1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include <cctype> 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "systemz-lower" 30 31 namespace { 32 // Represents a sequence for extracting a 0/1 value from an IPM result: 33 // (((X ^ XORValue) + AddValue) >> Bit) 34 struct IPMConversion { 35 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 36 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 37 38 int64_t XORValue; 39 int64_t AddValue; 40 unsigned Bit; 41 }; 42 43 // Represents information about a comparison. 44 struct Comparison { 45 Comparison(SDValue Op0In, SDValue Op1In) 46 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 47 48 // The operands to the comparison. 49 SDValue Op0, Op1; 50 51 // The opcode that should be used to compare Op0 and Op1. 52 unsigned Opcode; 53 54 // A SystemZICMP value. Only used for integer comparisons. 55 unsigned ICmpType; 56 57 // The mask of CC values that Opcode can produce. 58 unsigned CCValid; 59 60 // The mask of CC values for which the original condition is true. 61 unsigned CCMask; 62 }; 63 } // end anonymous namespace 64 65 // Classify VT as either 32 or 64 bit. 66 static bool is32Bit(EVT VT) { 67 switch (VT.getSimpleVT().SimpleTy) { 68 case MVT::i32: 69 return true; 70 case MVT::i64: 71 return false; 72 default: 73 llvm_unreachable("Unsupported type"); 74 } 75 } 76 77 // Return a version of MachineOperand that can be safely used before the 78 // final use. 79 static MachineOperand earlyUseOperand(MachineOperand Op) { 80 if (Op.isReg()) 81 Op.setIsKill(false); 82 return Op; 83 } 84 85 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 86 const SystemZSubtarget &STI) 87 : TargetLowering(TM), Subtarget(STI) { 88 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 89 90 // Set up the register classes. 91 if (Subtarget.hasHighWord()) 92 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 93 else 94 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 95 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 96 if (Subtarget.hasVector()) { 97 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 98 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 99 } else { 100 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 101 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 102 } 103 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 104 105 if (Subtarget.hasVector()) { 106 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(2); 131 132 // Handle operations that are handled in a similar way for all types. 133 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 134 I <= MVT::LAST_FP_VALUETYPE; 135 ++I) { 136 MVT VT = MVT::SimpleValueType(I); 137 if (isTypeLegal(VT)) { 138 // Lower SET_CC into an IPM-based sequence. 139 setOperationAction(ISD::SETCC, VT, Custom); 140 141 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 142 setOperationAction(ISD::SELECT, VT, Expand); 143 144 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 145 setOperationAction(ISD::SELECT_CC, VT, Custom); 146 setOperationAction(ISD::BR_CC, VT, Custom); 147 } 148 } 149 150 // Expand jump table branches as address arithmetic followed by an 151 // indirect jump. 152 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 153 154 // Expand BRCOND into a BR_CC (see above). 155 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 156 157 // Handle integer types. 158 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 159 I <= MVT::LAST_INTEGER_VALUETYPE; 160 ++I) { 161 MVT VT = MVT::SimpleValueType(I); 162 if (isTypeLegal(VT)) { 163 // Expand individual DIV and REMs into DIVREMs. 164 setOperationAction(ISD::SDIV, VT, Expand); 165 setOperationAction(ISD::UDIV, VT, Expand); 166 setOperationAction(ISD::SREM, VT, Expand); 167 setOperationAction(ISD::UREM, VT, Expand); 168 setOperationAction(ISD::SDIVREM, VT, Custom); 169 setOperationAction(ISD::UDIVREM, VT, Custom); 170 171 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 172 // stores, putting a serialization instruction after the stores. 173 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 174 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 175 176 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 177 // available, or if the operand is constant. 178 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 179 180 // Use POPCNT on z196 and above. 181 if (Subtarget.hasPopulationCount()) 182 setOperationAction(ISD::CTPOP, VT, Custom); 183 else 184 setOperationAction(ISD::CTPOP, VT, Expand); 185 186 // No special instructions for these. 187 setOperationAction(ISD::CTTZ, VT, Expand); 188 setOperationAction(ISD::ROTR, VT, Expand); 189 190 // Use *MUL_LOHI where possible instead of MULH*. 191 setOperationAction(ISD::MULHS, VT, Expand); 192 setOperationAction(ISD::MULHU, VT, Expand); 193 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 194 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 195 196 // Only z196 and above have native support for conversions to unsigned. 197 // On z10, promoting to i64 doesn't generate an inexact condition for 198 // values that are outside the i32 range but in the i64 range, so use 199 // the default expansion. 200 if (!Subtarget.hasFPExtension()) 201 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 202 } 203 } 204 205 // Type legalization will convert 8- and 16-bit atomic operations into 206 // forms that operate on i32s (but still keeping the original memory VT). 207 // Lower them into full i32 operations. 208 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 220 221 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 222 223 // Traps are legal, as we will convert them to "j .+2". 224 setOperationAction(ISD::TRAP, MVT::Other, Legal); 225 226 // z10 has instructions for signed but not unsigned FP conversion. 227 // Handle unsigned 32-bit types as signed 64-bit types. 228 if (!Subtarget.hasFPExtension()) { 229 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 230 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 231 } 232 233 // We have native support for a 64-bit CTLZ, via FLOGR. 234 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 235 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 236 237 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 238 setOperationAction(ISD::OR, MVT::i64, Custom); 239 240 // FIXME: Can we support these natively? 241 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 242 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 243 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 244 245 // We have native instructions for i8, i16 and i32 extensions, but not i1. 246 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 247 for (MVT VT : MVT::integer_valuetypes()) { 248 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 249 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 250 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 251 } 252 253 // Handle the various types of symbolic address. 254 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 255 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 256 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 257 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 258 setOperationAction(ISD::JumpTable, PtrVT, Custom); 259 260 // We need to handle dynamic allocations specially because of the 261 // 160-byte area at the bottom of the stack. 262 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 263 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 264 265 // Use custom expanders so that we can force the function to use 266 // a frame pointer. 267 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 268 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 269 270 // Handle prefetches with PFD or PFDRL. 271 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 272 273 for (MVT VT : MVT::vector_valuetypes()) { 274 // Assume by default that all vector operations need to be expanded. 275 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 276 if (getOperationAction(Opcode, VT) == Legal) 277 setOperationAction(Opcode, VT, Expand); 278 279 // Likewise all truncating stores and extending loads. 280 for (MVT InnerVT : MVT::vector_valuetypes()) { 281 setTruncStoreAction(VT, InnerVT, Expand); 282 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 283 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 284 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 285 } 286 287 if (isTypeLegal(VT)) { 288 // These operations are legal for anything that can be stored in a 289 // vector register, even if there is no native support for the format 290 // as such. In particular, we can do these for v4f32 even though there 291 // are no specific instructions for that format. 292 setOperationAction(ISD::LOAD, VT, Legal); 293 setOperationAction(ISD::STORE, VT, Legal); 294 setOperationAction(ISD::VSELECT, VT, Legal); 295 setOperationAction(ISD::BITCAST, VT, Legal); 296 setOperationAction(ISD::UNDEF, VT, Legal); 297 298 // Likewise, except that we need to replace the nodes with something 299 // more specific. 300 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 301 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 302 } 303 } 304 305 // Handle integer vector types. 306 for (MVT VT : MVT::integer_vector_valuetypes()) { 307 if (isTypeLegal(VT)) { 308 // These operations have direct equivalents. 309 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 310 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 311 setOperationAction(ISD::ADD, VT, Legal); 312 setOperationAction(ISD::SUB, VT, Legal); 313 if (VT != MVT::v2i64) 314 setOperationAction(ISD::MUL, VT, Legal); 315 setOperationAction(ISD::AND, VT, Legal); 316 setOperationAction(ISD::OR, VT, Legal); 317 setOperationAction(ISD::XOR, VT, Legal); 318 setOperationAction(ISD::CTPOP, VT, Custom); 319 setOperationAction(ISD::CTTZ, VT, Legal); 320 setOperationAction(ISD::CTLZ, VT, Legal); 321 322 // Convert a GPR scalar to a vector by inserting it into element 0. 323 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 324 325 // Use a series of unpacks for extensions. 326 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 327 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 328 329 // Detect shifts by a scalar amount and convert them into 330 // V*_BY_SCALAR. 331 setOperationAction(ISD::SHL, VT, Custom); 332 setOperationAction(ISD::SRA, VT, Custom); 333 setOperationAction(ISD::SRL, VT, Custom); 334 335 // At present ROTL isn't matched by DAGCombiner. ROTR should be 336 // converted into ROTL. 337 setOperationAction(ISD::ROTL, VT, Expand); 338 setOperationAction(ISD::ROTR, VT, Expand); 339 340 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 341 // and inverting the result as necessary. 342 setOperationAction(ISD::SETCC, VT, Custom); 343 } 344 } 345 346 if (Subtarget.hasVector()) { 347 // There should be no need to check for float types other than v2f64 348 // since <2 x f32> isn't a legal type. 349 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 350 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 351 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 352 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 353 } 354 355 // Handle floating-point types. 356 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 357 I <= MVT::LAST_FP_VALUETYPE; 358 ++I) { 359 MVT VT = MVT::SimpleValueType(I); 360 if (isTypeLegal(VT)) { 361 // We can use FI for FRINT. 362 setOperationAction(ISD::FRINT, VT, Legal); 363 364 // We can use the extended form of FI for other rounding operations. 365 if (Subtarget.hasFPExtension()) { 366 setOperationAction(ISD::FNEARBYINT, VT, Legal); 367 setOperationAction(ISD::FFLOOR, VT, Legal); 368 setOperationAction(ISD::FCEIL, VT, Legal); 369 setOperationAction(ISD::FTRUNC, VT, Legal); 370 setOperationAction(ISD::FROUND, VT, Legal); 371 } 372 373 // No special instructions for these. 374 setOperationAction(ISD::FSIN, VT, Expand); 375 setOperationAction(ISD::FCOS, VT, Expand); 376 setOperationAction(ISD::FSINCOS, VT, Expand); 377 setOperationAction(ISD::FREM, VT, Expand); 378 setOperationAction(ISD::FPOW, VT, Expand); 379 } 380 } 381 382 // Handle floating-point vector types. 383 if (Subtarget.hasVector()) { 384 // Scalar-to-vector conversion is just a subreg. 385 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 386 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 387 388 // Some insertions and extractions can be done directly but others 389 // need to go via integers. 390 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 391 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 392 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 393 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 394 395 // These operations have direct equivalents. 396 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 397 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 398 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 399 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 400 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 401 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 402 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 403 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 404 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 406 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 407 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 408 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 409 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 410 } 411 412 // We have fused multiply-addition for f32 and f64 but not f128. 413 setOperationAction(ISD::FMA, MVT::f32, Legal); 414 setOperationAction(ISD::FMA, MVT::f64, Legal); 415 setOperationAction(ISD::FMA, MVT::f128, Expand); 416 417 // Needed so that we don't try to implement f128 constant loads using 418 // a load-and-extend of a f80 constant (in cases where the constant 419 // would fit in an f80). 420 for (MVT VT : MVT::fp_valuetypes()) 421 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 422 423 // Floating-point truncation and stores need to be done separately. 424 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 425 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 426 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 427 428 // We have 64-bit FPR<->GPR moves, but need special handling for 429 // 32-bit forms. 430 if (!Subtarget.hasVector()) { 431 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 432 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 433 } 434 435 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 436 // structure, but VAEND is a no-op. 437 setOperationAction(ISD::VASTART, MVT::Other, Custom); 438 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 439 setOperationAction(ISD::VAEND, MVT::Other, Expand); 440 441 // Codes for which we want to perform some z-specific combinations. 442 setTargetDAGCombine(ISD::SIGN_EXTEND); 443 setTargetDAGCombine(ISD::STORE); 444 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 445 setTargetDAGCombine(ISD::FP_ROUND); 446 setTargetDAGCombine(ISD::BSWAP); 447 setTargetDAGCombine(ISD::SHL); 448 setTargetDAGCombine(ISD::SRA); 449 setTargetDAGCombine(ISD::SRL); 450 setTargetDAGCombine(ISD::ROTL); 451 452 // Handle intrinsics. 453 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 454 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 455 456 // We want to use MVC in preference to even a single load/store pair. 457 MaxStoresPerMemcpy = 0; 458 MaxStoresPerMemcpyOptSize = 0; 459 460 // The main memset sequence is a byte store followed by an MVC. 461 // Two STC or MV..I stores win over that, but the kind of fused stores 462 // generated by target-independent code don't when the byte value is 463 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 464 // than "STC;MVC". Handle the choice in target-specific code instead. 465 MaxStoresPerMemset = 0; 466 MaxStoresPerMemsetOptSize = 0; 467 } 468 469 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 470 LLVMContext &, EVT VT) const { 471 if (!VT.isVector()) 472 return MVT::i32; 473 return VT.changeVectorElementTypeToInteger(); 474 } 475 476 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 477 VT = VT.getScalarType(); 478 479 if (!VT.isSimple()) 480 return false; 481 482 switch (VT.getSimpleVT().SimpleTy) { 483 case MVT::f32: 484 case MVT::f64: 485 return true; 486 case MVT::f128: 487 return false; 488 default: 489 break; 490 } 491 492 return false; 493 } 494 495 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 496 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 497 return Imm.isZero() || Imm.isNegZero(); 498 } 499 500 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 501 // We can use CGFI or CLGFI. 502 return isInt<32>(Imm) || isUInt<32>(Imm); 503 } 504 505 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 506 // We can use ALGFI or SLGFI. 507 return isUInt<32>(Imm) || isUInt<32>(-Imm); 508 } 509 510 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 511 unsigned, 512 unsigned, 513 bool *Fast) const { 514 // Unaligned accesses should never be slower than the expanded version. 515 // We check specifically for aligned accesses in the few cases where 516 // they are required. 517 if (Fast) 518 *Fast = true; 519 return true; 520 } 521 522 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 523 const AddrMode &AM, Type *Ty, 524 unsigned AS) const { 525 // Punt on globals for now, although they can be used in limited 526 // RELATIVE LONG cases. 527 if (AM.BaseGV) 528 return false; 529 530 // Require a 20-bit signed offset. 531 if (!isInt<20>(AM.BaseOffs)) 532 return false; 533 534 // Indexing is OK but no scale factor can be applied. 535 return AM.Scale == 0 || AM.Scale == 1; 536 } 537 538 bool SystemZTargetLowering::isFoldableMemAccessOffset(Instruction *I, 539 int64_t Offset) const { 540 // This only applies to z13. 541 if (!Subtarget.hasVector()) 542 return true; 543 544 // * Use LDE instead of LE/LEY to avoid partial register 545 // dependencies (LDE only supports small offsets). 546 // * Utilize the vector registers to hold floating point 547 // values (vector load / store instructions only support small 548 // offsets). 549 550 assert (isa<LoadInst>(I) || isa<StoreInst>(I)); 551 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 552 I->getOperand(0)->getType()); 553 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 554 bool IsVectorAccess = MemAccessTy->isVectorTy(); 555 556 // A store of an extracted vector element will be combined into a VSTE type 557 // instruction. 558 if (!IsVectorAccess && isa<StoreInst>(I)) { 559 Value *DataOp = I->getOperand(0); 560 if (isa<ExtractElementInst>(DataOp)) 561 IsVectorAccess = true; 562 } 563 564 // A load which gets inserted into a vector element will be combined into a 565 // VLE type instruction. 566 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 567 User *LoadUser = *I->user_begin(); 568 if (isa<InsertElementInst>(LoadUser)) 569 IsVectorAccess = true; 570 } 571 572 if (!isUInt<12>(Offset) && (IsFPAccess || IsVectorAccess)) 573 return false; 574 575 return true; 576 } 577 578 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 579 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 580 return false; 581 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 582 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 583 return FromBits > ToBits; 584 } 585 586 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 587 if (!FromVT.isInteger() || !ToVT.isInteger()) 588 return false; 589 unsigned FromBits = FromVT.getSizeInBits(); 590 unsigned ToBits = ToVT.getSizeInBits(); 591 return FromBits > ToBits; 592 } 593 594 //===----------------------------------------------------------------------===// 595 // Inline asm support 596 //===----------------------------------------------------------------------===// 597 598 TargetLowering::ConstraintType 599 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 600 if (Constraint.size() == 1) { 601 switch (Constraint[0]) { 602 case 'a': // Address register 603 case 'd': // Data register (equivalent to 'r') 604 case 'f': // Floating-point register 605 case 'h': // High-part register 606 case 'r': // General-purpose register 607 return C_RegisterClass; 608 609 case 'Q': // Memory with base and unsigned 12-bit displacement 610 case 'R': // Likewise, plus an index 611 case 'S': // Memory with base and signed 20-bit displacement 612 case 'T': // Likewise, plus an index 613 case 'm': // Equivalent to 'T'. 614 return C_Memory; 615 616 case 'I': // Unsigned 8-bit constant 617 case 'J': // Unsigned 12-bit constant 618 case 'K': // Signed 16-bit constant 619 case 'L': // Signed 20-bit displacement (on all targets we support) 620 case 'M': // 0x7fffffff 621 return C_Other; 622 623 default: 624 break; 625 } 626 } 627 return TargetLowering::getConstraintType(Constraint); 628 } 629 630 TargetLowering::ConstraintWeight SystemZTargetLowering:: 631 getSingleConstraintMatchWeight(AsmOperandInfo &info, 632 const char *constraint) const { 633 ConstraintWeight weight = CW_Invalid; 634 Value *CallOperandVal = info.CallOperandVal; 635 // If we don't have a value, we can't do a match, 636 // but allow it at the lowest weight. 637 if (!CallOperandVal) 638 return CW_Default; 639 Type *type = CallOperandVal->getType(); 640 // Look at the constraint type. 641 switch (*constraint) { 642 default: 643 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 644 break; 645 646 case 'a': // Address register 647 case 'd': // Data register (equivalent to 'r') 648 case 'h': // High-part register 649 case 'r': // General-purpose register 650 if (CallOperandVal->getType()->isIntegerTy()) 651 weight = CW_Register; 652 break; 653 654 case 'f': // Floating-point register 655 if (type->isFloatingPointTy()) 656 weight = CW_Register; 657 break; 658 659 case 'I': // Unsigned 8-bit constant 660 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 661 if (isUInt<8>(C->getZExtValue())) 662 weight = CW_Constant; 663 break; 664 665 case 'J': // Unsigned 12-bit constant 666 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 667 if (isUInt<12>(C->getZExtValue())) 668 weight = CW_Constant; 669 break; 670 671 case 'K': // Signed 16-bit constant 672 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 673 if (isInt<16>(C->getSExtValue())) 674 weight = CW_Constant; 675 break; 676 677 case 'L': // Signed 20-bit displacement (on all targets we support) 678 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 679 if (isInt<20>(C->getSExtValue())) 680 weight = CW_Constant; 681 break; 682 683 case 'M': // 0x7fffffff 684 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 685 if (C->getZExtValue() == 0x7fffffff) 686 weight = CW_Constant; 687 break; 688 } 689 return weight; 690 } 691 692 // Parse a "{tNNN}" register constraint for which the register type "t" 693 // has already been verified. MC is the class associated with "t" and 694 // Map maps 0-based register numbers to LLVM register numbers. 695 static std::pair<unsigned, const TargetRegisterClass *> 696 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 697 const unsigned *Map) { 698 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 699 if (isdigit(Constraint[2])) { 700 unsigned Index; 701 bool Failed = 702 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 703 if (!Failed && Index < 16 && Map[Index]) 704 return std::make_pair(Map[Index], RC); 705 } 706 return std::make_pair(0U, nullptr); 707 } 708 709 std::pair<unsigned, const TargetRegisterClass *> 710 SystemZTargetLowering::getRegForInlineAsmConstraint( 711 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 712 if (Constraint.size() == 1) { 713 // GCC Constraint Letters 714 switch (Constraint[0]) { 715 default: break; 716 case 'd': // Data register (equivalent to 'r') 717 case 'r': // General-purpose register 718 if (VT == MVT::i64) 719 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 720 else if (VT == MVT::i128) 721 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 722 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 723 724 case 'a': // Address register 725 if (VT == MVT::i64) 726 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 727 else if (VT == MVT::i128) 728 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 729 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 730 731 case 'h': // High-part register (an LLVM extension) 732 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 733 734 case 'f': // Floating-point register 735 if (VT == MVT::f64) 736 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 737 else if (VT == MVT::f128) 738 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 739 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 740 } 741 } 742 if (Constraint.size() > 0 && Constraint[0] == '{') { 743 // We need to override the default register parsing for GPRs and FPRs 744 // because the interpretation depends on VT. The internal names of 745 // the registers are also different from the external names 746 // (F0D and F0S instead of F0, etc.). 747 if (Constraint[1] == 'r') { 748 if (VT == MVT::i32) 749 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 750 SystemZMC::GR32Regs); 751 if (VT == MVT::i128) 752 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 753 SystemZMC::GR128Regs); 754 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 755 SystemZMC::GR64Regs); 756 } 757 if (Constraint[1] == 'f') { 758 if (VT == MVT::f32) 759 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 760 SystemZMC::FP32Regs); 761 if (VT == MVT::f128) 762 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 763 SystemZMC::FP128Regs); 764 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 765 SystemZMC::FP64Regs); 766 } 767 } 768 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 769 } 770 771 void SystemZTargetLowering:: 772 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 773 std::vector<SDValue> &Ops, 774 SelectionDAG &DAG) const { 775 // Only support length 1 constraints for now. 776 if (Constraint.length() == 1) { 777 switch (Constraint[0]) { 778 case 'I': // Unsigned 8-bit constant 779 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 780 if (isUInt<8>(C->getZExtValue())) 781 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 782 Op.getValueType())); 783 return; 784 785 case 'J': // Unsigned 12-bit constant 786 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 787 if (isUInt<12>(C->getZExtValue())) 788 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 789 Op.getValueType())); 790 return; 791 792 case 'K': // Signed 16-bit constant 793 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 794 if (isInt<16>(C->getSExtValue())) 795 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 796 Op.getValueType())); 797 return; 798 799 case 'L': // Signed 20-bit displacement (on all targets we support) 800 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 801 if (isInt<20>(C->getSExtValue())) 802 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 803 Op.getValueType())); 804 return; 805 806 case 'M': // 0x7fffffff 807 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 808 if (C->getZExtValue() == 0x7fffffff) 809 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 810 Op.getValueType())); 811 return; 812 } 813 } 814 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 815 } 816 817 //===----------------------------------------------------------------------===// 818 // Calling conventions 819 //===----------------------------------------------------------------------===// 820 821 #include "SystemZGenCallingConv.inc" 822 823 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 824 Type *ToType) const { 825 return isTruncateFree(FromType, ToType); 826 } 827 828 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 829 return CI->isTailCall(); 830 } 831 832 // We do not yet support 128-bit single-element vector types. If the user 833 // attempts to use such types as function argument or return type, prefer 834 // to error out instead of emitting code violating the ABI. 835 static void VerifyVectorType(MVT VT, EVT ArgVT) { 836 if (ArgVT.isVector() && !VT.isVector()) 837 report_fatal_error("Unsupported vector argument or return type"); 838 } 839 840 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 841 for (unsigned i = 0; i < Ins.size(); ++i) 842 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 843 } 844 845 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 846 for (unsigned i = 0; i < Outs.size(); ++i) 847 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 848 } 849 850 // Value is a value that has been passed to us in the location described by VA 851 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 852 // any loads onto Chain. 853 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 854 CCValAssign &VA, SDValue Chain, 855 SDValue Value) { 856 // If the argument has been promoted from a smaller type, insert an 857 // assertion to capture this. 858 if (VA.getLocInfo() == CCValAssign::SExt) 859 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 860 DAG.getValueType(VA.getValVT())); 861 else if (VA.getLocInfo() == CCValAssign::ZExt) 862 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 863 DAG.getValueType(VA.getValVT())); 864 865 if (VA.isExtInLoc()) 866 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 867 else if (VA.getLocInfo() == CCValAssign::BCvt) { 868 // If this is a short vector argument loaded from the stack, 869 // extend from i64 to full vector size and then bitcast. 