1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include <cctype> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "systemz-lower" 31 32 namespace { 33 // Represents information about a comparison. 34 struct Comparison { 35 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 36 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 37 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 38 39 // The operands to the comparison. 40 SDValue Op0, Op1; 41 42 // Chain if this is a strict floating-point comparison. 43 SDValue Chain; 44 45 // The opcode that should be used to compare Op0 and Op1. 46 unsigned Opcode; 47 48 // A SystemZICMP value. Only used for integer comparisons. 49 unsigned ICmpType; 50 51 // The mask of CC values that Opcode can produce. 52 unsigned CCValid; 53 54 // The mask of CC values for which the original condition is true. 55 unsigned CCMask; 56 }; 57 } // end anonymous namespace 58 59 // Classify VT as either 32 or 64 bit. 60 static bool is32Bit(EVT VT) { 61 switch (VT.getSimpleVT().SimpleTy) { 62 case MVT::i32: 63 return true; 64 case MVT::i64: 65 return false; 66 default: 67 llvm_unreachable("Unsupported type"); 68 } 69 } 70 71 // Return a version of MachineOperand that can be safely used before the 72 // final use. 73 static MachineOperand earlyUseOperand(MachineOperand Op) { 74 if (Op.isReg()) 75 Op.setIsKill(false); 76 return Op; 77 } 78 79 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 80 const SystemZSubtarget &STI) 81 : TargetLowering(TM), Subtarget(STI) { 82 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 83 84 // Set up the register classes. 85 if (Subtarget.hasHighWord()) 86 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 87 else 88 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 89 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 90 if (Subtarget.hasVector()) { 91 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 92 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 93 } else { 94 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 95 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 96 } 97 if (Subtarget.hasVectorEnhancements1()) 98 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 99 else 100 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 101 102 if (Subtarget.hasVector()) { 103 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 105 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 109 } 110 111 // Compute derived properties from the register classes 112 computeRegisterProperties(Subtarget.getRegisterInfo()); 113 114 // Set up special registers. 115 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 116 117 // TODO: It may be better to default to latency-oriented scheduling, however 118 // LLVM's current latency-oriented scheduler can't handle physreg definitions 119 // such as SystemZ has with CC, so set this to the register-pressure 120 // scheduler, because it can. 121 setSchedulingPreference(Sched::RegPressure); 122 123 setBooleanContents(ZeroOrOneBooleanContent); 124 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 125 126 // Instructions are strings of 2-byte aligned 2-byte values. 127 setMinFunctionAlignment(Align(2)); 128 // For performance reasons we prefer 16-byte alignment. 129 setPrefFunctionAlignment(Align(16)); 130 131 // Handle operations that are handled in a similar way for all types. 132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 133 I <= MVT::LAST_FP_VALUETYPE; 134 ++I) { 135 MVT VT = MVT::SimpleValueType(I); 136 if (isTypeLegal(VT)) { 137 // Lower SET_CC into an IPM-based sequence. 138 setOperationAction(ISD::SETCC, VT, Custom); 139 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 140 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 141 142 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 143 setOperationAction(ISD::SELECT, VT, Expand); 144 145 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 146 setOperationAction(ISD::SELECT_CC, VT, Custom); 147 setOperationAction(ISD::BR_CC, VT, Custom); 148 } 149 } 150 151 // Expand jump table branches as address arithmetic followed by an 152 // indirect jump. 153 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 154 155 // Expand BRCOND into a BR_CC (see above). 156 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 157 158 // Handle integer types. 159 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 160 I <= MVT::LAST_INTEGER_VALUETYPE; 161 ++I) { 162 MVT VT = MVT::SimpleValueType(I); 163 if (isTypeLegal(VT)) { 164 // Expand individual DIV and REMs into DIVREMs. 165 setOperationAction(ISD::SDIV, VT, Expand); 166 setOperationAction(ISD::UDIV, VT, Expand); 167 setOperationAction(ISD::SREM, VT, Expand); 168 setOperationAction(ISD::UREM, VT, Expand); 169 setOperationAction(ISD::SDIVREM, VT, Custom); 170 setOperationAction(ISD::UDIVREM, VT, Custom); 171 172 // Support addition/subtraction with overflow. 173 setOperationAction(ISD::SADDO, VT, Custom); 174 setOperationAction(ISD::SSUBO, VT, Custom); 175 176 // Support addition/subtraction with carry. 177 setOperationAction(ISD::UADDO, VT, Custom); 178 setOperationAction(ISD::USUBO, VT, Custom); 179 180 // Support carry in as value rather than glue. 181 setOperationAction(ISD::ADDCARRY, VT, Custom); 182 setOperationAction(ISD::SUBCARRY, VT, Custom); 183 184 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 185 // stores, putting a serialization instruction after the stores. 186 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 187 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 188 189 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 190 // available, or if the operand is constant. 191 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 192 193 // Use POPCNT on z196 and above. 194 if (Subtarget.hasPopulationCount()) 195 setOperationAction(ISD::CTPOP, VT, Custom); 196 else 197 setOperationAction(ISD::CTPOP, VT, Expand); 198 199 // No special instructions for these. 200 setOperationAction(ISD::CTTZ, VT, Expand); 201 setOperationAction(ISD::ROTR, VT, Expand); 202 203 // Use *MUL_LOHI where possible instead of MULH*. 204 setOperationAction(ISD::MULHS, VT, Expand); 205 setOperationAction(ISD::MULHU, VT, Expand); 206 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 207 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 208 209 // Only z196 and above have native support for conversions to unsigned. 210 // On z10, promoting to i64 doesn't generate an inexact condition for 211 // values that are outside the i32 range but in the i64 range, so use 212 // the default expansion. 213 if (!Subtarget.hasFPExtension()) 214 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 215 216 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 217 // default to Expand, so need to be modified to Legal where appropriate. 218 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 219 if (Subtarget.hasFPExtension()) 220 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 221 } 222 } 223 224 // Type legalization will convert 8- and 16-bit atomic operations into 225 // forms that operate on i32s (but still keeping the original memory VT). 226 // Lower them into full i32 operations. 227 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 228 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 229 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 230 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 231 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 232 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 233 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 234 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 235 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 238 239 // Even though i128 is not a legal type, we still need to custom lower 240 // the atomic operations in order to exploit SystemZ instructions. 241 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 242 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 243 244 // We can use the CC result of compare-and-swap to implement 245 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 246 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 248 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 249 250 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 251 252 // Traps are legal, as we will convert them to "j .+2". 253 setOperationAction(ISD::TRAP, MVT::Other, Legal); 254 255 // z10 has instructions for signed but not unsigned FP conversion. 256 // Handle unsigned 32-bit types as signed 64-bit types. 257 if (!Subtarget.hasFPExtension()) { 258 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 259 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 260 } 261 262 // We have native support for a 64-bit CTLZ, via FLOGR. 263 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 264 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 265 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 266 267 // On z15 we have native support for a 64-bit CTPOP. 268 if (Subtarget.hasMiscellaneousExtensions3()) { 269 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 270 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 271 } 272 273 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 274 setOperationAction(ISD::OR, MVT::i64, Custom); 275 276 // FIXME: Can we support these natively? 277 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 278 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 279 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 280 281 // We have native instructions for i8, i16 and i32 extensions, but not i1. 282 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 283 for (MVT VT : MVT::integer_valuetypes()) { 284 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 285 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 286 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 287 } 288 289 // Handle the various types of symbolic address. 290 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 291 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 292 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 293 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 294 setOperationAction(ISD::JumpTable, PtrVT, Custom); 295 296 // We need to handle dynamic allocations specially because of the 297 // 160-byte area at the bottom of the stack. 298 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 299 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 300 301 // Use custom expanders so that we can force the function to use 302 // a frame pointer. 303 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 304 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 305 306 // Handle prefetches with PFD or PFDRL. 307 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 308 309 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 310 // Assume by default that all vector operations need to be expanded. 311 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 312 if (getOperationAction(Opcode, VT) == Legal) 313 setOperationAction(Opcode, VT, Expand); 314 315 // Likewise all truncating stores and extending loads. 316 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 317 setTruncStoreAction(VT, InnerVT, Expand); 318 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 319 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 320 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 321 } 322 323 if (isTypeLegal(VT)) { 324 // These operations are legal for anything that can be stored in a 325 // vector register, even if there is no native support for the format 326 // as such. In particular, we can do these for v4f32 even though there 327 // are no specific instructions for that format. 328 setOperationAction(ISD::LOAD, VT, Legal); 329 setOperationAction(ISD::STORE, VT, Legal); 330 setOperationAction(ISD::VSELECT, VT, Legal); 331 setOperationAction(ISD::BITCAST, VT, Legal); 332 setOperationAction(ISD::UNDEF, VT, Legal); 333 334 // Likewise, except that we need to replace the nodes with something 335 // more specific. 336 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 337 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 338 } 339 } 340 341 // Handle integer vector types. 342 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 343 if (isTypeLegal(VT)) { 344 // These operations have direct equivalents. 345 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 346 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 347 setOperationAction(ISD::ADD, VT, Legal); 348 setOperationAction(ISD::SUB, VT, Legal); 349 if (VT != MVT::v2i64) 350 setOperationAction(ISD::MUL, VT, Legal); 351 setOperationAction(ISD::AND, VT, Legal); 352 setOperationAction(ISD::OR, VT, Legal); 353 setOperationAction(ISD::XOR, VT, Legal); 354 if (Subtarget.hasVectorEnhancements1()) 355 setOperationAction(ISD::CTPOP, VT, Legal); 356 else 357 setOperationAction(ISD::CTPOP, VT, Custom); 358 setOperationAction(ISD::CTTZ, VT, Legal); 359 setOperationAction(ISD::CTLZ, VT, Legal); 360 361 // Convert a GPR scalar to a vector by inserting it into element 0. 362 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 363 364 // Use a series of unpacks for extensions. 365 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 366 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 367 368 // Detect shifts by a scalar amount and convert them into 369 // V*_BY_SCALAR. 370 setOperationAction(ISD::SHL, VT, Custom); 371 setOperationAction(ISD::SRA, VT, Custom); 372 setOperationAction(ISD::SRL, VT, Custom); 373 374 // At present ROTL isn't matched by DAGCombiner. ROTR should be 375 // converted into ROTL. 376 setOperationAction(ISD::ROTL, VT, Expand); 377 setOperationAction(ISD::ROTR, VT, Expand); 378 379 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 380 // and inverting the result as necessary. 