1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 // Expand individual DIV and REMs into DIVREMs. 168 setOperationAction(ISD::SDIV, VT, Expand); 169 setOperationAction(ISD::UDIV, VT, Expand); 170 setOperationAction(ISD::SREM, VT, Expand); 171 setOperationAction(ISD::UREM, VT, Expand); 172 setOperationAction(ISD::SDIVREM, VT, Custom); 173 setOperationAction(ISD::UDIVREM, VT, Custom); 174 175 // Support addition/subtraction with overflow. 176 setOperationAction(ISD::SADDO, VT, Custom); 177 setOperationAction(ISD::SSUBO, VT, Custom); 178 179 // Support addition/subtraction with carry. 180 setOperationAction(ISD::UADDO, VT, Custom); 181 setOperationAction(ISD::USUBO, VT, Custom); 182 183 // Support carry in as value rather than glue. 184 setOperationAction(ISD::ADDCARRY, VT, Custom); 185 setOperationAction(ISD::SUBCARRY, VT, Custom); 186 187 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 188 // stores, putting a serialization instruction after the stores. 189 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 190 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 191 192 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 193 // available, or if the operand is constant. 194 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 195 196 // Use POPCNT on z196 and above. 197 if (Subtarget.hasPopulationCount()) 198 setOperationAction(ISD::CTPOP, VT, Custom); 199 else 200 setOperationAction(ISD::CTPOP, VT, Expand); 201 202 // No special instructions for these. 203 setOperationAction(ISD::CTTZ, VT, Expand); 204 setOperationAction(ISD::ROTR, VT, Expand); 205 206 // Use *MUL_LOHI where possible instead of MULH*. 207 setOperationAction(ISD::MULHS, VT, Expand); 208 setOperationAction(ISD::MULHU, VT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 210 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 211 212 // Only z196 and above have native support for conversions to unsigned. 213 // On z10, promoting to i64 doesn't generate an inexact condition for 214 // values that are outside the i32 range but in the i64 range, so use 215 // the default expansion. 216 if (!Subtarget.hasFPExtension()) 217 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 218 219 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 220 // default to Expand, so need to be modified to Legal where appropriate. 221 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 222 if (Subtarget.hasFPExtension()) 223 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 224 225 // And similarly for STRICT_[SU]INT_TO_FP. 226 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 227 if (Subtarget.hasFPExtension()) 228 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 229 } 230 } 231 232 // Type legalization will convert 8- and 16-bit atomic operations into 233 // forms that operate on i32s (but still keeping the original memory VT). 234 // Lower them into full i32 operations. 235 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 246 247 // Even though i128 is not a legal type, we still need to custom lower 248 // the atomic operations in order to exploit SystemZ instructions. 249 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 250 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 251 252 // We can use the CC result of compare-and-swap to implement 253 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 254 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 255 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 257 258 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 259 260 // Traps are legal, as we will convert them to "j .+2". 261 setOperationAction(ISD::TRAP, MVT::Other, Legal); 262 263 // z10 has instructions for signed but not unsigned FP conversion. 264 // Handle unsigned 32-bit types as signed 64-bit types. 265 if (!Subtarget.hasFPExtension()) { 266 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 270 } 271 272 // We have native support for a 64-bit CTLZ, via FLOGR. 273 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 274 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 275 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 276 277 // On z15 we have native support for a 64-bit CTPOP. 278 if (Subtarget.hasMiscellaneousExtensions3()) { 279 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 280 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 281 } 282 283 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 284 setOperationAction(ISD::OR, MVT::i64, Custom); 285 286 // FIXME: Can we support these natively? 287 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 288 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 289 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 290 291 // We have native instructions for i8, i16 and i32 extensions, but not i1. 292 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 293 for (MVT VT : MVT::integer_valuetypes()) { 294 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 295 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 296 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 297 } 298 299 // Handle the various types of symbolic address. 300 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 301 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 302 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 303 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 304 setOperationAction(ISD::JumpTable, PtrVT, Custom); 305 306 // We need to handle dynamic allocations specially because of the 307 // 160-byte area at the bottom of the stack. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 309 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 310 311 // Use custom expanders so that we can force the function to use 312 // a frame pointer. 313 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 314 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 315 316 // Handle prefetches with PFD or PFDRL. 317 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 318 319 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 320 // Assume by default that all vector operations need to be expanded. 321 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 322 if (getOperationAction(Opcode, VT) == Legal) 323 setOperationAction(Opcode, VT, Expand); 324 325 // Likewise all truncating stores and extending loads. 326 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 327 setTruncStoreAction(VT, InnerVT, Expand); 328 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 329 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 330 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 331 } 332 333 if (isTypeLegal(VT)) { 334 // These operations are legal for anything that can be stored in a 335 // vector register, even if there is no native support for the format 336 // as such. In particular, we can do these for v4f32 even though there 337 // are no specific instructions for that format. 338 setOperationAction(ISD::LOAD, VT, Legal); 339 setOperationAction(ISD::STORE, VT, Legal); 340 setOperationAction(ISD::VSELECT, VT, Legal); 341 setOperationAction(ISD::BITCAST, VT, Legal); 342 setOperationAction(ISD::UNDEF, VT, Legal); 343 344 // Likewise, except that we need to replace the nodes with something 345 // more specific. 346 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 347 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 348 } 349 } 350 351 // Handle integer vector types. 352 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 353 if (isTypeLegal(VT)) { 354 // These operations have direct equivalents. 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 357 setOperationAction(ISD::ADD, VT, Legal); 358 setOperationAction(ISD::SUB, VT, Legal); 359 if (VT != MVT::v2i64) 360 setOperationAction(ISD::MUL, VT, Legal); 361 setOperationAction(ISD::AND, VT, Legal); 362 setOperationAction(ISD::OR, VT, Legal); 363 setOperationAction(ISD::XOR, VT, Legal); 364 if (Subtarget.hasVectorEnhancements1()) 365 setOperationAction(ISD::CTPOP, VT, Legal); 366 else 367 setOperationAction(ISD::CTPOP, VT, Custom); 368 setOperationAction(ISD::CTTZ, VT, Legal); 369 setOperationAction(ISD::CTLZ, VT, Legal); 370 371 // Convert a GPR scalar to a vector by inserting it into element 0. 372 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 373 374 // Use a series of unpacks for extensions. 375 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 376 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 377 378 // Detect shifts by a scalar amount and convert them into 379 // V*_BY_SCALAR. 380 setOperationAction(ISD::SHL, VT, Custom); 381 setOperationAction(ISD::SRA, VT, Custom); 382 setOperationAction(ISD::SRL, VT, Custom); 383 384 // At present ROTL isn't matched by DAGCombiner. ROTR should be 385 // converted into ROTL. 386 setOperationAction(ISD::ROTL, VT, Expand); 387 setOperationAction(ISD::ROTR, VT, Expand); 388 389 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 390 // and inverting the result as necessary. 391 setOperationAction(ISD::SETCC, VT, Custom); 392 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 393 if (Subtarget.hasVectorEnhancements1()) 394 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 395 } 396 } 397 398 if (Subtarget.hasVector()) { 399 // There should be no need to check for float types other than v2f64 400 // since <2 x f32> isn't a legal type. 401 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 408 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 409 410 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 418 } 419 420 if (Subtarget.hasVectorEnhancements2()) { 421 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 422 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 423 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 424 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 425 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 426 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 427 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 428 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 429 430 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 438 } 439 440 // Handle floating-point types. 441 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 442 I <= MVT::LAST_FP_VALUETYPE; 443 ++I) { 444 MVT VT = MVT::SimpleValueType(I); 445 if (isTypeLegal(VT)) { 446 // We can use FI for FRINT. 447 setOperationAction(ISD::FRINT, VT, Legal); 448 449 // We can use the extended form of FI for other rounding operations. 450 if (Subtarget.hasFPExtension()) { 451 setOperationAction(ISD::FNEARBYINT, VT, Legal); 452 setOperationAction(ISD::FFLOOR, VT, Legal); 453 setOperationAction(ISD::FCEIL, VT, Legal); 454 setOperationAction(ISD::FTRUNC, VT, Legal); 455 setOperationAction(ISD::FROUND, VT, Legal); 456 } 457 458 // No special instructions for these. 459 setOperationAction(ISD::FSIN, VT, Expand); 460 setOperationAction(ISD::FCOS, VT, Expand); 461 setOperationAction(ISD::FSINCOS, VT, Expand); 462 setOperationAction(ISD::FREM, VT, Expand); 463 setOperationAction(ISD::FPOW, VT, Expand); 464 465 // Handle constrained floating-point operations. 466 setOperationAction(ISD::STRICT_FADD, VT, Legal); 467 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 468 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 469 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 470 setOperationAction(ISD::STRICT_FMA, VT, Legal); 471 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 472 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 473 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 474 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 475 if (Subtarget.hasFPExtension()) { 476 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 477 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 478 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 479 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 481 } 482 } 483 } 484 485 // Handle floating-point vector types. 486 if (Subtarget.hasVector()) { 487 // Scalar-to-vector conversion is just a subreg. 488 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 489 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 490 491 // Some insertions and extractions can be done directly but others 492 // need to go via integers. 493 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 494 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 496 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 497 498 // These operations have direct equivalents. 499 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 500 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 501 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 502 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 503 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 504 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 505 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 506 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 507 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 508 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 509 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 510 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 511 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 512 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 513 514 // Handle constrained floating-point operations. 515 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 516 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 517 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 518 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 519 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 520 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 521 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 527 } 528 529 // The vector enhancements facility 1 has instructions for these. 530 if (Subtarget.hasVectorEnhancements1()) { 531 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 532 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 533 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 534 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 536 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 537 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 538 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 539 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 540 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 541 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 542 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 543 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 544 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 545 546 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 547 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 548 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 549 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 550 551 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 552 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 553 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 554 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 555 556 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 557 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 558 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 559 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 560 561 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 562 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 563 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 564 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 565 566 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 567 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 568 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 569 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 570 571 // Handle constrained floating-point operations. 572 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 573 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 574 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 575 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 576 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 577 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 578 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 584 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 585 MVT::v4f32, MVT::v2f64 }) { 586 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 587 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 588 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 589 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 590 } 591 } 592 593 // We only have fused f128 multiply-addition on vector registers. 594 if (!Subtarget.hasVectorEnhancements1()) { 595 setOperationAction(ISD::FMA, MVT::f128, Expand); 596 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 597 } 598 599 // We don't have a copysign instruction on vector registers. 600 if (Subtarget.hasVectorEnhancements1()) 601 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 602 603 // Needed so that we don't try to implement f128 constant loads using 604 // a load-and-extend of a f80 constant (in cases where the constant 605 // would fit in an f80). 606 for (MVT VT : MVT::fp_valuetypes()) 607 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 608 609 // We don't have extending load instruction on vector registers. 610 if (Subtarget.hasVectorEnhancements1()) { 611 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 612 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 613 } 614 615 // Floating-point truncation and stores need to be done separately. 616 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 617 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 618 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 619 620 // We have 64-bit FPR<->GPR moves, but need special handling for 621 // 32-bit forms. 622 if (!Subtarget.hasVector()) { 623 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 624 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 625 } 626 627 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 628 // structure, but VAEND is a no-op. 629 setOperationAction(ISD::VASTART, MVT::Other, Custom); 630 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 631 setOperationAction(ISD::VAEND, MVT::Other, Expand); 632 633 // Codes for which we want to perform some z-specific combinations. 634 setTargetDAGCombine(ISD::ZERO_EXTEND); 635 setTargetDAGCombine(ISD::SIGN_EXTEND); 636 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 637 setTargetDAGCombine(ISD::LOAD); 638 setTargetDAGCombine(ISD::STORE); 639 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 640 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 641 setTargetDAGCombine(ISD::FP_ROUND); 642 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 643 setTargetDAGCombine(ISD::FP_EXTEND); 644 setTargetDAGCombine(ISD::SINT_TO_FP); 645 setTargetDAGCombine(ISD::UINT_TO_FP); 646 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 647 setTargetDAGCombine(ISD::BSWAP); 648 setTargetDAGCombine(ISD::SDIV); 649 setTargetDAGCombine(ISD::UDIV); 650 setTargetDAGCombine(ISD::SREM); 651 setTargetDAGCombine(ISD::UREM); 652 setTargetDAGCombine(ISD::INTRINSIC_VOID); 653 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 654 655 // Handle intrinsics. 656 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 657 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 658 659 // We want to use MVC in preference to even a single load/store pair. 660 MaxStoresPerMemcpy = 0; 661 MaxStoresPerMemcpyOptSize = 0; 662 663 // The main memset sequence is a byte store followed by an MVC. 664 // Two STC or MV..I stores win over that, but the kind of fused stores 665 // generated by target-independent code don't when the byte value is 666 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 667 // than "STC;MVC". Handle the choice in target-specific code instead. 668 MaxStoresPerMemset = 0; 669 MaxStoresPerMemsetOptSize = 0; 670 671 // Default to having -disable-strictnode-mutation on 672 IsStrictFPEnabled = true; 673 } 674 675 bool SystemZTargetLowering::useSoftFloat() const { 676 return Subtarget.hasSoftFloat(); 677 } 678 679 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 680 LLVMContext &, EVT VT) const { 681 if (!VT.isVector()) 682 return MVT::i32; 683 return VT.changeVectorElementTypeToInteger(); 684 } 685 686 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 687 const MachineFunction &MF, EVT VT) const { 688 VT = VT.getScalarType(); 689 690 if (!VT.isSimple()) 691 return false; 692 693 switch (VT.getSimpleVT().SimpleTy) { 694 case MVT::f32: 695 case MVT::f64: 696 return true; 697 case MVT::f128: 698 return Subtarget.hasVectorEnhancements1(); 699 default: 700 break; 701 } 702 703 return false; 704 } 705 706 // Return true if the constant can be generated with a vector instruction, 707 // such as VGM, VGMB or VREPI. 708 bool SystemZVectorConstantInfo::isVectorConstantLegal( 709 const SystemZSubtarget &Subtarget) { 710 const SystemZInstrInfo *TII = 711 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 712 if (!Subtarget.hasVector() || 713 (isFP128 && !Subtarget.hasVectorEnhancements1())) 714 return false; 715 716 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 717 // preferred way of creating all-zero and all-one vectors so give it 718 // priority over other methods below. 719 unsigned Mask = 0; 720 unsigned I = 0; 721 for (; I < SystemZ::VectorBytes; ++I) { 722 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 723 if (Byte == 0xff) 724 Mask |= 1ULL << I; 725 else if (Byte != 0) 726 break; 727 } 728 if (I == SystemZ::VectorBytes) { 729 Opcode = SystemZISD::BYTE_MASK; 730 OpVals.push_back(Mask); 731 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 732 return true; 733 } 734 735 if (SplatBitSize > 64) 736 return false; 737 738 auto tryValue = [&](uint64_t Value) -> bool { 739 // Try VECTOR REPLICATE IMMEDIATE 740 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 741 if (isInt<16>(SignedValue)) { 742 OpVals.push_back(((unsigned) SignedValue)); 743 Opcode = SystemZISD::REPLICATE; 744 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 745 SystemZ::VectorBits / SplatBitSize); 746 return true; 747 } 748 // Try VECTOR GENERATE MASK 749 unsigned Start, End; 750 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 751 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 752 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 753 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 754 OpVals.push_back(Start - (64 - SplatBitSize)); 755 OpVals.push_back(End - (64 - SplatBitSize)); 756 Opcode = SystemZISD::ROTATE_MASK; 757 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 758 SystemZ::VectorBits / SplatBitSize); 759 return true; 760 } 761 return false; 762 }; 763 764 // First try assuming that any undefined bits above the highest set bit 765 // and below the lowest set bit are 1s. This increases the likelihood of 766 // being able to use a sign-extended element value in VECTOR REPLICATE 767 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 768 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 769 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 770 uint64_t Lower = 771 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 772 uint64_t Upper = 773 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 774 if (tryValue(SplatBitsZ | Upper | Lower)) 775 return true; 776 777 // Now try assuming that any undefined bits between the first and 778 // last defined set bits are set. This increases the chances of 779 // using a non-wraparound mask. 780 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 781 return tryValue(SplatBitsZ | Middle); 782 } 783 784 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 785 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 786 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 787 788 // Find the smallest splat. 789 SplatBits = FPImm.bitcastToAPInt(); 790 unsigned Width = SplatBits.getBitWidth(); 791 while (Width > 8) { 792 unsigned HalfSize = Width / 2; 793 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 794 APInt LowValue = SplatBits.trunc(HalfSize); 795 796 // If the two halves do not match, stop here. 797 if (HighValue != LowValue || 8 > HalfSize) 798 break; 799 800 SplatBits = HighValue; 801 Width = HalfSize; 802 } 803 SplatUndef = 0; 804 SplatBitSize = Width; 805 } 806 807 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 808 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 809 bool HasAnyUndefs; 810 811 // Get IntBits by finding the 128 bit splat. 812 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 813 true); 814 815 // Get SplatBits by finding the 8 bit or greater splat. 816 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 817 true); 818 } 819 820 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 821 bool ForCodeSize) const { 822 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 823 if (Imm.isZero() || Imm.isNegZero()) 824 return true; 825 826 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 827 } 828 829 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 830 // We can use CGFI or CLGFI. 831 return isInt<32>(Imm) || isUInt<32>(Imm); 832 } 833 834 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 835 // We can use ALGFI or SLGFI. 836 return isUInt<32>(Imm) || isUInt<32>(-Imm); 837 } 838 839 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 840 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 841 // Unaligned accesses should never be slower than the expanded version. 842 // We check specifically for aligned accesses in the few cases where 843 // they are required. 844 if (Fast) 845 *Fast = true; 846 return true; 847 } 848 849 // Information about the addressing mode for a memory access. 850 struct AddressingMode { 851 // True if a long displacement is supported. 852 bool LongDisplacement; 853 854 // True if use of index register is supported. 855 bool IndexReg; 856 857 AddressingMode(bool LongDispl, bool IdxReg) : 858 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 859 }; 860 861 // Return the desired addressing mode for a Load which has only one use (in 862 // the same block) which is a Store. 863 static AddressingMode getLoadStoreAddrMode(bool HasVector, 864 Type *Ty) { 865 // With vector support a Load->Store combination may be combined to either 866 // an MVC or vector operations and it seems to work best to allow the 867 // vector addressing mode. 868 if (HasVector) 869 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 870 871 // Otherwise only the MVC case is special. 872 bool MVC = Ty->isIntegerTy(8); 873 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 874 } 875 876 // Return the addressing mode which seems most desirable given an LLVM 877 // Instruction pointer. 878 static AddressingMode 879 supportedAddressingMode(Instruction *I, bool HasVector) { 880 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 881 switch (II->getIntrinsicID()) { 882 default: break; 883 case Intrinsic::memset: 884 case Intrinsic::memmove: 885 case Intrinsic::memcpy: 886 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 887 } 888 } 889 890 if (isa<LoadInst>(I) && I->hasOneUse()) { 891 auto *SingleUser = cast<Instruction>(*I->user_begin()); 892 if (SingleUser->getParent() == I->getParent()) { 893 if (isa<ICmpInst>(SingleUser)) { 894 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 895 if (C->getBitWidth() <= 64 && 896 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 897 // Comparison of memory with 16 bit signed / unsigned immediate 898 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 899 } else if (isa<StoreInst>(SingleUser)) 900 // Load->Store 901 return getLoadStoreAddrMode(HasVector, I->getType()); 902 } 903 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 904 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 905 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 906 // Load->Store 907 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 908 } 909 910 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 911 912 // * Use LDE instead of LE/LEY for z13 to avoid partial register 913 // dependencies (LDE only supports small offsets). 914 // * Utilize the vector registers to hold floating point 915 // values (vector load / store instructions only support small 916 // offsets). 917 918 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 919 I->getOperand(0)->getType()); 920 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 921 bool IsVectorAccess = MemAccessTy->isVectorTy(); 922 923 // A store of an extracted vector element will be combined into a VSTE type 924 // instruction. 925 if (!IsVectorAccess && isa<StoreInst>(I)) { 926 Value *DataOp = I->getOperand(0); 927 if (isa<ExtractElementInst>(DataOp)) 928 IsVectorAccess = true; 929 } 930 931 // A load which gets inserted into a vector element will be combined into a 932 // VLE type instruction. 933 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 934 User *LoadUser = *I->user_begin(); 935 if (isa<InsertElementInst>(LoadUser)) 936 IsVectorAccess = true; 937 } 938 939 if (IsFPAccess || IsVectorAccess) 940 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 941 } 942 943 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 944 } 945 946 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 947 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 948 // Punt on globals for now, although they can be used in limited 949 // RELATIVE LONG cases. 950 if (AM.BaseGV) 951 return false; 952 953 // Require a 20-bit signed offset. 954 if (!isInt<20>(AM.BaseOffs)) 955 return false; 956 957 AddressingMode SupportedAM(true, true); 958 if (I != nullptr) 959 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 960 961 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 962 return false; 963 964 if (!SupportedAM.IndexReg) 965 // No indexing allowed. 966 return AM.Scale == 0; 967 else 968 // Indexing is OK but no scale factor can be applied. 969 return AM.Scale == 0 || AM.Scale == 1; 970 } 971 972 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 973 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 974 return false; 975 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 976 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 977 return FromBits > ToBits; 978 } 979 980 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 981 if (!FromVT.isInteger() || !ToVT.isInteger()) 982 return false; 983 unsigned FromBits = FromVT.getSizeInBits(); 984 unsigned ToBits = ToVT.getSizeInBits(); 985 return FromBits > ToBits; 986 } 987 988 //===----------------------------------------------------------------------===// 989 // Inline asm support 990 //===----------------------------------------------------------------------===// 991 992 TargetLowering::ConstraintType 993 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 994 if (Constraint.size() == 1) { 995 switch (Constraint[0]) { 996 case 'a': // Address register 997 case 'd': // Data register (equivalent to 'r') 998 case 'f': // Floating-point register 999 case 'h': // High-part register 1000 case 'r': // General-purpose register 1001 case 'v': // Vector register 1002 return C_RegisterClass; 1003 1004 case 'Q': // Memory with base and unsigned 12-bit displacement 1005 case 'R': // Likewise, plus an index 1006 case 'S': // Memory with base and signed 20-bit displacement 1007 case 'T': // Likewise, plus an index 1008 case 'm': // Equivalent to 'T'. 1009 return C_Memory; 1010 1011 case 'I': // Unsigned 8-bit constant 1012 case 'J': // Unsigned 12-bit constant 1013 case 'K': // Signed 16-bit constant 1014 case 'L': // Signed 20-bit displacement (on all targets we support) 1015 case 'M': // 0x7fffffff 1016 return C_Immediate; 1017 1018 default: 1019 break; 1020 } 1021 } 1022 return TargetLowering::getConstraintType(Constraint); 1023 } 1024 1025 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1026 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1027 const char *constraint) const { 1028 ConstraintWeight weight = CW_Invalid; 1029 Value *CallOperandVal = info.CallOperandVal; 1030 // If we don't have a value, we can't do a match, 1031 // but allow it at the lowest weight. 1032 if (!CallOperandVal) 1033 return CW_Default; 1034 Type *type = CallOperandVal->getType(); 1035 // Look at the constraint type. 1036 switch (*constraint) { 1037 default: 1038 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1039 break; 1040 1041 case 'a': // Address register 1042 case 'd': // Data register (equivalent to 'r') 1043 case 'h': // High-part register 1044 case 'r': // General-purpose register 1045 if (CallOperandVal->getType()->isIntegerTy()) 1046 weight = CW_Register; 1047 break; 1048 1049 case 'f': // Floating-point register 1050 if (type->isFloatingPointTy()) 1051 weight = CW_Register; 1052 break; 1053 1054 case 'v': // Vector register 1055 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1056 Subtarget.hasVector()) 1057 weight = CW_Register; 1058 break; 1059 1060 case 'I': // Unsigned 8-bit constant 1061 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1062 if (isUInt<8>(C->getZExtValue())) 1063 weight = CW_Constant; 1064 break; 1065 1066 case 'J': // Unsigned 12-bit constant 1067 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1068 if (isUInt<12>(C->getZExtValue())) 1069 weight = CW_Constant; 1070 break; 1071 1072 case 'K': // Signed 16-bit constant 1073 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1074 if (isInt<16>(C->getSExtValue())) 1075 weight = CW_Constant; 1076 break; 1077 1078 case 'L': // Signed 20-bit displacement (on all targets we support) 1079 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1080 if (isInt<20>(C->getSExtValue())) 1081 weight = CW_Constant; 1082 break; 1083 1084 case 'M': // 0x7fffffff 1085 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1086 if (C->getZExtValue() == 0x7fffffff) 1087 weight = CW_Constant; 1088 break; 1089 } 1090 return weight; 1091 } 1092 1093 // Parse a "{tNNN}" register constraint for which the register type "t" 1094 // has already been verified. MC is the class associated with "t" and 1095 // Map maps 0-based register numbers to LLVM register numbers. 1096 static std::pair<unsigned, const TargetRegisterClass *> 1097 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1098 const unsigned *Map, unsigned Size) { 1099 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1100 if (isdigit(Constraint[2])) { 1101 unsigned Index; 1102 bool Failed = 1103 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1104 if (!Failed && Index < Size && Map[Index]) 1105 return std::make_pair(Map[Index], RC); 1106 } 1107 return std::make_pair(0U, nullptr); 1108 } 1109 1110 std::pair<unsigned, const TargetRegisterClass *> 1111 SystemZTargetLowering::getRegForInlineAsmConstraint( 1112 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1113 if (Constraint.size() == 1) { 1114 // GCC Constraint Letters 1115 switch (Constraint[0]) { 1116 default: break; 1117 case 'd': // Data register (equivalent to 'r') 1118 case 'r': // General-purpose register 1119 if (VT == MVT::i64) 1120 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1121 else if (VT == MVT::i128) 1122 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1123 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1124 1125 case 'a': // Address register 1126 if (VT == MVT::i64) 1127 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1128 else if (VT == MVT::i128) 1129 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1130 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1131 1132 case 'h': // High-part register (an LLVM extension) 1133 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1134 1135 case 'f': // Floating-point register 1136 if (!useSoftFloat()) { 1137 if (VT == MVT::f64) 1138 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1139 else if (VT == MVT::f128) 1140 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1141 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1142 } 1143 break; 1144 case 'v': // Vector register 1145 if (Subtarget.hasVector()) { 1146 if (VT == MVT::f32) 1147 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1148 if (VT == MVT::f64) 1149 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1150 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1151 } 1152 break; 1153 } 1154 } 1155 if (Constraint.size() > 0 && Constraint[0] == '{') { 1156 // We need to override the default register parsing for GPRs and FPRs 1157 // because the interpretation depends on VT. The internal names of 1158 // the registers are also different from the external names 1159 // (F0D and F0S instead of F0, etc.). 