870 assert(VA.getLocVT() == MVT::i64); 871 assert(VA.getValVT().isVector()); 872 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 873 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 874 } else 875 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 876 return Value; 877 } 878 879 // Value is a value of type VA.getValVT() that we need to copy into 880 // the location described by VA. Return a copy of Value converted to 881 // VA.getValVT(). The caller is responsible for handling indirect values. 882 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 883 CCValAssign &VA, SDValue Value) { 884 switch (VA.getLocInfo()) { 885 case CCValAssign::SExt: 886 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 887 case CCValAssign::ZExt: 888 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 889 case CCValAssign::AExt: 890 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 891 case CCValAssign::BCvt: 892 // If this is a short vector argument to be stored to the stack, 893 // bitcast to v2i64 and then extract first element. 894 assert(VA.getLocVT() == MVT::i64); 895 assert(VA.getValVT().isVector()); 896 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 897 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 898 DAG.getConstant(0, DL, MVT::i32)); 899 case CCValAssign::Full: 900 return Value; 901 default: 902 llvm_unreachable("Unhandled getLocInfo()"); 903 } 904 } 905 906 SDValue SystemZTargetLowering::LowerFormalArguments( 907 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 908 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 909 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 910 MachineFunction &MF = DAG.getMachineFunction(); 911 MachineFrameInfo &MFI = MF.getFrameInfo(); 912 MachineRegisterInfo &MRI = MF.getRegInfo(); 913 SystemZMachineFunctionInfo *FuncInfo = 914 MF.getInfo<SystemZMachineFunctionInfo>(); 915 auto *TFL = 916 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 917 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 918 919 // Detect unsupported vector argument types. 920 if (Subtarget.hasVector()) 921 VerifyVectorTypes(Ins); 922 923 // Assign locations to all of the incoming arguments. 924 SmallVector<CCValAssign, 16> ArgLocs; 925 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 926 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 927 928 unsigned NumFixedGPRs = 0; 929 unsigned NumFixedFPRs = 0; 930 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 931 SDValue ArgValue; 932 CCValAssign &VA = ArgLocs[I]; 933 EVT LocVT = VA.getLocVT(); 934 if (VA.isRegLoc()) { 935 // Arguments passed in registers 936 const TargetRegisterClass *RC; 937 switch (LocVT.getSimpleVT().SimpleTy) { 938 default: 939 // Integers smaller than i64 should be promoted to i64. 940 llvm_unreachable("Unexpected argument type"); 941 case MVT::i32: 942 NumFixedGPRs += 1; 943 RC = &SystemZ::GR32BitRegClass; 944 break; 945 case MVT::i64: 946 NumFixedGPRs += 1; 947 RC = &SystemZ::GR64BitRegClass; 948 break; 949 case MVT::f32: 950 NumFixedFPRs += 1; 951 RC = &SystemZ::FP32BitRegClass; 952 break; 953 case MVT::f64: 954 NumFixedFPRs += 1; 955 RC = &SystemZ::FP64BitRegClass; 956 break; 957 case MVT::v16i8: 958 case MVT::v8i16: 959 case MVT::v4i32: 960 case MVT::v2i64: 961 case MVT::v4f32: 962 case MVT::v2f64: 963 RC = &SystemZ::VR128BitRegClass; 964 break; 965 } 966 967 unsigned VReg = MRI.createVirtualRegister(RC); 968 MRI.addLiveIn(VA.getLocReg(), VReg); 969 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 970 } else { 971 assert(VA.isMemLoc() && "Argument not register or memory"); 972 973 // Create the frame index object for this incoming parameter. 974 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 975 VA.getLocMemOffset(), true); 976 977 // Create the SelectionDAG nodes corresponding to a load 978 // from this parameter. Unpromoted ints and floats are 979 // passed as right-justified 8-byte values. 980 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 981 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 982 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 983 DAG.getIntPtrConstant(4, DL)); 984 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 985 MachinePointerInfo::getFixedStack(MF, FI)); 986 } 987 988 // Convert the value of the argument register into the value that's 989 // being passed. 990 if (VA.getLocInfo() == CCValAssign::Indirect) { 991 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 992 MachinePointerInfo())); 993 // If the original argument was split (e.g. i128), we need 994 // to load all parts of it here (using the same address). 995 unsigned ArgIndex = Ins[I].OrigArgIndex; 996 assert (Ins[I].PartOffset == 0); 997 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 998 CCValAssign &PartVA = ArgLocs[I + 1]; 999 unsigned PartOffset = Ins[I + 1].PartOffset; 1000 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1001 DAG.getIntPtrConstant(PartOffset, DL)); 1002 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1003 MachinePointerInfo())); 1004 ++I; 1005 } 1006 } else 1007 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1008 } 1009 1010 if (IsVarArg) { 1011 // Save the number of non-varargs registers for later use by va_start, etc. 1012 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1013 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1014 1015 // Likewise the address (in the form of a frame index) of where the 1016 // first stack vararg would be. The 1-byte size here is arbitrary. 1017 int64_t StackSize = CCInfo.getNextStackOffset(); 1018 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1019 1020 // ...and a similar frame index for the caller-allocated save area 1021 // that will be used to store the incoming registers. 1022 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1023 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1024 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1025 1026 // Store the FPR varargs in the reserved frame slots. (We store the 1027 // GPRs as part of the prologue.) 1028 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1029 SDValue MemOps[SystemZ::NumArgFPRs]; 1030 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1031 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1032 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1033 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1034 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1035 &SystemZ::FP64BitRegClass); 1036 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1037 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1038 MachinePointerInfo::getFixedStack(MF, FI)); 1039 } 1040 // Join the stores, which are independent of one another. 1041 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1042 makeArrayRef(&MemOps[NumFixedFPRs], 1043 SystemZ::NumArgFPRs-NumFixedFPRs)); 1044 } 1045 } 1046 1047 return Chain; 1048 } 1049 1050 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1051 SmallVectorImpl<CCValAssign> &ArgLocs, 1052 SmallVectorImpl<ISD::OutputArg> &Outs) { 1053 // Punt if there are any indirect or stack arguments, or if the call 1054 // needs the callee-saved argument register R6, or if the call uses 1055 // the callee-saved register arguments SwiftSelf and SwiftError. 1056 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1057 CCValAssign &VA = ArgLocs[I]; 1058 if (VA.getLocInfo() == CCValAssign::Indirect) 1059 return false; 1060 if (!VA.isRegLoc()) 1061 return false; 1062 unsigned Reg = VA.getLocReg(); 1063 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1064 return false; 1065 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1066 return false; 1067 } 1068 return true; 1069 } 1070 1071 SDValue 1072 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1073 SmallVectorImpl<SDValue> &InVals) const { 1074 SelectionDAG &DAG = CLI.DAG; 1075 SDLoc &DL = CLI.DL; 1076 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1077 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1078 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1079 SDValue Chain = CLI.Chain; 1080 SDValue Callee = CLI.Callee; 1081 bool &IsTailCall = CLI.IsTailCall; 1082 CallingConv::ID CallConv = CLI.CallConv; 1083 bool IsVarArg = CLI.IsVarArg; 1084 MachineFunction &MF = DAG.getMachineFunction(); 1085 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1086 1087 // Detect unsupported vector argument and return types. 1088 if (Subtarget.hasVector()) { 1089 VerifyVectorTypes(Outs); 1090 VerifyVectorTypes(Ins); 1091 } 1092 1093 // Analyze the operands of the call, assigning locations to each operand. 1094 SmallVector<CCValAssign, 16> ArgLocs; 1095 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1096 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1097 1098 // We don't support GuaranteedTailCallOpt, only automatically-detected 1099 // sibling calls. 1100 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1101 IsTailCall = false; 1102 1103 // Get a count of how many bytes are to be pushed on the stack. 1104 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1105 1106 // Mark the start of the call. 1107 if (!IsTailCall) 1108 Chain = DAG.getCALLSEQ_START(Chain, 1109 DAG.getConstant(NumBytes, DL, PtrVT, true), 1110 DL); 1111 1112 // Copy argument values to their designated locations. 1113 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1114 SmallVector<SDValue, 8> MemOpChains; 1115 SDValue StackPtr; 1116 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1117 CCValAssign &VA = ArgLocs[I]; 1118 SDValue ArgValue = OutVals[I]; 1119 1120 if (VA.getLocInfo() == CCValAssign::Indirect) { 1121 // Store the argument in a stack slot and pass its address. 1122 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1123 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1124 MemOpChains.push_back( 1125 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1126 MachinePointerInfo::getFixedStack(MF, FI))); 1127 // If the original argument was split (e.g. i128), we need 1128 // to store all parts of it here (and pass just one address). 1129 unsigned ArgIndex = Outs[I].OrigArgIndex; 1130 assert (Outs[I].PartOffset == 0); 1131 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1132 SDValue PartValue = OutVals[I + 1]; 1133 unsigned PartOffset = Outs[I + 1].PartOffset; 1134 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1135 DAG.getIntPtrConstant(PartOffset, DL)); 1136 MemOpChains.push_back( 1137 DAG.getStore(Chain, DL, PartValue, Address, 1138 MachinePointerInfo::getFixedStack(MF, FI))); 1139 ++I; 1140 } 1141 ArgValue = SpillSlot; 1142 } else 1143 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1144 1145 if (VA.isRegLoc()) 1146 // Queue up the argument copies and emit them at the end. 1147 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1148 else { 1149 assert(VA.isMemLoc() && "Argument not register or memory"); 1150 1151 // Work out the address of the stack slot. Unpromoted ints and 1152 // floats are passed as right-justified 8-byte values. 1153 if (!StackPtr.getNode()) 1154 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1155 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1156 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1157 Offset += 4; 1158 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1159 DAG.getIntPtrConstant(Offset, DL)); 1160 1161 // Emit the store. 1162 MemOpChains.push_back( 1163 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1164 } 1165 } 1166 1167 // Join the stores, which are independent of one another. 1168 if (!MemOpChains.empty()) 1169 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1170 1171 // Accept direct calls by converting symbolic call addresses to the 1172 // associated Target* opcodes. Force %r1 to be used for indirect 1173 // tail calls. 1174 SDValue Glue; 1175 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1176 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1177 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1178 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1179 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1180 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1181 } else if (IsTailCall) { 1182 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1183 Glue = Chain.getValue(1); 1184 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1185 } 1186 1187 // Build a sequence of copy-to-reg nodes, chained and glued together. 1188 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1189 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1190 RegsToPass[I].second, Glue); 1191 Glue = Chain.getValue(1); 1192 } 1193 1194 // The first call operand is the chain and the second is the target address. 1195 SmallVector<SDValue, 8> Ops; 1196 Ops.push_back(Chain); 1197 Ops.push_back(Callee); 1198 1199 // Add argument registers to the end of the list so that they are 1200 // known live into the call. 1201 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1202 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1203 RegsToPass[I].second.getValueType())); 1204 1205 // Add a register mask operand representing the call-preserved registers. 1206 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1207 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1208 assert(Mask && "Missing call preserved mask for calling convention"); 1209 Ops.push_back(DAG.getRegisterMask(Mask)); 1210 1211 // Glue the call to the argument copies, if any. 1212 if (Glue.getNode()) 1213 Ops.push_back(Glue); 1214 1215 // Emit the call. 1216 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1217 if (IsTailCall) 1218 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1219 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1220 Glue = Chain.getValue(1); 1221 1222 // Mark the end of the call, which is glued to the call itself. 1223 Chain = DAG.getCALLSEQ_END(Chain, 1224 DAG.getConstant(NumBytes, DL, PtrVT, true), 1225 DAG.getConstant(0, DL, PtrVT, true), 1226 Glue, DL); 1227 Glue = Chain.getValue(1); 1228 1229 // Assign locations to each value returned by this call. 1230 SmallVector<CCValAssign, 16> RetLocs; 1231 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1232 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1233 1234 // Copy all of the result registers out of their specified physreg. 1235 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1236 CCValAssign &VA = RetLocs[I]; 1237 1238 // Copy the value out, gluing the copy to the end of the call sequence. 1239 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1240 VA.getLocVT(), Glue); 1241 Chain = RetValue.getValue(1); 1242 Glue = RetValue.getValue(2); 1243 1244 // Convert the value of the return register into the value that's 1245 // being returned. 1246 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1247 } 1248 1249 return Chain; 1250 } 1251 1252 bool SystemZTargetLowering:: 1253 CanLowerReturn(CallingConv::ID CallConv, 1254 MachineFunction &MF, bool isVarArg, 1255 const SmallVectorImpl<ISD::OutputArg> &Outs, 1256 LLVMContext &Context) const { 1257 // Detect unsupported vector return types. 1258 if (Subtarget.hasVector()) 1259 VerifyVectorTypes(Outs); 1260 1261 // Special case that we cannot easily detect in RetCC_SystemZ since 1262 // i128 is not a legal type. 1263 for (auto &Out : Outs) 1264 if (Out.ArgVT == MVT::i128) 1265 return false; 1266 1267 SmallVector<CCValAssign, 16> RetLocs; 1268 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1269 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1270 } 1271 1272 SDValue 1273 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1274 bool IsVarArg, 1275 const SmallVectorImpl<ISD::OutputArg> &Outs, 1276 const SmallVectorImpl<SDValue> &OutVals, 1277 const SDLoc &DL, SelectionDAG &DAG) const { 1278 MachineFunction &MF = DAG.getMachineFunction(); 1279 1280 // Detect unsupported vector return types. 1281 if (Subtarget.hasVector()) 1282 VerifyVectorTypes(Outs); 1283 1284 // Assign locations to each returned value. 1285 SmallVector<CCValAssign, 16> RetLocs; 1286 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1287 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1288 1289 // Quick exit for void returns 1290 if (RetLocs.empty()) 1291 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1292 1293 // Copy the result values into the output registers. 1294 SDValue Glue; 1295 SmallVector<SDValue, 4> RetOps; 1296 RetOps.push_back(Chain); 1297 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1298 CCValAssign &VA = RetLocs[I]; 1299 SDValue RetValue = OutVals[I]; 1300 1301 // Make the return register live on exit. 1302 assert(VA.isRegLoc() && "Can only return in registers!"); 1303 1304 // Promote the value as required. 1305 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1306 1307 // Chain and glue the copies together. 1308 unsigned Reg = VA.getLocReg(); 1309 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1310 Glue = Chain.getValue(1); 1311 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1312 } 1313 1314 // Update chain and glue. 1315 RetOps[0] = Chain; 1316 if (Glue.getNode()) 1317 RetOps.push_back(Glue); 1318 1319 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1320 } 1321 1322 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad( 1323 SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const { 1324 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1325 } 1326 1327 // Return true if Op is an intrinsic node with chain that returns the CC value 1328 // as its only (other) argument. Provide the associated SystemZISD opcode and 1329 // the mask of valid CC values if so. 1330 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1331 unsigned &CCValid) { 1332 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1333 switch (Id) { 1334 case Intrinsic::s390_tbegin: 1335 Opcode = SystemZISD::TBEGIN; 1336 CCValid = SystemZ::CCMASK_TBEGIN; 1337 return true; 1338 1339 case Intrinsic::s390_tbegin_nofloat: 1340 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1341 CCValid = SystemZ::CCMASK_TBEGIN; 1342 return true; 1343 1344 case Intrinsic::s390_tend: 1345 Opcode = SystemZISD::TEND; 1346 CCValid = SystemZ::CCMASK_TEND; 1347 return true; 1348 1349 default: 1350 return false; 1351 } 1352 } 1353 1354 // Return true if Op is an intrinsic node without chain that returns the 1355 // CC value as its final argument. Provide the associated SystemZISD 1356 // opcode and the mask of valid CC values if so. 1357 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1358 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1359 switch (Id) { 1360 case Intrinsic::s390_vpkshs: 1361 case Intrinsic::s390_vpksfs: 1362 case Intrinsic::s390_vpksgs: 1363 Opcode = SystemZISD::PACKS_CC; 1364 CCValid = SystemZ::CCMASK_VCMP; 1365 return true; 1366 1367 case Intrinsic::s390_vpklshs: 1368 case Intrinsic::s390_vpklsfs: 1369 case Intrinsic::s390_vpklsgs: 1370 Opcode = SystemZISD::PACKLS_CC; 1371 CCValid = SystemZ::CCMASK_VCMP; 1372 return true; 1373 1374 case Intrinsic::s390_vceqbs: 1375 case Intrinsic::s390_vceqhs: 1376 case Intrinsic::s390_vceqfs: 1377 case Intrinsic::s390_vceqgs: 1378 Opcode = SystemZISD::VICMPES; 1379 CCValid = SystemZ::CCMASK_VCMP; 1380 return true; 1381 1382 case Intrinsic::s390_vchbs: 1383 case Intrinsic::s390_vchhs: 1384 case Intrinsic::s390_vchfs: 1385 case Intrinsic::s390_vchgs: 1386 Opcode = SystemZISD::VICMPHS; 1387 CCValid = SystemZ::CCMASK_VCMP; 1388 return true; 1389 1390 case Intrinsic::s390_vchlbs: 1391 case Intrinsic::s390_vchlhs: 1392 case Intrinsic::s390_vchlfs: 1393 case Intrinsic::s390_vchlgs: 1394 Opcode = SystemZISD::VICMPHLS; 1395 CCValid = SystemZ::CCMASK_VCMP; 1396 return true; 1397 1398 case Intrinsic::s390_vtm: 1399 Opcode = SystemZISD::VTM; 1400 CCValid = SystemZ::CCMASK_VCMP; 1401 return true; 1402 1403 case Intrinsic::s390_vfaebs: 1404 case Intrinsic::s390_vfaehs: 1405 case Intrinsic::s390_vfaefs: 1406 Opcode = SystemZISD::VFAE_CC; 1407 CCValid = SystemZ::CCMASK_ANY; 1408 return true; 1409 1410 case Intrinsic::s390_vfaezbs: 1411 case Intrinsic::s390_vfaezhs: 1412 case Intrinsic::s390_vfaezfs: 1413 Opcode = SystemZISD::VFAEZ_CC; 1414 CCValid = SystemZ::CCMASK_ANY; 1415 return true; 1416 1417 case Intrinsic::s390_vfeebs: 1418 case Intrinsic::s390_vfeehs: 1419 case Intrinsic::s390_vfeefs: 1420 Opcode = SystemZISD::VFEE_CC; 1421 CCValid = SystemZ::CCMASK_ANY; 1422 return true; 1423 1424 case Intrinsic::s390_vfeezbs: 1425 case Intrinsic::s390_vfeezhs: 1426 case Intrinsic::s390_vfeezfs: 1427 Opcode = SystemZISD::VFEEZ_CC; 1428 CCValid = SystemZ::CCMASK_ANY; 1429 return true; 1430 1431 case Intrinsic::s390_vfenebs: 1432 case Intrinsic::s390_vfenehs: 1433 case Intrinsic::s390_vfenefs: 1434 Opcode = SystemZISD::VFENE_CC; 1435 CCValid = SystemZ::CCMASK_ANY; 1436 return true; 1437 1438 case Intrinsic::s390_vfenezbs: 1439 case Intrinsic::s390_vfenezhs: 1440 case Intrinsic::s390_vfenezfs: 1441 Opcode = SystemZISD::VFENEZ_CC; 1442 CCValid = SystemZ::CCMASK_ANY; 1443 return true; 1444 1445 case Intrinsic::s390_vistrbs: 1446 case Intrinsic::s390_vistrhs: 1447 case Intrinsic::s390_vistrfs: 1448 Opcode = SystemZISD::VISTR_CC; 1449 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1450 return true; 1451 1452 case Intrinsic::s390_vstrcbs: 1453 case Intrinsic::s390_vstrchs: 1454 case Intrinsic::s390_vstrcfs: 1455 Opcode = SystemZISD::VSTRC_CC; 1456 CCValid = SystemZ::CCMASK_ANY; 1457 return true; 1458 1459 case Intrinsic::s390_vstrczbs: 1460 case Intrinsic::s390_vstrczhs: 1461 case Intrinsic::s390_vstrczfs: 1462 Opcode = SystemZISD::VSTRCZ_CC; 1463 CCValid = SystemZ::CCMASK_ANY; 1464 return true; 1465 1466 case Intrinsic::s390_vfcedbs: 1467 Opcode = SystemZISD::VFCMPES; 1468 CCValid = SystemZ::CCMASK_VCMP; 1469 return true; 1470 1471 case Intrinsic::s390_vfchdbs: 1472 Opcode = SystemZISD::VFCMPHS; 1473 CCValid = SystemZ::CCMASK_VCMP; 1474 return true; 1475 1476 case Intrinsic::s390_vfchedbs: 1477 Opcode = SystemZISD::VFCMPHES; 1478 CCValid = SystemZ::CCMASK_VCMP; 1479 return true; 1480 1481 case Intrinsic::s390_vftcidb: 1482 Opcode = SystemZISD::VFTCI; 1483 CCValid = SystemZ::CCMASK_VCMP; 1484 return true; 1485 1486 case Intrinsic::s390_tdc: 1487 Opcode = SystemZISD::TDC; 1488 CCValid = SystemZ::CCMASK_TDC; 1489 return true; 1490 1491 default: 1492 return false; 1493 } 1494 } 1495 1496 // Emit an intrinsic with chain with a glued value instead of its CC result. 1497 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1498 unsigned Opcode) { 1499 // Copy all operands except the intrinsic ID. 1500 unsigned NumOps = Op.getNumOperands(); 1501 SmallVector<SDValue, 6> Ops; 1502 Ops.reserve(NumOps - 1); 1503 Ops.push_back(Op.getOperand(0)); 1504 for (unsigned I = 2; I < NumOps; ++I) 1505 Ops.push_back(Op.getOperand(I)); 1506 1507 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1508 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1509 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1510 SDValue OldChain = SDValue(Op.getNode(), 1); 1511 SDValue NewChain = SDValue(Intr.getNode(), 0); 1512 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1513 return Intr; 1514 } 1515 1516 // Emit an intrinsic with a glued value instead of its CC result. 1517 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1518 unsigned Opcode) { 1519 // Copy all operands except the intrinsic ID. 1520 unsigned NumOps = Op.getNumOperands(); 1521 SmallVector<SDValue, 6> Ops; 1522 Ops.reserve(NumOps - 1); 1523 for (unsigned I = 1; I < NumOps; ++I) 1524 Ops.push_back(Op.getOperand(I)); 1525 1526 if (Op->getNumValues() == 1) 1527 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1528 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1529 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1530 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1531 } 1532 1533 // CC is a comparison that will be implemented using an integer or 1534 // floating-point comparison. Return the condition code mask for 1535 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1536 // unsigned comparisons and clear for signed ones. In the floating-point 1537 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1538 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1539 #define CONV(X) \ 1540 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1541 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1542 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1543 1544 switch (CC) { 1545 default: 1546 llvm_unreachable("Invalid integer condition!"); 1547 1548 CONV(EQ); 1549 CONV(NE); 1550 CONV(GT); 1551 CONV(GE); 1552 CONV(LT); 1553 CONV(LE); 1554 1555 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1556 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1557 } 1558 #undef CONV 1559 } 1560 1561 // Return a sequence for getting a 1 from an IPM result when CC has a 1562 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1563 // The handling of CC values outside CCValid doesn't matter. 1564 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1565 // Deal with cases where the result can be taken directly from a bit 1566 // of the IPM result. 1567 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1568 return IPMConversion(0, 0, SystemZ::IPM_CC); 1569 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1570 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1571 1572 // Deal with cases where we can add a value to force the sign bit 1573 // to contain the right value. Putting the bit in 31 means we can 1574 // use SRL rather than RISBG(L), and also makes it easier to get a 1575 // 0/-1 value, so it has priority over the other tests below. 1576 // 1577 // These sequences rely on the fact that the upper two bits of the 1578 // IPM result are zero. 1579 uint64_t TopBit = uint64_t(1) << 31; 1580 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1581 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1582 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1583 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1584 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1585 | SystemZ::CCMASK_1 1586 | SystemZ::CCMASK_2))) 1587 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1588 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1589 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1590 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1591 | SystemZ::CCMASK_2 1592 | SystemZ::CCMASK_3))) 1593 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1594 1595 // Next try inverting the value and testing a bit. 0/1 could be 1596 // handled this way too, but we dealt with that case above. 1597 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1598 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1599 1600 // Handle cases where adding a value forces a non-sign bit to contain 1601 // the right value. 1602 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1603 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1604 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1605 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1606 1607 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1608 // can be done by inverting the low CC bit and applying one of the 1609 // sign-based extractions above. 1610 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1611 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1612 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1613 return IPMConversion(1 << SystemZ::IPM_CC, 1614 TopBit - (3 << SystemZ::IPM_CC), 31); 1615 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1616 | SystemZ::CCMASK_1 1617 | SystemZ::CCMASK_3))) 1618 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1619 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1620 | SystemZ::CCMASK_2 1621 | SystemZ::CCMASK_3))) 1622 return IPMConversion(1 << SystemZ::IPM_CC, 1623 TopBit - (1 << SystemZ::IPM_CC), 31); 1624 1625 llvm_unreachable("Unexpected CC combination"); 1626 } 1627 1628 // If C can be converted to a comparison against zero, adjust the operands 1629 // as necessary. 1630 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1631 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1632 return; 1633 1634 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1635 if (!ConstOp1) 1636 return; 1637 1638 int64_t Value = ConstOp1->getSExtValue(); 1639 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1640 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1641 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1642 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1643 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1644 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1645 } 1646 } 1647 1648 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1649 // adjust the operands as necessary. 1650 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1651 Comparison &C) { 1652 // For us to make any changes, it must a comparison between a single-use 1653 // load and a constant. 1654 if (!C.Op0.hasOneUse() || 1655 C.Op0.getOpcode() != ISD::LOAD || 1656 C.Op1.getOpcode() != ISD::Constant) 1657 return; 1658 1659 // We must have an 8- or 16-bit load. 1660 auto *Load = cast<LoadSDNode>(C.Op0); 1661 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1662 if (NumBits != 8 && NumBits != 16) 1663 return; 1664 1665 // The load must be an extending one and the constant must be within the 1666 // range of the unextended value. 1667 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1668 uint64_t Value = ConstOp1->getZExtValue(); 1669 uint64_t Mask = (1 << NumBits) - 1; 1670 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1671 // Make sure that ConstOp1 is in range of C.Op0. 1672 int64_t SignedValue = ConstOp1->getSExtValue(); 1673 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1674 return; 1675 if (C.ICmpType != SystemZICMP::SignedOnly) { 1676 // Unsigned comparison between two sign-extended values is equivalent 1677 // to unsigned comparison between two zero-extended values. 