381 setOperationAction(ISD::SETCC, VT, Custom); 382 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 383 if (Subtarget.hasVectorEnhancements1()) 384 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 385 } 386 } 387 388 if (Subtarget.hasVector()) { 389 // There should be no need to check for float types other than v2f64 390 // since <2 x f32> isn't a legal type. 391 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 392 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 393 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 394 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 395 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 396 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 397 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 398 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 399 400 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 401 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 402 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 403 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 404 } 405 406 if (Subtarget.hasVectorEnhancements2()) { 407 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 408 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 409 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 410 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 411 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 412 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 413 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 414 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 415 416 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 417 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 418 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 419 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 420 } 421 422 // Handle floating-point types. 423 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 424 I <= MVT::LAST_FP_VALUETYPE; 425 ++I) { 426 MVT VT = MVT::SimpleValueType(I); 427 if (isTypeLegal(VT)) { 428 // We can use FI for FRINT. 429 setOperationAction(ISD::FRINT, VT, Legal); 430 431 // We can use the extended form of FI for other rounding operations. 432 if (Subtarget.hasFPExtension()) { 433 setOperationAction(ISD::FNEARBYINT, VT, Legal); 434 setOperationAction(ISD::FFLOOR, VT, Legal); 435 setOperationAction(ISD::FCEIL, VT, Legal); 436 setOperationAction(ISD::FTRUNC, VT, Legal); 437 setOperationAction(ISD::FROUND, VT, Legal); 438 } 439 440 // No special instructions for these. 441 setOperationAction(ISD::FSIN, VT, Expand); 442 setOperationAction(ISD::FCOS, VT, Expand); 443 setOperationAction(ISD::FSINCOS, VT, Expand); 444 setOperationAction(ISD::FREM, VT, Expand); 445 setOperationAction(ISD::FPOW, VT, Expand); 446 447 // Handle constrained floating-point operations. 448 setOperationAction(ISD::STRICT_FADD, VT, Legal); 449 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 450 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 451 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 452 setOperationAction(ISD::STRICT_FMA, VT, Legal); 453 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 454 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 455 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 456 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 457 if (Subtarget.hasFPExtension()) { 458 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 459 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 460 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 461 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 462 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 463 } 464 } 465 } 466 467 // Handle floating-point vector types. 468 if (Subtarget.hasVector()) { 469 // Scalar-to-vector conversion is just a subreg. 470 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 471 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 472 473 // Some insertions and extractions can be done directly but others 474 // need to go via integers. 475 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 476 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 477 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 478 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 479 480 // These operations have direct equivalents. 481 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 482 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 483 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 484 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 485 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 486 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 487 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 488 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 489 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 490 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 491 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 492 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 493 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 494 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 495 496 // Handle constrained floating-point operations. 497 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 498 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 499 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 500 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 501 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 502 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 503 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 504 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 505 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 506 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 507 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 508 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 509 } 510 511 // The vector enhancements facility 1 has instructions for these. 512 if (Subtarget.hasVectorEnhancements1()) { 513 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 514 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 515 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 516 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 517 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 518 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 519 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 520 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 521 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 522 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 523 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 524 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 525 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 526 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 527 528 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 529 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 530 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 531 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 532 533 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 534 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 535 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 536 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 537 538 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 539 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 540 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 541 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 542 543 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 544 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 545 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 546 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 547 548 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 549 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 550 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 551 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 552 553 // Handle constrained floating-point operations. 554 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 555 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 556 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 557 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 558 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 559 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 560 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 561 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 562 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 563 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 564 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 565 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 566 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 567 MVT::v4f32, MVT::v2f64 }) { 568 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 569 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 570 } 571 } 572 573 // We have fused multiply-addition for f32 and f64 but not f128. 574 setOperationAction(ISD::FMA, MVT::f32, Legal); 575 setOperationAction(ISD::FMA, MVT::f64, Legal); 576 if (Subtarget.hasVectorEnhancements1()) 577 setOperationAction(ISD::FMA, MVT::f128, Legal); 578 else 579 setOperationAction(ISD::FMA, MVT::f128, Expand); 580 581 // We don't have a copysign instruction on vector registers. 582 if (Subtarget.hasVectorEnhancements1()) 583 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 584 585 // Needed so that we don't try to implement f128 constant loads using 586 // a load-and-extend of a f80 constant (in cases where the constant 587 // would fit in an f80). 588 for (MVT VT : MVT::fp_valuetypes()) 589 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 590 591 // We don't have extending load instruction on vector registers. 592 if (Subtarget.hasVectorEnhancements1()) { 593 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 594 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 595 } 596 597 // Floating-point truncation and stores need to be done separately. 598 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 599 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 600 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 601 602 // We have 64-bit FPR<->GPR moves, but need special handling for 603 // 32-bit forms. 604 if (!Subtarget.hasVector()) { 605 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 606 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 607 } 608 609 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 610 // structure, but VAEND is a no-op. 611 setOperationAction(ISD::VASTART, MVT::Other, Custom); 612 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 613 setOperationAction(ISD::VAEND, MVT::Other, Expand); 614 615 // Codes for which we want to perform some z-specific combinations. 616 setTargetDAGCombine(ISD::ZERO_EXTEND); 617 setTargetDAGCombine(ISD::SIGN_EXTEND); 618 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 619 setTargetDAGCombine(ISD::LOAD); 620 setTargetDAGCombine(ISD::STORE); 621 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 622 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 623 setTargetDAGCombine(ISD::FP_ROUND); 624 setTargetDAGCombine(ISD::FP_EXTEND); 625 setTargetDAGCombine(ISD::BSWAP); 626 setTargetDAGCombine(ISD::SDIV); 627 setTargetDAGCombine(ISD::UDIV); 628 setTargetDAGCombine(ISD::SREM); 629 setTargetDAGCombine(ISD::UREM); 630 631 // Handle intrinsics. 632 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 633 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 634 635 // We want to use MVC in preference to even a single load/store pair. 636 MaxStoresPerMemcpy = 0; 637 MaxStoresPerMemcpyOptSize = 0; 638 639 // The main memset sequence is a byte store followed by an MVC. 640 // Two STC or MV..I stores win over that, but the kind of fused stores 641 // generated by target-independent code don't when the byte value is 642 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 643 // than "STC;MVC". Handle the choice in target-specific code instead. 644 MaxStoresPerMemset = 0; 645 MaxStoresPerMemsetOptSize = 0; 646 647 // Default to having -disable-strictnode-mutation on 648 IsStrictFPEnabled = true; 649 } 650 651 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 652 LLVMContext &, EVT VT) const { 653 if (!VT.isVector()) 654 return MVT::i32; 655 return VT.changeVectorElementTypeToInteger(); 656 } 657 658 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 659 const MachineFunction &MF, EVT VT) const { 660 VT = VT.getScalarType(); 661 662 if (!VT.isSimple()) 663 return false; 664 665 switch (VT.getSimpleVT().SimpleTy) { 666 case MVT::f32: 667 case MVT::f64: 668 return true; 669 case MVT::f128: 670 return Subtarget.hasVectorEnhancements1(); 671 default: 672 break; 673 } 674 675 return false; 676 } 677 678 // Return true if the constant can be generated with a vector instruction, 679 // such as VGM, VGMB or VREPI. 680 bool SystemZVectorConstantInfo::isVectorConstantLegal( 681 const SystemZSubtarget &Subtarget) { 682 const SystemZInstrInfo *TII = 683 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 684 if (!Subtarget.hasVector() || 685 (isFP128 && !Subtarget.hasVectorEnhancements1())) 686 return false; 687 688 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 689 // preferred way of creating all-zero and all-one vectors so give it 690 // priority over other methods below. 691 unsigned Mask = 0; 692 unsigned I = 0; 693 for (; I < SystemZ::VectorBytes; ++I) { 694 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 695 if (Byte == 0xff) 696 Mask |= 1ULL << I; 697 else if (Byte != 0) 698 break; 699 } 700 if (I == SystemZ::VectorBytes) { 701 Opcode = SystemZISD::BYTE_MASK; 702 OpVals.push_back(Mask); 703 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 704 return true; 705 } 706 707 if (SplatBitSize > 64) 708 return false; 709 710 auto tryValue = [&](uint64_t Value) -> bool { 711 // Try VECTOR REPLICATE IMMEDIATE 712 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 713 if (isInt<16>(SignedValue)) { 714 OpVals.push_back(((unsigned) SignedValue)); 715 Opcode = SystemZISD::REPLICATE; 716 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 717 SystemZ::VectorBits / SplatBitSize); 718 return true; 719 } 720 // Try VECTOR GENERATE MASK 721 unsigned Start, End; 722 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 723 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 724 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 725 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 726 OpVals.push_back(Start - (64 - SplatBitSize)); 727 OpVals.push_back(End - (64 - SplatBitSize)); 728 Opcode = SystemZISD::ROTATE_MASK; 729 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 730 SystemZ::VectorBits / SplatBitSize); 731 return true; 732 } 733 return false; 734 }; 735 736 // First try assuming that any undefined bits above the highest set bit 737 // and below the lowest set bit are 1s. This increases the likelihood of 738 // being able to use a sign-extended element value in VECTOR REPLICATE 739 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 740 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 741 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 742 uint64_t Lower = 743 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 744 uint64_t Upper = 745 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 746 if (tryValue(SplatBitsZ | Upper | Lower)) 747 return true; 748 749 // Now try assuming that any undefined bits between the first and 750 // last defined set bits are set. This increases the chances of 751 // using a non-wraparound mask. 752 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 753 return tryValue(SplatBitsZ | Middle); 754 } 755 756 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 757 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 758 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 759 760 // Find the smallest splat. 