1160 if (Constraint[1] == 'r') { 1161 if (VT == MVT::i32) 1162 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1163 SystemZMC::GR32Regs, 16); 1164 if (VT == MVT::i128) 1165 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1166 SystemZMC::GR128Regs, 16); 1167 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1168 SystemZMC::GR64Regs, 16); 1169 } 1170 if (Constraint[1] == 'f') { 1171 if (useSoftFloat()) 1172 return std::make_pair( 1173 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1174 if (VT == MVT::f32) 1175 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1176 SystemZMC::FP32Regs, 16); 1177 if (VT == MVT::f128) 1178 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1179 SystemZMC::FP128Regs, 16); 1180 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1181 SystemZMC::FP64Regs, 16); 1182 } 1183 if (Constraint[1] == 'v') { 1184 if (!Subtarget.hasVector()) 1185 return std::make_pair( 1186 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1187 if (VT == MVT::f32) 1188 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1189 SystemZMC::VR32Regs, 32); 1190 if (VT == MVT::f64) 1191 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1192 SystemZMC::VR64Regs, 32); 1193 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1194 SystemZMC::VR128Regs, 32); 1195 } 1196 } 1197 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1198 } 1199 1200 // FIXME? Maybe this could be a TableGen attribute on some registers and 1201 // this table could be generated automatically from RegInfo. 1202 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1203 const MachineFunction &MF) const { 1204 1205 Register Reg = StringSwitch<Register>(RegName) 1206 .Case("r15", SystemZ::R15D) 1207 .Default(0); 1208 if (Reg) 1209 return Reg; 1210 report_fatal_error("Invalid register name global variable"); 1211 } 1212 1213 void SystemZTargetLowering:: 1214 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1215 std::vector<SDValue> &Ops, 1216 SelectionDAG &DAG) const { 1217 // Only support length 1 constraints for now. 1218 if (Constraint.length() == 1) { 1219 switch (Constraint[0]) { 1220 case 'I': // Unsigned 8-bit constant 1221 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1222 if (isUInt<8>(C->getZExtValue())) 1223 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1224 Op.getValueType())); 1225 return; 1226 1227 case 'J': // Unsigned 12-bit constant 1228 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1229 if (isUInt<12>(C->getZExtValue())) 1230 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1231 Op.getValueType())); 1232 return; 1233 1234 case 'K': // Signed 16-bit constant 1235 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1236 if (isInt<16>(C->getSExtValue())) 1237 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1238 Op.getValueType())); 1239 return; 1240 1241 case 'L': // Signed 20-bit displacement (on all targets we support) 1242 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1243 if (isInt<20>(C->getSExtValue())) 1244 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1245 Op.getValueType())); 1246 return; 1247 1248 case 'M': // 0x7fffffff 1249 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1250 if (C->getZExtValue() == 0x7fffffff) 1251 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1252 Op.getValueType())); 1253 return; 1254 } 1255 } 1256 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1257 } 1258 1259 //===----------------------------------------------------------------------===// 1260 // Calling conventions 1261 //===----------------------------------------------------------------------===// 1262 1263 #include "SystemZGenCallingConv.inc" 1264 1265 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1266 CallingConv::ID) const { 1267 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1268 SystemZ::R14D, 0 }; 1269 return ScratchRegs; 1270 } 1271 1272 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1273 Type *ToType) const { 1274 return isTruncateFree(FromType, ToType); 1275 } 1276 1277 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1278 return CI->isTailCall(); 1279 } 1280 1281 // We do not yet support 128-bit single-element vector types. If the user 1282 // attempts to use such types as function argument or return type, prefer 1283 // to error out instead of emitting code violating the ABI. 1284 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1285 if (ArgVT.isVector() && !VT.isVector()) 1286 report_fatal_error("Unsupported vector argument or return type"); 1287 } 1288 1289 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1290 for (unsigned i = 0; i < Ins.size(); ++i) 1291 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1292 } 1293 1294 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1295 for (unsigned i = 0; i < Outs.size(); ++i) 1296 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1297 } 1298 1299 // Value is a value that has been passed to us in the location described by VA 1300 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1301 // any loads onto Chain. 1302 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1303 CCValAssign &VA, SDValue Chain, 1304 SDValue Value) { 1305 // If the argument has been promoted from a smaller type, insert an 1306 // assertion to capture this. 1307 if (VA.getLocInfo() == CCValAssign::SExt) 1308 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1309 DAG.getValueType(VA.getValVT())); 1310 else if (VA.getLocInfo() == CCValAssign::ZExt) 1311 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1312 DAG.getValueType(VA.getValVT())); 1313 1314 if (VA.isExtInLoc()) 1315 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1316 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1317 // If this is a short vector argument loaded from the stack, 1318 // extend from i64 to full vector size and then bitcast. 1319 assert(VA.getLocVT() == MVT::i64); 1320 assert(VA.getValVT().isVector()); 1321 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1322 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1323 } else 1324 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1325 return Value; 1326 } 1327 1328 // Value is a value of type VA.getValVT() that we need to copy into 1329 // the location described by VA. Return a copy of Value converted to 1330 // VA.getValVT(). The caller is responsible for handling indirect values. 1331 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1332 CCValAssign &VA, SDValue Value) { 1333 switch (VA.getLocInfo()) { 1334 case CCValAssign::SExt: 1335 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1336 case CCValAssign::ZExt: 1337 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1338 case CCValAssign::AExt: 1339 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1340 case CCValAssign::BCvt: 1341 // If this is a short vector argument to be stored to the stack, 1342 // bitcast to v2i64 and then extract first element. 1343 assert(VA.getLocVT() == MVT::i64); 1344 assert(VA.getValVT().isVector()); 1345 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1346 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1347 DAG.getConstant(0, DL, MVT::i32)); 1348 case CCValAssign::Full: 1349 return Value; 1350 default: 1351 llvm_unreachable("Unhandled getLocInfo()"); 1352 } 1353 } 1354 1355 SDValue SystemZTargetLowering::LowerFormalArguments( 1356 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1357 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1358 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1359 MachineFunction &MF = DAG.getMachineFunction(); 1360 MachineFrameInfo &MFI = MF.getFrameInfo(); 1361 MachineRegisterInfo &MRI = MF.getRegInfo(); 1362 SystemZMachineFunctionInfo *FuncInfo = 1363 MF.getInfo<SystemZMachineFunctionInfo>(); 1364 auto *TFL = 1365 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1366 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1367 1368 // Detect unsupported vector argument types. 1369 if (Subtarget.hasVector()) 1370 VerifyVectorTypes(Ins); 1371 1372 // Assign locations to all of the incoming arguments. 1373 SmallVector<CCValAssign, 16> ArgLocs; 1374 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1375 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1376 1377 unsigned NumFixedGPRs = 0; 1378 unsigned NumFixedFPRs = 0; 1379 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1380 SDValue ArgValue; 1381 CCValAssign &VA = ArgLocs[I]; 1382 EVT LocVT = VA.getLocVT(); 1383 if (VA.isRegLoc()) { 1384 // Arguments passed in registers 1385 const TargetRegisterClass *RC; 1386 switch (LocVT.getSimpleVT().SimpleTy) { 1387 default: 1388 // Integers smaller than i64 should be promoted to i64. 1389 llvm_unreachable("Unexpected argument type"); 1390 case MVT::i32: 1391 NumFixedGPRs += 1; 1392 RC = &SystemZ::GR32BitRegClass; 1393 break; 1394 case MVT::i64: 1395 NumFixedGPRs += 1; 1396 RC = &SystemZ::GR64BitRegClass; 1397 break; 1398 case MVT::f32: 1399 NumFixedFPRs += 1; 1400 RC = &SystemZ::FP32BitRegClass; 1401 break; 1402 case MVT::f64: 1403 NumFixedFPRs += 1; 1404 RC = &SystemZ::FP64BitRegClass; 1405 break; 1406 case MVT::v16i8: 1407 case MVT::v8i16: 1408 case MVT::v4i32: 1409 case MVT::v2i64: 1410 case MVT::v4f32: 1411 case MVT::v2f64: 1412 RC = &SystemZ::VR128BitRegClass; 1413 break; 1414 } 1415 1416 Register VReg = MRI.createVirtualRegister(RC); 1417 MRI.addLiveIn(VA.getLocReg(), VReg); 1418 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1419 } else { 1420 assert(VA.isMemLoc() && "Argument not register or memory"); 1421 1422 // Create the frame index object for this incoming parameter. 1423 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1424 VA.getLocMemOffset(), true); 1425 1426 // Create the SelectionDAG nodes corresponding to a load 1427 // from this parameter. Unpromoted ints and floats are 1428 // passed as right-justified 8-byte values. 1429 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1430 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1431 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1432 DAG.getIntPtrConstant(4, DL)); 1433 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1434 MachinePointerInfo::getFixedStack(MF, FI)); 1435 } 1436 1437 // Convert the value of the argument register into the value that's 1438 // being passed. 1439 if (VA.getLocInfo() == CCValAssign::Indirect) { 1440 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1441 MachinePointerInfo())); 1442 // If the original argument was split (e.g. i128), we need 1443 // to load all parts of it here (using the same address). 1444 unsigned ArgIndex = Ins[I].OrigArgIndex; 1445 assert (Ins[I].PartOffset == 0); 1446 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1447 CCValAssign &PartVA = ArgLocs[I + 1]; 1448 unsigned PartOffset = Ins[I + 1].PartOffset; 1449 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1450 DAG.getIntPtrConstant(PartOffset, DL)); 1451 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1452 MachinePointerInfo())); 1453 ++I; 1454 } 1455 } else 1456 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1457 } 1458 1459 if (IsVarArg) { 1460 // Save the number of non-varargs registers for later use by va_start, etc. 1461 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1462 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1463 1464 // Likewise the address (in the form of a frame index) of where the 1465 // first stack vararg would be. The 1-byte size here is arbitrary. 1466 int64_t StackSize = CCInfo.getNextStackOffset(); 1467 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1468 1469 // ...and a similar frame index for the caller-allocated save area 1470 // that will be used to store the incoming registers. 1471 int64_t RegSaveOffset = 1472 -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1473 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1474 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1475 1476 // Store the FPR varargs in the reserved frame slots. (We store the 1477 // GPRs as part of the prologue.) 1478 if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) { 1479 SDValue MemOps[SystemZ::NumArgFPRs]; 1480 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1481 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]); 1482 int FI = 1483 MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true); 1484 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1485 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1486 &SystemZ::FP64BitRegClass); 1487 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1488 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1489 MachinePointerInfo::getFixedStack(MF, FI)); 1490 } 1491 // Join the stores, which are independent of one another. 1492 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1493 makeArrayRef(&MemOps[NumFixedFPRs], 1494 SystemZ::NumArgFPRs-NumFixedFPRs)); 1495 } 1496 } 1497 1498 return Chain; 1499 } 1500 1501 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1502 SmallVectorImpl<CCValAssign> &ArgLocs, 1503 SmallVectorImpl<ISD::OutputArg> &Outs) { 1504 // Punt if there are any indirect or stack arguments, or if the call 1505 // needs the callee-saved argument register R6, or if the call uses 1506 // the callee-saved register arguments SwiftSelf and SwiftError. 1507 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1508 CCValAssign &VA = ArgLocs[I]; 1509 if (VA.getLocInfo() == CCValAssign::Indirect) 1510 return false; 1511 if (!VA.isRegLoc()) 1512 return false; 1513 Register Reg = VA.getLocReg(); 1514 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1515 return false; 1516 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1517 return false; 1518 } 1519 return true; 1520 } 1521 1522 SDValue 1523 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1524 SmallVectorImpl<SDValue> &InVals) const { 1525 SelectionDAG &DAG = CLI.DAG; 1526 SDLoc &DL = CLI.DL; 1527 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1528 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1529 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1530 SDValue Chain = CLI.Chain; 1531 SDValue Callee = CLI.Callee; 1532 bool &IsTailCall = CLI.IsTailCall; 1533 CallingConv::ID CallConv = CLI.CallConv; 1534 bool IsVarArg = CLI.IsVarArg; 1535 MachineFunction &MF = DAG.getMachineFunction(); 1536 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1537 1538 // Detect unsupported vector argument and return types. 1539 if (Subtarget.hasVector()) { 1540 VerifyVectorTypes(Outs); 1541 VerifyVectorTypes(Ins); 1542 } 1543 1544 // Analyze the operands of the call, assigning locations to each operand. 1545 SmallVector<CCValAssign, 16> ArgLocs; 1546 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1547 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1548 1549 // We don't support GuaranteedTailCallOpt, only automatically-detected 1550 // sibling calls. 1551 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1552 IsTailCall = false; 1553 1554 // Get a count of how many bytes are to be pushed on the stack. 1555 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1556 1557 // Mark the start of the call. 1558 if (!IsTailCall) 1559 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1560 1561 // Copy argument values to their designated locations. 1562 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1563 SmallVector<SDValue, 8> MemOpChains; 1564 SDValue StackPtr; 1565 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1566 CCValAssign &VA = ArgLocs[I]; 1567 SDValue ArgValue = OutVals[I]; 1568 1569 if (VA.getLocInfo() == CCValAssign::Indirect) { 1570 // Store the argument in a stack slot and pass its address. 1571 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1572 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1573 MemOpChains.push_back( 1574 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1575 MachinePointerInfo::getFixedStack(MF, FI))); 1576 // If the original argument was split (e.g. i128), we need 1577 // to store all parts of it here (and pass just one address). 1578 unsigned ArgIndex = Outs[I].OrigArgIndex; 1579 assert (Outs[I].PartOffset == 0); 1580 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1581 SDValue PartValue = OutVals[I + 1]; 1582 unsigned PartOffset = Outs[I + 1].PartOffset; 1583 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1584 DAG.getIntPtrConstant(PartOffset, DL)); 1585 MemOpChains.push_back( 1586 DAG.getStore(Chain, DL, PartValue, Address, 1587 MachinePointerInfo::getFixedStack(MF, FI))); 1588 ++I; 1589 } 1590 ArgValue = SpillSlot; 1591 } else 1592 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1593 1594 if (VA.isRegLoc()) 1595 // Queue up the argument copies and emit them at the end. 1596 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1597 else { 1598 assert(VA.isMemLoc() && "Argument not register or memory"); 1599 1600 // Work out the address of the stack slot. Unpromoted ints and 1601 // floats are passed as right-justified 8-byte values. 1602 if (!StackPtr.getNode()) 1603 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1604 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1605 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1606 Offset += 4; 1607 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1608 DAG.getIntPtrConstant(Offset, DL)); 1609 1610 // Emit the store. 1611 MemOpChains.push_back( 1612 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1613 } 1614 } 1615 1616 // Join the stores, which are independent of one another. 1617 if (!MemOpChains.empty()) 1618 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1619 1620 // Accept direct calls by converting symbolic call addresses to the 1621 // associated Target* opcodes. Force %r1 to be used for indirect 1622 // tail calls. 1623 SDValue Glue; 1624 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1625 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1626 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1627 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1628 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1629 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1630 } else if (IsTailCall) { 1631 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1632 Glue = Chain.getValue(1); 1633 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1634 } 1635 1636 // Build a sequence of copy-to-reg nodes, chained and glued together. 1637 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1638 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1639 RegsToPass[I].second, Glue); 1640 Glue = Chain.getValue(1); 1641 } 1642 1643 // The first call operand is the chain and the second is the target address. 1644 SmallVector<SDValue, 8> Ops; 1645 Ops.push_back(Chain); 1646 Ops.push_back(Callee); 1647 1648 // Add argument registers to the end of the list so that they are 1649 // known live into the call. 1650 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1651 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1652 RegsToPass[I].second.getValueType())); 1653 1654 // Add a register mask operand representing the call-preserved registers. 1655 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1656 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1657 assert(Mask && "Missing call preserved mask for calling convention"); 1658 Ops.push_back(DAG.getRegisterMask(Mask)); 1659 1660 // Glue the call to the argument copies, if any. 1661 if (Glue.getNode()) 1662 Ops.push_back(Glue); 1663 1664 // Emit the call. 1665 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1666 if (IsTailCall) 1667 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1668 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1669 Glue = Chain.getValue(1); 1670 1671 // Mark the end of the call, which is glued to the call itself. 1672 Chain = DAG.getCALLSEQ_END(Chain, 1673 DAG.getConstant(NumBytes, DL, PtrVT, true), 1674 DAG.getConstant(0, DL, PtrVT, true), 1675 Glue, DL); 1676 Glue = Chain.getValue(1); 1677 1678 // Assign locations to each value returned by this call. 1679 SmallVector<CCValAssign, 16> RetLocs; 1680 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1681 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1682 1683 // Copy all of the result registers out of their specified physreg. 1684 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1685 CCValAssign &VA = RetLocs[I]; 1686 1687 // Copy the value out, gluing the copy to the end of the call sequence. 1688 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1689 VA.getLocVT(), Glue); 1690 Chain = RetValue.getValue(1); 1691 Glue = RetValue.getValue(2); 1692 1693 // Convert the value of the return register into the value that's 1694 // being returned. 1695 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1696 } 1697 1698 return Chain; 1699 } 1700 1701 bool SystemZTargetLowering:: 1702 CanLowerReturn(CallingConv::ID CallConv, 1703 MachineFunction &MF, bool isVarArg, 1704 const SmallVectorImpl<ISD::OutputArg> &Outs, 1705 LLVMContext &Context) const { 1706 // Detect unsupported vector return types. 1707 if (Subtarget.hasVector()) 1708 VerifyVectorTypes(Outs); 1709 1710 // Special case that we cannot easily detect in RetCC_SystemZ since 1711 // i128 is not a legal type. 1712 for (auto &Out : Outs) 1713 if (Out.ArgVT == MVT::i128) 1714 return false; 1715 1716 SmallVector<CCValAssign, 16> RetLocs; 1717 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1718 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1719 } 1720 1721 SDValue 1722 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1723 bool IsVarArg, 1724 const SmallVectorImpl<ISD::OutputArg> &Outs, 1725 const SmallVectorImpl<SDValue> &OutVals, 1726 const SDLoc &DL, SelectionDAG &DAG) const { 1727 MachineFunction &MF = DAG.getMachineFunction(); 1728 1729 // Detect unsupported vector return types. 1730 if (Subtarget.hasVector()) 1731 VerifyVectorTypes(Outs); 1732 1733 // Assign locations to each returned value. 1734 SmallVector<CCValAssign, 16> RetLocs; 1735 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1736 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1737 1738 // Quick exit for void returns 1739 if (RetLocs.empty()) 1740 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1741 1742 if (CallConv == CallingConv::GHC) 1743 report_fatal_error("GHC functions return void only"); 1744 1745 // Copy the result values into the output registers. 1746 SDValue Glue; 1747 SmallVector<SDValue, 4> RetOps; 1748 RetOps.push_back(Chain); 1749 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1750 CCValAssign &VA = RetLocs[I]; 1751 SDValue RetValue = OutVals[I]; 1752 1753 // Make the return register live on exit. 1754 assert(VA.isRegLoc() && "Can only return in registers!"); 1755 1756 // Promote the value as required. 1757 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1758 1759 // Chain and glue the copies together. 1760 Register Reg = VA.getLocReg(); 1761 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1762 Glue = Chain.getValue(1); 1763 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1764 } 1765 1766 // Update chain and glue. 1767 RetOps[0] = Chain; 1768 if (Glue.getNode()) 1769 RetOps.push_back(Glue); 1770 1771 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1772 } 1773 1774 // Return true if Op is an intrinsic node with chain that returns the CC value 1775 // as its only (other) argument. Provide the associated SystemZISD opcode and 1776 // the mask of valid CC values if so. 1777 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1778 unsigned &CCValid) { 1779 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1780 switch (Id) { 1781 case Intrinsic::s390_tbegin: 1782 Opcode = SystemZISD::TBEGIN; 1783 CCValid = SystemZ::CCMASK_TBEGIN; 1784 return true; 1785 1786 case Intrinsic::s390_tbegin_nofloat: 1787 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1788 CCValid = SystemZ::CCMASK_TBEGIN; 1789 return true; 1790 1791 case Intrinsic::s390_tend: 1792 Opcode = SystemZISD::TEND; 1793 CCValid = SystemZ::CCMASK_TEND; 1794 return true; 1795 1796 default: 1797 return false; 1798 } 1799 } 1800 1801 // Return true if Op is an intrinsic node without chain that returns the 1802 // CC value as its final argument. Provide the associated SystemZISD 1803 // opcode and the mask of valid CC values if so. 1804 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1805 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1806 switch (Id) { 1807 case Intrinsic::s390_vpkshs: 1808 case Intrinsic::s390_vpksfs: 1809 case Intrinsic::s390_vpksgs: 1810 Opcode = SystemZISD::PACKS_CC; 1811 CCValid = SystemZ::CCMASK_VCMP; 1812 return true; 1813 1814 case Intrinsic::s390_vpklshs: 1815 case Intrinsic::s390_vpklsfs: 1816 case Intrinsic::s390_vpklsgs: 1817 Opcode = SystemZISD::PACKLS_CC; 1818 CCValid = SystemZ::CCMASK_VCMP; 1819 return true; 1820 1821 case Intrinsic::s390_vceqbs: 1822 case Intrinsic::s390_vceqhs: 1823 case Intrinsic::s390_vceqfs: 1824 case Intrinsic::s390_vceqgs: 1825 Opcode = SystemZISD::VICMPES; 1826 CCValid = SystemZ::CCMASK_VCMP; 1827 return true; 1828 1829 case Intrinsic::s390_vchbs: 1830 case Intrinsic::s390_vchhs: 1831 case Intrinsic::s390_vchfs: 1832 case Intrinsic::s390_vchgs: 1833 Opcode = SystemZISD::VICMPHS; 1834 CCValid = SystemZ::CCMASK_VCMP; 1835 return true; 1836 1837 case Intrinsic::s390_vchlbs: 1838 case Intrinsic::s390_vchlhs: 1839 case Intrinsic::s390_vchlfs: 1840 case Intrinsic::s390_vchlgs: 1841 Opcode = SystemZISD::VICMPHLS; 1842 CCValid = SystemZ::CCMASK_VCMP; 1843 return true; 1844 1845 case Intrinsic::s390_vtm: 1846 Opcode = SystemZISD::VTM; 1847 CCValid = SystemZ::CCMASK_VCMP; 1848 return true; 1849 1850 case Intrinsic::s390_vfaebs: 1851 case Intrinsic::s390_vfaehs: 1852 case Intrinsic::s390_vfaefs: 1853 Opcode = SystemZISD::VFAE_CC; 1854 CCValid = SystemZ::CCMASK_ANY; 1855 return true; 1856 1857 case Intrinsic::s390_vfaezbs: 1858 case Intrinsic::s390_vfaezhs: 1859 case Intrinsic::s390_vfaezfs: 1860 Opcode = SystemZISD::VFAEZ_CC; 1861 CCValid = SystemZ::CCMASK_ANY; 1862 return true; 1863 1864 case Intrinsic::s390_vfeebs: 1865 case Intrinsic::s390_vfeehs: 1866 case Intrinsic::s390_vfeefs: 1867 Opcode = SystemZISD::VFEE_CC; 1868 CCValid = SystemZ::CCMASK_ANY; 1869 return true; 1870 1871 case Intrinsic::s390_vfeezbs: 1872 case Intrinsic::s390_vfeezhs: 1873 case Intrinsic::s390_vfeezfs: 1874 Opcode = SystemZISD::VFEEZ_CC; 1875 CCValid = SystemZ::CCMASK_ANY; 1876 return true; 1877 1878 case Intrinsic::s390_vfenebs: 1879 case Intrinsic::s390_vfenehs: 1880 case Intrinsic::s390_vfenefs: 1881 Opcode = SystemZISD::VFENE_CC; 1882 CCValid = SystemZ::CCMASK_ANY; 1883 return true; 1884 1885 case Intrinsic::s390_vfenezbs: 1886 case Intrinsic::s390_vfenezhs: 1887 case Intrinsic::s390_vfenezfs: 1888 Opcode = SystemZISD::VFENEZ_CC; 1889 CCValid = SystemZ::CCMASK_ANY; 1890 return true; 1891 1892 case Intrinsic::s390_vistrbs: 1893 case Intrinsic::s390_vistrhs: 1894 case Intrinsic::s390_vistrfs: 1895 Opcode = SystemZISD::VISTR_CC; 1896 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1897 return true; 1898 1899 case Intrinsic::s390_vstrcbs: 1900 case Intrinsic::s390_vstrchs: 1901 case Intrinsic::s390_vstrcfs: 1902 Opcode = SystemZISD::VSTRC_CC; 1903 CCValid = SystemZ::CCMASK_ANY; 1904 return true; 1905 1906 case Intrinsic::s390_vstrczbs: 1907 case Intrinsic::s390_vstrczhs: 1908 case Intrinsic::s390_vstrczfs: 1909 Opcode = SystemZISD::VSTRCZ_CC; 1910 CCValid = SystemZ::CCMASK_ANY; 1911 return true; 1912 1913 case Intrinsic::s390_vstrsb: 1914 case Intrinsic::s390_vstrsh: 1915 case Intrinsic::s390_vstrsf: 1916 Opcode = SystemZISD::VSTRS_CC; 1917 CCValid = SystemZ::CCMASK_ANY; 1918 return true; 1919 1920 case Intrinsic::s390_vstrszb: 1921 case Intrinsic::s390_vstrszh: 1922 case Intrinsic::s390_vstrszf: 1923 Opcode = SystemZISD::VSTRSZ_CC; 1924 CCValid = SystemZ::CCMASK_ANY; 1925 return true; 1926 1927 case Intrinsic::s390_vfcedbs: 1928 case Intrinsic::s390_vfcesbs: 1929 Opcode = SystemZISD::VFCMPES; 1930 CCValid = SystemZ::CCMASK_VCMP; 1931 return true; 1932 1933 case Intrinsic::s390_vfchdbs: 1934 case Intrinsic::s390_vfchsbs: 1935 Opcode = SystemZISD::VFCMPHS; 1936 CCValid = SystemZ::CCMASK_VCMP; 1937 return true; 1938 1939 case Intrinsic::s390_vfchedbs: 1940 case Intrinsic::s390_vfchesbs: 1941 Opcode = SystemZISD::VFCMPHES; 1942 CCValid = SystemZ::CCMASK_VCMP; 1943 return true; 1944 1945 case Intrinsic::s390_vftcidb: 1946 case Intrinsic::s390_vftcisb: 1947 Opcode = SystemZISD::VFTCI; 1948 CCValid = SystemZ::CCMASK_VCMP; 1949 return true; 1950 1951 case Intrinsic::s390_tdc: 1952 Opcode = SystemZISD::TDC; 1953 CCValid = SystemZ::CCMASK_TDC; 1954 return true; 1955 1956 default: 1957 return false; 1958 } 1959 } 1960 1961 // Emit an intrinsic with chain and an explicit CC register result. 1962 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1963 unsigned Opcode) { 1964 // Copy all operands except the intrinsic ID. 1965 unsigned NumOps = Op.getNumOperands(); 1966 SmallVector<SDValue, 6> Ops; 1967 Ops.reserve(NumOps - 1); 1968 Ops.push_back(Op.getOperand(0)); 1969 for (unsigned I = 2; I < NumOps; ++I) 1970 Ops.push_back(Op.getOperand(I)); 1971 1972 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1973 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1974 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1975 SDValue OldChain = SDValue(Op.getNode(), 1); 1976 SDValue NewChain = SDValue(Intr.getNode(), 1); 1977 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1978 return Intr.getNode(); 1979 } 1980 1981 // Emit an intrinsic with an explicit CC register result. 1982 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1983 unsigned Opcode) { 1984 // Copy all operands except the intrinsic ID. 1985 unsigned NumOps = Op.getNumOperands(); 1986 SmallVector<SDValue, 6> Ops; 1987 Ops.reserve(NumOps - 1); 1988 for (unsigned I = 1; I < NumOps; ++I) 1989 Ops.push_back(Op.getOperand(I)); 1990 1991 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1992 return Intr.getNode(); 1993 } 1994 1995 // CC is a comparison that will be implemented using an integer or 1996 // floating-point comparison. Return the condition code mask for 1997 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1998 // unsigned comparisons and clear for signed ones. In the floating-point 1999 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2000 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2001 #define CONV(X) \ 2002 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2003 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2004 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2005 2006 switch (CC) { 2007 default: 2008 llvm_unreachable("Invalid integer condition!"); 2009 2010 CONV(EQ); 2011 CONV(NE); 2012 CONV(GT); 2013 CONV(GE); 2014 CONV(LT); 2015 CONV(LE); 2016 2017 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2018 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2019 } 2020 #undef CONV 2021 } 2022 2023 // If C can be converted to a comparison against zero, adjust the operands 2024 // as necessary. 2025 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2026 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2027 return; 2028 2029 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2030 if (!ConstOp1) 2031 return; 2032 2033 int64_t Value = ConstOp1->getSExtValue(); 2034 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2035 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2036 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2037 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2038 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2039 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2040 } 2041 } 2042 2043 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2044 // adjust the operands as necessary. 2045 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2046 Comparison &C) { 2047 // For us to make any changes, it must a comparison between a single-use 2048 // load and a constant. 2049 if (!C.Op0.hasOneUse() || 2050 C.Op0.getOpcode() != ISD::LOAD || 2051 C.Op1.getOpcode() != ISD::Constant) 2052 return; 2053 2054 // We must have an 8- or 16-bit load. 2055 auto *Load = cast<LoadSDNode>(C.Op0); 2056 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2057 if ((NumBits != 8 && NumBits != 16) || 2058 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2059 return; 2060 2061 // The load must be an extending one and the constant must be within the 2062 // range of the unextended value. 2063 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2064 uint64_t Value = ConstOp1->getZExtValue(); 2065 uint64_t Mask = (1 << NumBits) - 1; 2066 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2067 // Make sure that ConstOp1 is in range of C.Op0. 2068 int64_t SignedValue = ConstOp1->getSExtValue(); 2069 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2070 return; 2071 if (C.ICmpType != SystemZICMP::SignedOnly) { 2072 // Unsigned comparison between two sign-extended values is equivalent 2073 // to unsigned comparison between two zero-extended values. 2074 Value &= Mask; 2075 } else if (NumBits == 8) { 2076 // Try to treat the comparison as unsigned, so that we can use CLI. 2077 // Adjust CCMask and Value as necessary. 2078 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2079 // Test whether the high bit of the byte is set. 2080 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2081 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2082 // Test whether the high bit of the byte is clear. 2083 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2084 else 2085 // No instruction exists for this combination. 2086 return; 2087 C.ICmpType = SystemZICMP::UnsignedOnly; 2088 } 2089 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2090 if (Value > Mask) 2091 return; 2092 // If the constant is in range, we can use any comparison. 2093 C.ICmpType = SystemZICMP::Any; 2094 } else 2095 return; 2096 2097 // Make sure that the first operand is an i32 of the right extension type. 2098 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2099 ISD::SEXTLOAD : 2100 ISD::ZEXTLOAD); 2101 if (C.Op0.getValueType() != MVT::i32 || 2102 Load->getExtensionType() != ExtType) { 2103 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2104 Load->getBasePtr(), Load->getPointerInfo(), 2105 Load->getMemoryVT(), Load->getAlignment(), 2106 Load->getMemOperand()->getFlags()); 2107 // Update the chain uses. 2108 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2109 } 2110 2111 // Make sure that the second operand is an i32 with the right value. 2112 if (C.Op1.getValueType() != MVT::i32 || 2113 Value != ConstOp1->getZExtValue()) 2114 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2115 } 2116 2117 // Return true if Op is either an unextended load, or a load suitable 2118 // for integer register-memory comparisons of type ICmpType. 2119 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2120 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2121 if (Load) { 2122 // There are no instructions to compare a register with a memory byte. 2123 if (Load->getMemoryVT() == MVT::i8) 2124 return false; 2125 // Otherwise decide on extension type. 2126 switch (Load->getExtensionType()) { 2127 case ISD::NON_EXTLOAD: 2128 return true; 2129 case ISD::SEXTLOAD: 2130 return ICmpType != SystemZICMP::UnsignedOnly; 2131 case ISD::ZEXTLOAD: 2132 return ICmpType != SystemZICMP::SignedOnly; 2133 default: 2134 break; 2135 } 2136 } 2137 return false; 2138 } 2139 2140 // Return true if it is better to swap the operands of C. 2141 static bool shouldSwapCmpOperands(const Comparison &C) { 2142 // Leave f128 comparisons alone, since they have no memory forms. 2143 if (C.Op0.getValueType() == MVT::f128) 2144 return false; 2145 2146 // Always keep a floating-point constant second, since comparisons with 2147 // zero can use LOAD TEST and comparisons with other constants make a 2148 // natural memory operand. 2149 if (isa<ConstantFPSDNode>(C.Op1)) 2150 return false; 2151 2152 // Never swap comparisons with zero since there are many ways to optimize 2153 // those later. 2154 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2155 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2156 return false; 2157 2158 // Also keep natural memory operands second if the loaded value is 2159 // only used here. Several comparisons have memory forms. 2160 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2161 return false; 2162 2163 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2164 // In that case we generally prefer the memory to be second. 2165 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2166 // The only exceptions are when the second operand is a constant and 2167 // we can use things like CHHSI. 2168 if (!ConstOp1) 2169 return true; 2170 // The unsigned memory-immediate instructions can handle 16-bit 2171 // unsigned integers. 2172 if (C.ICmpType != SystemZICMP::SignedOnly && 2173 isUInt<16>(ConstOp1->getZExtValue())) 2174 return false; 2175 // The signed memory-immediate instructions can handle 16-bit 2176 // signed integers. 2177 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2178 isInt<16>(ConstOp1->getSExtValue())) 2179 return false; 2180 return true; 2181 } 2182 2183 // Try to promote the use of CGFR and CLGFR. 