547 case SystemZ::ATOMIC_CMP_SWAPW: 3548 return emitAtomicCmpSwapW(MI, MBB); 3549 case SystemZ::MVCSequence: 3550 case SystemZ::MVCLoop: 3551 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 3552 case SystemZ::NCSequence: 3553 case SystemZ::NCLoop: 3554 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 3555 case SystemZ::OCSequence: 3556 case SystemZ::OCLoop: 3557 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 3558 case SystemZ::XCSequence: 3559 case SystemZ::XCLoop: 3560 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 3561 case SystemZ::CLCSequence: 3562 case SystemZ::CLCLoop: 3563 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 3564 case SystemZ::CLSTLoop: 3565 return emitStringWrapper(MI, MBB, SystemZ::CLST); 3566 case SystemZ::MVSTLoop: 3567 return emitStringWrapper(MI, MBB, SystemZ::MVST); 3568 case SystemZ::SRSTLoop: 3569 return emitStringWrapper(MI, MBB, SystemZ::SRST); 3570 default: 3571 llvm_unreachable("Unexpected instr type to insert"); 3572 } 3573 } 3574