761 SplatBits = FPImm.bitcastToAPInt(); 762 unsigned Width = SplatBits.getBitWidth(); 763 while (Width > 8) { 764 unsigned HalfSize = Width / 2; 765 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 766 APInt LowValue = SplatBits.trunc(HalfSize); 767 768 // If the two halves do not match, stop here. 769 if (HighValue != LowValue || 8 > HalfSize) 770 break; 771 772 SplatBits = HighValue; 773 Width = HalfSize; 774 } 775 SplatUndef = 0; 776 SplatBitSize = Width; 777 } 778 779 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 780 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 781 bool HasAnyUndefs; 782 783 // Get IntBits by finding the 128 bit splat. 784 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 785 true); 786 787 // Get SplatBits by finding the 8 bit or greater splat. 788 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 789 true); 790 } 791 792 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 793 bool ForCodeSize) const { 794 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 795 if (Imm.isZero() || Imm.isNegZero()) 796 return true; 797 798 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 799 } 800 801 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 802 // We can use CGFI or CLGFI. 803 return isInt<32>(Imm) || isUInt<32>(Imm); 804 } 805 806 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 807 // We can use ALGFI or SLGFI. 808 return isUInt<32>(Imm) || isUInt<32>(-Imm); 809 } 810 811 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 812 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 813 // Unaligned accesses should never be slower than the expanded version. 814 // We check specifically for aligned accesses in the few cases where 815 // they are required. 816 if (Fast) 817 *Fast = true; 818 return true; 819 } 820 821 // Information about the addressing mode for a memory access. 822 struct AddressingMode { 823 // True if a long displacement is supported. 824 bool LongDisplacement; 825 826 // True if use of index register is supported. 827 bool IndexReg; 828 829 AddressingMode(bool LongDispl, bool IdxReg) : 830 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 831 }; 832 833 // Return the desired addressing mode for a Load which has only one use (in 834 // the same block) which is a Store. 835 static AddressingMode getLoadStoreAddrMode(bool HasVector, 836 Type *Ty) { 837 // With vector support a Load->Store combination may be combined to either 838 // an MVC or vector operations and it seems to work best to allow the 839 // vector addressing mode. 840 if (HasVector) 841 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 842 843 // Otherwise only the MVC case is special. 844 bool MVC = Ty->isIntegerTy(8); 845 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 846 } 847 848 // Return the addressing mode which seems most desirable given an LLVM 849 // Instruction pointer. 850 static AddressingMode 851 supportedAddressingMode(Instruction *I, bool HasVector) { 852 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 853 switch (II->getIntrinsicID()) { 854 default: break; 855 case Intrinsic::memset: 856 case Intrinsic::memmove: 857 case Intrinsic::memcpy: 858 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 859 } 860 } 861 862 if (isa<LoadInst>(I) && I->hasOneUse()) { 863 auto *SingleUser = cast<Instruction>(*I->user_begin()); 864 if (SingleUser->getParent() == I->getParent()) { 865 if (isa<ICmpInst>(SingleUser)) { 866 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 867 if (C->getBitWidth() <= 64 && 868 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 869 // Comparison of memory with 16 bit signed / unsigned immediate 870 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 871 } else if (isa<StoreInst>(SingleUser)) 872 // Load->Store 873 return getLoadStoreAddrMode(HasVector, I->getType()); 874 } 875 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 876 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 877 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 878 // Load->Store 879 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 880 } 881 882 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 883 884 // * Use LDE instead of LE/LEY for z13 to avoid partial register 885 // dependencies (LDE only supports small offsets). 886 // * Utilize the vector registers to hold floating point 887 // values (vector load / store instructions only support small 888 // offsets). 889 890 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 891 I->getOperand(0)->getType()); 892 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 893 bool IsVectorAccess = MemAccessTy->isVectorTy(); 894 895 // A store of an extracted vector element will be combined into a VSTE type 896 // instruction. 897 if (!IsVectorAccess && isa<StoreInst>(I)) { 898 Value *DataOp = I->getOperand(0); 899 if (isa<ExtractElementInst>(DataOp)) 900 IsVectorAccess = true; 901 } 902 903 // A load which gets inserted into a vector element will be combined into a 904 // VLE type instruction. 905 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 906 User *LoadUser = *I->user_begin(); 907 if (isa<InsertElementInst>(LoadUser)) 908 IsVectorAccess = true; 909 } 910 911 if (IsFPAccess || IsVectorAccess) 912 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 913 } 914 915 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 916 } 917 918 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 919 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 920 // Punt on globals for now, although they can be used in limited 921 // RELATIVE LONG cases. 922 if (AM.BaseGV) 923 return false; 924 925 // Require a 20-bit signed offset. 926 if (!isInt<20>(AM.BaseOffs)) 927 return false; 928 929 AddressingMode SupportedAM(true, true); 930 if (I != nullptr) 931 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 932 933 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 934 return false; 935 936 if (!SupportedAM.IndexReg) 937 // No indexing allowed. 938 return AM.Scale == 0; 939 else 940 // Indexing is OK but no scale factor can be applied. 941 return AM.Scale == 0 || AM.Scale == 1; 942 } 943 944 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 945 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 946 return false; 947 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 948 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 949 return FromBits > ToBits; 950 } 951 952 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 953 if (!FromVT.isInteger() || !ToVT.isInteger()) 954 return false; 955 unsigned FromBits = FromVT.getSizeInBits(); 956 unsigned ToBits = ToVT.getSizeInBits(); 957 return FromBits > ToBits; 958 } 959 960 //===----------------------------------------------------------------------===// 961 // Inline asm support 962 //===----------------------------------------------------------------------===// 963 964 TargetLowering::ConstraintType 965 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 966 if (Constraint.size() == 1) { 967 switch (Constraint[0]) { 968 case 'a': // Address register 969 case 'd': // Data register (equivalent to 'r') 970 case 'f': // Floating-point register 971 case 'h': // High-part register 972 case 'r': // General-purpose register 973 case 'v': // Vector register 974 return C_RegisterClass; 975 976 case 'Q': // Memory with base and unsigned 12-bit displacement 977 case 'R': // Likewise, plus an index 978 case 'S': // Memory with base and signed 20-bit displacement 979 case 'T': // Likewise, plus an index 980 case 'm': // Equivalent to 'T'. 981 return C_Memory; 982 983 case 'I': // Unsigned 8-bit constant 984 case 'J': // Unsigned 12-bit constant 985 case 'K': // Signed 16-bit constant 986 case 'L': // Signed 20-bit displacement (on all targets we support) 987 case 'M': // 0x7fffffff 988 return C_Immediate; 989 990 default: 991 break; 992 } 993 } 994 return TargetLowering::getConstraintType(Constraint); 995 } 996 997 TargetLowering::ConstraintWeight SystemZTargetLowering:: 998 getSingleConstraintMatchWeight(AsmOperandInfo &info, 999 const char *constraint) const { 1000 ConstraintWeight weight = CW_Invalid; 1001 Value *CallOperandVal = info.CallOperandVal; 1002 // If we don't have a value, we can't do a match, 1003 // but allow it at the lowest weight. 1004 if (!CallOperandVal) 1005 return CW_Default; 1006 Type *type = CallOperandVal->getType(); 1007 // Look at the constraint type. 1008 switch (*constraint) { 1009 default: 1010 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1011 break; 1012 1013 case 'a': // Address register 1014 case 'd': // Data register (equivalent to 'r') 1015 case 'h': // High-part register 1016 case 'r': // General-purpose register 1017 if (CallOperandVal->getType()->isIntegerTy()) 1018 weight = CW_Register; 1019 break; 1020 1021 case 'f': // Floating-point register 1022 if (type->isFloatingPointTy()) 1023 weight = CW_Register; 1024 break; 1025 1026 case 'v': // Vector register 1027 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1028 Subtarget.hasVector()) 1029 weight = CW_Register; 1030 break; 1031 1032 case 'I': // Unsigned 8-bit constant 1033 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1034 if (isUInt<8>(C->getZExtValue())) 1035 weight = CW_Constant; 1036 break; 1037 1038 case 'J': // Unsigned 12-bit constant 1039 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1040 if (isUInt<12>(C->getZExtValue())) 1041 weight = CW_Constant; 1042 break; 1043 1044 case 'K': // Signed 16-bit constant 1045 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1046 if (isInt<16>(C->getSExtValue())) 1047 weight = CW_Constant; 1048 break; 1049 1050 case 'L': // Signed 20-bit displacement (on all targets we support) 1051 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1052 if (isInt<20>(C->getSExtValue())) 1053 weight = CW_Constant; 1054 break; 1055 1056 case 'M': // 0x7fffffff 1057 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1058 if (C->getZExtValue() == 0x7fffffff) 1059 weight = CW_Constant; 1060 break; 1061 } 1062 return weight; 1063 } 1064 1065 // Parse a "{tNNN}" register constraint for which the register type "t" 1066 // has already been verified. MC is the class associated with "t" and 1067 // Map maps 0-based register numbers to LLVM register numbers. 1068 static std::pair<unsigned, const TargetRegisterClass *> 1069 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1070 const unsigned *Map, unsigned Size) { 1071 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1072 if (isdigit(Constraint[2])) { 1073 unsigned Index; 1074 bool Failed = 1075 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1076 if (!Failed && Index < Size && Map[Index]) 1077 return std::make_pair(Map[Index], RC); 1078 } 1079 return std::make_pair(0U, nullptr); 1080 } 1081 1082 std::pair<unsigned, const TargetRegisterClass *> 1083 SystemZTargetLowering::getRegForInlineAsmConstraint( 1084 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1085 if (Constraint.size() == 1) { 1086 // GCC Constraint Letters 1087 switch (Constraint[0]) { 1088 default: break; 1089 case 'd': // Data register (equivalent to 'r') 1090 case 'r': // General-purpose register 1091 if (VT == MVT::i64) 1092 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1093 else if (VT == MVT::i128) 1094 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1095 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1096 1097 case 'a': // Address register 1098 if (VT == MVT::i64) 1099 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1100 else if (VT == MVT::i128) 1101 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1102 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1103 1104 case 'h': // High-part register (an LLVM extension) 1105 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1106 1107 case 'f': // Floating-point register 1108 if (VT == MVT::f64) 1109 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1110 else if (VT == MVT::f128) 1111 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1112 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1113 1114 case 'v': // Vector register 1115 if (Subtarget.hasVector()) { 1116 if (VT == MVT::f32) 1117 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1118 if (VT == MVT::f64) 1119 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1120 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1121 } 1122 break; 1123 } 1124 } 1125 if (Constraint.size() > 0 && Constraint[0] == '{') { 1126 // We need to override the default register parsing for GPRs and FPRs 1127 // because the interpretation depends on VT. The internal names of 1128 // the registers are also different from the external names 1129 // (F0D and F0S instead of F0, etc.). 