1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include <cctype>
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "systemz-lower"
30 
31 namespace {
32 // Represents a sequence for extracting a 0/1 value from an IPM result:
33 // (((X ^ XORValue) + AddValue) >> Bit)
34 struct IPMConversion {
35   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
36     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
37 
38   int64_t XORValue;
39   int64_t AddValue;
40   unsigned Bit;
41 };
42 
43 // Represents information about a comparison.
44 struct Comparison {
45   Comparison(SDValue Op0In, SDValue Op1In)
46     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
47 
48   // The operands to the comparison.
49   SDValue Op0, Op1;
50 
51   // The opcode that should be used to compare Op0 and Op1.
52   unsigned Opcode;
53 
54   // A SystemZICMP value.  Only used for integer comparisons.
55   unsigned ICmpType;
56 
57   // The mask of CC values that Opcode can produce.
58   unsigned CCValid;
59 
60   // The mask of CC values for which the original condition is true.
61   unsigned CCMask;
62 };
63 } // end anonymous namespace
64 
65 // Classify VT as either 32 or 64 bit.
66 static bool is32Bit(EVT VT) {
67   switch (VT.getSimpleVT().SimpleTy) {
68   case MVT::i32:
69     return true;
70   case MVT::i64:
71     return false;
72   default:
73     llvm_unreachable("Unsupported type");
74   }
75 }
76 
77 // Return a version of MachineOperand that can be safely used before the
78 // final use.
79 static MachineOperand earlyUseOperand(MachineOperand Op) {
80   if (Op.isReg())
81     Op.setIsKill(false);
82   return Op;
83 }
84 
85 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
86                                              const SystemZSubtarget &STI)
87     : TargetLowering(TM), Subtarget(STI) {
88   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
89 
90   // Set up the register classes.
91   if (Subtarget.hasHighWord())
92     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
93   else
94     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
95   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
96   if (Subtarget.hasVector()) {
97     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
98     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
99   } else {
100     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
101     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
102   }
103   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
104 
105   if (Subtarget.hasVector()) {
106     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
107     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
108     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
109     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
110     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
111     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(2);
131 
132   // Handle operations that are handled in a similar way for all types.
133   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
134        I <= MVT::LAST_FP_VALUETYPE;
135        ++I) {
136     MVT VT = MVT::SimpleValueType(I);
137     if (isTypeLegal(VT)) {
138       // Lower SET_CC into an IPM-based sequence.
139       setOperationAction(ISD::SETCC, VT, Custom);
140 
141       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
142       setOperationAction(ISD::SELECT, VT, Expand);
143 
144       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
145       setOperationAction(ISD::SELECT_CC, VT, Custom);
146       setOperationAction(ISD::BR_CC,     VT, Custom);
147     }
148   }
149 
150   // Expand jump table branches as address arithmetic followed by an
151   // indirect jump.
152   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
153 
154   // Expand BRCOND into a BR_CC (see above).
155   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
156 
157   // Handle integer types.
158   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
159        I <= MVT::LAST_INTEGER_VALUETYPE;
160        ++I) {
161     MVT VT = MVT::SimpleValueType(I);
162     if (isTypeLegal(VT)) {
163       // Expand individual DIV and REMs into DIVREMs.
164       setOperationAction(ISD::SDIV, VT, Expand);
165       setOperationAction(ISD::UDIV, VT, Expand);
166       setOperationAction(ISD::SREM, VT, Expand);
167       setOperationAction(ISD::UREM, VT, Expand);
168       setOperationAction(ISD::SDIVREM, VT, Custom);
169       setOperationAction(ISD::UDIVREM, VT, Custom);
170 
171       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
172       // stores, putting a serialization instruction after the stores.
173       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
174       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
175 
176       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
177       // available, or if the operand is constant.
178       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
179 
180       // Use POPCNT on z196 and above.
181       if (Subtarget.hasPopulationCount())
182         setOperationAction(ISD::CTPOP, VT, Custom);
183       else
184         setOperationAction(ISD::CTPOP, VT, Expand);
185 
186       // No special instructions for these.
187       setOperationAction(ISD::CTTZ,            VT, Expand);
188       setOperationAction(ISD::ROTR,            VT, Expand);
189 
190       // Use *MUL_LOHI where possible instead of MULH*.
191       setOperationAction(ISD::MULHS, VT, Expand);
192       setOperationAction(ISD::MULHU, VT, Expand);
193       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
194       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
195 
196       // Only z196 and above have native support for conversions to unsigned.
197       if (!Subtarget.hasFPExtension())
198         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
199     }
200   }
201 
202   // Type legalization will convert 8- and 16-bit atomic operations into
203   // forms that operate on i32s (but still keeping the original memory VT).
204   // Lower them into full i32 operations.
205   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
206   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
207   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
208   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
209   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
210   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
211   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
212   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
213   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
214   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
215   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
216   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
217 
218   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
219 
220   // Traps are legal, as we will convert them to "j .+2".
221   setOperationAction(ISD::TRAP, MVT::Other, Legal);
222 
223   // z10 has instructions for signed but not unsigned FP conversion.
224   // Handle unsigned 32-bit types as signed 64-bit types.
225   if (!Subtarget.hasFPExtension()) {
226     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
227     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
228   }
229 
230   // We have native support for a 64-bit CTLZ, via FLOGR.
231   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
232   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
233 
234   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
235   setOperationAction(ISD::OR, MVT::i64, Custom);
236 
237   // FIXME: Can we support these natively?
238   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
239   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
240   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
241 
242   // We have native instructions for i8, i16 and i32 extensions, but not i1.
243   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
244   for (MVT VT : MVT::integer_valuetypes()) {
245     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
246     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
247     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
248   }
249 
250   // Handle the various types of symbolic address.
251   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
252   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
253   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
254   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
255   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
256 
257   // We need to handle dynamic allocations specially because of the
258   // 160-byte area at the bottom of the stack.
259   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
260   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
261 
262   // Use custom expanders so that we can force the function to use
263   // a frame pointer.
264   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
265   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
266 
267   // Handle prefetches with PFD or PFDRL.
268   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
269 
270   for (MVT VT : MVT::vector_valuetypes()) {
271     // Assume by default that all vector operations need to be expanded.
272     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
273       if (getOperationAction(Opcode, VT) == Legal)
274         setOperationAction(Opcode, VT, Expand);
275 
276     // Likewise all truncating stores and extending loads.
277     for (MVT InnerVT : MVT::vector_valuetypes()) {
278       setTruncStoreAction(VT, InnerVT, Expand);
279       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
280       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
281       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
282     }
283 
284     if (isTypeLegal(VT)) {
285       // These operations are legal for anything that can be stored in a
286       // vector register, even if there is no native support for the format
287       // as such.  In particular, we can do these for v4f32 even though there
288       // are no specific instructions for that format.
289       setOperationAction(ISD::LOAD, VT, Legal);
290       setOperationAction(ISD::STORE, VT, Legal);
291       setOperationAction(ISD::VSELECT, VT, Legal);
292       setOperationAction(ISD::BITCAST, VT, Legal);
293       setOperationAction(ISD::UNDEF, VT, Legal);
294 
295       // Likewise, except that we need to replace the nodes with something
296       // more specific.
297       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
298       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
299     }
300   }
301 
302   // Handle integer vector types.
303   for (MVT VT : MVT::integer_vector_valuetypes()) {
304     if (isTypeLegal(VT)) {
305       // These operations have direct equivalents.
306       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
307       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
308       setOperationAction(ISD::ADD, VT, Legal);
309       setOperationAction(ISD::SUB, VT, Legal);
310       if (VT != MVT::v2i64)
311         setOperationAction(ISD::MUL, VT, Legal);
312       setOperationAction(ISD::AND, VT, Legal);
313       setOperationAction(ISD::OR, VT, Legal);
314       setOperationAction(ISD::XOR, VT, Legal);
315       setOperationAction(ISD::CTPOP, VT, Custom);
316       setOperationAction(ISD::CTTZ, VT, Legal);
317       setOperationAction(ISD::CTLZ, VT, Legal);
318 
319       // Convert a GPR scalar to a vector by inserting it into element 0.
320       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
321 
322       // Use a series of unpacks for extensions.
323       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
324       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
325 
326       // Detect shifts by a scalar amount and convert them into
327       // V*_BY_SCALAR.
328       setOperationAction(ISD::SHL, VT, Custom);
329       setOperationAction(ISD::SRA, VT, Custom);
330       setOperationAction(ISD::SRL, VT, Custom);
331 
332       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
333       // converted into ROTL.
334       setOperationAction(ISD::ROTL, VT, Expand);
335       setOperationAction(ISD::ROTR, VT, Expand);
336 
337       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
338       // and inverting the result as necessary.
339       setOperationAction(ISD::SETCC, VT, Custom);
340     }
341   }
342 
343   if (Subtarget.hasVector()) {
344     // There should be no need to check for float types other than v2f64
345     // since <2 x f32> isn't a legal type.
346     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
347     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
348     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
349     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
350   }
351 
352   // Handle floating-point types.
353   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
354        I <= MVT::LAST_FP_VALUETYPE;
355        ++I) {
356     MVT VT = MVT::SimpleValueType(I);
357     if (isTypeLegal(VT)) {
358       // We can use FI for FRINT.
359       setOperationAction(ISD::FRINT, VT, Legal);
360 
361       // We can use the extended form of FI for other rounding operations.
362       if (Subtarget.hasFPExtension()) {
363         setOperationAction(ISD::FNEARBYINT, VT, Legal);
364         setOperationAction(ISD::FFLOOR, VT, Legal);
365         setOperationAction(ISD::FCEIL, VT, Legal);
366         setOperationAction(ISD::FTRUNC, VT, Legal);
367         setOperationAction(ISD::FROUND, VT, Legal);
368       }
369 
370       // No special instructions for these.
371       setOperationAction(ISD::FSIN, VT, Expand);
372       setOperationAction(ISD::FCOS, VT, Expand);
373       setOperationAction(ISD::FSINCOS, VT, Expand);
374       setOperationAction(ISD::FREM, VT, Expand);
375       setOperationAction(ISD::FPOW, VT, Expand);
376     }
377   }
378 
379   // Handle floating-point vector types.
380   if (Subtarget.hasVector()) {
381     // Scalar-to-vector conversion is just a subreg.
382     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
383     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
384 
385     // Some insertions and extractions can be done directly but others
386     // need to go via integers.
387     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
388     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
389     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
390     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
391 
392     // These operations have direct equivalents.
393     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
394     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
395     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
396     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
397     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
398     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
399     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
400     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
401     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
402     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
404     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
405     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
406     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
407   }
408 
409   // We have fused multiply-addition for f32 and f64 but not f128.
410   setOperationAction(ISD::FMA, MVT::f32,  Legal);
411   setOperationAction(ISD::FMA, MVT::f64,  Legal);
412   setOperationAction(ISD::FMA, MVT::f128, Expand);
413 
414   // Needed so that we don't try to implement f128 constant loads using
415   // a load-and-extend of a f80 constant (in cases where the constant
416   // would fit in an f80).
417   for (MVT VT : MVT::fp_valuetypes())
418     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
419 
420   // Floating-point truncation and stores need to be done separately.
421   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
422   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
423   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
424 
425   // We have 64-bit FPR<->GPR moves, but need special handling for
426   // 32-bit forms.
427   if (!Subtarget.hasVector()) {
428     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
429     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
430   }
431 
432   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
433   // structure, but VAEND is a no-op.
434   setOperationAction(ISD::VASTART, MVT::Other, Custom);
435   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
436   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
437 
438   // Codes for which we want to perform some z-specific combinations.
439   setTargetDAGCombine(ISD::SIGN_EXTEND);
440   setTargetDAGCombine(ISD::STORE);
441   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
442   setTargetDAGCombine(ISD::FP_ROUND);
443   setTargetDAGCombine(ISD::BSWAP);
444   setTargetDAGCombine(ISD::SHL);
445   setTargetDAGCombine(ISD::SRA);
446   setTargetDAGCombine(ISD::SRL);
447   setTargetDAGCombine(ISD::ROTL);
448 
449   // Handle intrinsics.
450   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452 
453   // We want to use MVC in preference to even a single load/store pair.
454   MaxStoresPerMemcpy = 0;
455   MaxStoresPerMemcpyOptSize = 0;
456 
457   // The main memset sequence is a byte store followed by an MVC.
458   // Two STC or MV..I stores win over that, but the kind of fused stores
459   // generated by target-independent code don't when the byte value is
460   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
461   // than "STC;MVC".  Handle the choice in target-specific code instead.
462   MaxStoresPerMemset = 0;
463   MaxStoresPerMemsetOptSize = 0;
464 }
465 
466 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
467                                               LLVMContext &, EVT VT) const {
468   if (!VT.isVector())
469     return MVT::i32;
470   return VT.changeVectorElementTypeToInteger();
471 }
472 
473 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
474   VT = VT.getScalarType();
475 
476   if (!VT.isSimple())
477     return false;
478 
479   switch (VT.getSimpleVT().SimpleTy) {
480   case MVT::f32:
481   case MVT::f64:
482     return true;
483   case MVT::f128:
484     return false;
485   default:
486     break;
487   }
488 
489   return false;
490 }
491 
492 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
493   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
494   return Imm.isZero() || Imm.isNegZero();
495 }
496 
497 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
498   // We can use CGFI or CLGFI.
499   return isInt<32>(Imm) || isUInt<32>(Imm);
500 }
501 
502 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
503   // We can use ALGFI or SLGFI.
504   return isUInt<32>(Imm) || isUInt<32>(-Imm);
505 }
506 
507 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
508                                                            unsigned,
509                                                            unsigned,
510                                                            bool *Fast) const {
511   // Unaligned accesses should never be slower than the expanded version.
512   // We check specifically for aligned accesses in the few cases where
513   // they are required.
514   if (Fast)
515     *Fast = true;
516   return true;
517 }
518 
519 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
520                                                   const AddrMode &AM, Type *Ty,
521                                                   unsigned AS) const {
522   // Punt on globals for now, although they can be used in limited
523   // RELATIVE LONG cases.
524   if (AM.BaseGV)
525     return false;
526 
527   // Require a 20-bit signed offset.
528   if (!isInt<20>(AM.BaseOffs))
529     return false;
530 
531   // Indexing is OK but no scale factor can be applied.
532   return AM.Scale == 0 || AM.Scale == 1;
533 }
534 
535 bool SystemZTargetLowering::isFoldableMemAccessOffset(Instruction *I,
536                                                       int64_t Offset) const {
537   // This only applies to z13.
538   if (!Subtarget.hasVector())
539     return true;
540 
541   // * Use LDE instead of LE/LEY to avoid partial register
542   //   dependencies (LDE only supports small offsets).
543   // * Utilize the vector registers to hold floating point
544   //   values (vector load / store instructions only support small
545   //   offsets).
546 
547   assert (isa<LoadInst>(I) || isa<StoreInst>(I));
548   Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
549                        I->getOperand(0)->getType());
550   if (!isUInt<12>(Offset) &&
551       (MemAccessTy->isFloatingPointTy() || MemAccessTy->isVectorTy()))
552     return false;
553 
554   return true;
555 }
556 
557 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
558   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
559     return false;
560   unsigned FromBits = FromType->getPrimitiveSizeInBits();
561   unsigned ToBits = ToType->getPrimitiveSizeInBits();
562   return FromBits > ToBits;
563 }
564 
565 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
566   if (!FromVT.isInteger() || !ToVT.isInteger())
567     return false;
568   unsigned FromBits = FromVT.getSizeInBits();
569   unsigned ToBits = ToVT.getSizeInBits();
570   return FromBits > ToBits;
571 }
572 
573 //===----------------------------------------------------------------------===//
574 // Inline asm support
575 //===----------------------------------------------------------------------===//
576 
577 TargetLowering::ConstraintType
578 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
579   if (Constraint.size() == 1) {
580     switch (Constraint[0]) {
581     case 'a': // Address register
582     case 'd': // Data register (equivalent to 'r')
583     case 'f': // Floating-point register
584     case 'h': // High-part register
585     case 'r': // General-purpose register
586       return C_RegisterClass;
587 
588     case 'Q': // Memory with base and unsigned 12-bit displacement
589     case 'R': // Likewise, plus an index
590     case 'S': // Memory with base and signed 20-bit displacement
591     case 'T': // Likewise, plus an index
592     case 'm': // Equivalent to 'T'.
593       return C_Memory;
594 
595     case 'I': // Unsigned 8-bit constant
596     case 'J': // Unsigned 12-bit constant
597     case 'K': // Signed 16-bit constant
598     case 'L': // Signed 20-bit displacement (on all targets we support)
599     case 'M': // 0x7fffffff
600       return C_Other;
601 
602     default:
603       break;
604     }
605   }
606   return TargetLowering::getConstraintType(Constraint);
607 }
608 
609 TargetLowering::ConstraintWeight SystemZTargetLowering::
610 getSingleConstraintMatchWeight(AsmOperandInfo &info,
611                                const char *constraint) const {
612   ConstraintWeight weight = CW_Invalid;
613   Value *CallOperandVal = info.CallOperandVal;
614   // If we don't have a value, we can't do a match,
615   // but allow it at the lowest weight.
616   if (!CallOperandVal)
617     return CW_Default;
618   Type *type = CallOperandVal->getType();
619   // Look at the constraint type.
620   switch (*constraint) {
621   default:
622     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
623     break;
624 
625   case 'a': // Address register
626   case 'd': // Data register (equivalent to 'r')
627   case 'h': // High-part register
628   case 'r': // General-purpose register
629     if (CallOperandVal->getType()->isIntegerTy())
630       weight = CW_Register;
631     break;
632 
633   case 'f': // Floating-point register
634     if (type->isFloatingPointTy())
635       weight = CW_Register;
636     break;
637 
638   case 'I': // Unsigned 8-bit constant
639     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
640       if (isUInt<8>(C->getZExtValue()))
641         weight = CW_Constant;
642     break;
643 
644   case 'J': // Unsigned 12-bit constant
645     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
646       if (isUInt<12>(C->getZExtValue()))
647         weight = CW_Constant;
648     break;
649 
650   case 'K': // Signed 16-bit constant
651     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
652       if (isInt<16>(C->getSExtValue()))
653         weight = CW_Constant;
654     break;
655 
656   case 'L': // Signed 20-bit displacement (on all targets we support)
657     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
658       if (isInt<20>(C->getSExtValue()))
659         weight = CW_Constant;
660     break;
661 
662   case 'M': // 0x7fffffff
663     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
664       if (C->getZExtValue() == 0x7fffffff)
665         weight = CW_Constant;
666     break;
667   }
668   return weight;
669 }
670 
671 // Parse a "{tNNN}" register constraint for which the register type "t"
672 // has already been verified.  MC is the class associated with "t" and
673 // Map maps 0-based register numbers to LLVM register numbers.
674 static std::pair<unsigned, const TargetRegisterClass *>
675 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
676                     const unsigned *Map) {
677   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
678   if (isdigit(Constraint[2])) {
679     unsigned Index;
680     bool Failed =
681         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
682     if (!Failed && Index < 16 && Map[Index])
683       return std::make_pair(Map[Index], RC);
684   }
685   return std::make_pair(0U, nullptr);
686 }
687 
688 std::pair<unsigned, const TargetRegisterClass *>
689 SystemZTargetLowering::getRegForInlineAsmConstraint(
690     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
691   if (Constraint.size() == 1) {
692     // GCC Constraint Letters
693     switch (Constraint[0]) {
694     default: break;
695     case 'd': // Data register (equivalent to 'r')
696     case 'r': // General-purpose register
697       if (VT == MVT::i64)
698         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
699       else if (VT == MVT::i128)
700         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
701       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
702 
703     case 'a': // Address register
704       if (VT == MVT::i64)
705         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
706       else if (VT == MVT::i128)
707         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
708       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
709 
710     case 'h': // High-part register (an LLVM extension)
711       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
712 
713     case 'f': // Floating-point register
714       if (VT == MVT::f64)
715         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
716       else if (VT == MVT::f128)
717         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
718       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
719     }
720   }
721   if (Constraint.size() > 0 && Constraint[0] == '{') {
722     // We need to override the default register parsing for GPRs and FPRs
723     // because the interpretation depends on VT.  The internal names of
724     // the registers are also different from the external names
725     // (F0D and F0S instead of F0, etc.).
726     if (Constraint[1] == 'r') {
727       if (VT == MVT::i32)
728         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
729                                    SystemZMC::GR32Regs);
730       if (VT == MVT::i128)
731         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
732                                    SystemZMC::GR128Regs);
733       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
734                                  SystemZMC::GR64Regs);
735     }
736     if (Constraint[1] == 'f') {
737       if (VT == MVT::f32)
738         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
739                                    SystemZMC::FP32Regs);
740       if (VT == MVT::f128)
741         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
742                                    SystemZMC::FP128Regs);
743       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
744                                  SystemZMC::FP64Regs);
745     }
746   }
747   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
748 }
749 
750 void SystemZTargetLowering::
751 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
752                              std::vector<SDValue> &Ops,
753                              SelectionDAG &DAG) const {
754   // Only support length 1 constraints for now.
755   if (Constraint.length() == 1) {
756     switch (Constraint[0]) {
757     case 'I': // Unsigned 8-bit constant
758       if (auto *C = dyn_cast<ConstantSDNode>(Op))
759         if (isUInt<8>(C->getZExtValue()))
760           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
761                                               Op.getValueType()));
762       return;
763 
764     case 'J': // Unsigned 12-bit constant
765       if (auto *C = dyn_cast<ConstantSDNode>(Op))
766         if (isUInt<12>(C->getZExtValue()))
767           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
768                                               Op.getValueType()));
769       return;
770 
771     case 'K': // Signed 16-bit constant
772       if (auto *C = dyn_cast<ConstantSDNode>(Op))
773         if (isInt<16>(C->getSExtValue()))
774           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
775                                               Op.getValueType()));
776       return;
777 
778     case 'L': // Signed 20-bit displacement (on all targets we support)
779       if (auto *C = dyn_cast<ConstantSDNode>(Op))
780         if (isInt<20>(C->getSExtValue()))
781           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
782                                               Op.getValueType()));
783       return;
784 
785     case 'M': // 0x7fffffff
786       if (auto *C = dyn_cast<ConstantSDNode>(Op))
787         if (C->getZExtValue() == 0x7fffffff)
788           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
789                                               Op.getValueType()));
790       return;
791     }
792   }
793   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
794 }
795 
796 //===----------------------------------------------------------------------===//
797 // Calling conventions
798 //===----------------------------------------------------------------------===//
799 
800 #include "SystemZGenCallingConv.inc"
801 
802 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
803                                                      Type *ToType) const {
804   return isTruncateFree(FromType, ToType);
805 }
806 
807 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
808   return CI->isTailCall();
809 }
810 
811 // We do not yet support 128-bit single-element vector types.  If the user
812 // attempts to use such types as function argument or return type, prefer
813 // to error out instead of emitting code violating the ABI.
814 static void VerifyVectorType(MVT VT, EVT ArgVT) {
815   if (ArgVT.isVector() && !VT.isVector())
816     report_fatal_error("Unsupported vector argument or return type");
817 }
818 
819 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
820   for (unsigned i = 0; i < Ins.size(); ++i)
821     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
822 }
823 
824 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
825   for (unsigned i = 0; i < Outs.size(); ++i)
826     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
827 }
828 
829 // Value is a value that has been passed to us in the location described by VA
830 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
831 // any loads onto Chain.
832 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
833                                    CCValAssign &VA, SDValue Chain,
834                                    SDValue Value) {
835   // If the argument has been promoted from a smaller type, insert an
836   // assertion to capture this.
837   if (VA.getLocInfo() == CCValAssign::SExt)
838     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
839                         DAG.getValueType(VA.getValVT()));
840   else if (VA.getLocInfo() == CCValAssign::ZExt)
841     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
842                         DAG.getValueType(VA.getValVT()));
843 
844   if (VA.isExtInLoc())
845     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
846   else if (VA.getLocInfo() == CCValAssign::BCvt) {
847     // If this is a short vector argument loaded from the stack,
848     // extend from i64 to full vector size and then bitcast.
849     assert(VA.getLocVT() == MVT::i64);
850     assert(VA.getValVT().isVector());
851     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
852     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
853   } else
854     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
855   return Value;
856 }
857 
858 // Value is a value of type VA.getValVT() that we need to copy into
859 // the location described by VA.  Return a copy of Value converted to
860 // VA.getValVT().  The caller is responsible for handling indirect values.
861 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
862                                    CCValAssign &VA, SDValue Value) {
863   switch (VA.getLocInfo()) {
864   case CCValAssign::SExt:
865     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
866   case CCValAssign::ZExt:
867     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
868   case CCValAssign::AExt:
869     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
870   case CCValAssign::BCvt:
871     // If this is a short vector argument to be stored to the stack,
872     // bitcast to v2i64 and then extract first element.