1678 Value &= Mask; 1679 } else if (NumBits == 8) { 1680 // Try to treat the comparison as unsigned, so that we can use CLI. 1681 // Adjust CCMask and Value as necessary. 1682 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1683 // Test whether the high bit of the byte is set. 1684 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1685 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1686 // Test whether the high bit of the byte is clear. 1687 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1688 else 1689 // No instruction exists for this combination. 1690 return; 1691 C.ICmpType = SystemZICMP::UnsignedOnly; 1692 } 1693 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1694 if (Value > Mask) 1695 return; 1696 // If the constant is in range, we can use any comparison. 1697 C.ICmpType = SystemZICMP::Any; 1698 } else 1699 return; 1700 1701 // Make sure that the first operand is an i32 of the right extension type. 1702 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1703 ISD::SEXTLOAD : 1704 ISD::ZEXTLOAD); 1705 if (C.Op0.getValueType() != MVT::i32 || 1706 Load->getExtensionType() != ExtType) 1707 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1708 Load->getBasePtr(), Load->getPointerInfo(), 1709 Load->getMemoryVT(), Load->getAlignment(), 1710 Load->getMemOperand()->getFlags()); 1711 1712 // Make sure that the second operand is an i32 with the right value. 1713 if (C.Op1.getValueType() != MVT::i32 || 1714 Value != ConstOp1->getZExtValue()) 1715 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1716 } 1717 1718 // Return true if Op is either an unextended load, or a load suitable 1719 // for integer register-memory comparisons of type ICmpType. 1720 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1721 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1722 if (Load) { 1723 // There are no instructions to compare a register with a memory byte. 1724 if (Load->getMemoryVT() == MVT::i8) 1725 return false; 1726 // Otherwise decide on extension type. 1727 switch (Load->getExtensionType()) { 1728 case ISD::NON_EXTLOAD: 1729 return true; 1730 case ISD::SEXTLOAD: 1731 return ICmpType != SystemZICMP::UnsignedOnly; 1732 case ISD::ZEXTLOAD: 1733 return ICmpType != SystemZICMP::SignedOnly; 1734 default: 1735 break; 1736 } 1737 } 1738 return false; 1739 } 1740 1741 // Return true if it is better to swap the operands of C. 1742 static bool shouldSwapCmpOperands(const Comparison &C) { 1743 // Leave f128 comparisons alone, since they have no memory forms. 1744 if (C.Op0.getValueType() == MVT::f128) 1745 return false; 1746 1747 // Always keep a floating-point constant second, since comparisons with 1748 // zero can use LOAD TEST and comparisons with other constants make a 1749 // natural memory operand. 1750 if (isa<ConstantFPSDNode>(C.Op1)) 1751 return false; 1752 1753 // Never swap comparisons with zero since there are many ways to optimize 1754 // those later. 1755 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1756 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1757 return false; 1758 1759 // Also keep natural memory operands second if the loaded value is 1760 // only used here. Several comparisons have memory forms. 1761 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1762 return false; 1763 1764 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1765 // In that case we generally prefer the memory to be second. 1766 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1767 // The only exceptions are when the second operand is a constant and 1768 // we can use things like CHHSI. 1769 if (!ConstOp1) 1770 return true; 1771 // The unsigned memory-immediate instructions can handle 16-bit 1772 // unsigned integers. 1773 if (C.ICmpType != SystemZICMP::SignedOnly && 1774 isUInt<16>(ConstOp1->getZExtValue())) 1775 return false; 1776 // The signed memory-immediate instructions can handle 16-bit 1777 // signed integers. 1778 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1779 isInt<16>(ConstOp1->getSExtValue())) 1780 return false; 1781 return true; 1782 } 1783 1784 // Try to promote the use of CGFR and CLGFR. 1785 unsigned Opcode0 = C.Op0.getOpcode(); 1786 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1787 return true; 1788 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1789 return true; 1790 if (C.ICmpType != SystemZICMP::SignedOnly && 1791 Opcode0 == ISD::AND && 1792 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1793 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1794 return true; 1795 1796 return false; 1797 } 1798 1799 // Return a version of comparison CC mask CCMask in which the LT and GT 1800 // actions are swapped. 1801 static unsigned reverseCCMask(unsigned CCMask) { 1802 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1803 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1804 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1805 (CCMask & SystemZ::CCMASK_CMP_UO)); 1806 } 1807 1808 // Check whether C tests for equality between X and Y and whether X - Y 1809 // or Y - X is also computed. In that case it's better to compare the 1810 // result of the subtraction against zero. 1811 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1812 Comparison &C) { 1813 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1814 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1815 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1816 SDNode *N = *I; 1817 if (N->getOpcode() == ISD::SUB && 1818 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1819 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1820 C.Op0 = SDValue(N, 0); 1821 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1822 return; 1823 } 1824 } 1825 } 1826 } 1827 1828 // Check whether C compares a floating-point value with zero and if that 1829 // floating-point value is also negated. In this case we can use the 1830 // negation to set CC, so avoiding separate LOAD AND TEST and 1831 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1832 static void adjustForFNeg(Comparison &C) { 1833 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1834 if (C1 && C1->isZero()) { 1835 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1836 SDNode *N = *I; 1837 if (N->getOpcode() == ISD::FNEG) { 1838 C.Op0 = SDValue(N, 0); 1839 C.CCMask = reverseCCMask(C.CCMask); 1840 return; 1841 } 1842 } 1843 } 1844 } 1845 1846 // Check whether C compares (shl X, 32) with 0 and whether X is 1847 // also sign-extended. In that case it is better to test the result 1848 // of the sign extension using LTGFR. 1849 // 1850 // This case is important because InstCombine transforms a comparison 1851 // with (sext (trunc X)) into a comparison with (shl X, 32). 1852 static void adjustForLTGFR(Comparison &C) { 1853 // Check for a comparison between (shl X, 32) and 0. 1854 if (C.Op0.getOpcode() == ISD::SHL && 1855 C.Op0.getValueType() == MVT::i64 && 1856 C.Op1.getOpcode() == ISD::Constant && 1857 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1858 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1859 if (C1 && C1->getZExtValue() == 32) { 1860 SDValue ShlOp0 = C.Op0.getOperand(0); 1861 // See whether X has any SIGN_EXTEND_INREG uses. 1862 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1863 SDNode *N = *I; 1864 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1865 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1866 C.Op0 = SDValue(N, 0); 1867 return; 1868 } 1869 } 1870 } 1871 } 1872 } 1873 1874 // If C compares the truncation of an extending load, try to compare 1875 // the untruncated value instead. This exposes more opportunities to 1876 // reuse CC. 1877 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1878 Comparison &C) { 1879 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1880 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1881 C.Op1.getOpcode() == ISD::Constant && 1882 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1883 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1884 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 1885 unsigned Type = L->getExtensionType(); 1886 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1887 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1888 C.Op0 = C.Op0.getOperand(0); 1889 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1890 } 1891 } 1892 } 1893 } 1894 1895 // Return true if shift operation N has an in-range constant shift value. 1896 // Store it in ShiftVal if so. 1897 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1898 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1899 if (!Shift) 1900 return false; 1901 1902 uint64_t Amount = Shift->getZExtValue(); 1903 if (Amount >= N.getValueSizeInBits()) 1904 return false; 1905 1906 ShiftVal = Amount; 1907 return true; 1908 } 1909 1910 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1911 // instruction and whether the CC value is descriptive enough to handle 1912 // a comparison of type Opcode between the AND result and CmpVal. 1913 // CCMask says which comparison result is being tested and BitSize is 1914 // the number of bits in the operands. If TEST UNDER MASK can be used, 1915 // return the corresponding CC mask, otherwise return 0. 1916 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1917 uint64_t Mask, uint64_t CmpVal, 1918 unsigned ICmpType) { 1919 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1920 1921 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1922 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1923 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1924 return 0; 1925 1926 // Work out the masks for the lowest and highest bits. 1927 unsigned HighShift = 63 - countLeadingZeros(Mask); 1928 uint64_t High = uint64_t(1) << HighShift; 1929 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1930 1931 // Signed ordered comparisons are effectively unsigned if the sign 1932 // bit is dropped. 1933 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1934 1935 // Check for equality comparisons with 0, or the equivalent. 1936 if (CmpVal == 0) { 1937 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1938 return SystemZ::CCMASK_TM_ALL_0; 1939 if (CCMask == SystemZ::CCMASK_CMP_NE) 1940 return SystemZ::CCMASK_TM_SOME_1; 1941 } 1942 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1943 if (CCMask == SystemZ::CCMASK_CMP_LT) 1944 return SystemZ::CCMASK_TM_ALL_0; 1945 if (CCMask == SystemZ::CCMASK_CMP_GE) 1946 return SystemZ::CCMASK_TM_SOME_1; 1947 } 1948 if (EffectivelyUnsigned && CmpVal < Low) { 1949 if (CCMask == SystemZ::CCMASK_CMP_LE) 1950 return SystemZ::CCMASK_TM_ALL_0; 1951 if (CCMask == SystemZ::CCMASK_CMP_GT) 1952 return SystemZ::CCMASK_TM_SOME_1; 1953 } 1954 1955 // Check for equality comparisons with the mask, or the equivalent. 1956 if (CmpVal == Mask) { 1957 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1958 return SystemZ::CCMASK_TM_ALL_1; 1959 if (CCMask == SystemZ::CCMASK_CMP_NE) 1960 return SystemZ::CCMASK_TM_SOME_0; 1961 } 1962 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1963 if (CCMask == SystemZ::CCMASK_CMP_GT) 1964 return SystemZ::CCMASK_TM_ALL_1; 1965 if (CCMask == SystemZ::CCMASK_CMP_LE) 1966 return SystemZ::CCMASK_TM_SOME_0; 1967 } 1968 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1969 if (CCMask == SystemZ::CCMASK_CMP_GE) 1970 return SystemZ::CCMASK_TM_ALL_1; 1971 if (CCMask == SystemZ::CCMASK_CMP_LT) 1972 return SystemZ::CCMASK_TM_SOME_0; 1973 } 1974 1975 // Check for ordered comparisons with the top bit. 1976 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1977 if (CCMask == SystemZ::CCMASK_CMP_LE) 1978 return SystemZ::CCMASK_TM_MSB_0; 1979 if (CCMask == SystemZ::CCMASK_CMP_GT) 1980 return SystemZ::CCMASK_TM_MSB_1; 1981 } 1982 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1983 if (CCMask == SystemZ::CCMASK_CMP_LT) 1984 return SystemZ::CCMASK_TM_MSB_0; 1985 if (CCMask == SystemZ::CCMASK_CMP_GE) 1986 return SystemZ::CCMASK_TM_MSB_1; 1987 } 1988 1989 // If there are just two bits, we can do equality checks for Low and High 1990 // as well. 1991 if (Mask == Low + High) { 1992 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1993 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1994 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1995 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1996 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1997 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1998 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1999 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2000 } 2001 2002 // Looks like we've exhausted our options. 2003 return 0; 2004 } 2005 2006 // See whether C can be implemented as a TEST UNDER MASK instruction. 2007 // Update the arguments with the TM version if so. 2008 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2009 Comparison &C) { 2010 // Check that we have a comparison with a constant. 2011 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2012 if (!ConstOp1) 2013 return; 2014 uint64_t CmpVal = ConstOp1->getZExtValue(); 2015 2016 // Check whether the nonconstant input is an AND with a constant mask. 2017 Comparison NewC(C); 2018 uint64_t MaskVal; 2019 ConstantSDNode *Mask = nullptr; 2020 if (C.Op0.getOpcode() == ISD::AND) { 2021 NewC.Op0 = C.Op0.getOperand(0); 2022 NewC.Op1 = C.Op0.getOperand(1); 2023 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2024 if (!Mask) 2025 return; 2026 MaskVal = Mask->getZExtValue(); 2027 } else { 2028 // There is no instruction to compare with a 64-bit immediate 2029 // so use TMHH instead if possible. We need an unsigned ordered 2030 // comparison with an i64 immediate. 2031 if (NewC.Op0.getValueType() != MVT::i64 || 2032 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2033 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2034 NewC.ICmpType == SystemZICMP::SignedOnly) 2035 return; 2036 // Convert LE and GT comparisons into LT and GE. 2037 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2038 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2039 if (CmpVal == uint64_t(-1)) 2040 return; 2041 CmpVal += 1; 2042 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2043 } 2044 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2045 // be masked off without changing the result. 2046 MaskVal = -(CmpVal & -CmpVal); 2047 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2048 } 2049 if (!MaskVal) 2050 return; 2051 2052 // Check whether the combination of mask, comparison value and comparison 2053 // type are suitable. 2054 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2055 unsigned NewCCMask, ShiftVal; 2056 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2057 NewC.Op0.getOpcode() == ISD::SHL && 2058 isSimpleShift(NewC.Op0, ShiftVal) && 2059 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2060 MaskVal >> ShiftVal, 2061 CmpVal >> ShiftVal, 2062 SystemZICMP::Any))) { 2063 NewC.Op0 = NewC.Op0.getOperand(0); 2064 MaskVal >>= ShiftVal; 2065 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2066 NewC.Op0.getOpcode() == ISD::SRL && 2067 isSimpleShift(NewC.Op0, ShiftVal) && 2068 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2069 MaskVal << ShiftVal, 2070 CmpVal << ShiftVal, 2071 SystemZICMP::UnsignedOnly))) { 2072 NewC.Op0 = NewC.Op0.getOperand(0); 2073 MaskVal <<= ShiftVal; 2074 } else { 2075 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2076 NewC.ICmpType); 2077 if (!NewCCMask) 2078 return; 2079 } 2080 2081 // Go ahead and make the change. 2082 C.Opcode = SystemZISD::TM; 2083 C.Op0 = NewC.Op0; 2084 if (Mask && Mask->getZExtValue() == MaskVal) 2085 C.Op1 = SDValue(Mask, 0); 2086 else 2087 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2088 C.CCValid = SystemZ::CCMASK_TM; 2089 C.CCMask = NewCCMask; 2090 } 2091 2092 // Return a Comparison that tests the condition-code result of intrinsic 2093 // node Call against constant integer CC using comparison code Cond. 2094 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2095 // and CCValid is the set of possible condition-code results. 2096 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2097 SDValue Call, unsigned CCValid, uint64_t CC, 2098 ISD::CondCode Cond) { 2099 Comparison C(Call, SDValue()); 2100 C.Opcode = Opcode; 2101 C.CCValid = CCValid; 2102 if (Cond == ISD::SETEQ) 2103 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2104 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2105 else if (Cond == ISD::SETNE) 2106 // ...and the inverse of that. 2107 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2108 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2109 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2110 // always true for CC>3. 2111 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2112 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2113 // ...and the inverse of that. 2114 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2115 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2116 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2117 // always true for CC>3. 2118 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2119 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2120 // ...and the inverse of that. 2121 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2122 else 2123 llvm_unreachable("Unexpected integer comparison type"); 2124 C.CCMask &= CCValid; 2125 return C; 2126 } 2127 2128 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2129 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2130 ISD::CondCode Cond, const SDLoc &DL) { 2131 if (CmpOp1.getOpcode() == ISD::Constant) { 2132 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2133 unsigned Opcode, CCValid; 2134 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2135 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2136 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2137 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2138 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2139 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2140 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2141 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2142 } 2143 Comparison C(CmpOp0, CmpOp1); 2144 C.CCMask = CCMaskForCondCode(Cond); 2145 if (C.Op0.getValueType().isFloatingPoint()) { 2146 C.CCValid = SystemZ::CCMASK_FCMP; 2147 C.Opcode = SystemZISD::FCMP; 2148 adjustForFNeg(C); 2149 } else { 2150 C.CCValid = SystemZ::CCMASK_ICMP; 2151 C.Opcode = SystemZISD::ICMP; 2152 // Choose the type of comparison. Equality and inequality tests can 2153 // use either signed or unsigned comparisons. The choice also doesn't 2154 // matter if both sign bits are known to be clear. In those cases we 2155 // want to give the main isel code the freedom to choose whichever 2156 // form fits best. 2157 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2158 C.CCMask == SystemZ::CCMASK_CMP_NE || 2159 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2160 C.ICmpType = SystemZICMP::Any; 2161 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2162 C.ICmpType = SystemZICMP::UnsignedOnly; 2163 else 2164 C.ICmpType = SystemZICMP::SignedOnly; 2165 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2166 adjustZeroCmp(DAG, DL, C); 2167 adjustSubwordCmp(DAG, DL, C); 2168 adjustForSubtraction(DAG, DL, C); 2169 adjustForLTGFR(C); 2170 adjustICmpTruncate(DAG, DL, C); 2171 } 2172 2173 if (shouldSwapCmpOperands(C)) { 2174 std::swap(C.Op0, C.Op1); 2175 C.CCMask = reverseCCMask(C.CCMask); 2176 } 2177 2178 adjustForTestUnderMask(DAG, DL, C); 2179 return C; 2180 } 2181 2182 // Emit the comparison instruction described by C. 2183 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2184 if (!C.Op1.getNode()) { 2185 SDValue Op; 2186 switch (C.Op0.getOpcode()) { 2187 case ISD::INTRINSIC_W_CHAIN: 2188 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2189 break; 2190 case ISD::INTRINSIC_WO_CHAIN: 2191 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2192 break; 2193 default: 2194 llvm_unreachable("Invalid comparison operands"); 2195 } 2196 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2197 } 2198 if (C.Opcode == SystemZISD::ICMP) 2199 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2200 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2201 if (C.Opcode == SystemZISD::TM) { 2202 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2203 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2204 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2205 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2206 } 2207 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2208 } 2209 2210 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2211 // 64 bits. Extend is the extension type to use. Store the high part 2212 // in Hi and the low part in Lo. 2213 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2214 SDValue Op0, SDValue Op1, SDValue &Hi, 2215 SDValue &Lo) { 2216 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2217 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2218 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2219 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2220 DAG.getConstant(32, DL, MVT::i64)); 2221 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2222 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2223 } 2224 2225 // Lower a binary operation that produces two VT results, one in each 2226 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2227 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2228 // on the extended Op0 and (unextended) Op1. Store the even register result 2229 // in Even and the odd register result in Odd. 2230 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2231 unsigned Extend, unsigned Opcode, SDValue Op0, 2232 SDValue Op1, SDValue &Even, SDValue &Odd) { 2233 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2234 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2235 SDValue(In128, 0), Op1); 2236 bool Is32Bit = is32Bit(VT); 2237 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2238 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2239 } 2240 2241 // Return an i32 value that is 1 if the CC value produced by Glue is 2242 // in the mask CCMask and 0 otherwise. CC is known to have a value 2243 // in CCValid, so other values can be ignored. 2244 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue, 2245 unsigned CCValid, unsigned CCMask) { 2246 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2247 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2248 2249 if (Conversion.XORValue) 2250 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2251 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2252 2253 if (Conversion.AddValue) 2254 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2255 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2256 2257 // The SHR/AND sequence should get optimized to an RISBG. 2258 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2259 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2260 if (Conversion.Bit != 31) 2261 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2262 DAG.getConstant(1, DL, MVT::i32)); 2263 return Result; 2264 } 2265 2266 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2267 // be done directly. IsFP is true if CC is for a floating-point rather than 2268 // integer comparison. 2269 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2270 switch (CC) { 2271 case ISD::SETOEQ: 2272 case ISD::SETEQ: 2273 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2274 2275 case ISD::SETOGE: 2276 case ISD::SETGE: 2277 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2278 2279 case ISD::SETOGT: 2280 case ISD::SETGT: 2281 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2282 2283 case ISD::SETUGT: 2284 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2285 2286 default: 2287 return 0; 2288 } 2289 } 2290 2291 // Return the SystemZISD vector comparison operation for CC or its inverse, 2292 // or 0 if neither can be done directly. Indicate in Invert whether the 2293 // result is for the inverse of CC. IsFP is true if CC is for a 2294 // floating-point rather than integer comparison. 2295 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2296 bool &Invert) { 2297 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2298 Invert = false; 2299 return Opcode; 2300 } 2301 2302 CC = ISD::getSetCCInverse(CC, !IsFP); 2303 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2304 Invert = true; 2305 return Opcode; 2306 } 2307 2308 return 0; 2309 } 2310 2311 // Return a v2f64 that contains the extended form of elements Start and Start+1 2312 // of v4f32 value Op. 2313 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2314 SDValue Op) { 2315 int Mask[] = { Start, -1, Start + 1, -1 }; 2316 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2317 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2318 } 2319 2320 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2321 // producing a result of type VT. 2322 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL, 2323 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2324 // There is no hardware support for v4f32, so extend the vector into 2325 // two v2f64s and compare those. 2326 if (CmpOp0.getValueType() == MVT::v4f32) { 2327 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2328 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2329 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2330 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2331 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2332 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2333 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2334 } 2335 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2336 } 2337 2338 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2339 // an integer mask of type VT. 2340 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2341 ISD::CondCode CC, SDValue CmpOp0, 2342 SDValue CmpOp1) { 2343 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2344 bool Invert = false; 2345 SDValue Cmp; 2346 switch (CC) { 2347 // Handle tests for order using (or (ogt y x) (oge x y)). 2348 case ISD::SETUO: 2349 Invert = true; 2350 case ISD::SETO: { 2351 assert(IsFP && "Unexpected integer comparison"); 2352 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2353 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2354 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2355 break; 2356 } 2357 2358 // Handle <> tests using (or (ogt y x) (ogt x y)). 2359 case ISD::SETUEQ: 2360 Invert = true; 2361 case ISD::SETONE: { 2362 assert(IsFP && "Unexpected integer comparison"); 2363 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2364 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2365 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2366 break; 2367 } 2368 2369 // Otherwise a single comparison is enough. It doesn't really 2370 // matter whether we try the inversion or the swap first, since 2371 // there are no cases where both work. 2372 default: 2373 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2374 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2375 else { 2376 CC = ISD::getSetCCSwappedOperands(CC); 2377 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2378 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2379 else 2380 llvm_unreachable("Unhandled comparison"); 2381 } 2382 break; 2383 } 2384 if (Invert) { 2385 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2386 DAG.getConstant(65535, DL, MVT::i32)); 2387 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2388 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2389 } 2390 return Cmp; 2391 } 2392 2393 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2394 SelectionDAG &DAG) const { 2395 SDValue CmpOp0 = Op.getOperand(0); 2396 SDValue CmpOp1 = Op.getOperand(1); 2397 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2398 SDLoc DL(Op); 2399 EVT VT = Op.getValueType(); 2400 if (VT.isVector()) 2401 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2402 2403 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2404 SDValue Glue = emitCmp(DAG, DL, C); 2405 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2406 } 2407 2408 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2409 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2410 SDValue CmpOp0 = Op.getOperand(2); 2411 SDValue CmpOp1 = Op.getOperand(3); 2412 SDValue Dest = Op.getOperand(4); 2413 SDLoc DL(Op); 2414 2415 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2416 SDValue Glue = emitCmp(DAG, DL, C); 2417 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2418 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2419 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2420 } 2421 2422 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2423 // allowing Pos and Neg to be wider than CmpOp. 2424 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2425 return (Neg.getOpcode() == ISD::SUB && 2426 Neg.getOperand(0).getOpcode() == ISD::Constant && 2427 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2428 Neg.getOperand(1) == Pos && 2429 (Pos == CmpOp || 2430 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2431 Pos.getOperand(0) == CmpOp))); 2432 } 2433 2434 // Return the absolute or negative absolute of Op; IsNegative decides which. 