2184 unsigned Opcode0 = C.Op0.getOpcode(); 2185 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2186 return true; 2187 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2188 return true; 2189 if (C.ICmpType != SystemZICMP::SignedOnly && 2190 Opcode0 == ISD::AND && 2191 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2192 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2193 return true; 2194 2195 return false; 2196 } 2197 2198 // Check whether C tests for equality between X and Y and whether X - Y 2199 // or Y - X is also computed. In that case it's better to compare the 2200 // result of the subtraction against zero. 2201 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2202 Comparison &C) { 2203 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2204 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2205 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2206 SDNode *N = *I; 2207 if (N->getOpcode() == ISD::SUB && 2208 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2209 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2210 C.Op0 = SDValue(N, 0); 2211 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2212 return; 2213 } 2214 } 2215 } 2216 } 2217 2218 // Check whether C compares a floating-point value with zero and if that 2219 // floating-point value is also negated. In this case we can use the 2220 // negation to set CC, so avoiding separate LOAD AND TEST and 2221 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2222 static void adjustForFNeg(Comparison &C) { 2223 // This optimization is invalid for strict comparisons, since FNEG 2224 // does not raise any exceptions. 2225 if (C.Chain) 2226 return; 2227 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2228 if (C1 && C1->isZero()) { 2229 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2230 SDNode *N = *I; 2231 if (N->getOpcode() == ISD::FNEG) { 2232 C.Op0 = SDValue(N, 0); 2233 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2234 return; 2235 } 2236 } 2237 } 2238 } 2239 2240 // Check whether C compares (shl X, 32) with 0 and whether X is 2241 // also sign-extended. In that case it is better to test the result 2242 // of the sign extension using LTGFR. 2243 // 2244 // This case is important because InstCombine transforms a comparison 2245 // with (sext (trunc X)) into a comparison with (shl X, 32). 2246 static void adjustForLTGFR(Comparison &C) { 2247 // Check for a comparison between (shl X, 32) and 0. 2248 if (C.Op0.getOpcode() == ISD::SHL && 2249 C.Op0.getValueType() == MVT::i64 && 2250 C.Op1.getOpcode() == ISD::Constant && 2251 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2252 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2253 if (C1 && C1->getZExtValue() == 32) { 2254 SDValue ShlOp0 = C.Op0.getOperand(0); 2255 // See whether X has any SIGN_EXTEND_INREG uses. 2256 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2257 SDNode *N = *I; 2258 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2259 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2260 C.Op0 = SDValue(N, 0); 2261 return; 2262 } 2263 } 2264 } 2265 } 2266 } 2267 2268 // If C compares the truncation of an extending load, try to compare 2269 // the untruncated value instead. This exposes more opportunities to 2270 // reuse CC. 2271 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2272 Comparison &C) { 2273 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2274 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2275 C.Op1.getOpcode() == ISD::Constant && 2276 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2277 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2278 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2279 unsigned Type = L->getExtensionType(); 2280 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2281 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2282 C.Op0 = C.Op0.getOperand(0); 2283 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2284 } 2285 } 2286 } 2287 } 2288 2289 // Return true if shift operation N has an in-range constant shift value. 2290 // Store it in ShiftVal if so. 2291 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2292 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2293 if (!Shift) 2294 return false; 2295 2296 uint64_t Amount = Shift->getZExtValue(); 2297 if (Amount >= N.getValueSizeInBits()) 2298 return false; 2299 2300 ShiftVal = Amount; 2301 return true; 2302 } 2303 2304 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2305 // instruction and whether the CC value is descriptive enough to handle 2306 // a comparison of type Opcode between the AND result and CmpVal. 2307 // CCMask says which comparison result is being tested and BitSize is 2308 // the number of bits in the operands. If TEST UNDER MASK can be used, 2309 // return the corresponding CC mask, otherwise return 0. 2310 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2311 uint64_t Mask, uint64_t CmpVal, 2312 unsigned ICmpType) { 2313 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2314 2315 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2316 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2317 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2318 return 0; 2319 2320 // Work out the masks for the lowest and highest bits. 2321 unsigned HighShift = 63 - countLeadingZeros(Mask); 2322 uint64_t High = uint64_t(1) << HighShift; 2323 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2324 2325 // Signed ordered comparisons are effectively unsigned if the sign 2326 // bit is dropped. 2327 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2328 2329 // Check for equality comparisons with 0, or the equivalent. 2330 if (CmpVal == 0) { 2331 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2332 return SystemZ::CCMASK_TM_ALL_0; 2333 if (CCMask == SystemZ::CCMASK_CMP_NE) 2334 return SystemZ::CCMASK_TM_SOME_1; 2335 } 2336 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2337 if (CCMask == SystemZ::CCMASK_CMP_LT) 2338 return SystemZ::CCMASK_TM_ALL_0; 2339 if (CCMask == SystemZ::CCMASK_CMP_GE) 2340 return SystemZ::CCMASK_TM_SOME_1; 2341 } 2342 if (EffectivelyUnsigned && CmpVal < Low) { 2343 if (CCMask == SystemZ::CCMASK_CMP_LE) 2344 return SystemZ::CCMASK_TM_ALL_0; 2345 if (CCMask == SystemZ::CCMASK_CMP_GT) 2346 return SystemZ::CCMASK_TM_SOME_1; 2347 } 2348 2349 // Check for equality comparisons with the mask, or the equivalent. 2350 if (CmpVal == Mask) { 2351 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2352 return SystemZ::CCMASK_TM_ALL_1; 2353 if (CCMask == SystemZ::CCMASK_CMP_NE) 2354 return SystemZ::CCMASK_TM_SOME_0; 2355 } 2356 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2357 if (CCMask == SystemZ::CCMASK_CMP_GT) 2358 return SystemZ::CCMASK_TM_ALL_1; 2359 if (CCMask == SystemZ::CCMASK_CMP_LE) 2360 return SystemZ::CCMASK_TM_SOME_0; 2361 } 2362 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2363 if (CCMask == SystemZ::CCMASK_CMP_GE) 2364 return SystemZ::CCMASK_TM_ALL_1; 2365 if (CCMask == SystemZ::CCMASK_CMP_LT) 2366 return SystemZ::CCMASK_TM_SOME_0; 2367 } 2368 2369 // Check for ordered comparisons with the top bit. 2370 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2371 if (CCMask == SystemZ::CCMASK_CMP_LE) 2372 return SystemZ::CCMASK_TM_MSB_0; 2373 if (CCMask == SystemZ::CCMASK_CMP_GT) 2374 return SystemZ::CCMASK_TM_MSB_1; 2375 } 2376 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2377 if (CCMask == SystemZ::CCMASK_CMP_LT) 2378 return SystemZ::CCMASK_TM_MSB_0; 2379 if (CCMask == SystemZ::CCMASK_CMP_GE) 2380 return SystemZ::CCMASK_TM_MSB_1; 2381 } 2382 2383 // If there are just two bits, we can do equality checks for Low and High 2384 // as well. 2385 if (Mask == Low + High) { 2386 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2387 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2388 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2389 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2390 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2391 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2392 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2393 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2394 } 2395 2396 // Looks like we've exhausted our options. 2397 return 0; 2398 } 2399 2400 // See whether C can be implemented as a TEST UNDER MASK instruction. 2401 // Update the arguments with the TM version if so. 2402 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2403 Comparison &C) { 2404 // Check that we have a comparison with a constant. 2405 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2406 if (!ConstOp1) 2407 return; 2408 uint64_t CmpVal = ConstOp1->getZExtValue(); 2409 2410 // Check whether the nonconstant input is an AND with a constant mask. 2411 Comparison NewC(C); 2412 uint64_t MaskVal; 2413 ConstantSDNode *Mask = nullptr; 2414 if (C.Op0.getOpcode() == ISD::AND) { 2415 NewC.Op0 = C.Op0.getOperand(0); 2416 NewC.Op1 = C.Op0.getOperand(1); 2417 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2418 if (!Mask) 2419 return; 2420 MaskVal = Mask->getZExtValue(); 2421 } else { 2422 // There is no instruction to compare with a 64-bit immediate 2423 // so use TMHH instead if possible. We need an unsigned ordered 2424 // comparison with an i64 immediate. 2425 if (NewC.Op0.getValueType() != MVT::i64 || 2426 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2427 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2428 NewC.ICmpType == SystemZICMP::SignedOnly) 2429 return; 2430 // Convert LE and GT comparisons into LT and GE. 2431 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2432 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2433 if (CmpVal == uint64_t(-1)) 2434 return; 2435 CmpVal += 1; 2436 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2437 } 2438 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2439 // be masked off without changing the result. 2440 MaskVal = -(CmpVal & -CmpVal); 2441 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2442 } 2443 if (!MaskVal) 2444 return; 2445 2446 // Check whether the combination of mask, comparison value and comparison 2447 // type are suitable. 2448 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2449 unsigned NewCCMask, ShiftVal; 2450 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2451 NewC.Op0.getOpcode() == ISD::SHL && 2452 isSimpleShift(NewC.Op0, ShiftVal) && 2453 (MaskVal >> ShiftVal != 0) && 2454 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2455 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2456 MaskVal >> ShiftVal, 2457 CmpVal >> ShiftVal, 2458 SystemZICMP::Any))) { 2459 NewC.Op0 = NewC.Op0.getOperand(0); 2460 MaskVal >>= ShiftVal; 2461 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2462 NewC.Op0.getOpcode() == ISD::SRL && 2463 isSimpleShift(NewC.Op0, ShiftVal) && 2464 (MaskVal << ShiftVal != 0) && 2465 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2466 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2467 MaskVal << ShiftVal, 2468 CmpVal << ShiftVal, 2469 SystemZICMP::UnsignedOnly))) { 2470 NewC.Op0 = NewC.Op0.getOperand(0); 2471 MaskVal <<= ShiftVal; 2472 } else { 2473 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2474 NewC.ICmpType); 2475 if (!NewCCMask) 2476 return; 2477 } 2478 2479 // Go ahead and make the change. 2480 C.Opcode = SystemZISD::TM; 2481 C.Op0 = NewC.Op0; 2482 if (Mask && Mask->getZExtValue() == MaskVal) 2483 C.Op1 = SDValue(Mask, 0); 2484 else 2485 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2486 C.CCValid = SystemZ::CCMASK_TM; 2487 C.CCMask = NewCCMask; 2488 } 2489 2490 // See whether the comparison argument contains a redundant AND 2491 // and remove it if so. This sometimes happens due to the generic 2492 // BRCOND expansion. 2493 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2494 Comparison &C) { 2495 if (C.Op0.getOpcode() != ISD::AND) 2496 return; 2497 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2498 if (!Mask) 2499 return; 2500 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2501 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2502 return; 2503 2504 C.Op0 = C.Op0.getOperand(0); 2505 } 2506 2507 // Return a Comparison that tests the condition-code result of intrinsic 2508 // node Call against constant integer CC using comparison code Cond. 2509 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2510 // and CCValid is the set of possible condition-code results. 2511 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2512 SDValue Call, unsigned CCValid, uint64_t CC, 2513 ISD::CondCode Cond) { 2514 Comparison C(Call, SDValue(), SDValue()); 2515 C.Opcode = Opcode; 2516 C.CCValid = CCValid; 2517 if (Cond == ISD::SETEQ) 2518 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2519 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2520 else if (Cond == ISD::SETNE) 2521 // ...and the inverse of that. 2522 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2523 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2524 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2525 // always true for CC>3. 2526 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2527 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2528 // ...and the inverse of that. 2529 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2530 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2531 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2532 // always true for CC>3. 2533 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2534 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2535 // ...and the inverse of that. 2536 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2537 else 2538 llvm_unreachable("Unexpected integer comparison type"); 2539 C.CCMask &= CCValid; 2540 return C; 2541 } 2542 2543 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2544 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2545 ISD::CondCode Cond, const SDLoc &DL, 2546 SDValue Chain = SDValue(), 2547 bool IsSignaling = false) { 2548 if (CmpOp1.getOpcode() == ISD::Constant) { 2549 assert(!Chain); 2550 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2551 unsigned Opcode, CCValid; 2552 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2553 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2554 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2555 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2556 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2557 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2558 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2559 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2560 } 2561 Comparison C(CmpOp0, CmpOp1, Chain); 2562 C.CCMask = CCMaskForCondCode(Cond); 2563 if (C.Op0.getValueType().isFloatingPoint()) { 2564 C.CCValid = SystemZ::CCMASK_FCMP; 2565 if (!C.Chain) 2566 C.Opcode = SystemZISD::FCMP; 2567 else if (!IsSignaling) 2568 C.Opcode = SystemZISD::STRICT_FCMP; 2569 else 2570 C.Opcode = SystemZISD::STRICT_FCMPS; 2571 adjustForFNeg(C); 2572 } else { 2573 assert(!C.Chain); 2574 C.CCValid = SystemZ::CCMASK_ICMP; 2575 C.Opcode = SystemZISD::ICMP; 2576 // Choose the type of comparison. Equality and inequality tests can 2577 // use either signed or unsigned comparisons. The choice also doesn't 2578 // matter if both sign bits are known to be clear. In those cases we 2579 // want to give the main isel code the freedom to choose whichever 2580 // form fits best. 2581 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2582 C.CCMask == SystemZ::CCMASK_CMP_NE || 2583 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2584 C.ICmpType = SystemZICMP::Any; 2585 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2586 C.ICmpType = SystemZICMP::UnsignedOnly; 2587 else 2588 C.ICmpType = SystemZICMP::SignedOnly; 2589 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2590 adjustForRedundantAnd(DAG, DL, C); 2591 adjustZeroCmp(DAG, DL, C); 2592 adjustSubwordCmp(DAG, DL, C); 2593 adjustForSubtraction(DAG, DL, C); 2594 adjustForLTGFR(C); 2595 adjustICmpTruncate(DAG, DL, C); 2596 } 2597 2598 if (shouldSwapCmpOperands(C)) { 2599 std::swap(C.Op0, C.Op1); 2600 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2601 } 2602 2603 adjustForTestUnderMask(DAG, DL, C); 2604 return C; 2605 } 2606 2607 // Emit the comparison instruction described by C. 2608 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2609 if (!C.Op1.getNode()) { 2610 SDNode *Node; 2611 switch (C.Op0.getOpcode()) { 2612 case ISD::INTRINSIC_W_CHAIN: 2613 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2614 return SDValue(Node, 0); 2615 case ISD::INTRINSIC_WO_CHAIN: 2616 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2617 return SDValue(Node, Node->getNumValues() - 1); 2618 default: 2619 llvm_unreachable("Invalid comparison operands"); 2620 } 2621 } 2622 if (C.Opcode == SystemZISD::ICMP) 2623 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2624 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2625 if (C.Opcode == SystemZISD::TM) { 2626 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2627 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2628 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2629 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2630 } 2631 if (C.Chain) { 2632 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2633 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2634 } 2635 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2636 } 2637 2638 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2639 // 64 bits. Extend is the extension type to use. Store the high part 2640 // in Hi and the low part in Lo. 2641 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2642 SDValue Op0, SDValue Op1, SDValue &Hi, 2643 SDValue &Lo) { 2644 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2645 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2646 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2647 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2648 DAG.getConstant(32, DL, MVT::i64)); 2649 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2650 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2651 } 2652 2653 // Lower a binary operation that produces two VT results, one in each 2654 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2655 // and Opcode performs the GR128 operation. Store the even register result 2656 // in Even and the odd register result in Odd. 2657 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2658 unsigned Opcode, SDValue Op0, SDValue Op1, 2659 SDValue &Even, SDValue &Odd) { 2660 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2661 bool Is32Bit = is32Bit(VT); 2662 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2663 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2664 } 2665 2666 // Return an i32 value that is 1 if the CC value produced by CCReg is 2667 // in the mask CCMask and 0 otherwise. CC is known to have a value 2668 // in CCValid, so other values can be ignored. 2669 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2670 unsigned CCValid, unsigned CCMask) { 2671 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2672 DAG.getConstant(0, DL, MVT::i32), 2673 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2674 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2675 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2676 } 2677 2678 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2679 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2680 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2681 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2682 // floating-point comparisons. 2683 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2684 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2685 switch (CC) { 2686 case ISD::SETOEQ: 2687 case ISD::SETEQ: 2688 switch (Mode) { 2689 case CmpMode::Int: return SystemZISD::VICMPE; 2690 case CmpMode::FP: return SystemZISD::VFCMPE; 2691 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2692 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2693 } 2694 llvm_unreachable("Bad mode"); 2695 2696 case ISD::SETOGE: 2697 case ISD::SETGE: 2698 switch (Mode) { 2699 case CmpMode::Int: return 0; 2700 case CmpMode::FP: return SystemZISD::VFCMPHE; 2701 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2702 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2703 } 2704 llvm_unreachable("Bad mode"); 2705 2706 case ISD::SETOGT: 2707 case ISD::SETGT: 2708 switch (Mode) { 2709 case CmpMode::Int: return SystemZISD::VICMPH; 2710 case CmpMode::FP: return SystemZISD::VFCMPH; 2711 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2712 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2713 } 2714 llvm_unreachable("Bad mode"); 2715 2716 case ISD::SETUGT: 2717 switch (Mode) { 2718 case CmpMode::Int: return SystemZISD::VICMPHL; 2719 case CmpMode::FP: return 0; 2720 case CmpMode::StrictFP: return 0; 2721 case CmpMode::SignalingFP: return 0; 2722 } 2723 llvm_unreachable("Bad mode"); 2724 2725 default: 2726 return 0; 2727 } 2728 } 2729 2730 // Return the SystemZISD vector comparison operation for CC or its inverse, 2731 // or 0 if neither can be done directly. Indicate in Invert whether the 2732 // result is for the inverse of CC. Mode is as above. 2733 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2734 bool &Invert) { 2735 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2736 Invert = false; 2737 return Opcode; 2738 } 2739 2740 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2741 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2742 Invert = true; 2743 return Opcode; 2744 } 2745 2746 return 0; 2747 } 2748 2749 // Return a v2f64 that contains the extended form of elements Start and Start+1 2750 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2751 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2752 SDValue Op, SDValue Chain) { 2753 int Mask[] = { Start, -1, Start + 1, -1 }; 2754 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2755 if (Chain) { 2756 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2757 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2758 } 2759 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2760 } 2761 2762 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2763 // producing a result of type VT. If Chain is nonnull, return the strict form. 2764 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2765 const SDLoc &DL, EVT VT, 2766 SDValue CmpOp0, 2767 SDValue CmpOp1, 2768 SDValue Chain) const { 2769 // There is no hardware support for v4f32 (unless we have the vector 2770 // enhancements facility 1), so extend the vector into two v2f64s 2771 // and compare those. 2772 if (CmpOp0.getValueType() == MVT::v4f32 && 2773 !Subtarget.hasVectorEnhancements1()) { 2774 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2775 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2776 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2777 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2778 if (Chain) { 2779 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2780 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2781 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2782 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2783 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2784 H1.getValue(1), L1.getValue(1), 2785 HRes.getValue(1), LRes.getValue(1) }; 2786 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2787 SDValue Ops[2] = { Res, NewChain }; 2788 return DAG.getMergeValues(Ops, DL); 2789 } 2790 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2791 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2792 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2793 } 2794 if (Chain) { 2795 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2796 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2797 } 2798 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2799 } 2800 2801 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2802 // an integer mask of type VT. If Chain is nonnull, we have a strict 2803 // floating-point comparison. If in addition IsSignaling is true, we have 2804 // a strict signaling floating-point comparison. 2805 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2806 const SDLoc &DL, EVT VT, 2807 ISD::CondCode CC, 2808 SDValue CmpOp0, 2809 SDValue CmpOp1, 2810 SDValue Chain, 2811 bool IsSignaling) const { 2812 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2813 assert (!Chain || IsFP); 2814 assert (!IsSignaling || Chain); 2815 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2816 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2817 bool Invert = false; 2818 SDValue Cmp; 2819 switch (CC) { 2820 // Handle tests for order using (or (ogt y x) (oge x y)). 2821 case ISD::SETUO: 2822 Invert = true; 2823 LLVM_FALLTHROUGH; 2824 case ISD::SETO: { 2825 assert(IsFP && "Unexpected integer comparison"); 2826 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2827 DL, VT, CmpOp1, CmpOp0, Chain); 2828 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2829 DL, VT, CmpOp0, CmpOp1, Chain); 2830 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2831 if (Chain) 2832 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2833 LT.getValue(1), GE.getValue(1)); 2834 break; 2835 } 2836 2837 // Handle <> tests using (or (ogt y x) (ogt x y)). 2838 case ISD::SETUEQ: 2839 Invert = true; 2840 LLVM_FALLTHROUGH; 2841 case ISD::SETONE: { 2842 assert(IsFP && "Unexpected integer comparison"); 2843 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2844 DL, VT, CmpOp1, CmpOp0, Chain); 2845 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2846 DL, VT, CmpOp0, CmpOp1, Chain); 2847 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2848 if (Chain) 2849 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2850 LT.getValue(1), GT.getValue(1)); 2851 break; 2852 } 2853 2854 // Otherwise a single comparison is enough. It doesn't really 2855 // matter whether we try the inversion or the swap first, since 2856 // there are no cases where both work. 2857 default: 2858 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2859 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2860 else { 2861 CC = ISD::getSetCCSwappedOperands(CC); 2862 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2863 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2864 else 2865 llvm_unreachable("Unhandled comparison"); 2866 } 2867 if (Chain) 2868 Chain = Cmp.getValue(1); 2869 break; 2870 } 2871 if (Invert) { 2872 SDValue Mask = 2873 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2874 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2875 } 2876 if (Chain && Chain.getNode() != Cmp.getNode()) { 2877 SDValue Ops[2] = { Cmp, Chain }; 2878 Cmp = DAG.getMergeValues(Ops, DL); 2879 } 2880 return Cmp; 2881 } 2882 2883 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2884 SelectionDAG &DAG) const { 2885 SDValue CmpOp0 = Op.getOperand(0); 2886 SDValue CmpOp1 = Op.getOperand(1); 2887 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2888 SDLoc DL(Op); 2889 EVT VT = Op.getValueType(); 2890 if (VT.isVector()) 2891 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2892 2893 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2894 SDValue CCReg = emitCmp(DAG, DL, C); 2895 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2896 } 2897 2898 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2899 SelectionDAG &DAG, 2900 bool IsSignaling) const { 2901 SDValue Chain = Op.getOperand(0); 2902 SDValue CmpOp0 = Op.getOperand(1); 2903 SDValue CmpOp1 = Op.getOperand(2); 2904 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2905 SDLoc DL(Op); 2906 EVT VT = Op.getNode()->getValueType(0); 2907 if (VT.isVector()) { 2908 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2909 Chain, IsSignaling); 2910 return Res.getValue(Op.getResNo()); 2911 } 2912 2913 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2914 SDValue CCReg = emitCmp(DAG, DL, C); 2915 CCReg->setFlags(Op->getFlags()); 2916 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2917 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2918 return DAG.getMergeValues(Ops, DL); 2919 } 2920 2921 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2922 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2923 SDValue CmpOp0 = Op.getOperand(2); 2924 SDValue CmpOp1 = Op.getOperand(3); 2925 SDValue Dest = Op.getOperand(4); 2926 SDLoc DL(Op); 2927 2928 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2929 SDValue CCReg = emitCmp(DAG, DL, C); 2930 return DAG.getNode( 2931 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2932 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2933 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2934 } 2935 2936 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2937 // allowing Pos and Neg to be wider than CmpOp. 2938 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2939 return (Neg.getOpcode() == ISD::SUB && 2940 Neg.getOperand(0).getOpcode() == ISD::Constant && 2941 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2942 Neg.getOperand(1) == Pos && 2943 (Pos == CmpOp || 2944 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2945 Pos.getOperand(0) == CmpOp))); 2946 } 2947 2948 // Return the absolute or negative absolute of Op; IsNegative decides which. 2949 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2950 bool IsNegative) { 2951 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2952 if (IsNegative) 2953 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2954 DAG.getConstant(0, DL, Op.getValueType()), Op); 2955 return Op; 2956 } 2957 2958 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2959 SelectionDAG &DAG) const { 2960 SDValue CmpOp0 = Op.getOperand(0); 2961 SDValue CmpOp1 = Op.getOperand(1); 2962 SDValue TrueOp = Op.getOperand(2); 2963 SDValue FalseOp = Op.getOperand(3); 2964 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2965 SDLoc DL(Op); 2966 2967 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2968 2969 // Check for absolute and negative-absolute selections, including those 2970 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2971 // This check supplements the one in DAGCombiner. 2972 if (C.Opcode == SystemZISD::ICMP && 2973 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2974 C.CCMask != SystemZ::CCMASK_CMP_NE && 2975 C.Op1.getOpcode() == ISD::Constant && 2976 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2977 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2978 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2979 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2980 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2981 } 2982 2983 SDValue CCReg = emitCmp(DAG, DL, C); 2984 SDValue Ops[] = {TrueOp, FalseOp, 2985 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2986 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2987 2988 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2989 } 2990 2991 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2992 SelectionDAG &DAG) const { 2993 SDLoc DL(Node); 2994 const GlobalValue *GV = Node->getGlobal(); 2995 int64_t Offset = Node->getOffset(); 2996 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2997 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2998 2999 SDValue Result; 3000 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3001 if (isInt<32>(Offset)) { 3002 // Assign anchors at 1<<12 byte boundaries. 3003 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3004 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3005 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3006 3007 // The offset can be folded into the address if it is aligned to a 3008 // halfword. 3009 Offset -= Anchor; 3010 if (Offset != 0 && (Offset & 1) == 0) { 3011 SDValue Full = 3012 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3013 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3014 Offset = 0; 3015 } 3016 } else { 3017 // Conservatively load a constant offset greater than 32 bits into a 3018 // register below. 3019 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3020 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3021 } 3022 } else { 3023 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3024 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3025 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3026 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3027 } 3028 3029 // If there was a non-zero offset that we didn't fold, create an explicit 3030 // addition for it. 3031 if (Offset != 0) 3032 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3033 DAG.getConstant(Offset, DL, PtrVT)); 3034 3035 return Result; 3036 } 3037 3038 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3039 SelectionDAG &DAG, 3040 unsigned Opcode, 3041 SDValue GOTOffset) const { 3042 SDLoc DL(Node); 3043 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3044 SDValue Chain = DAG.getEntryNode(); 3045 SDValue Glue; 3046 3047 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3048 CallingConv::GHC) 3049 report_fatal_error("In GHC calling convention TLS is not supported"); 3050 3051 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3052 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3053 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3054 Glue = Chain.getValue(1); 3055 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3056 Glue = Chain.getValue(1); 3057 3058 // The first call operand is the chain and the second is the TLS symbol. 3059 SmallVector<SDValue, 8> Ops; 3060 Ops.push_back(Chain); 3061 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3062 Node->getValueType(0), 3063 0, 0)); 3064 3065 // Add argument registers to the end of the list so that they are 3066 // known live into the call. 3067 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3068 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3069 3070 // Add a register mask operand representing the call-preserved registers. 3071 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3072 const uint32_t *Mask = 3073 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3074 assert(Mask && "Missing call preserved mask for calling convention"); 3075 Ops.push_back(DAG.getRegisterMask(Mask)); 3076 3077 // Glue the call to the argument copies. 3078 Ops.push_back(Glue); 3079 3080 // Emit the call. 3081 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3082 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3083 Glue = Chain.getValue(1); 3084 3085 // Copy the return value from %r2. 3086 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3087 } 3088 3089 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3090 SelectionDAG &DAG) const { 3091 SDValue Chain = DAG.getEntryNode(); 3092 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3093 3094 // The high part of the thread pointer is in access register 0. 3095 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3096 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3097 3098 // The low part of the thread pointer is in access register 1. 3099 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3100 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3101 3102 // Merge them into a single 64-bit address. 3103 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3104 DAG.getConstant(32, DL, PtrVT)); 3105 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3106 } 3107 3108 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3109 SelectionDAG &DAG) const { 3110 if (DAG.getTarget().useEmulatedTLS()) 3111 return LowerToTLSEmulatedModel(Node, DAG); 3112 SDLoc DL(Node); 3113 const GlobalValue *GV = Node->getGlobal(); 3114 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3115 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3116 3117 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3118 CallingConv::GHC) 3119 report_fatal_error("In GHC calling convention TLS is not supported"); 3120 3121 SDValue TP = lowerThreadPointer(DL, DAG); 3122 3123 // Get the offset of GA from the thread pointer, based on the TLS model. 3124 SDValue Offset; 3125 switch (model) { 3126 case TLSModel::GeneralDynamic: { 3127 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3128 SystemZConstantPoolValue *CPV = 3129 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3130 3131 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3132 Offset = DAG.getLoad( 3133 PtrVT, DL, DAG.getEntryNode(), Offset, 3134 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3135 3136 // Call __tls_get_offset to retrieve the offset. 3137 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3138 break; 3139 } 3140 3141 case TLSModel::LocalDynamic: { 3142 // Load the GOT offset of the module ID. 3143 SystemZConstantPoolValue *CPV = 3144 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3145 3146 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3147 Offset = DAG.getLoad( 3148 PtrVT, DL, DAG.getEntryNode(), Offset, 3149 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3150 3151 // Call __tls_get_offset to retrieve the module base offset. 3152 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3153 3154 // Note: The SystemZLDCleanupPass will remove redundant computations 3155 // of the module base offset. Count total number of local-dynamic 3156 // accesses to trigger execution of that pass. 3157 SystemZMachineFunctionInfo* MFI = 3158 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3159 MFI->incNumLocalDynamicTLSAccesses(); 3160 3161 // Add the per-symbol offset. 3162 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3163 3164 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3165 DTPOffset = DAG.getLoad( 3166 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3167 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3168 3169 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3170 break; 3171 } 3172 3173 case TLSModel::InitialExec: { 3174 // Load the offset from the GOT. 3175 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3176 SystemZII::MO_INDNTPOFF); 3177 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3178 Offset = 3179 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3180 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3181 break; 3182 } 3183 3184 case TLSModel::LocalExec: { 3185 // Force the offset into the constant pool and load it from there. 