873     assert(VA.getLocVT() == MVT::i64);
874     assert(VA.getValVT().isVector());
875     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
876     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
877                        DAG.getConstant(0, DL, MVT::i32));
878   case CCValAssign::Full:
879     return Value;
880   default:
881     llvm_unreachable("Unhandled getLocInfo()");
882   }
883 }
884 
885 SDValue SystemZTargetLowering::LowerFormalArguments(
886     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
887     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
888     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
889   MachineFunction &MF = DAG.getMachineFunction();
890   MachineFrameInfo &MFI = MF.getFrameInfo();
891   MachineRegisterInfo &MRI = MF.getRegInfo();
892   SystemZMachineFunctionInfo *FuncInfo =
893       MF.getInfo<SystemZMachineFunctionInfo>();
894   auto *TFL =
895       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
896   EVT PtrVT = getPointerTy(DAG.getDataLayout());
897 
898   // Detect unsupported vector argument types.
899   if (Subtarget.hasVector())
900     VerifyVectorTypes(Ins);
901 
902   // Assign locations to all of the incoming arguments.
903   SmallVector<CCValAssign, 16> ArgLocs;
904   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
905   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
906 
907   unsigned NumFixedGPRs = 0;
908   unsigned NumFixedFPRs = 0;
909   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
910     SDValue ArgValue;
911     CCValAssign &VA = ArgLocs[I];
912     EVT LocVT = VA.getLocVT();
913     if (VA.isRegLoc()) {
914       // Arguments passed in registers
915       const TargetRegisterClass *RC;
916       switch (LocVT.getSimpleVT().SimpleTy) {
917       default:
918         // Integers smaller than i64 should be promoted to i64.
919         llvm_unreachable("Unexpected argument type");
920       case MVT::i32:
921         NumFixedGPRs += 1;
922         RC = &SystemZ::GR32BitRegClass;
923         break;
924       case MVT::i64:
925         NumFixedGPRs += 1;
926         RC = &SystemZ::GR64BitRegClass;
927         break;
928       case MVT::f32:
929         NumFixedFPRs += 1;
930         RC = &SystemZ::FP32BitRegClass;
931         break;
932       case MVT::f64:
933         NumFixedFPRs += 1;
934         RC = &SystemZ::FP64BitRegClass;
935         break;
936       case MVT::v16i8:
937       case MVT::v8i16:
938       case MVT::v4i32:
939       case MVT::v2i64:
940       case MVT::v4f32:
941       case MVT::v2f64:
942         RC = &SystemZ::VR128BitRegClass;
943         break;
944       }
945 
946       unsigned VReg = MRI.createVirtualRegister(RC);
947       MRI.addLiveIn(VA.getLocReg(), VReg);
948       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
949     } else {
950       assert(VA.isMemLoc() && "Argument not register or memory");
951 
952       // Create the frame index object for this incoming parameter.
953       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
954                                      VA.getLocMemOffset(), true);
955 
956       // Create the SelectionDAG nodes corresponding to a load
957       // from this parameter.  Unpromoted ints and floats are
958       // passed as right-justified 8-byte values.
959       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
960       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
961         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
962                           DAG.getIntPtrConstant(4, DL));
963       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
964                              MachinePointerInfo::getFixedStack(MF, FI));
965     }
966 
967     // Convert the value of the argument register into the value that's
968     // being passed.
969     if (VA.getLocInfo() == CCValAssign::Indirect) {
970       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
971                                    MachinePointerInfo()));
972       // If the original argument was split (e.g. i128), we need
973       // to load all parts of it here (using the same address).
974       unsigned ArgIndex = Ins[I].OrigArgIndex;
975       assert (Ins[I].PartOffset == 0);
976       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
977         CCValAssign &PartVA = ArgLocs[I + 1];
978         unsigned PartOffset = Ins[I + 1].PartOffset;
979         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
980                                       DAG.getIntPtrConstant(PartOffset, DL));
981         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
982                                      MachinePointerInfo()));
983         ++I;
984       }
985     } else
986       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
987   }
988 
989   if (IsVarArg) {
990     // Save the number of non-varargs registers for later use by va_start, etc.
991     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
992     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
993 
994     // Likewise the address (in the form of a frame index) of where the
995     // first stack vararg would be.  The 1-byte size here is arbitrary.
996     int64_t StackSize = CCInfo.getNextStackOffset();
997     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
998 
999     // ...and a similar frame index for the caller-allocated save area
1000     // that will be used to store the incoming registers.
1001     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1002     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1003     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1004 
1005     // Store the FPR varargs in the reserved frame slots.  (We store the
1006     // GPRs as part of the prologue.)
1007     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1008       SDValue MemOps[SystemZ::NumArgFPRs];
1009       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1010         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1011         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1012         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1013         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1014                                      &SystemZ::FP64BitRegClass);
1015         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1016         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1017                                  MachinePointerInfo::getFixedStack(MF, FI));
1018       }
1019       // Join the stores, which are independent of one another.
1020       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1021                           makeArrayRef(&MemOps[NumFixedFPRs],
1022                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1023     }
1024   }
1025 
1026   return Chain;
1027 }
1028 
1029 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1030                               SmallVectorImpl<CCValAssign> &ArgLocs,
1031                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1032   // Punt if there are any indirect or stack arguments, or if the call
1033   // needs the callee-saved argument register R6, or if the call uses
1034   // the callee-saved register arguments SwiftSelf and SwiftError.
1035   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1036     CCValAssign &VA = ArgLocs[I];
1037     if (VA.getLocInfo() == CCValAssign::Indirect)
1038       return false;
1039     if (!VA.isRegLoc())
1040       return false;
1041     unsigned Reg = VA.getLocReg();
1042     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1043       return false;
1044     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1045       return false;
1046   }
1047   return true;
1048 }
1049 
1050 SDValue
1051 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1052                                  SmallVectorImpl<SDValue> &InVals) const {
1053   SelectionDAG &DAG = CLI.DAG;
1054   SDLoc &DL = CLI.DL;
1055   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1056   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1057   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1058   SDValue Chain = CLI.Chain;
1059   SDValue Callee = CLI.Callee;
1060   bool &IsTailCall = CLI.IsTailCall;
1061   CallingConv::ID CallConv = CLI.CallConv;
1062   bool IsVarArg = CLI.IsVarArg;
1063   MachineFunction &MF = DAG.getMachineFunction();
1064   EVT PtrVT = getPointerTy(MF.getDataLayout());
1065 
1066   // Detect unsupported vector argument and return types.
1067   if (Subtarget.hasVector()) {
1068     VerifyVectorTypes(Outs);
1069     VerifyVectorTypes(Ins);
1070   }
1071 
1072   // Analyze the operands of the call, assigning locations to each operand.
1073   SmallVector<CCValAssign, 16> ArgLocs;
1074   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1075   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1076 
1077   // We don't support GuaranteedTailCallOpt, only automatically-detected
1078   // sibling calls.
1079   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1080     IsTailCall = false;
1081 
1082   // Get a count of how many bytes are to be pushed on the stack.
1083   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1084 
1085   // Mark the start of the call.
1086   if (!IsTailCall)
1087     Chain = DAG.getCALLSEQ_START(Chain,
1088                                  DAG.getConstant(NumBytes, DL, PtrVT, true),
1089                                  DL);
1090 
1091   // Copy argument values to their designated locations.
1092   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1093   SmallVector<SDValue, 8> MemOpChains;
1094   SDValue StackPtr;
1095   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1096     CCValAssign &VA = ArgLocs[I];
1097     SDValue ArgValue = OutVals[I];
1098 
1099     if (VA.getLocInfo() == CCValAssign::Indirect) {
1100       // Store the argument in a stack slot and pass its address.
1101       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1102       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1103       MemOpChains.push_back(
1104           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1105                        MachinePointerInfo::getFixedStack(MF, FI)));
1106       // If the original argument was split (e.g. i128), we need
1107       // to store all parts of it here (and pass just one address).
1108       unsigned ArgIndex = Outs[I].OrigArgIndex;
1109       assert (Outs[I].PartOffset == 0);
1110       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1111         SDValue PartValue = OutVals[I + 1];
1112         unsigned PartOffset = Outs[I + 1].PartOffset;
1113         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1114                                       DAG.getIntPtrConstant(PartOffset, DL));
1115         MemOpChains.push_back(
1116             DAG.getStore(Chain, DL, PartValue, Address,
1117                          MachinePointerInfo::getFixedStack(MF, FI)));
1118         ++I;
1119       }
1120       ArgValue = SpillSlot;
1121     } else
1122       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1123 
1124     if (VA.isRegLoc())
1125       // Queue up the argument copies and emit them at the end.
1126       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1127     else {
1128       assert(VA.isMemLoc() && "Argument not register or memory");
1129 
1130       // Work out the address of the stack slot.  Unpromoted ints and
1131       // floats are passed as right-justified 8-byte values.
1132       if (!StackPtr.getNode())
1133         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1134       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1135       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1136         Offset += 4;
1137       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1138                                     DAG.getIntPtrConstant(Offset, DL));
1139 
1140       // Emit the store.
1141       MemOpChains.push_back(
1142           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1143     }
1144   }
1145 
1146   // Join the stores, which are independent of one another.
1147   if (!MemOpChains.empty())
1148     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1149 
1150   // Accept direct calls by converting symbolic call addresses to the
1151   // associated Target* opcodes.  Force %r1 to be used for indirect
1152   // tail calls.
1153   SDValue Glue;
1154   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1155     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1156     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1157   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1158     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1159     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1160   } else if (IsTailCall) {
1161     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1162     Glue = Chain.getValue(1);
1163     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1164   }
1165 
1166   // Build a sequence of copy-to-reg nodes, chained and glued together.
1167   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1168     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1169                              RegsToPass[I].second, Glue);
1170     Glue = Chain.getValue(1);
1171   }
1172 
1173   // The first call operand is the chain and the second is the target address.
1174   SmallVector<SDValue, 8> Ops;
1175   Ops.push_back(Chain);
1176   Ops.push_back(Callee);
1177 
1178   // Add argument registers to the end of the list so that they are
1179   // known live into the call.
1180   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1181     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1182                                   RegsToPass[I].second.getValueType()));
1183 
1184   // Add a register mask operand representing the call-preserved registers.
1185   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1186   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1187   assert(Mask && "Missing call preserved mask for calling convention");
1188   Ops.push_back(DAG.getRegisterMask(Mask));
1189 
1190   // Glue the call to the argument copies, if any.
1191   if (Glue.getNode())
1192     Ops.push_back(Glue);
1193 
1194   // Emit the call.
1195   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1196   if (IsTailCall)
1197     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1198   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1199   Glue = Chain.getValue(1);
1200 
1201   // Mark the end of the call, which is glued to the call itself.
1202   Chain = DAG.getCALLSEQ_END(Chain,
1203                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1204                              DAG.getConstant(0, DL, PtrVT, true),
1205                              Glue, DL);
1206   Glue = Chain.getValue(1);
1207 
1208   // Assign locations to each value returned by this call.
1209   SmallVector<CCValAssign, 16> RetLocs;
1210   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1211   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1212 
1213   // Copy all of the result registers out of their specified physreg.
1214   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1215     CCValAssign &VA = RetLocs[I];
1216 
1217     // Copy the value out, gluing the copy to the end of the call sequence.
1218     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1219                                           VA.getLocVT(), Glue);
1220     Chain = RetValue.getValue(1);
1221     Glue = RetValue.getValue(2);
1222 
1223     // Convert the value of the return register into the value that's
1224     // being returned.
1225     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1226   }
1227 
1228   return Chain;
1229 }
1230 
1231 bool SystemZTargetLowering::
1232 CanLowerReturn(CallingConv::ID CallConv,
1233                MachineFunction &MF, bool isVarArg,
1234                const SmallVectorImpl<ISD::OutputArg> &Outs,
1235                LLVMContext &Context) const {
1236   // Detect unsupported vector return types.
1237   if (Subtarget.hasVector())
1238     VerifyVectorTypes(Outs);
1239 
1240   // Special case that we cannot easily detect in RetCC_SystemZ since
1241   // i128 is not a legal type.
1242   for (auto &Out : Outs)
1243     if (Out.ArgVT == MVT::i128)
1244       return false;
1245 
1246   SmallVector<CCValAssign, 16> RetLocs;
1247   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1248   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1249 }
1250 
1251 SDValue
1252 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1253                                    bool IsVarArg,
1254                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1255                                    const SmallVectorImpl<SDValue> &OutVals,
1256                                    const SDLoc &DL, SelectionDAG &DAG) const {
1257   MachineFunction &MF = DAG.getMachineFunction();
1258 
1259   // Detect unsupported vector return types.
1260   if (Subtarget.hasVector())
1261     VerifyVectorTypes(Outs);
1262 
1263   // Assign locations to each returned value.
1264   SmallVector<CCValAssign, 16> RetLocs;
1265   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1266   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1267 
1268   // Quick exit for void returns
1269   if (RetLocs.empty())
1270     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1271 
1272   // Copy the result values into the output registers.
1273   SDValue Glue;
1274   SmallVector<SDValue, 4> RetOps;
1275   RetOps.push_back(Chain);
1276   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1277     CCValAssign &VA = RetLocs[I];
1278     SDValue RetValue = OutVals[I];
1279 
1280     // Make the return register live on exit.
1281     assert(VA.isRegLoc() && "Can only return in registers!");
1282 
1283     // Promote the value as required.
1284     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1285 
1286     // Chain and glue the copies together.
1287     unsigned Reg = VA.getLocReg();
1288     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1289     Glue = Chain.getValue(1);
1290     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1291   }
1292 
1293   // Update chain and glue.
1294   RetOps[0] = Chain;
1295   if (Glue.getNode())
1296     RetOps.push_back(Glue);
1297 
1298   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1299 }
1300 
1301 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad(
1302     SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const {
1303   return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1304 }
1305 
1306 // Return true if Op is an intrinsic node with chain that returns the CC value
1307 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1308 // the mask of valid CC values if so.
1309 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1310                                       unsigned &CCValid) {
1311   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1312   switch (Id) {
1313   case Intrinsic::s390_tbegin:
1314     Opcode = SystemZISD::TBEGIN;
1315     CCValid = SystemZ::CCMASK_TBEGIN;
1316     return true;
1317 
1318   case Intrinsic::s390_tbegin_nofloat:
1319     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1320     CCValid = SystemZ::CCMASK_TBEGIN;
1321     return true;
1322 
1323   case Intrinsic::s390_tend:
1324     Opcode = SystemZISD::TEND;
1325     CCValid = SystemZ::CCMASK_TEND;
1326     return true;
1327 
1328   default:
1329     return false;
1330   }
1331 }
1332 
1333 // Return true if Op is an intrinsic node without chain that returns the
1334 // CC value as its final argument.  Provide the associated SystemZISD
1335 // opcode and the mask of valid CC values if so.
1336 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1337   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1338   switch (Id) {
1339   case Intrinsic::s390_vpkshs:
1340   case Intrinsic::s390_vpksfs:
1341   case Intrinsic::s390_vpksgs:
1342     Opcode = SystemZISD::PACKS_CC;
1343     CCValid = SystemZ::CCMASK_VCMP;
1344     return true;
1345 
1346   case Intrinsic::s390_vpklshs:
1347   case Intrinsic::s390_vpklsfs:
1348   case Intrinsic::s390_vpklsgs:
1349     Opcode = SystemZISD::PACKLS_CC;
1350     CCValid = SystemZ::CCMASK_VCMP;
1351     return true;
1352 
1353   case Intrinsic::s390_vceqbs:
1354   case Intrinsic::s390_vceqhs:
1355   case Intrinsic::s390_vceqfs:
1356   case Intrinsic::s390_vceqgs:
1357     Opcode = SystemZISD::VICMPES;
1358     CCValid = SystemZ::CCMASK_VCMP;
1359     return true;
1360 
1361   case Intrinsic::s390_vchbs:
1362   case Intrinsic::s390_vchhs:
1363   case Intrinsic::s390_vchfs:
1364   case Intrinsic::s390_vchgs:
1365     Opcode = SystemZISD::VICMPHS;
1366     CCValid = SystemZ::CCMASK_VCMP;
1367     return true;
1368 
1369   case Intrinsic::s390_vchlbs:
1370   case Intrinsic::s390_vchlhs:
1371   case Intrinsic::s390_vchlfs:
1372   case Intrinsic::s390_vchlgs:
1373     Opcode = SystemZISD::VICMPHLS;
1374     CCValid = SystemZ::CCMASK_VCMP;
1375     return true;
1376 
1377   case Intrinsic::s390_vtm:
1378     Opcode = SystemZISD::VTM;
1379     CCValid = SystemZ::CCMASK_VCMP;
1380     return true;
1381 
1382   case Intrinsic::s390_vfaebs:
1383   case Intrinsic::s390_vfaehs:
1384   case Intrinsic::s390_vfaefs:
1385     Opcode = SystemZISD::VFAE_CC;
1386     CCValid = SystemZ::CCMASK_ANY;
1387     return true;
1388 
1389   case Intrinsic::s390_vfaezbs:
1390   case Intrinsic::s390_vfaezhs:
1391   case Intrinsic::s390_vfaezfs:
1392     Opcode = SystemZISD::VFAEZ_CC;
1393     CCValid = SystemZ::CCMASK_ANY;
1394     return true;
1395 
1396   case Intrinsic::s390_vfeebs:
1397   case Intrinsic::s390_vfeehs:
1398   case Intrinsic::s390_vfeefs:
1399     Opcode = SystemZISD::VFEE_CC;
1400     CCValid = SystemZ::CCMASK_ANY;
1401     return true;
1402 
1403   case Intrinsic::s390_vfeezbs:
1404   case Intrinsic::s390_vfeezhs:
1405   case Intrinsic::s390_vfeezfs:
1406     Opcode = SystemZISD::VFEEZ_CC;
1407     CCValid = SystemZ::CCMASK_ANY;
1408     return true;
1409 
1410   case Intrinsic::s390_vfenebs:
1411   case Intrinsic::s390_vfenehs:
1412   case Intrinsic::s390_vfenefs:
1413     Opcode = SystemZISD::VFENE_CC;
1414     CCValid = SystemZ::CCMASK_ANY;
1415     return true;
1416 
1417   case Intrinsic::s390_vfenezbs:
1418   case Intrinsic::s390_vfenezhs:
1419   case Intrinsic::s390_vfenezfs:
1420     Opcode = SystemZISD::VFENEZ_CC;
1421     CCValid = SystemZ::CCMASK_ANY;
1422     return true;
1423 
1424   case Intrinsic::s390_vistrbs:
1425   case Intrinsic::s390_vistrhs:
1426   case Intrinsic::s390_vistrfs:
1427     Opcode = SystemZISD::VISTR_CC;
1428     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1429     return true;
1430 
1431   case Intrinsic::s390_vstrcbs:
1432   case Intrinsic::s390_vstrchs:
1433   case Intrinsic::s390_vstrcfs:
1434     Opcode = SystemZISD::VSTRC_CC;
1435     CCValid = SystemZ::CCMASK_ANY;
1436     return true;
1437 
1438   case Intrinsic::s390_vstrczbs:
1439   case Intrinsic::s390_vstrczhs:
1440   case Intrinsic::s390_vstrczfs:
1441     Opcode = SystemZISD::VSTRCZ_CC;
1442     CCValid = SystemZ::CCMASK_ANY;
1443     return true;
1444 
1445   case Intrinsic::s390_vfcedbs:
1446     Opcode = SystemZISD::VFCMPES;
1447     CCValid = SystemZ::CCMASK_VCMP;
1448     return true;
1449 
1450   case Intrinsic::s390_vfchdbs:
1451     Opcode = SystemZISD::VFCMPHS;
1452     CCValid = SystemZ::CCMASK_VCMP;
1453     return true;
1454 
1455   case Intrinsic::s390_vfchedbs:
1456     Opcode = SystemZISD::VFCMPHES;
1457     CCValid = SystemZ::CCMASK_VCMP;
1458     return true;
1459 
1460   case Intrinsic::s390_vftcidb:
1461     Opcode = SystemZISD::VFTCI;
1462     CCValid = SystemZ::CCMASK_VCMP;
1463     return true;
1464 
1465   case Intrinsic::s390_tdc:
1466     Opcode = SystemZISD::TDC;
1467     CCValid = SystemZ::CCMASK_TDC;
1468     return true;
1469 
1470   default:
1471     return false;
1472   }
1473 }
1474 
1475 // Emit an intrinsic with chain with a glued value instead of its CC result.
1476 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1477                                              unsigned Opcode) {
1478   // Copy all operands except the intrinsic ID.
1479   unsigned NumOps = Op.getNumOperands();
1480   SmallVector<SDValue, 6> Ops;
1481   Ops.reserve(NumOps - 1);
1482   Ops.push_back(Op.getOperand(0));
1483   for (unsigned I = 2; I < NumOps; ++I)
1484     Ops.push_back(Op.getOperand(I));
1485 
1486   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1487   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1488   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1489   SDValue OldChain = SDValue(Op.getNode(), 1);
1490   SDValue NewChain = SDValue(Intr.getNode(), 0);
1491   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1492   return Intr;
1493 }
1494 
1495 // Emit an intrinsic with a glued value instead of its CC result.
1496 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1497                                      unsigned Opcode) {
1498   // Copy all operands except the intrinsic ID.
1499   unsigned NumOps = Op.getNumOperands();
1500   SmallVector<SDValue, 6> Ops;
1501   Ops.reserve(NumOps - 1);
1502   for (unsigned I = 1; I < NumOps; ++I)
1503     Ops.push_back(Op.getOperand(I));
1504 
1505   if (Op->getNumValues() == 1)
1506     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1507   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1508   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1509   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1510 }
1511 
1512 // CC is a comparison that will be implemented using an integer or
1513 // floating-point comparison.  Return the condition code mask for
1514 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1515 // unsigned comparisons and clear for signed ones.  In the floating-point
1516 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1517 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1518 #define CONV(X) \
1519   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1520   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1521   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1522 
1523   switch (CC) {
1524   default:
1525     llvm_unreachable("Invalid integer condition!");
1526 
1527   CONV(EQ);
1528   CONV(NE);
1529   CONV(GT);
1530   CONV(GE);
1531   CONV(LT);
1532   CONV(LE);
1533 
1534   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1535   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1536   }
1537 #undef CONV
1538 }
1539 
1540 // Return a sequence for getting a 1 from an IPM result when CC has a
1541 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1542 // The handling of CC values outside CCValid doesn't matter.
1543 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1544   // Deal with cases where the result can be taken directly from a bit
1545   // of the IPM result.
1546   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1547     return IPMConversion(0, 0, SystemZ::IPM_CC);
1548   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1549     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1550 
1551   // Deal with cases where we can add a value to force the sign bit
1552   // to contain the right value.  Putting the bit in 31 means we can
1553   // use SRL rather than RISBG(L), and also makes it easier to get a
1554   // 0/-1 value, so it has priority over the other tests below.
1555   //
1556   // These sequences rely on the fact that the upper two bits of the
1557   // IPM result are zero.
1558   uint64_t TopBit = uint64_t(1) << 31;
1559   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1560     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1561   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1562     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1563   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1564                             | SystemZ::CCMASK_1
1565                             | SystemZ::CCMASK_2)))
1566     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1567   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1568     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1569   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1570                             | SystemZ::CCMASK_2
1571                             | SystemZ::CCMASK_3)))
1572     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1573 
1574   // Next try inverting the value and testing a bit.  0/1 could be
1575   // handled this way too, but we dealt with that case above.
1576   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1577     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1578 
1579   // Handle cases where adding a value forces a non-sign bit to contain
1580   // the right value.
1581   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1582     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1583   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1584     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1585 
1586   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1587   // can be done by inverting the low CC bit and applying one of the
1588   // sign-based extractions above.
1589   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1590     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1591   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1592     return IPMConversion(1 << SystemZ::IPM_CC,
1593                          TopBit - (3 << SystemZ::IPM_CC), 31);
1594   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1595                             | SystemZ::CCMASK_1
1596                             | SystemZ::CCMASK_3)))
1597     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1598   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1599                             | SystemZ::CCMASK_2
1600                             | SystemZ::CCMASK_3)))
1601     return IPMConversion(1 << SystemZ::IPM_CC,
1602                          TopBit - (1 << SystemZ::IPM_CC), 31);
1603 
1604   llvm_unreachable("Unexpected CC combination");
1605 }
1606 
1607 // If C can be converted to a comparison against zero, adjust the operands
1608 // as necessary.
1609 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1610   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1611     return;
1612 
1613   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1614   if (!ConstOp1)
1615     return;
1616 
1617   int64_t Value = ConstOp1->getSExtValue();
1618   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1619       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1620       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1621       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1622     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1623     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1624   }
1625 }
1626 
1627 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1628 // adjust the operands as necessary.
1629 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1630                              Comparison &C) {
1631   // For us to make any changes, it must a comparison between a single-use
1632   // load and a constant.
1633   if (!C.Op0.hasOneUse() ||
1634       C.Op0.getOpcode() != ISD::LOAD ||
1635       C.Op1.getOpcode() != ISD::Constant)
1636     return;
1637 
1638   // We must have an 8- or 16-bit load.