1130 if (Constraint[1] == 'r') { 1131 if (VT == MVT::i32) 1132 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1133 SystemZMC::GR32Regs, 16); 1134 if (VT == MVT::i128) 1135 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1136 SystemZMC::GR128Regs, 16); 1137 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1138 SystemZMC::GR64Regs, 16); 1139 } 1140 if (Constraint[1] == 'f') { 1141 if (VT == MVT::f32) 1142 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1143 SystemZMC::FP32Regs, 16); 1144 if (VT == MVT::f128) 1145 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1146 SystemZMC::FP128Regs, 16); 1147 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1148 SystemZMC::FP64Regs, 16); 1149 } 1150 if (Constraint[1] == 'v') { 1151 if (VT == MVT::f32) 1152 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1153 SystemZMC::VR32Regs, 32); 1154 if (VT == MVT::f64) 1155 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1156 SystemZMC::VR64Regs, 32); 1157 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1158 SystemZMC::VR128Regs, 32); 1159 } 1160 } 1161 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1162 } 1163 1164 void SystemZTargetLowering:: 1165 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1166 std::vector<SDValue> &Ops, 1167 SelectionDAG &DAG) const { 1168 // Only support length 1 constraints for now. 1169 if (Constraint.length() == 1) { 1170 switch (Constraint[0]) { 1171 case 'I': // Unsigned 8-bit constant 1172 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1173 if (isUInt<8>(C->getZExtValue())) 1174 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1175 Op.getValueType())); 1176 return; 1177 1178 case 'J': // Unsigned 12-bit constant 1179 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1180 if (isUInt<12>(C->getZExtValue())) 1181 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1182 Op.getValueType())); 1183 return; 1184 1185 case 'K': // Signed 16-bit constant 1186 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1187 if (isInt<16>(C->getSExtValue())) 1188 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1189 Op.getValueType())); 1190 return; 1191 1192 case 'L': // Signed 20-bit displacement (on all targets we support) 1193 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1194 if (isInt<20>(C->getSExtValue())) 1195 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1196 Op.getValueType())); 1197 return; 1198 1199 case 'M': // 0x7fffffff 1200 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1201 if (C->getZExtValue() == 0x7fffffff) 1202 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1203 Op.getValueType())); 1204 return; 1205 } 1206 } 1207 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1208 } 1209 1210 //===----------------------------------------------------------------------===// 1211 // Calling conventions 1212 //===----------------------------------------------------------------------===// 1213 1214 #include "SystemZGenCallingConv.inc" 1215 1216 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1217 CallingConv::ID) const { 1218 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1219 SystemZ::R14D, 0 }; 1220 return ScratchRegs; 1221 } 1222 1223 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1224 Type *ToType) const { 1225 return isTruncateFree(FromType, ToType); 1226 } 1227 1228 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1229 return CI->isTailCall(); 1230 } 1231 1232 // We do not yet support 128-bit single-element vector types. If the user 1233 // attempts to use such types as function argument or return type, prefer 1234 // to error out instead of emitting code violating the ABI. 1235 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1236 if (ArgVT.isVector() && !VT.isVector()) 1237 report_fatal_error("Unsupported vector argument or return type"); 1238 } 1239 1240 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1241 for (unsigned i = 0; i < Ins.size(); ++i) 1242 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1243 } 1244 1245 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1246 for (unsigned i = 0; i < Outs.size(); ++i) 1247 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1248 } 1249 1250 // Value is a value that has been passed to us in the location described by VA 1251 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1252 // any loads onto Chain. 1253 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1254 CCValAssign &VA, SDValue Chain, 1255 SDValue Value) { 1256 // If the argument has been promoted from a smaller type, insert an 1257 // assertion to capture this. 1258 if (VA.getLocInfo() == CCValAssign::SExt) 1259 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1260 DAG.getValueType(VA.getValVT())); 1261 else if (VA.getLocInfo() == CCValAssign::ZExt) 1262 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1263 DAG.getValueType(VA.getValVT())); 1264 1265 if (VA.isExtInLoc()) 1266 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1267 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1268 // If this is a short vector argument loaded from the stack, 1269 // extend from i64 to full vector size and then bitcast. 1270 assert(VA.getLocVT() == MVT::i64); 1271 assert(VA.getValVT().isVector()); 1272 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1273 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1274 } else 1275 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1276 return Value; 1277 } 1278 1279 // Value is a value of type VA.getValVT() that we need to copy into 1280 // the location described by VA. Return a copy of Value converted to 1281 // VA.getValVT(). The caller is responsible for handling indirect values. 1282 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1283 CCValAssign &VA, SDValue Value) { 1284 switch (VA.getLocInfo()) { 1285 case CCValAssign::SExt: 1286 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1287 case CCValAssign::ZExt: 1288 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1289 case CCValAssign::AExt: 1290 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1291 case CCValAssign::BCvt: 1292 // If this is a short vector argument to be stored to the stack, 1293 // bitcast to v2i64 and then extract first element. 1294 assert(VA.getLocVT() == MVT::i64); 1295 assert(VA.getValVT().isVector()); 1296 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1297 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1298 DAG.getConstant(0, DL, MVT::i32)); 1299 case CCValAssign::Full: 1300 return Value; 1301 default: 1302 llvm_unreachable("Unhandled getLocInfo()"); 1303 } 1304 } 1305 1306 SDValue SystemZTargetLowering::LowerFormalArguments( 1307 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1308 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1309 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1310 MachineFunction &MF = DAG.getMachineFunction(); 1311 MachineFrameInfo &MFI = MF.getFrameInfo(); 1312 MachineRegisterInfo &MRI = MF.getRegInfo(); 1313 SystemZMachineFunctionInfo *FuncInfo = 1314 MF.getInfo<SystemZMachineFunctionInfo>(); 1315 auto *TFL = 1316 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1317 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1318 1319 // Detect unsupported vector argument types. 1320 if (Subtarget.hasVector()) 1321 VerifyVectorTypes(Ins); 1322 1323 // Assign locations to all of the incoming arguments. 1324 SmallVector<CCValAssign, 16> ArgLocs; 1325 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1326 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1327 1328 unsigned NumFixedGPRs = 0; 1329 unsigned NumFixedFPRs = 0; 1330 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1331 SDValue ArgValue; 1332 CCValAssign &VA = ArgLocs[I]; 1333 EVT LocVT = VA.getLocVT(); 1334 if (VA.isRegLoc()) { 1335 // Arguments passed in registers 1336 const TargetRegisterClass *RC; 1337 switch (LocVT.getSimpleVT().SimpleTy) { 1338 default: 1339 // Integers smaller than i64 should be promoted to i64. 1340 llvm_unreachable("Unexpected argument type"); 1341 case MVT::i32: 1342 NumFixedGPRs += 1; 1343 RC = &SystemZ::GR32BitRegClass; 1344 break; 1345 case MVT::i64: 1346 NumFixedGPRs += 1; 1347 RC = &SystemZ::GR64BitRegClass; 1348 break; 1349 case MVT::f32: 1350 NumFixedFPRs += 1; 1351 RC = &SystemZ::FP32BitRegClass; 1352 break; 1353 case MVT::f64: 1354 NumFixedFPRs += 1; 1355 RC = &SystemZ::FP64BitRegClass; 1356 break; 1357 case MVT::v16i8: 1358 case MVT::v8i16: 1359 case MVT::v4i32: 1360 case MVT::v2i64: 1361 case MVT::v4f32: 1362 case MVT::v2f64: 1363 RC = &SystemZ::VR128BitRegClass; 1364 break; 1365 } 1366 1367 Register VReg = MRI.createVirtualRegister(RC); 1368 MRI.addLiveIn(VA.getLocReg(), VReg); 1369 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1370 } else { 1371 assert(VA.isMemLoc() && "Argument not register or memory"); 1372 1373 // Create the frame index object for this incoming parameter. 1374 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1375 VA.getLocMemOffset(), true); 1376 1377 // Create the SelectionDAG nodes corresponding to a load 1378 // from this parameter. Unpromoted ints and floats are 1379 // passed as right-justified 8-byte values. 1380 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1381 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1382 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1383 DAG.getIntPtrConstant(4, DL)); 1384 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1385 MachinePointerInfo::getFixedStack(MF, FI)); 1386 } 1387 1388 // Convert the value of the argument register into the value that's 1389 // being passed. 1390 if (VA.getLocInfo() == CCValAssign::Indirect) { 1391 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1392 MachinePointerInfo())); 1393 // If the original argument was split (e.g. i128), we need 1394 // to load all parts of it here (using the same address). 1395 unsigned ArgIndex = Ins[I].OrigArgIndex; 1396 assert (Ins[I].PartOffset == 0); 1397 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1398 CCValAssign &PartVA = ArgLocs[I + 1]; 1399 unsigned PartOffset = Ins[I + 1].PartOffset; 1400 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1401 DAG.getIntPtrConstant(PartOffset, DL)); 1402 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1403 MachinePointerInfo())); 1404 ++I; 1405 } 1406 } else 1407 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1408 } 1409 1410 if (IsVarArg) { 1411 // Save the number of non-varargs registers for later use by va_start, etc. 1412 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1413 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1414 1415 // Likewise the address (in the form of a frame index) of where the 1416 // first stack vararg would be. The 1-byte size here is arbitrary. 1417 int64_t StackSize = CCInfo.getNextStackOffset(); 1418 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1419 1420 // ...and a similar frame index for the caller-allocated save area 1421 // that will be used to store the incoming registers. 1422 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1423 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1424 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1425 1426 // Store the FPR varargs in the reserved frame slots. (We store the 1427 // GPRs as part of the prologue.) 1428 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1429 SDValue MemOps[SystemZ::NumArgFPRs]; 1430 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1431 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1432 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1433 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1434 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1435 &SystemZ::FP64BitRegClass); 1436 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1437 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1438 MachinePointerInfo::getFixedStack(MF, FI)); 1439 } 1440 // Join the stores, which are independent of one another. 1441 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1442 makeArrayRef(&MemOps[NumFixedFPRs], 1443 SystemZ::NumArgFPRs-NumFixedFPRs)); 1444 } 1445 } 1446 1447 return Chain; 1448 } 1449 1450 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1451 SmallVectorImpl<CCValAssign> &ArgLocs, 1452 SmallVectorImpl<ISD::OutputArg> &Outs) { 1453 // Punt if there are any indirect or stack arguments, or if the call 1454 // needs the callee-saved argument register R6, or if the call uses 1455 // the callee-saved register arguments SwiftSelf and SwiftError. 1456 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1457 CCValAssign &VA = ArgLocs[I]; 1458 if (VA.getLocInfo() == CCValAssign::Indirect) 1459 return false; 1460 if (!VA.isRegLoc()) 1461 return false; 1462 Register Reg = VA.getLocReg(); 1463 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1464 return false; 1465 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1466 return false; 1467 } 1468 return true; 1469 } 1470 1471 SDValue 1472 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1473 SmallVectorImpl<SDValue> &InVals) const { 1474 SelectionDAG &DAG = CLI.DAG; 1475 SDLoc &DL = CLI.DL; 1476 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1477 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1478 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1479 SDValue Chain = CLI.Chain; 1480 SDValue Callee = CLI.Callee; 1481 bool &IsTailCall = CLI.IsTailCall; 1482 CallingConv::ID CallConv = CLI.CallConv; 1483 bool IsVarArg = CLI.IsVarArg; 1484 MachineFunction &MF = DAG.getMachineFunction(); 1485 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1486 1487 // Detect unsupported vector argument and return types. 1488 if (Subtarget.hasVector()) { 1489 VerifyVectorTypes(Outs); 1490 VerifyVectorTypes(Ins); 1491 } 1492 1493 // Analyze the operands of the call, assigning locations to each operand. 1494 SmallVector<CCValAssign, 16> ArgLocs; 1495 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1496 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1497 1498 // We don't support GuaranteedTailCallOpt, only automatically-detected 1499 // sibling calls. 1500 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1501 IsTailCall = false; 1502 1503 // Get a count of how many bytes are to be pushed on the stack. 1504 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1505 1506 // Mark the start of the call. 1507 if (!IsTailCall) 1508 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1509 1510 // Copy argument values to their designated locations. 1511 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1512 SmallVector<SDValue, 8> MemOpChains; 1513 SDValue StackPtr; 1514 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1515 CCValAssign &VA = ArgLocs[I]; 1516 SDValue ArgValue = OutVals[I]; 1517 1518 if (VA.getLocInfo() == CCValAssign::Indirect) { 1519 // Store the argument in a stack slot and pass its address. 1520 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1521 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1522 MemOpChains.push_back( 1523 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1524 MachinePointerInfo::getFixedStack(MF, FI))); 1525 // If the original argument was split (e.g. i128), we need 1526 // to store all parts of it here (and pass just one address). 1527 unsigned ArgIndex = Outs[I].OrigArgIndex; 1528 assert (Outs[I].PartOffset == 0); 1529 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1530 SDValue PartValue = OutVals[I + 1]; 1531 unsigned PartOffset = Outs[I + 1].PartOffset; 1532 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1533 DAG.getIntPtrConstant(PartOffset, DL)); 1534 MemOpChains.push_back( 1535 DAG.getStore(Chain, DL, PartValue, Address, 1536 MachinePointerInfo::getFixedStack(MF, FI))); 1537 ++I; 1538 } 1539 ArgValue = SpillSlot; 1540 } else 1541 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1542 1543 if (VA.isRegLoc()) 1544 // Queue up the argument copies and emit them at the end. 1545 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1546 else { 1547 assert(VA.isMemLoc() && "Argument not register or memory"); 1548 1549 // Work out the address of the stack slot. Unpromoted ints and 1550 // floats are passed as right-justified 8-byte values. 