2435 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2436 bool IsNegative) { 2437 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2438 if (IsNegative) 2439 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2440 DAG.getConstant(0, DL, Op.getValueType()), Op); 2441 return Op; 2442 } 2443 2444 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2445 SelectionDAG &DAG) const { 2446 SDValue CmpOp0 = Op.getOperand(0); 2447 SDValue CmpOp1 = Op.getOperand(1); 2448 SDValue TrueOp = Op.getOperand(2); 2449 SDValue FalseOp = Op.getOperand(3); 2450 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2451 SDLoc DL(Op); 2452 2453 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2454 2455 // Check for absolute and negative-absolute selections, including those 2456 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2457 // This check supplements the one in DAGCombiner. 2458 if (C.Opcode == SystemZISD::ICMP && 2459 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2460 C.CCMask != SystemZ::CCMASK_CMP_NE && 2461 C.Op1.getOpcode() == ISD::Constant && 2462 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2463 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2464 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2465 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2466 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2467 } 2468 2469 SDValue Glue = emitCmp(DAG, DL, C); 2470 2471 // Special case for handling -1/0 results. The shifts we use here 2472 // should get optimized with the IPM conversion sequence. 2473 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2474 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2475 if (TrueC && FalseC) { 2476 int64_t TrueVal = TrueC->getSExtValue(); 2477 int64_t FalseVal = FalseC->getSExtValue(); 2478 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2479 // Invert the condition if we want -1 on false. 2480 if (TrueVal == 0) 2481 C.CCMask ^= C.CCValid; 2482 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2483 EVT VT = Op.getValueType(); 2484 // Extend the result to VT. Upper bits are ignored. 2485 if (!is32Bit(VT)) 2486 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2487 // Sign-extend from the low bit. 2488 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2489 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2490 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2491 } 2492 } 2493 2494 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2495 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2496 2497 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2498 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2499 } 2500 2501 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2502 SelectionDAG &DAG) const { 2503 SDLoc DL(Node); 2504 const GlobalValue *GV = Node->getGlobal(); 2505 int64_t Offset = Node->getOffset(); 2506 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2507 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2508 2509 SDValue Result; 2510 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2511 // Assign anchors at 1<<12 byte boundaries. 2512 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2513 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2514 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2515 2516 // The offset can be folded into the address if it is aligned to a halfword. 2517 Offset -= Anchor; 2518 if (Offset != 0 && (Offset & 1) == 0) { 2519 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2520 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2521 Offset = 0; 2522 } 2523 } else { 2524 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2525 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2526 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2527 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2528 } 2529 2530 // If there was a non-zero offset that we didn't fold, create an explicit 2531 // addition for it. 2532 if (Offset != 0) 2533 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2534 DAG.getConstant(Offset, DL, PtrVT)); 2535 2536 return Result; 2537 } 2538 2539 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2540 SelectionDAG &DAG, 2541 unsigned Opcode, 2542 SDValue GOTOffset) const { 2543 SDLoc DL(Node); 2544 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2545 SDValue Chain = DAG.getEntryNode(); 2546 SDValue Glue; 2547 2548 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2549 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2550 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2551 Glue = Chain.getValue(1); 2552 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2553 Glue = Chain.getValue(1); 2554 2555 // The first call operand is the chain and the second is the TLS symbol. 2556 SmallVector<SDValue, 8> Ops; 2557 Ops.push_back(Chain); 2558 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2559 Node->getValueType(0), 2560 0, 0)); 2561 2562 // Add argument registers to the end of the list so that they are 2563 // known live into the call. 2564 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2565 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2566 2567 // Add a register mask operand representing the call-preserved registers. 2568 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2569 const uint32_t *Mask = 2570 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2571 assert(Mask && "Missing call preserved mask for calling convention"); 2572 Ops.push_back(DAG.getRegisterMask(Mask)); 2573 2574 // Glue the call to the argument copies. 2575 Ops.push_back(Glue); 2576 2577 // Emit the call. 2578 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2579 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2580 Glue = Chain.getValue(1); 2581 2582 // Copy the return value from %r2. 2583 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2584 } 2585 2586 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2587 SelectionDAG &DAG) const { 2588 SDValue Chain = DAG.getEntryNode(); 2589 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2590 2591 // The high part of the thread pointer is in access register 0. 2592 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2593 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2594 2595 // The low part of the thread pointer is in access register 1. 2596 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2597 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2598 2599 // Merge them into a single 64-bit address. 2600 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2601 DAG.getConstant(32, DL, PtrVT)); 2602 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2603 } 2604 2605 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2606 SelectionDAG &DAG) const { 2607 if (DAG.getTarget().Options.EmulatedTLS) 2608 return LowerToTLSEmulatedModel(Node, DAG); 2609 SDLoc DL(Node); 2610 const GlobalValue *GV = Node->getGlobal(); 2611 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2612 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2613 2614 SDValue TP = lowerThreadPointer(DL, DAG); 2615 2616 // Get the offset of GA from the thread pointer, based on the TLS model. 2617 SDValue Offset; 2618 switch (model) { 2619 case TLSModel::GeneralDynamic: { 2620 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2621 SystemZConstantPoolValue *CPV = 2622 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2623 2624 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2625 Offset = DAG.getLoad( 2626 PtrVT, DL, DAG.getEntryNode(), Offset, 2627 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2628 2629 // Call __tls_get_offset to retrieve the offset. 2630 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2631 break; 2632 } 2633 2634 case TLSModel::LocalDynamic: { 2635 // Load the GOT offset of the module ID. 2636 SystemZConstantPoolValue *CPV = 2637 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2638 2639 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2640 Offset = DAG.getLoad( 2641 PtrVT, DL, DAG.getEntryNode(), Offset, 2642 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2643 2644 // Call __tls_get_offset to retrieve the module base offset. 2645 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2646 2647 // Note: The SystemZLDCleanupPass will remove redundant computations 2648 // of the module base offset. Count total number of local-dynamic 2649 // accesses to trigger execution of that pass. 2650 SystemZMachineFunctionInfo* MFI = 2651 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2652 MFI->incNumLocalDynamicTLSAccesses(); 2653 2654 // Add the per-symbol offset. 2655 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2656 2657 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2658 DTPOffset = DAG.getLoad( 2659 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2660 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2661 2662 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2663 break; 2664 } 2665 2666 case TLSModel::InitialExec: { 2667 // Load the offset from the GOT. 2668 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2669 SystemZII::MO_INDNTPOFF); 2670 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2671 Offset = 2672 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2673 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2674 break; 2675 } 2676 2677 case TLSModel::LocalExec: { 2678 // Force the offset into the constant pool and load it from there. 2679 SystemZConstantPoolValue *CPV = 2680 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2681 2682 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2683 Offset = DAG.getLoad( 2684 PtrVT, DL, DAG.getEntryNode(), Offset, 2685 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2686 break; 2687 } 2688 } 2689 2690 // Add the base and offset together. 2691 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2692 } 2693 2694 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2695 SelectionDAG &DAG) const { 2696 SDLoc DL(Node); 2697 const BlockAddress *BA = Node->getBlockAddress(); 2698 int64_t Offset = Node->getOffset(); 2699 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2700 2701 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2702 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2703 return Result; 2704 } 2705 2706 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2707 SelectionDAG &DAG) const { 2708 SDLoc DL(JT); 2709 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2710 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2711 2712 // Use LARL to load the address of the table. 2713 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2714 } 2715 2716 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2717 SelectionDAG &DAG) const { 2718 SDLoc DL(CP); 2719 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2720 2721 SDValue Result; 2722 if (CP->isMachineConstantPoolEntry()) 2723 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2724 CP->getAlignment()); 2725 else 2726 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2727 CP->getAlignment(), CP->getOffset()); 2728 2729 // Use LARL to load the address of the constant pool entry. 2730 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2731 } 2732 2733 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2734 SelectionDAG &DAG) const { 2735 MachineFunction &MF = DAG.getMachineFunction(); 2736 MachineFrameInfo &MFI = MF.getFrameInfo(); 2737 MFI.setFrameAddressIsTaken(true); 2738 2739 SDLoc DL(Op); 2740 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2741 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2742 2743 // If the back chain frame index has not been allocated yet, do so. 2744 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2745 int BackChainIdx = FI->getFramePointerSaveIndex(); 2746 if (!BackChainIdx) { 2747 // By definition, the frame address is the address of the back chain. 2748 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2749 FI->setFramePointerSaveIndex(BackChainIdx); 2750 } 2751 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2752 2753 // FIXME The frontend should detect this case. 2754 if (Depth > 0) { 2755 report_fatal_error("Unsupported stack frame traversal count"); 2756 } 2757 2758 return BackChain; 2759 } 2760 2761 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2762 SelectionDAG &DAG) const { 2763 MachineFunction &MF = DAG.getMachineFunction(); 2764 MachineFrameInfo &MFI = MF.getFrameInfo(); 2765 MFI.setReturnAddressIsTaken(true); 2766 2767 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2768 return SDValue(); 2769 2770 SDLoc DL(Op); 2771 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2772 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2773 2774 // FIXME The frontend should detect this case. 2775 if (Depth > 0) { 2776 report_fatal_error("Unsupported stack frame traversal count"); 2777 } 2778 2779 // Return R14D, which has the return address. Mark it an implicit live-in. 2780 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2781 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2782 } 2783 2784 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2785 SelectionDAG &DAG) const { 2786 SDLoc DL(Op); 2787 SDValue In = Op.getOperand(0); 2788 EVT InVT = In.getValueType(); 2789 EVT ResVT = Op.getValueType(); 2790 2791 // Convert loads directly. This is normally done by DAGCombiner, 2792 // but we need this case for bitcasts that are created during lowering 2793 // and which are then lowered themselves. 2794 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2795 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2796 LoadN->getMemOperand()); 2797 2798 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2799 SDValue In64; 2800 if (Subtarget.hasHighWord()) { 2801 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2802 MVT::i64); 2803 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2804 MVT::i64, SDValue(U64, 0), In); 2805 } else { 2806 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2807 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2808 DAG.getConstant(32, DL, MVT::i64)); 2809 } 2810 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2811 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2812 DL, MVT::f32, Out64); 2813 } 2814 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2815 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2816 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2817 MVT::f64, SDValue(U64, 0), In); 2818 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2819 if (Subtarget.hasHighWord()) 2820 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2821 MVT::i32, Out64); 2822 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2823 DAG.getConstant(32, DL, MVT::i64)); 2824 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2825 } 2826 llvm_unreachable("Unexpected bitcast combination"); 2827 } 2828 2829 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2830 SelectionDAG &DAG) const { 2831 MachineFunction &MF = DAG.getMachineFunction(); 2832 SystemZMachineFunctionInfo *FuncInfo = 2833 MF.getInfo<SystemZMachineFunctionInfo>(); 2834 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2835 2836 SDValue Chain = Op.getOperand(0); 2837 SDValue Addr = Op.getOperand(1); 2838 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2839 SDLoc DL(Op); 2840 2841 // The initial values of each field. 2842 const unsigned NumFields = 4; 2843 SDValue Fields[NumFields] = { 2844 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2845 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2846 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2847 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2848 }; 2849 2850 // Store each field into its respective slot. 2851 SDValue MemOps[NumFields]; 2852 unsigned Offset = 0; 2853 for (unsigned I = 0; I < NumFields; ++I) { 2854 SDValue FieldAddr = Addr; 2855 if (Offset != 0) 2856 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2857 DAG.getIntPtrConstant(Offset, DL)); 2858 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2859 MachinePointerInfo(SV, Offset)); 2860 Offset += 8; 2861 } 2862 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2863 } 2864 2865 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2866 SelectionDAG &DAG) const { 2867 SDValue Chain = Op.getOperand(0); 2868 SDValue DstPtr = Op.getOperand(1); 2869 SDValue SrcPtr = Op.getOperand(2); 2870 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2871 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2872 SDLoc DL(Op); 2873 2874 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2875 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2876 /*isTailCall*/false, 2877 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2878 } 2879 2880 SDValue SystemZTargetLowering:: 2881 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2882 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2883 MachineFunction &MF = DAG.getMachineFunction(); 2884 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack"); 2885 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 2886 2887 SDValue Chain = Op.getOperand(0); 2888 SDValue Size = Op.getOperand(1); 2889 SDValue Align = Op.getOperand(2); 2890 SDLoc DL(Op); 2891 2892 // If user has set the no alignment function attribute, ignore 2893 // alloca alignments. 2894 uint64_t AlignVal = (RealignOpt ? 2895 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2896 2897 uint64_t StackAlign = TFI->getStackAlignment(); 2898 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2899 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2900 2901 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2902 SDValue NeededSpace = Size; 2903 2904 // Get a reference to the stack pointer. 2905 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2906 2907 // If we need a backchain, save it now. 2908 SDValue Backchain; 2909 if (StoreBackchain) 2910 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 2911 2912 // Add extra space for alignment if needed. 2913 if (ExtraAlignSpace) 2914 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2915 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2916 2917 // Get the new stack pointer value. 2918 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2919 2920 // Copy the new stack pointer back. 2921 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2922 2923 // The allocated data lives above the 160 bytes allocated for the standard 2924 // frame, plus any outgoing stack arguments. We don't know how much that 2925 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2926 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2927 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2928 2929 // Dynamically realign if needed. 2930 if (RequiredAlign > StackAlign) { 2931 Result = 2932 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2933 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2934 Result = 2935 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2936 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2937 } 2938 2939 if (StoreBackchain) 2940 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 2941 2942 SDValue Ops[2] = { Result, Chain }; 2943 return DAG.getMergeValues(Ops, DL); 2944 } 2945 2946 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 2947 SDValue Op, SelectionDAG &DAG) const { 2948 SDLoc DL(Op); 2949 2950 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2951 } 2952 2953 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2954 SelectionDAG &DAG) const { 2955 EVT VT = Op.getValueType(); 2956 SDLoc DL(Op); 2957 SDValue Ops[2]; 2958 if (is32Bit(VT)) 2959 // Just do a normal 64-bit multiplication and extract the results. 2960 // We define this so that it can be used for constant division. 2961 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2962 Op.getOperand(1), Ops[1], Ops[0]); 2963 else { 2964 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2965 // 2966 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2967 // 2968 // but using the fact that the upper halves are either all zeros 2969 // or all ones: 2970 // 2971 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2972 // 2973 // and grouping the right terms together since they are quicker than the 2974 // multiplication: 2975 // 2976 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2977 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2978 SDValue LL = Op.getOperand(0); 2979 SDValue RL = Op.getOperand(1); 2980 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2981 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2982 // UMUL_LOHI64 returns the low result in the odd register and the high 2983 // result in the even register. SMUL_LOHI is defined to return the 2984 // low half first, so the results are in reverse order. 2985 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2986 LL, RL, Ops[1], Ops[0]); 2987 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2988 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2989 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2990 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2991 } 2992 return DAG.getMergeValues(Ops, DL); 2993 } 2994 2995 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2996 SelectionDAG &DAG) const { 2997 EVT VT = Op.getValueType(); 2998 SDLoc DL(Op); 2999 SDValue Ops[2]; 3000 if (is32Bit(VT)) 3001 // Just do a normal 64-bit multiplication and extract the results. 3002 // We define this so that it can be used for constant division. 3003 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3004 Op.getOperand(1), Ops[1], Ops[0]); 3005 else 3006 // UMUL_LOHI64 returns the low result in the odd register and the high 3007 // result in the even register. UMUL_LOHI is defined to return the 3008 // low half first, so the results are in reverse order. 3009 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 3010 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3011 return DAG.getMergeValues(Ops, DL); 3012 } 3013 3014 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3015 SelectionDAG &DAG) const { 3016 SDValue Op0 = Op.getOperand(0); 3017 SDValue Op1 = Op.getOperand(1); 3018 EVT VT = Op.getValueType(); 3019 SDLoc DL(Op); 3020 unsigned Opcode; 3021 3022 // We use DSGF for 32-bit division. 3023 if (is32Bit(VT)) { 3024 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3025 Opcode = SystemZISD::SDIVREM32; 3026 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 3027 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3028 Opcode = SystemZISD::SDIVREM32; 3029 } else 3030 Opcode = SystemZISD::SDIVREM64; 3031 3032 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 3033 // input is "don't care". The instruction returns the remainder in 3034 // the even register and the quotient in the odd register. 3035 SDValue Ops[2]; 3036 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 3037 Op0, Op1, Ops[1], Ops[0]); 3038 return DAG.getMergeValues(Ops, DL); 3039 } 3040 3041 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3042 SelectionDAG &DAG) const { 3043 EVT VT = Op.getValueType(); 3044 SDLoc DL(Op); 3045 3046 // DL(G) uses a double-width dividend, so we need to clear the even 3047 // register in the GR128 input. The instruction returns the remainder 3048 // in the even register and the quotient in the odd register. 3049 SDValue Ops[2]; 3050 if (is32Bit(VT)) 3051 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 3052 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3053 else 3054 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 3055 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3056 return DAG.getMergeValues(Ops, DL); 3057 } 3058 3059 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3060 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3061 3062 // Get the known-zero masks for each operand. 3063 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3064 APInt KnownZero[2], KnownOne[2]; 3065 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 3066 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 3067 3068 // See if the upper 32 bits of one operand and the lower 32 bits of the 3069 // other are known zero. They are the low and high operands respectively. 3070 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 3071 KnownZero[1].getZExtValue() }; 3072 unsigned High, Low; 3073 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3074 High = 1, Low = 0; 3075 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3076 High = 0, Low = 1; 3077 else 3078 return Op; 3079 3080 SDValue LowOp = Ops[Low]; 3081 SDValue HighOp = Ops[High]; 3082 3083 // If the high part is a constant, we're better off using IILH. 3084 if (HighOp.getOpcode() == ISD::Constant) 3085 return Op; 3086 3087 // If the low part is a constant that is outside the range of LHI, 3088 // then we're better off using IILF. 3089 if (LowOp.getOpcode() == ISD::Constant) { 3090 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3091 if (!isInt<16>(Value)) 3092 return Op; 3093 } 3094 3095 // Check whether the high part is an AND that doesn't change the 3096 // high 32 bits and just masks out low bits. We can skip it if so. 3097 if (HighOp.getOpcode() == ISD::AND && 3098 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3099 SDValue HighOp0 = HighOp.getOperand(0); 3100 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3101 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3102 HighOp = HighOp0; 3103 } 3104 3105 // Take advantage of the fact that all GR32 operations only change the 3106 // low 32 bits by truncating Low to an i32 and inserting it directly 3107 // using a subreg. The interesting cases are those where the truncation 3108 // can be folded. 3109 SDLoc DL(Op); 3110 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3111 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3112 MVT::i64, HighOp, Low32); 3113 } 3114 3115 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3116 SelectionDAG &DAG) const { 3117 EVT VT = Op.getValueType(); 3118 SDLoc DL(Op); 3119 Op = Op.getOperand(0); 3120 3121 // Handle vector types via VPOPCT. 3122 if (VT.isVector()) { 3123 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3124 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3125 switch (VT.getScalarSizeInBits()) { 3126 case 8: 3127 break; 3128 case 16: { 3129 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3130 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3131 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3132 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3133 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3134 break; 3135 } 3136 case 32: { 3137 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3138 DAG.getConstant(0, DL, MVT::i32)); 3139 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3140 break; 3141 } 3142 case 64: { 3143 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3144 DAG.getConstant(0, DL, MVT::i32)); 3145 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3146 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3147 break; 3148 } 3149 default: 3150 llvm_unreachable("Unexpected type"); 3151 } 3152 return Op; 3153 } 3154 3155 // Get the known-zero mask for the operand. 3156 APInt KnownZero, KnownOne; 3157 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3158 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3159 if (NumSignificantBits == 0) 3160 return DAG.getConstant(0, DL, VT); 3161 3162 // Skip known-zero high parts of the operand. 3163 int64_t OrigBitSize = VT.getSizeInBits(); 3164 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3165 BitSize = std::min(BitSize, OrigBitSize); 3166 3167 // The POPCNT instruction counts the number of bits in each byte. 3168 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3169 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3170 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3171 3172 // Add up per-byte counts in a binary tree. All bits of Op at 3173 // position larger than BitSize remain zero throughout. 3174 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3175 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3176 if (BitSize != OrigBitSize) 3177 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3178 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3179 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3180 } 3181 3182 // Extract overall result from high byte. 3183 if (BitSize > 8) 3184 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3185 DAG.getConstant(BitSize - 8, DL, VT)); 3186 3187 return Op; 3188 } 3189 3190 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3191 SelectionDAG &DAG) const { 3192 SDLoc DL(Op); 3193 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3194 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3195 SynchronizationScope FenceScope = static_cast<SynchronizationScope>( 3196 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3197 3198 // The only fence that needs an instruction is a sequentially-consistent 3199 // cross-thread fence. 3200 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3201 FenceScope == CrossThread) { 3202 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3203 Op.getOperand(0)), 3204 0); 3205 } 3206 3207 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3208 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3209 } 3210 3211 // Op is an atomic load. Lower it into a normal volatile load. 3212 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3213 SelectionDAG &DAG) const { 3214 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3215 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3216 Node->getChain(), Node->getBasePtr(), 3217 Node->getMemoryVT(), Node->getMemOperand()); 3218 } 3219 3220 // Op is an atomic store. Lower it into a normal volatile store followed 3221 // by a serialization. 