1639   auto *Load = cast<LoadSDNode>(C.Op0);
1640   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1641   if (NumBits != 8 && NumBits != 16)
1642     return;
1643 
1644   // The load must be an extending one and the constant must be within the
1645   // range of the unextended value.
1646   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1647   uint64_t Value = ConstOp1->getZExtValue();
1648   uint64_t Mask = (1 << NumBits) - 1;
1649   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1650     // Make sure that ConstOp1 is in range of C.Op0.
1651     int64_t SignedValue = ConstOp1->getSExtValue();
1652     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1653       return;
1654     if (C.ICmpType != SystemZICMP::SignedOnly) {
1655       // Unsigned comparison between two sign-extended values is equivalent
1656       // to unsigned comparison between two zero-extended values.
1657       Value &= Mask;
1658     } else if (NumBits == 8) {
1659       // Try to treat the comparison as unsigned, so that we can use CLI.
1660       // Adjust CCMask and Value as necessary.
1661       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1662         // Test whether the high bit of the byte is set.
1663         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1664       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1665         // Test whether the high bit of the byte is clear.
1666         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1667       else
1668         // No instruction exists for this combination.
1669         return;
1670       C.ICmpType = SystemZICMP::UnsignedOnly;
1671     }
1672   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1673     if (Value > Mask)
1674       return;
1675     // If the constant is in range, we can use any comparison.
1676     C.ICmpType = SystemZICMP::Any;
1677   } else
1678     return;
1679 
1680   // Make sure that the first operand is an i32 of the right extension type.
1681   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1682                               ISD::SEXTLOAD :
1683                               ISD::ZEXTLOAD);
1684   if (C.Op0.getValueType() != MVT::i32 ||
1685       Load->getExtensionType() != ExtType)
1686     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1687                            Load->getBasePtr(), Load->getPointerInfo(),
1688                            Load->getMemoryVT(), Load->getAlignment(),
1689                            Load->getMemOperand()->getFlags());
1690 
1691   // Make sure that the second operand is an i32 with the right value.
1692   if (C.Op1.getValueType() != MVT::i32 ||
1693       Value != ConstOp1->getZExtValue())
1694     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1695 }
1696 
1697 // Return true if Op is either an unextended load, or a load suitable
1698 // for integer register-memory comparisons of type ICmpType.
1699 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1700   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1701   if (Load) {
1702     // There are no instructions to compare a register with a memory byte.
1703     if (Load->getMemoryVT() == MVT::i8)
1704       return false;
1705     // Otherwise decide on extension type.
1706     switch (Load->getExtensionType()) {
1707     case ISD::NON_EXTLOAD:
1708       return true;
1709     case ISD::SEXTLOAD:
1710       return ICmpType != SystemZICMP::UnsignedOnly;
1711     case ISD::ZEXTLOAD:
1712       return ICmpType != SystemZICMP::SignedOnly;
1713     default:
1714       break;
1715     }
1716   }
1717   return false;
1718 }
1719 
1720 // Return true if it is better to swap the operands of C.
1721 static bool shouldSwapCmpOperands(const Comparison &C) {
1722   // Leave f128 comparisons alone, since they have no memory forms.
1723   if (C.Op0.getValueType() == MVT::f128)
1724     return false;
1725 
1726   // Always keep a floating-point constant second, since comparisons with
1727   // zero can use LOAD TEST and comparisons with other constants make a
1728   // natural memory operand.
1729   if (isa<ConstantFPSDNode>(C.Op1))
1730     return false;
1731 
1732   // Never swap comparisons with zero since there are many ways to optimize
1733   // those later.
1734   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1735   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1736     return false;
1737 
1738   // Also keep natural memory operands second if the loaded value is
1739   // only used here.  Several comparisons have memory forms.
1740   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1741     return false;
1742 
1743   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1744   // In that case we generally prefer the memory to be second.
1745   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1746     // The only exceptions are when the second operand is a constant and
1747     // we can use things like CHHSI.
1748     if (!ConstOp1)
1749       return true;
1750     // The unsigned memory-immediate instructions can handle 16-bit
1751     // unsigned integers.
1752     if (C.ICmpType != SystemZICMP::SignedOnly &&
1753         isUInt<16>(ConstOp1->getZExtValue()))
1754       return false;
1755     // The signed memory-immediate instructions can handle 16-bit
1756     // signed integers.
1757     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1758         isInt<16>(ConstOp1->getSExtValue()))
1759       return false;
1760     return true;
1761   }
1762 
1763   // Try to promote the use of CGFR and CLGFR.
1764   unsigned Opcode0 = C.Op0.getOpcode();
1765   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1766     return true;
1767   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1768     return true;
1769   if (C.ICmpType != SystemZICMP::SignedOnly &&
1770       Opcode0 == ISD::AND &&
1771       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1772       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1773     return true;
1774 
1775   return false;
1776 }
1777 
1778 // Return a version of comparison CC mask CCMask in which the LT and GT
1779 // actions are swapped.
1780 static unsigned reverseCCMask(unsigned CCMask) {
1781   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1782           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1783           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1784           (CCMask & SystemZ::CCMASK_CMP_UO));
1785 }
1786 
1787 // Check whether C tests for equality between X and Y and whether X - Y
1788 // or Y - X is also computed.  In that case it's better to compare the
1789 // result of the subtraction against zero.
1790 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1791                                  Comparison &C) {
1792   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1793       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1794     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1795       SDNode *N = *I;
1796       if (N->getOpcode() == ISD::SUB &&
1797           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1798            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1799         C.Op0 = SDValue(N, 0);
1800         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1801         return;
1802       }
1803     }
1804   }
1805 }
1806 
1807 // Check whether C compares a floating-point value with zero and if that
1808 // floating-point value is also negated.  In this case we can use the
1809 // negation to set CC, so avoiding separate LOAD AND TEST and
1810 // LOAD (NEGATIVE/COMPLEMENT) instructions.
1811 static void adjustForFNeg(Comparison &C) {
1812   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1813   if (C1 && C1->isZero()) {
1814     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1815       SDNode *N = *I;
1816       if (N->getOpcode() == ISD::FNEG) {
1817         C.Op0 = SDValue(N, 0);
1818         C.CCMask = reverseCCMask(C.CCMask);
1819         return;
1820       }
1821     }
1822   }
1823 }
1824 
1825 // Check whether C compares (shl X, 32) with 0 and whether X is
1826 // also sign-extended.  In that case it is better to test the result
1827 // of the sign extension using LTGFR.
1828 //
1829 // This case is important because InstCombine transforms a comparison
1830 // with (sext (trunc X)) into a comparison with (shl X, 32).
1831 static void adjustForLTGFR(Comparison &C) {
1832   // Check for a comparison between (shl X, 32) and 0.
1833   if (C.Op0.getOpcode() == ISD::SHL &&
1834       C.Op0.getValueType() == MVT::i64 &&
1835       C.Op1.getOpcode() == ISD::Constant &&
1836       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1837     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1838     if (C1 && C1->getZExtValue() == 32) {
1839       SDValue ShlOp0 = C.Op0.getOperand(0);
1840       // See whether X has any SIGN_EXTEND_INREG uses.
1841       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1842         SDNode *N = *I;
1843         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1844             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1845           C.Op0 = SDValue(N, 0);
1846           return;
1847         }
1848       }
1849     }
1850   }
1851 }
1852 
1853 // If C compares the truncation of an extending load, try to compare
1854 // the untruncated value instead.  This exposes more opportunities to
1855 // reuse CC.
1856 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1857                                Comparison &C) {
1858   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1859       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1860       C.Op1.getOpcode() == ISD::Constant &&
1861       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1862     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1863     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
1864       unsigned Type = L->getExtensionType();
1865       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1866           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1867         C.Op0 = C.Op0.getOperand(0);
1868         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
1869       }
1870     }
1871   }
1872 }
1873 
1874 // Return true if shift operation N has an in-range constant shift value.
1875 // Store it in ShiftVal if so.
1876 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1877   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1878   if (!Shift)
1879     return false;
1880 
1881   uint64_t Amount = Shift->getZExtValue();
1882   if (Amount >= N.getValueSizeInBits())
1883     return false;
1884 
1885   ShiftVal = Amount;
1886   return true;
1887 }
1888 
1889 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1890 // instruction and whether the CC value is descriptive enough to handle
1891 // a comparison of type Opcode between the AND result and CmpVal.
1892 // CCMask says which comparison result is being tested and BitSize is
1893 // the number of bits in the operands.  If TEST UNDER MASK can be used,
1894 // return the corresponding CC mask, otherwise return 0.
1895 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1896                                      uint64_t Mask, uint64_t CmpVal,
1897                                      unsigned ICmpType) {
1898   assert(Mask != 0 && "ANDs with zero should have been removed by now");
1899 
1900   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1901   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1902       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1903     return 0;
1904 
1905   // Work out the masks for the lowest and highest bits.
1906   unsigned HighShift = 63 - countLeadingZeros(Mask);
1907   uint64_t High = uint64_t(1) << HighShift;
1908   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1909 
1910   // Signed ordered comparisons are effectively unsigned if the sign
1911   // bit is dropped.
1912   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1913 
1914   // Check for equality comparisons with 0, or the equivalent.
1915   if (CmpVal == 0) {
1916     if (CCMask == SystemZ::CCMASK_CMP_EQ)
1917       return SystemZ::CCMASK_TM_ALL_0;
1918     if (CCMask == SystemZ::CCMASK_CMP_NE)
1919       return SystemZ::CCMASK_TM_SOME_1;
1920   }
1921   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
1922     if (CCMask == SystemZ::CCMASK_CMP_LT)
1923       return SystemZ::CCMASK_TM_ALL_0;
1924     if (CCMask == SystemZ::CCMASK_CMP_GE)
1925       return SystemZ::CCMASK_TM_SOME_1;
1926   }
1927   if (EffectivelyUnsigned && CmpVal < Low) {
1928     if (CCMask == SystemZ::CCMASK_CMP_LE)
1929       return SystemZ::CCMASK_TM_ALL_0;
1930     if (CCMask == SystemZ::CCMASK_CMP_GT)
1931       return SystemZ::CCMASK_TM_SOME_1;
1932   }
1933 
1934   // Check for equality comparisons with the mask, or the equivalent.
1935   if (CmpVal == Mask) {
1936     if (CCMask == SystemZ::CCMASK_CMP_EQ)
1937       return SystemZ::CCMASK_TM_ALL_1;
1938     if (CCMask == SystemZ::CCMASK_CMP_NE)
1939       return SystemZ::CCMASK_TM_SOME_0;
1940   }
1941   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1942     if (CCMask == SystemZ::CCMASK_CMP_GT)
1943       return SystemZ::CCMASK_TM_ALL_1;
1944     if (CCMask == SystemZ::CCMASK_CMP_LE)
1945       return SystemZ::CCMASK_TM_SOME_0;
1946   }
1947   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1948     if (CCMask == SystemZ::CCMASK_CMP_GE)
1949       return SystemZ::CCMASK_TM_ALL_1;
1950     if (CCMask == SystemZ::CCMASK_CMP_LT)
1951       return SystemZ::CCMASK_TM_SOME_0;
1952   }
1953 
1954   // Check for ordered comparisons with the top bit.
1955   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1956     if (CCMask == SystemZ::CCMASK_CMP_LE)
1957       return SystemZ::CCMASK_TM_MSB_0;
1958     if (CCMask == SystemZ::CCMASK_CMP_GT)
1959       return SystemZ::CCMASK_TM_MSB_1;
1960   }
1961   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1962     if (CCMask == SystemZ::CCMASK_CMP_LT)
1963       return SystemZ::CCMASK_TM_MSB_0;
1964     if (CCMask == SystemZ::CCMASK_CMP_GE)
1965       return SystemZ::CCMASK_TM_MSB_1;
1966   }
1967 
1968   // If there are just two bits, we can do equality checks for Low and High
1969   // as well.
1970   if (Mask == Low + High) {
1971     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1972       return SystemZ::CCMASK_TM_MIXED_MSB_0;
1973     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1974       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1975     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1976       return SystemZ::CCMASK_TM_MIXED_MSB_1;
1977     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1978       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1979   }
1980 
1981   // Looks like we've exhausted our options.
1982   return 0;
1983 }
1984 
1985 // See whether C can be implemented as a TEST UNDER MASK instruction.
1986 // Update the arguments with the TM version if so.
1987 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
1988                                    Comparison &C) {
1989   // Check that we have a comparison with a constant.
1990   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1991   if (!ConstOp1)
1992     return;
1993   uint64_t CmpVal = ConstOp1->getZExtValue();
1994 
1995   // Check whether the nonconstant input is an AND with a constant mask.
1996   Comparison NewC(C);
1997   uint64_t MaskVal;
1998   ConstantSDNode *Mask = nullptr;
1999   if (C.Op0.getOpcode() == ISD::AND) {
2000     NewC.Op0 = C.Op0.getOperand(0);
2001     NewC.Op1 = C.Op0.getOperand(1);
2002     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2003     if (!Mask)
2004       return;
2005     MaskVal = Mask->getZExtValue();
2006   } else {
2007     // There is no instruction to compare with a 64-bit immediate
2008     // so use TMHH instead if possible.  We need an unsigned ordered
2009     // comparison with an i64 immediate.
2010     if (NewC.Op0.getValueType() != MVT::i64 ||
2011         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2012         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2013         NewC.ICmpType == SystemZICMP::SignedOnly)
2014       return;
2015     // Convert LE and GT comparisons into LT and GE.
2016     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2017         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2018       if (CmpVal == uint64_t(-1))
2019         return;
2020       CmpVal += 1;
2021       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2022     }
2023     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2024     // be masked off without changing the result.
2025     MaskVal = -(CmpVal & -CmpVal);
2026     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2027   }
2028   if (!MaskVal)
2029     return;
2030 
2031   // Check whether the combination of mask, comparison value and comparison
2032   // type are suitable.
2033   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2034   unsigned NewCCMask, ShiftVal;
2035   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2036       NewC.Op0.getOpcode() == ISD::SHL &&
2037       isSimpleShift(NewC.Op0, ShiftVal) &&
2038       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2039                                         MaskVal >> ShiftVal,
2040                                         CmpVal >> ShiftVal,
2041                                         SystemZICMP::Any))) {
2042     NewC.Op0 = NewC.Op0.getOperand(0);
2043     MaskVal >>= ShiftVal;
2044   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2045              NewC.Op0.getOpcode() == ISD::SRL &&
2046              isSimpleShift(NewC.Op0, ShiftVal) &&
2047              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2048                                                MaskVal << ShiftVal,
2049                                                CmpVal << ShiftVal,
2050                                                SystemZICMP::UnsignedOnly))) {
2051     NewC.Op0 = NewC.Op0.getOperand(0);
2052     MaskVal <<= ShiftVal;
2053   } else {
2054     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2055                                      NewC.ICmpType);
2056     if (!NewCCMask)
2057       return;
2058   }
2059 
2060   // Go ahead and make the change.
2061   C.Opcode = SystemZISD::TM;
2062   C.Op0 = NewC.Op0;
2063   if (Mask && Mask->getZExtValue() == MaskVal)
2064     C.Op1 = SDValue(Mask, 0);
2065   else
2066     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2067   C.CCValid = SystemZ::CCMASK_TM;
2068   C.CCMask = NewCCMask;
2069 }
2070 
2071 // Return a Comparison that tests the condition-code result of intrinsic
2072 // node Call against constant integer CC using comparison code Cond.
2073 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2074 // and CCValid is the set of possible condition-code results.
2075 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2076                                   SDValue Call, unsigned CCValid, uint64_t CC,
2077                                   ISD::CondCode Cond) {
2078   Comparison C(Call, SDValue());
2079   C.Opcode = Opcode;
2080   C.CCValid = CCValid;
2081   if (Cond == ISD::SETEQ)
2082     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2083     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2084   else if (Cond == ISD::SETNE)
2085     // ...and the inverse of that.
2086     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2087   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2088     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2089     // always true for CC>3.
2090     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2091   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2092     // ...and the inverse of that.
2093     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2094   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2095     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2096     // always true for CC>3.
2097     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2098   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2099     // ...and the inverse of that.
2100     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2101   else
2102     llvm_unreachable("Unexpected integer comparison type");
2103   C.CCMask &= CCValid;
2104   return C;
2105 }
2106 
2107 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2108 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2109                          ISD::CondCode Cond, const SDLoc &DL) {
2110   if (CmpOp1.getOpcode() == ISD::Constant) {
2111     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2112     unsigned Opcode, CCValid;
2113     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2114         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2115         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2116       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2117     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2118         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2119         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2120       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2121   }
2122   Comparison C(CmpOp0, CmpOp1);
2123   C.CCMask = CCMaskForCondCode(Cond);
2124   if (C.Op0.getValueType().isFloatingPoint()) {
2125     C.CCValid = SystemZ::CCMASK_FCMP;
2126     C.Opcode = SystemZISD::FCMP;
2127     adjustForFNeg(C);
2128   } else {
2129     C.CCValid = SystemZ::CCMASK_ICMP;
2130     C.Opcode = SystemZISD::ICMP;
2131     // Choose the type of comparison.  Equality and inequality tests can
2132     // use either signed or unsigned comparisons.  The choice also doesn't
2133     // matter if both sign bits are known to be clear.  In those cases we
2134     // want to give the main isel code the freedom to choose whichever
2135     // form fits best.
2136     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2137         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2138         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2139       C.ICmpType = SystemZICMP::Any;
2140     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2141       C.ICmpType = SystemZICMP::UnsignedOnly;
2142     else
2143       C.ICmpType = SystemZICMP::SignedOnly;
2144     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2145     adjustZeroCmp(DAG, DL, C);
2146     adjustSubwordCmp(DAG, DL, C);
2147     adjustForSubtraction(DAG, DL, C);
2148     adjustForLTGFR(C);
2149     adjustICmpTruncate(DAG, DL, C);
2150   }
2151 
2152   if (shouldSwapCmpOperands(C)) {
2153     std::swap(C.Op0, C.Op1);
2154     C.CCMask = reverseCCMask(C.CCMask);
2155   }
2156 
2157   adjustForTestUnderMask(DAG, DL, C);
2158   return C;
2159 }
2160 
2161 // Emit the comparison instruction described by C.
2162 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2163   if (!C.Op1.getNode()) {
2164     SDValue Op;
2165     switch (C.Op0.getOpcode()) {
2166     case ISD::INTRINSIC_W_CHAIN:
2167       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2168       break;
2169     case ISD::INTRINSIC_WO_CHAIN:
2170       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2171       break;
2172     default:
2173       llvm_unreachable("Invalid comparison operands");
2174     }
2175     return SDValue(Op.getNode(), Op->getNumValues() - 1);
2176   }
2177   if (C.Opcode == SystemZISD::ICMP)
2178     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2179                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2180   if (C.Opcode == SystemZISD::TM) {
2181     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2182                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2183     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2184                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2185   }
2186   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2187 }
2188 
2189 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2190 // 64 bits.  Extend is the extension type to use.  Store the high part
2191 // in Hi and the low part in Lo.
2192 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2193                             SDValue Op0, SDValue Op1, SDValue &Hi,
2194                             SDValue &Lo) {
2195   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2196   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2197   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2198   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2199                    DAG.getConstant(32, DL, MVT::i64));
2200   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2201   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2202 }
2203 
2204 // Lower a binary operation that produces two VT results, one in each
2205 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2206 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
2207 // on the extended Op0 and (unextended) Op1.  Store the even register result
2208 // in Even and the odd register result in Odd.
2209 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2210                              unsigned Extend, unsigned Opcode, SDValue Op0,
2211                              SDValue Op1, SDValue &Even, SDValue &Odd) {
2212   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
2213   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
2214                                SDValue(In128, 0), Op1);
2215   bool Is32Bit = is32Bit(VT);
2216   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2217   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2218 }
2219 
2220 // Return an i32 value that is 1 if the CC value produced by Glue is
2221 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2222 // in CCValid, so other values can be ignored.
2223 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2224                          unsigned CCValid, unsigned CCMask) {
2225   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2226   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2227 
2228   if (Conversion.XORValue)
2229     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
2230                          DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
2231 
2232   if (Conversion.AddValue)
2233     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
2234                          DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
2235 
2236   // The SHR/AND sequence should get optimized to an RISBG.
2237   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
2238                        DAG.getConstant(Conversion.Bit, DL, MVT::i32));
2239   if (Conversion.Bit != 31)
2240     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
2241                          DAG.getConstant(1, DL, MVT::i32));
2242   return Result;
2243 }
2244 
2245 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2246 // be done directly.  IsFP is true if CC is for a floating-point rather than
2247 // integer comparison.
2248 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2249   switch (CC) {
2250   case ISD::SETOEQ:
2251   case ISD::SETEQ:
2252     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2253 
2254   case ISD::SETOGE:
2255   case ISD::SETGE:
2256     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2257 
2258   case ISD::SETOGT:
2259   case ISD::SETGT:
2260     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2261 
2262   case ISD::SETUGT:
2263     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2264 
2265   default:
2266     return 0;
2267   }
2268 }
2269 
2270 // Return the SystemZISD vector comparison operation for CC or its inverse,
2271 // or 0 if neither can be done directly.  Indicate in Invert whether the
2272 // result is for the inverse of CC.  IsFP is true if CC is for a
2273 // floating-point rather than integer comparison.
2274 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2275                                             bool &Invert) {
2276   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2277     Invert = false;
2278     return Opcode;
2279   }
2280 
2281   CC = ISD::getSetCCInverse(CC, !IsFP);
2282   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2283     Invert = true;
2284     return Opcode;
2285   }
2286 
2287   return 0;
2288 }
2289 
2290 // Return a v2f64 that contains the extended form of elements Start and Start+1
2291 // of v4f32 value Op.
2292 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2293                                   SDValue Op) {
2294   int Mask[] = { Start, -1, Start + 1, -1 };
2295   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2296   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2297 }
2298 
2299 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2300 // producing a result of type VT.
2301 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL,
2302                             EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
2303   // There is no hardware support for v4f32, so extend the vector into
2304   // two v2f64s and compare those.
2305   if (CmpOp0.getValueType() == MVT::v4f32) {
2306     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2307     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2308     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2309     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2310     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2311     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2312     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2313   }
2314   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2315 }
2316 
2317 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2318 // an integer mask of type VT.
2319 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2320                                 ISD::CondCode CC, SDValue CmpOp0,
2321                                 SDValue CmpOp1) {
2322   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2323   bool Invert = false;
2324   SDValue Cmp;
2325   switch (CC) {
2326     // Handle tests for order using (or (ogt y x) (oge x y)).
2327   case ISD::SETUO:
2328     Invert = true;
2329   case ISD::SETO: {
2330     assert(IsFP && "Unexpected integer comparison");
2331     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2332     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2333     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2334     break;
2335   }
2336 
2337     // Handle <> tests using (or (ogt y x) (ogt x y)).
2338   case ISD::SETUEQ:
2339     Invert = true;
2340   case ISD::SETONE: {
2341     assert(IsFP && "Unexpected integer comparison");
2342     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2343     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2344     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2345     break;
2346   }
2347 
2348     // Otherwise a single comparison is enough.  It doesn't really
2349     // matter whether we try the inversion or the swap first, since
2350     // there are no cases where both work.
2351   default:
2352     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2353       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2354     else {
2355       CC = ISD::getSetCCSwappedOperands(CC);
2356       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2357         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2358       else
2359         llvm_unreachable("Unhandled comparison");
2360     }
2361     break;
2362   }
2363   if (Invert) {
2364     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2365                                DAG.getConstant(65535, DL, MVT::i32));
2366     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2367     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2368   }
2369   return Cmp;
2370 }
2371 
2372 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2373                                           SelectionDAG &DAG) const {
2374   SDValue CmpOp0   = Op.getOperand(0);
2375   SDValue CmpOp1   = Op.getOperand(1);
2376   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2377   SDLoc DL(Op);
2378   EVT VT = Op.getValueType();
2379   if (VT.isVector())
2380     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2381 
2382   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2383   SDValue Glue = emitCmp(DAG, DL, C);
2384   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2385 }
2386 
2387 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2388   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2389   SDValue CmpOp0   = Op.getOperand(2);
2390   SDValue CmpOp1   = Op.getOperand(3);
2391   SDValue Dest     = Op.getOperand(4);
2392   SDLoc DL(Op);
2393 
2394   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2395   SDValue Glue = emitCmp(DAG, DL, C);
2396   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2397                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2398                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2399 }
2400 
2401 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2402 // allowing Pos and Neg to be wider than CmpOp.
2403 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2404   return (Neg.getOpcode() == ISD::SUB &&
2405           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2406           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2407           Neg.getOperand(1) == Pos &&
2408           (Pos == CmpOp ||
2409            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2410             Pos.getOperand(0) == CmpOp)));
2411 }
2412 
2413 // Return the absolute or negative absolute of Op; IsNegative decides which.