3186 SystemZConstantPoolValue *CPV = 3187 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3188 3189 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3190 Offset = DAG.getLoad( 3191 PtrVT, DL, DAG.getEntryNode(), Offset, 3192 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3193 break; 3194 } 3195 } 3196 3197 // Add the base and offset together. 3198 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3199 } 3200 3201 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3202 SelectionDAG &DAG) const { 3203 SDLoc DL(Node); 3204 const BlockAddress *BA = Node->getBlockAddress(); 3205 int64_t Offset = Node->getOffset(); 3206 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3207 3208 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3209 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3210 return Result; 3211 } 3212 3213 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3214 SelectionDAG &DAG) const { 3215 SDLoc DL(JT); 3216 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3217 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3218 3219 // Use LARL to load the address of the table. 3220 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3221 } 3222 3223 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3224 SelectionDAG &DAG) const { 3225 SDLoc DL(CP); 3226 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3227 3228 SDValue Result; 3229 if (CP->isMachineConstantPoolEntry()) 3230 Result = 3231 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3232 else 3233 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3234 CP->getOffset()); 3235 3236 // Use LARL to load the address of the constant pool entry. 3237 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3238 } 3239 3240 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3241 SelectionDAG &DAG) const { 3242 auto *TFL = 3243 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3244 MachineFunction &MF = DAG.getMachineFunction(); 3245 MachineFrameInfo &MFI = MF.getFrameInfo(); 3246 MFI.setFrameAddressIsTaken(true); 3247 3248 SDLoc DL(Op); 3249 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3250 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3251 3252 // Return null if the back chain is not present. 3253 bool HasBackChain = MF.getFunction().hasFnAttribute("backchain"); 3254 if (TFL->usePackedStack(MF) && !HasBackChain) 3255 return DAG.getConstant(0, DL, PtrVT); 3256 3257 // By definition, the frame address is the address of the back chain. 3258 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3259 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3260 3261 // FIXME The frontend should detect this case. 3262 if (Depth > 0) { 3263 report_fatal_error("Unsupported stack frame traversal count"); 3264 } 3265 3266 return BackChain; 3267 } 3268 3269 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3270 SelectionDAG &DAG) const { 3271 MachineFunction &MF = DAG.getMachineFunction(); 3272 MachineFrameInfo &MFI = MF.getFrameInfo(); 3273 MFI.setReturnAddressIsTaken(true); 3274 3275 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3276 return SDValue(); 3277 3278 SDLoc DL(Op); 3279 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3280 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3281 3282 // FIXME The frontend should detect this case. 3283 if (Depth > 0) { 3284 report_fatal_error("Unsupported stack frame traversal count"); 3285 } 3286 3287 // Return R14D, which has the return address. Mark it an implicit live-in. 3288 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3289 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3290 } 3291 3292 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3293 SelectionDAG &DAG) const { 3294 SDLoc DL(Op); 3295 SDValue In = Op.getOperand(0); 3296 EVT InVT = In.getValueType(); 3297 EVT ResVT = Op.getValueType(); 3298 3299 // Convert loads directly. This is normally done by DAGCombiner, 3300 // but we need this case for bitcasts that are created during lowering 3301 // and which are then lowered themselves. 3302 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3303 if (ISD::isNormalLoad(LoadN)) { 3304 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3305 LoadN->getBasePtr(), LoadN->getMemOperand()); 3306 // Update the chain uses. 3307 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3308 return NewLoad; 3309 } 3310 3311 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3312 SDValue In64; 3313 if (Subtarget.hasHighWord()) { 3314 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3315 MVT::i64); 3316 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3317 MVT::i64, SDValue(U64, 0), In); 3318 } else { 3319 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3320 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3321 DAG.getConstant(32, DL, MVT::i64)); 3322 } 3323 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3324 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3325 DL, MVT::f32, Out64); 3326 } 3327 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3328 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3329 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3330 MVT::f64, SDValue(U64, 0), In); 3331 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3332 if (Subtarget.hasHighWord()) 3333 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3334 MVT::i32, Out64); 3335 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3336 DAG.getConstant(32, DL, MVT::i64)); 3337 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3338 } 3339 llvm_unreachable("Unexpected bitcast combination"); 3340 } 3341 3342 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3343 SelectionDAG &DAG) const { 3344 MachineFunction &MF = DAG.getMachineFunction(); 3345 SystemZMachineFunctionInfo *FuncInfo = 3346 MF.getInfo<SystemZMachineFunctionInfo>(); 3347 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3348 3349 SDValue Chain = Op.getOperand(0); 3350 SDValue Addr = Op.getOperand(1); 3351 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3352 SDLoc DL(Op); 3353 3354 // The initial values of each field. 3355 const unsigned NumFields = 4; 3356 SDValue Fields[NumFields] = { 3357 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3358 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3359 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3360 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3361 }; 3362 3363 // Store each field into its respective slot. 3364 SDValue MemOps[NumFields]; 3365 unsigned Offset = 0; 3366 for (unsigned I = 0; I < NumFields; ++I) { 3367 SDValue FieldAddr = Addr; 3368 if (Offset != 0) 3369 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3370 DAG.getIntPtrConstant(Offset, DL)); 3371 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3372 MachinePointerInfo(SV, Offset)); 3373 Offset += 8; 3374 } 3375 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3376 } 3377 3378 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3379 SelectionDAG &DAG) const { 3380 SDValue Chain = Op.getOperand(0); 3381 SDValue DstPtr = Op.getOperand(1); 3382 SDValue SrcPtr = Op.getOperand(2); 3383 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3384 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3385 SDLoc DL(Op); 3386 3387 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3388 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3389 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3390 MachinePointerInfo(SrcSV)); 3391 } 3392 3393 SDValue SystemZTargetLowering:: 3394 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3395 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3396 MachineFunction &MF = DAG.getMachineFunction(); 3397 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3398 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3399 3400 SDValue Chain = Op.getOperand(0); 3401 SDValue Size = Op.getOperand(1); 3402 SDValue Align = Op.getOperand(2); 3403 SDLoc DL(Op); 3404 3405 // If user has set the no alignment function attribute, ignore 3406 // alloca alignments. 3407 uint64_t AlignVal = (RealignOpt ? 3408 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3409 3410 uint64_t StackAlign = TFI->getStackAlignment(); 3411 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3412 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3413 3414 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3415 SDValue NeededSpace = Size; 3416 3417 // Get a reference to the stack pointer. 3418 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3419 3420 // If we need a backchain, save it now. 3421 SDValue Backchain; 3422 if (StoreBackchain) 3423 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3424 3425 // Add extra space for alignment if needed. 3426 if (ExtraAlignSpace) 3427 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3428 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3429 3430 // Get the new stack pointer value. 3431 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3432 3433 // Copy the new stack pointer back. 3434 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3435 3436 // The allocated data lives above the 160 bytes allocated for the standard 3437 // frame, plus any outgoing stack arguments. We don't know how much that 3438 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3439 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3440 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3441 3442 // Dynamically realign if needed. 3443 if (RequiredAlign > StackAlign) { 3444 Result = 3445 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3446 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3447 Result = 3448 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3449 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3450 } 3451 3452 if (StoreBackchain) 3453 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3454 3455 SDValue Ops[2] = { Result, Chain }; 3456 return DAG.getMergeValues(Ops, DL); 3457 } 3458 3459 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3460 SDValue Op, SelectionDAG &DAG) const { 3461 SDLoc DL(Op); 3462 3463 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3464 } 3465 3466 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3467 SelectionDAG &DAG) const { 3468 EVT VT = Op.getValueType(); 3469 SDLoc DL(Op); 3470 SDValue Ops[2]; 3471 if (is32Bit(VT)) 3472 // Just do a normal 64-bit multiplication and extract the results. 3473 // We define this so that it can be used for constant division. 3474 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3475 Op.getOperand(1), Ops[1], Ops[0]); 3476 else if (Subtarget.hasMiscellaneousExtensions2()) 3477 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3478 // the high result in the even register. ISD::SMUL_LOHI is defined to 3479 // return the low half first, so the results are in reverse order. 3480 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3481 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3482 else { 3483 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3484 // 3485 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3486 // 3487 // but using the fact that the upper halves are either all zeros 3488 // or all ones: 3489 // 3490 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3491 // 3492 // and grouping the right terms together since they are quicker than the 3493 // multiplication: 3494 // 3495 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3496 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3497 SDValue LL = Op.getOperand(0); 3498 SDValue RL = Op.getOperand(1); 3499 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3500 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3501 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3502 // the high result in the even register. ISD::SMUL_LOHI is defined to 3503 // return the low half first, so the results are in reverse order. 3504 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3505 LL, RL, Ops[1], Ops[0]); 3506 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3507 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3508 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3509 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3510 } 3511 return DAG.getMergeValues(Ops, DL); 3512 } 3513 3514 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3515 SelectionDAG &DAG) const { 3516 EVT VT = Op.getValueType(); 3517 SDLoc DL(Op); 3518 SDValue Ops[2]; 3519 if (is32Bit(VT)) 3520 // Just do a normal 64-bit multiplication and extract the results. 3521 // We define this so that it can be used for constant division. 3522 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3523 Op.getOperand(1), Ops[1], Ops[0]); 3524 else 3525 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3526 // the high result in the even register. ISD::UMUL_LOHI is defined to 3527 // return the low half first, so the results are in reverse order. 3528 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3529 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3530 return DAG.getMergeValues(Ops, DL); 3531 } 3532 3533 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3534 SelectionDAG &DAG) const { 3535 SDValue Op0 = Op.getOperand(0); 3536 SDValue Op1 = Op.getOperand(1); 3537 EVT VT = Op.getValueType(); 3538 SDLoc DL(Op); 3539 3540 // We use DSGF for 32-bit division. This means the first operand must 3541 // always be 64-bit, and the second operand should be 32-bit whenever 3542 // that is possible, to improve performance. 3543 if (is32Bit(VT)) 3544 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3545 else if (DAG.ComputeNumSignBits(Op1) > 32) 3546 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3547 3548 // DSG(F) returns the remainder in the even register and the 3549 // quotient in the odd register. 3550 SDValue Ops[2]; 3551 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3552 return DAG.getMergeValues(Ops, DL); 3553 } 3554 3555 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3556 SelectionDAG &DAG) const { 3557 EVT VT = Op.getValueType(); 3558 SDLoc DL(Op); 3559 3560 // DL(G) returns the remainder in the even register and the 3561 // quotient in the odd register. 3562 SDValue Ops[2]; 3563 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3564 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3565 return DAG.getMergeValues(Ops, DL); 3566 } 3567 3568 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3569 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3570 3571 // Get the known-zero masks for each operand. 3572 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3573 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3574 DAG.computeKnownBits(Ops[1])}; 3575 3576 // See if the upper 32 bits of one operand and the lower 32 bits of the 3577 // other are known zero. They are the low and high operands respectively. 3578 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3579 Known[1].Zero.getZExtValue() }; 3580 unsigned High, Low; 3581 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3582 High = 1, Low = 0; 3583 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3584 High = 0, Low = 1; 3585 else 3586 return Op; 3587 3588 SDValue LowOp = Ops[Low]; 3589 SDValue HighOp = Ops[High]; 3590 3591 // If the high part is a constant, we're better off using IILH. 3592 if (HighOp.getOpcode() == ISD::Constant) 3593 return Op; 3594 3595 // If the low part is a constant that is outside the range of LHI, 3596 // then we're better off using IILF. 3597 if (LowOp.getOpcode() == ISD::Constant) { 3598 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3599 if (!isInt<16>(Value)) 3600 return Op; 3601 } 3602 3603 // Check whether the high part is an AND that doesn't change the 3604 // high 32 bits and just masks out low bits. We can skip it if so. 3605 if (HighOp.getOpcode() == ISD::AND && 3606 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3607 SDValue HighOp0 = HighOp.getOperand(0); 3608 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3609 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3610 HighOp = HighOp0; 3611 } 3612 3613 // Take advantage of the fact that all GR32 operations only change the 3614 // low 32 bits by truncating Low to an i32 and inserting it directly 3615 // using a subreg. The interesting cases are those where the truncation 3616 // can be folded. 3617 SDLoc DL(Op); 3618 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3619 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3620 MVT::i64, HighOp, Low32); 3621 } 3622 3623 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3624 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3625 SelectionDAG &DAG) const { 3626 SDNode *N = Op.getNode(); 3627 SDValue LHS = N->getOperand(0); 3628 SDValue RHS = N->getOperand(1); 3629 SDLoc DL(N); 3630 unsigned BaseOp = 0; 3631 unsigned CCValid = 0; 3632 unsigned CCMask = 0; 3633 3634 switch (Op.getOpcode()) { 3635 default: llvm_unreachable("Unknown instruction!"); 3636 case ISD::SADDO: 3637 BaseOp = SystemZISD::SADDO; 3638 CCValid = SystemZ::CCMASK_ARITH; 3639 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3640 break; 3641 case ISD::SSUBO: 3642 BaseOp = SystemZISD::SSUBO; 3643 CCValid = SystemZ::CCMASK_ARITH; 3644 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3645 break; 3646 case ISD::UADDO: 3647 BaseOp = SystemZISD::UADDO; 3648 CCValid = SystemZ::CCMASK_LOGICAL; 3649 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3650 break; 3651 case ISD::USUBO: 3652 BaseOp = SystemZISD::USUBO; 3653 CCValid = SystemZ::CCMASK_LOGICAL; 3654 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3655 break; 3656 } 3657 3658 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3659 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3660 3661 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3662 if (N->getValueType(1) == MVT::i1) 3663 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3664 3665 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3666 } 3667 3668 static bool isAddCarryChain(SDValue Carry) { 3669 while (Carry.getOpcode() == ISD::ADDCARRY) 3670 Carry = Carry.getOperand(2); 3671 return Carry.getOpcode() == ISD::UADDO; 3672 } 3673 3674 static bool isSubBorrowChain(SDValue Carry) { 3675 while (Carry.getOpcode() == ISD::SUBCARRY) 3676 Carry = Carry.getOperand(2); 3677 return Carry.getOpcode() == ISD::USUBO; 3678 } 3679 3680 // Lower ADDCARRY/SUBCARRY nodes. 3681 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3682 SelectionDAG &DAG) const { 3683 3684 SDNode *N = Op.getNode(); 3685 MVT VT = N->getSimpleValueType(0); 3686 3687 // Let legalize expand this if it isn't a legal type yet. 3688 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3689 return SDValue(); 3690 3691 SDValue LHS = N->getOperand(0); 3692 SDValue RHS = N->getOperand(1); 3693 SDValue Carry = Op.getOperand(2); 3694 SDLoc DL(N); 3695 unsigned BaseOp = 0; 3696 unsigned CCValid = 0; 3697 unsigned CCMask = 0; 3698 3699 switch (Op.getOpcode()) { 3700 default: llvm_unreachable("Unknown instruction!"); 3701 case ISD::ADDCARRY: 3702 if (!isAddCarryChain(Carry)) 3703 return SDValue(); 3704 3705 BaseOp = SystemZISD::ADDCARRY; 3706 CCValid = SystemZ::CCMASK_LOGICAL; 3707 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3708 break; 3709 case ISD::SUBCARRY: 3710 if (!isSubBorrowChain(Carry)) 3711 return SDValue(); 3712 3713 BaseOp = SystemZISD::SUBCARRY; 3714 CCValid = SystemZ::CCMASK_LOGICAL; 3715 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3716 break; 3717 } 3718 3719 // Set the condition code from the carry flag. 3720 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3721 DAG.getConstant(CCValid, DL, MVT::i32), 3722 DAG.getConstant(CCMask, DL, MVT::i32)); 3723 3724 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3725 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3726 3727 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3728 if (N->getValueType(1) == MVT::i1) 3729 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3730 3731 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3732 } 3733 3734 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3735 SelectionDAG &DAG) const { 3736 EVT VT = Op.getValueType(); 3737 SDLoc DL(Op); 3738 Op = Op.getOperand(0); 3739 3740 // Handle vector types via VPOPCT. 3741 if (VT.isVector()) { 3742 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3743 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3744 switch (VT.getScalarSizeInBits()) { 3745 case 8: 3746 break; 3747 case 16: { 3748 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3749 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3750 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3751 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3752 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3753 break; 3754 } 3755 case 32: { 3756 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3757 DAG.getConstant(0, DL, MVT::i32)); 3758 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3759 break; 3760 } 3761 case 64: { 3762 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3763 DAG.getConstant(0, DL, MVT::i32)); 3764 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3765 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3766 break; 3767 } 3768 default: 3769 llvm_unreachable("Unexpected type"); 3770 } 3771 return Op; 3772 } 3773 3774 // Get the known-zero mask for the operand. 3775 KnownBits Known = DAG.computeKnownBits(Op); 3776 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3777 if (NumSignificantBits == 0) 3778 return DAG.getConstant(0, DL, VT); 3779 3780 // Skip known-zero high parts of the operand. 3781 int64_t OrigBitSize = VT.getSizeInBits(); 3782 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3783 BitSize = std::min(BitSize, OrigBitSize); 3784 3785 // The POPCNT instruction counts the number of bits in each byte. 3786 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3787 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3788 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3789 3790 // Add up per-byte counts in a binary tree. All bits of Op at 3791 // position larger than BitSize remain zero throughout. 3792 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3793 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3794 if (BitSize != OrigBitSize) 3795 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3796 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3797 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3798 } 3799 3800 // Extract overall result from high byte. 3801 if (BitSize > 8) 3802 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3803 DAG.getConstant(BitSize - 8, DL, VT)); 3804 3805 return Op; 3806 } 3807 3808 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3809 SelectionDAG &DAG) const { 3810 SDLoc DL(Op); 3811 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3812 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3813 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3814 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3815 3816 // The only fence that needs an instruction is a sequentially-consistent 3817 // cross-thread fence. 3818 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3819 FenceSSID == SyncScope::System) { 3820 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3821 Op.getOperand(0)), 3822 0); 3823 } 3824 3825 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3826 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3827 } 3828 3829 // Op is an atomic load. Lower it into a normal volatile load. 3830 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3831 SelectionDAG &DAG) const { 3832 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3833 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3834 Node->getChain(), Node->getBasePtr(), 3835 Node->getMemoryVT(), Node->getMemOperand()); 3836 } 3837 3838 // Op is an atomic store. Lower it into a normal volatile store. 3839 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3840 SelectionDAG &DAG) const { 3841 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3842 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3843 Node->getBasePtr(), Node->getMemoryVT(), 3844 Node->getMemOperand()); 3845 // We have to enforce sequential consistency by performing a 3846 // serialization operation after the store. 3847 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3848 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3849 MVT::Other, Chain), 0); 3850 return Chain; 3851 } 3852 3853 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3854 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3855 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3856 SelectionDAG &DAG, 3857 unsigned Opcode) const { 3858 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3859 3860 // 32-bit operations need no code outside the main loop. 3861 EVT NarrowVT = Node->getMemoryVT(); 3862 EVT WideVT = MVT::i32; 3863 if (NarrowVT == WideVT) 3864 return Op; 3865 3866 int64_t BitSize = NarrowVT.getSizeInBits(); 3867 SDValue ChainIn = Node->getChain(); 3868 SDValue Addr = Node->getBasePtr(); 3869 SDValue Src2 = Node->getVal(); 3870 MachineMemOperand *MMO = Node->getMemOperand(); 3871 SDLoc DL(Node); 3872 EVT PtrVT = Addr.getValueType(); 3873 3874 // Convert atomic subtracts of constants into additions. 3875 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3876 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3877 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3878 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3879 } 3880 3881 // Get the address of the containing word. 3882 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3883 DAG.getConstant(-4, DL, PtrVT)); 3884 3885 // Get the number of bits that the word must be rotated left in order 3886 // to bring the field to the top bits of a GR32. 3887 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3888 DAG.getConstant(3, DL, PtrVT)); 3889 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3890 3891 // Get the complementing shift amount, for rotating a field in the top 3892 // bits back to its proper position. 3893 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3894 DAG.getConstant(0, DL, WideVT), BitShift); 3895 3896 // Extend the source operand to 32 bits and prepare it for the inner loop. 3897 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3898 // operations require the source to be shifted in advance. (This shift 3899 // can be folded if the source is constant.) For AND and NAND, the lower 3900 // bits must be set, while for other opcodes they should be left clear. 3901 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3902 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3903 DAG.getConstant(32 - BitSize, DL, WideVT)); 3904 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3905 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3906 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3907 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3908 3909 // Construct the ATOMIC_LOADW_* node. 3910 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3911 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3912 DAG.getConstant(BitSize, DL, WideVT) }; 3913 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3914 NarrowVT, MMO); 3915 3916 // Rotate the result of the final CS so that the field is in the lower 3917 // bits of a GR32, then truncate it. 3918 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3919 DAG.getConstant(BitSize, DL, WideVT)); 3920 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3921 3922 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3923 return DAG.getMergeValues(RetOps, DL); 3924 } 3925 3926 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3927 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3928 // operations into additions. 3929 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3930 SelectionDAG &DAG) const { 3931 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3932 EVT MemVT = Node->getMemoryVT(); 3933 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3934 // A full-width operation. 3935 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3936 SDValue Src2 = Node->getVal(); 3937 SDValue NegSrc2; 3938 SDLoc DL(Src2); 3939 3940 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3941 // Use an addition if the operand is constant and either LAA(G) is 3942 // available or the negative value is in the range of A(G)FHI. 3943 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3944 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3945 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3946 } else if (Subtarget.hasInterlockedAccess1()) 3947 // Use LAA(G) if available. 3948 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3949 Src2); 3950 3951 if (NegSrc2.getNode()) 3952 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3953 Node->getChain(), Node->getBasePtr(), NegSrc2, 3954 Node->getMemOperand()); 3955 3956 // Use the node as-is. 3957 return Op; 3958 } 3959 3960 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3961 } 3962 3963 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3964 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3965 SelectionDAG &DAG) const { 3966 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3967 SDValue ChainIn = Node->getOperand(0); 3968 SDValue Addr = Node->getOperand(1); 3969 SDValue CmpVal = Node->getOperand(2); 3970 SDValue SwapVal = Node->getOperand(3); 3971 MachineMemOperand *MMO = Node->getMemOperand(); 3972 SDLoc DL(Node); 3973 3974 // We have native support for 32-bit and 64-bit compare and swap, but we 3975 // still need to expand extracting the "success" result from the CC. 3976 EVT NarrowVT = Node->getMemoryVT(); 3977 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3978 if (NarrowVT == WideVT) { 3979 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3980 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3981 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3982 DL, Tys, Ops, NarrowVT, MMO); 3983 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3984 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3985 3986 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3987 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3988 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3989 return SDValue(); 3990 } 3991 3992 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3993 // via a fullword ATOMIC_CMP_SWAPW operation. 3994 int64_t BitSize = NarrowVT.getSizeInBits(); 3995 EVT PtrVT = Addr.getValueType(); 3996 3997 // Get the address of the containing word. 3998 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3999 DAG.getConstant(-4, DL, PtrVT)); 4000 4001 // Get the number of bits that the word must be rotated left in order 4002 // to bring the field to the top bits of a GR32. 4003 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4004 DAG.getConstant(3, DL, PtrVT)); 4005 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4006 4007 // Get the complementing shift amount, for rotating a field in the top 4008 // bits back to its proper position. 4009 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4010 DAG.getConstant(0, DL, WideVT), BitShift); 4011 4012 // Construct the ATOMIC_CMP_SWAPW node. 4013 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4014 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4015 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4016 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4017 VTList, Ops, NarrowVT, MMO); 4018 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4019 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4020 4021 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4022 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4023 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4024 return SDValue(); 4025 } 4026 4027 MachineMemOperand::Flags 4028 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4029 // Because of how we convert atomic_load and atomic_store to normal loads and 4030 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4031 // since DAGCombine hasn't been updated to account for atomic, but non 4032 // volatile loads. (See D57601) 4033 if (auto *SI = dyn_cast<StoreInst>(&I)) 4034 if (SI->isAtomic()) 4035 return MachineMemOperand::MOVolatile; 4036 if (auto *LI = dyn_cast<LoadInst>(&I)) 4037 if (LI->isAtomic()) 4038 return MachineMemOperand::MOVolatile; 4039 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4040 if (AI->isAtomic()) 4041 return MachineMemOperand::MOVolatile; 4042 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4043 if (AI->isAtomic()) 4044 return MachineMemOperand::MOVolatile; 4045 return MachineMemOperand::MONone; 4046 } 4047 4048 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4049 SelectionDAG &DAG) const { 4050 MachineFunction &MF = DAG.getMachineFunction(); 4051 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4052 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4053 report_fatal_error("Variable-sized stack allocations are not supported " 4054 "in GHC calling convention"); 4055 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4056 SystemZ::R15D, Op.getValueType()); 4057 } 4058 4059 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4060 SelectionDAG &DAG) const { 4061 MachineFunction &MF = DAG.getMachineFunction(); 4062 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4063 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4064 4065 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4066 report_fatal_error("Variable-sized stack allocations are not supported " 4067 "in GHC calling convention"); 4068 4069 SDValue Chain = Op.getOperand(0); 4070 SDValue NewSP = Op.getOperand(1); 4071 SDValue Backchain; 4072 SDLoc DL(Op); 4073 4074 if (StoreBackchain) { 4075 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4076 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4077 } 4078 4079 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4080 4081 if (StoreBackchain) 4082 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4083 4084 return Chain; 4085 } 4086 4087 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4088 SelectionDAG &DAG) const { 4089 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4090 if (!IsData) 4091 // Just preserve the chain. 4092 return Op.getOperand(0); 4093 4094 SDLoc DL(Op); 4095 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4096 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4097 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4098 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4099 Op.getOperand(1)}; 4100 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4101 Node->getVTList(), Ops, 4102 Node->getMemoryVT(), Node->getMemOperand()); 4103 } 4104 4105 // Convert condition code in CCReg to an i32 value. 4106 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4107 SDLoc DL(CCReg); 4108 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4109 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4110 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4111 } 4112 4113 SDValue 4114 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4115 SelectionDAG &DAG) const { 4116 unsigned Opcode, CCValid; 4117 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4118 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4119 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4120 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4121 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4122 return SDValue(); 4123 } 4124 4125 return SDValue(); 4126 } 4127 4128 SDValue 4129 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4130 SelectionDAG &DAG) const { 4131 unsigned Opcode, CCValid; 4132 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4133 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4134 if (Op->getNumValues() == 1) 4135 return getCCResult(DAG, SDValue(Node, 0)); 4136 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4137 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4138 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4139 } 4140 4141 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4142 switch (Id) { 4143 case Intrinsic::thread_pointer: 4144 return lowerThreadPointer(SDLoc(Op), DAG); 4145 4146 case Intrinsic::s390_vpdi: 4147 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4148 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4149 4150 case Intrinsic::s390_vperm: 4151 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4152 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4153 4154 case Intrinsic::s390_vuphb: 4155 case Intrinsic::s390_vuphh: 4156 case Intrinsic::s390_vuphf: 4157 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4158 Op.getOperand(1)); 4159 4160 case Intrinsic::s390_vuplhb: 4161 case Intrinsic::s390_vuplhh: 4162 case Intrinsic::s390_vuplhf: 4163 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4164 Op.getOperand(1)); 4165 4166 case Intrinsic::s390_vuplb: 4167 case Intrinsic::s390_vuplhw: 4168 case Intrinsic::s390_vuplf: 4169 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4170 Op.getOperand(1)); 4171 4172 case Intrinsic::s390_vupllb: 4173 case Intrinsic::s390_vupllh: 4174 case Intrinsic::s390_vupllf: 4175 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4176 Op.getOperand(1)); 4177 4178 case Intrinsic::s390_vsumb: 4179 case Intrinsic::s390_vsumh: 4180 case Intrinsic::s390_vsumgh: 4181 case Intrinsic::s390_vsumgf: 4182 case Intrinsic::s390_vsumqf: 4183 case Intrinsic::s390_vsumqg: 4184 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4185 Op.getOperand(1), Op.getOperand(2)); 4186 } 4187 4188 return SDValue(); 4189 } 4190 4191 namespace { 4192 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4193 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4194 // Operand is the constant third operand, otherwise it is the number of 4195 // bytes in each element of the result. 