3222 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3223 SelectionDAG &DAG) const { 3224 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3225 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3226 Node->getBasePtr(), Node->getMemoryVT(), 3227 Node->getMemOperand()); 3228 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3229 Chain), 0); 3230 } 3231 3232 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3233 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3234 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3235 SelectionDAG &DAG, 3236 unsigned Opcode) const { 3237 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3238 3239 // 32-bit operations need no code outside the main loop. 3240 EVT NarrowVT = Node->getMemoryVT(); 3241 EVT WideVT = MVT::i32; 3242 if (NarrowVT == WideVT) 3243 return Op; 3244 3245 int64_t BitSize = NarrowVT.getSizeInBits(); 3246 SDValue ChainIn = Node->getChain(); 3247 SDValue Addr = Node->getBasePtr(); 3248 SDValue Src2 = Node->getVal(); 3249 MachineMemOperand *MMO = Node->getMemOperand(); 3250 SDLoc DL(Node); 3251 EVT PtrVT = Addr.getValueType(); 3252 3253 // Convert atomic subtracts of constants into additions. 3254 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3255 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3256 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3257 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3258 } 3259 3260 // Get the address of the containing word. 3261 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3262 DAG.getConstant(-4, DL, PtrVT)); 3263 3264 // Get the number of bits that the word must be rotated left in order 3265 // to bring the field to the top bits of a GR32. 3266 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3267 DAG.getConstant(3, DL, PtrVT)); 3268 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3269 3270 // Get the complementing shift amount, for rotating a field in the top 3271 // bits back to its proper position. 3272 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3273 DAG.getConstant(0, DL, WideVT), BitShift); 3274 3275 // Extend the source operand to 32 bits and prepare it for the inner loop. 3276 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3277 // operations require the source to be shifted in advance. (This shift 3278 // can be folded if the source is constant.) For AND and NAND, the lower 3279 // bits must be set, while for other opcodes they should be left clear. 3280 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3281 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3282 DAG.getConstant(32 - BitSize, DL, WideVT)); 3283 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3284 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3285 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3286 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3287 3288 // Construct the ATOMIC_LOADW_* node. 3289 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3290 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3291 DAG.getConstant(BitSize, DL, WideVT) }; 3292 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3293 NarrowVT, MMO); 3294 3295 // Rotate the result of the final CS so that the field is in the lower 3296 // bits of a GR32, then truncate it. 3297 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3298 DAG.getConstant(BitSize, DL, WideVT)); 3299 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3300 3301 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3302 return DAG.getMergeValues(RetOps, DL); 3303 } 3304 3305 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3306 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3307 // operations into additions. 3308 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3309 SelectionDAG &DAG) const { 3310 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3311 EVT MemVT = Node->getMemoryVT(); 3312 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3313 // A full-width operation. 3314 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3315 SDValue Src2 = Node->getVal(); 3316 SDValue NegSrc2; 3317 SDLoc DL(Src2); 3318 3319 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3320 // Use an addition if the operand is constant and either LAA(G) is 3321 // available or the negative value is in the range of A(G)FHI. 3322 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3323 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3324 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3325 } else if (Subtarget.hasInterlockedAccess1()) 3326 // Use LAA(G) if available. 3327 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3328 Src2); 3329 3330 if (NegSrc2.getNode()) 3331 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3332 Node->getChain(), Node->getBasePtr(), NegSrc2, 3333 Node->getMemOperand()); 3334 3335 // Use the node as-is. 3336 return Op; 3337 } 3338 3339 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3340 } 3341 3342 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3343 // into a fullword ATOMIC_CMP_SWAPW operation. 3344 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3345 SelectionDAG &DAG) const { 3346 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3347 3348 // We have native support for 32-bit compare and swap. 3349 EVT NarrowVT = Node->getMemoryVT(); 3350 EVT WideVT = MVT::i32; 3351 if (NarrowVT == WideVT) 3352 return Op; 3353 3354 int64_t BitSize = NarrowVT.getSizeInBits(); 3355 SDValue ChainIn = Node->getOperand(0); 3356 SDValue Addr = Node->getOperand(1); 3357 SDValue CmpVal = Node->getOperand(2); 3358 SDValue SwapVal = Node->getOperand(3); 3359 MachineMemOperand *MMO = Node->getMemOperand(); 3360 SDLoc DL(Node); 3361 EVT PtrVT = Addr.getValueType(); 3362 3363 // Get the address of the containing word. 3364 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3365 DAG.getConstant(-4, DL, PtrVT)); 3366 3367 // Get the number of bits that the word must be rotated left in order 3368 // to bring the field to the top bits of a GR32. 3369 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3370 DAG.getConstant(3, DL, PtrVT)); 3371 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3372 3373 // Get the complementing shift amount, for rotating a field in the top 3374 // bits back to its proper position. 3375 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3376 DAG.getConstant(0, DL, WideVT), BitShift); 3377 3378 // Construct the ATOMIC_CMP_SWAPW node. 3379 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3380 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3381 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3382 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3383 VTList, Ops, NarrowVT, MMO); 3384 return AtomicOp; 3385 } 3386 3387 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3388 SelectionDAG &DAG) const { 3389 MachineFunction &MF = DAG.getMachineFunction(); 3390 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3391 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3392 SystemZ::R15D, Op.getValueType()); 3393 } 3394 3395 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3396 SelectionDAG &DAG) const { 3397 MachineFunction &MF = DAG.getMachineFunction(); 3398 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3399 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3400 3401 SDValue Chain = Op.getOperand(0); 3402 SDValue NewSP = Op.getOperand(1); 3403 SDValue Backchain; 3404 SDLoc DL(Op); 3405 3406 if (StoreBackchain) { 3407 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3408 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3409 } 3410 3411 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3412 3413 if (StoreBackchain) 3414 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3415 3416 return Chain; 3417 } 3418 3419 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3420 SelectionDAG &DAG) const { 3421 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3422 if (!IsData) 3423 // Just preserve the chain. 3424 return Op.getOperand(0); 3425 3426 SDLoc DL(Op); 3427 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3428 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3429 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3430 SDValue Ops[] = { 3431 Op.getOperand(0), 3432 DAG.getConstant(Code, DL, MVT::i32), 3433 Op.getOperand(1) 3434 }; 3435 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3436 Node->getVTList(), Ops, 3437 Node->getMemoryVT(), Node->getMemOperand()); 3438 } 3439 3440 // Return an i32 that contains the value of CC immediately after After, 3441 // whose final operand must be MVT::Glue. 3442 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3443 SDLoc DL(After); 3444 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3445 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3446 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3447 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3448 } 3449 3450 SDValue 3451 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3452 SelectionDAG &DAG) const { 3453 unsigned Opcode, CCValid; 3454 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3455 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3456 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3457 SDValue CC = getCCResult(DAG, Glued.getNode()); 3458 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3459 return SDValue(); 3460 } 3461 3462 return SDValue(); 3463 } 3464 3465 SDValue 3466 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3467 SelectionDAG &DAG) const { 3468 unsigned Opcode, CCValid; 3469 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3470 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3471 SDValue CC = getCCResult(DAG, Glued.getNode()); 3472 if (Op->getNumValues() == 1) 3473 return CC; 3474 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3475 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3476 CC); 3477 } 3478 3479 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3480 switch (Id) { 3481 case Intrinsic::thread_pointer: 3482 return lowerThreadPointer(SDLoc(Op), DAG); 3483 3484 case Intrinsic::s390_vpdi: 3485 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3486 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3487 3488 case Intrinsic::s390_vperm: 3489 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3490 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3491 3492 case Intrinsic::s390_vuphb: 3493 case Intrinsic::s390_vuphh: 3494 case Intrinsic::s390_vuphf: 3495 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3496 Op.getOperand(1)); 3497 3498 case Intrinsic::s390_vuplhb: 3499 case Intrinsic::s390_vuplhh: 3500 case Intrinsic::s390_vuplhf: 3501 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3502 Op.getOperand(1)); 3503 3504 case Intrinsic::s390_vuplb: 3505 case Intrinsic::s390_vuplhw: 3506 case Intrinsic::s390_vuplf: 3507 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3508 Op.getOperand(1)); 3509 3510 case Intrinsic::s390_vupllb: 3511 case Intrinsic::s390_vupllh: 3512 case Intrinsic::s390_vupllf: 3513 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3514 Op.getOperand(1)); 3515 3516 case Intrinsic::s390_vsumb: 3517 case Intrinsic::s390_vsumh: 3518 case Intrinsic::s390_vsumgh: 3519 case Intrinsic::s390_vsumgf: 3520 case Intrinsic::s390_vsumqf: 3521 case Intrinsic::s390_vsumqg: 3522 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3523 Op.getOperand(1), Op.getOperand(2)); 3524 } 3525 3526 return SDValue(); 3527 } 3528 3529 namespace { 3530 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3531 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3532 // Operand is the constant third operand, otherwise it is the number of 3533 // bytes in each element of the result. 3534 struct Permute { 3535 unsigned Opcode; 3536 unsigned Operand; 3537 unsigned char Bytes[SystemZ::VectorBytes]; 3538 }; 3539 } 3540 3541 static const Permute PermuteForms[] = { 3542 // VMRHG 3543 { SystemZISD::MERGE_HIGH, 8, 3544 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3545 // VMRHF 3546 { SystemZISD::MERGE_HIGH, 4, 3547 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3548 // VMRHH 3549 { SystemZISD::MERGE_HIGH, 2, 3550 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3551 // VMRHB 3552 { SystemZISD::MERGE_HIGH, 1, 3553 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3554 // VMRLG 3555 { SystemZISD::MERGE_LOW, 8, 3556 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3557 // VMRLF 3558 { SystemZISD::MERGE_LOW, 4, 3559 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3560 // VMRLH 3561 { SystemZISD::MERGE_LOW, 2, 3562 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3563 // VMRLB 3564 { SystemZISD::MERGE_LOW, 1, 3565 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3566 // VPKG 3567 { SystemZISD::PACK, 4, 3568 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3569 // VPKF 3570 { SystemZISD::PACK, 2, 3571 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3572 // VPKH 3573 { SystemZISD::PACK, 1, 3574 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3575 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3576 { SystemZISD::PERMUTE_DWORDS, 4, 3577 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3578 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3579 { SystemZISD::PERMUTE_DWORDS, 1, 3580 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3581 }; 3582 3583 // Called after matching a vector shuffle against a particular pattern. 3584 // Both the original shuffle and the pattern have two vector operands. 3585 // OpNos[0] is the operand of the original shuffle that should be used for 3586 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3587 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3588 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3589 // for operands 0 and 1 of the pattern. 3590 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3591 if (OpNos[0] < 0) { 3592 if (OpNos[1] < 0) 3593 return false; 3594 OpNo0 = OpNo1 = OpNos[1]; 3595 } else if (OpNos[1] < 0) { 3596 OpNo0 = OpNo1 = OpNos[0]; 3597 } else { 3598 OpNo0 = OpNos[0]; 3599 OpNo1 = OpNos[1]; 3600 } 3601 return true; 3602 } 3603 3604 // Bytes is a VPERM-like permute vector, except that -1 is used for 3605 // undefined bytes. Return true if the VPERM can be implemented using P. 3606 // When returning true set OpNo0 to the VPERM operand that should be 3607 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3608 // 3609 // For example, if swapping the VPERM operands allows P to match, OpNo0 3610 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3611 // operand, but rewriting it to use two duplicated operands allows it to 3612 // match P, then OpNo0 and OpNo1 will be the same. 3613 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3614 unsigned &OpNo0, unsigned &OpNo1) { 3615 int OpNos[] = { -1, -1 }; 3616 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3617 int Elt = Bytes[I]; 3618 if (Elt >= 0) { 3619 // Make sure that the two permute vectors use the same suboperand 3620 // byte number. Only the operand numbers (the high bits) are 3621 // allowed to differ. 3622 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3623 return false; 3624 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3625 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3626 // Make sure that the operand mappings are consistent with previous 3627 // elements. 3628 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3629 return false; 3630 OpNos[ModelOpNo] = RealOpNo; 3631 } 3632 } 3633 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3634 } 3635 3636 // As above, but search for a matching permute. 3637 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3638 unsigned &OpNo0, unsigned &OpNo1) { 3639 for (auto &P : PermuteForms) 3640 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3641 return &P; 3642 return nullptr; 3643 } 3644 3645 // Bytes is a VPERM-like permute vector, except that -1 is used for 3646 // undefined bytes. This permute is an operand of an outer permute. 3647 // See whether redistributing the -1 bytes gives a shuffle that can be 3648 // implemented using P. If so, set Transform to a VPERM-like permute vector 3649 // that, when applied to the result of P, gives the original permute in Bytes. 3650 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3651 const Permute &P, 3652 SmallVectorImpl<int> &Transform) { 3653 unsigned To = 0; 3654 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3655 int Elt = Bytes[From]; 3656 if (Elt < 0) 3657 // Byte number From of the result is undefined. 3658 Transform[From] = -1; 3659 else { 3660 while (P.Bytes[To] != Elt) { 3661 To += 1; 3662 if (To == SystemZ::VectorBytes) 3663 return false; 3664 } 3665 Transform[From] = To; 3666 } 3667 } 3668 return true; 3669 } 3670 3671 // As above, but search for a matching permute. 3672 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3673 SmallVectorImpl<int> &Transform) { 3674 for (auto &P : PermuteForms) 3675 if (matchDoublePermute(Bytes, P, Transform)) 3676 return &P; 3677 return nullptr; 3678 } 3679 3680 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3681 // as if it had type vNi8. 3682 static void getVPermMask(ShuffleVectorSDNode *VSN, 3683 SmallVectorImpl<int> &Bytes) { 3684 EVT VT = VSN->getValueType(0); 3685 unsigned NumElements = VT.getVectorNumElements(); 3686 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3687 Bytes.resize(NumElements * BytesPerElement, -1); 3688 for (unsigned I = 0; I < NumElements; ++I) { 3689 int Index = VSN->getMaskElt(I); 3690 if (Index >= 0) 3691 for (unsigned J = 0; J < BytesPerElement; ++J) 3692 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3693 } 3694 } 3695 3696 // Bytes is a VPERM-like permute vector, except that -1 is used for 3697 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3698 // the result come from a contiguous sequence of bytes from one input. 3699 // Set Base to the selector for the first byte if so. 3700 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3701 unsigned BytesPerElement, int &Base) { 3702 Base = -1; 3703 for (unsigned I = 0; I < BytesPerElement; ++I) { 3704 if (Bytes[Start + I] >= 0) { 3705 unsigned Elem = Bytes[Start + I]; 3706 if (Base < 0) { 3707 Base = Elem - I; 3708 // Make sure the bytes would come from one input operand. 3709 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3710 return false; 3711 } else if (unsigned(Base) != Elem - I) 3712 return false; 3713 } 3714 } 3715 return true; 3716 } 3717 3718 // Bytes is a VPERM-like permute vector, except that -1 is used for 3719 // undefined bytes. Return true if it can be performed using VSLDI. 3720 // When returning true, set StartIndex to the shift amount and OpNo0 3721 // and OpNo1 to the VPERM operands that should be used as the first 3722 // and second shift operand respectively. 3723 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3724 unsigned &StartIndex, unsigned &OpNo0, 3725 unsigned &OpNo1) { 3726 int OpNos[] = { -1, -1 }; 3727 int Shift = -1; 3728 for (unsigned I = 0; I < 16; ++I) { 3729 int Index = Bytes[I]; 3730 if (Index >= 0) { 3731 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3732 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3733 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3734 if (Shift < 0) 3735 Shift = ExpectedShift; 3736 else if (Shift != ExpectedShift) 3737 return false; 3738 // Make sure that the operand mappings are consistent with previous 3739 // elements. 3740 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3741 return false; 3742 OpNos[ModelOpNo] = RealOpNo; 3743 } 3744 } 3745 StartIndex = Shift; 3746 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3747 } 3748 3749 // Create a node that performs P on operands Op0 and Op1, casting the 3750 // operands to the appropriate type. The type of the result is determined by P. 3751 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3752 const Permute &P, SDValue Op0, SDValue Op1) { 3753 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3754 // elements of a PACK are twice as wide as the outputs. 3755 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3756 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3757 P.Operand); 3758 // Cast both operands to the appropriate type. 3759 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3760 SystemZ::VectorBytes / InBytes); 3761 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3762 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3763 SDValue Op; 3764 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3765 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3766 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3767 } else if (P.Opcode == SystemZISD::PACK) { 3768 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3769 SystemZ::VectorBytes / P.Operand); 3770 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3771 } else { 3772 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3773 } 3774 return Op; 3775 } 3776 3777 // Bytes is a VPERM-like permute vector, except that -1 is used for 3778 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3779 // VSLDI or VPERM. 3780 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3781 SDValue *Ops, 3782 const SmallVectorImpl<int> &Bytes) { 3783 for (unsigned I = 0; I < 2; ++I) 3784 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3785 3786 // First see whether VSLDI can be used. 3787 unsigned StartIndex, OpNo0, OpNo1; 3788 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3789 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3790 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3791 3792 // Fall back on VPERM. Construct an SDNode for the permute vector. 3793 SDValue IndexNodes[SystemZ::VectorBytes]; 3794 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3795 if (Bytes[I] >= 0) 3796 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3797 else 3798 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3799 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3800 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3801 } 3802 3803 namespace { 3804 // Describes a general N-operand vector shuffle. 3805 struct GeneralShuffle { 3806 GeneralShuffle(EVT vt) : VT(vt) {} 3807 void addUndef(); 3808 bool add(SDValue, unsigned); 3809 SDValue getNode(SelectionDAG &, const SDLoc &); 3810 3811 // The operands of the shuffle. 3812 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3813 3814 // Index I is -1 if byte I of the result is undefined. Otherwise the 3815 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3816 // Bytes[I] / SystemZ::VectorBytes. 3817 SmallVector<int, SystemZ::VectorBytes> Bytes; 3818 3819 // The type of the shuffle result. 3820 EVT VT; 3821 }; 3822 } 3823 3824 // Add an extra undefined element to the shuffle. 3825 void GeneralShuffle::addUndef() { 3826 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3827 for (unsigned I = 0; I < BytesPerElement; ++I) 3828 Bytes.push_back(-1); 3829 } 3830 3831 // Add an extra element to the shuffle, taking it from element Elem of Op. 3832 // A null Op indicates a vector input whose value will be calculated later; 3833 // there is at most one such input per shuffle and it always has the same 3834 // type as the result. Aborts and returns false if the source vector elements 3835 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 3836 // LLVM they become implicitly extended, but this is rare and not optimized. 3837 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 3838 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3839 3840 // The source vector can have wider elements than the result, 3841 // either through an explicit TRUNCATE or because of type legalization. 3842 // We want the least significant part. 3843 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3844 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3845 3846 // Return false if the source elements are smaller than their destination 3847 // elements. 3848 if (FromBytesPerElement < BytesPerElement) 3849 return false; 3850 3851 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3852 (FromBytesPerElement - BytesPerElement)); 3853 3854 // Look through things like shuffles and bitcasts. 3855 while (Op.getNode()) { 3856 if (Op.getOpcode() == ISD::BITCAST) 3857 Op = Op.getOperand(0); 3858 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3859 // See whether the bytes we need come from a contiguous part of one 3860 // operand. 3861 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3862 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3863 int NewByte; 3864 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3865 break; 3866 if (NewByte < 0) { 3867 addUndef(); 3868 return true; 3869 } 3870 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3871 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3872 } else if (Op.isUndef()) { 3873 addUndef(); 3874 return true; 3875 } else 3876 break; 3877 } 3878 3879 // Make sure that the source of the extraction is in Ops. 3880 unsigned OpNo = 0; 3881 for (; OpNo < Ops.size(); ++OpNo) 3882 if (Ops[OpNo] == Op) 3883 break; 3884 if (OpNo == Ops.size()) 3885 Ops.push_back(Op); 3886 3887 // Add the element to Bytes. 3888 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3889 for (unsigned I = 0; I < BytesPerElement; ++I) 3890 Bytes.push_back(Base + I); 3891 3892 return true; 3893 } 3894 3895 // Return SDNodes for the completed shuffle. 3896 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 3897 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3898 3899 if (Ops.size() == 0) 3900 return DAG.getUNDEF(VT); 3901 3902 // Make sure that there are at least two shuffle operands. 3903 if (Ops.size() == 1) 3904 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3905 3906 // Create a tree of shuffles, deferring root node until after the loop. 3907 // Try to redistribute the undefined elements of non-root nodes so that 3908 // the non-root shuffles match something like a pack or merge, then adjust 3909 // the parent node's permute vector to compensate for the new order. 3910 // Among other things, this copes with vectors like <2 x i16> that were 3911 // padded with undefined elements during type legalization. 3912 // 3913 // In the best case this redistribution will lead to the whole tree 3914 // using packs and merges. It should rarely be a loss in other cases. 3915 unsigned Stride = 1; 3916 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3917 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3918 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3919 3920 // Create a mask for just these two operands. 3921 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3922 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3923 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3924 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3925 if (OpNo == I) 3926 NewBytes[J] = Byte; 3927 else if (OpNo == I + Stride) 3928 NewBytes[J] = SystemZ::VectorBytes + Byte; 3929 else 3930 NewBytes[J] = -1; 3931 } 3932 // See if it would be better to reorganize NewMask to avoid using VPERM. 3933 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3934 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3935 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3936 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3937 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3938 if (NewBytes[J] >= 0) { 3939 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3940 "Invalid double permute"); 3941 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3942 } else 3943 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3944 } 3945 } else { 3946 // Just use NewBytes on the operands. 3947 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3948 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3949 if (NewBytes[J] >= 0) 3950 Bytes[J] = I * SystemZ::VectorBytes + J; 3951 } 3952 } 3953 } 3954 3955 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3956 if (Stride > 1) { 3957 Ops[1] = Ops[Stride]; 3958 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3959 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3960 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3961 } 3962 3963 // Look for an instruction that can do the permute without resorting 3964 // to VPERM. 3965 unsigned OpNo0, OpNo1; 3966 SDValue Op; 3967 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3968 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3969 else 3970 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3971 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3972 } 3973 3974 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3975 static bool isScalarToVector(SDValue Op) { 3976 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3977 if (!Op.getOperand(I).isUndef()) 3978 return false; 3979 return true; 3980 } 3981 3982 // Return a vector of type VT that contains Value in the first element. 3983 // The other elements don't matter. 3984 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3985 SDValue Value) { 3986 // If we have a constant, replicate it to all elements and let the 3987 // BUILD_VECTOR lowering take care of it. 3988 if (Value.getOpcode() == ISD::Constant || 3989 Value.getOpcode() == ISD::ConstantFP) { 3990 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3991 return DAG.getBuildVector(VT, DL, Ops); 3992 } 3993 if (Value.isUndef()) 3994 return DAG.getUNDEF(VT); 3995 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3996 } 3997 3998 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3999 // element 1. Used for cases in which replication is cheap. 