2414 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2415                            bool IsNegative) {
2416   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2417   if (IsNegative)
2418     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2419                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2420   return Op;
2421 }
2422 
2423 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2424                                               SelectionDAG &DAG) const {
2425   SDValue CmpOp0   = Op.getOperand(0);
2426   SDValue CmpOp1   = Op.getOperand(1);
2427   SDValue TrueOp   = Op.getOperand(2);
2428   SDValue FalseOp  = Op.getOperand(3);
2429   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2430   SDLoc DL(Op);
2431 
2432   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2433 
2434   // Check for absolute and negative-absolute selections, including those
2435   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2436   // This check supplements the one in DAGCombiner.
2437   if (C.Opcode == SystemZISD::ICMP &&
2438       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2439       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2440       C.Op1.getOpcode() == ISD::Constant &&
2441       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2442     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2443       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2444     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2445       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2446   }
2447 
2448   SDValue Glue = emitCmp(DAG, DL, C);
2449 
2450   // Special case for handling -1/0 results.  The shifts we use here
2451   // should get optimized with the IPM conversion sequence.
2452   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2453   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
2454   if (TrueC && FalseC) {
2455     int64_t TrueVal = TrueC->getSExtValue();
2456     int64_t FalseVal = FalseC->getSExtValue();
2457     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2458       // Invert the condition if we want -1 on false.
2459       if (TrueVal == 0)
2460         C.CCMask ^= C.CCValid;
2461       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2462       EVT VT = Op.getValueType();
2463       // Extend the result to VT.  Upper bits are ignored.
2464       if (!is32Bit(VT))
2465         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2466       // Sign-extend from the low bit.
2467       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
2468       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2469       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2470     }
2471   }
2472 
2473   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2474                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2475 
2476   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2477   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
2478 }
2479 
2480 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2481                                                   SelectionDAG &DAG) const {
2482   SDLoc DL(Node);
2483   const GlobalValue *GV = Node->getGlobal();
2484   int64_t Offset = Node->getOffset();
2485   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2486   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2487 
2488   SDValue Result;
2489   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2490     // Assign anchors at 1<<12 byte boundaries.
2491     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2492     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2493     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2494 
2495     // The offset can be folded into the address if it is aligned to a halfword.
2496     Offset -= Anchor;
2497     if (Offset != 0 && (Offset & 1) == 0) {
2498       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2499       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2500       Offset = 0;
2501     }
2502   } else {
2503     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2504     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2505     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2506                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2507   }
2508 
2509   // If there was a non-zero offset that we didn't fold, create an explicit
2510   // addition for it.
2511   if (Offset != 0)
2512     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2513                          DAG.getConstant(Offset, DL, PtrVT));
2514 
2515   return Result;
2516 }
2517 
2518 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2519                                                  SelectionDAG &DAG,
2520                                                  unsigned Opcode,
2521                                                  SDValue GOTOffset) const {
2522   SDLoc DL(Node);
2523   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2524   SDValue Chain = DAG.getEntryNode();
2525   SDValue Glue;
2526 
2527   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2528   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2529   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2530   Glue = Chain.getValue(1);
2531   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2532   Glue = Chain.getValue(1);
2533 
2534   // The first call operand is the chain and the second is the TLS symbol.
2535   SmallVector<SDValue, 8> Ops;
2536   Ops.push_back(Chain);
2537   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2538                                            Node->getValueType(0),
2539                                            0, 0));
2540 
2541   // Add argument registers to the end of the list so that they are
2542   // known live into the call.
2543   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2544   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2545 
2546   // Add a register mask operand representing the call-preserved registers.
2547   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2548   const uint32_t *Mask =
2549       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2550   assert(Mask && "Missing call preserved mask for calling convention");
2551   Ops.push_back(DAG.getRegisterMask(Mask));
2552 
2553   // Glue the call to the argument copies.
2554   Ops.push_back(Glue);
2555 
2556   // Emit the call.
2557   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2558   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2559   Glue = Chain.getValue(1);
2560 
2561   // Copy the return value from %r2.
2562   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2563 }
2564 
2565 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2566                                                   SelectionDAG &DAG) const {
2567   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2568 
2569   // The high part of the thread pointer is in access register 0.
2570   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2571                              DAG.getConstant(0, DL, MVT::i32));
2572   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2573 
2574   // The low part of the thread pointer is in access register 1.
2575   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2576                              DAG.getConstant(1, DL, MVT::i32));
2577   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2578 
2579   // Merge them into a single 64-bit address.
2580   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2581                                     DAG.getConstant(32, DL, PtrVT));
2582   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2583 }
2584 
2585 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2586                                                      SelectionDAG &DAG) const {
2587   if (DAG.getTarget().Options.EmulatedTLS)
2588     return LowerToTLSEmulatedModel(Node, DAG);
2589   SDLoc DL(Node);
2590   const GlobalValue *GV = Node->getGlobal();
2591   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2592   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2593 
2594   SDValue TP = lowerThreadPointer(DL, DAG);
2595 
2596   // Get the offset of GA from the thread pointer, based on the TLS model.
2597   SDValue Offset;
2598   switch (model) {
2599     case TLSModel::GeneralDynamic: {
2600       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2601       SystemZConstantPoolValue *CPV =
2602         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2603 
2604       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2605       Offset = DAG.getLoad(
2606           PtrVT, DL, DAG.getEntryNode(), Offset,
2607           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2608 
2609       // Call __tls_get_offset to retrieve the offset.
2610       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2611       break;
2612     }
2613 
2614     case TLSModel::LocalDynamic: {
2615       // Load the GOT offset of the module ID.
2616       SystemZConstantPoolValue *CPV =
2617         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2618 
2619       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2620       Offset = DAG.getLoad(
2621           PtrVT, DL, DAG.getEntryNode(), Offset,
2622           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2623 
2624       // Call __tls_get_offset to retrieve the module base offset.
2625       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2626 
2627       // Note: The SystemZLDCleanupPass will remove redundant computations
2628       // of the module base offset.  Count total number of local-dynamic
2629       // accesses to trigger execution of that pass.
2630       SystemZMachineFunctionInfo* MFI =
2631         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2632       MFI->incNumLocalDynamicTLSAccesses();
2633 
2634       // Add the per-symbol offset.
2635       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2636 
2637       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2638       DTPOffset = DAG.getLoad(
2639           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2640           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2641 
2642       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2643       break;
2644     }
2645 
2646     case TLSModel::InitialExec: {
2647       // Load the offset from the GOT.
2648       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2649                                           SystemZII::MO_INDNTPOFF);
2650       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2651       Offset =
2652           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2653                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2654       break;
2655     }
2656 
2657     case TLSModel::LocalExec: {
2658       // Force the offset into the constant pool and load it from there.
2659       SystemZConstantPoolValue *CPV =
2660         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2661 
2662       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2663       Offset = DAG.getLoad(
2664           PtrVT, DL, DAG.getEntryNode(), Offset,
2665           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2666       break;
2667     }
2668   }
2669 
2670   // Add the base and offset together.
2671   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2672 }
2673 
2674 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2675                                                  SelectionDAG &DAG) const {
2676   SDLoc DL(Node);
2677   const BlockAddress *BA = Node->getBlockAddress();
2678   int64_t Offset = Node->getOffset();
2679   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2680 
2681   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2682   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2683   return Result;
2684 }
2685 
2686 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2687                                               SelectionDAG &DAG) const {
2688   SDLoc DL(JT);
2689   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2690   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2691 
2692   // Use LARL to load the address of the table.
2693   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2694 }
2695 
2696 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2697                                                  SelectionDAG &DAG) const {
2698   SDLoc DL(CP);
2699   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2700 
2701   SDValue Result;
2702   if (CP->isMachineConstantPoolEntry())
2703     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2704                                        CP->getAlignment());
2705   else
2706     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2707                                        CP->getAlignment(), CP->getOffset());
2708 
2709   // Use LARL to load the address of the constant pool entry.
2710   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2711 }
2712 
2713 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2714                                               SelectionDAG &DAG) const {
2715   MachineFunction &MF = DAG.getMachineFunction();
2716   MachineFrameInfo &MFI = MF.getFrameInfo();
2717   MFI.setFrameAddressIsTaken(true);
2718 
2719   SDLoc DL(Op);
2720   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2721   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2722 
2723   // If the back chain frame index has not been allocated yet, do so.
2724   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2725   int BackChainIdx = FI->getFramePointerSaveIndex();
2726   if (!BackChainIdx) {
2727     // By definition, the frame address is the address of the back chain.
2728     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2729     FI->setFramePointerSaveIndex(BackChainIdx);
2730   }
2731   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2732 
2733   // FIXME The frontend should detect this case.
2734   if (Depth > 0) {
2735     report_fatal_error("Unsupported stack frame traversal count");
2736   }
2737 
2738   return BackChain;
2739 }
2740 
2741 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2742                                                SelectionDAG &DAG) const {
2743   MachineFunction &MF = DAG.getMachineFunction();
2744   MachineFrameInfo &MFI = MF.getFrameInfo();
2745   MFI.setReturnAddressIsTaken(true);
2746 
2747   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2748     return SDValue();
2749 
2750   SDLoc DL(Op);
2751   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2752   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2753 
2754   // FIXME The frontend should detect this case.
2755   if (Depth > 0) {
2756     report_fatal_error("Unsupported stack frame traversal count");
2757   }
2758 
2759   // Return R14D, which has the return address. Mark it an implicit live-in.
2760   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2761   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2762 }
2763 
2764 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2765                                             SelectionDAG &DAG) const {
2766   SDLoc DL(Op);
2767   SDValue In = Op.getOperand(0);
2768   EVT InVT = In.getValueType();
2769   EVT ResVT = Op.getValueType();
2770 
2771   // Convert loads directly.  This is normally done by DAGCombiner,
2772   // but we need this case for bitcasts that are created during lowering
2773   // and which are then lowered themselves.
2774   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2775     return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
2776                        LoadN->getMemOperand());
2777 
2778   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2779     SDValue In64;
2780     if (Subtarget.hasHighWord()) {
2781       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2782                                        MVT::i64);
2783       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2784                                        MVT::i64, SDValue(U64, 0), In);
2785     } else {
2786       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2787       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2788                          DAG.getConstant(32, DL, MVT::i64));
2789     }
2790     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2791     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2792                                       DL, MVT::f32, Out64);
2793   }
2794   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2795     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2796     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2797                                              MVT::f64, SDValue(U64, 0), In);
2798     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2799     if (Subtarget.hasHighWord())
2800       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2801                                         MVT::i32, Out64);
2802     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2803                                 DAG.getConstant(32, DL, MVT::i64));
2804     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2805   }
2806   llvm_unreachable("Unexpected bitcast combination");
2807 }
2808 
2809 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2810                                             SelectionDAG &DAG) const {
2811   MachineFunction &MF = DAG.getMachineFunction();
2812   SystemZMachineFunctionInfo *FuncInfo =
2813     MF.getInfo<SystemZMachineFunctionInfo>();
2814   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2815 
2816   SDValue Chain   = Op.getOperand(0);
2817   SDValue Addr    = Op.getOperand(1);
2818   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2819   SDLoc DL(Op);
2820 
2821   // The initial values of each field.
2822   const unsigned NumFields = 4;
2823   SDValue Fields[NumFields] = {
2824     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2825     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2826     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2827     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2828   };
2829 
2830   // Store each field into its respective slot.
2831   SDValue MemOps[NumFields];
2832   unsigned Offset = 0;
2833   for (unsigned I = 0; I < NumFields; ++I) {
2834     SDValue FieldAddr = Addr;
2835     if (Offset != 0)
2836       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2837                               DAG.getIntPtrConstant(Offset, DL));
2838     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2839                              MachinePointerInfo(SV, Offset));
2840     Offset += 8;
2841   }
2842   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2843 }
2844 
2845 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2846                                            SelectionDAG &DAG) const {
2847   SDValue Chain      = Op.getOperand(0);
2848   SDValue DstPtr     = Op.getOperand(1);
2849   SDValue SrcPtr     = Op.getOperand(2);
2850   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2851   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2852   SDLoc DL(Op);
2853 
2854   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2855                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2856                        /*isTailCall*/false,
2857                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2858 }
2859 
2860 SDValue SystemZTargetLowering::
2861 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2862   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2863   MachineFunction &MF = DAG.getMachineFunction();
2864   bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack");
2865   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
2866 
2867   SDValue Chain = Op.getOperand(0);
2868   SDValue Size  = Op.getOperand(1);
2869   SDValue Align = Op.getOperand(2);
2870   SDLoc DL(Op);
2871 
2872   // If user has set the no alignment function attribute, ignore
2873   // alloca alignments.
2874   uint64_t AlignVal = (RealignOpt ?
2875                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2876 
2877   uint64_t StackAlign = TFI->getStackAlignment();
2878   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2879   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2880 
2881   unsigned SPReg = getStackPointerRegisterToSaveRestore();
2882   SDValue NeededSpace = Size;
2883 
2884   // Get a reference to the stack pointer.
2885   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2886 
2887   // If we need a backchain, save it now.
2888   SDValue Backchain;
2889   if (StoreBackchain)
2890     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
2891 
2892   // Add extra space for alignment if needed.
2893   if (ExtraAlignSpace)
2894     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
2895                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2896 
2897   // Get the new stack pointer value.
2898   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
2899 
2900   // Copy the new stack pointer back.
2901   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2902 
2903   // The allocated data lives above the 160 bytes allocated for the standard
2904   // frame, plus any outgoing stack arguments.  We don't know how much that
2905   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2906   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2907   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2908 
2909   // Dynamically realign if needed.
2910   if (RequiredAlign > StackAlign) {
2911     Result =
2912       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
2913                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2914     Result =
2915       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
2916                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
2917   }
2918 
2919   if (StoreBackchain)
2920     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
2921 
2922   SDValue Ops[2] = { Result, Chain };
2923   return DAG.getMergeValues(Ops, DL);
2924 }
2925 
2926 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
2927     SDValue Op, SelectionDAG &DAG) const {
2928   SDLoc DL(Op);
2929 
2930   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2931 }
2932 
2933 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2934                                               SelectionDAG &DAG) const {
2935   EVT VT = Op.getValueType();
2936   SDLoc DL(Op);
2937   SDValue Ops[2];
2938   if (is32Bit(VT))
2939     // Just do a normal 64-bit multiplication and extract the results.
2940     // We define this so that it can be used for constant division.
2941     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2942                     Op.getOperand(1), Ops[1], Ops[0]);
2943   else {
2944     // Do a full 128-bit multiplication based on UMUL_LOHI64:
2945     //
2946     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2947     //
2948     // but using the fact that the upper halves are either all zeros
2949     // or all ones:
2950     //
2951     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2952     //
2953     // and grouping the right terms together since they are quicker than the
2954     // multiplication:
2955     //
2956     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2957     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
2958     SDValue LL = Op.getOperand(0);
2959     SDValue RL = Op.getOperand(1);
2960     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2961     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2962     // UMUL_LOHI64 returns the low result in the odd register and the high
2963     // result in the even register.  SMUL_LOHI is defined to return the
2964     // low half first, so the results are in reverse order.
2965     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2966                      LL, RL, Ops[1], Ops[0]);
2967     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2968     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2969     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2970     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2971   }
2972   return DAG.getMergeValues(Ops, DL);
2973 }
2974 
2975 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2976                                               SelectionDAG &DAG) const {
2977   EVT VT = Op.getValueType();
2978   SDLoc DL(Op);
2979   SDValue Ops[2];
2980   if (is32Bit(VT))
2981     // Just do a normal 64-bit multiplication and extract the results.
2982     // We define this so that it can be used for constant division.
2983     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2984                     Op.getOperand(1), Ops[1], Ops[0]);
2985   else
2986     // UMUL_LOHI64 returns the low result in the odd register and the high
2987     // result in the even register.  UMUL_LOHI is defined to return the
2988     // low half first, so the results are in reverse order.
2989     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2990                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2991   return DAG.getMergeValues(Ops, DL);
2992 }
2993 
2994 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2995                                             SelectionDAG &DAG) const {
2996   SDValue Op0 = Op.getOperand(0);
2997   SDValue Op1 = Op.getOperand(1);
2998   EVT VT = Op.getValueType();
2999   SDLoc DL(Op);
3000   unsigned Opcode;
3001 
3002   // We use DSGF for 32-bit division.
3003   if (is32Bit(VT)) {
3004     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3005     Opcode = SystemZISD::SDIVREM32;
3006   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
3007     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3008     Opcode = SystemZISD::SDIVREM32;
3009   } else
3010     Opcode = SystemZISD::SDIVREM64;
3011 
3012   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
3013   // input is "don't care".  The instruction returns the remainder in
3014   // the even register and the quotient in the odd register.
3015   SDValue Ops[2];
3016   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
3017                    Op0, Op1, Ops[1], Ops[0]);
3018   return DAG.getMergeValues(Ops, DL);
3019 }
3020 
3021 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3022                                             SelectionDAG &DAG) const {
3023   EVT VT = Op.getValueType();
3024   SDLoc DL(Op);
3025 
3026   // DL(G) uses a double-width dividend, so we need to clear the even
3027   // register in the GR128 input.  The instruction returns the remainder
3028   // in the even register and the quotient in the odd register.
3029   SDValue Ops[2];
3030   if (is32Bit(VT))
3031     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
3032                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3033   else
3034     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
3035                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3036   return DAG.getMergeValues(Ops, DL);
3037 }
3038 
3039 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3040   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3041 
3042   // Get the known-zero masks for each operand.
3043   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3044   APInt KnownZero[2], KnownOne[2];
3045   DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
3046   DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
3047 
3048   // See if the upper 32 bits of one operand and the lower 32 bits of the
3049   // other are known zero.  They are the low and high operands respectively.
3050   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
3051                        KnownZero[1].getZExtValue() };
3052   unsigned High, Low;
3053   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3054     High = 1, Low = 0;
3055   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3056     High = 0, Low = 1;
3057   else
3058     return Op;
3059 
3060   SDValue LowOp = Ops[Low];
3061   SDValue HighOp = Ops[High];
3062 
3063   // If the high part is a constant, we're better off using IILH.
3064   if (HighOp.getOpcode() == ISD::Constant)
3065     return Op;
3066 
3067   // If the low part is a constant that is outside the range of LHI,
3068   // then we're better off using IILF.
3069   if (LowOp.getOpcode() == ISD::Constant) {
3070     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3071     if (!isInt<16>(Value))
3072       return Op;
3073   }
3074 
3075   // Check whether the high part is an AND that doesn't change the
3076   // high 32 bits and just masks out low bits.  We can skip it if so.
3077   if (HighOp.getOpcode() == ISD::AND &&
3078       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3079     SDValue HighOp0 = HighOp.getOperand(0);
3080     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3081     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3082       HighOp = HighOp0;
3083   }
3084 
3085   // Take advantage of the fact that all GR32 operations only change the
3086   // low 32 bits by truncating Low to an i32 and inserting it directly
3087   // using a subreg.  The interesting cases are those where the truncation
3088   // can be folded.
3089   SDLoc DL(Op);
3090   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3091   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3092                                    MVT::i64, HighOp, Low32);
3093 }
3094 
3095 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3096                                           SelectionDAG &DAG) const {
3097   EVT VT = Op.getValueType();
3098   SDLoc DL(Op);
3099   Op = Op.getOperand(0);
3100 
3101   // Handle vector types via VPOPCT.
3102   if (VT.isVector()) {
3103     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3104     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3105     switch (VT.getScalarSizeInBits()) {
3106     case 8:
3107       break;
3108     case 16: {
3109       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3110       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3111       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3112       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3113       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3114       break;
3115     }
3116     case 32: {
3117       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3118                                 DAG.getConstant(0, DL, MVT::i32));
3119       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3120       break;
3121     }
3122     case 64: {
3123       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3124                                 DAG.getConstant(0, DL, MVT::i32));
3125       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3126       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3127       break;
3128     }
3129     default:
3130       llvm_unreachable("Unexpected type");
3131     }
3132     return Op;
3133   }
3134 
3135   // Get the known-zero mask for the operand.
3136   APInt KnownZero, KnownOne;
3137   DAG.computeKnownBits(Op, KnownZero, KnownOne);
3138   unsigned NumSignificantBits = (~KnownZero).getActiveBits();
3139   if (NumSignificantBits == 0)
3140     return DAG.getConstant(0, DL, VT);
3141 
3142   // Skip known-zero high parts of the operand.
3143   int64_t OrigBitSize = VT.getSizeInBits();
3144   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3145   BitSize = std::min(BitSize, OrigBitSize);
3146 
3147   // The POPCNT instruction counts the number of bits in each byte.
3148   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3149   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3150   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3151 
3152   // Add up per-byte counts in a binary tree.  All bits of Op at
3153   // position larger than BitSize remain zero throughout.
3154   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3155     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3156     if (BitSize != OrigBitSize)
3157       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3158                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3159     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3160   }
3161 
3162   // Extract overall result from high byte.
3163   if (BitSize > 8)
3164     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3165                      DAG.getConstant(BitSize - 8, DL, VT));
3166 
3167   return Op;
3168 }
3169 
3170 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3171                                                  SelectionDAG &DAG) const {
3172   SDLoc DL(Op);
3173   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3174     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3175   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
3176     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3177 
3178   // The only fence that needs an instruction is a sequentially-consistent
3179   // cross-thread fence.
3180   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3181       FenceScope == CrossThread) {
3182     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3183                                       Op.getOperand(0)),
3184                    0);
3185   }
3186 
3187   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3188   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3189 }
3190 
3191 // Op is an atomic load.  Lower it into a normal volatile load.
3192 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3193                                                 SelectionDAG &DAG) const {
3194   auto *Node = cast<AtomicSDNode>(Op.getNode());
3195   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3196                         Node->getChain(), Node->getBasePtr(),
3197                         Node->getMemoryVT(), Node->getMemOperand());
3198 }
3199 
3200 // Op is an atomic store.  Lower it into a normal volatile store followed
3201 // by a serialization.
3202 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3203                                                  SelectionDAG &DAG) const {
3204   auto *Node = cast<AtomicSDNode>(Op.getNode());
3205   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3206                                     Node->getBasePtr(), Node->getMemoryVT(),
3207                                     Node->getMemOperand());
3208   return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
3209                                     Chain), 0);
3210 }
3211 
3212 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3213 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3214 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3215                                                    SelectionDAG &DAG,
3216                                                    unsigned Opcode) const {
3217   auto *Node = cast<AtomicSDNode>(Op.getNode());
3218 
3219   // 32-bit operations need no code outside the main loop.
3220   EVT NarrowVT = Node->getMemoryVT();
3221   EVT WideVT = MVT::i32;
3222   if (NarrowVT == WideVT)
3223     return Op;
3224 
3225   int64_t BitSize = NarrowVT.getSizeInBits();
3226   SDValue ChainIn = Node->getChain();
3227   SDValue Addr = Node->getBasePtr();
3228   SDValue Src2 = Node->getVal();
3229   MachineMemOperand *MMO = Node->getMemOperand();
3230   SDLoc DL(Node);
3231   EVT PtrVT = Addr.getValueType();
3232 
3233   // Convert atomic subtracts of constants into additions.
3234   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3235     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3236       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3237       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3238     }
3239 
3240   // Get the address of the containing word.
3241   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3242                                     DAG.getConstant(-4, DL, PtrVT));
3243 
3244   // Get the number of bits that the word must be rotated left in order
3245   // to bring the field to the top bits of a GR32.
3246   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3247                                  DAG.getConstant(3, DL, PtrVT));
3248   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3249 
3250   // Get the complementing shift amount, for rotating a field in the top
3251   // bits back to its proper position.
3252   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3253                                     DAG.getConstant(0, DL, WideVT), BitShift);
3254 
3255   // Extend the source operand to 32 bits and prepare it for the inner loop.
3256   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3257   // operations require the source to be shifted in advance.  (This shift
3258   // can be folded if the source is constant.)  For AND and NAND, the lower
3259   // bits must be set, while for other opcodes they should be left clear.
3260   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3261     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3262                        DAG.getConstant(32 - BitSize, DL, WideVT));
3263   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3264       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3265     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3266                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3267 
3268   // Construct the ATOMIC_LOADW_* node.
3269   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3270   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3271                     DAG.getConstant(BitSize, DL, WideVT) };
3272   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3273                                              NarrowVT, MMO);
3274 
3275   // Rotate the result of the final CS so that the field is in the lower
3276   // bits of a GR32, then truncate it.
3277   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3278                                     DAG.getConstant(BitSize, DL, WideVT));
3279   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3280 
3281   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3282   return DAG.getMergeValues(RetOps, DL);
3283 }
3284 
3285 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3286 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3287 // operations into additions.
3288 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3289                                                     SelectionDAG &DAG) const {
3290   auto *Node = cast<AtomicSDNode>(Op.getNode());
3291   EVT MemVT = Node->getMemoryVT();
3292   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3293     // A full-width operation.
3294     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3295     SDValue Src2 = Node->getVal();
3296     SDValue NegSrc2;
3297     SDLoc DL(Src2);
3298 
3299     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3300       // Use an addition if the operand is constant and either LAA(G) is
3301       // available or the negative value is in the range of A(G)FHI.
3302       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3303       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3304         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3305     } else if (Subtarget.hasInterlockedAccess1())
3306       // Use LAA(G) if available.