4196 struct Permute { 4197 unsigned Opcode; 4198 unsigned Operand; 4199 unsigned char Bytes[SystemZ::VectorBytes]; 4200 }; 4201 } 4202 4203 static const Permute PermuteForms[] = { 4204 // VMRHG 4205 { SystemZISD::MERGE_HIGH, 8, 4206 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4207 // VMRHF 4208 { SystemZISD::MERGE_HIGH, 4, 4209 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4210 // VMRHH 4211 { SystemZISD::MERGE_HIGH, 2, 4212 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4213 // VMRHB 4214 { SystemZISD::MERGE_HIGH, 1, 4215 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4216 // VMRLG 4217 { SystemZISD::MERGE_LOW, 8, 4218 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4219 // VMRLF 4220 { SystemZISD::MERGE_LOW, 4, 4221 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4222 // VMRLH 4223 { SystemZISD::MERGE_LOW, 2, 4224 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4225 // VMRLB 4226 { SystemZISD::MERGE_LOW, 1, 4227 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4228 // VPKG 4229 { SystemZISD::PACK, 4, 4230 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4231 // VPKF 4232 { SystemZISD::PACK, 2, 4233 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4234 // VPKH 4235 { SystemZISD::PACK, 1, 4236 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4237 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4238 { SystemZISD::PERMUTE_DWORDS, 4, 4239 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4240 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4241 { SystemZISD::PERMUTE_DWORDS, 1, 4242 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4243 }; 4244 4245 // Called after matching a vector shuffle against a particular pattern. 4246 // Both the original shuffle and the pattern have two vector operands. 4247 // OpNos[0] is the operand of the original shuffle that should be used for 4248 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4249 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4250 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4251 // for operands 0 and 1 of the pattern. 4252 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4253 if (OpNos[0] < 0) { 4254 if (OpNos[1] < 0) 4255 return false; 4256 OpNo0 = OpNo1 = OpNos[1]; 4257 } else if (OpNos[1] < 0) { 4258 OpNo0 = OpNo1 = OpNos[0]; 4259 } else { 4260 OpNo0 = OpNos[0]; 4261 OpNo1 = OpNos[1]; 4262 } 4263 return true; 4264 } 4265 4266 // Bytes is a VPERM-like permute vector, except that -1 is used for 4267 // undefined bytes. Return true if the VPERM can be implemented using P. 4268 // When returning true set OpNo0 to the VPERM operand that should be 4269 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4270 // 4271 // For example, if swapping the VPERM operands allows P to match, OpNo0 4272 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4273 // operand, but rewriting it to use two duplicated operands allows it to 4274 // match P, then OpNo0 and OpNo1 will be the same. 4275 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4276 unsigned &OpNo0, unsigned &OpNo1) { 4277 int OpNos[] = { -1, -1 }; 4278 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4279 int Elt = Bytes[I]; 4280 if (Elt >= 0) { 4281 // Make sure that the two permute vectors use the same suboperand 4282 // byte number. Only the operand numbers (the high bits) are 4283 // allowed to differ. 4284 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4285 return false; 4286 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4287 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4288 // Make sure that the operand mappings are consistent with previous 4289 // elements. 4290 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4291 return false; 4292 OpNos[ModelOpNo] = RealOpNo; 4293 } 4294 } 4295 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4296 } 4297 4298 // As above, but search for a matching permute. 4299 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4300 unsigned &OpNo0, unsigned &OpNo1) { 4301 for (auto &P : PermuteForms) 4302 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4303 return &P; 4304 return nullptr; 4305 } 4306 4307 // Bytes is a VPERM-like permute vector, except that -1 is used for 4308 // undefined bytes. This permute is an operand of an outer permute. 4309 // See whether redistributing the -1 bytes gives a shuffle that can be 4310 // implemented using P. If so, set Transform to a VPERM-like permute vector 4311 // that, when applied to the result of P, gives the original permute in Bytes. 4312 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4313 const Permute &P, 4314 SmallVectorImpl<int> &Transform) { 4315 unsigned To = 0; 4316 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4317 int Elt = Bytes[From]; 4318 if (Elt < 0) 4319 // Byte number From of the result is undefined. 4320 Transform[From] = -1; 4321 else { 4322 while (P.Bytes[To] != Elt) { 4323 To += 1; 4324 if (To == SystemZ::VectorBytes) 4325 return false; 4326 } 4327 Transform[From] = To; 4328 } 4329 } 4330 return true; 4331 } 4332 4333 // As above, but search for a matching permute. 4334 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4335 SmallVectorImpl<int> &Transform) { 4336 for (auto &P : PermuteForms) 4337 if (matchDoublePermute(Bytes, P, Transform)) 4338 return &P; 4339 return nullptr; 4340 } 4341 4342 // Convert the mask of the given shuffle op into a byte-level mask, 4343 // as if it had type vNi8. 4344 static bool getVPermMask(SDValue ShuffleOp, 4345 SmallVectorImpl<int> &Bytes) { 4346 EVT VT = ShuffleOp.getValueType(); 4347 unsigned NumElements = VT.getVectorNumElements(); 4348 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4349 4350 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4351 Bytes.resize(NumElements * BytesPerElement, -1); 4352 for (unsigned I = 0; I < NumElements; ++I) { 4353 int Index = VSN->getMaskElt(I); 4354 if (Index >= 0) 4355 for (unsigned J = 0; J < BytesPerElement; ++J) 4356 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4357 } 4358 return true; 4359 } 4360 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4361 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4362 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4363 Bytes.resize(NumElements * BytesPerElement, -1); 4364 for (unsigned I = 0; I < NumElements; ++I) 4365 for (unsigned J = 0; J < BytesPerElement; ++J) 4366 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4367 return true; 4368 } 4369 return false; 4370 } 4371 4372 // Bytes is a VPERM-like permute vector, except that -1 is used for 4373 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4374 // the result come from a contiguous sequence of bytes from one input. 4375 // Set Base to the selector for the first byte if so. 4376 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4377 unsigned BytesPerElement, int &Base) { 4378 Base = -1; 4379 for (unsigned I = 0; I < BytesPerElement; ++I) { 4380 if (Bytes[Start + I] >= 0) { 4381 unsigned Elem = Bytes[Start + I]; 4382 if (Base < 0) { 4383 Base = Elem - I; 4384 // Make sure the bytes would come from one input operand. 4385 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4386 return false; 4387 } else if (unsigned(Base) != Elem - I) 4388 return false; 4389 } 4390 } 4391 return true; 4392 } 4393 4394 // Bytes is a VPERM-like permute vector, except that -1 is used for 4395 // undefined bytes. Return true if it can be performed using VSLDB. 4396 // When returning true, set StartIndex to the shift amount and OpNo0 4397 // and OpNo1 to the VPERM operands that should be used as the first 4398 // and second shift operand respectively. 4399 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4400 unsigned &StartIndex, unsigned &OpNo0, 4401 unsigned &OpNo1) { 4402 int OpNos[] = { -1, -1 }; 4403 int Shift = -1; 4404 for (unsigned I = 0; I < 16; ++I) { 4405 int Index = Bytes[I]; 4406 if (Index >= 0) { 4407 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4408 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4409 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4410 if (Shift < 0) 4411 Shift = ExpectedShift; 4412 else if (Shift != ExpectedShift) 4413 return false; 4414 // Make sure that the operand mappings are consistent with previous 4415 // elements. 4416 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4417 return false; 4418 OpNos[ModelOpNo] = RealOpNo; 4419 } 4420 } 4421 StartIndex = Shift; 4422 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4423 } 4424 4425 // Create a node that performs P on operands Op0 and Op1, casting the 4426 // operands to the appropriate type. The type of the result is determined by P. 4427 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4428 const Permute &P, SDValue Op0, SDValue Op1) { 4429 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4430 // elements of a PACK are twice as wide as the outputs. 4431 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4432 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4433 P.Operand); 4434 // Cast both operands to the appropriate type. 4435 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4436 SystemZ::VectorBytes / InBytes); 4437 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4438 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4439 SDValue Op; 4440 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4441 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4442 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4443 } else if (P.Opcode == SystemZISD::PACK) { 4444 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4445 SystemZ::VectorBytes / P.Operand); 4446 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4447 } else { 4448 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4449 } 4450 return Op; 4451 } 4452 4453 static bool isZeroVector(SDValue N) { 4454 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4455 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4456 return Op->getZExtValue() == 0; 4457 return ISD::isBuildVectorAllZeros(N.getNode()); 4458 } 4459 4460 // Bytes is a VPERM-like permute vector, except that -1 is used for 4461 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4462 // VSLDB or VPERM. 4463 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4464 SDValue *Ops, 4465 const SmallVectorImpl<int> &Bytes) { 4466 for (unsigned I = 0; I < 2; ++I) 4467 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4468 4469 // First see whether VSLDB can be used. 4470 unsigned StartIndex, OpNo0, OpNo1; 4471 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4472 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4473 Ops[OpNo1], 4474 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4475 4476 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4477 // eliminate a zero vector by reusing any zero index in the permute vector. 4478 unsigned ZeroVecIdx = 4479 isZeroVector(Ops[0]) ? 0 : (isZeroVector(Ops[1]) ? 1 : UINT_MAX); 4480 if (ZeroVecIdx != UINT_MAX) { 4481 bool MaskFirst = true; 4482 int ZeroIdx = -1; 4483 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4484 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4485 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4486 if (OpNo == ZeroVecIdx && I == 0) { 4487 // If the first byte is zero, use mask as first operand. 4488 ZeroIdx = 0; 4489 break; 4490 } 4491 if (OpNo != ZeroVecIdx && Byte == 0) { 4492 // If mask contains a zero, use it by placing that vector first. 4493 ZeroIdx = I + SystemZ::VectorBytes; 4494 MaskFirst = false; 4495 break; 4496 } 4497 } 4498 if (ZeroIdx != -1) { 4499 SDValue IndexNodes[SystemZ::VectorBytes]; 4500 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4501 if (Bytes[I] >= 0) { 4502 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4503 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4504 if (OpNo == ZeroVecIdx) 4505 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4506 else { 4507 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4508 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4509 } 4510 } else 4511 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4512 } 4513 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4514 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4515 if (MaskFirst) 4516 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4517 Mask); 4518 else 4519 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4520 Mask); 4521 } 4522 } 4523 4524 SDValue IndexNodes[SystemZ::VectorBytes]; 4525 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4526 if (Bytes[I] >= 0) 4527 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4528 else 4529 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4530 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4531 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4532 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4533 } 4534 4535 namespace { 4536 // Describes a general N-operand vector shuffle. 4537 struct GeneralShuffle { 4538 GeneralShuffle(EVT vt) : VT(vt) {} 4539 void addUndef(); 4540 bool add(SDValue, unsigned); 4541 SDValue getNode(SelectionDAG &, const SDLoc &); 4542 4543 // The operands of the shuffle. 4544 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4545 4546 // Index I is -1 if byte I of the result is undefined. Otherwise the 4547 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4548 // Bytes[I] / SystemZ::VectorBytes. 4549 SmallVector<int, SystemZ::VectorBytes> Bytes; 4550 4551 // The type of the shuffle result. 4552 EVT VT; 4553 }; 4554 } 4555 4556 // Add an extra undefined element to the shuffle. 4557 void GeneralShuffle::addUndef() { 4558 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4559 for (unsigned I = 0; I < BytesPerElement; ++I) 4560 Bytes.push_back(-1); 4561 } 4562 4563 // Add an extra element to the shuffle, taking it from element Elem of Op. 4564 // A null Op indicates a vector input whose value will be calculated later; 4565 // there is at most one such input per shuffle and it always has the same 4566 // type as the result. Aborts and returns false if the source vector elements 4567 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4568 // LLVM they become implicitly extended, but this is rare and not optimized. 4569 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4570 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4571 4572 // The source vector can have wider elements than the result, 4573 // either through an explicit TRUNCATE or because of type legalization. 4574 // We want the least significant part. 4575 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4576 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4577 4578 // Return false if the source elements are smaller than their destination 4579 // elements. 4580 if (FromBytesPerElement < BytesPerElement) 4581 return false; 4582 4583 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4584 (FromBytesPerElement - BytesPerElement)); 4585 4586 // Look through things like shuffles and bitcasts. 4587 while (Op.getNode()) { 4588 if (Op.getOpcode() == ISD::BITCAST) 4589 Op = Op.getOperand(0); 4590 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4591 // See whether the bytes we need come from a contiguous part of one 4592 // operand. 4593 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4594 if (!getVPermMask(Op, OpBytes)) 4595 break; 4596 int NewByte; 4597 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4598 break; 4599 if (NewByte < 0) { 4600 addUndef(); 4601 return true; 4602 } 4603 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4604 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4605 } else if (Op.isUndef()) { 4606 addUndef(); 4607 return true; 4608 } else 4609 break; 4610 } 4611 4612 // Make sure that the source of the extraction is in Ops. 4613 unsigned OpNo = 0; 4614 for (; OpNo < Ops.size(); ++OpNo) 4615 if (Ops[OpNo] == Op) 4616 break; 4617 if (OpNo == Ops.size()) 4618 Ops.push_back(Op); 4619 4620 // Add the element to Bytes. 4621 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4622 for (unsigned I = 0; I < BytesPerElement; ++I) 4623 Bytes.push_back(Base + I); 4624 4625 return true; 4626 } 4627 4628 // Return SDNodes for the completed shuffle. 4629 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4630 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4631 4632 if (Ops.size() == 0) 4633 return DAG.getUNDEF(VT); 4634 4635 // Make sure that there are at least two shuffle operands. 4636 if (Ops.size() == 1) 4637 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4638 4639 // Create a tree of shuffles, deferring root node until after the loop. 4640 // Try to redistribute the undefined elements of non-root nodes so that 4641 // the non-root shuffles match something like a pack or merge, then adjust 4642 // the parent node's permute vector to compensate for the new order. 4643 // Among other things, this copes with vectors like <2 x i16> that were 4644 // padded with undefined elements during type legalization. 4645 // 4646 // In the best case this redistribution will lead to the whole tree 4647 // using packs and merges. It should rarely be a loss in other cases. 4648 unsigned Stride = 1; 4649 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4650 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4651 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4652 4653 // Create a mask for just these two operands. 4654 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4655 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4656 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4657 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4658 if (OpNo == I) 4659 NewBytes[J] = Byte; 4660 else if (OpNo == I + Stride) 4661 NewBytes[J] = SystemZ::VectorBytes + Byte; 4662 else 4663 NewBytes[J] = -1; 4664 } 4665 // See if it would be better to reorganize NewMask to avoid using VPERM. 4666 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4667 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4668 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4669 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4670 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4671 if (NewBytes[J] >= 0) { 4672 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4673 "Invalid double permute"); 4674 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4675 } else 4676 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4677 } 4678 } else { 4679 // Just use NewBytes on the operands. 4680 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4681 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4682 if (NewBytes[J] >= 0) 4683 Bytes[J] = I * SystemZ::VectorBytes + J; 4684 } 4685 } 4686 } 4687 4688 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4689 if (Stride > 1) { 4690 Ops[1] = Ops[Stride]; 4691 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4692 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4693 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4694 } 4695 4696 // Look for an instruction that can do the permute without resorting 4697 // to VPERM. 4698 unsigned OpNo0, OpNo1; 4699 SDValue Op; 4700 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4701 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4702 else 4703 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4704 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4705 } 4706 4707 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4708 static bool isScalarToVector(SDValue Op) { 4709 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4710 if (!Op.getOperand(I).isUndef()) 4711 return false; 4712 return true; 4713 } 4714 4715 // Return a vector of type VT that contains Value in the first element. 4716 // The other elements don't matter. 4717 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4718 SDValue Value) { 4719 // If we have a constant, replicate it to all elements and let the 4720 // BUILD_VECTOR lowering take care of it. 4721 if (Value.getOpcode() == ISD::Constant || 4722 Value.getOpcode() == ISD::ConstantFP) { 4723 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4724 return DAG.getBuildVector(VT, DL, Ops); 4725 } 4726 if (Value.isUndef()) 4727 return DAG.getUNDEF(VT); 4728 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4729 } 4730 4731 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4732 // element 1. Used for cases in which replication is cheap. 4733 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4734 SDValue Op0, SDValue Op1) { 4735 if (Op0.isUndef()) { 4736 if (Op1.isUndef()) 4737 return DAG.getUNDEF(VT); 4738 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4739 } 4740 if (Op1.isUndef()) 4741 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4742 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4743 buildScalarToVector(DAG, DL, VT, Op0), 4744 buildScalarToVector(DAG, DL, VT, Op1)); 4745 } 4746 4747 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4748 // vector for them. 4749 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4750 SDValue Op1) { 4751 if (Op0.isUndef() && Op1.isUndef()) 4752 return DAG.getUNDEF(MVT::v2i64); 4753 // If one of the two inputs is undefined then replicate the other one, 4754 // in order to avoid using another register unnecessarily. 4755 if (Op0.isUndef()) 4756 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4757 else if (Op1.isUndef()) 4758 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4759 else { 4760 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4761 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4762 } 4763 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4764 } 4765 4766 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4767 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4768 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4769 // would benefit from this representation and return it if so. 4770 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4771 BuildVectorSDNode *BVN) { 4772 EVT VT = BVN->getValueType(0); 4773 unsigned NumElements = VT.getVectorNumElements(); 4774 4775 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4776 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4777 // need a BUILD_VECTOR, add an additional placeholder operand for that 4778 // BUILD_VECTOR and store its operands in ResidueOps. 4779 GeneralShuffle GS(VT); 4780 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4781 bool FoundOne = false; 4782 for (unsigned I = 0; I < NumElements; ++I) { 4783 SDValue Op = BVN->getOperand(I); 4784 if (Op.getOpcode() == ISD::TRUNCATE) 4785 Op = Op.getOperand(0); 4786 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4787 Op.getOperand(1).getOpcode() == ISD::Constant) { 4788 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4789 if (!GS.add(Op.getOperand(0), Elem)) 4790 return SDValue(); 4791 FoundOne = true; 4792 } else if (Op.isUndef()) { 4793 GS.addUndef(); 4794 } else { 4795 if (!GS.add(SDValue(), ResidueOps.size())) 4796 return SDValue(); 4797 ResidueOps.push_back(BVN->getOperand(I)); 4798 } 4799 } 4800 4801 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4802 if (!FoundOne) 4803 return SDValue(); 4804 4805 // Create the BUILD_VECTOR for the remaining elements, if any. 4806 if (!ResidueOps.empty()) { 4807 while (ResidueOps.size() < NumElements) 4808 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4809 for (auto &Op : GS.Ops) { 4810 if (!Op.getNode()) { 4811 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4812 break; 4813 } 4814 } 4815 } 4816 return GS.getNode(DAG, SDLoc(BVN)); 4817 } 4818 4819 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4820 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4821 return true; 4822 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4823 return true; 4824 return false; 4825 } 4826 4827 // Combine GPR scalar values Elems into a vector of type VT. 4828 SDValue 4829 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4830 SmallVectorImpl<SDValue> &Elems) const { 4831 // See whether there is a single replicated value. 4832 SDValue Single; 4833 unsigned int NumElements = Elems.size(); 4834 unsigned int Count = 0; 4835 for (auto Elem : Elems) { 4836 if (!Elem.isUndef()) { 4837 if (!Single.getNode()) 4838 Single = Elem; 4839 else if (Elem != Single) { 4840 Single = SDValue(); 4841 break; 4842 } 4843 Count += 1; 4844 } 4845 } 4846 // There are three cases here: 4847 // 4848 // - if the only defined element is a loaded one, the best sequence 4849 // is a replicating load. 4850 // 4851 // - otherwise, if the only defined element is an i64 value, we will 4852 // end up with the same VLVGP sequence regardless of whether we short-cut 4853 // for replication or fall through to the later code. 4854 // 4855 // - otherwise, if the only defined element is an i32 or smaller value, 4856 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4857 // This is only a win if the single defined element is used more than once. 4858 // In other cases we're better off using a single VLVGx. 4859 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4860 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4861 4862 // If all elements are loads, use VLREP/VLEs (below). 4863 bool AllLoads = true; 4864 for (auto Elem : Elems) 4865 if (!isVectorElementLoad(Elem)) { 4866 AllLoads = false; 4867 break; 4868 } 4869 4870 // The best way of building a v2i64 from two i64s is to use VLVGP. 4871 if (VT == MVT::v2i64 && !AllLoads) 4872 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4873 4874 // Use a 64-bit merge high to combine two doubles. 4875 if (VT == MVT::v2f64 && !AllLoads) 4876 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4877 4878 // Build v4f32 values directly from the FPRs: 4879 // 4880 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4881 // V V VMRHF 4882 // <ABxx> <CDxx> 4883 // V VMRHG 4884 // <ABCD> 4885 if (VT == MVT::v4f32 && !AllLoads) { 4886 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4887 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4888 // Avoid unnecessary undefs by reusing the other operand. 4889 if (Op01.isUndef()) 4890 Op01 = Op23; 4891 else if (Op23.isUndef()) 4892 Op23 = Op01; 4893 // Merging identical replications is a no-op. 4894 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4895 return Op01; 4896 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4897 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4898 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4899 DL, MVT::v2i64, Op01, Op23); 4900 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4901 } 4902 4903 // Collect the constant terms. 4904 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4905 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4906 4907 unsigned NumConstants = 0; 4908 for (unsigned I = 0; I < NumElements; ++I) { 4909 SDValue Elem = Elems[I]; 4910 if (Elem.getOpcode() == ISD::Constant || 4911 Elem.getOpcode() == ISD::ConstantFP) { 4912 NumConstants += 1; 4913 Constants[I] = Elem; 4914 Done[I] = true; 4915 } 4916 } 4917 // If there was at least one constant, fill in the other elements of 4918 // Constants with undefs to get a full vector constant and use that 4919 // as the starting point. 4920 SDValue Result; 4921 SDValue ReplicatedVal; 4922 if (NumConstants > 0) { 4923 for (unsigned I = 0; I < NumElements; ++I) 4924 if (!Constants[I].getNode()) 4925 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4926 Result = DAG.getBuildVector(VT, DL, Constants); 4927 } else { 4928 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4929 // avoid a false dependency on any previous contents of the vector 4930 // register. 4931 4932 // Use a VLREP if at least one element is a load. Make sure to replicate 4933 // the load with the most elements having its value. 4934 std::map<const SDNode*, unsigned> UseCounts; 4935 SDNode *LoadMaxUses = nullptr; 4936 for (unsigned I = 0; I < NumElements; ++I) 4937 if (isVectorElementLoad(Elems[I])) { 4938 SDNode *Ld = Elems[I].getNode(); 4939 UseCounts[Ld]++; 4940 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4941 LoadMaxUses = Ld; 4942 } 4943 if (LoadMaxUses != nullptr) { 4944 ReplicatedVal = SDValue(LoadMaxUses, 0); 4945 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4946 } else { 4947 // Try to use VLVGP. 4948 unsigned I1 = NumElements / 2 - 1; 4949 unsigned I2 = NumElements - 1; 4950 bool Def1 = !Elems[I1].isUndef(); 4951 bool Def2 = !Elems[I2].isUndef(); 4952 if (Def1 || Def2) { 4953 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4954 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4955 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4956 joinDwords(DAG, DL, Elem1, Elem2)); 4957 Done[I1] = true; 4958 Done[I2] = true; 4959 } else 4960 Result = DAG.getUNDEF(VT); 4961 } 4962 } 4963 4964 // Use VLVGx to insert the other elements. 4965 for (unsigned I = 0; I < NumElements; ++I) 4966 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4967 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4968 DAG.getConstant(I, DL, MVT::i32)); 4969 return Result; 4970 } 4971 4972 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4973 SelectionDAG &DAG) const { 4974 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4975 SDLoc DL(Op); 4976 EVT VT = Op.getValueType(); 4977 4978 if (BVN->isConstant()) { 4979 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4980 return Op; 4981 4982 // Fall back to loading it from memory. 4983 return SDValue(); 4984 } 4985 4986 // See if we should use shuffles to construct the vector from other vectors. 4987 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4988 return Res; 4989 4990 // Detect SCALAR_TO_VECTOR conversions. 4991 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4992 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4993 4994 // Otherwise use buildVector to build the vector up from GPRs. 4995 unsigned NumElements = Op.getNumOperands(); 4996 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4997 for (unsigned I = 0; I < NumElements; ++I) 4998 Ops[I] = Op.getOperand(I); 4999 return buildVector(DAG, DL, VT, Ops); 5000 } 5001 5002 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5003 SelectionDAG &DAG) const { 5004 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5005 SDLoc DL(Op); 5006 EVT VT = Op.getValueType(); 5007 unsigned NumElements = VT.getVectorNumElements(); 5008 5009 if (VSN->isSplat()) { 5010 SDValue Op0 = Op.getOperand(0); 5011 unsigned Index = VSN->getSplatIndex(); 5012 assert(Index < VT.getVectorNumElements() && 5013 "Splat index should be defined and in first operand"); 5014 // See whether the value we're splatting is directly available as a scalar. 5015 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5016 Op0.getOpcode() == ISD::BUILD_VECTOR) 5017 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5018 // Otherwise keep it as a vector-to-vector operation. 5019 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5020 DAG.getTargetConstant(Index, DL, MVT::i32)); 5021 } 5022 5023 GeneralShuffle GS(VT); 5024 for (unsigned I = 0; I < NumElements; ++I) { 5025 int Elt = VSN->getMaskElt(I); 5026 if (Elt < 0) 5027 GS.addUndef(); 5028 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5029 unsigned(Elt) % NumElements)) 5030 return SDValue(); 5031 } 5032 return GS.getNode(DAG, SDLoc(VSN)); 5033 } 5034 5035 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5036 SelectionDAG &DAG) const { 5037 SDLoc DL(Op); 5038 // Just insert the scalar into element 0 of an undefined vector. 5039 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5040 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5041 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5042 } 5043 5044 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5045 SelectionDAG &DAG) const { 5046 // Handle insertions of floating-point values. 5047 SDLoc DL(Op); 5048 SDValue Op0 = Op.getOperand(0); 5049 SDValue Op1 = Op.getOperand(1); 5050 SDValue Op2 = Op.getOperand(2); 5051 EVT VT = Op.getValueType(); 5052 5053 // Insertions into constant indices of a v2f64 can be done using VPDI. 5054 // However, if the inserted value is a bitcast or a constant then it's 5055 // better to use GPRs, as below. 5056 if (VT == MVT::v2f64 && 5057 Op1.getOpcode() != ISD::BITCAST && 5058 Op1.getOpcode() != ISD::ConstantFP && 5059 Op2.getOpcode() == ISD::Constant) { 5060 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5061 unsigned Mask = VT.getVectorNumElements() - 1; 5062 if (Index <= Mask) 5063 return Op; 5064 } 5065 5066 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5067 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5068 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5069 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5070 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5071 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5072 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5073 } 5074 5075 SDValue 5076 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5077 SelectionDAG &DAG) const { 5078 // Handle extractions of floating-point values. 5079 SDLoc DL(Op); 5080 SDValue Op0 = Op.getOperand(0); 5081 SDValue Op1 = Op.getOperand(1); 5082 EVT VT = Op.getValueType(); 5083 EVT VecVT = Op0.getValueType(); 5084 5085 // Extractions of constant indices can be done directly. 5086 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5087 uint64_t Index = CIndexN->getZExtValue(); 5088 unsigned Mask = VecVT.getVectorNumElements() - 1; 5089 if (Index <= Mask) 5090 return Op; 5091 } 5092 5093 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5094 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5095 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5096 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5097 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5098 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5099 } 5100 5101 SDValue 5102 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 5103 unsigned UnpackHigh) const { 5104 SDValue PackedOp = Op.getOperand(0); 5105 EVT OutVT = Op.getValueType(); 5106 EVT InVT = PackedOp.getValueType(); 5107 unsigned ToBits = OutVT.getScalarSizeInBits(); 5108 unsigned FromBits = InVT.getScalarSizeInBits(); 5109 do { 5110 FromBits *= 2; 5111 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5112 SystemZ::VectorBits / FromBits); 5113 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 5114 } while (FromBits != ToBits); 5115 return PackedOp; 5116 } 5117 5118 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5119 unsigned ByScalar) const { 5120 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5121 SDValue Op0 = Op.getOperand(0); 5122 SDValue Op1 = Op.getOperand(1); 5123 SDLoc DL(Op); 5124 EVT VT = Op.getValueType(); 5125 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5126 5127 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5128 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5129 APInt SplatBits, SplatUndef; 5130 unsigned SplatBitSize; 5131 bool HasAnyUndefs; 5132 // Check for constant splats. Use ElemBitSize as the minimum element 5133 // width and reject splats that need wider elements. 5134 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5135 ElemBitSize, true) && 5136 SplatBitSize == ElemBitSize) { 5137 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5138 DL, MVT::i32); 5139 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5140 } 5141 // Check for variable splats. 5142 BitVector UndefElements; 5143 SDValue Splat = BVN->getSplatValue(&UndefElements); 5144 if (Splat) { 5145 // Since i32 is the smallest legal type, we either need a no-op 5146 // or a truncation. 5147 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5148 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5149 } 5150 } 5151 5152 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5153 // and the shift amount is directly available in a GPR. 5154 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5155 if (VSN->isSplat()) { 5156 SDValue VSNOp0 = VSN->getOperand(0); 5157 unsigned Index = VSN->getSplatIndex(); 5158 assert(Index < VT.getVectorNumElements() && 5159 "Splat index should be defined and in first operand"); 5160 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5161 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5162 // Since i32 is the smallest legal type, we either need a no-op 5163 // or a truncation. 