4000 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4001 SDValue Op0, SDValue Op1) { 4002 if (Op0.isUndef()) { 4003 if (Op1.isUndef()) 4004 return DAG.getUNDEF(VT); 4005 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4006 } 4007 if (Op1.isUndef()) 4008 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4009 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4010 buildScalarToVector(DAG, DL, VT, Op0), 4011 buildScalarToVector(DAG, DL, VT, Op1)); 4012 } 4013 4014 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4015 // vector for them. 4016 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4017 SDValue Op1) { 4018 if (Op0.isUndef() && Op1.isUndef()) 4019 return DAG.getUNDEF(MVT::v2i64); 4020 // If one of the two inputs is undefined then replicate the other one, 4021 // in order to avoid using another register unnecessarily. 4022 if (Op0.isUndef()) 4023 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4024 else if (Op1.isUndef()) 4025 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4026 else { 4027 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4028 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4029 } 4030 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4031 } 4032 4033 // Try to represent constant BUILD_VECTOR node BVN using a 4034 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4035 // on success. 4036 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4037 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4038 unsigned BytesPerElement = ElemVT.getStoreSize(); 4039 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4040 SDValue Op = BVN->getOperand(I); 4041 if (!Op.isUndef()) { 4042 uint64_t Value; 4043 if (Op.getOpcode() == ISD::Constant) 4044 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 4045 else if (Op.getOpcode() == ISD::ConstantFP) 4046 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4047 .getZExtValue()); 4048 else 4049 return false; 4050 for (unsigned J = 0; J < BytesPerElement; ++J) { 4051 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4052 if (Byte == 0xff) 4053 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4054 else if (Byte != 0) 4055 return false; 4056 } 4057 } 4058 } 4059 return true; 4060 } 4061 4062 // Try to load a vector constant in which BitsPerElement-bit value Value 4063 // is replicated to fill the vector. VT is the type of the resulting 4064 // constant, which may have elements of a different size from BitsPerElement. 4065 // Return the SDValue of the constant on success, otherwise return 4066 // an empty value. 4067 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4068 const SystemZInstrInfo *TII, 4069 const SDLoc &DL, EVT VT, uint64_t Value, 4070 unsigned BitsPerElement) { 4071 // Signed 16-bit values can be replicated using VREPI. 4072 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4073 if (isInt<16>(SignedValue)) { 4074 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4075 SystemZ::VectorBits / BitsPerElement); 4076 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 4077 DAG.getConstant(SignedValue, DL, MVT::i32)); 4078 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4079 } 4080 // See whether rotating the constant left some N places gives a value that 4081 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4082 // If so we can use VGM. 4083 unsigned Start, End; 4084 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4085 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4086 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4087 // bit numbers for an BitsPerElement value, so that 0 denotes 4088 // 1 << (BitsPerElement-1). 4089 Start -= 64 - BitsPerElement; 4090 End -= 64 - BitsPerElement; 4091 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4092 SystemZ::VectorBits / BitsPerElement); 4093 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4094 DAG.getConstant(Start, DL, MVT::i32), 4095 DAG.getConstant(End, DL, MVT::i32)); 4096 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4097 } 4098 return SDValue(); 4099 } 4100 4101 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4102 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4103 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4104 // would benefit from this representation and return it if so. 4105 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4106 BuildVectorSDNode *BVN) { 4107 EVT VT = BVN->getValueType(0); 4108 unsigned NumElements = VT.getVectorNumElements(); 4109 4110 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4111 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4112 // need a BUILD_VECTOR, add an additional placeholder operand for that 4113 // BUILD_VECTOR and store its operands in ResidueOps. 4114 GeneralShuffle GS(VT); 4115 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4116 bool FoundOne = false; 4117 for (unsigned I = 0; I < NumElements; ++I) { 4118 SDValue Op = BVN->getOperand(I); 4119 if (Op.getOpcode() == ISD::TRUNCATE) 4120 Op = Op.getOperand(0); 4121 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4122 Op.getOperand(1).getOpcode() == ISD::Constant) { 4123 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4124 if (!GS.add(Op.getOperand(0), Elem)) 4125 return SDValue(); 4126 FoundOne = true; 4127 } else if (Op.isUndef()) { 4128 GS.addUndef(); 4129 } else { 4130 if (!GS.add(SDValue(), ResidueOps.size())) 4131 return SDValue(); 4132 ResidueOps.push_back(BVN->getOperand(I)); 4133 } 4134 } 4135 4136 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4137 if (!FoundOne) 4138 return SDValue(); 4139 4140 // Create the BUILD_VECTOR for the remaining elements, if any. 4141 if (!ResidueOps.empty()) { 4142 while (ResidueOps.size() < NumElements) 4143 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4144 for (auto &Op : GS.Ops) { 4145 if (!Op.getNode()) { 4146 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4147 break; 4148 } 4149 } 4150 } 4151 return GS.getNode(DAG, SDLoc(BVN)); 4152 } 4153 4154 // Combine GPR scalar values Elems into a vector of type VT. 4155 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4156 SmallVectorImpl<SDValue> &Elems) { 4157 // See whether there is a single replicated value. 4158 SDValue Single; 4159 unsigned int NumElements = Elems.size(); 4160 unsigned int Count = 0; 4161 for (auto Elem : Elems) { 4162 if (!Elem.isUndef()) { 4163 if (!Single.getNode()) 4164 Single = Elem; 4165 else if (Elem != Single) { 4166 Single = SDValue(); 4167 break; 4168 } 4169 Count += 1; 4170 } 4171 } 4172 // There are three cases here: 4173 // 4174 // - if the only defined element is a loaded one, the best sequence 4175 // is a replicating load. 4176 // 4177 // - otherwise, if the only defined element is an i64 value, we will 4178 // end up with the same VLVGP sequence regardless of whether we short-cut 4179 // for replication or fall through to the later code. 4180 // 4181 // - otherwise, if the only defined element is an i32 or smaller value, 4182 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4183 // This is only a win if the single defined element is used more than once. 4184 // In other cases we're better off using a single VLVGx. 4185 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4186 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4187 4188 // The best way of building a v2i64 from two i64s is to use VLVGP. 4189 if (VT == MVT::v2i64) 4190 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4191 4192 // Use a 64-bit merge high to combine two doubles. 4193 if (VT == MVT::v2f64) 4194 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4195 4196 // Build v4f32 values directly from the FPRs: 4197 // 4198 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4199 // V V VMRHF 4200 // <ABxx> <CDxx> 4201 // V VMRHG 4202 // <ABCD> 4203 if (VT == MVT::v4f32) { 4204 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4205 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4206 // Avoid unnecessary undefs by reusing the other operand. 4207 if (Op01.isUndef()) 4208 Op01 = Op23; 4209 else if (Op23.isUndef()) 4210 Op23 = Op01; 4211 // Merging identical replications is a no-op. 4212 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4213 return Op01; 4214 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4215 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4216 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4217 DL, MVT::v2i64, Op01, Op23); 4218 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4219 } 4220 4221 // Collect the constant terms. 4222 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4223 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4224 4225 unsigned NumConstants = 0; 4226 for (unsigned I = 0; I < NumElements; ++I) { 4227 SDValue Elem = Elems[I]; 4228 if (Elem.getOpcode() == ISD::Constant || 4229 Elem.getOpcode() == ISD::ConstantFP) { 4230 NumConstants += 1; 4231 Constants[I] = Elem; 4232 Done[I] = true; 4233 } 4234 } 4235 // If there was at least one constant, fill in the other elements of 4236 // Constants with undefs to get a full vector constant and use that 4237 // as the starting point. 4238 SDValue Result; 4239 if (NumConstants > 0) { 4240 for (unsigned I = 0; I < NumElements; ++I) 4241 if (!Constants[I].getNode()) 4242 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4243 Result = DAG.getBuildVector(VT, DL, Constants); 4244 } else { 4245 // Otherwise try to use VLVGP to start the sequence in order to 4246 // avoid a false dependency on any previous contents of the vector 4247 // register. This only makes sense if one of the associated elements 4248 // is defined. 4249 unsigned I1 = NumElements / 2 - 1; 4250 unsigned I2 = NumElements - 1; 4251 bool Def1 = !Elems[I1].isUndef(); 4252 bool Def2 = !Elems[I2].isUndef(); 4253 if (Def1 || Def2) { 4254 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4255 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4256 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4257 joinDwords(DAG, DL, Elem1, Elem2)); 4258 Done[I1] = true; 4259 Done[I2] = true; 4260 } else 4261 Result = DAG.getUNDEF(VT); 4262 } 4263 4264 // Use VLVGx to insert the other elements. 4265 for (unsigned I = 0; I < NumElements; ++I) 4266 if (!Done[I] && !Elems[I].isUndef()) 4267 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4268 DAG.getConstant(I, DL, MVT::i32)); 4269 return Result; 4270 } 4271 4272 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4273 SelectionDAG &DAG) const { 4274 const SystemZInstrInfo *TII = 4275 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4276 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4277 SDLoc DL(Op); 4278 EVT VT = Op.getValueType(); 4279 4280 if (BVN->isConstant()) { 4281 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4282 // preferred way of creating all-zero and all-one vectors so give it 4283 // priority over other methods below. 4284 uint64_t Mask = 0; 4285 if (tryBuildVectorByteMask(BVN, Mask)) { 4286 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4287 DAG.getConstant(Mask, DL, MVT::i32)); 4288 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4289 } 4290 4291 // Try using some form of replication. 4292 APInt SplatBits, SplatUndef; 4293 unsigned SplatBitSize; 4294 bool HasAnyUndefs; 4295 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4296 8, true) && 4297 SplatBitSize <= 64) { 4298 // First try assuming that any undefined bits above the highest set bit 4299 // and below the lowest set bit are 1s. This increases the likelihood of 4300 // being able to use a sign-extended element value in VECTOR REPLICATE 4301 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4302 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4303 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4304 uint64_t Lower = (SplatUndefZ 4305 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4306 uint64_t Upper = (SplatUndefZ 4307 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4308 uint64_t Value = SplatBitsZ | Upper | Lower; 4309 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4310 SplatBitSize); 4311 if (Op.getNode()) 4312 return Op; 4313 4314 // Now try assuming that any undefined bits between the first and 4315 // last defined set bits are set. This increases the chances of 4316 // using a non-wraparound mask. 4317 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4318 Value = SplatBitsZ | Middle; 4319 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4320 if (Op.getNode()) 4321 return Op; 4322 } 4323 4324 // Fall back to loading it from memory. 4325 return SDValue(); 4326 } 4327 4328 // See if we should use shuffles to construct the vector from other vectors. 4329 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4330 return Res; 4331 4332 // Detect SCALAR_TO_VECTOR conversions. 4333 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4334 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4335 4336 // Otherwise use buildVector to build the vector up from GPRs. 4337 unsigned NumElements = Op.getNumOperands(); 4338 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4339 for (unsigned I = 0; I < NumElements; ++I) 4340 Ops[I] = Op.getOperand(I); 4341 return buildVector(DAG, DL, VT, Ops); 4342 } 4343 4344 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4345 SelectionDAG &DAG) const { 4346 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4347 SDLoc DL(Op); 4348 EVT VT = Op.getValueType(); 4349 unsigned NumElements = VT.getVectorNumElements(); 4350 4351 if (VSN->isSplat()) { 4352 SDValue Op0 = Op.getOperand(0); 4353 unsigned Index = VSN->getSplatIndex(); 4354 assert(Index < VT.getVectorNumElements() && 4355 "Splat index should be defined and in first operand"); 4356 // See whether the value we're splatting is directly available as a scalar. 4357 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4358 Op0.getOpcode() == ISD::BUILD_VECTOR) 4359 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4360 // Otherwise keep it as a vector-to-vector operation. 4361 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4362 DAG.getConstant(Index, DL, MVT::i32)); 4363 } 4364 4365 GeneralShuffle GS(VT); 4366 for (unsigned I = 0; I < NumElements; ++I) { 4367 int Elt = VSN->getMaskElt(I); 4368 if (Elt < 0) 4369 GS.addUndef(); 4370 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4371 unsigned(Elt) % NumElements)) 4372 return SDValue(); 4373 } 4374 return GS.getNode(DAG, SDLoc(VSN)); 4375 } 4376 4377 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4378 SelectionDAG &DAG) const { 4379 SDLoc DL(Op); 4380 // Just insert the scalar into element 0 of an undefined vector. 4381 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4382 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4383 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4384 } 4385 4386 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4387 SelectionDAG &DAG) const { 4388 // Handle insertions of floating-point values. 4389 SDLoc DL(Op); 4390 SDValue Op0 = Op.getOperand(0); 4391 SDValue Op1 = Op.getOperand(1); 4392 SDValue Op2 = Op.getOperand(2); 4393 EVT VT = Op.getValueType(); 4394 4395 // Insertions into constant indices of a v2f64 can be done using VPDI. 4396 // However, if the inserted value is a bitcast or a constant then it's 4397 // better to use GPRs, as below. 4398 if (VT == MVT::v2f64 && 4399 Op1.getOpcode() != ISD::BITCAST && 4400 Op1.getOpcode() != ISD::ConstantFP && 4401 Op2.getOpcode() == ISD::Constant) { 4402 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4403 unsigned Mask = VT.getVectorNumElements() - 1; 4404 if (Index <= Mask) 4405 return Op; 4406 } 4407 4408 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4409 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4410 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4411 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4412 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4413 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4414 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4415 } 4416 4417 SDValue 4418 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4419 SelectionDAG &DAG) const { 4420 // Handle extractions of floating-point values. 4421 SDLoc DL(Op); 4422 SDValue Op0 = Op.getOperand(0); 4423 SDValue Op1 = Op.getOperand(1); 4424 EVT VT = Op.getValueType(); 4425 EVT VecVT = Op0.getValueType(); 4426 4427 // Extractions of constant indices can be done directly. 4428 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4429 uint64_t Index = CIndexN->getZExtValue(); 4430 unsigned Mask = VecVT.getVectorNumElements() - 1; 4431 if (Index <= Mask) 4432 return Op; 4433 } 4434 4435 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4436 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4437 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4438 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4439 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4440 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4441 } 4442 4443 SDValue 4444 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4445 unsigned UnpackHigh) const { 4446 SDValue PackedOp = Op.getOperand(0); 4447 EVT OutVT = Op.getValueType(); 4448 EVT InVT = PackedOp.getValueType(); 4449 unsigned ToBits = OutVT.getScalarSizeInBits(); 4450 unsigned FromBits = InVT.getScalarSizeInBits(); 4451 do { 4452 FromBits *= 2; 4453 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4454 SystemZ::VectorBits / FromBits); 4455 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4456 } while (FromBits != ToBits); 4457 return PackedOp; 4458 } 4459 4460 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4461 unsigned ByScalar) const { 4462 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4463 SDValue Op0 = Op.getOperand(0); 4464 SDValue Op1 = Op.getOperand(1); 4465 SDLoc DL(Op); 4466 EVT VT = Op.getValueType(); 4467 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4468 4469 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4470 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4471 APInt SplatBits, SplatUndef; 4472 unsigned SplatBitSize; 4473 bool HasAnyUndefs; 4474 // Check for constant splats. Use ElemBitSize as the minimum element 4475 // width and reject splats that need wider elements. 4476 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4477 ElemBitSize, true) && 4478 SplatBitSize == ElemBitSize) { 4479 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4480 DL, MVT::i32); 4481 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4482 } 4483 // Check for variable splats. 4484 BitVector UndefElements; 4485 SDValue Splat = BVN->getSplatValue(&UndefElements); 4486 if (Splat) { 4487 // Since i32 is the smallest legal type, we either need a no-op 4488 // or a truncation. 4489 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4490 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4491 } 4492 } 4493 4494 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4495 // and the shift amount is directly available in a GPR. 4496 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4497 if (VSN->isSplat()) { 4498 SDValue VSNOp0 = VSN->getOperand(0); 4499 unsigned Index = VSN->getSplatIndex(); 4500 assert(Index < VT.getVectorNumElements() && 4501 "Splat index should be defined and in first operand"); 4502 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4503 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4504 // Since i32 is the smallest legal type, we either need a no-op 4505 // or a truncation. 4506 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4507 VSNOp0.getOperand(Index)); 4508 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4509 } 4510 } 4511 } 4512 4513 // Otherwise just treat the current form as legal. 4514 return Op; 4515 } 4516 4517 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4518 SelectionDAG &DAG) const { 4519 switch (Op.getOpcode()) { 4520 case ISD::FRAMEADDR: 4521 return lowerFRAMEADDR(Op, DAG); 4522 case ISD::RETURNADDR: 4523 return lowerRETURNADDR(Op, DAG); 4524 case ISD::BR_CC: 4525 return lowerBR_CC(Op, DAG); 4526 case ISD::SELECT_CC: 4527 return lowerSELECT_CC(Op, DAG); 4528 case ISD::SETCC: 4529 return lowerSETCC(Op, DAG); 4530 case ISD::GlobalAddress: 4531 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4532 case ISD::GlobalTLSAddress: 4533 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4534 case ISD::BlockAddress: 4535 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4536 case ISD::JumpTable: 4537 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4538 case ISD::ConstantPool: 4539 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4540 case ISD::BITCAST: 4541 return lowerBITCAST(Op, DAG); 4542 case ISD::VASTART: 4543 return lowerVASTART(Op, DAG); 4544 case ISD::VACOPY: 4545 return lowerVACOPY(Op, DAG); 4546 case ISD::DYNAMIC_STACKALLOC: 4547 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4548 case ISD::GET_DYNAMIC_AREA_OFFSET: 4549 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4550 case ISD::SMUL_LOHI: 4551 return lowerSMUL_LOHI(Op, DAG); 4552 case ISD::UMUL_LOHI: 4553 return lowerUMUL_LOHI(Op, DAG); 4554 case ISD::SDIVREM: 4555 return lowerSDIVREM(Op, DAG); 4556 case ISD::UDIVREM: 4557 return lowerUDIVREM(Op, DAG); 4558 case ISD::OR: 4559 return lowerOR(Op, DAG); 4560 case ISD::CTPOP: 4561 return lowerCTPOP(Op, DAG); 4562 case ISD::ATOMIC_FENCE: 4563 return lowerATOMIC_FENCE(Op, DAG); 4564 case ISD::ATOMIC_SWAP: 4565 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4566 case ISD::ATOMIC_STORE: 4567 return lowerATOMIC_STORE(Op, DAG); 4568 case ISD::ATOMIC_LOAD: 4569 return lowerATOMIC_LOAD(Op, DAG); 4570 case ISD::ATOMIC_LOAD_ADD: 4571 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4572 case ISD::ATOMIC_LOAD_SUB: 4573 return lowerATOMIC_LOAD_SUB(Op, DAG); 4574 case ISD::ATOMIC_LOAD_AND: 4575 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4576 case ISD::ATOMIC_LOAD_OR: 4577 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4578 case ISD::ATOMIC_LOAD_XOR: 4579 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4580 case ISD::ATOMIC_LOAD_NAND: 4581 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4582 case ISD::ATOMIC_LOAD_MIN: 4583 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4584 case ISD::ATOMIC_LOAD_MAX: 4585 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4586 case ISD::ATOMIC_LOAD_UMIN: 4587 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4588 case ISD::ATOMIC_LOAD_UMAX: 4589 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4590 case ISD::ATOMIC_CMP_SWAP: 4591 return lowerATOMIC_CMP_SWAP(Op, DAG); 4592 case ISD::STACKSAVE: 4593 return lowerSTACKSAVE(Op, DAG); 4594 case ISD::STACKRESTORE: 4595 return lowerSTACKRESTORE(Op, DAG); 4596 case ISD::PREFETCH: 4597 return lowerPREFETCH(Op, DAG); 4598 case ISD::INTRINSIC_W_CHAIN: 4599 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4600 case ISD::INTRINSIC_WO_CHAIN: 4601 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4602 case ISD::BUILD_VECTOR: 4603 return lowerBUILD_VECTOR(Op, DAG); 4604 case ISD::VECTOR_SHUFFLE: 4605 return lowerVECTOR_SHUFFLE(Op, DAG); 4606 case ISD::SCALAR_TO_VECTOR: 4607 return lowerSCALAR_TO_VECTOR(Op, DAG); 4608 case ISD::INSERT_VECTOR_ELT: 4609 return lowerINSERT_VECTOR_ELT(Op, DAG); 4610 case ISD::EXTRACT_VECTOR_ELT: 4611 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4612 case ISD::SIGN_EXTEND_VECTOR_INREG: 4613 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4614 case ISD::ZERO_EXTEND_VECTOR_INREG: 4615 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4616 case ISD::SHL: 4617 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4618 case ISD::SRL: 4619 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4620 case ISD::SRA: 4621 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4622 default: 4623 llvm_unreachable("Unexpected node to lower"); 4624 } 4625 } 4626 4627 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4628 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4629 switch ((SystemZISD::NodeType)Opcode) { 4630 case SystemZISD::FIRST_NUMBER: break; 4631 OPCODE(RET_FLAG); 4632 OPCODE(CALL); 4633 OPCODE(SIBCALL); 4634 OPCODE(TLS_GDCALL); 4635 OPCODE(TLS_LDCALL); 4636 OPCODE(PCREL_WRAPPER); 4637 OPCODE(PCREL_OFFSET); 4638 OPCODE(IABS); 4639 OPCODE(ICMP); 4640 OPCODE(FCMP); 4641 OPCODE(TM); 4642 OPCODE(BR_CCMASK); 4643 OPCODE(SELECT_CCMASK); 4644 OPCODE(ADJDYNALLOC); 4645 OPCODE(POPCNT); 4646 OPCODE(UMUL_LOHI64); 4647 OPCODE(SDIVREM32); 4648 OPCODE(SDIVREM64); 4649 OPCODE(UDIVREM32); 4650 OPCODE(UDIVREM64); 4651 OPCODE(MVC); 4652 OPCODE(MVC_LOOP); 4653 OPCODE(NC); 4654 OPCODE(NC_LOOP); 4655 OPCODE(OC); 4656 OPCODE(OC_LOOP); 4657 OPCODE(XC); 4658 OPCODE(XC_LOOP); 4659 OPCODE(CLC); 4660 OPCODE(CLC_LOOP); 4661 OPCODE(STPCPY); 4662 OPCODE(STRCMP); 4663 OPCODE(SEARCH_STRING); 4664 OPCODE(IPM); 4665 OPCODE(SERIALIZE); 4666 OPCODE(MEMBARRIER); 4667 OPCODE(TBEGIN); 4668 OPCODE(TBEGIN_NOFLOAT); 4669 OPCODE(TEND); 4670 OPCODE(BYTE_MASK); 4671 OPCODE(ROTATE_MASK); 4672 OPCODE(REPLICATE); 4673 OPCODE(JOIN_DWORDS); 4674 OPCODE(SPLAT); 4675 OPCODE(MERGE_HIGH); 4676 OPCODE(MERGE_LOW); 4677 OPCODE(SHL_DOUBLE); 4678 OPCODE(PERMUTE_DWORDS); 4679 OPCODE(PERMUTE); 4680 OPCODE(PACK); 4681 OPCODE(PACKS_CC); 4682 OPCODE(PACKLS_CC); 4683 OPCODE(UNPACK_HIGH); 4684 OPCODE(UNPACKL_HIGH); 4685 OPCODE(UNPACK_LOW); 4686 OPCODE(UNPACKL_LOW); 4687 OPCODE(VSHL_BY_SCALAR); 4688 OPCODE(VSRL_BY_SCALAR); 4689 OPCODE(VSRA_BY_SCALAR); 4690 OPCODE(VSUM); 4691 OPCODE(VICMPE); 4692 OPCODE(VICMPH); 4693 OPCODE(VICMPHL); 4694 OPCODE(VICMPES); 4695 OPCODE(VICMPHS); 4696 OPCODE(VICMPHLS); 4697 OPCODE(VFCMPE); 4698 OPCODE(VFCMPH); 4699 OPCODE(VFCMPHE); 4700 OPCODE(VFCMPES); 4701 OPCODE(VFCMPHS); 4702 OPCODE(VFCMPHES); 4703 OPCODE(VFTCI); 4704 OPCODE(VEXTEND); 4705 OPCODE(VROUND); 4706 OPCODE(VTM); 4707 OPCODE(VFAE_CC); 4708 OPCODE(VFAEZ_CC); 4709 OPCODE(VFEE_CC); 4710 OPCODE(VFEEZ_CC); 4711 OPCODE(VFENE_CC); 4712 OPCODE(VFENEZ_CC); 4713 OPCODE(VISTR_CC); 4714 OPCODE(VSTRC_CC); 4715 OPCODE(VSTRCZ_CC); 4716 OPCODE(TDC); 4717 OPCODE(ATOMIC_SWAPW); 4718 OPCODE(ATOMIC_LOADW_ADD); 4719 OPCODE(ATOMIC_LOADW_SUB); 4720 OPCODE(ATOMIC_LOADW_AND); 4721 OPCODE(ATOMIC_LOADW_OR); 4722 OPCODE(ATOMIC_LOADW_XOR); 4723 OPCODE(ATOMIC_LOADW_NAND); 4724 OPCODE(ATOMIC_LOADW_MIN); 4725 OPCODE(ATOMIC_LOADW_MAX); 4726 OPCODE(ATOMIC_LOADW_UMIN); 4727 OPCODE(ATOMIC_LOADW_UMAX); 4728 OPCODE(ATOMIC_CMP_SWAPW); 4729 OPCODE(LRV); 4730 OPCODE(STRV); 4731 OPCODE(PREFETCH); 4732 } 4733 return nullptr; 4734 #undef OPCODE 4735 } 4736 4737 // Return true if VT is a vector whose elements are a whole number of bytes 4738 // in width. 4739 static bool canTreatAsByteVector(EVT VT) { 4740 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0; 4741 } 4742 4743 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4744 // producing a result of type ResVT. Op is a possibly bitcast version 4745 // of the input vector and Index is the index (based on type VecVT) that 4746 // should be extracted. Return the new extraction if a simplification 4747 // was possible or if Force is true. 4748 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 4749 EVT VecVT, SDValue Op, 4750 unsigned Index, 4751 DAGCombinerInfo &DCI, 4752 bool Force) const { 4753 SelectionDAG &DAG = DCI.DAG; 4754 4755 // The number of bytes being extracted. 4756 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4757 4758 for (;;) { 4759 unsigned Opcode = Op.getOpcode(); 4760 if (Opcode == ISD::BITCAST) 4761 // Look through bitcasts. 4762 Op = Op.getOperand(0); 4763 else if (Opcode == ISD::VECTOR_SHUFFLE && 4764 canTreatAsByteVector(Op.getValueType())) { 4765 // Get a VPERM-like permute mask and see whether the bytes covered 4766 // by the extracted element are a contiguous sequence from one 4767 // source operand. 4768 SmallVector<int, SystemZ::VectorBytes> Bytes; 4769 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4770 int First; 4771 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4772 BytesPerElement, First)) 4773 break; 4774 if (First < 0) 4775 return DAG.getUNDEF(ResVT); 4776 // Make sure the contiguous sequence starts at a multiple of the 4777 // original element size. 4778 unsigned Byte = unsigned(First) % Bytes.size(); 4779 if (Byte % BytesPerElement != 0) 4780 break; 4781 // We can get the extracted value directly from an input. 4782 Index = Byte / BytesPerElement; 4783 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4784 Force = true; 4785 } else if (Opcode == ISD::BUILD_VECTOR && 4786 canTreatAsByteVector(Op.getValueType())) { 4787 // We can only optimize this case if the BUILD_VECTOR elements are 4788 // at least as wide as the extracted value. 4789 EVT OpVT = Op.getValueType(); 4790 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4791 if (OpBytesPerElement < BytesPerElement) 4792 break; 4793 // Make sure that the least-significant bit of the extracted value 4794 // is the least significant bit of an input. 4795 unsigned End = (Index + 1) * BytesPerElement; 4796 if (End % OpBytesPerElement != 0) 4797 break; 4798 // We're extracting the low part of one operand of the BUILD_VECTOR. 4799 Op = Op.getOperand(End / OpBytesPerElement - 1); 4800 if (!Op.getValueType().isInteger()) { 4801 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 4802 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4803 DCI.AddToWorklist(Op.getNode()); 4804 } 4805 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4806 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4807 if (VT != ResVT) { 4808 DCI.AddToWorklist(Op.getNode()); 4809 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4810 } 4811 return Op; 4812 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4813 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4814 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4815 canTreatAsByteVector(Op.getValueType()) && 4816 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4817 // Make sure that only the unextended bits are significant. 