3307       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3308                             Src2);
3309 
3310     if (NegSrc2.getNode())
3311       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3312                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3313                            Node->getMemOperand(), Node->getOrdering(),
3314                            Node->getSynchScope());
3315 
3316     // Use the node as-is.
3317     return Op;
3318   }
3319 
3320   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3321 }
3322 
3323 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
3324 // into a fullword ATOMIC_CMP_SWAPW operation.
3325 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3326                                                     SelectionDAG &DAG) const {
3327   auto *Node = cast<AtomicSDNode>(Op.getNode());
3328 
3329   // We have native support for 32-bit compare and swap.
3330   EVT NarrowVT = Node->getMemoryVT();
3331   EVT WideVT = MVT::i32;
3332   if (NarrowVT == WideVT)
3333     return Op;
3334 
3335   int64_t BitSize = NarrowVT.getSizeInBits();
3336   SDValue ChainIn = Node->getOperand(0);
3337   SDValue Addr = Node->getOperand(1);
3338   SDValue CmpVal = Node->getOperand(2);
3339   SDValue SwapVal = Node->getOperand(3);
3340   MachineMemOperand *MMO = Node->getMemOperand();
3341   SDLoc DL(Node);
3342   EVT PtrVT = Addr.getValueType();
3343 
3344   // Get the address of the containing word.
3345   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3346                                     DAG.getConstant(-4, DL, PtrVT));
3347 
3348   // Get the number of bits that the word must be rotated left in order
3349   // to bring the field to the top bits of a GR32.
3350   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3351                                  DAG.getConstant(3, DL, PtrVT));
3352   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3353 
3354   // Get the complementing shift amount, for rotating a field in the top
3355   // bits back to its proper position.
3356   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3357                                     DAG.getConstant(0, DL, WideVT), BitShift);
3358 
3359   // Construct the ATOMIC_CMP_SWAPW node.
3360   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3361   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3362                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3363   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3364                                              VTList, Ops, NarrowVT, MMO);
3365   return AtomicOp;
3366 }
3367 
3368 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3369                                               SelectionDAG &DAG) const {
3370   MachineFunction &MF = DAG.getMachineFunction();
3371   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3372   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3373                             SystemZ::R15D, Op.getValueType());
3374 }
3375 
3376 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3377                                                  SelectionDAG &DAG) const {
3378   MachineFunction &MF = DAG.getMachineFunction();
3379   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3380   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
3381 
3382   SDValue Chain = Op.getOperand(0);
3383   SDValue NewSP = Op.getOperand(1);
3384   SDValue Backchain;
3385   SDLoc DL(Op);
3386 
3387   if (StoreBackchain) {
3388     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3389     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3390   }
3391 
3392   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3393 
3394   if (StoreBackchain)
3395     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3396 
3397   return Chain;
3398 }
3399 
3400 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3401                                              SelectionDAG &DAG) const {
3402   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3403   if (!IsData)
3404     // Just preserve the chain.
3405     return Op.getOperand(0);
3406 
3407   SDLoc DL(Op);
3408   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3409   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3410   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3411   SDValue Ops[] = {
3412     Op.getOperand(0),
3413     DAG.getConstant(Code, DL, MVT::i32),
3414     Op.getOperand(1)
3415   };
3416   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3417                                  Node->getVTList(), Ops,
3418                                  Node->getMemoryVT(), Node->getMemOperand());
3419 }
3420 
3421 // Return an i32 that contains the value of CC immediately after After,
3422 // whose final operand must be MVT::Glue.
3423 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3424   SDLoc DL(After);
3425   SDValue Glue = SDValue(After, After->getNumValues() - 1);
3426   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3427   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3428                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3429 }
3430 
3431 SDValue
3432 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3433                                               SelectionDAG &DAG) const {
3434   unsigned Opcode, CCValid;
3435   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3436     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3437     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3438     SDValue CC = getCCResult(DAG, Glued.getNode());
3439     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3440     return SDValue();
3441   }
3442 
3443   return SDValue();
3444 }
3445 
3446 SDValue
3447 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3448                                                SelectionDAG &DAG) const {
3449   unsigned Opcode, CCValid;
3450   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3451     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3452     SDValue CC = getCCResult(DAG, Glued.getNode());
3453     if (Op->getNumValues() == 1)
3454       return CC;
3455     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3456     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3457                        CC);
3458   }
3459 
3460   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3461   switch (Id) {
3462   case Intrinsic::thread_pointer:
3463     return lowerThreadPointer(SDLoc(Op), DAG);
3464 
3465   case Intrinsic::s390_vpdi:
3466     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3467                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3468 
3469   case Intrinsic::s390_vperm:
3470     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3471                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3472 
3473   case Intrinsic::s390_vuphb:
3474   case Intrinsic::s390_vuphh:
3475   case Intrinsic::s390_vuphf:
3476     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3477                        Op.getOperand(1));
3478 
3479   case Intrinsic::s390_vuplhb:
3480   case Intrinsic::s390_vuplhh:
3481   case Intrinsic::s390_vuplhf:
3482     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3483                        Op.getOperand(1));
3484 
3485   case Intrinsic::s390_vuplb:
3486   case Intrinsic::s390_vuplhw:
3487   case Intrinsic::s390_vuplf:
3488     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3489                        Op.getOperand(1));
3490 
3491   case Intrinsic::s390_vupllb:
3492   case Intrinsic::s390_vupllh:
3493   case Intrinsic::s390_vupllf:
3494     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3495                        Op.getOperand(1));
3496 
3497   case Intrinsic::s390_vsumb:
3498   case Intrinsic::s390_vsumh:
3499   case Intrinsic::s390_vsumgh:
3500   case Intrinsic::s390_vsumgf:
3501   case Intrinsic::s390_vsumqf:
3502   case Intrinsic::s390_vsumqg:
3503     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3504                        Op.getOperand(1), Op.getOperand(2));
3505   }
3506 
3507   return SDValue();
3508 }
3509 
3510 namespace {
3511 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3512 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3513 // Operand is the constant third operand, otherwise it is the number of
3514 // bytes in each element of the result.
3515 struct Permute {
3516   unsigned Opcode;
3517   unsigned Operand;
3518   unsigned char Bytes[SystemZ::VectorBytes];
3519 };
3520 }
3521 
3522 static const Permute PermuteForms[] = {
3523   // VMRHG
3524   { SystemZISD::MERGE_HIGH, 8,
3525     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3526   // VMRHF
3527   { SystemZISD::MERGE_HIGH, 4,
3528     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3529   // VMRHH
3530   { SystemZISD::MERGE_HIGH, 2,
3531     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3532   // VMRHB
3533   { SystemZISD::MERGE_HIGH, 1,
3534     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3535   // VMRLG
3536   { SystemZISD::MERGE_LOW, 8,
3537     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3538   // VMRLF
3539   { SystemZISD::MERGE_LOW, 4,
3540     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3541   // VMRLH
3542   { SystemZISD::MERGE_LOW, 2,
3543     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3544   // VMRLB
3545   { SystemZISD::MERGE_LOW, 1,
3546     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3547   // VPKG
3548   { SystemZISD::PACK, 4,
3549     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3550   // VPKF
3551   { SystemZISD::PACK, 2,
3552     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3553   // VPKH
3554   { SystemZISD::PACK, 1,
3555     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3556   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3557   { SystemZISD::PERMUTE_DWORDS, 4,
3558     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3559   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3560   { SystemZISD::PERMUTE_DWORDS, 1,
3561     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3562 };
3563 
3564 // Called after matching a vector shuffle against a particular pattern.
3565 // Both the original shuffle and the pattern have two vector operands.
3566 // OpNos[0] is the operand of the original shuffle that should be used for
3567 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3568 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3569 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3570 // for operands 0 and 1 of the pattern.
3571 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3572   if (OpNos[0] < 0) {
3573     if (OpNos[1] < 0)
3574       return false;
3575     OpNo0 = OpNo1 = OpNos[1];
3576   } else if (OpNos[1] < 0) {
3577     OpNo0 = OpNo1 = OpNos[0];
3578   } else {
3579     OpNo0 = OpNos[0];
3580     OpNo1 = OpNos[1];
3581   }
3582   return true;
3583 }
3584 
3585 // Bytes is a VPERM-like permute vector, except that -1 is used for
3586 // undefined bytes.  Return true if the VPERM can be implemented using P.
3587 // When returning true set OpNo0 to the VPERM operand that should be
3588 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3589 //
3590 // For example, if swapping the VPERM operands allows P to match, OpNo0
3591 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3592 // operand, but rewriting it to use two duplicated operands allows it to
3593 // match P, then OpNo0 and OpNo1 will be the same.
3594 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3595                          unsigned &OpNo0, unsigned &OpNo1) {
3596   int OpNos[] = { -1, -1 };
3597   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3598     int Elt = Bytes[I];
3599     if (Elt >= 0) {
3600       // Make sure that the two permute vectors use the same suboperand
3601       // byte number.  Only the operand numbers (the high bits) are
3602       // allowed to differ.
3603       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3604         return false;
3605       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3606       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3607       // Make sure that the operand mappings are consistent with previous
3608       // elements.
3609       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3610         return false;
3611       OpNos[ModelOpNo] = RealOpNo;
3612     }
3613   }
3614   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3615 }
3616 
3617 // As above, but search for a matching permute.
3618 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3619                                    unsigned &OpNo0, unsigned &OpNo1) {
3620   for (auto &P : PermuteForms)
3621     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3622       return &P;
3623   return nullptr;
3624 }
3625 
3626 // Bytes is a VPERM-like permute vector, except that -1 is used for
3627 // undefined bytes.  This permute is an operand of an outer permute.
3628 // See whether redistributing the -1 bytes gives a shuffle that can be
3629 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3630 // that, when applied to the result of P, gives the original permute in Bytes.
3631 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3632                                const Permute &P,
3633                                SmallVectorImpl<int> &Transform) {
3634   unsigned To = 0;
3635   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3636     int Elt = Bytes[From];
3637     if (Elt < 0)
3638       // Byte number From of the result is undefined.
3639       Transform[From] = -1;
3640     else {
3641       while (P.Bytes[To] != Elt) {
3642         To += 1;
3643         if (To == SystemZ::VectorBytes)
3644           return false;
3645       }
3646       Transform[From] = To;
3647     }
3648   }
3649   return true;
3650 }
3651 
3652 // As above, but search for a matching permute.
3653 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3654                                          SmallVectorImpl<int> &Transform) {
3655   for (auto &P : PermuteForms)
3656     if (matchDoublePermute(Bytes, P, Transform))
3657       return &P;
3658   return nullptr;
3659 }
3660 
3661 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3662 // as if it had type vNi8.
3663 static void getVPermMask(ShuffleVectorSDNode *VSN,
3664                          SmallVectorImpl<int> &Bytes) {
3665   EVT VT = VSN->getValueType(0);
3666   unsigned NumElements = VT.getVectorNumElements();
3667   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3668   Bytes.resize(NumElements * BytesPerElement, -1);
3669   for (unsigned I = 0; I < NumElements; ++I) {
3670     int Index = VSN->getMaskElt(I);
3671     if (Index >= 0)
3672       for (unsigned J = 0; J < BytesPerElement; ++J)
3673         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3674   }
3675 }
3676 
3677 // Bytes is a VPERM-like permute vector, except that -1 is used for
3678 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3679 // the result come from a contiguous sequence of bytes from one input.
3680 // Set Base to the selector for the first byte if so.
3681 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3682                             unsigned BytesPerElement, int &Base) {
3683   Base = -1;
3684   for (unsigned I = 0; I < BytesPerElement; ++I) {
3685     if (Bytes[Start + I] >= 0) {
3686       unsigned Elem = Bytes[Start + I];
3687       if (Base < 0) {
3688         Base = Elem - I;
3689         // Make sure the bytes would come from one input operand.
3690         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3691           return false;
3692       } else if (unsigned(Base) != Elem - I)
3693         return false;
3694     }
3695   }
3696   return true;
3697 }
3698 
3699 // Bytes is a VPERM-like permute vector, except that -1 is used for
3700 // undefined bytes.  Return true if it can be performed using VSLDI.
3701 // When returning true, set StartIndex to the shift amount and OpNo0
3702 // and OpNo1 to the VPERM operands that should be used as the first
3703 // and second shift operand respectively.
3704 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3705                                unsigned &StartIndex, unsigned &OpNo0,
3706                                unsigned &OpNo1) {
3707   int OpNos[] = { -1, -1 };
3708   int Shift = -1;
3709   for (unsigned I = 0; I < 16; ++I) {
3710     int Index = Bytes[I];
3711     if (Index >= 0) {
3712       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3713       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3714       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3715       if (Shift < 0)
3716         Shift = ExpectedShift;
3717       else if (Shift != ExpectedShift)
3718         return false;
3719       // Make sure that the operand mappings are consistent with previous
3720       // elements.
3721       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3722         return false;
3723       OpNos[ModelOpNo] = RealOpNo;
3724     }
3725   }
3726   StartIndex = Shift;
3727   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3728 }
3729 
3730 // Create a node that performs P on operands Op0 and Op1, casting the
3731 // operands to the appropriate type.  The type of the result is determined by P.
3732 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3733                               const Permute &P, SDValue Op0, SDValue Op1) {
3734   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3735   // elements of a PACK are twice as wide as the outputs.
3736   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3737                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3738                       P.Operand);
3739   // Cast both operands to the appropriate type.
3740   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3741                               SystemZ::VectorBytes / InBytes);
3742   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3743   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3744   SDValue Op;
3745   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3746     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3747     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3748   } else if (P.Opcode == SystemZISD::PACK) {
3749     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3750                                  SystemZ::VectorBytes / P.Operand);
3751     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3752   } else {
3753     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3754   }
3755   return Op;
3756 }
3757 
3758 // Bytes is a VPERM-like permute vector, except that -1 is used for
3759 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3760 // VSLDI or VPERM.
3761 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3762                                      SDValue *Ops,
3763                                      const SmallVectorImpl<int> &Bytes) {
3764   for (unsigned I = 0; I < 2; ++I)
3765     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3766 
3767   // First see whether VSLDI can be used.
3768   unsigned StartIndex, OpNo0, OpNo1;
3769   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3770     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3771                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3772 
3773   // Fall back on VPERM.  Construct an SDNode for the permute vector.
3774   SDValue IndexNodes[SystemZ::VectorBytes];
3775   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3776     if (Bytes[I] >= 0)
3777       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3778     else
3779       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3780   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3781   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3782 }
3783 
3784 namespace {
3785 // Describes a general N-operand vector shuffle.
3786 struct GeneralShuffle {
3787   GeneralShuffle(EVT vt) : VT(vt) {}
3788   void addUndef();
3789   void add(SDValue, unsigned);
3790   SDValue getNode(SelectionDAG &, const SDLoc &);
3791 
3792   // The operands of the shuffle.
3793   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3794 
3795   // Index I is -1 if byte I of the result is undefined.  Otherwise the
3796   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3797   // Bytes[I] / SystemZ::VectorBytes.
3798   SmallVector<int, SystemZ::VectorBytes> Bytes;
3799 
3800   // The type of the shuffle result.
3801   EVT VT;
3802 };
3803 }
3804 
3805 // Add an extra undefined element to the shuffle.
3806 void GeneralShuffle::addUndef() {
3807   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3808   for (unsigned I = 0; I < BytesPerElement; ++I)
3809     Bytes.push_back(-1);
3810 }
3811 
3812 // Add an extra element to the shuffle, taking it from element Elem of Op.
3813 // A null Op indicates a vector input whose value will be calculated later;
3814 // there is at most one such input per shuffle and it always has the same
3815 // type as the result.
3816 void GeneralShuffle::add(SDValue Op, unsigned Elem) {
3817   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3818 
3819   // The source vector can have wider elements than the result,
3820   // either through an explicit TRUNCATE or because of type legalization.
3821   // We want the least significant part.
3822   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3823   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3824   assert(FromBytesPerElement >= BytesPerElement &&
3825          "Invalid EXTRACT_VECTOR_ELT");
3826   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3827                    (FromBytesPerElement - BytesPerElement));
3828 
3829   // Look through things like shuffles and bitcasts.
3830   while (Op.getNode()) {
3831     if (Op.getOpcode() == ISD::BITCAST)
3832       Op = Op.getOperand(0);
3833     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3834       // See whether the bytes we need come from a contiguous part of one
3835       // operand.
3836       SmallVector<int, SystemZ::VectorBytes> OpBytes;
3837       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3838       int NewByte;
3839       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3840         break;
3841       if (NewByte < 0) {
3842         addUndef();
3843         return;
3844       }
3845       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3846       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3847     } else if (Op.isUndef()) {
3848       addUndef();
3849       return;
3850     } else
3851       break;
3852   }
3853 
3854   // Make sure that the source of the extraction is in Ops.
3855   unsigned OpNo = 0;
3856   for (; OpNo < Ops.size(); ++OpNo)
3857     if (Ops[OpNo] == Op)
3858       break;
3859   if (OpNo == Ops.size())
3860     Ops.push_back(Op);
3861 
3862   // Add the element to Bytes.
3863   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3864   for (unsigned I = 0; I < BytesPerElement; ++I)
3865     Bytes.push_back(Base + I);
3866 }
3867 
3868 // Return SDNodes for the completed shuffle.
3869 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
3870   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3871 
3872   if (Ops.size() == 0)
3873     return DAG.getUNDEF(VT);
3874 
3875   // Make sure that there are at least two shuffle operands.
3876   if (Ops.size() == 1)
3877     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3878 
3879   // Create a tree of shuffles, deferring root node until after the loop.
3880   // Try to redistribute the undefined elements of non-root nodes so that
3881   // the non-root shuffles match something like a pack or merge, then adjust
3882   // the parent node's permute vector to compensate for the new order.
3883   // Among other things, this copes with vectors like <2 x i16> that were
3884   // padded with undefined elements during type legalization.
3885   //
3886   // In the best case this redistribution will lead to the whole tree
3887   // using packs and merges.  It should rarely be a loss in other cases.
3888   unsigned Stride = 1;
3889   for (; Stride * 2 < Ops.size(); Stride *= 2) {
3890     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
3891       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
3892 
3893       // Create a mask for just these two operands.
3894       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
3895       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3896         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
3897         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
3898         if (OpNo == I)
3899           NewBytes[J] = Byte;
3900         else if (OpNo == I + Stride)
3901           NewBytes[J] = SystemZ::VectorBytes + Byte;
3902         else
3903           NewBytes[J] = -1;
3904       }
3905       // See if it would be better to reorganize NewMask to avoid using VPERM.
3906       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
3907       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
3908         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
3909         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
3910         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3911           if (NewBytes[J] >= 0) {
3912             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
3913                    "Invalid double permute");
3914             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
3915           } else
3916             assert(NewBytesMap[J] < 0 && "Invalid double permute");
3917         }
3918       } else {
3919         // Just use NewBytes on the operands.
3920         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
3921         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
3922           if (NewBytes[J] >= 0)
3923             Bytes[J] = I * SystemZ::VectorBytes + J;
3924       }
3925     }
3926   }
3927 
3928   // Now we just have 2 inputs.  Put the second operand in Ops[1].
3929   if (Stride > 1) {
3930     Ops[1] = Ops[Stride];
3931     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3932       if (Bytes[I] >= int(SystemZ::VectorBytes))
3933         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
3934   }
3935 
3936   // Look for an instruction that can do the permute without resorting
3937   // to VPERM.
3938   unsigned OpNo0, OpNo1;
3939   SDValue Op;
3940   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
3941     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
3942   else
3943     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
3944   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3945 }
3946 
3947 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
3948 static bool isScalarToVector(SDValue Op) {
3949   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
3950     if (!Op.getOperand(I).isUndef())
3951       return false;
3952   return true;
3953 }
3954 
3955 // Return a vector of type VT that contains Value in the first element.
3956 // The other elements don't matter.
3957 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3958                                    SDValue Value) {
3959   // If we have a constant, replicate it to all elements and let the
3960   // BUILD_VECTOR lowering take care of it.
3961   if (Value.getOpcode() == ISD::Constant ||
3962       Value.getOpcode() == ISD::ConstantFP) {
3963     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
3964     return DAG.getBuildVector(VT, DL, Ops);
3965   }
3966   if (Value.isUndef())
3967     return DAG.getUNDEF(VT);
3968   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
3969 }
3970 
3971 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
3972 // element 1.  Used for cases in which replication is cheap.
3973 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3974                                  SDValue Op0, SDValue Op1) {
3975   if (Op0.isUndef()) {
3976     if (Op1.isUndef())
3977       return DAG.getUNDEF(VT);
3978     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
3979   }
3980   if (Op1.isUndef())
3981     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
3982   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
3983                      buildScalarToVector(DAG, DL, VT, Op0),
3984                      buildScalarToVector(DAG, DL, VT, Op1));
3985 }
3986 
3987 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
3988 // vector for them.
3989 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
3990                           SDValue Op1) {
3991   if (Op0.isUndef() && Op1.isUndef())
3992     return DAG.getUNDEF(MVT::v2i64);
3993   // If one of the two inputs is undefined then replicate the other one,
3994   // in order to avoid using another register unnecessarily.
3995   if (Op0.isUndef())
3996     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3997   else if (Op1.isUndef())
3998     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3999   else {
4000     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4001     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4002   }
4003   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4004 }
4005 
4006 // Try to represent constant BUILD_VECTOR node BVN using a
4007 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4008 // on success.
4009 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4010   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4011   unsigned BytesPerElement = ElemVT.getStoreSize();
4012   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4013     SDValue Op = BVN->getOperand(I);
4014     if (!Op.isUndef()) {
4015       uint64_t Value;
4016       if (Op.getOpcode() == ISD::Constant)
4017         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4018       else if (Op.getOpcode() == ISD::ConstantFP)
4019         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4020                  .getZExtValue());
4021       else
4022         return false;
4023       for (unsigned J = 0; J < BytesPerElement; ++J) {
4024         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4025         if (Byte == 0xff)
4026           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4027         else if (Byte != 0)
4028           return false;
4029       }
4030     }
4031   }
4032   return true;
4033 }
4034 
4035 // Try to load a vector constant in which BitsPerElement-bit value Value
4036 // is replicated to fill the vector.  VT is the type of the resulting
4037 // constant, which may have elements of a different size from BitsPerElement.
4038 // Return the SDValue of the constant on success, otherwise return
4039 // an empty value.
4040 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4041                                        const SystemZInstrInfo *TII,
4042                                        const SDLoc &DL, EVT VT, uint64_t Value,
4043                                        unsigned BitsPerElement) {
4044   // Signed 16-bit values can be replicated using VREPI.
4045   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4046   if (isInt<16>(SignedValue)) {
4047     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4048                                  SystemZ::VectorBits / BitsPerElement);
4049     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4050                              DAG.getConstant(SignedValue, DL, MVT::i32));
4051     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4052   }
4053   // See whether rotating the constant left some N places gives a value that
4054   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4055   // If so we can use VGM.
4056   unsigned Start, End;
4057   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4058     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4059     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4060     // bit numbers for an BitsPerElement value, so that 0 denotes
4061     // 1 << (BitsPerElement-1).
4062     Start -= 64 - BitsPerElement;
4063     End -= 64 - BitsPerElement;
4064     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4065                                  SystemZ::VectorBits / BitsPerElement);
4066     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4067                              DAG.getConstant(Start, DL, MVT::i32),
4068                              DAG.getConstant(End, DL, MVT::i32));
4069     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4070   }
4071   return SDValue();
4072 }
4073 
4074 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4075 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4076 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4077 // would benefit from this representation and return it if so.
4078 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4079                                      BuildVectorSDNode *BVN) {
4080   EVT VT = BVN->getValueType(0);
4081   unsigned NumElements = VT.getVectorNumElements();
4082 
4083   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4084   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4085   // need a BUILD_VECTOR, add an additional placeholder operand for that
4086   // BUILD_VECTOR and store its operands in ResidueOps.
4087   GeneralShuffle GS(VT);
4088   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4089   bool FoundOne = false;
4090   for (unsigned I = 0; I < NumElements; ++I) {
4091     SDValue Op = BVN->getOperand(I);
4092     if (Op.getOpcode() == ISD::TRUNCATE)
4093       Op = Op.getOperand(0);
4094     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4095         Op.getOperand(1).getOpcode() == ISD::Constant) {
4096       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4097       GS.add(Op.getOperand(0), Elem);
4098       FoundOne = true;
4099     } else if (Op.isUndef()) {
4100       GS.addUndef();
4101     } else {
4102       GS.add(SDValue(), ResidueOps.size());
4103       ResidueOps.push_back(BVN->getOperand(I));
4104     }
4105   }
4106 
4107   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4108   if (!FoundOne)
4109     return SDValue();
4110 
4111   // Create the BUILD_VECTOR for the remaining elements, if any.
4112   if (!ResidueOps.empty()) {
4113     while (ResidueOps.size() < NumElements)
4114       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4115     for (auto &Op : GS.Ops) {
4116       if (!Op.getNode()) {
4117         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4118         break;
4119       }
4120     }
4121   }
4122   return GS.getNode(DAG, SDLoc(BVN));
4123 }
4124 
4125 // Combine GPR scalar values Elems into a vector of type VT.