5164 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5165 VSNOp0.getOperand(Index)); 5166 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5167 } 5168 } 5169 } 5170 5171 // Otherwise just treat the current form as legal. 5172 return Op; 5173 } 5174 5175 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5176 SelectionDAG &DAG) const { 5177 switch (Op.getOpcode()) { 5178 case ISD::FRAMEADDR: 5179 return lowerFRAMEADDR(Op, DAG); 5180 case ISD::RETURNADDR: 5181 return lowerRETURNADDR(Op, DAG); 5182 case ISD::BR_CC: 5183 return lowerBR_CC(Op, DAG); 5184 case ISD::SELECT_CC: 5185 return lowerSELECT_CC(Op, DAG); 5186 case ISD::SETCC: 5187 return lowerSETCC(Op, DAG); 5188 case ISD::STRICT_FSETCC: 5189 return lowerSTRICT_FSETCC(Op, DAG, false); 5190 case ISD::STRICT_FSETCCS: 5191 return lowerSTRICT_FSETCC(Op, DAG, true); 5192 case ISD::GlobalAddress: 5193 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5194 case ISD::GlobalTLSAddress: 5195 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5196 case ISD::BlockAddress: 5197 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5198 case ISD::JumpTable: 5199 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5200 case ISD::ConstantPool: 5201 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5202 case ISD::BITCAST: 5203 return lowerBITCAST(Op, DAG); 5204 case ISD::VASTART: 5205 return lowerVASTART(Op, DAG); 5206 case ISD::VACOPY: 5207 return lowerVACOPY(Op, DAG); 5208 case ISD::DYNAMIC_STACKALLOC: 5209 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5210 case ISD::GET_DYNAMIC_AREA_OFFSET: 5211 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5212 case ISD::SMUL_LOHI: 5213 return lowerSMUL_LOHI(Op, DAG); 5214 case ISD::UMUL_LOHI: 5215 return lowerUMUL_LOHI(Op, DAG); 5216 case ISD::SDIVREM: 5217 return lowerSDIVREM(Op, DAG); 5218 case ISD::UDIVREM: 5219 return lowerUDIVREM(Op, DAG); 5220 case ISD::SADDO: 5221 case ISD::SSUBO: 5222 case ISD::UADDO: 5223 case ISD::USUBO: 5224 return lowerXALUO(Op, DAG); 5225 case ISD::ADDCARRY: 5226 case ISD::SUBCARRY: 5227 return lowerADDSUBCARRY(Op, DAG); 5228 case ISD::OR: 5229 return lowerOR(Op, DAG); 5230 case ISD::CTPOP: 5231 return lowerCTPOP(Op, DAG); 5232 case ISD::ATOMIC_FENCE: 5233 return lowerATOMIC_FENCE(Op, DAG); 5234 case ISD::ATOMIC_SWAP: 5235 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5236 case ISD::ATOMIC_STORE: 5237 return lowerATOMIC_STORE(Op, DAG); 5238 case ISD::ATOMIC_LOAD: 5239 return lowerATOMIC_LOAD(Op, DAG); 5240 case ISD::ATOMIC_LOAD_ADD: 5241 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5242 case ISD::ATOMIC_LOAD_SUB: 5243 return lowerATOMIC_LOAD_SUB(Op, DAG); 5244 case ISD::ATOMIC_LOAD_AND: 5245 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5246 case ISD::ATOMIC_LOAD_OR: 5247 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5248 case ISD::ATOMIC_LOAD_XOR: 5249 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5250 case ISD::ATOMIC_LOAD_NAND: 5251 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5252 case ISD::ATOMIC_LOAD_MIN: 5253 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5254 case ISD::ATOMIC_LOAD_MAX: 5255 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5256 case ISD::ATOMIC_LOAD_UMIN: 5257 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5258 case ISD::ATOMIC_LOAD_UMAX: 5259 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5260 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5261 return lowerATOMIC_CMP_SWAP(Op, DAG); 5262 case ISD::STACKSAVE: 5263 return lowerSTACKSAVE(Op, DAG); 5264 case ISD::STACKRESTORE: 5265 return lowerSTACKRESTORE(Op, DAG); 5266 case ISD::PREFETCH: 5267 return lowerPREFETCH(Op, DAG); 5268 case ISD::INTRINSIC_W_CHAIN: 5269 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5270 case ISD::INTRINSIC_WO_CHAIN: 5271 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5272 case ISD::BUILD_VECTOR: 5273 return lowerBUILD_VECTOR(Op, DAG); 5274 case ISD::VECTOR_SHUFFLE: 5275 return lowerVECTOR_SHUFFLE(Op, DAG); 5276 case ISD::SCALAR_TO_VECTOR: 5277 return lowerSCALAR_TO_VECTOR(Op, DAG); 5278 case ISD::INSERT_VECTOR_ELT: 5279 return lowerINSERT_VECTOR_ELT(Op, DAG); 5280 case ISD::EXTRACT_VECTOR_ELT: 5281 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5282 case ISD::SIGN_EXTEND_VECTOR_INREG: 5283 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5284 case ISD::ZERO_EXTEND_VECTOR_INREG: 5285 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5286 case ISD::SHL: 5287 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5288 case ISD::SRL: 5289 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5290 case ISD::SRA: 5291 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5292 default: 5293 llvm_unreachable("Unexpected node to lower"); 5294 } 5295 } 5296 5297 // Lower operations with invalid operand or result types (currently used 5298 // only for 128-bit integer types). 5299 5300 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5301 SDLoc DL(In); 5302 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5303 DAG.getIntPtrConstant(0, DL)); 5304 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5305 DAG.getIntPtrConstant(1, DL)); 5306 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5307 MVT::Untyped, Hi, Lo); 5308 return SDValue(Pair, 0); 5309 } 5310 5311 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5312 SDLoc DL(In); 5313 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5314 DL, MVT::i64, In); 5315 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5316 DL, MVT::i64, In); 5317 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5318 } 5319 5320 void 5321 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5322 SmallVectorImpl<SDValue> &Results, 5323 SelectionDAG &DAG) const { 5324 switch (N->getOpcode()) { 5325 case ISD::ATOMIC_LOAD: { 5326 SDLoc DL(N); 5327 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5328 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5329 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5330 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5331 DL, Tys, Ops, MVT::i128, MMO); 5332 Results.push_back(lowerGR128ToI128(DAG, Res)); 5333 Results.push_back(Res.getValue(1)); 5334 break; 5335 } 5336 case ISD::ATOMIC_STORE: { 5337 SDLoc DL(N); 5338 SDVTList Tys = DAG.getVTList(MVT::Other); 5339 SDValue Ops[] = { N->getOperand(0), 5340 lowerI128ToGR128(DAG, N->getOperand(2)), 5341 N->getOperand(1) }; 5342 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5343 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5344 DL, Tys, Ops, MVT::i128, MMO); 5345 // We have to enforce sequential consistency by performing a 5346 // serialization operation after the store. 5347 if (cast<AtomicSDNode>(N)->getOrdering() == 5348 AtomicOrdering::SequentiallyConsistent) 5349 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5350 MVT::Other, Res), 0); 5351 Results.push_back(Res); 5352 break; 5353 } 5354 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5355 SDLoc DL(N); 5356 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5357 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5358 lowerI128ToGR128(DAG, N->getOperand(2)), 5359 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5360 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5361 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5362 DL, Tys, Ops, MVT::i128, MMO); 5363 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5364 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5365 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5366 Results.push_back(lowerGR128ToI128(DAG, Res)); 5367 Results.push_back(Success); 5368 Results.push_back(Res.getValue(2)); 5369 break; 5370 } 5371 default: 5372 llvm_unreachable("Unexpected node to lower"); 5373 } 5374 } 5375 5376 void 5377 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5378 SmallVectorImpl<SDValue> &Results, 5379 SelectionDAG &DAG) const { 5380 return LowerOperationWrapper(N, Results, DAG); 5381 } 5382 5383 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5384 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5385 switch ((SystemZISD::NodeType)Opcode) { 5386 case SystemZISD::FIRST_NUMBER: break; 5387 OPCODE(RET_FLAG); 5388 OPCODE(CALL); 5389 OPCODE(SIBCALL); 5390 OPCODE(TLS_GDCALL); 5391 OPCODE(TLS_LDCALL); 5392 OPCODE(PCREL_WRAPPER); 5393 OPCODE(PCREL_OFFSET); 5394 OPCODE(IABS); 5395 OPCODE(ICMP); 5396 OPCODE(FCMP); 5397 OPCODE(STRICT_FCMP); 5398 OPCODE(STRICT_FCMPS); 5399 OPCODE(TM); 5400 OPCODE(BR_CCMASK); 5401 OPCODE(SELECT_CCMASK); 5402 OPCODE(ADJDYNALLOC); 5403 OPCODE(POPCNT); 5404 OPCODE(SMUL_LOHI); 5405 OPCODE(UMUL_LOHI); 5406 OPCODE(SDIVREM); 5407 OPCODE(UDIVREM); 5408 OPCODE(SADDO); 5409 OPCODE(SSUBO); 5410 OPCODE(UADDO); 5411 OPCODE(USUBO); 5412 OPCODE(ADDCARRY); 5413 OPCODE(SUBCARRY); 5414 OPCODE(GET_CCMASK); 5415 OPCODE(MVC); 5416 OPCODE(MVC_LOOP); 5417 OPCODE(NC); 5418 OPCODE(NC_LOOP); 5419 OPCODE(OC); 5420 OPCODE(OC_LOOP); 5421 OPCODE(XC); 5422 OPCODE(XC_LOOP); 5423 OPCODE(CLC); 5424 OPCODE(CLC_LOOP); 5425 OPCODE(STPCPY); 5426 OPCODE(STRCMP); 5427 OPCODE(SEARCH_STRING); 5428 OPCODE(IPM); 5429 OPCODE(MEMBARRIER); 5430 OPCODE(TBEGIN); 5431 OPCODE(TBEGIN_NOFLOAT); 5432 OPCODE(TEND); 5433 OPCODE(BYTE_MASK); 5434 OPCODE(ROTATE_MASK); 5435 OPCODE(REPLICATE); 5436 OPCODE(JOIN_DWORDS); 5437 OPCODE(SPLAT); 5438 OPCODE(MERGE_HIGH); 5439 OPCODE(MERGE_LOW); 5440 OPCODE(SHL_DOUBLE); 5441 OPCODE(PERMUTE_DWORDS); 5442 OPCODE(PERMUTE); 5443 OPCODE(PACK); 5444 OPCODE(PACKS_CC); 5445 OPCODE(PACKLS_CC); 5446 OPCODE(UNPACK_HIGH); 5447 OPCODE(UNPACKL_HIGH); 5448 OPCODE(UNPACK_LOW); 5449 OPCODE(UNPACKL_LOW); 5450 OPCODE(VSHL_BY_SCALAR); 5451 OPCODE(VSRL_BY_SCALAR); 5452 OPCODE(VSRA_BY_SCALAR); 5453 OPCODE(VSUM); 5454 OPCODE(VICMPE); 5455 OPCODE(VICMPH); 5456 OPCODE(VICMPHL); 5457 OPCODE(VICMPES); 5458 OPCODE(VICMPHS); 5459 OPCODE(VICMPHLS); 5460 OPCODE(VFCMPE); 5461 OPCODE(STRICT_VFCMPE); 5462 OPCODE(STRICT_VFCMPES); 5463 OPCODE(VFCMPH); 5464 OPCODE(STRICT_VFCMPH); 5465 OPCODE(STRICT_VFCMPHS); 5466 OPCODE(VFCMPHE); 5467 OPCODE(STRICT_VFCMPHE); 5468 OPCODE(STRICT_VFCMPHES); 5469 OPCODE(VFCMPES); 5470 OPCODE(VFCMPHS); 5471 OPCODE(VFCMPHES); 5472 OPCODE(VFTCI); 5473 OPCODE(VEXTEND); 5474 OPCODE(STRICT_VEXTEND); 5475 OPCODE(VROUND); 5476 OPCODE(STRICT_VROUND); 5477 OPCODE(VTM); 5478 OPCODE(VFAE_CC); 5479 OPCODE(VFAEZ_CC); 5480 OPCODE(VFEE_CC); 5481 OPCODE(VFEEZ_CC); 5482 OPCODE(VFENE_CC); 5483 OPCODE(VFENEZ_CC); 5484 OPCODE(VISTR_CC); 5485 OPCODE(VSTRC_CC); 5486 OPCODE(VSTRCZ_CC); 5487 OPCODE(VSTRS_CC); 5488 OPCODE(VSTRSZ_CC); 5489 OPCODE(TDC); 5490 OPCODE(ATOMIC_SWAPW); 5491 OPCODE(ATOMIC_LOADW_ADD); 5492 OPCODE(ATOMIC_LOADW_SUB); 5493 OPCODE(ATOMIC_LOADW_AND); 5494 OPCODE(ATOMIC_LOADW_OR); 5495 OPCODE(ATOMIC_LOADW_XOR); 5496 OPCODE(ATOMIC_LOADW_NAND); 5497 OPCODE(ATOMIC_LOADW_MIN); 5498 OPCODE(ATOMIC_LOADW_MAX); 5499 OPCODE(ATOMIC_LOADW_UMIN); 5500 OPCODE(ATOMIC_LOADW_UMAX); 5501 OPCODE(ATOMIC_CMP_SWAPW); 5502 OPCODE(ATOMIC_CMP_SWAP); 5503 OPCODE(ATOMIC_LOAD_128); 5504 OPCODE(ATOMIC_STORE_128); 5505 OPCODE(ATOMIC_CMP_SWAP_128); 5506 OPCODE(LRV); 5507 OPCODE(STRV); 5508 OPCODE(VLER); 5509 OPCODE(VSTER); 5510 OPCODE(PREFETCH); 5511 } 5512 return nullptr; 5513 #undef OPCODE 5514 } 5515 5516 // Return true if VT is a vector whose elements are a whole number of bytes 5517 // in width. Also check for presence of vector support. 5518 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5519 if (!Subtarget.hasVector()) 5520 return false; 5521 5522 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5523 } 5524 5525 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5526 // producing a result of type ResVT. Op is a possibly bitcast version 5527 // of the input vector and Index is the index (based on type VecVT) that 5528 // should be extracted. Return the new extraction if a simplification 5529 // was possible or if Force is true. 5530 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5531 EVT VecVT, SDValue Op, 5532 unsigned Index, 5533 DAGCombinerInfo &DCI, 5534 bool Force) const { 5535 SelectionDAG &DAG = DCI.DAG; 5536 5537 // The number of bytes being extracted. 5538 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5539 5540 for (;;) { 5541 unsigned Opcode = Op.getOpcode(); 5542 if (Opcode == ISD::BITCAST) 5543 // Look through bitcasts. 5544 Op = Op.getOperand(0); 5545 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5546 canTreatAsByteVector(Op.getValueType())) { 5547 // Get a VPERM-like permute mask and see whether the bytes covered 5548 // by the extracted element are a contiguous sequence from one 5549 // source operand. 5550 SmallVector<int, SystemZ::VectorBytes> Bytes; 5551 if (!getVPermMask(Op, Bytes)) 5552 break; 5553 int First; 5554 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5555 BytesPerElement, First)) 5556 break; 5557 if (First < 0) 5558 return DAG.getUNDEF(ResVT); 5559 // Make sure the contiguous sequence starts at a multiple of the 5560 // original element size. 5561 unsigned Byte = unsigned(First) % Bytes.size(); 5562 if (Byte % BytesPerElement != 0) 5563 break; 5564 // We can get the extracted value directly from an input. 5565 Index = Byte / BytesPerElement; 5566 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5567 Force = true; 5568 } else if (Opcode == ISD::BUILD_VECTOR && 5569 canTreatAsByteVector(Op.getValueType())) { 5570 // We can only optimize this case if the BUILD_VECTOR elements are 5571 // at least as wide as the extracted value. 5572 EVT OpVT = Op.getValueType(); 5573 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5574 if (OpBytesPerElement < BytesPerElement) 5575 break; 5576 // Make sure that the least-significant bit of the extracted value 5577 // is the least significant bit of an input. 5578 unsigned End = (Index + 1) * BytesPerElement; 5579 if (End % OpBytesPerElement != 0) 5580 break; 5581 // We're extracting the low part of one operand of the BUILD_VECTOR. 5582 Op = Op.getOperand(End / OpBytesPerElement - 1); 5583 if (!Op.getValueType().isInteger()) { 5584 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5585 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5586 DCI.AddToWorklist(Op.getNode()); 5587 } 5588 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5589 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5590 if (VT != ResVT) { 5591 DCI.AddToWorklist(Op.getNode()); 5592 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5593 } 5594 return Op; 5595 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5596 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5597 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5598 canTreatAsByteVector(Op.getValueType()) && 5599 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5600 // Make sure that only the unextended bits are significant. 5601 EVT ExtVT = Op.getValueType(); 5602 EVT OpVT = Op.getOperand(0).getValueType(); 5603 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5604 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5605 unsigned Byte = Index * BytesPerElement; 5606 unsigned SubByte = Byte % ExtBytesPerElement; 5607 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5608 if (SubByte < MinSubByte || 5609 SubByte + BytesPerElement > ExtBytesPerElement) 5610 break; 5611 // Get the byte offset of the unextended element 5612 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5613 // ...then add the byte offset relative to that element. 5614 Byte += SubByte - MinSubByte; 5615 if (Byte % BytesPerElement != 0) 5616 break; 5617 Op = Op.getOperand(0); 5618 Index = Byte / BytesPerElement; 5619 Force = true; 5620 } else 5621 break; 5622 } 5623 if (Force) { 5624 if (Op.getValueType() != VecVT) { 5625 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5626 DCI.AddToWorklist(Op.getNode()); 5627 } 5628 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5629 DAG.getConstant(Index, DL, MVT::i32)); 5630 } 5631 return SDValue(); 5632 } 5633 5634 // Optimize vector operations in scalar value Op on the basis that Op 5635 // is truncated to TruncVT. 5636 SDValue SystemZTargetLowering::combineTruncateExtract( 5637 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5638 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5639 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5640 // of type TruncVT. 5641 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5642 TruncVT.getSizeInBits() % 8 == 0) { 5643 SDValue Vec = Op.getOperand(0); 5644 EVT VecVT = Vec.getValueType(); 5645 if (canTreatAsByteVector(VecVT)) { 5646 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5647 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5648 unsigned TruncBytes = TruncVT.getStoreSize(); 5649 if (BytesPerElement % TruncBytes == 0) { 5650 // Calculate the value of Y' in the above description. We are 5651 // splitting the original elements into Scale equal-sized pieces 5652 // and for truncation purposes want the last (least-significant) 5653 // of these pieces for IndexN. This is easiest to do by calculating 5654 // the start index of the following element and then subtracting 1. 5655 unsigned Scale = BytesPerElement / TruncBytes; 5656 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5657 5658 // Defer the creation of the bitcast from X to combineExtract, 5659 // which might be able to optimize the extraction. 5660 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5661 VecVT.getStoreSize() / TruncBytes); 5662 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5663 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5664 } 5665 } 5666 } 5667 } 5668 return SDValue(); 5669 } 5670 5671 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5672 SDNode *N, DAGCombinerInfo &DCI) const { 5673 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5674 SelectionDAG &DAG = DCI.DAG; 5675 SDValue N0 = N->getOperand(0); 5676 EVT VT = N->getValueType(0); 5677 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5678 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5679 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5680 if (TrueOp && FalseOp) { 5681 SDLoc DL(N0); 5682 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5683 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5684 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5685 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5686 // If N0 has multiple uses, change other uses as well. 5687 if (!N0.hasOneUse()) { 5688 SDValue TruncSelect = 5689 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5690 DCI.CombineTo(N0.getNode(), TruncSelect); 5691 } 5692 return NewSelect; 5693 } 5694 } 5695 return SDValue(); 5696 } 5697 5698 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5699 SDNode *N, DAGCombinerInfo &DCI) const { 5700 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5701 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5702 // into (select_cc LHS, RHS, -1, 0, COND) 5703 SelectionDAG &DAG = DCI.DAG; 5704 SDValue N0 = N->getOperand(0); 5705 EVT VT = N->getValueType(0); 5706 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5707 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5708 N0 = N0.getOperand(0); 5709 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5710 SDLoc DL(N0); 5711 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5712 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5713 N0.getOperand(2) }; 5714 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5715 } 5716 return SDValue(); 5717 } 5718 5719 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5720 SDNode *N, DAGCombinerInfo &DCI) const { 5721 // Convert (sext (ashr (shl X, C1), C2)) to 5722 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5723 // cheap as narrower ones. 5724 SelectionDAG &DAG = DCI.DAG; 5725 SDValue N0 = N->getOperand(0); 5726 EVT VT = N->getValueType(0); 5727 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5728 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5729 SDValue Inner = N0.getOperand(0); 5730 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5731 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5732 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5733 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5734 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5735 EVT ShiftVT = N0.getOperand(1).getValueType(); 5736 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5737 Inner.getOperand(0)); 5738 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5739 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5740 ShiftVT)); 5741 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5742 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5743 } 5744 } 5745 } 5746 return SDValue(); 5747 } 5748 5749 SDValue SystemZTargetLowering::combineMERGE( 5750 SDNode *N, DAGCombinerInfo &DCI) const { 5751 SelectionDAG &DAG = DCI.DAG; 5752 unsigned Opcode = N->getOpcode(); 5753 SDValue Op0 = N->getOperand(0); 5754 SDValue Op1 = N->getOperand(1); 5755 if (Op0.getOpcode() == ISD::BITCAST) 5756 Op0 = Op0.getOperand(0); 5757 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5758 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5759 // for v4f32. 5760 if (Op1 == N->getOperand(0)) 5761 return Op1; 5762 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5763 EVT VT = Op1.getValueType(); 5764 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5765 if (ElemBytes <= 4) { 5766 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5767 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5768 EVT InVT = VT.changeVectorElementTypeToInteger(); 5769 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5770 SystemZ::VectorBytes / ElemBytes / 2); 5771 if (VT != InVT) { 5772 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5773 DCI.AddToWorklist(Op1.getNode()); 5774 } 5775 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5776 DCI.AddToWorklist(Op.getNode()); 5777 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5778 } 5779 } 5780 return SDValue(); 5781 } 5782 5783 SDValue SystemZTargetLowering::combineLOAD( 5784 SDNode *N, DAGCombinerInfo &DCI) const { 5785 SelectionDAG &DAG = DCI.DAG; 5786 EVT LdVT = N->getValueType(0); 5787 if (LdVT.isVector() || LdVT.isInteger()) 5788 return SDValue(); 5789 // Transform a scalar load that is REPLICATEd as well as having other 5790 // use(s) to the form where the other use(s) use the first element of the 5791 // REPLICATE instead of the load. Otherwise instruction selection will not 5792 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5793 // point loads. 5794 5795 SDValue Replicate; 5796 SmallVector<SDNode*, 8> OtherUses; 5797 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5798 UI != UE; ++UI) { 5799 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5800 if (Replicate) 5801 return SDValue(); // Should never happen 5802 Replicate = SDValue(*UI, 0); 5803 } 5804 else if (UI.getUse().getResNo() == 0) 5805 OtherUses.push_back(*UI); 5806 } 5807 if (!Replicate || OtherUses.empty()) 5808 return SDValue(); 5809 5810 SDLoc DL(N); 5811 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5812 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5813 // Update uses of the loaded Value while preserving old chains. 5814 for (SDNode *U : OtherUses) { 5815 SmallVector<SDValue, 8> Ops; 5816 for (SDValue Op : U->ops()) 5817 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5818 DAG.UpdateNodeOperands(U, Ops); 5819 } 5820 return SDValue(N, 0); 5821 } 5822 5823 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5824 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5825 return true; 5826 if (Subtarget.hasVectorEnhancements2()) 5827 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5828 return true; 5829 return false; 5830 } 5831 5832 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5833 if (!VT.isVector() || !VT.isSimple() || 5834 VT.getSizeInBits() != 128 || 5835 VT.getScalarSizeInBits() % 8 != 0) 5836 return false; 5837 5838 unsigned NumElts = VT.getVectorNumElements(); 5839 for (unsigned i = 0; i < NumElts; ++i) { 5840 if (M[i] < 0) continue; // ignore UNDEF indices 5841 if ((unsigned) M[i] != NumElts - 1 - i) 5842 return false; 5843 } 5844 5845 return true; 5846 } 5847 5848 SDValue SystemZTargetLowering::combineSTORE( 5849 SDNode *N, DAGCombinerInfo &DCI) const { 5850 SelectionDAG &DAG = DCI.DAG; 5851 auto *SN = cast<StoreSDNode>(N); 5852 auto &Op1 = N->getOperand(1); 5853 EVT MemVT = SN->getMemoryVT(); 5854 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5855 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5856 // If X has wider elements then convert it to: 5857 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5858 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5859 if (SDValue Value = 5860 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5861 DCI.AddToWorklist(Value.getNode()); 5862 5863 // Rewrite the store with the new form of stored value. 5864 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5865 SN->getBasePtr(), SN->getMemoryVT(), 5866 SN->getMemOperand()); 5867 } 5868 } 5869 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5870 if (!SN->isTruncatingStore() && 5871 Op1.getOpcode() == ISD::BSWAP && 5872 Op1.getNode()->hasOneUse() && 5873 canLoadStoreByteSwapped(Op1.getValueType())) { 5874 5875 SDValue BSwapOp = Op1.getOperand(0); 5876 5877 if (BSwapOp.getValueType() == MVT::i16) 5878 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5879 5880 SDValue Ops[] = { 5881 N->getOperand(0), BSwapOp, N->getOperand(2) 5882 }; 5883 5884 return 5885 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5886 Ops, MemVT, SN->getMemOperand()); 5887 } 5888 // Combine STORE (element-swap) into VSTER 5889 if (!SN->isTruncatingStore() && 5890 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5891 Op1.getNode()->hasOneUse() && 5892 Subtarget.hasVectorEnhancements2()) { 5893 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5894 ArrayRef<int> ShuffleMask = SVN->getMask(); 5895 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5896 SDValue Ops[] = { 5897 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5898 }; 5899 5900 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5901 DAG.getVTList(MVT::Other), 5902 Ops, MemVT, SN->getMemOperand()); 5903 } 5904 } 5905 5906 return SDValue(); 5907 } 5908 5909 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5910 SDNode *N, DAGCombinerInfo &DCI) const { 5911 SelectionDAG &DAG = DCI.DAG; 5912 // Combine element-swap (LOAD) into VLER 5913 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5914 N->getOperand(0).hasOneUse() && 5915 Subtarget.hasVectorEnhancements2()) { 5916 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5917 ArrayRef<int> ShuffleMask = SVN->getMask(); 5918 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5919 SDValue Load = N->getOperand(0); 5920 LoadSDNode *LD = cast<LoadSDNode>(Load); 5921 5922 // Create the element-swapping load. 5923 SDValue Ops[] = { 5924 LD->getChain(), // Chain 5925 LD->getBasePtr() // Ptr 5926 }; 5927 SDValue ESLoad = 5928 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5929 DAG.getVTList(LD->getValueType(0), MVT::Other), 5930 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5931 5932 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5933 // by the load dead. 5934 DCI.CombineTo(N, ESLoad); 5935 5936 // Next, combine the load away, we give it a bogus result value but a real 5937 // chain result. The result value is dead because the shuffle is dead. 5938 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5939 5940 // Return N so it doesn't get rechecked! 5941 return SDValue(N, 0); 5942 } 5943 } 5944 5945 return SDValue(); 5946 } 5947 5948 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5949 SDNode *N, DAGCombinerInfo &DCI) const { 5950 SelectionDAG &DAG = DCI.DAG; 5951 5952 if (!Subtarget.hasVector()) 5953 return SDValue(); 5954 5955 // Look through bitcasts that retain the number of vector elements. 5956 SDValue Op = N->getOperand(0); 5957 if (Op.getOpcode() == ISD::BITCAST && 5958 Op.getValueType().isVector() && 5959 Op.getOperand(0).getValueType().isVector() && 5960 Op.getValueType().getVectorNumElements() == 5961 Op.getOperand(0).getValueType().getVectorNumElements()) 5962 Op = Op.getOperand(0); 5963 5964 // Pull BSWAP out of a vector extraction. 5965 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5966 EVT VecVT = Op.getValueType(); 5967 EVT EltVT = VecVT.getVectorElementType(); 5968 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5969 Op.getOperand(0), N->getOperand(1)); 5970 DCI.AddToWorklist(Op.getNode()); 5971 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5972 if (EltVT != N->getValueType(0)) { 5973 DCI.AddToWorklist(Op.getNode()); 5974 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5975 } 5976 return Op; 5977 } 5978 5979 // Try to simplify a vector extraction. 5980 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5981 SDValue Op0 = N->getOperand(0); 5982 EVT VecVT = Op0.getValueType(); 5983 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5984 IndexN->getZExtValue(), DCI, false); 5985 } 5986 return SDValue(); 5987 } 5988 5989 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5990 SDNode *N, DAGCombinerInfo &DCI) const { 5991 SelectionDAG &DAG = DCI.DAG; 5992 // (join_dwords X, X) == (replicate X) 5993 if (N->getOperand(0) == N->getOperand(1)) 5994 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5995 N->getOperand(0)); 5996 return SDValue(); 5997 } 5998 5999 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6000 SDValue Chain1 = N1->getOperand(0); 6001 SDValue Chain2 = N2->getOperand(0); 6002 6003 // Trivial case: both nodes take the same chain. 6004 if (Chain1 == Chain2) 6005 return Chain1; 6006 6007 // FIXME - we could handle more complex cases via TokenFactor, 6008 // assuming we can verify that this would not create a cycle. 6009 return SDValue(); 6010 } 6011 6012 SDValue SystemZTargetLowering::combineFP_ROUND( 6013 SDNode *N, DAGCombinerInfo &DCI) const { 6014 6015 if (!Subtarget.hasVector()) 6016 return SDValue(); 6017 6018 // (fpround (extract_vector_elt X 0)) 6019 // (fpround (extract_vector_elt X 1)) -> 6020 // (extract_vector_elt (VROUND X) 0) 6021 // (extract_vector_elt (VROUND X) 2) 6022 // 6023 // This is a special case since the target doesn't really support v2f32s. 6024 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6025 SelectionDAG &DAG = DCI.DAG; 6026 SDValue Op0 = N->getOperand(OpNo); 6027 if (N->getValueType(0) == MVT::f32 && 6028 Op0.hasOneUse() && 6029 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6030 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6031 Op0.getOperand(1).getOpcode() == ISD::Constant && 6032 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6033 SDValue Vec = Op0.getOperand(0); 6034 for (auto *U : Vec->uses()) { 6035 if (U != Op0.getNode() && 6036 U->hasOneUse() && 6037 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6038 U->getOperand(0) == Vec && 6039 U->getOperand(1).getOpcode() == ISD::Constant && 6040 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6041 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6042 if (OtherRound.getOpcode() == N->getOpcode() && 6043 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6044 OtherRound.getValueType() == MVT::f32) { 6045 SDValue VRound, Chain; 6046 if (N->isStrictFPOpcode()) { 6047 Chain = MergeInputChains(N, OtherRound.getNode()); 6048 if (!Chain) 6049 continue; 6050 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6051 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6052 Chain = VRound.getValue(1); 6053 } else 6054 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6055 MVT::v4f32, Vec); 6056 DCI.AddToWorklist(VRound.getNode()); 6057 SDValue Extract1 = 6058 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6059 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6060 DCI.AddToWorklist(Extract1.getNode()); 6061 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6062 if (Chain) 6063 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6064 SDValue Extract0 = 6065 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6066 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6067 if (Chain) 6068 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6069 N->getVTList(), Extract0, Chain); 6070 return Extract0; 6071 } 6072 } 6073 } 6074 } 6075 return SDValue(); 6076 } 6077 6078 SDValue SystemZTargetLowering::combineFP_EXTEND( 6079 SDNode *N, DAGCombinerInfo &DCI) const { 6080 6081 if (!Subtarget.hasVector()) 6082 return SDValue(); 6083 6084 // (fpextend (extract_vector_elt X 0)) 6085 // (fpextend (extract_vector_elt X 2)) -> 6086 // (extract_vector_elt (VEXTEND X) 0) 6087 // (extract_vector_elt (VEXTEND X) 1) 6088 // 6089 // This is a special case since the target doesn't really support v2f32s. 6090 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6091 SelectionDAG &DAG = DCI.DAG; 6092 SDValue Op0 = N->getOperand(OpNo); 6093 if (N->getValueType(0) == MVT::f64 && 6094 Op0.hasOneUse() && 6095 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6096 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6097 Op0.getOperand(1).getOpcode() == ISD::Constant && 6098 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6099 SDValue Vec = Op0.getOperand(0); 6100 for (auto *U : Vec->uses()) { 6101 if (U != Op0.getNode() && 6102 U->hasOneUse() && 6103 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6104 U->getOperand(0) == Vec && 6105 U->getOperand(1).getOpcode() == ISD::Constant && 6106 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6107 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6108 if (OtherExtend.getOpcode() == N->getOpcode() && 6109 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6110 OtherExtend.getValueType() == MVT::f64) { 6111 SDValue VExtend, Chain; 6112 if (N->isStrictFPOpcode()) { 6113 Chain = MergeInputChains(N, OtherExtend.getNode()); 6114 if (!Chain) 6115 continue; 6116 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6117 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6118 Chain = VExtend.getValue(1); 6119 } else 6120 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6121 MVT::v2f64, Vec); 6122 DCI.AddToWorklist(VExtend.getNode()); 6123 SDValue Extract1 = 6124 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6125 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6126 DCI.AddToWorklist(Extract1.getNode()); 6127 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6128 if (Chain) 6129 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6130 SDValue Extract0 = 6131 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6132 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6133 if (Chain) 6134 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6135 N->getVTList(), Extract0, Chain); 6136 return Extract0; 6137 } 6138 } 6139 } 6140 } 6141 return SDValue(); 6142 } 6143 6144 SDValue SystemZTargetLowering::combineINT_TO_FP( 6145 SDNode *N, DAGCombinerInfo &DCI) const { 6146 if (DCI.Level != BeforeLegalizeTypes) 6147 return SDValue(); 6148 unsigned Opcode = N->getOpcode(); 6149 EVT OutVT = N->getValueType(0); 6150 SelectionDAG &DAG = DCI.DAG; 6151 SDValue Op = N->getOperand(0); 6152 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6153 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6154 6155 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6156 // v2f64 = uint_to_fp v2i16 6157 // => 6158 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6159 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6160 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6161 OutVT.getVectorNumElements()); 6162 unsigned ExtOpcode = 6163 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6164 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6165 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6166 } 6167 return SDValue(); 6168 } 6169 6170 SDValue SystemZTargetLowering::combineBSWAP( 6171 SDNode *N, DAGCombinerInfo &DCI) const { 6172 SelectionDAG &DAG = DCI.DAG; 6173 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6174 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6175 N->getOperand(0).hasOneUse() && 6176 canLoadStoreByteSwapped(N->getValueType(0))) { 6177 SDValue Load = N->getOperand(0); 6178 LoadSDNode *LD = cast<LoadSDNode>(Load); 6179 6180 // Create the byte-swapping load. 6181 SDValue Ops[] = { 6182 LD->getChain(), // Chain 6183 LD->getBasePtr() // Ptr 6184 }; 6185 EVT LoadVT = N->getValueType(0); 6186 if (LoadVT == MVT::i16) 6187 LoadVT = MVT::i32; 6188 SDValue BSLoad = 6189 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6190 DAG.getVTList(LoadVT, MVT::Other), 6191 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6192 6193 // If this is an i16 load, insert the truncate. 6194 SDValue ResVal = BSLoad; 6195 if (N->getValueType(0) == MVT::i16) 6196 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6197 6198 // First, combine the bswap away. This makes the value produced by the 6199 // load dead. 6200 DCI.CombineTo(N, ResVal); 6201 6202 // Next, combine the load away, we give it a bogus result value but a real 6203 // chain result. The result value is dead because the bswap is dead. 6204 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6205 6206 // Return N so it doesn't get rechecked! 