4818 EVT ExtVT = Op.getValueType(); 4819 EVT OpVT = Op.getOperand(0).getValueType(); 4820 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4821 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4822 unsigned Byte = Index * BytesPerElement; 4823 unsigned SubByte = Byte % ExtBytesPerElement; 4824 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4825 if (SubByte < MinSubByte || 4826 SubByte + BytesPerElement > ExtBytesPerElement) 4827 break; 4828 // Get the byte offset of the unextended element 4829 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4830 // ...then add the byte offset relative to that element. 4831 Byte += SubByte - MinSubByte; 4832 if (Byte % BytesPerElement != 0) 4833 break; 4834 Op = Op.getOperand(0); 4835 Index = Byte / BytesPerElement; 4836 Force = true; 4837 } else 4838 break; 4839 } 4840 if (Force) { 4841 if (Op.getValueType() != VecVT) { 4842 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4843 DCI.AddToWorklist(Op.getNode()); 4844 } 4845 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4846 DAG.getConstant(Index, DL, MVT::i32)); 4847 } 4848 return SDValue(); 4849 } 4850 4851 // Optimize vector operations in scalar value Op on the basis that Op 4852 // is truncated to TruncVT. 4853 SDValue SystemZTargetLowering::combineTruncateExtract( 4854 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 4855 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4856 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4857 // of type TruncVT. 4858 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4859 TruncVT.getSizeInBits() % 8 == 0) { 4860 SDValue Vec = Op.getOperand(0); 4861 EVT VecVT = Vec.getValueType(); 4862 if (canTreatAsByteVector(VecVT)) { 4863 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4864 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4865 unsigned TruncBytes = TruncVT.getStoreSize(); 4866 if (BytesPerElement % TruncBytes == 0) { 4867 // Calculate the value of Y' in the above description. We are 4868 // splitting the original elements into Scale equal-sized pieces 4869 // and for truncation purposes want the last (least-significant) 4870 // of these pieces for IndexN. This is easiest to do by calculating 4871 // the start index of the following element and then subtracting 1. 4872 unsigned Scale = BytesPerElement / TruncBytes; 4873 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4874 4875 // Defer the creation of the bitcast from X to combineExtract, 4876 // which might be able to optimize the extraction. 4877 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4878 VecVT.getStoreSize() / TruncBytes); 4879 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4880 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4881 } 4882 } 4883 } 4884 } 4885 return SDValue(); 4886 } 4887 4888 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 4889 SDNode *N, DAGCombinerInfo &DCI) const { 4890 // Convert (sext (ashr (shl X, C1), C2)) to 4891 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4892 // cheap as narrower ones. 4893 SelectionDAG &DAG = DCI.DAG; 4894 SDValue N0 = N->getOperand(0); 4895 EVT VT = N->getValueType(0); 4896 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4897 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4898 SDValue Inner = N0.getOperand(0); 4899 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4900 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4901 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 4902 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4903 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4904 EVT ShiftVT = N0.getOperand(1).getValueType(); 4905 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4906 Inner.getOperand(0)); 4907 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4908 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4909 ShiftVT)); 4910 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4911 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4912 } 4913 } 4914 } 4915 return SDValue(); 4916 } 4917 4918 SDValue SystemZTargetLowering::combineMERGE( 4919 SDNode *N, DAGCombinerInfo &DCI) const { 4920 SelectionDAG &DAG = DCI.DAG; 4921 unsigned Opcode = N->getOpcode(); 4922 SDValue Op0 = N->getOperand(0); 4923 SDValue Op1 = N->getOperand(1); 4924 if (Op0.getOpcode() == ISD::BITCAST) 4925 Op0 = Op0.getOperand(0); 4926 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4927 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4928 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4929 // for v4f32. 4930 if (Op1 == N->getOperand(0)) 4931 return Op1; 4932 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4933 EVT VT = Op1.getValueType(); 4934 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4935 if (ElemBytes <= 4) { 4936 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4937 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4938 EVT InVT = VT.changeVectorElementTypeToInteger(); 4939 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4940 SystemZ::VectorBytes / ElemBytes / 2); 4941 if (VT != InVT) { 4942 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4943 DCI.AddToWorklist(Op1.getNode()); 4944 } 4945 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4946 DCI.AddToWorklist(Op.getNode()); 4947 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4948 } 4949 } 4950 return SDValue(); 4951 } 4952 4953 SDValue SystemZTargetLowering::combineSTORE( 4954 SDNode *N, DAGCombinerInfo &DCI) const { 4955 SelectionDAG &DAG = DCI.DAG; 4956 auto *SN = cast<StoreSDNode>(N); 4957 auto &Op1 = N->getOperand(1); 4958 EVT MemVT = SN->getMemoryVT(); 4959 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4960 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4961 // If X has wider elements then convert it to: 4962 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4963 if (MemVT.isInteger()) { 4964 if (SDValue Value = 4965 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4966 DCI.AddToWorklist(Value.getNode()); 4967 4968 // Rewrite the store with the new form of stored value. 4969 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4970 SN->getBasePtr(), SN->getMemoryVT(), 4971 SN->getMemOperand()); 4972 } 4973 } 4974 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 4975 // See comment in combineBSWAP about volatile accesses. 4976 if (!SN->isVolatile() && 4977 Op1.getOpcode() == ISD::BSWAP && 4978 Op1.getNode()->hasOneUse() && 4979 (Op1.getValueType() == MVT::i16 || 4980 Op1.getValueType() == MVT::i32 || 4981 Op1.getValueType() == MVT::i64)) { 4982 4983 SDValue BSwapOp = Op1.getOperand(0); 4984 4985 if (BSwapOp.getValueType() == MVT::i16) 4986 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 4987 4988 SDValue Ops[] = { 4989 N->getOperand(0), BSwapOp, N->getOperand(2), 4990 DAG.getValueType(Op1.getValueType()) 4991 }; 4992 4993 return 4994 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 4995 Ops, MemVT, SN->getMemOperand()); 4996 } 4997 return SDValue(); 4998 } 4999 5000 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5001 SDNode *N, DAGCombinerInfo &DCI) const { 5002 // Try to simplify a vector extraction. 5003 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5004 SDValue Op0 = N->getOperand(0); 5005 EVT VecVT = Op0.getValueType(); 5006 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5007 IndexN->getZExtValue(), DCI, false); 5008 } 5009 return SDValue(); 5010 } 5011 5012 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5013 SDNode *N, DAGCombinerInfo &DCI) const { 5014 SelectionDAG &DAG = DCI.DAG; 5015 // (join_dwords X, X) == (replicate X) 5016 if (N->getOperand(0) == N->getOperand(1)) 5017 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5018 N->getOperand(0)); 5019 return SDValue(); 5020 } 5021 5022 SDValue SystemZTargetLowering::combineFP_ROUND( 5023 SDNode *N, DAGCombinerInfo &DCI) const { 5024 // (fpround (extract_vector_elt X 0)) 5025 // (fpround (extract_vector_elt X 1)) -> 5026 // (extract_vector_elt (VROUND X) 0) 5027 // (extract_vector_elt (VROUND X) 1) 5028 // 5029 // This is a special case since the target doesn't really support v2f32s. 5030 SelectionDAG &DAG = DCI.DAG; 5031 SDValue Op0 = N->getOperand(0); 5032 if (N->getValueType(0) == MVT::f32 && 5033 Op0.hasOneUse() && 5034 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5035 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5036 Op0.getOperand(1).getOpcode() == ISD::Constant && 5037 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5038 SDValue Vec = Op0.getOperand(0); 5039 for (auto *U : Vec->uses()) { 5040 if (U != Op0.getNode() && 5041 U->hasOneUse() && 5042 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5043 U->getOperand(0) == Vec && 5044 U->getOperand(1).getOpcode() == ISD::Constant && 5045 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5046 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5047 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5048 OtherRound.getOperand(0) == SDValue(U, 0) && 5049 OtherRound.getValueType() == MVT::f32) { 5050 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5051 MVT::v4f32, Vec); 5052 DCI.AddToWorklist(VRound.getNode()); 5053 SDValue Extract1 = 5054 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5055 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5056 DCI.AddToWorklist(Extract1.getNode()); 5057 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5058 SDValue Extract0 = 5059 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5060 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5061 return Extract0; 5062 } 5063 } 5064 } 5065 } 5066 return SDValue(); 5067 } 5068 5069 SDValue SystemZTargetLowering::combineBSWAP( 5070 SDNode *N, DAGCombinerInfo &DCI) const { 5071 SelectionDAG &DAG = DCI.DAG; 5072 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5073 // These loads are allowed to access memory multiple times, and so we must check 5074 // that the loads are not volatile before performing the combine. 5075 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5076 N->getOperand(0).hasOneUse() && 5077 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5078 N->getValueType(0) == MVT::i64) && 5079 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) { 5080 SDValue Load = N->getOperand(0); 5081 LoadSDNode *LD = cast<LoadSDNode>(Load); 5082 5083 // Create the byte-swapping load. 5084 SDValue Ops[] = { 5085 LD->getChain(), // Chain 5086 LD->getBasePtr(), // Ptr 5087 DAG.getValueType(N->getValueType(0)) // VT 5088 }; 5089 SDValue BSLoad = 5090 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5091 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5092 MVT::i64 : MVT::i32, MVT::Other), 5093 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5094 5095 // If this is an i16 load, insert the truncate. 5096 SDValue ResVal = BSLoad; 5097 if (N->getValueType(0) == MVT::i16) 5098 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5099 5100 // First, combine the bswap away. This makes the value produced by the 5101 // load dead. 5102 DCI.CombineTo(N, ResVal); 5103 5104 // Next, combine the load away, we give it a bogus result value but a real 5105 // chain result. The result value is dead because the bswap is dead. 5106 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5107 5108 // Return N so it doesn't get rechecked! 5109 return SDValue(N, 0); 5110 } 5111 return SDValue(); 5112 } 5113 5114 SDValue SystemZTargetLowering::combineSHIFTROT( 5115 SDNode *N, DAGCombinerInfo &DCI) const { 5116 5117 SelectionDAG &DAG = DCI.DAG; 5118 5119 // Shift/rotate instructions only use the last 6 bits of the second operand 5120 // register. If the second operand is the result of an AND with an immediate 5121 // value that has its last 6 bits set, we can safely remove the AND operation. 5122 // 5123 // If the AND operation doesn't have the last 6 bits set, we can't remove it 5124 // entirely, but we can still truncate it to a 16-bit value. This prevents 5125 // us from ending up with a NILL with a signed operand, which will cause the 5126 // instruction printer to abort. 5127 SDValue N1 = N->getOperand(1); 5128 if (N1.getOpcode() == ISD::AND) { 5129 SDValue AndMaskOp = N1->getOperand(1); 5130 auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp); 5131 5132 // The AND mask is constant 5133 if (AndMask) { 5134 auto AmtVal = AndMask->getZExtValue(); 5135 5136 // Bottom 6 bits are set 5137 if ((AmtVal & 0x3f) == 0x3f) { 5138 SDValue AndOp = N1->getOperand(0); 5139 5140 // This is the only use, so remove the node 5141 if (N1.hasOneUse()) { 5142 // Combine the AND away 5143 DCI.CombineTo(N1.getNode(), AndOp); 5144 5145 // Return N so it isn't rechecked 5146 return SDValue(N, 0); 5147 5148 // The node will be reused, so create a new node for this one use 5149 } else { 5150 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5151 N->getValueType(0), N->getOperand(0), 5152 AndOp); 5153 DCI.AddToWorklist(Replace.getNode()); 5154 5155 return Replace; 5156 } 5157 5158 // We can't remove the AND, but we can use NILL here (normally we would 5159 // use NILF). Only keep the last 16 bits of the mask. The actual 5160 // transformation will be handled by .td definitions. 5161 } else if (AmtVal >> 16 != 0) { 5162 SDValue AndOp = N1->getOperand(0); 5163 5164 auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff, 5165 SDLoc(AndMaskOp), 5166 AndMaskOp.getValueType()); 5167 5168 auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(), 5169 AndOp, NewMask); 5170 5171 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5172 N->getValueType(0), N->getOperand(0), 5173 NewAnd); 5174 DCI.AddToWorklist(Replace.getNode()); 5175 5176 return Replace; 5177 } 5178 } 5179 } 5180 5181 return SDValue(); 5182 } 5183 5184 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5185 DAGCombinerInfo &DCI) const { 5186 switch(N->getOpcode()) { 5187 default: break; 5188 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5189 case SystemZISD::MERGE_HIGH: 5190 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5191 case ISD::STORE: return combineSTORE(N, DCI); 5192 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5193 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5194 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5195 case ISD::BSWAP: return combineBSWAP(N, DCI); 5196 case ISD::SHL: 5197 case ISD::SRA: 5198 case ISD::SRL: 5199 case ISD::ROTL: return combineSHIFTROT(N, DCI); 5200 } 5201 5202 return SDValue(); 5203 } 5204 5205 //===----------------------------------------------------------------------===// 5206 // Custom insertion 5207 //===----------------------------------------------------------------------===// 5208 5209 // Create a new basic block after MBB. 5210 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5211 MachineFunction &MF = *MBB->getParent(); 5212 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5213 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5214 return NewMBB; 5215 } 5216 5217 // Split MBB after MI and return the new block (the one that contains 5218 // instructions after MI). 5219 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 5220 MachineBasicBlock *MBB) { 5221 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5222 NewMBB->splice(NewMBB->begin(), MBB, 5223 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5224 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5225 return NewMBB; 5226 } 5227 5228 // Split MBB before MI and return the new block (the one that contains MI). 5229 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 5230 MachineBasicBlock *MBB) { 5231 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5232 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 5233 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5234 return NewMBB; 5235 } 5236 5237 // Force base value Base into a register before MI. Return the register. 5238 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 5239 const SystemZInstrInfo *TII) { 5240 if (Base.isReg()) 5241 return Base.getReg(); 5242 5243 MachineBasicBlock *MBB = MI.getParent(); 5244 MachineFunction &MF = *MBB->getParent(); 5245 MachineRegisterInfo &MRI = MF.getRegInfo(); 5246 5247 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5248 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 5249 .add(Base) 5250 .addImm(0) 5251 .addReg(0); 5252 return Reg; 5253 } 5254 5255 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 5256 MachineBasicBlock * 5257 SystemZTargetLowering::emitSelect(MachineInstr &MI, 5258 MachineBasicBlock *MBB, 5259 unsigned LOCROpcode) const { 5260 const SystemZInstrInfo *TII = 5261 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5262 5263 unsigned DestReg = MI.getOperand(0).getReg(); 5264 unsigned TrueReg = MI.getOperand(1).getReg(); 5265 unsigned FalseReg = MI.getOperand(2).getReg(); 5266 unsigned CCValid = MI.getOperand(3).getImm(); 5267 unsigned CCMask = MI.getOperand(4).getImm(); 5268 DebugLoc DL = MI.getDebugLoc(); 5269 5270 // Use LOCROpcode if possible. 5271 if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) { 5272 BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg) 5273 .addReg(FalseReg).addReg(TrueReg) 5274 .addImm(CCValid).addImm(CCMask); 5275 MI.eraseFromParent(); 5276 return MBB; 5277 } 5278 5279 MachineBasicBlock *StartMBB = MBB; 5280 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5281 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5282 5283 // StartMBB: 5284 // BRC CCMask, JoinMBB 5285 // # fallthrough to FalseMBB 5286 MBB = StartMBB; 5287 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5288 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5289 MBB->addSuccessor(JoinMBB); 5290 MBB->addSuccessor(FalseMBB); 5291 5292 // FalseMBB: 5293 // # fallthrough to JoinMBB 5294 MBB = FalseMBB; 5295 MBB->addSuccessor(JoinMBB); 5296 5297 // JoinMBB: 5298 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5299 // ... 5300 MBB = JoinMBB; 5301 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5302 .addReg(TrueReg).addMBB(StartMBB) 5303 .addReg(FalseReg).addMBB(FalseMBB); 5304 5305 MI.eraseFromParent(); 5306 return JoinMBB; 5307 } 5308 5309 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5310 // StoreOpcode is the store to use and Invert says whether the store should 5311 // happen when the condition is false rather than true. If a STORE ON 5312 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5313 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 5314 MachineBasicBlock *MBB, 5315 unsigned StoreOpcode, 5316 unsigned STOCOpcode, 5317 bool Invert) const { 5318 const SystemZInstrInfo *TII = 5319 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5320 5321 unsigned SrcReg = MI.getOperand(0).getReg(); 5322 MachineOperand Base = MI.getOperand(1); 5323 int64_t Disp = MI.getOperand(2).getImm(); 5324 unsigned IndexReg = MI.getOperand(3).getReg(); 5325 unsigned CCValid = MI.getOperand(4).getImm(); 5326 unsigned CCMask = MI.getOperand(5).getImm(); 5327 DebugLoc DL = MI.getDebugLoc(); 5328 5329 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5330 5331 // Use STOCOpcode if possible. We could use different store patterns in 5332 // order to avoid matching the index register, but the performance trade-offs 5333 // might be more complicated in that case. 5334 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5335 if (Invert) 5336 CCMask ^= CCValid; 5337 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5338 .addReg(SrcReg) 5339 .add(Base) 5340 .addImm(Disp) 5341 .addImm(CCValid) 5342 .addImm(CCMask); 5343 MI.eraseFromParent(); 5344 return MBB; 5345 } 5346 5347 // Get the condition needed to branch around the store. 5348 if (!Invert) 5349 CCMask ^= CCValid; 5350 5351 MachineBasicBlock *StartMBB = MBB; 5352 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5353 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5354 5355 // StartMBB: 5356 // BRC CCMask, JoinMBB 5357 // # fallthrough to FalseMBB 5358 MBB = StartMBB; 5359 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5360 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5361 MBB->addSuccessor(JoinMBB); 5362 MBB->addSuccessor(FalseMBB); 5363 5364 // FalseMBB: 5365 // store %SrcReg, %Disp(%Index,%Base) 5366 // # fallthrough to JoinMBB 5367 MBB = FalseMBB; 5368 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5369 .addReg(SrcReg) 5370 .add(Base) 5371 .addImm(Disp) 5372 .addReg(IndexReg); 5373 MBB->addSuccessor(JoinMBB); 5374 5375 MI.eraseFromParent(); 5376 return JoinMBB; 5377 } 5378 5379 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5380 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5381 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5382 // BitSize is the width of the field in bits, or 0 if this is a partword 5383 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5384 // is one of the operands. Invert says whether the field should be 5385 // inverted after performing BinOpcode (e.g. for NAND). 5386 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 5387 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 5388 unsigned BitSize, bool Invert) const { 5389 MachineFunction &MF = *MBB->getParent(); 5390 const SystemZInstrInfo *TII = 5391 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5392 MachineRegisterInfo &MRI = MF.getRegInfo(); 5393 bool IsSubWord = (BitSize < 32); 5394 5395 // Extract the operands. Base can be a register or a frame index. 5396 // Src2 can be a register or immediate. 5397 unsigned Dest = MI.getOperand(0).getReg(); 5398 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5399 int64_t Disp = MI.getOperand(2).getImm(); 5400 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 5401 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5402 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5403 DebugLoc DL = MI.getDebugLoc(); 5404 if (IsSubWord) 5405 BitSize = MI.getOperand(6).getImm(); 5406 5407 // Subword operations use 32-bit registers. 5408 const TargetRegisterClass *RC = (BitSize <= 32 ? 5409 &SystemZ::GR32BitRegClass : 5410 &SystemZ::GR64BitRegClass); 5411 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5412 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5413 5414 // Get the right opcodes for the displacement. 5415 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5416 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5417 assert(LOpcode && CSOpcode && "Displacement out of range"); 5418 5419 // Create virtual registers for temporary results. 5420 unsigned OrigVal = MRI.createVirtualRegister(RC); 5421 unsigned OldVal = MRI.createVirtualRegister(RC); 5422 unsigned NewVal = (BinOpcode || IsSubWord ? 5423 MRI.createVirtualRegister(RC) : Src2.getReg()); 5424 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5425 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5426 5427 // Insert a basic block for the main loop. 5428 MachineBasicBlock *StartMBB = MBB; 5429 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5430 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5431 5432 // StartMBB: 5433 // ... 5434 // %OrigVal = L Disp(%Base) 5435 // # fall through to LoopMMB 5436 MBB = StartMBB; 5437 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5438 MBB->addSuccessor(LoopMBB); 5439 5440 // LoopMBB: 5441 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5442 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5443 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5444 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5445 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5446 // JNE LoopMBB 5447 // # fall through to DoneMMB 5448 MBB = LoopMBB; 5449 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5450 .addReg(OrigVal).addMBB(StartMBB) 5451 .addReg(Dest).addMBB(LoopMBB); 5452 if (IsSubWord) 5453 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5454 .addReg(OldVal).addReg(BitShift).addImm(0); 5455 if (Invert) { 5456 // Perform the operation normally and then invert every bit of the field. 5457 unsigned Tmp = MRI.createVirtualRegister(RC); 5458 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 5459 if (BitSize <= 32) 5460 // XILF with the upper BitSize bits set. 5461 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5462 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5463 else { 5464 // Use LCGR and add -1 to the result, which is more compact than 5465 // an XILF, XILH pair. 5466 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5467 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5468 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5469 .addReg(Tmp2).addImm(-1); 5470 } 5471 } else if (BinOpcode) 5472 // A simply binary operation. 5473 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5474 .addReg(RotatedOldVal) 5475 .add(Src2); 5476 else if (IsSubWord) 5477 // Use RISBG to rotate Src2 into position and use it to replace the 5478 // field in RotatedOldVal. 5479 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5480 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5481 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5482 if (IsSubWord) 5483 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5484 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5485 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5486 .addReg(OldVal) 5487 .addReg(NewVal) 5488 .add(Base) 5489 .addImm(Disp); 5490 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5491 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5492 MBB->addSuccessor(LoopMBB); 5493 MBB->addSuccessor(DoneMBB); 5494 5495 MI.eraseFromParent(); 5496 return DoneMBB; 5497 } 5498 5499 // Implement EmitInstrWithCustomInserter for pseudo 5500 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5501 // instruction that should be used to compare the current field with the 5502 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5503 // for when the current field should be kept. BitSize is the width of 5504 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5505 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 5506 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 5507 unsigned KeepOldMask, unsigned BitSize) const { 5508 MachineFunction &MF = *MBB->getParent(); 5509 const SystemZInstrInfo *TII = 5510 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5511 MachineRegisterInfo &MRI = MF.getRegInfo(); 5512 bool IsSubWord = (BitSize < 32); 5513 5514 // Extract the operands. Base can be a register or a frame index. 5515 unsigned Dest = MI.getOperand(0).getReg(); 5516 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5517 int64_t Disp = MI.getOperand(2).getImm(); 5518 unsigned Src2 = MI.getOperand(3).getReg(); 5519 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5520 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5521 DebugLoc DL = MI.getDebugLoc(); 5522 if (IsSubWord) 5523 BitSize = MI.getOperand(6).getImm(); 5524 5525 // Subword operations use 32-bit registers. 5526 const TargetRegisterClass *RC = (BitSize <= 32 ? 5527 &SystemZ::GR32BitRegClass : 5528 &SystemZ::GR64BitRegClass); 5529 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5530 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5531 5532 // Get the right opcodes for the displacement. 5533 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5534 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5535 assert(LOpcode && CSOpcode && "Displacement out of range"); 5536 5537 // Create virtual registers for temporary results. 5538 unsigned OrigVal = MRI.createVirtualRegister(RC); 5539 unsigned OldVal = MRI.createVirtualRegister(RC); 5540 unsigned NewVal = MRI.createVirtualRegister(RC); 5541 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5542 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5543 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5544 5545 // Insert 3 basic blocks for the loop. 5546 MachineBasicBlock *StartMBB = MBB; 5547 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5548 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5549 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5550 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5551 5552 // StartMBB: 5553 // ... 5554 // %OrigVal = L Disp(%Base) 5555 // # fall through to LoopMMB 5556 MBB = StartMBB; 5557 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5558 MBB->addSuccessor(LoopMBB); 5559 5560 // LoopMBB: 5561 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5562 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5563 // CompareOpcode %RotatedOldVal, %Src2 5564 // BRC KeepOldMask, UpdateMBB 5565 MBB = LoopMBB; 5566 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5567 .addReg(OrigVal).addMBB(StartMBB) 5568 .addReg(Dest).addMBB(UpdateMBB); 5569 if (IsSubWord) 5570 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5571 .addReg(OldVal).addReg(BitShift).addImm(0); 5572 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5573 .addReg(RotatedOldVal).addReg(Src2); 5574 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5575 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5576 MBB->addSuccessor(UpdateMBB); 5577 MBB->addSuccessor(UseAltMBB); 5578 5579 // UseAltMBB: 5580 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5581 // # fall through to UpdateMMB 5582 MBB = UseAltMBB; 5583 if (IsSubWord) 5584 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5585 .addReg(RotatedOldVal).addReg(Src2) 5586 .addImm(32).addImm(31 + BitSize).addImm(0); 5587 MBB->addSuccessor(UpdateMBB); 5588 5589 // UpdateMBB: 5590 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5591 // [ %RotatedAltVal, UseAltMBB ] 5592 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5593 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5594 // JNE LoopMBB 5595 // # fall through to DoneMMB 5596 MBB = UpdateMBB; 5597 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5598 .addReg(RotatedOldVal).addMBB(LoopMBB) 5599 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5600 if (IsSubWord) 5601 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5602 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5603 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5604 .addReg(OldVal) 5605 .addReg(NewVal) 5606 .add(Base) 5607 .addImm(Disp); 5608 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5609 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5610 MBB->addSuccessor(LoopMBB); 5611 MBB->addSuccessor(DoneMBB); 5612 5613 MI.eraseFromParent(); 5614 return DoneMBB; 5615 } 5616 5617 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5618 // instruction MI. 5619 MachineBasicBlock * 5620 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 5621 MachineBasicBlock *MBB) const { 5622 5623 MachineFunction &MF = *MBB->getParent(); 5624 const SystemZInstrInfo *TII = 5625 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5626 MachineRegisterInfo &MRI = MF.getRegInfo(); 5627 5628 // Extract the operands. Base can be a register or a frame index. 