4126 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4127                            SmallVectorImpl<SDValue> &Elems) {
4128   // See whether there is a single replicated value.
4129   SDValue Single;
4130   unsigned int NumElements = Elems.size();
4131   unsigned int Count = 0;
4132   for (auto Elem : Elems) {
4133     if (!Elem.isUndef()) {
4134       if (!Single.getNode())
4135         Single = Elem;
4136       else if (Elem != Single) {
4137         Single = SDValue();
4138         break;
4139       }
4140       Count += 1;
4141     }
4142   }
4143   // There are three cases here:
4144   //
4145   // - if the only defined element is a loaded one, the best sequence
4146   //   is a replicating load.
4147   //
4148   // - otherwise, if the only defined element is an i64 value, we will
4149   //   end up with the same VLVGP sequence regardless of whether we short-cut
4150   //   for replication or fall through to the later code.
4151   //
4152   // - otherwise, if the only defined element is an i32 or smaller value,
4153   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4154   //   This is only a win if the single defined element is used more than once.
4155   //   In other cases we're better off using a single VLVGx.
4156   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4157     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4158 
4159   // The best way of building a v2i64 from two i64s is to use VLVGP.
4160   if (VT == MVT::v2i64)
4161     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4162 
4163   // Use a 64-bit merge high to combine two doubles.
4164   if (VT == MVT::v2f64)
4165     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4166 
4167   // Build v4f32 values directly from the FPRs:
4168   //
4169   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4170   //         V              V         VMRHF
4171   //      <ABxx>         <CDxx>
4172   //                V                 VMRHG
4173   //              <ABCD>
4174   if (VT == MVT::v4f32) {
4175     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4176     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4177     // Avoid unnecessary undefs by reusing the other operand.
4178     if (Op01.isUndef())
4179       Op01 = Op23;
4180     else if (Op23.isUndef())
4181       Op23 = Op01;
4182     // Merging identical replications is a no-op.
4183     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4184       return Op01;
4185     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4186     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4187     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4188                              DL, MVT::v2i64, Op01, Op23);
4189     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4190   }
4191 
4192   // Collect the constant terms.
4193   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4194   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4195 
4196   unsigned NumConstants = 0;
4197   for (unsigned I = 0; I < NumElements; ++I) {
4198     SDValue Elem = Elems[I];
4199     if (Elem.getOpcode() == ISD::Constant ||
4200         Elem.getOpcode() == ISD::ConstantFP) {
4201       NumConstants += 1;
4202       Constants[I] = Elem;
4203       Done[I] = true;
4204     }
4205   }
4206   // If there was at least one constant, fill in the other elements of
4207   // Constants with undefs to get a full vector constant and use that
4208   // as the starting point.
4209   SDValue Result;
4210   if (NumConstants > 0) {
4211     for (unsigned I = 0; I < NumElements; ++I)
4212       if (!Constants[I].getNode())
4213         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4214     Result = DAG.getBuildVector(VT, DL, Constants);
4215   } else {
4216     // Otherwise try to use VLVGP to start the sequence in order to
4217     // avoid a false dependency on any previous contents of the vector
4218     // register.  This only makes sense if one of the associated elements
4219     // is defined.
4220     unsigned I1 = NumElements / 2 - 1;
4221     unsigned I2 = NumElements - 1;
4222     bool Def1 = !Elems[I1].isUndef();
4223     bool Def2 = !Elems[I2].isUndef();
4224     if (Def1 || Def2) {
4225       SDValue Elem1 = Elems[Def1 ? I1 : I2];
4226       SDValue Elem2 = Elems[Def2 ? I2 : I1];
4227       Result = DAG.getNode(ISD::BITCAST, DL, VT,
4228                            joinDwords(DAG, DL, Elem1, Elem2));
4229       Done[I1] = true;
4230       Done[I2] = true;
4231     } else
4232       Result = DAG.getUNDEF(VT);
4233   }
4234 
4235   // Use VLVGx to insert the other elements.
4236   for (unsigned I = 0; I < NumElements; ++I)
4237     if (!Done[I] && !Elems[I].isUndef())
4238       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4239                            DAG.getConstant(I, DL, MVT::i32));
4240   return Result;
4241 }
4242 
4243 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4244                                                  SelectionDAG &DAG) const {
4245   const SystemZInstrInfo *TII =
4246     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4247   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4248   SDLoc DL(Op);
4249   EVT VT = Op.getValueType();
4250 
4251   if (BVN->isConstant()) {
4252     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4253     // preferred way of creating all-zero and all-one vectors so give it
4254     // priority over other methods below.
4255     uint64_t Mask = 0;
4256     if (tryBuildVectorByteMask(BVN, Mask)) {
4257       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4258                                DAG.getConstant(Mask, DL, MVT::i32));
4259       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4260     }
4261 
4262     // Try using some form of replication.
4263     APInt SplatBits, SplatUndef;
4264     unsigned SplatBitSize;
4265     bool HasAnyUndefs;
4266     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4267                              8, true) &&
4268         SplatBitSize <= 64) {
4269       // First try assuming that any undefined bits above the highest set bit
4270       // and below the lowest set bit are 1s.  This increases the likelihood of
4271       // being able to use a sign-extended element value in VECTOR REPLICATE
4272       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4273       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4274       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4275       uint64_t Lower = (SplatUndefZ
4276                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4277       uint64_t Upper = (SplatUndefZ
4278                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4279       uint64_t Value = SplatBitsZ | Upper | Lower;
4280       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4281                                            SplatBitSize);
4282       if (Op.getNode())
4283         return Op;
4284 
4285       // Now try assuming that any undefined bits between the first and
4286       // last defined set bits are set.  This increases the chances of
4287       // using a non-wraparound mask.
4288       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4289       Value = SplatBitsZ | Middle;
4290       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4291       if (Op.getNode())
4292         return Op;
4293     }
4294 
4295     // Fall back to loading it from memory.
4296     return SDValue();
4297   }
4298 
4299   // See if we should use shuffles to construct the vector from other vectors.
4300   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4301     return Res;
4302 
4303   // Detect SCALAR_TO_VECTOR conversions.
4304   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4305     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4306 
4307   // Otherwise use buildVector to build the vector up from GPRs.
4308   unsigned NumElements = Op.getNumOperands();
4309   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4310   for (unsigned I = 0; I < NumElements; ++I)
4311     Ops[I] = Op.getOperand(I);
4312   return buildVector(DAG, DL, VT, Ops);
4313 }
4314 
4315 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4316                                                    SelectionDAG &DAG) const {
4317   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4318   SDLoc DL(Op);
4319   EVT VT = Op.getValueType();
4320   unsigned NumElements = VT.getVectorNumElements();
4321 
4322   if (VSN->isSplat()) {
4323     SDValue Op0 = Op.getOperand(0);
4324     unsigned Index = VSN->getSplatIndex();
4325     assert(Index < VT.getVectorNumElements() &&
4326            "Splat index should be defined and in first operand");
4327     // See whether the value we're splatting is directly available as a scalar.
4328     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4329         Op0.getOpcode() == ISD::BUILD_VECTOR)
4330       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4331     // Otherwise keep it as a vector-to-vector operation.
4332     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4333                        DAG.getConstant(Index, DL, MVT::i32));
4334   }
4335 
4336   GeneralShuffle GS(VT);
4337   for (unsigned I = 0; I < NumElements; ++I) {
4338     int Elt = VSN->getMaskElt(I);
4339     if (Elt < 0)
4340       GS.addUndef();
4341     else
4342       GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4343              unsigned(Elt) % NumElements);
4344   }
4345   return GS.getNode(DAG, SDLoc(VSN));
4346 }
4347 
4348 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4349                                                      SelectionDAG &DAG) const {
4350   SDLoc DL(Op);
4351   // Just insert the scalar into element 0 of an undefined vector.
4352   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4353                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4354                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4355 }
4356 
4357 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4358                                                       SelectionDAG &DAG) const {
4359   // Handle insertions of floating-point values.
4360   SDLoc DL(Op);
4361   SDValue Op0 = Op.getOperand(0);
4362   SDValue Op1 = Op.getOperand(1);
4363   SDValue Op2 = Op.getOperand(2);
4364   EVT VT = Op.getValueType();
4365 
4366   // Insertions into constant indices of a v2f64 can be done using VPDI.
4367   // However, if the inserted value is a bitcast or a constant then it's
4368   // better to use GPRs, as below.
4369   if (VT == MVT::v2f64 &&
4370       Op1.getOpcode() != ISD::BITCAST &&
4371       Op1.getOpcode() != ISD::ConstantFP &&
4372       Op2.getOpcode() == ISD::Constant) {
4373     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4374     unsigned Mask = VT.getVectorNumElements() - 1;
4375     if (Index <= Mask)
4376       return Op;
4377   }
4378 
4379   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4380   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4381   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4382   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4383                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4384                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4385   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4386 }
4387 
4388 SDValue
4389 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4390                                                SelectionDAG &DAG) const {
4391   // Handle extractions of floating-point values.
4392   SDLoc DL(Op);
4393   SDValue Op0 = Op.getOperand(0);
4394   SDValue Op1 = Op.getOperand(1);
4395   EVT VT = Op.getValueType();
4396   EVT VecVT = Op0.getValueType();
4397 
4398   // Extractions of constant indices can be done directly.
4399   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4400     uint64_t Index = CIndexN->getZExtValue();
4401     unsigned Mask = VecVT.getVectorNumElements() - 1;
4402     if (Index <= Mask)
4403       return Op;
4404   }
4405 
4406   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4407   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4408   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4409   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4410                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4411   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4412 }
4413 
4414 SDValue
4415 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4416                                               unsigned UnpackHigh) const {
4417   SDValue PackedOp = Op.getOperand(0);
4418   EVT OutVT = Op.getValueType();
4419   EVT InVT = PackedOp.getValueType();
4420   unsigned ToBits = OutVT.getScalarSizeInBits();
4421   unsigned FromBits = InVT.getScalarSizeInBits();
4422   do {
4423     FromBits *= 2;
4424     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4425                                  SystemZ::VectorBits / FromBits);
4426     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4427   } while (FromBits != ToBits);
4428   return PackedOp;
4429 }
4430 
4431 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4432                                           unsigned ByScalar) const {
4433   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4434   SDValue Op0 = Op.getOperand(0);
4435   SDValue Op1 = Op.getOperand(1);
4436   SDLoc DL(Op);
4437   EVT VT = Op.getValueType();
4438   unsigned ElemBitSize = VT.getScalarSizeInBits();
4439 
4440   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4441   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4442     APInt SplatBits, SplatUndef;
4443     unsigned SplatBitSize;
4444     bool HasAnyUndefs;
4445     // Check for constant splats.  Use ElemBitSize as the minimum element
4446     // width and reject splats that need wider elements.
4447     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4448                              ElemBitSize, true) &&
4449         SplatBitSize == ElemBitSize) {
4450       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4451                                       DL, MVT::i32);
4452       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4453     }
4454     // Check for variable splats.
4455     BitVector UndefElements;
4456     SDValue Splat = BVN->getSplatValue(&UndefElements);
4457     if (Splat) {
4458       // Since i32 is the smallest legal type, we either need a no-op
4459       // or a truncation.
4460       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4461       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4462     }
4463   }
4464 
4465   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4466   // and the shift amount is directly available in a GPR.
4467   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4468     if (VSN->isSplat()) {
4469       SDValue VSNOp0 = VSN->getOperand(0);
4470       unsigned Index = VSN->getSplatIndex();
4471       assert(Index < VT.getVectorNumElements() &&
4472              "Splat index should be defined and in first operand");
4473       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4474           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4475         // Since i32 is the smallest legal type, we either need a no-op
4476         // or a truncation.
4477         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4478                                     VSNOp0.getOperand(Index));
4479         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4480       }
4481     }
4482   }
4483 
4484   // Otherwise just treat the current form as legal.
4485   return Op;
4486 }
4487 
4488 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4489                                               SelectionDAG &DAG) const {
4490   switch (Op.getOpcode()) {
4491   case ISD::FRAMEADDR:
4492     return lowerFRAMEADDR(Op, DAG);
4493   case ISD::RETURNADDR:
4494     return lowerRETURNADDR(Op, DAG);
4495   case ISD::BR_CC:
4496     return lowerBR_CC(Op, DAG);
4497   case ISD::SELECT_CC:
4498     return lowerSELECT_CC(Op, DAG);
4499   case ISD::SETCC:
4500     return lowerSETCC(Op, DAG);
4501   case ISD::GlobalAddress:
4502     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4503   case ISD::GlobalTLSAddress:
4504     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4505   case ISD::BlockAddress:
4506     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4507   case ISD::JumpTable:
4508     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4509   case ISD::ConstantPool:
4510     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4511   case ISD::BITCAST:
4512     return lowerBITCAST(Op, DAG);
4513   case ISD::VASTART:
4514     return lowerVASTART(Op, DAG);
4515   case ISD::VACOPY:
4516     return lowerVACOPY(Op, DAG);
4517   case ISD::DYNAMIC_STACKALLOC:
4518     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4519   case ISD::GET_DYNAMIC_AREA_OFFSET:
4520     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4521   case ISD::SMUL_LOHI:
4522     return lowerSMUL_LOHI(Op, DAG);
4523   case ISD::UMUL_LOHI:
4524     return lowerUMUL_LOHI(Op, DAG);
4525   case ISD::SDIVREM:
4526     return lowerSDIVREM(Op, DAG);
4527   case ISD::UDIVREM:
4528     return lowerUDIVREM(Op, DAG);
4529   case ISD::OR:
4530     return lowerOR(Op, DAG);
4531   case ISD::CTPOP:
4532     return lowerCTPOP(Op, DAG);
4533   case ISD::ATOMIC_FENCE:
4534     return lowerATOMIC_FENCE(Op, DAG);
4535   case ISD::ATOMIC_SWAP:
4536     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4537   case ISD::ATOMIC_STORE:
4538     return lowerATOMIC_STORE(Op, DAG);
4539   case ISD::ATOMIC_LOAD:
4540     return lowerATOMIC_LOAD(Op, DAG);
4541   case ISD::ATOMIC_LOAD_ADD:
4542     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4543   case ISD::ATOMIC_LOAD_SUB:
4544     return lowerATOMIC_LOAD_SUB(Op, DAG);
4545   case ISD::ATOMIC_LOAD_AND:
4546     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4547   case ISD::ATOMIC_LOAD_OR:
4548     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4549   case ISD::ATOMIC_LOAD_XOR:
4550     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4551   case ISD::ATOMIC_LOAD_NAND:
4552     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4553   case ISD::ATOMIC_LOAD_MIN:
4554     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4555   case ISD::ATOMIC_LOAD_MAX:
4556     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4557   case ISD::ATOMIC_LOAD_UMIN:
4558     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4559   case ISD::ATOMIC_LOAD_UMAX:
4560     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4561   case ISD::ATOMIC_CMP_SWAP:
4562     return lowerATOMIC_CMP_SWAP(Op, DAG);
4563   case ISD::STACKSAVE:
4564     return lowerSTACKSAVE(Op, DAG);
4565   case ISD::STACKRESTORE:
4566     return lowerSTACKRESTORE(Op, DAG);
4567   case ISD::PREFETCH:
4568     return lowerPREFETCH(Op, DAG);
4569   case ISD::INTRINSIC_W_CHAIN:
4570     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4571   case ISD::INTRINSIC_WO_CHAIN:
4572     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4573   case ISD::BUILD_VECTOR:
4574     return lowerBUILD_VECTOR(Op, DAG);
4575   case ISD::VECTOR_SHUFFLE:
4576     return lowerVECTOR_SHUFFLE(Op, DAG);
4577   case ISD::SCALAR_TO_VECTOR:
4578     return lowerSCALAR_TO_VECTOR(Op, DAG);
4579   case ISD::INSERT_VECTOR_ELT:
4580     return lowerINSERT_VECTOR_ELT(Op, DAG);
4581   case ISD::EXTRACT_VECTOR_ELT:
4582     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4583   case ISD::SIGN_EXTEND_VECTOR_INREG:
4584     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4585   case ISD::ZERO_EXTEND_VECTOR_INREG:
4586     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4587   case ISD::SHL:
4588     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4589   case ISD::SRL:
4590     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4591   case ISD::SRA:
4592     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4593   default:
4594     llvm_unreachable("Unexpected node to lower");
4595   }
4596 }
4597 
4598 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4599 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4600   switch ((SystemZISD::NodeType)Opcode) {
4601     case SystemZISD::FIRST_NUMBER: break;
4602     OPCODE(RET_FLAG);
4603     OPCODE(CALL);
4604     OPCODE(SIBCALL);
4605     OPCODE(TLS_GDCALL);
4606     OPCODE(TLS_LDCALL);
4607     OPCODE(PCREL_WRAPPER);
4608     OPCODE(PCREL_OFFSET);
4609     OPCODE(IABS);
4610     OPCODE(ICMP);
4611     OPCODE(FCMP);
4612     OPCODE(TM);
4613     OPCODE(BR_CCMASK);
4614     OPCODE(SELECT_CCMASK);
4615     OPCODE(ADJDYNALLOC);
4616     OPCODE(EXTRACT_ACCESS);
4617     OPCODE(POPCNT);
4618     OPCODE(UMUL_LOHI64);
4619     OPCODE(SDIVREM32);
4620     OPCODE(SDIVREM64);
4621     OPCODE(UDIVREM32);
4622     OPCODE(UDIVREM64);
4623     OPCODE(MVC);
4624     OPCODE(MVC_LOOP);
4625     OPCODE(NC);
4626     OPCODE(NC_LOOP);
4627     OPCODE(OC);
4628     OPCODE(OC_LOOP);
4629     OPCODE(XC);
4630     OPCODE(XC_LOOP);
4631     OPCODE(CLC);
4632     OPCODE(CLC_LOOP);
4633     OPCODE(STPCPY);
4634     OPCODE(STRCMP);
4635     OPCODE(SEARCH_STRING);
4636     OPCODE(IPM);
4637     OPCODE(SERIALIZE);
4638     OPCODE(MEMBARRIER);
4639     OPCODE(TBEGIN);
4640     OPCODE(TBEGIN_NOFLOAT);
4641     OPCODE(TEND);
4642     OPCODE(BYTE_MASK);
4643     OPCODE(ROTATE_MASK);
4644     OPCODE(REPLICATE);
4645     OPCODE(JOIN_DWORDS);
4646     OPCODE(SPLAT);
4647     OPCODE(MERGE_HIGH);
4648     OPCODE(MERGE_LOW);
4649     OPCODE(SHL_DOUBLE);
4650     OPCODE(PERMUTE_DWORDS);
4651     OPCODE(PERMUTE);
4652     OPCODE(PACK);
4653     OPCODE(PACKS_CC);
4654     OPCODE(PACKLS_CC);
4655     OPCODE(UNPACK_HIGH);
4656     OPCODE(UNPACKL_HIGH);
4657     OPCODE(UNPACK_LOW);
4658     OPCODE(UNPACKL_LOW);
4659     OPCODE(VSHL_BY_SCALAR);
4660     OPCODE(VSRL_BY_SCALAR);
4661     OPCODE(VSRA_BY_SCALAR);
4662     OPCODE(VSUM);
4663     OPCODE(VICMPE);
4664     OPCODE(VICMPH);
4665     OPCODE(VICMPHL);
4666     OPCODE(VICMPES);
4667     OPCODE(VICMPHS);
4668     OPCODE(VICMPHLS);
4669     OPCODE(VFCMPE);
4670     OPCODE(VFCMPH);
4671     OPCODE(VFCMPHE);
4672     OPCODE(VFCMPES);
4673     OPCODE(VFCMPHS);
4674     OPCODE(VFCMPHES);
4675     OPCODE(VFTCI);
4676     OPCODE(VEXTEND);
4677     OPCODE(VROUND);
4678     OPCODE(VTM);
4679     OPCODE(VFAE_CC);
4680     OPCODE(VFAEZ_CC);
4681     OPCODE(VFEE_CC);
4682     OPCODE(VFEEZ_CC);
4683     OPCODE(VFENE_CC);
4684     OPCODE(VFENEZ_CC);
4685     OPCODE(VISTR_CC);
4686     OPCODE(VSTRC_CC);
4687     OPCODE(VSTRCZ_CC);
4688     OPCODE(TDC);
4689     OPCODE(ATOMIC_SWAPW);
4690     OPCODE(ATOMIC_LOADW_ADD);
4691     OPCODE(ATOMIC_LOADW_SUB);
4692     OPCODE(ATOMIC_LOADW_AND);
4693     OPCODE(ATOMIC_LOADW_OR);
4694     OPCODE(ATOMIC_LOADW_XOR);
4695     OPCODE(ATOMIC_LOADW_NAND);
4696     OPCODE(ATOMIC_LOADW_MIN);
4697     OPCODE(ATOMIC_LOADW_MAX);
4698     OPCODE(ATOMIC_LOADW_UMIN);
4699     OPCODE(ATOMIC_LOADW_UMAX);
4700     OPCODE(ATOMIC_CMP_SWAPW);
4701     OPCODE(LRV);
4702     OPCODE(STRV);
4703     OPCODE(PREFETCH);
4704   }
4705   return nullptr;
4706 #undef OPCODE
4707 }
4708 
4709 // Return true if VT is a vector whose elements are a whole number of bytes
4710 // in width.
4711 static bool canTreatAsByteVector(EVT VT) {
4712   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0;
4713 }
4714 
4715 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4716 // producing a result of type ResVT.  Op is a possibly bitcast version
4717 // of the input vector and Index is the index (based on type VecVT) that
4718 // should be extracted.  Return the new extraction if a simplification
4719 // was possible or if Force is true.
4720 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
4721                                               EVT VecVT, SDValue Op,
4722                                               unsigned Index,
4723                                               DAGCombinerInfo &DCI,
4724                                               bool Force) const {
4725   SelectionDAG &DAG = DCI.DAG;
4726 
4727   // The number of bytes being extracted.
4728   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4729 
4730   for (;;) {
4731     unsigned Opcode = Op.getOpcode();
4732     if (Opcode == ISD::BITCAST)
4733       // Look through bitcasts.
4734       Op = Op.getOperand(0);
4735     else if (Opcode == ISD::VECTOR_SHUFFLE &&
4736              canTreatAsByteVector(Op.getValueType())) {
4737       // Get a VPERM-like permute mask and see whether the bytes covered
4738       // by the extracted element are a contiguous sequence from one
4739       // source operand.
4740       SmallVector<int, SystemZ::VectorBytes> Bytes;
4741       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4742       int First;
4743       if (!getShuffleInput(Bytes, Index * BytesPerElement,
4744                            BytesPerElement, First))
4745         break;
4746       if (First < 0)
4747         return DAG.getUNDEF(ResVT);
4748       // Make sure the contiguous sequence starts at a multiple of the
4749       // original element size.
4750       unsigned Byte = unsigned(First) % Bytes.size();
4751       if (Byte % BytesPerElement != 0)
4752         break;
4753       // We can get the extracted value directly from an input.
4754       Index = Byte / BytesPerElement;
4755       Op = Op.getOperand(unsigned(First) / Bytes.size());
4756       Force = true;
4757     } else if (Opcode == ISD::BUILD_VECTOR &&
4758                canTreatAsByteVector(Op.getValueType())) {
4759       // We can only optimize this case if the BUILD_VECTOR elements are
4760       // at least as wide as the extracted value.
4761       EVT OpVT = Op.getValueType();
4762       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4763       if (OpBytesPerElement < BytesPerElement)
4764         break;
4765       // Make sure that the least-significant bit of the extracted value
4766       // is the least significant bit of an input.
4767       unsigned End = (Index + 1) * BytesPerElement;
4768       if (End % OpBytesPerElement != 0)
4769         break;
4770       // We're extracting the low part of one operand of the BUILD_VECTOR.
4771       Op = Op.getOperand(End / OpBytesPerElement - 1);
4772       if (!Op.getValueType().isInteger()) {
4773         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
4774         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4775         DCI.AddToWorklist(Op.getNode());
4776       }
4777       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
4778       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4779       if (VT != ResVT) {
4780         DCI.AddToWorklist(Op.getNode());
4781         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
4782       }
4783       return Op;
4784     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
4785                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
4786                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
4787                canTreatAsByteVector(Op.getValueType()) &&
4788                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
4789       // Make sure that only the unextended bits are significant.
4790       EVT ExtVT = Op.getValueType();
4791       EVT OpVT = Op.getOperand(0).getValueType();
4792       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
4793       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4794       unsigned Byte = Index * BytesPerElement;
4795       unsigned SubByte = Byte % ExtBytesPerElement;
4796       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
4797       if (SubByte < MinSubByte ||
4798           SubByte + BytesPerElement > ExtBytesPerElement)
4799         break;
4800       // Get the byte offset of the unextended element
4801       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
4802       // ...then add the byte offset relative to that element.