1551 if (!StackPtr.getNode()) 1552 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1553 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1554 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1555 Offset += 4; 1556 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1557 DAG.getIntPtrConstant(Offset, DL)); 1558 1559 // Emit the store. 1560 MemOpChains.push_back( 1561 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1562 } 1563 } 1564 1565 // Join the stores, which are independent of one another. 1566 if (!MemOpChains.empty()) 1567 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1568 1569 // Accept direct calls by converting symbolic call addresses to the 1570 // associated Target* opcodes. Force %r1 to be used for indirect 1571 // tail calls. 1572 SDValue Glue; 1573 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1574 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1575 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1576 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1577 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1578 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1579 } else if (IsTailCall) { 1580 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1581 Glue = Chain.getValue(1); 1582 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1583 } 1584 1585 // Build a sequence of copy-to-reg nodes, chained and glued together. 1586 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1587 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1588 RegsToPass[I].second, Glue); 1589 Glue = Chain.getValue(1); 1590 } 1591 1592 // The first call operand is the chain and the second is the target address. 1593 SmallVector<SDValue, 8> Ops; 1594 Ops.push_back(Chain); 1595 Ops.push_back(Callee); 1596 1597 // Add argument registers to the end of the list so that they are 1598 // known live into the call. 1599 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1600 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1601 RegsToPass[I].second.getValueType())); 1602 1603 // Add a register mask operand representing the call-preserved registers. 1604 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1605 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1606 assert(Mask && "Missing call preserved mask for calling convention"); 1607 Ops.push_back(DAG.getRegisterMask(Mask)); 1608 1609 // Glue the call to the argument copies, if any. 1610 if (Glue.getNode()) 1611 Ops.push_back(Glue); 1612 1613 // Emit the call. 1614 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1615 if (IsTailCall) 1616 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1617 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1618 Glue = Chain.getValue(1); 1619 1620 // Mark the end of the call, which is glued to the call itself. 1621 Chain = DAG.getCALLSEQ_END(Chain, 1622 DAG.getConstant(NumBytes, DL, PtrVT, true), 1623 DAG.getConstant(0, DL, PtrVT, true), 1624 Glue, DL); 1625 Glue = Chain.getValue(1); 1626 1627 // Assign locations to each value returned by this call. 1628 SmallVector<CCValAssign, 16> RetLocs; 1629 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1630 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1631 1632 // Copy all of the result registers out of their specified physreg. 1633 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1634 CCValAssign &VA = RetLocs[I]; 1635 1636 // Copy the value out, gluing the copy to the end of the call sequence. 1637 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1638 VA.getLocVT(), Glue); 1639 Chain = RetValue.getValue(1); 1640 Glue = RetValue.getValue(2); 1641 1642 // Convert the value of the return register into the value that's 1643 // being returned. 1644 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1645 } 1646 1647 return Chain; 1648 } 1649 1650 bool SystemZTargetLowering:: 1651 CanLowerReturn(CallingConv::ID CallConv, 1652 MachineFunction &MF, bool isVarArg, 1653 const SmallVectorImpl<ISD::OutputArg> &Outs, 1654 LLVMContext &Context) const { 1655 // Detect unsupported vector return types. 1656 if (Subtarget.hasVector()) 1657 VerifyVectorTypes(Outs); 1658 1659 // Special case that we cannot easily detect in RetCC_SystemZ since 1660 // i128 is not a legal type. 1661 for (auto &Out : Outs) 1662 if (Out.ArgVT == MVT::i128) 1663 return false; 1664 1665 SmallVector<CCValAssign, 16> RetLocs; 1666 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1667 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1668 } 1669 1670 SDValue 1671 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1672 bool IsVarArg, 1673 const SmallVectorImpl<ISD::OutputArg> &Outs, 1674 const SmallVectorImpl<SDValue> &OutVals, 1675 const SDLoc &DL, SelectionDAG &DAG) const { 1676 MachineFunction &MF = DAG.getMachineFunction(); 1677 1678 // Detect unsupported vector return types. 1679 if (Subtarget.hasVector()) 1680 VerifyVectorTypes(Outs); 1681 1682 // Assign locations to each returned value. 1683 SmallVector<CCValAssign, 16> RetLocs; 1684 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1685 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1686 1687 // Quick exit for void returns 1688 if (RetLocs.empty()) 1689 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1690 1691 if (CallConv == CallingConv::GHC) 1692 report_fatal_error("GHC functions return void only"); 1693 1694 // Copy the result values into the output registers. 1695 SDValue Glue; 1696 SmallVector<SDValue, 4> RetOps; 1697 RetOps.push_back(Chain); 1698 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1699 CCValAssign &VA = RetLocs[I]; 1700 SDValue RetValue = OutVals[I]; 1701 1702 // Make the return register live on exit. 1703 assert(VA.isRegLoc() && "Can only return in registers!"); 1704 1705 // Promote the value as required. 1706 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1707 1708 // Chain and glue the copies together. 1709 Register Reg = VA.getLocReg(); 1710 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1711 Glue = Chain.getValue(1); 1712 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1713 } 1714 1715 // Update chain and glue. 1716 RetOps[0] = Chain; 1717 if (Glue.getNode()) 1718 RetOps.push_back(Glue); 1719 1720 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1721 } 1722 1723 // Return true if Op is an intrinsic node with chain that returns the CC value 1724 // as its only (other) argument. Provide the associated SystemZISD opcode and 1725 // the mask of valid CC values if so. 1726 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1727 unsigned &CCValid) { 1728 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1729 switch (Id) { 1730 case Intrinsic::s390_tbegin: 1731 Opcode = SystemZISD::TBEGIN; 1732 CCValid = SystemZ::CCMASK_TBEGIN; 1733 return true; 1734 1735 case Intrinsic::s390_tbegin_nofloat: 1736 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1737 CCValid = SystemZ::CCMASK_TBEGIN; 1738 return true; 1739 1740 case Intrinsic::s390_tend: 1741 Opcode = SystemZISD::TEND; 1742 CCValid = SystemZ::CCMASK_TEND; 1743 return true; 1744 1745 default: 1746 return false; 1747 } 1748 } 1749 1750 // Return true if Op is an intrinsic node without chain that returns the 1751 // CC value as its final argument. Provide the associated SystemZISD 1752 // opcode and the mask of valid CC values if so. 1753 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1754 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1755 switch (Id) { 1756 case Intrinsic::s390_vpkshs: 1757 case Intrinsic::s390_vpksfs: 1758 case Intrinsic::s390_vpksgs: 1759 Opcode = SystemZISD::PACKS_CC; 1760 CCValid = SystemZ::CCMASK_VCMP; 1761 return true; 1762 1763 case Intrinsic::s390_vpklshs: 1764 case Intrinsic::s390_vpklsfs: 1765 case Intrinsic::s390_vpklsgs: 1766 Opcode = SystemZISD::PACKLS_CC; 1767 CCValid = SystemZ::CCMASK_VCMP; 1768 return true; 1769 1770 case Intrinsic::s390_vceqbs: 1771 case Intrinsic::s390_vceqhs: 1772 case Intrinsic::s390_vceqfs: 1773 case Intrinsic::s390_vceqgs: 1774 Opcode = SystemZISD::VICMPES; 1775 CCValid = SystemZ::CCMASK_VCMP; 1776 return true; 1777 1778 case Intrinsic::s390_vchbs: 1779 case Intrinsic::s390_vchhs: 1780 case Intrinsic::s390_vchfs: 1781 case Intrinsic::s390_vchgs: 1782 Opcode = SystemZISD::VICMPHS; 1783 CCValid = SystemZ::CCMASK_VCMP; 1784 return true; 1785 1786 case Intrinsic::s390_vchlbs: 1787 case Intrinsic::s390_vchlhs: 1788 case Intrinsic::s390_vchlfs: 1789 case Intrinsic::s390_vchlgs: 1790 Opcode = SystemZISD::VICMPHLS; 1791 CCValid = SystemZ::CCMASK_VCMP; 1792 return true; 1793 1794 case Intrinsic::s390_vtm: 1795 Opcode = SystemZISD::VTM; 1796 CCValid = SystemZ::CCMASK_VCMP; 1797 return true; 1798 1799 case Intrinsic::s390_vfaebs: 1800 case Intrinsic::s390_vfaehs: 1801 case Intrinsic::s390_vfaefs: 1802 Opcode = SystemZISD::VFAE_CC; 1803 CCValid = SystemZ::CCMASK_ANY; 1804 return true; 1805 1806 case Intrinsic::s390_vfaezbs: 1807 case Intrinsic::s390_vfaezhs: 1808 case Intrinsic::s390_vfaezfs: 1809 Opcode = SystemZISD::VFAEZ_CC; 1810 CCValid = SystemZ::CCMASK_ANY; 1811 return true; 1812 1813 case Intrinsic::s390_vfeebs: 1814 case Intrinsic::s390_vfeehs: 1815 case Intrinsic::s390_vfeefs: 1816 Opcode = SystemZISD::VFEE_CC; 1817 CCValid = SystemZ::CCMASK_ANY; 1818 return true; 1819 1820 case Intrinsic::s390_vfeezbs: 1821 case Intrinsic::s390_vfeezhs: 1822 case Intrinsic::s390_vfeezfs: 1823 Opcode = SystemZISD::VFEEZ_CC; 1824 CCValid = SystemZ::CCMASK_ANY; 1825 return true; 1826 1827 case Intrinsic::s390_vfenebs: 1828 case Intrinsic::s390_vfenehs: 1829 case Intrinsic::s390_vfenefs: 1830 Opcode = SystemZISD::VFENE_CC; 1831 CCValid = SystemZ::CCMASK_ANY; 1832 return true; 1833 1834 case Intrinsic::s390_vfenezbs: 1835 case Intrinsic::s390_vfenezhs: 1836 case Intrinsic::s390_vfenezfs: 1837 Opcode = SystemZISD::VFENEZ_CC; 1838 CCValid = SystemZ::CCMASK_ANY; 1839 return true; 1840 1841 case Intrinsic::s390_vistrbs: 1842 case Intrinsic::s390_vistrhs: 1843 case Intrinsic::s390_vistrfs: 1844 Opcode = SystemZISD::VISTR_CC; 1845 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1846 return true; 1847 1848 case Intrinsic::s390_vstrcbs: 1849 case Intrinsic::s390_vstrchs: 1850 case Intrinsic::s390_vstrcfs: 1851 Opcode = SystemZISD::VSTRC_CC; 1852 CCValid = SystemZ::CCMASK_ANY; 1853 return true; 1854 1855 case Intrinsic::s390_vstrczbs: 1856 case Intrinsic::s390_vstrczhs: 1857 case Intrinsic::s390_vstrczfs: 1858 Opcode = SystemZISD::VSTRCZ_CC; 1859 CCValid = SystemZ::CCMASK_ANY; 1860 return true; 1861 1862 case Intrinsic::s390_vstrsb: 1863 case Intrinsic::s390_vstrsh: 1864 case Intrinsic::s390_vstrsf: 1865 Opcode = SystemZISD::VSTRS_CC; 1866 CCValid = SystemZ::CCMASK_ANY; 1867 return true; 1868 1869 case Intrinsic::s390_vstrszb: 1870 case Intrinsic::s390_vstrszh: 1871 case Intrinsic::s390_vstrszf: 1872 Opcode = SystemZISD::VSTRSZ_CC; 1873 CCValid = SystemZ::CCMASK_ANY; 1874 return true; 1875 1876 case Intrinsic::s390_vfcedbs: 1877 case Intrinsic::s390_vfcesbs: 1878 Opcode = SystemZISD::VFCMPES; 1879 CCValid = SystemZ::CCMASK_VCMP; 1880 return true; 1881 1882 case Intrinsic::s390_vfchdbs: 1883 case Intrinsic::s390_vfchsbs: 1884 Opcode = SystemZISD::VFCMPHS; 1885 CCValid = SystemZ::CCMASK_VCMP; 1886 return true; 1887 1888 case Intrinsic::s390_vfchedbs: 1889 case Intrinsic::s390_vfchesbs: 1890 Opcode = SystemZISD::VFCMPHES; 1891 CCValid = SystemZ::CCMASK_VCMP; 1892 return true; 1893 1894 case Intrinsic::s390_vftcidb: 1895 case Intrinsic::s390_vftcisb: 1896 Opcode = SystemZISD::VFTCI; 1897 CCValid = SystemZ::CCMASK_VCMP; 1898 return true; 1899 1900 case Intrinsic::s390_tdc: 1901 Opcode = SystemZISD::TDC; 1902 CCValid = SystemZ::CCMASK_TDC; 1903 return true; 1904 1905 default: 1906 return false; 1907 } 1908 } 1909 1910 // Emit an intrinsic with chain and an explicit CC register result. 1911 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1912 unsigned Opcode) { 1913 // Copy all operands except the intrinsic ID. 1914 unsigned NumOps = Op.getNumOperands(); 1915 SmallVector<SDValue, 6> Ops; 1916 Ops.reserve(NumOps - 1); 1917 Ops.push_back(Op.getOperand(0)); 1918 for (unsigned I = 2; I < NumOps; ++I) 1919 Ops.push_back(Op.getOperand(I)); 1920 1921 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1922 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1923 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1924 SDValue OldChain = SDValue(Op.getNode(), 1); 1925 SDValue NewChain = SDValue(Intr.getNode(), 1); 1926 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1927 return Intr.getNode(); 1928 } 1929 1930 // Emit an intrinsic with an explicit CC register result. 1931 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1932 unsigned Opcode) { 1933 // Copy all operands except the intrinsic ID. 1934 unsigned NumOps = Op.getNumOperands(); 1935 SmallVector<SDValue, 6> Ops; 1936 Ops.reserve(NumOps - 1); 1937 for (unsigned I = 1; I < NumOps; ++I) 1938 Ops.push_back(Op.getOperand(I)); 1939 1940 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1941 return Intr.getNode(); 1942 } 1943 1944 // CC is a comparison that will be implemented using an integer or 1945 // floating-point comparison. Return the condition code mask for 1946 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1947 // unsigned comparisons and clear for signed ones. In the floating-point 1948 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1949 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1950 #define CONV(X) \ 1951 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1952 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1953 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1954 1955 switch (CC) { 1956 default: 1957 llvm_unreachable("Invalid integer condition!"); 1958 1959 CONV(EQ); 1960 CONV(NE); 1961 CONV(GT); 1962 CONV(GE); 1963 CONV(LT); 1964 CONV(LE); 1965 1966 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1967 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1968 } 1969 #undef CONV 1970 } 1971 1972 // If C can be converted to a comparison against zero, adjust the operands 1973 // as necessary. 1974 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1975 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1976 return; 1977 1978 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1979 if (!ConstOp1) 1980 return; 1981 1982 int64_t Value = ConstOp1->getSExtValue(); 1983 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1984 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1985 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1986 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1987 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1988 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1989 } 1990 } 1991 1992 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1993 // adjust the operands as necessary. 