5629 unsigned Dest = MI.getOperand(0).getReg(); 5630 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5631 int64_t Disp = MI.getOperand(2).getImm(); 5632 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 5633 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 5634 unsigned BitShift = MI.getOperand(5).getReg(); 5635 unsigned NegBitShift = MI.getOperand(6).getReg(); 5636 int64_t BitSize = MI.getOperand(7).getImm(); 5637 DebugLoc DL = MI.getDebugLoc(); 5638 5639 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5640 5641 // Get the right opcodes for the displacement. 5642 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5643 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5644 assert(LOpcode && CSOpcode && "Displacement out of range"); 5645 5646 // Create virtual registers for temporary results. 5647 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5648 unsigned OldVal = MRI.createVirtualRegister(RC); 5649 unsigned CmpVal = MRI.createVirtualRegister(RC); 5650 unsigned SwapVal = MRI.createVirtualRegister(RC); 5651 unsigned StoreVal = MRI.createVirtualRegister(RC); 5652 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5653 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5654 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5655 5656 // Insert 2 basic blocks for the loop. 5657 MachineBasicBlock *StartMBB = MBB; 5658 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5659 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5660 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5661 5662 // StartMBB: 5663 // ... 5664 // %OrigOldVal = L Disp(%Base) 5665 // # fall through to LoopMMB 5666 MBB = StartMBB; 5667 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5668 .add(Base) 5669 .addImm(Disp) 5670 .addReg(0); 5671 MBB->addSuccessor(LoopMBB); 5672 5673 // LoopMBB: 5674 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5675 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5676 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5677 // %Dest = RLL %OldVal, BitSize(%BitShift) 5678 // ^^ The low BitSize bits contain the field 5679 // of interest. 5680 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5681 // ^^ Replace the upper 32-BitSize bits of the 5682 // comparison value with those that we loaded, 5683 // so that we can use a full word comparison. 5684 // CR %Dest, %RetryCmpVal 5685 // JNE DoneMBB 5686 // # Fall through to SetMBB 5687 MBB = LoopMBB; 5688 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5689 .addReg(OrigOldVal).addMBB(StartMBB) 5690 .addReg(RetryOldVal).addMBB(SetMBB); 5691 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5692 .addReg(OrigCmpVal).addMBB(StartMBB) 5693 .addReg(RetryCmpVal).addMBB(SetMBB); 5694 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5695 .addReg(OrigSwapVal).addMBB(StartMBB) 5696 .addReg(RetrySwapVal).addMBB(SetMBB); 5697 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5698 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5699 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5700 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5701 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5702 .addReg(Dest).addReg(RetryCmpVal); 5703 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5704 .addImm(SystemZ::CCMASK_ICMP) 5705 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5706 MBB->addSuccessor(DoneMBB); 5707 MBB->addSuccessor(SetMBB); 5708 5709 // SetMBB: 5710 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5711 // ^^ Replace the upper 32-BitSize bits of the new 5712 // value with those that we loaded. 5713 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5714 // ^^ Rotate the new field to its proper position. 5715 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5716 // JNE LoopMBB 5717 // # fall through to ExitMMB 5718 MBB = SetMBB; 5719 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5720 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5721 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5722 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5723 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5724 .addReg(OldVal) 5725 .addReg(StoreVal) 5726 .add(Base) 5727 .addImm(Disp); 5728 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5729 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5730 MBB->addSuccessor(LoopMBB); 5731 MBB->addSuccessor(DoneMBB); 5732 5733 MI.eraseFromParent(); 5734 return DoneMBB; 5735 } 5736 5737 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5738 // if the high register of the GR128 value must be cleared or false if 5739 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5740 // and subreg_l64 when extending a GR64. 5741 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 5742 MachineBasicBlock *MBB, 5743 bool ClearEven, 5744 unsigned SubReg) const { 5745 MachineFunction &MF = *MBB->getParent(); 5746 const SystemZInstrInfo *TII = 5747 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5748 MachineRegisterInfo &MRI = MF.getRegInfo(); 5749 DebugLoc DL = MI.getDebugLoc(); 5750 5751 unsigned Dest = MI.getOperand(0).getReg(); 5752 unsigned Src = MI.getOperand(1).getReg(); 5753 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5754 5755 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5756 if (ClearEven) { 5757 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5758 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5759 5760 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5761 .addImm(0); 5762 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5763 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5764 In128 = NewIn128; 5765 } 5766 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5767 .addReg(In128).addReg(Src).addImm(SubReg); 5768 5769 MI.eraseFromParent(); 5770 return MBB; 5771 } 5772 5773 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 5774 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5775 MachineFunction &MF = *MBB->getParent(); 5776 const SystemZInstrInfo *TII = 5777 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5778 MachineRegisterInfo &MRI = MF.getRegInfo(); 5779 DebugLoc DL = MI.getDebugLoc(); 5780 5781 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 5782 uint64_t DestDisp = MI.getOperand(1).getImm(); 5783 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 5784 uint64_t SrcDisp = MI.getOperand(3).getImm(); 5785 uint64_t Length = MI.getOperand(4).getImm(); 5786 5787 // When generating more than one CLC, all but the last will need to 5788 // branch to the end when a difference is found. 5789 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5790 splitBlockAfter(MI, MBB) : nullptr); 5791 5792 // Check for the loop form, in which operand 5 is the trip count. 5793 if (MI.getNumExplicitOperands() > 5) { 5794 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5795 5796 uint64_t StartCountReg = MI.getOperand(5).getReg(); 5797 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5798 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5799 forceReg(MI, DestBase, TII)); 5800 5801 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5802 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5803 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5804 MRI.createVirtualRegister(RC)); 5805 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5806 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5807 MRI.createVirtualRegister(RC)); 5808 5809 RC = &SystemZ::GR64BitRegClass; 5810 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5811 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5812 5813 MachineBasicBlock *StartMBB = MBB; 5814 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5815 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5816 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5817 5818 // StartMBB: 5819 // # fall through to LoopMMB 5820 MBB->addSuccessor(LoopMBB); 5821 5822 // LoopMBB: 5823 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5824 // [ %NextDestReg, NextMBB ] 5825 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5826 // [ %NextSrcReg, NextMBB ] 5827 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5828 // [ %NextCountReg, NextMBB ] 5829 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5830 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5831 // ( JLH EndMBB ) 5832 // 5833 // The prefetch is used only for MVC. The JLH is used only for CLC. 5834 MBB = LoopMBB; 5835 5836 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5837 .addReg(StartDestReg).addMBB(StartMBB) 5838 .addReg(NextDestReg).addMBB(NextMBB); 5839 if (!HaveSingleBase) 5840 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5841 .addReg(StartSrcReg).addMBB(StartMBB) 5842 .addReg(NextSrcReg).addMBB(NextMBB); 5843 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5844 .addReg(StartCountReg).addMBB(StartMBB) 5845 .addReg(NextCountReg).addMBB(NextMBB); 5846 if (Opcode == SystemZ::MVC) 5847 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5848 .addImm(SystemZ::PFD_WRITE) 5849 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5850 BuildMI(MBB, DL, TII->get(Opcode)) 5851 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5852 .addReg(ThisSrcReg).addImm(SrcDisp); 5853 if (EndMBB) { 5854 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5855 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5856 .addMBB(EndMBB); 5857 MBB->addSuccessor(EndMBB); 5858 MBB->addSuccessor(NextMBB); 5859 } 5860 5861 // NextMBB: 5862 // %NextDestReg = LA 256(%ThisDestReg) 5863 // %NextSrcReg = LA 256(%ThisSrcReg) 5864 // %NextCountReg = AGHI %ThisCountReg, -1 5865 // CGHI %NextCountReg, 0 5866 // JLH LoopMBB 5867 // # fall through to DoneMMB 5868 // 5869 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5870 MBB = NextMBB; 5871 5872 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5873 .addReg(ThisDestReg).addImm(256).addReg(0); 5874 if (!HaveSingleBase) 5875 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5876 .addReg(ThisSrcReg).addImm(256).addReg(0); 5877 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5878 .addReg(ThisCountReg).addImm(-1); 5879 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5880 .addReg(NextCountReg).addImm(0); 5881 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5882 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5883 .addMBB(LoopMBB); 5884 MBB->addSuccessor(LoopMBB); 5885 MBB->addSuccessor(DoneMBB); 5886 5887 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5888 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5889 Length &= 255; 5890 MBB = DoneMBB; 5891 } 5892 // Handle any remaining bytes with straight-line code. 5893 while (Length > 0) { 5894 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5895 // The previous iteration might have created out-of-range displacements. 5896 // Apply them using LAY if so. 5897 if (!isUInt<12>(DestDisp)) { 5898 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5899 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5900 .add(DestBase) 5901 .addImm(DestDisp) 5902 .addReg(0); 5903 DestBase = MachineOperand::CreateReg(Reg, false); 5904 DestDisp = 0; 5905 } 5906 if (!isUInt<12>(SrcDisp)) { 5907 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5908 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5909 .add(SrcBase) 5910 .addImm(SrcDisp) 5911 .addReg(0); 5912 SrcBase = MachineOperand::CreateReg(Reg, false); 5913 SrcDisp = 0; 5914 } 5915 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5916 .add(DestBase) 5917 .addImm(DestDisp) 5918 .addImm(ThisLength) 5919 .add(SrcBase) 5920 .addImm(SrcDisp); 5921 DestDisp += ThisLength; 5922 SrcDisp += ThisLength; 5923 Length -= ThisLength; 5924 // If there's another CLC to go, branch to the end if a difference 5925 // was found. 5926 if (EndMBB && Length > 0) { 5927 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5928 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5929 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5930 .addMBB(EndMBB); 5931 MBB->addSuccessor(EndMBB); 5932 MBB->addSuccessor(NextMBB); 5933 MBB = NextMBB; 5934 } 5935 } 5936 if (EndMBB) { 5937 MBB->addSuccessor(EndMBB); 5938 MBB = EndMBB; 5939 MBB->addLiveIn(SystemZ::CC); 5940 } 5941 5942 MI.eraseFromParent(); 5943 return MBB; 5944 } 5945 5946 // Decompose string pseudo-instruction MI into a loop that continually performs 5947 // Opcode until CC != 3. 5948 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 5949 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5950 MachineFunction &MF = *MBB->getParent(); 5951 const SystemZInstrInfo *TII = 5952 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5953 MachineRegisterInfo &MRI = MF.getRegInfo(); 5954 DebugLoc DL = MI.getDebugLoc(); 5955 5956 uint64_t End1Reg = MI.getOperand(0).getReg(); 5957 uint64_t Start1Reg = MI.getOperand(1).getReg(); 5958 uint64_t Start2Reg = MI.getOperand(2).getReg(); 5959 uint64_t CharReg = MI.getOperand(3).getReg(); 5960 5961 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5962 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5963 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5964 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5965 5966 MachineBasicBlock *StartMBB = MBB; 5967 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5968 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5969 5970 // StartMBB: 5971 // # fall through to LoopMMB 5972 MBB->addSuccessor(LoopMBB); 5973 5974 // LoopMBB: 5975 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5976 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5977 // R0L = %CharReg 5978 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5979 // JO LoopMBB 5980 // # fall through to DoneMMB 5981 // 5982 // The load of R0L can be hoisted by post-RA LICM. 5983 MBB = LoopMBB; 5984 5985 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5986 .addReg(Start1Reg).addMBB(StartMBB) 5987 .addReg(End1Reg).addMBB(LoopMBB); 5988 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5989 .addReg(Start2Reg).addMBB(StartMBB) 5990 .addReg(End2Reg).addMBB(LoopMBB); 5991 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5992 BuildMI(MBB, DL, TII->get(Opcode)) 5993 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5994 .addReg(This1Reg).addReg(This2Reg); 5995 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5996 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5997 MBB->addSuccessor(LoopMBB); 5998 MBB->addSuccessor(DoneMBB); 5999 6000 DoneMBB->addLiveIn(SystemZ::CC); 6001 6002 MI.eraseFromParent(); 6003 return DoneMBB; 6004 } 6005 6006 // Update TBEGIN instruction with final opcode and register clobbers. 6007 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 6008 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 6009 bool NoFloat) const { 6010 MachineFunction &MF = *MBB->getParent(); 6011 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6012 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 6013 6014 // Update opcode. 6015 MI.setDesc(TII->get(Opcode)); 6016 6017 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 6018 // Make sure to add the corresponding GRSM bits if they are missing. 6019 uint64_t Control = MI.getOperand(2).getImm(); 6020 static const unsigned GPRControlBit[16] = { 6021 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 6022 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 6023 }; 6024 Control |= GPRControlBit[15]; 6025 if (TFI->hasFP(MF)) 6026 Control |= GPRControlBit[11]; 6027 MI.getOperand(2).setImm(Control); 6028 6029 // Add GPR clobbers. 6030 for (int I = 0; I < 16; I++) { 6031 if ((Control & GPRControlBit[I]) == 0) { 6032 unsigned Reg = SystemZMC::GR64Regs[I]; 6033 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6034 } 6035 } 6036 6037 // Add FPR/VR clobbers. 6038 if (!NoFloat && (Control & 4) != 0) { 6039 if (Subtarget.hasVector()) { 6040 for (int I = 0; I < 32; I++) { 6041 unsigned Reg = SystemZMC::VR128Regs[I]; 6042 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6043 } 6044 } else { 6045 for (int I = 0; I < 16; I++) { 6046 unsigned Reg = SystemZMC::FP64Regs[I]; 6047 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6048 } 6049 } 6050 } 6051 6052 return MBB; 6053 } 6054 6055 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 6056 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6057 MachineFunction &MF = *MBB->getParent(); 6058 MachineRegisterInfo *MRI = &MF.getRegInfo(); 6059 const SystemZInstrInfo *TII = 6060 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6061 DebugLoc DL = MI.getDebugLoc(); 6062 6063 unsigned SrcReg = MI.getOperand(0).getReg(); 6064 6065 // Create new virtual register of the same class as source. 6066 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 6067 unsigned DstReg = MRI->createVirtualRegister(RC); 6068 6069 // Replace pseudo with a normal load-and-test that models the def as 6070 // well. 6071 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 6072 .addReg(SrcReg); 6073 MI.eraseFromParent(); 6074 6075 return MBB; 6076 } 6077 6078 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 6079 MachineInstr &MI, MachineBasicBlock *MBB) const { 6080 switch (MI.getOpcode()) { 6081 case SystemZ::Select32Mux: 6082 return emitSelect(MI, MBB, 6083 Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0); 6084 case SystemZ::Select32: 6085 return emitSelect(MI, MBB, SystemZ::LOCR); 6086 case SystemZ::Select64: 6087 return emitSelect(MI, MBB, SystemZ::LOCGR); 6088 case SystemZ::SelectF32: 6089 case SystemZ::SelectF64: 6090 case SystemZ::SelectF128: 6091 return emitSelect(MI, MBB, 0); 6092 6093 case SystemZ::CondStore8Mux: 6094 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 6095 case SystemZ::CondStore8MuxInv: 6096 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 6097 case SystemZ::CondStore16Mux: 6098 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 6099 case SystemZ::CondStore16MuxInv: 6100 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 6101 case SystemZ::CondStore32Mux: 6102 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 6103 case SystemZ::CondStore32MuxInv: 6104 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 6105 case SystemZ::CondStore8: 6106 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 6107 case SystemZ::CondStore8Inv: 6108 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 6109 case SystemZ::CondStore16: 6110 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 6111 case SystemZ::CondStore16Inv: 6112 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 6113 case SystemZ::CondStore32: 6114 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 6115 case SystemZ::CondStore32Inv: 6116 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 6117 case SystemZ::CondStore64: 6118 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 6119 case SystemZ::CondStore64Inv: 6120 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 6121 case SystemZ::CondStoreF32: 6122 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 6123 case SystemZ::CondStoreF32Inv: 6124 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 6125 case SystemZ::CondStoreF64: 6126 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 6127 case SystemZ::CondStoreF64Inv: 6128 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 6129 6130 case SystemZ::AEXT128_64: 6131 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 6132 case SystemZ::ZEXT128_32: 6133 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 6134 case SystemZ::ZEXT128_64: 6135 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 6136 6137 case SystemZ::ATOMIC_SWAPW: 6138 return emitAtomicLoadBinary(MI, MBB, 0, 0); 6139 case SystemZ::ATOMIC_SWAP_32: 6140 return emitAtomicLoadBinary(MI, MBB, 0, 32); 6141 case SystemZ::ATOMIC_SWAP_64: 6142 return emitAtomicLoadBinary(MI, MBB, 0, 64); 6143 6144 case SystemZ::ATOMIC_LOADW_AR: 6145 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 6146 case SystemZ::ATOMIC_LOADW_AFI: 6147 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 6148 case SystemZ::ATOMIC_LOAD_AR: 6149 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 6150 case SystemZ::ATOMIC_LOAD_AHI: 6151 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 6152 case SystemZ::ATOMIC_LOAD_AFI: 6153 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 6154 case SystemZ::ATOMIC_LOAD_AGR: 6155 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 6156 case SystemZ::ATOMIC_LOAD_AGHI: 6157 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 6158 case SystemZ::ATOMIC_LOAD_AGFI: 6159 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 6160 6161 case SystemZ::ATOMIC_LOADW_SR: 6162 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 6163 case SystemZ::ATOMIC_LOAD_SR: 6164 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 6165 case SystemZ::ATOMIC_LOAD_SGR: 6166 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 6167 6168 case SystemZ::ATOMIC_LOADW_NR: 6169 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 6170 case SystemZ::ATOMIC_LOADW_NILH: 6171 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 6172 case SystemZ::ATOMIC_LOAD_NR: 6173 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 6174 case SystemZ::ATOMIC_LOAD_NILL: 6175 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 6176 case SystemZ::ATOMIC_LOAD_NILH: 6177 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 6178 case SystemZ::ATOMIC_LOAD_NILF: 6179 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 6180 case SystemZ::ATOMIC_LOAD_NGR: 6181 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 6182 case SystemZ::ATOMIC_LOAD_NILL64: 6183 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 6184 case SystemZ::ATOMIC_LOAD_NILH64: 6185 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 6186 case SystemZ::ATOMIC_LOAD_NIHL64: 6187 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 6188 case SystemZ::ATOMIC_LOAD_NIHH64: 6189 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 6190 case SystemZ::ATOMIC_LOAD_NILF64: 6191 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 6192 case SystemZ::ATOMIC_LOAD_NIHF64: 6193 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 6194 6195 case SystemZ::ATOMIC_LOADW_OR: 6196 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 6197 case SystemZ::ATOMIC_LOADW_OILH: 6198 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 6199 case SystemZ::ATOMIC_LOAD_OR: 6200 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 6201 case SystemZ::ATOMIC_LOAD_OILL: 6202 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 6203 case SystemZ::ATOMIC_LOAD_OILH: 6204 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 6205 case SystemZ::ATOMIC_LOAD_OILF: 6206 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 6207 case SystemZ::ATOMIC_LOAD_OGR: 6208 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 6209 case SystemZ::ATOMIC_LOAD_OILL64: 6210 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 6211 case SystemZ::ATOMIC_LOAD_OILH64: 6212 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 6213 case SystemZ::ATOMIC_LOAD_OIHL64: 6214 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 6215 case SystemZ::ATOMIC_LOAD_OIHH64: 6216 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 6217 case SystemZ::ATOMIC_LOAD_OILF64: 6218 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 6219 case SystemZ::ATOMIC_LOAD_OIHF64: 6220 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 6221 6222 case SystemZ::ATOMIC_LOADW_XR: 6223 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 6224 case SystemZ::ATOMIC_LOADW_XILF: 6225 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 6226 case SystemZ::ATOMIC_LOAD_XR: 6227 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 6228 case SystemZ::ATOMIC_LOAD_XILF: 6229 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 6230 case SystemZ::ATOMIC_LOAD_XGR: 6231 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 6232 case SystemZ::ATOMIC_LOAD_XILF64: 6233 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 6234 case SystemZ::ATOMIC_LOAD_XIHF64: 6235 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 6236 6237 case SystemZ::ATOMIC_LOADW_NRi: 6238 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 6239 case SystemZ::ATOMIC_LOADW_NILHi: 6240 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 6241 case SystemZ::ATOMIC_LOAD_NRi: 6242 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 6243 case SystemZ::ATOMIC_LOAD_NILLi: 6244 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 6245 case SystemZ::ATOMIC_LOAD_NILHi: 6246 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 6247 case SystemZ::ATOMIC_LOAD_NILFi: 6248 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 6249 case SystemZ::ATOMIC_LOAD_NGRi: 6250 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 6251 case SystemZ::ATOMIC_LOAD_NILL64i: 6252 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 6253 case SystemZ::ATOMIC_LOAD_NILH64i: 6254 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 6255 case SystemZ::ATOMIC_LOAD_NIHL64i: 6256 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 6257 case SystemZ::ATOMIC_LOAD_NIHH64i: 6258 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 6259 case SystemZ::ATOMIC_LOAD_NILF64i: 6260 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 6261 case SystemZ::ATOMIC_LOAD_NIHF64i: 6262 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 6263 6264 case SystemZ::ATOMIC_LOADW_MIN: 6265 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6266 SystemZ::CCMASK_CMP_LE, 0); 6267 case SystemZ::ATOMIC_LOAD_MIN_32: 6268 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6269 SystemZ::CCMASK_CMP_LE, 32); 6270 case SystemZ::ATOMIC_LOAD_MIN_64: 6271 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6272 SystemZ::CCMASK_CMP_LE, 64); 6273 6274 case SystemZ::ATOMIC_LOADW_MAX: 6275 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6276 SystemZ::CCMASK_CMP_GE, 0); 6277 case SystemZ::ATOMIC_LOAD_MAX_32: 6278 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6279 SystemZ::CCMASK_CMP_GE, 32); 6280 case SystemZ::ATOMIC_LOAD_MAX_64: 6281 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6282 SystemZ::CCMASK_CMP_GE, 64); 6283 6284 case SystemZ::ATOMIC_LOADW_UMIN: 6285 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6286 SystemZ::CCMASK_CMP_LE, 0); 6287 case SystemZ::ATOMIC_LOAD_UMIN_32: 6288 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6289 SystemZ::CCMASK_CMP_LE, 32); 6290 case SystemZ::ATOMIC_LOAD_UMIN_64: 6291 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6292 SystemZ::CCMASK_CMP_LE, 64); 6293 6294 case SystemZ::ATOMIC_LOADW_UMAX: 6295 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6296 SystemZ::CCMASK_CMP_GE, 0); 6297 case SystemZ::ATOMIC_LOAD_UMAX_32: 6298 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6299 SystemZ::CCMASK_CMP_GE, 32); 6300 case SystemZ::ATOMIC_LOAD_UMAX_64: 6301 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6302 SystemZ::CCMASK_CMP_GE, 64); 6303 6304 case SystemZ::ATOMIC_CMP_SWAPW: 6305 return emitAtomicCmpSwapW(MI, MBB); 6306 case SystemZ::MVCSequence: 6307 case SystemZ::MVCLoop: 6308 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6309 case SystemZ::NCSequence: 6310 case SystemZ::NCLoop: 6311 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6312 case SystemZ::OCSequence: 6313 case SystemZ::OCLoop: 6314 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6315 case SystemZ::XCSequence: 6316 case SystemZ::XCLoop: 6317 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6318 case SystemZ::CLCSequence: 6319 case SystemZ::CLCLoop: 6320 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6321 case SystemZ::CLSTLoop: 6322 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6323 case SystemZ::MVSTLoop: 6324 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6325 case SystemZ::SRSTLoop: 6326 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6327 case SystemZ::TBEGIN: 6328 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6329 case SystemZ::TBEGIN_nofloat: 6330 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6331 case SystemZ::TBEGINC: 6332 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6333 case SystemZ::LTEBRCompare_VecPseudo: 6334 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6335 case SystemZ::LTDBRCompare_VecPseudo: 6336 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6337 case SystemZ::LTXBRCompare_VecPseudo: 6338 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6339 6340 default: 6341 llvm_unreachable("Unexpected instr type to insert"); 6342 } 6343 } 6344