6207 return SDValue(N, 0); 6208 } 6209 6210 // Look through bitcasts that retain the number of vector elements. 6211 SDValue Op = N->getOperand(0); 6212 if (Op.getOpcode() == ISD::BITCAST && 6213 Op.getValueType().isVector() && 6214 Op.getOperand(0).getValueType().isVector() && 6215 Op.getValueType().getVectorNumElements() == 6216 Op.getOperand(0).getValueType().getVectorNumElements()) 6217 Op = Op.getOperand(0); 6218 6219 // Push BSWAP into a vector insertion if at least one side then simplifies. 6220 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6221 SDValue Vec = Op.getOperand(0); 6222 SDValue Elt = Op.getOperand(1); 6223 SDValue Idx = Op.getOperand(2); 6224 6225 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6226 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6227 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6228 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6229 (canLoadStoreByteSwapped(N->getValueType(0)) && 6230 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6231 EVT VecVT = N->getValueType(0); 6232 EVT EltVT = N->getValueType(0).getVectorElementType(); 6233 if (VecVT != Vec.getValueType()) { 6234 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6235 DCI.AddToWorklist(Vec.getNode()); 6236 } 6237 if (EltVT != Elt.getValueType()) { 6238 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6239 DCI.AddToWorklist(Elt.getNode()); 6240 } 6241 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6242 DCI.AddToWorklist(Vec.getNode()); 6243 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6244 DCI.AddToWorklist(Elt.getNode()); 6245 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6246 Vec, Elt, Idx); 6247 } 6248 } 6249 6250 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6251 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6252 if (SV && Op.hasOneUse()) { 6253 SDValue Op0 = Op.getOperand(0); 6254 SDValue Op1 = Op.getOperand(1); 6255 6256 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6257 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6258 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6259 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6260 EVT VecVT = N->getValueType(0); 6261 if (VecVT != Op0.getValueType()) { 6262 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6263 DCI.AddToWorklist(Op0.getNode()); 6264 } 6265 if (VecVT != Op1.getValueType()) { 6266 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6267 DCI.AddToWorklist(Op1.getNode()); 6268 } 6269 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6270 DCI.AddToWorklist(Op0.getNode()); 6271 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6272 DCI.AddToWorklist(Op1.getNode()); 6273 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6274 } 6275 } 6276 6277 return SDValue(); 6278 } 6279 6280 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6281 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6282 // set by the CCReg instruction using the CCValid / CCMask masks, 6283 // If the CCReg instruction is itself a ICMP testing the condition 6284 // code set by some other instruction, see whether we can directly 6285 // use that condition code. 6286 6287 // Verify that we have an ICMP against some constant. 6288 if (CCValid != SystemZ::CCMASK_ICMP) 6289 return false; 6290 auto *ICmp = CCReg.getNode(); 6291 if (ICmp->getOpcode() != SystemZISD::ICMP) 6292 return false; 6293 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6294 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6295 if (!CompareRHS) 6296 return false; 6297 6298 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6299 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6300 // Verify that we have an appropriate mask for a EQ or NE comparison. 6301 bool Invert = false; 6302 if (CCMask == SystemZ::CCMASK_CMP_NE) 6303 Invert = !Invert; 6304 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6305 return false; 6306 6307 // Verify that the ICMP compares against one of select values. 6308 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6309 if (!TrueVal) 6310 return false; 6311 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6312 if (!FalseVal) 6313 return false; 6314 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6315 Invert = !Invert; 6316 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6317 return false; 6318 6319 // Compute the effective CC mask for the new branch or select. 6320 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6321 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6322 if (!NewCCValid || !NewCCMask) 6323 return false; 6324 CCValid = NewCCValid->getZExtValue(); 6325 CCMask = NewCCMask->getZExtValue(); 6326 if (Invert) 6327 CCMask ^= CCValid; 6328 6329 // Return the updated CCReg link. 6330 CCReg = CompareLHS->getOperand(4); 6331 return true; 6332 } 6333 6334 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6335 if (CompareLHS->getOpcode() == ISD::SRA) { 6336 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6337 if (!SRACount || SRACount->getZExtValue() != 30) 6338 return false; 6339 auto *SHL = CompareLHS->getOperand(0).getNode(); 6340 if (SHL->getOpcode() != ISD::SHL) 6341 return false; 6342 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6343 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6344 return false; 6345 auto *IPM = SHL->getOperand(0).getNode(); 6346 if (IPM->getOpcode() != SystemZISD::IPM) 6347 return false; 6348 6349 // Avoid introducing CC spills (because SRA would clobber CC). 6350 if (!CompareLHS->hasOneUse()) 6351 return false; 6352 // Verify that the ICMP compares against zero. 6353 if (CompareRHS->getZExtValue() != 0) 6354 return false; 6355 6356 // Compute the effective CC mask for the new branch or select. 6357 CCMask = SystemZ::reverseCCMask(CCMask); 6358 6359 // Return the updated CCReg link. 6360 CCReg = IPM->getOperand(0); 6361 return true; 6362 } 6363 6364 return false; 6365 } 6366 6367 SDValue SystemZTargetLowering::combineBR_CCMASK( 6368 SDNode *N, DAGCombinerInfo &DCI) const { 6369 SelectionDAG &DAG = DCI.DAG; 6370 6371 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6372 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6373 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6374 if (!CCValid || !CCMask) 6375 return SDValue(); 6376 6377 int CCValidVal = CCValid->getZExtValue(); 6378 int CCMaskVal = CCMask->getZExtValue(); 6379 SDValue Chain = N->getOperand(0); 6380 SDValue CCReg = N->getOperand(4); 6381 6382 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6383 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6384 Chain, 6385 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6386 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6387 N->getOperand(3), CCReg); 6388 return SDValue(); 6389 } 6390 6391 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6392 SDNode *N, DAGCombinerInfo &DCI) const { 6393 SelectionDAG &DAG = DCI.DAG; 6394 6395 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6396 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6397 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6398 if (!CCValid || !CCMask) 6399 return SDValue(); 6400 6401 int CCValidVal = CCValid->getZExtValue(); 6402 int CCMaskVal = CCMask->getZExtValue(); 6403 SDValue CCReg = N->getOperand(4); 6404 6405 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6406 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6407 N->getOperand(0), N->getOperand(1), 6408 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6409 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6410 CCReg); 6411 return SDValue(); 6412 } 6413 6414 6415 SDValue SystemZTargetLowering::combineGET_CCMASK( 6416 SDNode *N, DAGCombinerInfo &DCI) const { 6417 6418 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6419 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6420 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6421 if (!CCValid || !CCMask) 6422 return SDValue(); 6423 int CCValidVal = CCValid->getZExtValue(); 6424 int CCMaskVal = CCMask->getZExtValue(); 6425 6426 SDValue Select = N->getOperand(0); 6427 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6428 return SDValue(); 6429 6430 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6431 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6432 if (!SelectCCValid || !SelectCCMask) 6433 return SDValue(); 6434 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6435 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6436 6437 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6438 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6439 if (!TrueVal || !FalseVal) 6440 return SDValue(); 6441 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6442 ; 6443 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6444 SelectCCMaskVal ^= SelectCCValidVal; 6445 else 6446 return SDValue(); 6447 6448 if (SelectCCValidVal & ~CCValidVal) 6449 return SDValue(); 6450 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6451 return SDValue(); 6452 6453 return Select->getOperand(4); 6454 } 6455 6456 SDValue SystemZTargetLowering::combineIntDIVREM( 6457 SDNode *N, DAGCombinerInfo &DCI) const { 6458 SelectionDAG &DAG = DCI.DAG; 6459 EVT VT = N->getValueType(0); 6460 // In the case where the divisor is a vector of constants a cheaper 6461 // sequence of instructions can replace the divide. BuildSDIV is called to 6462 // do this during DAG combining, but it only succeeds when it can build a 6463 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6464 // since it is not Legal but Custom it can only happen before 6465 // legalization. Therefore we must scalarize this early before Combine 6466 // 1. For widened vectors, this is already the result of type legalization. 6467 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6468 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6469 return DAG.UnrollVectorOp(N); 6470 return SDValue(); 6471 } 6472 6473 SDValue SystemZTargetLowering::combineINTRINSIC( 6474 SDNode *N, DAGCombinerInfo &DCI) const { 6475 SelectionDAG &DAG = DCI.DAG; 6476 6477 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6478 switch (Id) { 6479 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6480 // or larger is simply a vector load. 6481 case Intrinsic::s390_vll: 6482 case Intrinsic::s390_vlrl: 6483 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6484 if (C->getZExtValue() >= 15) 6485 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6486 N->getOperand(3), MachinePointerInfo()); 6487 break; 6488 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6489 case Intrinsic::s390_vstl: 6490 case Intrinsic::s390_vstrl: 6491 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6492 if (C->getZExtValue() >= 15) 6493 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6494 N->getOperand(4), MachinePointerInfo()); 6495 break; 6496 } 6497 6498 return SDValue(); 6499 } 6500 6501 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6502 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6503 return N->getOperand(0); 6504 return N; 6505 } 6506 6507 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6508 DAGCombinerInfo &DCI) const { 6509 switch(N->getOpcode()) { 6510 default: break; 6511 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6512 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6513 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6514 case SystemZISD::MERGE_HIGH: 6515 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6516 case ISD::LOAD: return combineLOAD(N, DCI); 6517 case ISD::STORE: return combineSTORE(N, DCI); 6518 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6519 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6520 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6521 case ISD::STRICT_FP_ROUND: 6522 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6523 case ISD::STRICT_FP_EXTEND: 6524 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6525 case ISD::SINT_TO_FP: 6526 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6527 case ISD::BSWAP: return combineBSWAP(N, DCI); 6528 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6529 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6530 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6531 case ISD::SDIV: 6532 case ISD::UDIV: 6533 case ISD::SREM: 6534 case ISD::UREM: return combineIntDIVREM(N, DCI); 6535 case ISD::INTRINSIC_W_CHAIN: 6536 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6537 } 6538 6539 return SDValue(); 6540 } 6541 6542 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6543 // are for Op. 6544 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6545 unsigned OpNo) { 6546 EVT VT = Op.getValueType(); 6547 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6548 APInt SrcDemE; 6549 unsigned Opcode = Op.getOpcode(); 6550 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6551 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6552 switch (Id) { 6553 case Intrinsic::s390_vpksh: // PACKS 6554 case Intrinsic::s390_vpksf: 6555 case Intrinsic::s390_vpksg: 6556 case Intrinsic::s390_vpkshs: // PACKS_CC 6557 case Intrinsic::s390_vpksfs: 6558 case Intrinsic::s390_vpksgs: 6559 case Intrinsic::s390_vpklsh: // PACKLS 6560 case Intrinsic::s390_vpklsf: 6561 case Intrinsic::s390_vpklsg: 6562 case Intrinsic::s390_vpklshs: // PACKLS_CC 6563 case Intrinsic::s390_vpklsfs: 6564 case Intrinsic::s390_vpklsgs: 6565 // VECTOR PACK truncates the elements of two source vectors into one. 6566 SrcDemE = DemandedElts; 6567 if (OpNo == 2) 6568 SrcDemE.lshrInPlace(NumElts / 2); 6569 SrcDemE = SrcDemE.trunc(NumElts / 2); 6570 break; 6571 // VECTOR UNPACK extends half the elements of the source vector. 6572 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6573 case Intrinsic::s390_vuphh: 6574 case Intrinsic::s390_vuphf: 6575 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6576 case Intrinsic::s390_vuplhh: 6577 case Intrinsic::s390_vuplhf: 6578 SrcDemE = APInt(NumElts * 2, 0); 6579 SrcDemE.insertBits(DemandedElts, 0); 6580 break; 6581 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6582 case Intrinsic::s390_vuplhw: 6583 case Intrinsic::s390_vuplf: 6584 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6585 case Intrinsic::s390_vupllh: 6586 case Intrinsic::s390_vupllf: 6587 SrcDemE = APInt(NumElts * 2, 0); 6588 SrcDemE.insertBits(DemandedElts, NumElts); 6589 break; 6590 case Intrinsic::s390_vpdi: { 6591 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6592 SrcDemE = APInt(NumElts, 0); 6593 if (!DemandedElts[OpNo - 1]) 6594 break; 6595 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6596 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6597 // Demand input element 0 or 1, given by the mask bit value. 6598 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6599 break; 6600 } 6601 case Intrinsic::s390_vsldb: { 6602 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6603 assert(VT == MVT::v16i8 && "Unexpected type."); 6604 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6605 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6606 unsigned NumSrc0Els = 16 - FirstIdx; 6607 SrcDemE = APInt(NumElts, 0); 6608 if (OpNo == 1) { 6609 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6610 SrcDemE.insertBits(DemEls, FirstIdx); 6611 } else { 6612 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6613 SrcDemE.insertBits(DemEls, 0); 6614 } 6615 break; 6616 } 6617 case Intrinsic::s390_vperm: 6618 SrcDemE = APInt(NumElts, 1); 6619 break; 6620 default: 6621 llvm_unreachable("Unhandled intrinsic."); 6622 break; 6623 } 6624 } else { 6625 switch (Opcode) { 6626 case SystemZISD::JOIN_DWORDS: 6627 // Scalar operand. 6628 SrcDemE = APInt(1, 1); 6629 break; 6630 case SystemZISD::SELECT_CCMASK: 6631 SrcDemE = DemandedElts; 6632 break; 6633 default: 6634 llvm_unreachable("Unhandled opcode."); 6635 break; 6636 } 6637 } 6638 return SrcDemE; 6639 } 6640 6641 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6642 const APInt &DemandedElts, 6643 const SelectionDAG &DAG, unsigned Depth, 6644 unsigned OpNo) { 6645 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6646 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6647 KnownBits LHSKnown = 6648 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6649 KnownBits RHSKnown = 6650 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6651 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6652 Known.One = LHSKnown.One & RHSKnown.One; 6653 } 6654 6655 void 6656 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6657 KnownBits &Known, 6658 const APInt &DemandedElts, 6659 const SelectionDAG &DAG, 6660 unsigned Depth) const { 6661 Known.resetAll(); 6662 6663 // Intrinsic CC result is returned in the two low bits. 6664 unsigned tmp0, tmp1; // not used 6665 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6666 Known.Zero.setBitsFrom(2); 6667 return; 6668 } 6669 EVT VT = Op.getValueType(); 6670 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6671 return; 6672 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6673 "KnownBits does not match VT in bitwidth"); 6674 assert ((!VT.isVector() || 6675 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6676 "DemandedElts does not match VT number of elements"); 6677 unsigned BitWidth = Known.getBitWidth(); 6678 unsigned Opcode = Op.getOpcode(); 6679 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6680 bool IsLogical = false; 6681 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6682 switch (Id) { 6683 case Intrinsic::s390_vpksh: // PACKS 6684 case Intrinsic::s390_vpksf: 6685 case Intrinsic::s390_vpksg: 6686 case Intrinsic::s390_vpkshs: // PACKS_CC 6687 case Intrinsic::s390_vpksfs: 6688 case Intrinsic::s390_vpksgs: 6689 case Intrinsic::s390_vpklsh: // PACKLS 6690 case Intrinsic::s390_vpklsf: 6691 case Intrinsic::s390_vpklsg: 6692 case Intrinsic::s390_vpklshs: // PACKLS_CC 6693 case Intrinsic::s390_vpklsfs: 6694 case Intrinsic::s390_vpklsgs: 6695 case Intrinsic::s390_vpdi: 6696 case Intrinsic::s390_vsldb: 6697 case Intrinsic::s390_vperm: 6698 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6699 break; 6700 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6701 case Intrinsic::s390_vuplhh: 6702 case Intrinsic::s390_vuplhf: 6703 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6704 case Intrinsic::s390_vupllh: 6705 case Intrinsic::s390_vupllf: 6706 IsLogical = true; 6707 LLVM_FALLTHROUGH; 6708 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6709 case Intrinsic::s390_vuphh: 6710 case Intrinsic::s390_vuphf: 6711 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6712 case Intrinsic::s390_vuplhw: 6713 case Intrinsic::s390_vuplf: { 6714 SDValue SrcOp = Op.getOperand(1); 6715 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6716 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6717 if (IsLogical) { 6718 Known = Known.zext(BitWidth); 6719 } else 6720 Known = Known.sext(BitWidth); 6721 break; 6722 } 6723 default: 6724 break; 6725 } 6726 } else { 6727 switch (Opcode) { 6728 case SystemZISD::JOIN_DWORDS: 6729 case SystemZISD::SELECT_CCMASK: 6730 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6731 break; 6732 case SystemZISD::REPLICATE: { 6733 SDValue SrcOp = Op.getOperand(0); 6734 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6735 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6736 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6737 break; 6738 } 6739 default: 6740 break; 6741 } 6742 } 6743 6744 // Known has the width of the source operand(s). Adjust if needed to match 6745 // the passed bitwidth. 6746 if (Known.getBitWidth() != BitWidth) 6747 Known = Known.anyextOrTrunc(BitWidth); 6748 } 6749 6750 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6751 const SelectionDAG &DAG, unsigned Depth, 6752 unsigned OpNo) { 6753 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6754 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6755 if (LHS == 1) return 1; // Early out. 6756 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6757 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6758 if (RHS == 1) return 1; // Early out. 6759 unsigned Common = std::min(LHS, RHS); 6760 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6761 EVT VT = Op.getValueType(); 6762 unsigned VTBits = VT.getScalarSizeInBits(); 6763 if (SrcBitWidth > VTBits) { // PACK 6764 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6765 if (Common > SrcExtraBits) 6766 return (Common - SrcExtraBits); 6767 return 1; 6768 } 6769 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6770 return Common; 6771 } 6772 6773 unsigned 6774 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6775 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6776 unsigned Depth) const { 6777 if (Op.getResNo() != 0) 6778 return 1; 6779 unsigned Opcode = Op.getOpcode(); 6780 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6781 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6782 switch (Id) { 6783 case Intrinsic::s390_vpksh: // PACKS 6784 case Intrinsic::s390_vpksf: 6785 case Intrinsic::s390_vpksg: 6786 case Intrinsic::s390_vpkshs: // PACKS_CC 6787 case Intrinsic::s390_vpksfs: 6788 case Intrinsic::s390_vpksgs: 6789 case Intrinsic::s390_vpklsh: // PACKLS 6790 case Intrinsic::s390_vpklsf: 6791 case Intrinsic::s390_vpklsg: 6792 case Intrinsic::s390_vpklshs: // PACKLS_CC 6793 case Intrinsic::s390_vpklsfs: 6794 case Intrinsic::s390_vpklsgs: 6795 case Intrinsic::s390_vpdi: 6796 case Intrinsic::s390_vsldb: 6797 case Intrinsic::s390_vperm: 6798 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6799 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6800 case Intrinsic::s390_vuphh: 6801 case Intrinsic::s390_vuphf: 6802 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6803 case Intrinsic::s390_vuplhw: 6804 case Intrinsic::s390_vuplf: { 6805 SDValue PackedOp = Op.getOperand(1); 6806 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6807 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6808 EVT VT = Op.getValueType(); 6809 unsigned VTBits = VT.getScalarSizeInBits(); 6810 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6811 return Tmp; 6812 } 6813 default: 6814 break; 6815 } 6816 } else { 6817 switch (Opcode) { 6818 case SystemZISD::SELECT_CCMASK: 6819 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6820 default: 6821 break; 6822 } 6823 } 6824 6825 return 1; 6826 } 6827 6828 //===----------------------------------------------------------------------===// 6829 // Custom insertion 6830 //===----------------------------------------------------------------------===// 6831 6832 // Create a new basic block after MBB. 6833 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6834 MachineFunction &MF = *MBB->getParent(); 6835 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6836 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6837 return NewMBB; 6838 } 6839 6840 // Split MBB after MI and return the new block (the one that contains 6841 // instructions after MI). 6842 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6843 MachineBasicBlock *MBB) { 6844 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6845 NewMBB->splice(NewMBB->begin(), MBB, 6846 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6847 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6848 return NewMBB; 6849 } 6850 6851 // Split MBB before MI and return the new block (the one that contains MI). 6852 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6853 MachineBasicBlock *MBB) { 6854 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6855 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6856 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6857 return NewMBB; 6858 } 6859 6860 // Force base value Base into a register before MI. Return the register. 6861 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6862 const SystemZInstrInfo *TII) { 6863 if (Base.isReg()) 6864 return Base.getReg(); 6865 6866 MachineBasicBlock *MBB = MI.getParent(); 6867 MachineFunction &MF = *MBB->getParent(); 6868 MachineRegisterInfo &MRI = MF.getRegInfo(); 6869 6870 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6871 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6872 .add(Base) 6873 .addImm(0) 6874 .addReg(0); 6875 return Reg; 6876 } 6877 6878 // The CC operand of MI might be missing a kill marker because there 6879 // were multiple uses of CC, and ISel didn't know which to mark. 6880 // Figure out whether MI should have had a kill marker. 6881 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6882 // Scan forward through BB for a use/def of CC. 6883 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6884 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6885 const MachineInstr& mi = *miI; 6886 if (mi.readsRegister(SystemZ::CC)) 6887 return false; 6888 if (mi.definesRegister(SystemZ::CC)) 6889 break; // Should have kill-flag - update below. 6890 } 6891 6892 // If we hit the end of the block, check whether CC is live into a 6893 // successor. 6894 if (miI == MBB->end()) { 6895 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6896 if ((*SI)->isLiveIn(SystemZ::CC)) 6897 return false; 6898 } 6899 6900 return true; 6901 } 6902 6903 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6904 // together with other Select pseudo-opcodes into a single basic-block with 6905 // a conditional jump around it. 6906 static bool isSelectPseudo(MachineInstr &MI) { 6907 switch (MI.getOpcode()) { 6908 case SystemZ::Select32: 6909 case SystemZ::Select64: 6910 case SystemZ::SelectF32: 6911 case SystemZ::SelectF64: 6912 case SystemZ::SelectF128: 6913 case SystemZ::SelectVR32: 6914 case SystemZ::SelectVR64: 6915 case SystemZ::SelectVR128: 6916 return true; 6917 6918 default: 6919 return false; 6920 } 6921 } 6922 6923 // Helper function, which inserts PHI functions into SinkMBB: 6924 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6925 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6926 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6927 MachineBasicBlock *TrueMBB, 6928 MachineBasicBlock *FalseMBB, 6929 MachineBasicBlock *SinkMBB) { 6930 MachineFunction *MF = TrueMBB->getParent(); 6931 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6932 6933 MachineInstr *FirstMI = Selects.front(); 6934 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6935 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6936 6937 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6938 6939 // As we are creating the PHIs, we have to be careful if there is more than 6940 // one. Later Selects may reference the results of earlier Selects, but later 6941 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6942 // That also means that PHI construction must work forward from earlier to 6943 // later, and that the code must maintain a mapping from earlier PHI's 6944 // destination registers, and the registers that went into the PHI. 6945 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6946 6947 for (auto MI : Selects) { 6948 Register DestReg = MI->getOperand(0).getReg(); 6949 Register TrueReg = MI->getOperand(1).getReg(); 6950 Register FalseReg = MI->getOperand(2).getReg(); 6951 6952 // If this Select we are generating is the opposite condition from 6953 // the jump we generated, then we have to swap the operands for the 6954 // PHI that is going to be generated. 6955 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6956 std::swap(TrueReg, FalseReg); 6957 6958 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6959 TrueReg = RegRewriteTable[TrueReg].first; 6960 6961 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6962 FalseReg = RegRewriteTable[FalseReg].second; 6963 6964 DebugLoc DL = MI->getDebugLoc(); 6965 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6966 .addReg(TrueReg).addMBB(TrueMBB) 6967 .addReg(FalseReg).addMBB(FalseMBB); 6968 6969 // Add this PHI to the rewrite table. 6970 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6971 } 6972 6973 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6974 } 6975 6976 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6977 MachineBasicBlock * 6978 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6979 MachineBasicBlock *MBB) const { 6980 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6981 const SystemZInstrInfo *TII = 6982 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6983 6984 unsigned CCValid = MI.getOperand(3).getImm(); 6985 unsigned CCMask = MI.getOperand(4).getImm(); 6986 6987 // If we have a sequence of Select* pseudo instructions using the 6988 // same condition code value, we want to expand all of them into 6989 // a single pair of basic blocks using the same condition. 6990 SmallVector<MachineInstr*, 8> Selects; 6991 SmallVector<MachineInstr*, 8> DbgValues; 6992 Selects.push_back(&MI); 6993 unsigned Count = 0; 6994 for (MachineBasicBlock::iterator NextMIIt = 6995 std::next(MachineBasicBlock::iterator(MI)); 6996 NextMIIt != MBB->end(); ++NextMIIt) { 6997 if (isSelectPseudo(*NextMIIt)) { 6998 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6999 "Bad CCValid operands since CC was not redefined."); 7000 if (NextMIIt->getOperand(4).getImm() == CCMask || 7001 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7002 Selects.push_back(&*NextMIIt); 7003 continue; 7004 } 7005 break; 7006 } 7007 if (NextMIIt->definesRegister(SystemZ::CC) || 7008 NextMIIt->usesCustomInsertionHook()) 7009 break; 7010 bool User = false; 7011 for (auto SelMI : Selects) 7012 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7013 User = true; 7014 break; 7015 } 7016 if (NextMIIt->isDebugInstr()) { 7017 if (User) { 7018 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7019 DbgValues.push_back(&*NextMIIt); 7020 } 7021 } 7022 else if (User || ++Count > 20) 7023 break; 7024 } 7025 7026 MachineInstr *LastMI = Selects.back(); 7027 bool CCKilled = 7028 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7029 MachineBasicBlock *StartMBB = MBB; 7030 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 7031 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 7032 7033 // Unless CC was killed in the last Select instruction, mark it as 7034 // live-in to both FalseMBB and JoinMBB. 7035 if (!CCKilled) { 7036 FalseMBB->addLiveIn(SystemZ::CC); 7037 JoinMBB->addLiveIn(SystemZ::CC); 7038 } 7039 7040 // StartMBB: 7041 // BRC CCMask, JoinMBB 7042 // # fallthrough to FalseMBB 7043 MBB = StartMBB; 7044 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7045 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7046 MBB->addSuccessor(JoinMBB); 7047 MBB->addSuccessor(FalseMBB); 7048 7049 // FalseMBB: 7050 // # fallthrough to JoinMBB 7051 MBB = FalseMBB; 7052 MBB->addSuccessor(JoinMBB); 7053 7054 // JoinMBB: 7055 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7056 // ... 7057 MBB = JoinMBB; 7058 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7059 for (auto SelMI : Selects) 7060 SelMI->eraseFromParent(); 7061 7062 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7063 for (auto DbgMI : DbgValues) 7064 MBB->splice(InsertPos, StartMBB, DbgMI); 7065 7066 return JoinMBB; 7067 } 7068 7069 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7070 // StoreOpcode is the store to use and Invert says whether the store should 7071 // happen when the condition is false rather than true. If a STORE ON 7072 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7073 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7074 MachineBasicBlock *MBB, 7075 unsigned StoreOpcode, 7076 unsigned STOCOpcode, 7077 bool Invert) const { 7078 const SystemZInstrInfo *TII = 7079 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7080 7081 Register SrcReg = MI.getOperand(0).getReg(); 7082 MachineOperand Base = MI.getOperand(1); 7083 int64_t Disp = MI.getOperand(2).getImm(); 7084 Register IndexReg = MI.getOperand(3).getReg(); 7085 unsigned CCValid = MI.getOperand(4).getImm(); 7086 unsigned CCMask = MI.getOperand(5).getImm(); 7087 DebugLoc DL = MI.getDebugLoc(); 7088 7089 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7090 7091 // Use STOCOpcode if possible. We could use different store patterns in 7092 // order to avoid matching the index register, but the performance trade-offs 7093 // might be more complicated in that case. 7094 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7095 if (Invert) 7096 CCMask ^= CCValid; 7097 7098 // ISel pattern matching also adds a load memory operand of the same 7099 // address, so take special care to find the storing memory operand. 7100 MachineMemOperand *MMO = nullptr; 7101 for (auto *I : MI.memoperands()) 7102 if (I->isStore()) { 7103 MMO = I; 7104 break; 7105 } 7106 7107 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7108 .addReg(SrcReg) 7109 .add(Base) 7110 .addImm(Disp) 7111 .addImm(CCValid) 7112 .addImm(CCMask) 7113 .addMemOperand(MMO); 7114 7115 MI.eraseFromParent(); 7116 return MBB; 7117 } 7118 7119 // Get the condition needed to branch around the store. 7120 if (!Invert) 7121 CCMask ^= CCValid; 7122 7123 MachineBasicBlock *StartMBB = MBB; 7124 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 7125 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 7126 7127 // Unless CC was killed in the CondStore instruction, mark it as 7128 // live-in to both FalseMBB and JoinMBB. 7129 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7130 FalseMBB->addLiveIn(SystemZ::CC); 7131 JoinMBB->addLiveIn(SystemZ::CC); 7132 } 7133 7134 // StartMBB: 7135 // BRC CCMask, JoinMBB 7136 // # fallthrough to FalseMBB 7137 MBB = StartMBB; 7138 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7139 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7140 MBB->addSuccessor(JoinMBB); 7141 MBB->addSuccessor(FalseMBB); 7142 7143 // FalseMBB: 7144 // store %SrcReg, %Disp(%Index,%Base) 7145 // # fallthrough to JoinMBB 7146 MBB = FalseMBB; 7147 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7148 .addReg(SrcReg) 7149 .add(Base) 7150 .addImm(Disp) 7151 .addReg(IndexReg); 7152 MBB->addSuccessor(JoinMBB); 7153 7154 MI.eraseFromParent(); 7155 return JoinMBB; 7156 } 7157 7158 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7159 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7160 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7161 // BitSize is the width of the field in bits, or 0 if this is a partword 7162 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7163 // is one of the operands. Invert says whether the field should be 7164 // inverted after performing BinOpcode (e.g. for NAND). 7165 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7166 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7167 unsigned BitSize, bool Invert) const { 7168 MachineFunction &MF = *MBB->getParent(); 7169 const SystemZInstrInfo *TII = 7170 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7171 MachineRegisterInfo &MRI = MF.getRegInfo(); 7172 bool IsSubWord = (BitSize < 32); 7173 7174 // Extract the operands. Base can be a register or a frame index. 7175 // Src2 can be a register or immediate. 7176 Register Dest = MI.getOperand(0).getReg(); 7177 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7178 int64_t Disp = MI.getOperand(2).getImm(); 7179 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7180 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7181 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7182 DebugLoc DL = MI.getDebugLoc(); 7183 if (IsSubWord) 7184 BitSize = MI.getOperand(6).getImm(); 7185 7186 // Subword operations use 32-bit registers. 7187 const TargetRegisterClass *RC = (BitSize <= 32 ? 7188 &SystemZ::GR32BitRegClass : 7189 &SystemZ::GR64BitRegClass); 7190 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7191 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7192 7193 // Get the right opcodes for the displacement. 7194 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7195 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7196 assert(LOpcode && CSOpcode && "Displacement out of range"); 7197 7198 // Create virtual registers for temporary results. 7199 Register OrigVal = MRI.createVirtualRegister(RC); 7200 Register OldVal = MRI.createVirtualRegister(RC); 7201 Register NewVal = (BinOpcode || IsSubWord ? 7202 MRI.createVirtualRegister(RC) : Src2.getReg()); 7203 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7204 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7205 7206 // Insert a basic block for the main loop. 7207 MachineBasicBlock *StartMBB = MBB; 7208 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7209 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7210 7211 // StartMBB: 7212 // ... 7213 // %OrigVal = L Disp(%Base) 7214 // # fall through to LoopMMB 7215 MBB = StartMBB; 7216 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7217 MBB->addSuccessor(LoopMBB); 7218 7219 // LoopMBB: 7220 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7221 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7222 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7223 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7224 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7225 // JNE LoopMBB 7226 // # fall through to DoneMMB 7227 MBB = LoopMBB; 7228 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7229 .addReg(OrigVal).addMBB(StartMBB) 7230 .addReg(Dest).addMBB(LoopMBB); 7231 if (IsSubWord) 7232 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7233 .addReg(OldVal).addReg(BitShift).addImm(0); 7234 if (Invert) { 7235 // Perform the operation normally and then invert every bit of the field. 