1994 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1995 Comparison &C) { 1996 // For us to make any changes, it must a comparison between a single-use 1997 // load and a constant. 1998 if (!C.Op0.hasOneUse() || 1999 C.Op0.getOpcode() != ISD::LOAD || 2000 C.Op1.getOpcode() != ISD::Constant) 2001 return; 2002 2003 // We must have an 8- or 16-bit load. 2004 auto *Load = cast<LoadSDNode>(C.Op0); 2005 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 2006 if (NumBits != 8 && NumBits != 16) 2007 return; 2008 2009 // The load must be an extending one and the constant must be within the 2010 // range of the unextended value. 2011 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2012 uint64_t Value = ConstOp1->getZExtValue(); 2013 uint64_t Mask = (1 << NumBits) - 1; 2014 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2015 // Make sure that ConstOp1 is in range of C.Op0. 2016 int64_t SignedValue = ConstOp1->getSExtValue(); 2017 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2018 return; 2019 if (C.ICmpType != SystemZICMP::SignedOnly) { 2020 // Unsigned comparison between two sign-extended values is equivalent 2021 // to unsigned comparison between two zero-extended values. 2022 Value &= Mask; 2023 } else if (NumBits == 8) { 2024 // Try to treat the comparison as unsigned, so that we can use CLI. 2025 // Adjust CCMask and Value as necessary. 2026 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2027 // Test whether the high bit of the byte is set. 2028 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2029 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2030 // Test whether the high bit of the byte is clear. 2031 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2032 else 2033 // No instruction exists for this combination. 2034 return; 2035 C.ICmpType = SystemZICMP::UnsignedOnly; 2036 } 2037 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2038 if (Value > Mask) 2039 return; 2040 // If the constant is in range, we can use any comparison. 2041 C.ICmpType = SystemZICMP::Any; 2042 } else 2043 return; 2044 2045 // Make sure that the first operand is an i32 of the right extension type. 2046 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2047 ISD::SEXTLOAD : 2048 ISD::ZEXTLOAD); 2049 if (C.Op0.getValueType() != MVT::i32 || 2050 Load->getExtensionType() != ExtType) { 2051 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2052 Load->getBasePtr(), Load->getPointerInfo(), 2053 Load->getMemoryVT(), Load->getAlignment(), 2054 Load->getMemOperand()->getFlags()); 2055 // Update the chain uses. 2056 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2057 } 2058 2059 // Make sure that the second operand is an i32 with the right value. 2060 if (C.Op1.getValueType() != MVT::i32 || 2061 Value != ConstOp1->getZExtValue()) 2062 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2063 } 2064 2065 // Return true if Op is either an unextended load, or a load suitable 2066 // for integer register-memory comparisons of type ICmpType. 2067 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2068 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2069 if (Load) { 2070 // There are no instructions to compare a register with a memory byte. 2071 if (Load->getMemoryVT() == MVT::i8) 2072 return false; 2073 // Otherwise decide on extension type. 2074 switch (Load->getExtensionType()) { 2075 case ISD::NON_EXTLOAD: 2076 return true; 2077 case ISD::SEXTLOAD: 2078 return ICmpType != SystemZICMP::UnsignedOnly; 2079 case ISD::ZEXTLOAD: 2080 return ICmpType != SystemZICMP::SignedOnly; 2081 default: 2082 break; 2083 } 2084 } 2085 return false; 2086 } 2087 2088 // Return true if it is better to swap the operands of C. 2089 static bool shouldSwapCmpOperands(const Comparison &C) { 2090 // Leave f128 comparisons alone, since they have no memory forms. 2091 if (C.Op0.getValueType() == MVT::f128) 2092 return false; 2093 2094 // Always keep a floating-point constant second, since comparisons with 2095 // zero can use LOAD TEST and comparisons with other constants make a 2096 // natural memory operand. 2097 if (isa<ConstantFPSDNode>(C.Op1)) 2098 return false; 2099 2100 // Never swap comparisons with zero since there are many ways to optimize 2101 // those later. 2102 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2103 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2104 return false; 2105 2106 // Also keep natural memory operands second if the loaded value is 2107 // only used here. Several comparisons have memory forms. 2108 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2109 return false; 2110 2111 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2112 // In that case we generally prefer the memory to be second. 2113 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2114 // The only exceptions are when the second operand is a constant and 2115 // we can use things like CHHSI. 2116 if (!ConstOp1) 2117 return true; 2118 // The unsigned memory-immediate instructions can handle 16-bit 2119 // unsigned integers. 2120 if (C.ICmpType != SystemZICMP::SignedOnly && 2121 isUInt<16>(ConstOp1->getZExtValue())) 2122 return false; 2123 // The signed memory-immediate instructions can handle 16-bit 2124 // signed integers. 2125 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2126 isInt<16>(ConstOp1->getSExtValue())) 2127 return false; 2128 return true; 2129 } 2130 2131 // Try to promote the use of CGFR and CLGFR. 2132 unsigned Opcode0 = C.Op0.getOpcode(); 2133 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2134 return true; 2135 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2136 return true; 2137 if (C.ICmpType != SystemZICMP::SignedOnly && 2138 Opcode0 == ISD::AND && 2139 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2140 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2141 return true; 2142 2143 return false; 2144 } 2145 2146 // Return a version of comparison CC mask CCMask in which the LT and GT 2147 // actions are swapped. 2148 static unsigned reverseCCMask(unsigned CCMask) { 2149 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 2150 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 2151 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 2152 (CCMask & SystemZ::CCMASK_CMP_UO)); 2153 } 2154 2155 // Check whether C tests for equality between X and Y and whether X - Y 2156 // or Y - X is also computed. In that case it's better to compare the 2157 // result of the subtraction against zero. 2158 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2159 Comparison &C) { 2160 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2161 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2162 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2163 SDNode *N = *I; 2164 if (N->getOpcode() == ISD::SUB && 2165 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2166 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2167 C.Op0 = SDValue(N, 0); 2168 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2169 return; 2170 } 2171 } 2172 } 2173 } 2174 2175 // Check whether C compares a floating-point value with zero and if that 2176 // floating-point value is also negated. In this case we can use the 2177 // negation to set CC, so avoiding separate LOAD AND TEST and 2178 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2179 static void adjustForFNeg(Comparison &C) { 2180 // This optimization is invalid for strict comparisons, since FNEG 2181 // does not raise any exceptions. 2182 if (C.Chain) 2183 return; 2184 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2185 if (C1 && C1->isZero()) { 2186 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2187 SDNode *N = *I; 2188 if (N->getOpcode() == ISD::FNEG) { 2189 C.Op0 = SDValue(N, 0); 2190 C.CCMask = reverseCCMask(C.CCMask); 2191 return; 2192 } 2193 } 2194 } 2195 } 2196 2197 // Check whether C compares (shl X, 32) with 0 and whether X is 2198 // also sign-extended. In that case it is better to test the result 2199 // of the sign extension using LTGFR. 2200 // 2201 // This case is important because InstCombine transforms a comparison 2202 // with (sext (trunc X)) into a comparison with (shl X, 32). 2203 static void adjustForLTGFR(Comparison &C) { 2204 // Check for a comparison between (shl X, 32) and 0. 2205 if (C.Op0.getOpcode() == ISD::SHL && 2206 C.Op0.getValueType() == MVT::i64 && 2207 C.Op1.getOpcode() == ISD::Constant && 2208 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2209 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2210 if (C1 && C1->getZExtValue() == 32) { 2211 SDValue ShlOp0 = C.Op0.getOperand(0); 2212 // See whether X has any SIGN_EXTEND_INREG uses. 2213 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2214 SDNode *N = *I; 2215 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2216 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2217 C.Op0 = SDValue(N, 0); 2218 return; 2219 } 2220 } 2221 } 2222 } 2223 } 2224 2225 // If C compares the truncation of an extending load, try to compare 2226 // the untruncated value instead. This exposes more opportunities to 2227 // reuse CC. 2228 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2229 Comparison &C) { 2230 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2231 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2232 C.Op1.getOpcode() == ISD::Constant && 2233 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2234 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2235 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2236 unsigned Type = L->getExtensionType(); 2237 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2238 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2239 C.Op0 = C.Op0.getOperand(0); 2240 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2241 } 2242 } 2243 } 2244 } 2245 2246 // Return true if shift operation N has an in-range constant shift value. 2247 // Store it in ShiftVal if so. 2248 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2249 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2250 if (!Shift) 2251 return false; 2252 2253 uint64_t Amount = Shift->getZExtValue(); 2254 if (Amount >= N.getValueSizeInBits()) 2255 return false; 2256 2257 ShiftVal = Amount; 2258 return true; 2259 } 2260 2261 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2262 // instruction and whether the CC value is descriptive enough to handle 2263 // a comparison of type Opcode between the AND result and CmpVal. 2264 // CCMask says which comparison result is being tested and BitSize is 2265 // the number of bits in the operands. If TEST UNDER MASK can be used, 2266 // return the corresponding CC mask, otherwise return 0. 2267 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2268 uint64_t Mask, uint64_t CmpVal, 2269 unsigned ICmpType) { 2270 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2271 2272 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2273 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2274 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2275 return 0; 2276 2277 // Work out the masks for the lowest and highest bits. 2278 unsigned HighShift = 63 - countLeadingZeros(Mask); 2279 uint64_t High = uint64_t(1) << HighShift; 2280 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2281 2282 // Signed ordered comparisons are effectively unsigned if the sign 2283 // bit is dropped. 2284 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2285 2286 // Check for equality comparisons with 0, or the equivalent. 2287 if (CmpVal == 0) { 2288 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2289 return SystemZ::CCMASK_TM_ALL_0; 2290 if (CCMask == SystemZ::CCMASK_CMP_NE) 2291 return SystemZ::CCMASK_TM_SOME_1; 2292 } 2293 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2294 if (CCMask == SystemZ::CCMASK_CMP_LT) 2295 return SystemZ::CCMASK_TM_ALL_0; 2296 if (CCMask == SystemZ::CCMASK_CMP_GE) 2297 return SystemZ::CCMASK_TM_SOME_1; 2298 } 2299 if (EffectivelyUnsigned && CmpVal < Low) { 2300 if (CCMask == SystemZ::CCMASK_CMP_LE) 2301 return SystemZ::CCMASK_TM_ALL_0; 2302 if (CCMask == SystemZ::CCMASK_CMP_GT) 2303 return SystemZ::CCMASK_TM_SOME_1; 2304 } 2305 2306 // Check for equality comparisons with the mask, or the equivalent. 2307 if (CmpVal == Mask) { 2308 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2309 return SystemZ::CCMASK_TM_ALL_1; 2310 if (CCMask == SystemZ::CCMASK_CMP_NE) 2311 return SystemZ::CCMASK_TM_SOME_0; 2312 } 2313 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2314 if (CCMask == SystemZ::CCMASK_CMP_GT) 2315 return SystemZ::CCMASK_TM_ALL_1; 2316 if (CCMask == SystemZ::CCMASK_CMP_LE) 2317 return SystemZ::CCMASK_TM_SOME_0; 2318 } 2319 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2320 if (CCMask == SystemZ::CCMASK_CMP_GE) 2321 return SystemZ::CCMASK_TM_ALL_1; 2322 if (CCMask == SystemZ::CCMASK_CMP_LT) 2323 return SystemZ::CCMASK_TM_SOME_0; 2324 } 2325 2326 // Check for ordered comparisons with the top bit. 2327 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2328 if (CCMask == SystemZ::CCMASK_CMP_LE) 2329 return SystemZ::CCMASK_TM_MSB_0; 2330 if (CCMask == SystemZ::CCMASK_CMP_GT) 2331 return SystemZ::CCMASK_TM_MSB_1; 2332 } 2333 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2334 if (CCMask == SystemZ::CCMASK_CMP_LT) 2335 return SystemZ::CCMASK_TM_MSB_0; 2336 if (CCMask == SystemZ::CCMASK_CMP_GE) 2337 return SystemZ::CCMASK_TM_MSB_1; 2338 } 2339 2340 // If there are just two bits, we can do equality checks for Low and High 2341 // as well. 2342 if (Mask == Low + High) { 2343 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2344 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2345 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2346 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2347 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2348 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2349 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2350 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2351 } 2352 2353 // Looks like we've exhausted our options. 2354 return 0; 2355 } 2356 2357 // See whether C can be implemented as a TEST UNDER MASK instruction. 2358 // Update the arguments with the TM version if so. 2359 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2360 Comparison &C) { 2361 // Check that we have a comparison with a constant. 