4803       Byte += SubByte - MinSubByte;
4804       if (Byte % BytesPerElement != 0)
4805         break;
4806       Op = Op.getOperand(0);
4807       Index = Byte / BytesPerElement;
4808       Force = true;
4809     } else
4810       break;
4811   }
4812   if (Force) {
4813     if (Op.getValueType() != VecVT) {
4814       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
4815       DCI.AddToWorklist(Op.getNode());
4816     }
4817     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
4818                        DAG.getConstant(Index, DL, MVT::i32));
4819   }
4820   return SDValue();
4821 }
4822 
4823 // Optimize vector operations in scalar value Op on the basis that Op
4824 // is truncated to TruncVT.
4825 SDValue SystemZTargetLowering::combineTruncateExtract(
4826     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
4827   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
4828   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
4829   // of type TruncVT.
4830   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4831       TruncVT.getSizeInBits() % 8 == 0) {
4832     SDValue Vec = Op.getOperand(0);
4833     EVT VecVT = Vec.getValueType();
4834     if (canTreatAsByteVector(VecVT)) {
4835       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4836         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4837         unsigned TruncBytes = TruncVT.getStoreSize();
4838         if (BytesPerElement % TruncBytes == 0) {
4839           // Calculate the value of Y' in the above description.  We are
4840           // splitting the original elements into Scale equal-sized pieces
4841           // and for truncation purposes want the last (least-significant)
4842           // of these pieces for IndexN.  This is easiest to do by calculating
4843           // the start index of the following element and then subtracting 1.
4844           unsigned Scale = BytesPerElement / TruncBytes;
4845           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
4846 
4847           // Defer the creation of the bitcast from X to combineExtract,
4848           // which might be able to optimize the extraction.
4849           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
4850                                    VecVT.getStoreSize() / TruncBytes);
4851           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
4852           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
4853         }
4854       }
4855     }
4856   }
4857   return SDValue();
4858 }
4859 
4860 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
4861     SDNode *N, DAGCombinerInfo &DCI) const {
4862   // Convert (sext (ashr (shl X, C1), C2)) to
4863   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
4864   // cheap as narrower ones.
4865   SelectionDAG &DAG = DCI.DAG;
4866   SDValue N0 = N->getOperand(0);
4867   EVT VT = N->getValueType(0);
4868   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
4869     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4870     SDValue Inner = N0.getOperand(0);
4871     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
4872       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
4873         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
4874         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
4875         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
4876         EVT ShiftVT = N0.getOperand(1).getValueType();
4877         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
4878                                   Inner.getOperand(0));
4879         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
4880                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
4881                                                   ShiftVT));
4882         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
4883                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
4884       }
4885     }
4886   }
4887   return SDValue();
4888 }
4889 
4890 SDValue SystemZTargetLowering::combineMERGE(
4891     SDNode *N, DAGCombinerInfo &DCI) const {
4892   SelectionDAG &DAG = DCI.DAG;
4893   unsigned Opcode = N->getOpcode();
4894   SDValue Op0 = N->getOperand(0);
4895   SDValue Op1 = N->getOperand(1);
4896   if (Op0.getOpcode() == ISD::BITCAST)
4897     Op0 = Op0.getOperand(0);
4898   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
4899       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
4900     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
4901     // for v4f32.
4902     if (Op1 == N->getOperand(0))
4903       return Op1;
4904     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
4905     EVT VT = Op1.getValueType();
4906     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
4907     if (ElemBytes <= 4) {
4908       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
4909                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
4910       EVT InVT = VT.changeVectorElementTypeToInteger();
4911       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
4912                                    SystemZ::VectorBytes / ElemBytes / 2);
4913       if (VT != InVT) {
4914         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
4915         DCI.AddToWorklist(Op1.getNode());
4916       }
4917       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
4918       DCI.AddToWorklist(Op.getNode());
4919       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
4920     }
4921   }
4922   return SDValue();
4923 }
4924 
4925 SDValue SystemZTargetLowering::combineSTORE(
4926     SDNode *N, DAGCombinerInfo &DCI) const {
4927   SelectionDAG &DAG = DCI.DAG;
4928   auto *SN = cast<StoreSDNode>(N);
4929   auto &Op1 = N->getOperand(1);
4930   EVT MemVT = SN->getMemoryVT();
4931   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
4932   // for the extraction to be done on a vMiN value, so that we can use VSTE.
4933   // If X has wider elements then convert it to:
4934   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
4935   if (MemVT.isInteger()) {
4936     if (SDValue Value =
4937             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
4938       DCI.AddToWorklist(Value.getNode());
4939 
4940       // Rewrite the store with the new form of stored value.
4941       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
4942                                SN->getBasePtr(), SN->getMemoryVT(),
4943                                SN->getMemOperand());
4944     }
4945   }
4946   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
4947   // See comment in combineBSWAP about volatile accesses.
4948   if (!SN->isVolatile() &&
4949       Op1.getOpcode() == ISD::BSWAP &&
4950       Op1.getNode()->hasOneUse() &&
4951       (Op1.getValueType() == MVT::i16 ||
4952        Op1.getValueType() == MVT::i32 ||
4953        Op1.getValueType() == MVT::i64)) {
4954 
4955       SDValue BSwapOp = Op1.getOperand(0);
4956 
4957       if (BSwapOp.getValueType() == MVT::i16)
4958         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
4959 
4960       SDValue Ops[] = {
4961         N->getOperand(0), BSwapOp, N->getOperand(2),
4962         DAG.getValueType(Op1.getValueType())
4963       };
4964 
4965       return
4966         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
4967                                 Ops, MemVT, SN->getMemOperand());
4968     }
4969   return SDValue();
4970 }
4971 
4972 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
4973     SDNode *N, DAGCombinerInfo &DCI) const {
4974   // Try to simplify a vector extraction.
4975   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
4976     SDValue Op0 = N->getOperand(0);
4977     EVT VecVT = Op0.getValueType();
4978     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
4979                           IndexN->getZExtValue(), DCI, false);
4980   }
4981   return SDValue();
4982 }
4983 
4984 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
4985     SDNode *N, DAGCombinerInfo &DCI) const {
4986   SelectionDAG &DAG = DCI.DAG;
4987   // (join_dwords X, X) == (replicate X)
4988   if (N->getOperand(0) == N->getOperand(1))
4989     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
4990                        N->getOperand(0));
4991   return SDValue();
4992 }
4993 
4994 SDValue SystemZTargetLowering::combineFP_ROUND(
4995     SDNode *N, DAGCombinerInfo &DCI) const {
4996   // (fpround (extract_vector_elt X 0))
4997   // (fpround (extract_vector_elt X 1)) ->
4998   // (extract_vector_elt (VROUND X) 0)
4999   // (extract_vector_elt (VROUND X) 1)
5000   //
5001   // This is a special case since the target doesn't really support v2f32s.
5002   SelectionDAG &DAG = DCI.DAG;
5003   SDValue Op0 = N->getOperand(0);
5004   if (N->getValueType(0) == MVT::f32 &&
5005       Op0.hasOneUse() &&
5006       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5007       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5008       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5009       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5010     SDValue Vec = Op0.getOperand(0);
5011     for (auto *U : Vec->uses()) {
5012       if (U != Op0.getNode() &&
5013           U->hasOneUse() &&
5014           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5015           U->getOperand(0) == Vec &&
5016           U->getOperand(1).getOpcode() == ISD::Constant &&
5017           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5018         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5019         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5020             OtherRound.getOperand(0) == SDValue(U, 0) &&
5021             OtherRound.getValueType() == MVT::f32) {
5022           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5023                                        MVT::v4f32, Vec);
5024           DCI.AddToWorklist(VRound.getNode());
5025           SDValue Extract1 =
5026             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5027                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5028           DCI.AddToWorklist(Extract1.getNode());
5029           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5030           SDValue Extract0 =
5031             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5032                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5033           return Extract0;
5034         }
5035       }
5036     }
5037   }
5038   return SDValue();
5039 }
5040 
5041 SDValue SystemZTargetLowering::combineBSWAP(
5042     SDNode *N, DAGCombinerInfo &DCI) const {
5043   SelectionDAG &DAG = DCI.DAG;
5044   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5045   // These loads are allowed to access memory multiple times, and so we must check
5046   // that the loads are not volatile before performing the combine.
5047   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5048       N->getOperand(0).hasOneUse() &&
5049       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5050        N->getValueType(0) == MVT::i64) &&
5051        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
5052       SDValue Load = N->getOperand(0);
5053       LoadSDNode *LD = cast<LoadSDNode>(Load);
5054 
5055       // Create the byte-swapping load.
5056       SDValue Ops[] = {
5057         LD->getChain(),    // Chain
5058         LD->getBasePtr(),  // Ptr
5059         DAG.getValueType(N->getValueType(0)) // VT
5060       };
5061       SDValue BSLoad =
5062         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5063                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5064                                               MVT::i64 : MVT::i32, MVT::Other),
5065                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5066 
5067       // If this is an i16 load, insert the truncate.
5068       SDValue ResVal = BSLoad;
5069       if (N->getValueType(0) == MVT::i16)
5070         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5071 
5072       // First, combine the bswap away.  This makes the value produced by the
5073       // load dead.
5074       DCI.CombineTo(N, ResVal);
5075 
5076       // Next, combine the load away, we give it a bogus result value but a real
5077       // chain result.  The result value is dead because the bswap is dead.
5078       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5079 
5080       // Return N so it doesn't get rechecked!
5081       return SDValue(N, 0);
5082     }
5083   return SDValue();
5084 }
5085 
5086 SDValue SystemZTargetLowering::combineSHIFTROT(
5087     SDNode *N, DAGCombinerInfo &DCI) const {
5088 
5089   SelectionDAG &DAG = DCI.DAG;
5090 
5091   // Shift/rotate instructions only use the last 6 bits of the second operand
5092   // register. If the second operand is the result of an AND with an immediate
5093   // value that has its last 6 bits set, we can safely remove the AND operation.
5094   //
5095   // If the AND operation doesn't have the last 6 bits set, we can't remove it
5096   // entirely, but we can still truncate it to a 16-bit value. This prevents
5097   // us from ending up with a NILL with a signed operand, which will cause the
5098   // instruction printer to abort.
5099   SDValue N1 = N->getOperand(1);
5100   if (N1.getOpcode() == ISD::AND) {
5101     SDValue AndMaskOp = N1->getOperand(1);
5102     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
5103 
5104     // The AND mask is constant
5105     if (AndMask) {
5106       auto AmtVal = AndMask->getZExtValue();
5107 
5108       // Bottom 6 bits are set
5109       if ((AmtVal & 0x3f) == 0x3f) {
5110         SDValue AndOp = N1->getOperand(0);
5111 
5112         // This is the only use, so remove the node
5113         if (N1.hasOneUse()) {
5114           // Combine the AND away
5115           DCI.CombineTo(N1.getNode(), AndOp);
5116 
5117           // Return N so it isn't rechecked
5118           return SDValue(N, 0);
5119 
5120         // The node will be reused, so create a new node for this one use
5121         } else {
5122           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5123                                         N->getValueType(0), N->getOperand(0),
5124                                         AndOp);
5125           DCI.AddToWorklist(Replace.getNode());
5126 
5127           return Replace;
5128         }
5129 
5130       // We can't remove the AND, but we can use NILL here (normally we would
5131       // use NILF). Only keep the last 16 bits of the mask. The actual
5132       // transformation will be handled by .td definitions.
5133       } else if (AmtVal >> 16 != 0) {
5134         SDValue AndOp = N1->getOperand(0);
5135 
5136         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
5137                                        SDLoc(AndMaskOp),
5138                                        AndMaskOp.getValueType());
5139 
5140         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
5141                                   AndOp, NewMask);
5142 
5143         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5144                                       N->getValueType(0), N->getOperand(0),
5145                                       NewAnd);
5146         DCI.AddToWorklist(Replace.getNode());
5147 
5148         return Replace;
5149       }
5150     }
5151   }
5152 
5153   return SDValue();
5154 }
5155 
5156 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5157                                                  DAGCombinerInfo &DCI) const {
5158   switch(N->getOpcode()) {
5159   default: break;
5160   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5161   case SystemZISD::MERGE_HIGH:
5162   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5163   case ISD::STORE:              return combineSTORE(N, DCI);
5164   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5165   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5166   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5167   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5168   case ISD::SHL:
5169   case ISD::SRA:
5170   case ISD::SRL:
5171   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5172   }
5173 
5174   return SDValue();
5175 }
5176 
5177 //===----------------------------------------------------------------------===//
5178 // Custom insertion
5179 //===----------------------------------------------------------------------===//
5180 
5181 // Create a new basic block after MBB.
5182 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5183   MachineFunction &MF = *MBB->getParent();
5184   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5185   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5186   return NewMBB;
5187 }
5188 
5189 // Split MBB after MI and return the new block (the one that contains
5190 // instructions after MI).
5191 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5192                                           MachineBasicBlock *MBB) {
5193   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5194   NewMBB->splice(NewMBB->begin(), MBB,
5195                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5196   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5197   return NewMBB;
5198 }
5199 
5200 // Split MBB before MI and return the new block (the one that contains MI).
5201 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5202                                            MachineBasicBlock *MBB) {
5203   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5204   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5205   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5206   return NewMBB;
5207 }
5208 
5209 // Force base value Base into a register before MI.  Return the register.
5210 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5211                          const SystemZInstrInfo *TII) {
5212   if (Base.isReg())
5213     return Base.getReg();
5214 
5215   MachineBasicBlock *MBB = MI.getParent();
5216   MachineFunction &MF = *MBB->getParent();
5217   MachineRegisterInfo &MRI = MF.getRegInfo();
5218 
5219   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5220   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5221       .addOperand(Base)
5222       .addImm(0)
5223       .addReg(0);
5224   return Reg;
5225 }
5226 
5227 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5228 MachineBasicBlock *
5229 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5230                                   MachineBasicBlock *MBB) const {
5231   const SystemZInstrInfo *TII =
5232       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5233 
5234   unsigned DestReg = MI.getOperand(0).getReg();
5235   unsigned TrueReg = MI.getOperand(1).getReg();
5236   unsigned FalseReg = MI.getOperand(2).getReg();
5237   unsigned CCValid = MI.getOperand(3).getImm();
5238   unsigned CCMask = MI.getOperand(4).getImm();
5239   DebugLoc DL = MI.getDebugLoc();
5240 
5241   MachineBasicBlock *StartMBB = MBB;
5242   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5243   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5244 
5245   //  StartMBB:
5246   //   BRC CCMask, JoinMBB
5247   //   # fallthrough to FalseMBB
5248   MBB = StartMBB;
5249   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5250     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5251   MBB->addSuccessor(JoinMBB);
5252   MBB->addSuccessor(FalseMBB);
5253 
5254   //  FalseMBB:
5255   //   # fallthrough to JoinMBB
5256   MBB = FalseMBB;
5257   MBB->addSuccessor(JoinMBB);
5258 
5259   //  JoinMBB:
5260   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5261   //  ...
5262   MBB = JoinMBB;
5263   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5264     .addReg(TrueReg).addMBB(StartMBB)
5265     .addReg(FalseReg).addMBB(FalseMBB);
5266 
5267   MI.eraseFromParent();
5268   return JoinMBB;
5269 }
5270 
5271 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5272 // StoreOpcode is the store to use and Invert says whether the store should
5273 // happen when the condition is false rather than true.  If a STORE ON
5274 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
5275 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5276                                                         MachineBasicBlock *MBB,
5277                                                         unsigned StoreOpcode,
5278                                                         unsigned STOCOpcode,
5279                                                         bool Invert) const {
5280   const SystemZInstrInfo *TII =
5281       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5282 
5283   unsigned SrcReg = MI.getOperand(0).getReg();
5284   MachineOperand Base = MI.getOperand(1);
5285   int64_t Disp = MI.getOperand(2).getImm();
5286   unsigned IndexReg = MI.getOperand(3).getReg();
5287   unsigned CCValid = MI.getOperand(4).getImm();
5288   unsigned CCMask = MI.getOperand(5).getImm();
5289   DebugLoc DL = MI.getDebugLoc();
5290 
5291   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5292 
5293   // Use STOCOpcode if possible.  We could use different store patterns in
5294   // order to avoid matching the index register, but the performance trade-offs
5295   // might be more complicated in that case.
5296   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
5297     if (Invert)
5298       CCMask ^= CCValid;
5299     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
5300       .addReg(SrcReg).addOperand(Base).addImm(Disp)
5301       .addImm(CCValid).addImm(CCMask);
5302     MI.eraseFromParent();
5303     return MBB;
5304   }
5305 
5306   // Get the condition needed to branch around the store.
5307   if (!Invert)
5308     CCMask ^= CCValid;
5309 
5310   MachineBasicBlock *StartMBB = MBB;
5311   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5312   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5313 
5314   //  StartMBB:
5315   //   BRC CCMask, JoinMBB
5316   //   # fallthrough to FalseMBB
5317   MBB = StartMBB;
5318   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5319     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5320   MBB->addSuccessor(JoinMBB);
5321   MBB->addSuccessor(FalseMBB);
5322 
5323   //  FalseMBB:
5324   //   store %SrcReg, %Disp(%Index,%Base)
5325   //   # fallthrough to JoinMBB
5326   MBB = FalseMBB;
5327   BuildMI(MBB, DL, TII->get(StoreOpcode))
5328     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
5329   MBB->addSuccessor(JoinMBB);
5330 
5331   MI.eraseFromParent();
5332   return JoinMBB;
5333 }
5334 
5335 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5336 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
5337 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5338 // BitSize is the width of the field in bits, or 0 if this is a partword
5339 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5340 // is one of the operands.  Invert says whether the field should be
5341 // inverted after performing BinOpcode (e.g. for NAND).
5342 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5343     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5344     unsigned BitSize, bool Invert) const {
5345   MachineFunction &MF = *MBB->getParent();
5346   const SystemZInstrInfo *TII =
5347       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5348   MachineRegisterInfo &MRI = MF.getRegInfo();
5349   bool IsSubWord = (BitSize < 32);
5350 
5351   // Extract the operands.  Base can be a register or a frame index.
5352   // Src2 can be a register or immediate.
5353   unsigned Dest = MI.getOperand(0).getReg();
5354   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5355   int64_t Disp = MI.getOperand(2).getImm();
5356   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5357   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5358   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5359   DebugLoc DL = MI.getDebugLoc();
5360   if (IsSubWord)
5361     BitSize = MI.getOperand(6).getImm();
5362 
5363   // Subword operations use 32-bit registers.
5364   const TargetRegisterClass *RC = (BitSize <= 32 ?
5365                                    &SystemZ::GR32BitRegClass :
5366                                    &SystemZ::GR64BitRegClass);
5367   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5368   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5369 
5370   // Get the right opcodes for the displacement.
5371   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5372   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5373   assert(LOpcode && CSOpcode && "Displacement out of range");
5374 
5375   // Create virtual registers for temporary results.
5376   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5377   unsigned OldVal        = MRI.createVirtualRegister(RC);
5378   unsigned NewVal        = (BinOpcode || IsSubWord ?
5379                             MRI.createVirtualRegister(RC) : Src2.getReg());
5380   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5381   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5382 
5383   // Insert a basic block for the main loop.
5384   MachineBasicBlock *StartMBB = MBB;
5385   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5386   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5387 
5388   //  StartMBB:
5389   //   ...
5390   //   %OrigVal = L Disp(%Base)
5391   //   # fall through to LoopMMB
5392   MBB = StartMBB;
5393   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5394     .addOperand(Base).addImm(Disp).addReg(0);
5395   MBB->addSuccessor(LoopMBB);
5396 
5397   //  LoopMBB:
5398   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5399   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5400   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
5401   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5402   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5403   //   JNE LoopMBB
5404   //   # fall through to DoneMMB
5405   MBB = LoopMBB;
5406   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5407     .addReg(OrigVal).addMBB(StartMBB)
5408     .addReg(Dest).addMBB(LoopMBB);
5409   if (IsSubWord)
5410     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5411       .addReg(OldVal).addReg(BitShift).addImm(0);
5412   if (Invert) {
5413     // Perform the operation normally and then invert every bit of the field.
5414     unsigned Tmp = MRI.createVirtualRegister(RC);
5415     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
5416       .addReg(RotatedOldVal).addOperand(Src2);
5417     if (BitSize <= 32)
5418       // XILF with the upper BitSize bits set.
5419       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5420         .addReg(Tmp).addImm(-1U << (32 - BitSize));
5421     else {
5422       // Use LCGR and add -1 to the result, which is more compact than
5423       // an XILF, XILH pair.
5424       unsigned Tmp2 = MRI.createVirtualRegister(RC);
5425       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5426       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5427         .addReg(Tmp2).addImm(-1);
5428     }
5429   } else if (BinOpcode)
5430     // A simply binary operation.
5431     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5432       .addReg(RotatedOldVal).addOperand(Src2);
5433   else if (IsSubWord)
5434     // Use RISBG to rotate Src2 into position and use it to replace the
5435     // field in RotatedOldVal.
5436     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5437       .addReg(RotatedOldVal).addReg(Src2.getReg())
5438       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5439   if (IsSubWord)
5440     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5441       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5442   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5443     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5444   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5445     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5446   MBB->addSuccessor(LoopMBB);
5447   MBB->addSuccessor(DoneMBB);
5448 
5449   MI.eraseFromParent();
5450   return DoneMBB;
5451 }
5452 
5453 // Implement EmitInstrWithCustomInserter for pseudo
5454 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
5455 // instruction that should be used to compare the current field with the
5456 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
5457 // for when the current field should be kept.  BitSize is the width of
5458 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
5459 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5460     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5461     unsigned KeepOldMask, unsigned BitSize) const {
5462   MachineFunction &MF = *MBB->getParent();
5463   const SystemZInstrInfo *TII =
5464       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5465   MachineRegisterInfo &MRI = MF.getRegInfo();
5466   bool IsSubWord = (BitSize < 32);
5467 
5468   // Extract the operands.  Base can be a register or a frame index.
5469   unsigned Dest = MI.getOperand(0).getReg();
5470   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5471   int64_t Disp = MI.getOperand(2).getImm();
5472   unsigned Src2 = MI.getOperand(3).getReg();
5473   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5474   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5475   DebugLoc DL = MI.getDebugLoc();
5476   if (IsSubWord)
5477     BitSize = MI.getOperand(6).getImm();
5478 
5479   // Subword operations use 32-bit registers.
5480   const TargetRegisterClass *RC = (BitSize <= 32 ?
5481                                    &SystemZ::GR32BitRegClass :
5482                                    &SystemZ::GR64BitRegClass);
5483   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5484   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5485 
5486   // Get the right opcodes for the displacement.
5487   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5488   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5489   assert(LOpcode && CSOpcode && "Displacement out of range");
5490 
5491   // Create virtual registers for temporary results.
5492   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5493   unsigned OldVal        = MRI.createVirtualRegister(RC);
5494   unsigned NewVal        = MRI.createVirtualRegister(RC);
5495   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5496   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5497   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5498 
5499   // Insert 3 basic blocks for the loop.
5500   MachineBasicBlock *StartMBB  = MBB;
5501   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
5502   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
5503   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5504   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5505 
5506   //  StartMBB:
5507   //   ...
5508   //   %OrigVal     = L Disp(%Base)
5509   //   # fall through to LoopMMB
5510   MBB = StartMBB;
5511   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5512     .addOperand(Base).addImm(Disp).addReg(0);
5513   MBB->addSuccessor(LoopMBB);
5514 
5515   //  LoopMBB:
5516   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5517   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5518   //   CompareOpcode %RotatedOldVal, %Src2
5519   //   BRC KeepOldMask, UpdateMBB
5520   MBB = LoopMBB;
5521   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5522     .addReg(OrigVal).addMBB(StartMBB)
5523     .addReg(Dest).addMBB(UpdateMBB);
5524   if (IsSubWord)
5525     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5526       .addReg(OldVal).addReg(BitShift).addImm(0);
5527   BuildMI(MBB, DL, TII->get(CompareOpcode))
5528     .addReg(RotatedOldVal).addReg(Src2);
5529   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5530     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5531   MBB->addSuccessor(UpdateMBB);
5532   MBB->addSuccessor(UseAltMBB);
5533 
5534   //  UseAltMBB:
5535   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5536   //   # fall through to UpdateMMB
5537   MBB = UseAltMBB;
5538   if (IsSubWord)
5539     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5540       .addReg(RotatedOldVal).addReg(Src2)
5541       .addImm(32).addImm(31 + BitSize).addImm(0);
5542   MBB->addSuccessor(UpdateMBB);
5543 
5544   //  UpdateMBB:
5545   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5546   //                        [ %RotatedAltVal, UseAltMBB ]
5547   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5548   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5549   //   JNE LoopMBB
5550   //   # fall through to DoneMMB
5551   MBB = UpdateMBB;
5552   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5553     .addReg(RotatedOldVal).addMBB(LoopMBB)
5554     .addReg(RotatedAltVal).addMBB(UseAltMBB);
5555   if (IsSubWord)
5556     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5557       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5558   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5559     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5560   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5561     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5562   MBB->addSuccessor(LoopMBB);
5563   MBB->addSuccessor(DoneMBB);
5564 
5565   MI.eraseFromParent();
5566   return DoneMBB;
5567 }
5568 
5569 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5570 // instruction MI.