7236 Register Tmp = MRI.createVirtualRegister(RC); 7237 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7238 if (BitSize <= 32) 7239 // XILF with the upper BitSize bits set. 7240 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7241 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7242 else { 7243 // Use LCGR and add -1 to the result, which is more compact than 7244 // an XILF, XILH pair. 7245 Register Tmp2 = MRI.createVirtualRegister(RC); 7246 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7247 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7248 .addReg(Tmp2).addImm(-1); 7249 } 7250 } else if (BinOpcode) 7251 // A simply binary operation. 7252 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7253 .addReg(RotatedOldVal) 7254 .add(Src2); 7255 else if (IsSubWord) 7256 // Use RISBG to rotate Src2 into position and use it to replace the 7257 // field in RotatedOldVal. 7258 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7259 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7260 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7261 if (IsSubWord) 7262 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7263 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7264 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7265 .addReg(OldVal) 7266 .addReg(NewVal) 7267 .add(Base) 7268 .addImm(Disp); 7269 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7270 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7271 MBB->addSuccessor(LoopMBB); 7272 MBB->addSuccessor(DoneMBB); 7273 7274 MI.eraseFromParent(); 7275 return DoneMBB; 7276 } 7277 7278 // Implement EmitInstrWithCustomInserter for pseudo 7279 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7280 // instruction that should be used to compare the current field with the 7281 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7282 // for when the current field should be kept. BitSize is the width of 7283 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7284 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7285 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7286 unsigned KeepOldMask, unsigned BitSize) const { 7287 MachineFunction &MF = *MBB->getParent(); 7288 const SystemZInstrInfo *TII = 7289 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7290 MachineRegisterInfo &MRI = MF.getRegInfo(); 7291 bool IsSubWord = (BitSize < 32); 7292 7293 // Extract the operands. Base can be a register or a frame index. 7294 Register Dest = MI.getOperand(0).getReg(); 7295 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7296 int64_t Disp = MI.getOperand(2).getImm(); 7297 Register Src2 = MI.getOperand(3).getReg(); 7298 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7299 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7300 DebugLoc DL = MI.getDebugLoc(); 7301 if (IsSubWord) 7302 BitSize = MI.getOperand(6).getImm(); 7303 7304 // Subword operations use 32-bit registers. 7305 const TargetRegisterClass *RC = (BitSize <= 32 ? 7306 &SystemZ::GR32BitRegClass : 7307 &SystemZ::GR64BitRegClass); 7308 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7309 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7310 7311 // Get the right opcodes for the displacement. 7312 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7313 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7314 assert(LOpcode && CSOpcode && "Displacement out of range"); 7315 7316 // Create virtual registers for temporary results. 7317 Register OrigVal = MRI.createVirtualRegister(RC); 7318 Register OldVal = MRI.createVirtualRegister(RC); 7319 Register NewVal = MRI.createVirtualRegister(RC); 7320 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7321 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7322 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7323 7324 // Insert 3 basic blocks for the loop. 7325 MachineBasicBlock *StartMBB = MBB; 7326 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7327 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7328 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7329 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7330 7331 // StartMBB: 7332 // ... 7333 // %OrigVal = L Disp(%Base) 7334 // # fall through to LoopMMB 7335 MBB = StartMBB; 7336 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7337 MBB->addSuccessor(LoopMBB); 7338 7339 // LoopMBB: 7340 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7341 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7342 // CompareOpcode %RotatedOldVal, %Src2 7343 // BRC KeepOldMask, UpdateMBB 7344 MBB = LoopMBB; 7345 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7346 .addReg(OrigVal).addMBB(StartMBB) 7347 .addReg(Dest).addMBB(UpdateMBB); 7348 if (IsSubWord) 7349 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7350 .addReg(OldVal).addReg(BitShift).addImm(0); 7351 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7352 .addReg(RotatedOldVal).addReg(Src2); 7353 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7354 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7355 MBB->addSuccessor(UpdateMBB); 7356 MBB->addSuccessor(UseAltMBB); 7357 7358 // UseAltMBB: 7359 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7360 // # fall through to UpdateMMB 7361 MBB = UseAltMBB; 7362 if (IsSubWord) 7363 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7364 .addReg(RotatedOldVal).addReg(Src2) 7365 .addImm(32).addImm(31 + BitSize).addImm(0); 7366 MBB->addSuccessor(UpdateMBB); 7367 7368 // UpdateMBB: 7369 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7370 // [ %RotatedAltVal, UseAltMBB ] 7371 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7372 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7373 // JNE LoopMBB 7374 // # fall through to DoneMMB 7375 MBB = UpdateMBB; 7376 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7377 .addReg(RotatedOldVal).addMBB(LoopMBB) 7378 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7379 if (IsSubWord) 7380 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7381 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7382 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7383 .addReg(OldVal) 7384 .addReg(NewVal) 7385 .add(Base) 7386 .addImm(Disp); 7387 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7388 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7389 MBB->addSuccessor(LoopMBB); 7390 MBB->addSuccessor(DoneMBB); 7391 7392 MI.eraseFromParent(); 7393 return DoneMBB; 7394 } 7395 7396 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7397 // instruction MI. 7398 MachineBasicBlock * 7399 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7400 MachineBasicBlock *MBB) const { 7401 7402 MachineFunction &MF = *MBB->getParent(); 7403 const SystemZInstrInfo *TII = 7404 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7405 MachineRegisterInfo &MRI = MF.getRegInfo(); 7406 7407 // Extract the operands. Base can be a register or a frame index. 7408 Register Dest = MI.getOperand(0).getReg(); 7409 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7410 int64_t Disp = MI.getOperand(2).getImm(); 7411 Register OrigCmpVal = MI.getOperand(3).getReg(); 7412 Register OrigSwapVal = MI.getOperand(4).getReg(); 7413 Register BitShift = MI.getOperand(5).getReg(); 7414 Register NegBitShift = MI.getOperand(6).getReg(); 7415 int64_t BitSize = MI.getOperand(7).getImm(); 7416 DebugLoc DL = MI.getDebugLoc(); 7417 7418 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7419 7420 // Get the right opcodes for the displacement. 7421 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7422 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7423 assert(LOpcode && CSOpcode && "Displacement out of range"); 7424 7425 // Create virtual registers for temporary results. 7426 Register OrigOldVal = MRI.createVirtualRegister(RC); 7427 Register OldVal = MRI.createVirtualRegister(RC); 7428 Register CmpVal = MRI.createVirtualRegister(RC); 7429 Register SwapVal = MRI.createVirtualRegister(RC); 7430 Register StoreVal = MRI.createVirtualRegister(RC); 7431 Register RetryOldVal = MRI.createVirtualRegister(RC); 7432 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7433 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7434 7435 // Insert 2 basic blocks for the loop. 7436 MachineBasicBlock *StartMBB = MBB; 7437 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7438 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7439 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7440 7441 // StartMBB: 7442 // ... 7443 // %OrigOldVal = L Disp(%Base) 7444 // # fall through to LoopMMB 7445 MBB = StartMBB; 7446 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7447 .add(Base) 7448 .addImm(Disp) 7449 .addReg(0); 7450 MBB->addSuccessor(LoopMBB); 7451 7452 // LoopMBB: 7453 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7454 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7455 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7456 // %Dest = RLL %OldVal, BitSize(%BitShift) 7457 // ^^ The low BitSize bits contain the field 7458 // of interest. 7459 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7460 // ^^ Replace the upper 32-BitSize bits of the 7461 // comparison value with those that we loaded, 7462 // so that we can use a full word comparison. 7463 // CR %Dest, %RetryCmpVal 7464 // JNE DoneMBB 7465 // # Fall through to SetMBB 7466 MBB = LoopMBB; 7467 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7468 .addReg(OrigOldVal).addMBB(StartMBB) 7469 .addReg(RetryOldVal).addMBB(SetMBB); 7470 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7471 .addReg(OrigCmpVal).addMBB(StartMBB) 7472 .addReg(RetryCmpVal).addMBB(SetMBB); 7473 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7474 .addReg(OrigSwapVal).addMBB(StartMBB) 7475 .addReg(RetrySwapVal).addMBB(SetMBB); 7476 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7477 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7478 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7479 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7480 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7481 .addReg(Dest).addReg(RetryCmpVal); 7482 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7483 .addImm(SystemZ::CCMASK_ICMP) 7484 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7485 MBB->addSuccessor(DoneMBB); 7486 MBB->addSuccessor(SetMBB); 7487 7488 // SetMBB: 7489 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7490 // ^^ Replace the upper 32-BitSize bits of the new 7491 // value with those that we loaded. 7492 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7493 // ^^ Rotate the new field to its proper position. 7494 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7495 // JNE LoopMBB 7496 // # fall through to ExitMMB 7497 MBB = SetMBB; 7498 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7499 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7500 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7501 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7502 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7503 .addReg(OldVal) 7504 .addReg(StoreVal) 7505 .add(Base) 7506 .addImm(Disp); 7507 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7508 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7509 MBB->addSuccessor(LoopMBB); 7510 MBB->addSuccessor(DoneMBB); 7511 7512 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7513 // to the block after the loop. At this point, CC may have been defined 7514 // either by the CR in LoopMBB or by the CS in SetMBB. 7515 if (!MI.registerDefIsDead(SystemZ::CC)) 7516 DoneMBB->addLiveIn(SystemZ::CC); 7517 7518 MI.eraseFromParent(); 7519 return DoneMBB; 7520 } 7521 7522 // Emit a move from two GR64s to a GR128. 7523 MachineBasicBlock * 7524 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7525 MachineBasicBlock *MBB) const { 7526 MachineFunction &MF = *MBB->getParent(); 7527 const SystemZInstrInfo *TII = 7528 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7529 MachineRegisterInfo &MRI = MF.getRegInfo(); 7530 DebugLoc DL = MI.getDebugLoc(); 7531 7532 Register Dest = MI.getOperand(0).getReg(); 7533 Register Hi = MI.getOperand(1).getReg(); 7534 Register Lo = MI.getOperand(2).getReg(); 7535 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7536 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7537 7538 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7539 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7540 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7541 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7542 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7543 7544 MI.eraseFromParent(); 7545 return MBB; 7546 } 7547 7548 // Emit an extension from a GR64 to a GR128. ClearEven is true 7549 // if the high register of the GR128 value must be cleared or false if 7550 // it's "don't care". 7551 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7552 MachineBasicBlock *MBB, 7553 bool ClearEven) const { 7554 MachineFunction &MF = *MBB->getParent(); 7555 const SystemZInstrInfo *TII = 7556 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7557 MachineRegisterInfo &MRI = MF.getRegInfo(); 7558 DebugLoc DL = MI.getDebugLoc(); 7559 7560 Register Dest = MI.getOperand(0).getReg(); 7561 Register Src = MI.getOperand(1).getReg(); 7562 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7563 7564 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7565 if (ClearEven) { 7566 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7567 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7568 7569 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7570 .addImm(0); 7571 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7572 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7573 In128 = NewIn128; 7574 } 7575 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7576 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7577 7578 MI.eraseFromParent(); 7579 return MBB; 7580 } 7581 7582 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7583 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7584 MachineFunction &MF = *MBB->getParent(); 7585 const SystemZInstrInfo *TII = 7586 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7587 MachineRegisterInfo &MRI = MF.getRegInfo(); 7588 DebugLoc DL = MI.getDebugLoc(); 7589 7590 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7591 uint64_t DestDisp = MI.getOperand(1).getImm(); 7592 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7593 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7594 uint64_t Length = MI.getOperand(4).getImm(); 7595 7596 // When generating more than one CLC, all but the last will need to 7597 // branch to the end when a difference is found. 7598 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7599 splitBlockAfter(MI, MBB) : nullptr); 7600 7601 // Check for the loop form, in which operand 5 is the trip count. 7602 if (MI.getNumExplicitOperands() > 5) { 7603 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7604 7605 Register StartCountReg = MI.getOperand(5).getReg(); 7606 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7607 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7608 forceReg(MI, DestBase, TII)); 7609 7610 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7611 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7612 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7613 MRI.createVirtualRegister(RC)); 7614 Register NextSrcReg = MRI.createVirtualRegister(RC); 7615 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7616 MRI.createVirtualRegister(RC)); 7617 7618 RC = &SystemZ::GR64BitRegClass; 7619 Register ThisCountReg = MRI.createVirtualRegister(RC); 7620 Register NextCountReg = MRI.createVirtualRegister(RC); 7621 7622 MachineBasicBlock *StartMBB = MBB; 7623 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7624 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7625 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7626 7627 // StartMBB: 7628 // # fall through to LoopMMB 7629 MBB->addSuccessor(LoopMBB); 7630 7631 // LoopMBB: 7632 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7633 // [ %NextDestReg, NextMBB ] 7634 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7635 // [ %NextSrcReg, NextMBB ] 7636 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7637 // [ %NextCountReg, NextMBB ] 7638 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7639 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7640 // ( JLH EndMBB ) 7641 // 7642 // The prefetch is used only for MVC. The JLH is used only for CLC. 7643 MBB = LoopMBB; 7644 7645 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7646 .addReg(StartDestReg).addMBB(StartMBB) 7647 .addReg(NextDestReg).addMBB(NextMBB); 7648 if (!HaveSingleBase) 7649 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7650 .addReg(StartSrcReg).addMBB(StartMBB) 7651 .addReg(NextSrcReg).addMBB(NextMBB); 7652 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7653 .addReg(StartCountReg).addMBB(StartMBB) 7654 .addReg(NextCountReg).addMBB(NextMBB); 7655 if (Opcode == SystemZ::MVC) 7656 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7657 .addImm(SystemZ::PFD_WRITE) 7658 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7659 BuildMI(MBB, DL, TII->get(Opcode)) 7660 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7661 .addReg(ThisSrcReg).addImm(SrcDisp); 7662 if (EndMBB) { 7663 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7664 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7665 .addMBB(EndMBB); 7666 MBB->addSuccessor(EndMBB); 7667 MBB->addSuccessor(NextMBB); 7668 } 7669 7670 // NextMBB: 7671 // %NextDestReg = LA 256(%ThisDestReg) 7672 // %NextSrcReg = LA 256(%ThisSrcReg) 7673 // %NextCountReg = AGHI %ThisCountReg, -1 7674 // CGHI %NextCountReg, 0 7675 // JLH LoopMBB 7676 // # fall through to DoneMMB 7677 // 7678 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7679 MBB = NextMBB; 7680 7681 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7682 .addReg(ThisDestReg).addImm(256).addReg(0); 7683 if (!HaveSingleBase) 7684 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7685 .addReg(ThisSrcReg).addImm(256).addReg(0); 7686 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7687 .addReg(ThisCountReg).addImm(-1); 7688 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7689 .addReg(NextCountReg).addImm(0); 7690 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7691 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7692 .addMBB(LoopMBB); 7693 MBB->addSuccessor(LoopMBB); 7694 MBB->addSuccessor(DoneMBB); 7695 7696 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7697 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7698 Length &= 255; 7699 if (EndMBB && !Length) 7700 // If the loop handled the whole CLC range, DoneMBB will be empty with 7701 // CC live-through into EndMBB, so add it as live-in. 7702 DoneMBB->addLiveIn(SystemZ::CC); 7703 MBB = DoneMBB; 7704 } 7705 // Handle any remaining bytes with straight-line code. 7706 while (Length > 0) { 7707 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7708 // The previous iteration might have created out-of-range displacements. 7709 // Apply them using LAY if so. 7710 if (!isUInt<12>(DestDisp)) { 7711 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7712 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7713 .add(DestBase) 7714 .addImm(DestDisp) 7715 .addReg(0); 7716 DestBase = MachineOperand::CreateReg(Reg, false); 7717 DestDisp = 0; 7718 } 7719 if (!isUInt<12>(SrcDisp)) { 7720 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7721 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7722 .add(SrcBase) 7723 .addImm(SrcDisp) 7724 .addReg(0); 7725 SrcBase = MachineOperand::CreateReg(Reg, false); 7726 SrcDisp = 0; 7727 } 7728 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7729 .add(DestBase) 7730 .addImm(DestDisp) 7731 .addImm(ThisLength) 7732 .add(SrcBase) 7733 .addImm(SrcDisp) 7734 .setMemRefs(MI.memoperands()); 7735 DestDisp += ThisLength; 7736 SrcDisp += ThisLength; 7737 Length -= ThisLength; 7738 // If there's another CLC to go, branch to the end if a difference 7739 // was found. 7740 if (EndMBB && Length > 0) { 7741 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7742 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7743 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7744 .addMBB(EndMBB); 7745 MBB->addSuccessor(EndMBB); 7746 MBB->addSuccessor(NextMBB); 7747 MBB = NextMBB; 7748 } 7749 } 7750 if (EndMBB) { 7751 MBB->addSuccessor(EndMBB); 7752 MBB = EndMBB; 7753 MBB->addLiveIn(SystemZ::CC); 7754 } 7755 7756 MI.eraseFromParent(); 7757 return MBB; 7758 } 7759 7760 // Decompose string pseudo-instruction MI into a loop that continually performs 7761 // Opcode until CC != 3. 7762 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7763 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7764 MachineFunction &MF = *MBB->getParent(); 7765 const SystemZInstrInfo *TII = 7766 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7767 MachineRegisterInfo &MRI = MF.getRegInfo(); 7768 DebugLoc DL = MI.getDebugLoc(); 7769 7770 uint64_t End1Reg = MI.getOperand(0).getReg(); 7771 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7772 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7773 uint64_t CharReg = MI.getOperand(3).getReg(); 7774 7775 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7776 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7777 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7778 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7779 7780 MachineBasicBlock *StartMBB = MBB; 7781 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7782 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7783 7784 // StartMBB: 7785 // # fall through to LoopMMB 7786 MBB->addSuccessor(LoopMBB); 7787 7788 // LoopMBB: 7789 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7790 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7791 // R0L = %CharReg 7792 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7793 // JO LoopMBB 7794 // # fall through to DoneMMB 7795 // 7796 // The load of R0L can be hoisted by post-RA LICM. 7797 MBB = LoopMBB; 7798 7799 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7800 .addReg(Start1Reg).addMBB(StartMBB) 7801 .addReg(End1Reg).addMBB(LoopMBB); 7802 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7803 .addReg(Start2Reg).addMBB(StartMBB) 7804 .addReg(End2Reg).addMBB(LoopMBB); 7805 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7806 BuildMI(MBB, DL, TII->get(Opcode)) 7807 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7808 .addReg(This1Reg).addReg(This2Reg); 7809 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7810 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7811 MBB->addSuccessor(LoopMBB); 7812 MBB->addSuccessor(DoneMBB); 7813 7814 DoneMBB->addLiveIn(SystemZ::CC); 7815 7816 MI.eraseFromParent(); 7817 return DoneMBB; 7818 } 7819 7820 // Update TBEGIN instruction with final opcode and register clobbers. 7821 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7822 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7823 bool NoFloat) const { 7824 MachineFunction &MF = *MBB->getParent(); 7825 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7826 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7827 7828 // Update opcode. 7829 MI.setDesc(TII->get(Opcode)); 7830 7831 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7832 // Make sure to add the corresponding GRSM bits if they are missing. 7833 uint64_t Control = MI.getOperand(2).getImm(); 7834 static const unsigned GPRControlBit[16] = { 7835 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7836 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7837 }; 7838 Control |= GPRControlBit[15]; 7839 if (TFI->hasFP(MF)) 7840 Control |= GPRControlBit[11]; 7841 MI.getOperand(2).setImm(Control); 7842 7843 // Add GPR clobbers. 7844 for (int I = 0; I < 16; I++) { 7845 if ((Control & GPRControlBit[I]) == 0) { 7846 unsigned Reg = SystemZMC::GR64Regs[I]; 7847 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7848 } 7849 } 7850 7851 // Add FPR/VR clobbers. 7852 if (!NoFloat && (Control & 4) != 0) { 7853 if (Subtarget.hasVector()) { 7854 for (int I = 0; I < 32; I++) { 7855 unsigned Reg = SystemZMC::VR128Regs[I]; 7856 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7857 } 7858 } else { 7859 for (int I = 0; I < 16; I++) { 7860 unsigned Reg = SystemZMC::FP64Regs[I]; 7861 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7862 } 7863 } 7864 } 7865 7866 return MBB; 7867 } 7868 7869 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7870 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7871 MachineFunction &MF = *MBB->getParent(); 7872 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7873 const SystemZInstrInfo *TII = 7874 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7875 DebugLoc DL = MI.getDebugLoc(); 7876 7877 Register SrcReg = MI.getOperand(0).getReg(); 7878 7879 // Create new virtual register of the same class as source. 7880 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7881 Register DstReg = MRI->createVirtualRegister(RC); 7882 7883 // Replace pseudo with a normal load-and-test that models the def as 7884 // well. 7885 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7886 .addReg(SrcReg) 7887 .setMIFlags(MI.getFlags()); 7888 MI.eraseFromParent(); 7889 7890 return MBB; 7891 } 7892 7893 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7894 MachineInstr &MI, MachineBasicBlock *MBB) const { 7895 switch (MI.getOpcode()) { 7896 case SystemZ::Select32: 7897 case SystemZ::Select64: 7898 case SystemZ::SelectF32: 7899 case SystemZ::SelectF64: 7900 case SystemZ::SelectF128: 7901 case SystemZ::SelectVR32: 7902 case SystemZ::SelectVR64: 7903 case SystemZ::SelectVR128: 7904 return emitSelect(MI, MBB); 7905 7906 case SystemZ::CondStore8Mux: 7907 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7908 case SystemZ::CondStore8MuxInv: 7909 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7910 case SystemZ::CondStore16Mux: 7911 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7912 case SystemZ::CondStore16MuxInv: 7913 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7914 case SystemZ::CondStore32Mux: 7915 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7916 case SystemZ::CondStore32MuxInv: 7917 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7918 case SystemZ::CondStore8: 7919 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7920 case SystemZ::CondStore8Inv: 7921 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7922 case SystemZ::CondStore16: 7923 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7924 case SystemZ::CondStore16Inv: 7925 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7926 case SystemZ::CondStore32: 7927 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7928 case SystemZ::CondStore32Inv: 7929 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7930 case SystemZ::CondStore64: 7931 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7932 case SystemZ::CondStore64Inv: 7933 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7934 case SystemZ::CondStoreF32: 7935 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7936 case SystemZ::CondStoreF32Inv: 7937 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7938 case SystemZ::CondStoreF64: 7939 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7940 case SystemZ::CondStoreF64Inv: 7941 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7942 7943 case SystemZ::PAIR128: 7944 return emitPair128(MI, MBB); 7945 case SystemZ::AEXT128: 7946 return emitExt128(MI, MBB, false); 7947 case SystemZ::ZEXT128: 7948 return emitExt128(MI, MBB, true); 7949 7950 case SystemZ::ATOMIC_SWAPW: 7951 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7952 case SystemZ::ATOMIC_SWAP_32: 7953 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7954 case SystemZ::ATOMIC_SWAP_64: 7955 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7956 7957 case SystemZ::ATOMIC_LOADW_AR: 7958 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7959 case SystemZ::ATOMIC_LOADW_AFI: 7960 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7961 case SystemZ::ATOMIC_LOAD_AR: 7962 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7963 case SystemZ::ATOMIC_LOAD_AHI: 7964 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7965 case SystemZ::ATOMIC_LOAD_AFI: 7966 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7967 case SystemZ::ATOMIC_LOAD_AGR: 7968 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7969 case SystemZ::ATOMIC_LOAD_AGHI: 7970 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7971 case SystemZ::ATOMIC_LOAD_AGFI: 7972 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7973 7974 case SystemZ::ATOMIC_LOADW_SR: 7975 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7976 case SystemZ::ATOMIC_LOAD_SR: 7977 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7978 case SystemZ::ATOMIC_LOAD_SGR: 7979 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7980 7981 case SystemZ::ATOMIC_LOADW_NR: 7982 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7983 case SystemZ::ATOMIC_LOADW_NILH: 7984 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7985 case SystemZ::ATOMIC_LOAD_NR: 7986 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7987 case SystemZ::ATOMIC_LOAD_NILL: 7988 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7989 case SystemZ::ATOMIC_LOAD_NILH: 7990 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7991 case SystemZ::ATOMIC_LOAD_NILF: 7992 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7993 case SystemZ::ATOMIC_LOAD_NGR: 7994 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7995 case SystemZ::ATOMIC_LOAD_NILL64: 7996 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7997 case SystemZ::ATOMIC_LOAD_NILH64: 7998 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7999 case SystemZ::ATOMIC_LOAD_NIHL64: 8000 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8001 case SystemZ::ATOMIC_LOAD_NIHH64: 8002 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8003 case SystemZ::ATOMIC_LOAD_NILF64: 8004 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8005 case SystemZ::ATOMIC_LOAD_NIHF64: 8006 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8007 8008 case SystemZ::ATOMIC_LOADW_OR: 8009 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8010 case SystemZ::ATOMIC_LOADW_OILH: 8011 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8012 case SystemZ::ATOMIC_LOAD_OR: 8013 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8014 case SystemZ::ATOMIC_LOAD_OILL: 8015 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8016 case SystemZ::ATOMIC_LOAD_OILH: 8017 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8018 case SystemZ::ATOMIC_LOAD_OILF: 8019 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8020 case SystemZ::ATOMIC_LOAD_OGR: 8021 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8022 case SystemZ::ATOMIC_LOAD_OILL64: 8023 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8024 case SystemZ::ATOMIC_LOAD_OILH64: 8025 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8026 case SystemZ::ATOMIC_LOAD_OIHL64: 8027 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8028 case SystemZ::ATOMIC_LOAD_OIHH64: 8029 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8030 case SystemZ::ATOMIC_LOAD_OILF64: 8031 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8032 case SystemZ::ATOMIC_LOAD_OIHF64: 8033 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8034 8035 case SystemZ::ATOMIC_LOADW_XR: 8036 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8037 case SystemZ::ATOMIC_LOADW_XILF: 8038 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8039 case SystemZ::ATOMIC_LOAD_XR: 8040 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8041 case SystemZ::ATOMIC_LOAD_XILF: 8042 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8043 case SystemZ::ATOMIC_LOAD_XGR: 8044 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8045 case SystemZ::ATOMIC_LOAD_XILF64: 8046 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8047 case SystemZ::ATOMIC_LOAD_XIHF64: 8048 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8049 8050 case SystemZ::ATOMIC_LOADW_NRi: 8051 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8052 case SystemZ::ATOMIC_LOADW_NILHi: 8053 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8054 case SystemZ::ATOMIC_LOAD_NRi: 8055 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8056 case SystemZ::ATOMIC_LOAD_NILLi: 8057 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8058 case SystemZ::ATOMIC_LOAD_NILHi: 8059 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8060 case SystemZ::ATOMIC_LOAD_NILFi: 8061 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8062 case SystemZ::ATOMIC_LOAD_NGRi: 8063 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8064 case SystemZ::ATOMIC_LOAD_NILL64i: 8065 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8066 case SystemZ::ATOMIC_LOAD_NILH64i: 8067 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8068 case SystemZ::ATOMIC_LOAD_NIHL64i: 8069 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8070 case SystemZ::ATOMIC_LOAD_NIHH64i: 8071 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8072 case SystemZ::ATOMIC_LOAD_NILF64i: 8073 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8074 case SystemZ::ATOMIC_LOAD_NIHF64i: 8075 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8076 8077 case SystemZ::ATOMIC_LOADW_MIN: 8078 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8079 SystemZ::CCMASK_CMP_LE, 0); 8080 case SystemZ::ATOMIC_LOAD_MIN_32: 8081 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8082 SystemZ::CCMASK_CMP_LE, 32); 8083 case SystemZ::ATOMIC_LOAD_MIN_64: 8084 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8085 SystemZ::CCMASK_CMP_LE, 64); 8086 8087 case SystemZ::ATOMIC_LOADW_MAX: 8088 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8089 SystemZ::CCMASK_CMP_GE, 0); 8090 case SystemZ::ATOMIC_LOAD_MAX_32: 8091 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8092 SystemZ::CCMASK_CMP_GE, 32); 8093 case SystemZ::ATOMIC_LOAD_MAX_64: 8094 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8095 SystemZ::CCMASK_CMP_GE, 64); 8096 8097 case SystemZ::ATOMIC_LOADW_UMIN: 8098 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8099 SystemZ::CCMASK_CMP_LE, 0); 8100 case SystemZ::ATOMIC_LOAD_UMIN_32: 8101 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8102 SystemZ::CCMASK_CMP_LE, 32); 8103 case SystemZ::ATOMIC_LOAD_UMIN_64: 8104 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8105 SystemZ::CCMASK_CMP_LE, 64); 8106 8107 case SystemZ::ATOMIC_LOADW_UMAX: 8108 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8109 SystemZ::CCMASK_CMP_GE, 0); 8110 case SystemZ::ATOMIC_LOAD_UMAX_32: 8111 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8112 SystemZ::CCMASK_CMP_GE, 32); 8113 case SystemZ::ATOMIC_LOAD_UMAX_64: 8114 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8115 SystemZ::CCMASK_CMP_GE, 64); 8116 8117 case SystemZ::ATOMIC_CMP_SWAPW: 8118 return emitAtomicCmpSwapW(MI, MBB); 8119 case SystemZ::MVCSequence: 8120 case SystemZ::MVCLoop: 8121 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8122 case SystemZ::NCSequence: 8123 case SystemZ::NCLoop: 8124 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8125 case SystemZ::OCSequence: 8126 case SystemZ::OCLoop: 8127 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8128 case SystemZ::XCSequence: 8129 case SystemZ::XCLoop: 8130 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8131 case SystemZ::CLCSequence: 8132 case SystemZ::CLCLoop: 8133 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8134 case SystemZ::CLSTLoop: 8135 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8136 case SystemZ::MVSTLoop: 8137 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8138 case SystemZ::SRSTLoop: 8139 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8140 case SystemZ::TBEGIN: 8141 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8142 case SystemZ::TBEGIN_nofloat: 8143 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8144 case SystemZ::TBEGINC: 8145 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8146 case SystemZ::LTEBRCompare_VecPseudo: 8147 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8148 case SystemZ::LTDBRCompare_VecPseudo: 8149 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8150 case SystemZ::LTXBRCompare_VecPseudo: 8151 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8152 8153 case TargetOpcode::STACKMAP: 8154 case TargetOpcode::PATCHPOINT: 8155 return emitPatchPoint(MI, MBB); 8156 8157 default: 8158 llvm_unreachable("Unexpected instr type to insert"); 8159 } 8160 } 8161 8162 // This is only used by the isel schedulers, and is needed only to prevent 8163 // compiler from crashing when list-ilp is used. 8164 const TargetRegisterClass * 8165 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8166 if (VT == MVT::Untyped) 8167 return &SystemZ::ADDR128BitRegClass; 8168 return TargetLowering::getRepRegClassFor(VT); 8169 } 8170