2362 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2363 if (!ConstOp1) 2364 return; 2365 uint64_t CmpVal = ConstOp1->getZExtValue(); 2366 2367 // Check whether the nonconstant input is an AND with a constant mask. 2368 Comparison NewC(C); 2369 uint64_t MaskVal; 2370 ConstantSDNode *Mask = nullptr; 2371 if (C.Op0.getOpcode() == ISD::AND) { 2372 NewC.Op0 = C.Op0.getOperand(0); 2373 NewC.Op1 = C.Op0.getOperand(1); 2374 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2375 if (!Mask) 2376 return; 2377 MaskVal = Mask->getZExtValue(); 2378 } else { 2379 // There is no instruction to compare with a 64-bit immediate 2380 // so use TMHH instead if possible. We need an unsigned ordered 2381 // comparison with an i64 immediate. 2382 if (NewC.Op0.getValueType() != MVT::i64 || 2383 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2384 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2385 NewC.ICmpType == SystemZICMP::SignedOnly) 2386 return; 2387 // Convert LE and GT comparisons into LT and GE. 2388 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2389 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2390 if (CmpVal == uint64_t(-1)) 2391 return; 2392 CmpVal += 1; 2393 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2394 } 2395 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2396 // be masked off without changing the result. 2397 MaskVal = -(CmpVal & -CmpVal); 2398 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2399 } 2400 if (!MaskVal) 2401 return; 2402 2403 // Check whether the combination of mask, comparison value and comparison 2404 // type are suitable. 2405 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2406 unsigned NewCCMask, ShiftVal; 2407 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2408 NewC.Op0.getOpcode() == ISD::SHL && 2409 isSimpleShift(NewC.Op0, ShiftVal) && 2410 (MaskVal >> ShiftVal != 0) && 2411 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2412 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2413 MaskVal >> ShiftVal, 2414 CmpVal >> ShiftVal, 2415 SystemZICMP::Any))) { 2416 NewC.Op0 = NewC.Op0.getOperand(0); 2417 MaskVal >>= ShiftVal; 2418 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2419 NewC.Op0.getOpcode() == ISD::SRL && 2420 isSimpleShift(NewC.Op0, ShiftVal) && 2421 (MaskVal << ShiftVal != 0) && 2422 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2423 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2424 MaskVal << ShiftVal, 2425 CmpVal << ShiftVal, 2426 SystemZICMP::UnsignedOnly))) { 2427 NewC.Op0 = NewC.Op0.getOperand(0); 2428 MaskVal <<= ShiftVal; 2429 } else { 2430 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2431 NewC.ICmpType); 2432 if (!NewCCMask) 2433 return; 2434 } 2435 2436 // Go ahead and make the change. 2437 C.Opcode = SystemZISD::TM; 2438 C.Op0 = NewC.Op0; 2439 if (Mask && Mask->getZExtValue() == MaskVal) 2440 C.Op1 = SDValue(Mask, 0); 2441 else 2442 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2443 C.CCValid = SystemZ::CCMASK_TM; 2444 C.CCMask = NewCCMask; 2445 } 2446 2447 // See whether the comparison argument contains a redundant AND 2448 // and remove it if so. This sometimes happens due to the generic 2449 // BRCOND expansion. 2450 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2451 Comparison &C) { 2452 if (C.Op0.getOpcode() != ISD::AND) 2453 return; 2454 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2455 if (!Mask) 2456 return; 2457 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2458 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2459 return; 2460 2461 C.Op0 = C.Op0.getOperand(0); 2462 } 2463 2464 // Return a Comparison that tests the condition-code result of intrinsic 2465 // node Call against constant integer CC using comparison code Cond. 2466 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2467 // and CCValid is the set of possible condition-code results. 2468 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2469 SDValue Call, unsigned CCValid, uint64_t CC, 2470 ISD::CondCode Cond) { 2471 Comparison C(Call, SDValue(), SDValue()); 2472 C.Opcode = Opcode; 2473 C.CCValid = CCValid; 2474 if (Cond == ISD::SETEQ) 2475 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2476 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2477 else if (Cond == ISD::SETNE) 2478 // ...and the inverse of that. 2479 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2480 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2481 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2482 // always true for CC>3. 2483 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2484 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2485 // ...and the inverse of that. 2486 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2487 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2488 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2489 // always true for CC>3. 2490 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2491 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2492 // ...and the inverse of that. 2493 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2494 else 2495 llvm_unreachable("Unexpected integer comparison type"); 2496 C.CCMask &= CCValid; 2497 return C; 2498 } 2499 2500 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2501 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2502 ISD::CondCode Cond, const SDLoc &DL, 2503 SDValue Chain = SDValue(), 2504 bool IsSignaling = false) { 2505 if (CmpOp1.getOpcode() == ISD::Constant) { 2506 assert(!Chain); 2507 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2508 unsigned Opcode, CCValid; 2509 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2510 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2511 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2512 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2513 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2514 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2515 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2516 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2517 } 2518 Comparison C(CmpOp0, CmpOp1, Chain); 2519 C.CCMask = CCMaskForCondCode(Cond); 2520 if (C.Op0.getValueType().isFloatingPoint()) { 2521 C.CCValid = SystemZ::CCMASK_FCMP; 2522 if (!C.Chain) 2523 C.Opcode = SystemZISD::FCMP; 2524 else if (!IsSignaling) 2525 C.Opcode = SystemZISD::STRICT_FCMP; 2526 else 2527 C.Opcode = SystemZISD::STRICT_FCMPS; 2528 adjustForFNeg(C); 2529 } else { 2530 assert(!C.Chain); 2531 C.CCValid = SystemZ::CCMASK_ICMP; 2532 C.Opcode = SystemZISD::ICMP; 2533 // Choose the type of comparison. Equality and inequality tests can 2534 // use either signed or unsigned comparisons. The choice also doesn't 2535 // matter if both sign bits are known to be clear. In those cases we 2536 // want to give the main isel code the freedom to choose whichever 2537 // form fits best. 2538 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2539 C.CCMask == SystemZ::CCMASK_CMP_NE || 2540 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2541 C.ICmpType = SystemZICMP::Any; 2542 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2543 C.ICmpType = SystemZICMP::UnsignedOnly; 2544 else 2545 C.ICmpType = SystemZICMP::SignedOnly; 2546 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2547 adjustForRedundantAnd(DAG, DL, C); 2548 adjustZeroCmp(DAG, DL, C); 2549 adjustSubwordCmp(DAG, DL, C); 2550 adjustForSubtraction(DAG, DL, C); 2551 adjustForLTGFR(C); 2552 adjustICmpTruncate(DAG, DL, C); 2553 } 2554 2555 if (shouldSwapCmpOperands(C)) { 2556 std::swap(C.Op0, C.Op1); 2557 C.CCMask = reverseCCMask(C.CCMask); 2558 } 2559 2560 adjustForTestUnderMask(DAG, DL, C); 2561 return C; 2562 } 2563 2564 // Emit the comparison instruction described by C. 2565 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2566 if (!C.Op1.getNode()) { 2567 SDNode *Node; 2568 switch (C.Op0.getOpcode()) { 2569 case ISD::INTRINSIC_W_CHAIN: 2570 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2571 return SDValue(Node, 0); 2572 case ISD::INTRINSIC_WO_CHAIN: 2573 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2574 return SDValue(Node, Node->getNumValues() - 1); 2575 default: 2576 llvm_unreachable("Invalid comparison operands"); 2577 } 2578 } 2579 if (C.Opcode == SystemZISD::ICMP) 2580 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2581 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2582 if (C.Opcode == SystemZISD::TM) { 2583 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2584 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2585 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2586 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2587 } 2588 if (C.Chain) { 2589 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2590 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2591 } 2592 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2593 } 2594 2595 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2596 // 64 bits. Extend is the extension type to use. Store the high part 2597 // in Hi and the low part in Lo. 2598 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2599 SDValue Op0, SDValue Op1, SDValue &Hi, 2600 SDValue &Lo) { 2601 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2602 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2603 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2604 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2605 DAG.getConstant(32, DL, MVT::i64)); 2606 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2607 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2608 } 2609 2610 // Lower a binary operation that produces two VT results, one in each 2611 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2612 // and Opcode performs the GR128 operation. Store the even register result 2613 // in Even and the odd register result in Odd. 2614 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2615 unsigned Opcode, SDValue Op0, SDValue Op1, 2616 SDValue &Even, SDValue &Odd) { 2617 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2618 bool Is32Bit = is32Bit(VT); 2619 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2620 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2621 } 2622 2623 // Return an i32 value that is 1 if the CC value produced by CCReg is 2624 // in the mask CCMask and 0 otherwise. CC is known to have a value 2625 // in CCValid, so other values can be ignored. 2626 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2627 unsigned CCValid, unsigned CCMask) { 2628 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2629 DAG.getConstant(0, DL, MVT::i32), 2630 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2631 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2632 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2633 } 2634 2635 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2636 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2637 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2638 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2639 // floating-point comparisons. 2640 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2641 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2642 switch (CC) { 2643 case ISD::SETOEQ: 2644 case ISD::SETEQ: 2645 switch (Mode) { 2646 case CmpMode::Int: return SystemZISD::VICMPE; 2647 case CmpMode::FP: return SystemZISD::VFCMPE; 2648 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2649 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2650 } 2651 llvm_unreachable("Bad mode"); 2652 2653 case ISD::SETOGE: 2654 case ISD::SETGE: 2655 switch (Mode) { 2656 case CmpMode::Int: return 0; 2657 case CmpMode::FP: return SystemZISD::VFCMPHE; 2658 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2659 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2660 } 2661 llvm_unreachable("Bad mode"); 2662 2663 case ISD::SETOGT: 2664 case ISD::SETGT: 2665 switch (Mode) { 2666 case CmpMode::Int: return SystemZISD::VICMPH; 2667 case CmpMode::FP: return SystemZISD::VFCMPH; 2668 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2669 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2670 } 2671 llvm_unreachable("Bad mode"); 2672 2673 case ISD::SETUGT: 2674 switch (Mode) { 2675 case CmpMode::Int: return SystemZISD::VICMPHL; 2676 case CmpMode::FP: return 0; 2677 case CmpMode::StrictFP: return 0; 2678 case CmpMode::SignalingFP: return 0; 2679 } 2680 llvm_unreachable("Bad mode"); 2681 2682 default: 2683 return 0; 2684 } 2685 } 2686 2687 // Return the SystemZISD vector comparison operation for CC or its inverse, 2688 // or 0 if neither can be done directly. Indicate in Invert whether the 2689 // result is for the inverse of CC. Mode is as above. 2690 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2691 bool &Invert) { 2692 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2693 Invert = false; 2694 return Opcode; 2695 } 2696 2697 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int); 2698 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2699 Invert = true; 2700 return Opcode; 2701 } 2702 2703 return 0; 2704 } 2705 2706 // Return a v2f64 that contains the extended form of elements Start and Start+1 2707 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2708 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2709 SDValue Op, SDValue Chain) { 2710 int Mask[] = { Start, -1, Start + 1, -1 }; 2711 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2712 if (Chain) { 2713 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2714 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2715 } 2716 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2717 } 2718 2719 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2720 // producing a result of type VT. If Chain is nonnull, return the strict form. 2721 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2722 const SDLoc &DL, EVT VT, 2723 SDValue CmpOp0, 2724 SDValue CmpOp1, 2725 SDValue Chain) const { 2726 // There is no hardware support for v4f32 (unless we have the vector 2727 // enhancements facility 1), so extend the vector into two v2f64s 2728 // and compare those. 