5571 MachineBasicBlock *
5572 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
5573                                           MachineBasicBlock *MBB) const {
5574 
5575   MachineFunction &MF = *MBB->getParent();
5576   const SystemZInstrInfo *TII =
5577       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5578   MachineRegisterInfo &MRI = MF.getRegInfo();
5579 
5580   // Extract the operands.  Base can be a register or a frame index.
5581   unsigned Dest = MI.getOperand(0).getReg();
5582   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5583   int64_t Disp = MI.getOperand(2).getImm();
5584   unsigned OrigCmpVal = MI.getOperand(3).getReg();
5585   unsigned OrigSwapVal = MI.getOperand(4).getReg();
5586   unsigned BitShift = MI.getOperand(5).getReg();
5587   unsigned NegBitShift = MI.getOperand(6).getReg();
5588   int64_t BitSize = MI.getOperand(7).getImm();
5589   DebugLoc DL = MI.getDebugLoc();
5590 
5591   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5592 
5593   // Get the right opcodes for the displacement.
5594   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
5595   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5596   assert(LOpcode && CSOpcode && "Displacement out of range");
5597 
5598   // Create virtual registers for temporary results.
5599   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
5600   unsigned OldVal       = MRI.createVirtualRegister(RC);
5601   unsigned CmpVal       = MRI.createVirtualRegister(RC);
5602   unsigned SwapVal      = MRI.createVirtualRegister(RC);
5603   unsigned StoreVal     = MRI.createVirtualRegister(RC);
5604   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
5605   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
5606   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5607 
5608   // Insert 2 basic blocks for the loop.
5609   MachineBasicBlock *StartMBB = MBB;
5610   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5611   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5612   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
5613 
5614   //  StartMBB:
5615   //   ...
5616   //   %OrigOldVal     = L Disp(%Base)
5617   //   # fall through to LoopMMB
5618   MBB = StartMBB;
5619   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5620     .addOperand(Base).addImm(Disp).addReg(0);
5621   MBB->addSuccessor(LoopMBB);
5622 
5623   //  LoopMBB:
5624   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5625   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5626   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5627   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
5628   //                      ^^ The low BitSize bits contain the field
5629   //                         of interest.
5630   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5631   //                      ^^ Replace the upper 32-BitSize bits of the
5632   //                         comparison value with those that we loaded,
5633   //                         so that we can use a full word comparison.
5634   //   CR %Dest, %RetryCmpVal
5635   //   JNE DoneMBB
5636   //   # Fall through to SetMBB
5637   MBB = LoopMBB;
5638   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5639     .addReg(OrigOldVal).addMBB(StartMBB)
5640     .addReg(RetryOldVal).addMBB(SetMBB);
5641   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5642     .addReg(OrigCmpVal).addMBB(StartMBB)
5643     .addReg(RetryCmpVal).addMBB(SetMBB);
5644   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
5645     .addReg(OrigSwapVal).addMBB(StartMBB)
5646     .addReg(RetrySwapVal).addMBB(SetMBB);
5647   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
5648     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
5649   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
5650     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5651   BuildMI(MBB, DL, TII->get(SystemZ::CR))
5652     .addReg(Dest).addReg(RetryCmpVal);
5653   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5654     .addImm(SystemZ::CCMASK_ICMP)
5655     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
5656   MBB->addSuccessor(DoneMBB);
5657   MBB->addSuccessor(SetMBB);
5658 
5659   //  SetMBB:
5660   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
5661   //                      ^^ Replace the upper 32-BitSize bits of the new
5662   //                         value with those that we loaded.
5663   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
5664   //                      ^^ Rotate the new field to its proper position.
5665   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
5666   //   JNE LoopMBB
5667   //   # fall through to ExitMMB
5668   MBB = SetMBB;
5669   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
5670     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5671   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
5672     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
5673   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
5674     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
5675   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5676     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5677   MBB->addSuccessor(LoopMBB);
5678   MBB->addSuccessor(DoneMBB);
5679 
5680   MI.eraseFromParent();
5681   return DoneMBB;
5682 }
5683 
5684 // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
5685 // if the high register of the GR128 value must be cleared or false if
5686 // it's "don't care".  SubReg is subreg_l32 when extending a GR32
5687 // and subreg_l64 when extending a GR64.
5688 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
5689                                                      MachineBasicBlock *MBB,
5690                                                      bool ClearEven,
5691                                                      unsigned SubReg) const {
5692   MachineFunction &MF = *MBB->getParent();
5693   const SystemZInstrInfo *TII =
5694       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5695   MachineRegisterInfo &MRI = MF.getRegInfo();
5696   DebugLoc DL = MI.getDebugLoc();
5697 
5698   unsigned Dest = MI.getOperand(0).getReg();
5699   unsigned Src = MI.getOperand(1).getReg();
5700   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5701 
5702   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
5703   if (ClearEven) {
5704     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5705     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
5706 
5707     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
5708       .addImm(0);
5709     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
5710       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
5711     In128 = NewIn128;
5712   }
5713   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
5714     .addReg(In128).addReg(Src).addImm(SubReg);
5715 
5716   MI.eraseFromParent();
5717   return MBB;
5718 }
5719 
5720 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
5721     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5722   MachineFunction &MF = *MBB->getParent();
5723   const SystemZInstrInfo *TII =
5724       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5725   MachineRegisterInfo &MRI = MF.getRegInfo();
5726   DebugLoc DL = MI.getDebugLoc();
5727 
5728   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
5729   uint64_t DestDisp = MI.getOperand(1).getImm();
5730   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
5731   uint64_t SrcDisp = MI.getOperand(3).getImm();
5732   uint64_t Length = MI.getOperand(4).getImm();
5733 
5734   // When generating more than one CLC, all but the last will need to
5735   // branch to the end when a difference is found.
5736   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
5737                                splitBlockAfter(MI, MBB) : nullptr);
5738 
5739   // Check for the loop form, in which operand 5 is the trip count.
5740   if (MI.getNumExplicitOperands() > 5) {
5741     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
5742 
5743     uint64_t StartCountReg = MI.getOperand(5).getReg();
5744     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
5745     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
5746                               forceReg(MI, DestBase, TII));
5747 
5748     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
5749     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
5750     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
5751                             MRI.createVirtualRegister(RC));
5752     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
5753     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
5754                             MRI.createVirtualRegister(RC));
5755 
5756     RC = &SystemZ::GR64BitRegClass;
5757     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
5758     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
5759 
5760     MachineBasicBlock *StartMBB = MBB;
5761     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5762     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5763     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
5764 
5765     //  StartMBB:
5766     //   # fall through to LoopMMB
5767     MBB->addSuccessor(LoopMBB);
5768 
5769     //  LoopMBB:
5770     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
5771     //                      [ %NextDestReg, NextMBB ]
5772     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
5773     //                     [ %NextSrcReg, NextMBB ]
5774     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
5775     //                       [ %NextCountReg, NextMBB ]
5776     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
5777     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
5778     //   ( JLH EndMBB )
5779     //
5780     // The prefetch is used only for MVC.  The JLH is used only for CLC.
5781     MBB = LoopMBB;
5782 
5783     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
5784       .addReg(StartDestReg).addMBB(StartMBB)
5785       .addReg(NextDestReg).addMBB(NextMBB);
5786     if (!HaveSingleBase)
5787       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
5788         .addReg(StartSrcReg).addMBB(StartMBB)
5789         .addReg(NextSrcReg).addMBB(NextMBB);
5790     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
5791       .addReg(StartCountReg).addMBB(StartMBB)
5792       .addReg(NextCountReg).addMBB(NextMBB);
5793     if (Opcode == SystemZ::MVC)
5794       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
5795         .addImm(SystemZ::PFD_WRITE)
5796         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
5797     BuildMI(MBB, DL, TII->get(Opcode))
5798       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
5799       .addReg(ThisSrcReg).addImm(SrcDisp);
5800     if (EndMBB) {
5801       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5802         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5803         .addMBB(EndMBB);
5804       MBB->addSuccessor(EndMBB);
5805       MBB->addSuccessor(NextMBB);
5806     }
5807 
5808     // NextMBB:
5809     //   %NextDestReg = LA 256(%ThisDestReg)
5810     //   %NextSrcReg = LA 256(%ThisSrcReg)
5811     //   %NextCountReg = AGHI %ThisCountReg, -1
5812     //   CGHI %NextCountReg, 0
5813     //   JLH LoopMBB
5814     //   # fall through to DoneMMB
5815     //
5816     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
5817     MBB = NextMBB;
5818 
5819     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
5820       .addReg(ThisDestReg).addImm(256).addReg(0);
5821     if (!HaveSingleBase)
5822       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
5823         .addReg(ThisSrcReg).addImm(256).addReg(0);
5824     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
5825       .addReg(ThisCountReg).addImm(-1);
5826     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
5827       .addReg(NextCountReg).addImm(0);
5828     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5829       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5830       .addMBB(LoopMBB);
5831     MBB->addSuccessor(LoopMBB);
5832     MBB->addSuccessor(DoneMBB);
5833 
5834     DestBase = MachineOperand::CreateReg(NextDestReg, false);
5835     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
5836     Length &= 255;
5837     MBB = DoneMBB;
5838   }
5839   // Handle any remaining bytes with straight-line code.
5840   while (Length > 0) {
5841     uint64_t ThisLength = std::min(Length, uint64_t(256));
5842     // The previous iteration might have created out-of-range displacements.
5843     // Apply them using LAY if so.
5844     if (!isUInt<12>(DestDisp)) {
5845       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5846       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5847           .addOperand(DestBase)
5848           .addImm(DestDisp)
5849           .addReg(0);
5850       DestBase = MachineOperand::CreateReg(Reg, false);
5851       DestDisp = 0;
5852     }
5853     if (!isUInt<12>(SrcDisp)) {
5854       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5855       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5856           .addOperand(SrcBase)
5857           .addImm(SrcDisp)
5858           .addReg(0);
5859       SrcBase = MachineOperand::CreateReg(Reg, false);
5860       SrcDisp = 0;
5861     }
5862     BuildMI(*MBB, MI, DL, TII->get(Opcode))
5863       .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
5864       .addOperand(SrcBase).addImm(SrcDisp);
5865     DestDisp += ThisLength;
5866     SrcDisp += ThisLength;
5867     Length -= ThisLength;
5868     // If there's another CLC to go, branch to the end if a difference
5869     // was found.
5870     if (EndMBB && Length > 0) {
5871       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
5872       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5873         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5874         .addMBB(EndMBB);
5875       MBB->addSuccessor(EndMBB);
5876       MBB->addSuccessor(NextMBB);
5877       MBB = NextMBB;
5878     }
5879   }
5880   if (EndMBB) {
5881     MBB->addSuccessor(EndMBB);
5882     MBB = EndMBB;
5883     MBB->addLiveIn(SystemZ::CC);
5884   }
5885 
5886   MI.eraseFromParent();
5887   return MBB;
5888 }
5889 
5890 // Decompose string pseudo-instruction MI into a loop that continually performs
5891 // Opcode until CC != 3.
5892 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
5893     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5894   MachineFunction &MF = *MBB->getParent();
5895   const SystemZInstrInfo *TII =
5896       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5897   MachineRegisterInfo &MRI = MF.getRegInfo();
5898   DebugLoc DL = MI.getDebugLoc();
5899 
5900   uint64_t End1Reg = MI.getOperand(0).getReg();
5901   uint64_t Start1Reg = MI.getOperand(1).getReg();
5902   uint64_t Start2Reg = MI.getOperand(2).getReg();
5903   uint64_t CharReg = MI.getOperand(3).getReg();
5904 
5905   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
5906   uint64_t This1Reg = MRI.createVirtualRegister(RC);
5907   uint64_t This2Reg = MRI.createVirtualRegister(RC);
5908   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
5909 
5910   MachineBasicBlock *StartMBB = MBB;
5911   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5912   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5913 
5914   //  StartMBB:
5915   //   # fall through to LoopMMB
5916   MBB->addSuccessor(LoopMBB);
5917 
5918   //  LoopMBB:
5919   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
5920   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
5921   //   R0L = %CharReg
5922   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
5923   //   JO LoopMBB
5924   //   # fall through to DoneMMB
5925   //
5926   // The load of R0L can be hoisted by post-RA LICM.
5927   MBB = LoopMBB;
5928 
5929   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
5930     .addReg(Start1Reg).addMBB(StartMBB)
5931     .addReg(End1Reg).addMBB(LoopMBB);
5932   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
5933     .addReg(Start2Reg).addMBB(StartMBB)
5934     .addReg(End2Reg).addMBB(LoopMBB);
5935   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
5936   BuildMI(MBB, DL, TII->get(Opcode))
5937     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
5938     .addReg(This1Reg).addReg(This2Reg);
5939   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5940     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
5941   MBB->addSuccessor(LoopMBB);
5942   MBB->addSuccessor(DoneMBB);
5943 
5944   DoneMBB->addLiveIn(SystemZ::CC);
5945 
5946   MI.eraseFromParent();
5947   return DoneMBB;
5948 }
5949 
5950 // Update TBEGIN instruction with final opcode and register clobbers.
5951 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
5952     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
5953     bool NoFloat) const {
5954   MachineFunction &MF = *MBB->getParent();
5955   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
5956   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
5957 
5958   // Update opcode.
5959   MI.setDesc(TII->get(Opcode));
5960 
5961   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
5962   // Make sure to add the corresponding GRSM bits if they are missing.
5963   uint64_t Control = MI.getOperand(2).getImm();
5964   static const unsigned GPRControlBit[16] = {
5965     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
5966     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
5967   };
5968   Control |= GPRControlBit[15];
5969   if (TFI->hasFP(MF))
5970     Control |= GPRControlBit[11];
5971   MI.getOperand(2).setImm(Control);
5972 
5973   // Add GPR clobbers.
5974   for (int I = 0; I < 16; I++) {
5975     if ((Control & GPRControlBit[I]) == 0) {
5976       unsigned Reg = SystemZMC::GR64Regs[I];
5977       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5978     }
5979   }
5980 
5981   // Add FPR/VR clobbers.
5982   if (!NoFloat && (Control & 4) != 0) {
5983     if (Subtarget.hasVector()) {
5984       for (int I = 0; I < 32; I++) {
5985         unsigned Reg = SystemZMC::VR128Regs[I];
5986         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5987       }
5988     } else {
5989       for (int I = 0; I < 16; I++) {
5990         unsigned Reg = SystemZMC::FP64Regs[I];
5991         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5992       }
5993     }
5994   }
5995 
5996   return MBB;
5997 }
5998 
5999 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6000     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6001   MachineFunction &MF = *MBB->getParent();
6002   MachineRegisterInfo *MRI = &MF.getRegInfo();
6003   const SystemZInstrInfo *TII =
6004       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6005   DebugLoc DL = MI.getDebugLoc();
6006 
6007   unsigned SrcReg = MI.getOperand(0).getReg();
6008 
6009   // Create new virtual register of the same class as source.
6010   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
6011   unsigned DstReg = MRI->createVirtualRegister(RC);
6012 
6013   // Replace pseudo with a normal load-and-test that models the def as
6014   // well.
6015   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
6016     .addReg(SrcReg);
6017   MI.eraseFromParent();
6018 
6019   return MBB;
6020 }
6021 
6022 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
6023     MachineInstr &MI, MachineBasicBlock *MBB) const {
6024   switch (MI.getOpcode()) {
6025   case SystemZ::Select32Mux:
6026   case SystemZ::Select32:
6027   case SystemZ::SelectF32:
6028   case SystemZ::Select64:
6029   case SystemZ::SelectF64:
6030   case SystemZ::SelectF128:
6031     return emitSelect(MI, MBB);
6032 
6033   case SystemZ::CondStore8Mux:
6034     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6035   case SystemZ::CondStore8MuxInv:
6036     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6037   case SystemZ::CondStore16Mux:
6038     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6039   case SystemZ::CondStore16MuxInv:
6040     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6041   case SystemZ::CondStore8:
6042     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6043   case SystemZ::CondStore8Inv:
6044     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6045   case SystemZ::CondStore16:
6046     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6047   case SystemZ::CondStore16Inv:
6048     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6049   case SystemZ::CondStore32:
6050     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6051   case SystemZ::CondStore32Inv:
6052     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6053   case SystemZ::CondStore64:
6054     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6055   case SystemZ::CondStore64Inv:
6056     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6057   case SystemZ::CondStoreF32:
6058     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6059   case SystemZ::CondStoreF32Inv:
6060     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6061   case SystemZ::CondStoreF64:
6062     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6063   case SystemZ::CondStoreF64Inv:
6064     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6065 
6066   case SystemZ::AEXT128_64:
6067     return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
6068   case SystemZ::ZEXT128_32:
6069     return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
6070   case SystemZ::ZEXT128_64:
6071     return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
6072 
6073   case SystemZ::ATOMIC_SWAPW:
6074     return emitAtomicLoadBinary(MI, MBB, 0, 0);
6075   case SystemZ::ATOMIC_SWAP_32:
6076     return emitAtomicLoadBinary(MI, MBB, 0, 32);
6077   case SystemZ::ATOMIC_SWAP_64:
6078     return emitAtomicLoadBinary(MI, MBB, 0, 64);
6079 
6080   case SystemZ::ATOMIC_LOADW_AR:
6081     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6082   case SystemZ::ATOMIC_LOADW_AFI:
6083     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6084   case SystemZ::ATOMIC_LOAD_AR:
6085     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6086   case SystemZ::ATOMIC_LOAD_AHI:
6087     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6088   case SystemZ::ATOMIC_LOAD_AFI:
6089     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6090   case SystemZ::ATOMIC_LOAD_AGR:
6091     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6092   case SystemZ::ATOMIC_LOAD_AGHI:
6093     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6094   case SystemZ::ATOMIC_LOAD_AGFI:
6095     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6096 
6097   case SystemZ::ATOMIC_LOADW_SR:
6098     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6099   case SystemZ::ATOMIC_LOAD_SR:
6100     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6101   case SystemZ::ATOMIC_LOAD_SGR:
6102     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6103 
6104   case SystemZ::ATOMIC_LOADW_NR:
6105     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6106   case SystemZ::ATOMIC_LOADW_NILH:
6107     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6108   case SystemZ::ATOMIC_LOAD_NR:
6109     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6110   case SystemZ::ATOMIC_LOAD_NILL:
6111     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6112   case SystemZ::ATOMIC_LOAD_NILH:
6113     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6114   case SystemZ::ATOMIC_LOAD_NILF:
6115     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6116   case SystemZ::ATOMIC_LOAD_NGR:
6117     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6118   case SystemZ::ATOMIC_LOAD_NILL64:
6119     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6120   case SystemZ::ATOMIC_LOAD_NILH64:
6121     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6122   case SystemZ::ATOMIC_LOAD_NIHL64:
6123     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6124   case SystemZ::ATOMIC_LOAD_NIHH64:
6125     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6126   case SystemZ::ATOMIC_LOAD_NILF64:
6127     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6128   case SystemZ::ATOMIC_LOAD_NIHF64:
6129     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6130 
6131   case SystemZ::ATOMIC_LOADW_OR:
6132     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6133   case SystemZ::ATOMIC_LOADW_OILH:
6134     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6135   case SystemZ::ATOMIC_LOAD_OR:
6136     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6137   case SystemZ::ATOMIC_LOAD_OILL:
6138     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6139   case SystemZ::ATOMIC_LOAD_OILH:
6140     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6141   case SystemZ::ATOMIC_LOAD_OILF:
6142     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6143   case SystemZ::ATOMIC_LOAD_OGR:
6144     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6145   case SystemZ::ATOMIC_LOAD_OILL64:
6146     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6147   case SystemZ::ATOMIC_LOAD_OILH64:
6148     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6149   case SystemZ::ATOMIC_LOAD_OIHL64:
6150     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6151   case SystemZ::ATOMIC_LOAD_OIHH64:
6152     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6153   case SystemZ::ATOMIC_LOAD_OILF64:
6154     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6155   case SystemZ::ATOMIC_LOAD_OIHF64:
6156     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6157 
6158   case SystemZ::ATOMIC_LOADW_XR:
6159     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6160   case SystemZ::ATOMIC_LOADW_XILF:
6161     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6162   case SystemZ::ATOMIC_LOAD_XR:
6163     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6164   case SystemZ::ATOMIC_LOAD_XILF:
6165     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6166   case SystemZ::ATOMIC_LOAD_XGR:
6167     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6168   case SystemZ::ATOMIC_LOAD_XILF64:
6169     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6170   case SystemZ::ATOMIC_LOAD_XIHF64:
6171     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6172 
6173   case SystemZ::ATOMIC_LOADW_NRi:
6174     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6175   case SystemZ::ATOMIC_LOADW_NILHi:
6176     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6177   case SystemZ::ATOMIC_LOAD_NRi:
6178     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6179   case SystemZ::ATOMIC_LOAD_NILLi:
6180     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6181   case SystemZ::ATOMIC_LOAD_NILHi:
6182     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6183   case SystemZ::ATOMIC_LOAD_NILFi:
6184     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6185   case SystemZ::ATOMIC_LOAD_NGRi:
6186     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6187   case SystemZ::ATOMIC_LOAD_NILL64i:
6188     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6189   case SystemZ::ATOMIC_LOAD_NILH64i:
6190     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
6191   case SystemZ::ATOMIC_LOAD_NIHL64i:
6192     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6193   case SystemZ::ATOMIC_LOAD_NIHH64i:
6194     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
6195   case SystemZ::ATOMIC_LOAD_NILF64i:
6196     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
6197   case SystemZ::ATOMIC_LOAD_NIHF64i:
6198     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
6199 
6200   case SystemZ::ATOMIC_LOADW_MIN:
6201     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6202                                 SystemZ::CCMASK_CMP_LE, 0);
6203   case SystemZ::ATOMIC_LOAD_MIN_32:
6204     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6205                                 SystemZ::CCMASK_CMP_LE, 32);
6206   case SystemZ::ATOMIC_LOAD_MIN_64:
6207     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6208                                 SystemZ::CCMASK_CMP_LE, 64);
6209 
6210   case SystemZ::ATOMIC_LOADW_MAX:
6211     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6212                                 SystemZ::CCMASK_CMP_GE, 0);
6213   case SystemZ::ATOMIC_LOAD_MAX_32:
6214     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6215                                 SystemZ::CCMASK_CMP_GE, 32);
6216   case SystemZ::ATOMIC_LOAD_MAX_64:
6217     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6218                                 SystemZ::CCMASK_CMP_GE, 64);
6219 
6220   case SystemZ::ATOMIC_LOADW_UMIN:
6221     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6222                                 SystemZ::CCMASK_CMP_LE, 0);
6223   case SystemZ::ATOMIC_LOAD_UMIN_32:
6224     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6225                                 SystemZ::CCMASK_CMP_LE, 32);
6226   case SystemZ::ATOMIC_LOAD_UMIN_64:
6227     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6228                                 SystemZ::CCMASK_CMP_LE, 64);
6229 
6230   case SystemZ::ATOMIC_LOADW_UMAX:
6231     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6232                                 SystemZ::CCMASK_CMP_GE, 0);
6233   case SystemZ::ATOMIC_LOAD_UMAX_32:
6234     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6235                                 SystemZ::CCMASK_CMP_GE, 32);
6236   case SystemZ::ATOMIC_LOAD_UMAX_64:
6237     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6238                                 SystemZ::CCMASK_CMP_GE, 64);
6239 
6240   case SystemZ::ATOMIC_CMP_SWAPW:
6241     return emitAtomicCmpSwapW(MI, MBB);
6242   case SystemZ::MVCSequence:
6243   case SystemZ::MVCLoop:
6244     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
6245   case SystemZ::NCSequence:
6246   case SystemZ::NCLoop:
6247     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6248   case SystemZ::OCSequence:
6249   case SystemZ::OCLoop:
6250     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6251   case SystemZ::XCSequence:
6252   case SystemZ::XCLoop:
6253     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
6254   case SystemZ::CLCSequence:
6255   case SystemZ::CLCLoop:
6256     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
6257   case SystemZ::CLSTLoop:
6258     return emitStringWrapper(MI, MBB, SystemZ::CLST);
6259   case SystemZ::MVSTLoop:
6260     return emitStringWrapper(MI, MBB, SystemZ::MVST);
6261   case SystemZ::SRSTLoop:
6262     return emitStringWrapper(MI, MBB, SystemZ::SRST);
6263   case SystemZ::TBEGIN:
6264     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6265   case SystemZ::TBEGIN_nofloat:
6266     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6267   case SystemZ::TBEGINC:
6268     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
6269   case SystemZ::LTEBRCompare_VecPseudo:
6270     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6271   case SystemZ::LTDBRCompare_VecPseudo:
6272     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6273   case SystemZ::LTXBRCompare_VecPseudo:
6274     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6275 
6276   default:
6277     llvm_unreachable("Unexpected instr type to insert");
6278   }
6279 }
6280