2729 if (CmpOp0.getValueType() == MVT::v4f32 && 2730 !Subtarget.hasVectorEnhancements1()) { 2731 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2732 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2733 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2734 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2735 if (Chain) { 2736 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2737 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2738 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2739 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2740 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2741 H1.getValue(1), L1.getValue(1), 2742 HRes.getValue(1), LRes.getValue(1) }; 2743 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2744 SDValue Ops[2] = { Res, NewChain }; 2745 return DAG.getMergeValues(Ops, DL); 2746 } 2747 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2748 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2749 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2750 } 2751 if (Chain) { 2752 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2753 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2754 } 2755 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2756 } 2757 2758 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2759 // an integer mask of type VT. If Chain is nonnull, we have a strict 2760 // floating-point comparison. If in addition IsSignaling is true, we have 2761 // a strict signaling floating-point comparison. 2762 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2763 const SDLoc &DL, EVT VT, 2764 ISD::CondCode CC, 2765 SDValue CmpOp0, 2766 SDValue CmpOp1, 2767 SDValue Chain, 2768 bool IsSignaling) const { 2769 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2770 assert (!Chain || IsFP); 2771 assert (!IsSignaling || Chain); 2772 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2773 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2774 bool Invert = false; 2775 SDValue Cmp; 2776 switch (CC) { 2777 // Handle tests for order using (or (ogt y x) (oge x y)). 2778 case ISD::SETUO: 2779 Invert = true; 2780 LLVM_FALLTHROUGH; 2781 case ISD::SETO: { 2782 assert(IsFP && "Unexpected integer comparison"); 2783 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2784 DL, VT, CmpOp1, CmpOp0, Chain); 2785 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2786 DL, VT, CmpOp0, CmpOp1, Chain); 2787 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2788 if (Chain) 2789 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2790 LT.getValue(1), GE.getValue(1)); 2791 break; 2792 } 2793 2794 // Handle <> tests using (or (ogt y x) (ogt x y)). 2795 case ISD::SETUEQ: 2796 Invert = true; 2797 LLVM_FALLTHROUGH; 2798 case ISD::SETONE: { 2799 assert(IsFP && "Unexpected integer comparison"); 2800 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2801 DL, VT, CmpOp1, CmpOp0, Chain); 2802 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2803 DL, VT, CmpOp0, CmpOp1, Chain); 2804 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2805 if (Chain) 2806 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2807 LT.getValue(1), GT.getValue(1)); 2808 break; 2809 } 2810 2811 // Otherwise a single comparison is enough. It doesn't really 2812 // matter whether we try the inversion or the swap first, since 2813 // there are no cases where both work. 2814 default: 2815 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2816 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2817 else { 2818 CC = ISD::getSetCCSwappedOperands(CC); 2819 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2820 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2821 else 2822 llvm_unreachable("Unhandled comparison"); 2823 } 2824 if (Chain) 2825 Chain = Cmp.getValue(1); 2826 break; 2827 } 2828 if (Invert) { 2829 SDValue Mask = 2830 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2831 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2832 } 2833 if (Chain && Chain.getNode() != Cmp.getNode()) { 2834 SDValue Ops[2] = { Cmp, Chain }; 2835 Cmp = DAG.getMergeValues(Ops, DL); 2836 } 2837 return Cmp; 2838 } 2839 2840 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2841 SelectionDAG &DAG) const { 2842 SDValue CmpOp0 = Op.getOperand(0); 2843 SDValue CmpOp1 = Op.getOperand(1); 2844 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2845 SDLoc DL(Op); 2846 EVT VT = Op.getValueType(); 2847 if (VT.isVector()) 2848 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2849 2850 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2851 SDValue CCReg = emitCmp(DAG, DL, C); 2852 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2853 } 2854 2855 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2856 SelectionDAG &DAG, 2857 bool IsSignaling) const { 2858 SDValue Chain = Op.getOperand(0); 2859 SDValue CmpOp0 = Op.getOperand(1); 2860 SDValue CmpOp1 = Op.getOperand(2); 2861 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2862 SDLoc DL(Op); 2863 EVT VT = Op.getNode()->getValueType(0); 2864 if (VT.isVector()) { 2865 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2866 Chain, IsSignaling); 2867 return Res.getValue(Op.getResNo()); 2868 } 2869 2870 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2871 SDValue CCReg = emitCmp(DAG, DL, C); 2872 CCReg->setFlags(Op->getFlags()); 2873 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2874 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2875 return DAG.getMergeValues(Ops, DL); 2876 } 2877 2878 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2879 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2880 SDValue CmpOp0 = Op.getOperand(2); 2881 SDValue CmpOp1 = Op.getOperand(3); 2882 SDValue Dest = Op.getOperand(4); 2883 SDLoc DL(Op); 2884 2885 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2886 SDValue CCReg = emitCmp(DAG, DL, C); 2887 return DAG.getNode( 2888 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2889 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2890 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2891 } 2892 2893 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2894 // allowing Pos and Neg to be wider than CmpOp. 2895 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2896 return (Neg.getOpcode() == ISD::SUB && 2897 Neg.getOperand(0).getOpcode() == ISD::Constant && 2898 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2899 Neg.getOperand(1) == Pos && 2900 (Pos == CmpOp || 2901 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2902 Pos.getOperand(0) == CmpOp))); 2903 } 2904 2905 // Return the absolute or negative absolute of Op; IsNegative decides which. 2906 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2907 bool IsNegative) { 2908 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2909 if (IsNegative) 2910 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2911 DAG.getConstant(0, DL, Op.getValueType()), Op); 2912 return Op; 2913 } 2914 2915 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2916 SelectionDAG &DAG) const { 2917 SDValue CmpOp0 = Op.getOperand(0); 2918 SDValue CmpOp1 = Op.getOperand(1); 2919 SDValue TrueOp = Op.getOperand(2); 2920 SDValue FalseOp = Op.getOperand(3); 2921 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2922 SDLoc DL(Op); 2923 2924 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2925 2926 // Check for absolute and negative-absolute selections, including those 2927 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2928 // This check supplements the one in DAGCombiner. 2929 if (C.Opcode == SystemZISD::ICMP && 2930 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2931 C.CCMask != SystemZ::CCMASK_CMP_NE && 2932 C.Op1.getOpcode() == ISD::Constant && 2933 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2934 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2935 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2936 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2937 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2938 } 2939 2940 SDValue CCReg = emitCmp(DAG, DL, C); 2941 SDValue Ops[] = {TrueOp, FalseOp, 2942 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2943 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2944 2945 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2946 } 2947 2948 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2949 SelectionDAG &DAG) const { 2950 SDLoc DL(Node); 2951 const GlobalValue *GV = Node->getGlobal(); 2952 int64_t Offset = Node->getOffset(); 2953 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2954 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2955 2956 SDValue Result; 2957 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2958 if (isInt<32>(Offset)) { 2959 // Assign anchors at 1<<12 byte boundaries. 2960 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2961 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2962 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2963 2964 // The offset can be folded into the address if it is aligned to a 2965 // halfword. 2966 Offset -= Anchor; 2967 if (Offset != 0 && (Offset & 1) == 0) { 2968 SDValue Full = 2969 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2970 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2971 Offset = 0; 2972 } 2973 } else { 2974 // Conservatively load a constant offset greater than 32 bits into a 2975 // register below. 2976 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 2977 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2978 } 2979 } else { 2980 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2981 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2982 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2983 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2984 } 2985 2986 // If there was a non-zero offset that we didn't fold, create an explicit 2987 // addition for it. 2988 if (Offset != 0) 2989 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2990 DAG.getConstant(Offset, DL, PtrVT)); 2991 2992 return Result; 2993 } 2994 2995 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2996 SelectionDAG &DAG, 2997 unsigned Opcode, 2998 SDValue GOTOffset) const { 2999 SDLoc DL(Node); 3000 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3001 SDValue Chain = DAG.getEntryNode(); 3002 SDValue Glue; 3003 3004 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3005 CallingConv::GHC) 3006 report_fatal_error("In GHC calling convention TLS is not supported"); 3007 3008 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3009 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3010 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3011 Glue = Chain.getValue(1); 3012 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3013 Glue = Chain.getValue(1); 3014 3015 // The first call operand is the chain and the second is the TLS symbol. 3016 SmallVector<SDValue, 8> Ops; 3017 Ops.push_back(Chain); 3018 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3019 Node->getValueType(0), 3020 0, 0)); 3021 3022 // Add argument registers to the end of the list so that they are 3023 // known live into the call. 3024 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3025 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3026 3027 // Add a register mask operand representing the call-preserved registers. 3028 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3029 const uint32_t *Mask = 3030 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3031 assert(Mask && "Missing call preserved mask for calling convention"); 3032 Ops.push_back(DAG.getRegisterMask(Mask)); 3033 3034 // Glue the call to the argument copies. 3035 Ops.push_back(Glue); 3036 3037 // Emit the call. 3038 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3039 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3040 Glue = Chain.getValue(1); 3041 3042 // Copy the return value from %r2. 3043 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3044 } 3045 3046 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3047 SelectionDAG &DAG) const { 3048 SDValue Chain = DAG.getEntryNode(); 3049 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3050 3051 // The high part of the thread pointer is in access register 0. 3052 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3053 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3054 3055 // The low part of the thread pointer is in access register 1. 3056 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3057 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3058 3059 // Merge them into a single 64-bit address. 3060 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3061 DAG.getConstant(32, DL, PtrVT)); 3062 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3063 } 3064 3065 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3066 SelectionDAG &DAG) const { 3067 if (DAG.getTarget().useEmulatedTLS()) 3068 return LowerToTLSEmulatedModel(Node, DAG); 3069 SDLoc DL(Node); 3070 const GlobalValue *GV = Node->getGlobal(); 3071 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3072 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3073 3074 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3075 CallingConv::GHC) 3076 report_fatal_error("In GHC calling convention TLS is not supported"); 3077 3078 SDValue TP = lowerThreadPointer(DL, DAG); 3079 3080 // Get the offset of GA from the thread pointer, based on the TLS model. 3081 SDValue Offset; 3082 switch (model) { 3083 case TLSModel::GeneralDynamic: { 3084 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3085 SystemZConstantPoolValue *CPV = 3086 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3087 3088 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3089 Offset = DAG.getLoad( 3090 PtrVT, DL, DAG.getEntryNode(), Offset, 3091 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3092 3093 // Call __tls_get_offset to retrieve the offset. 3094 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3095 break; 3096 } 3097 3098 case TLSModel::LocalDynamic: { 3099 // Load the GOT offset of the module ID. 3100 SystemZConstantPoolValue *CPV = 3101 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3102 3103 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3104 Offset = DAG.getLoad( 3105 PtrVT, DL, DAG.getEntryNode(), Offset, 3106 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3107 3108 // Call __tls_get_offset to retrieve the module base offset. 3109 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3110 3111 // Note: The SystemZLDCleanupPass will remove redundant computations 3112 // of the module base offset. Count total number of local-dynamic 3113 // accesses to trigger execution of that pass. 3114 SystemZMachineFunctionInfo* MFI = 3115 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3116 MFI->incNumLocalDynamicTLSAccesses(); 3117 3118 // Add the per-symbol offset. 3119 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3120 3121 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 3122 DTPOffset = DAG.getLoad( 3123 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3124 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3125 3126 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3127 break; 3128 } 3129 3130 case TLSModel::InitialExec: { 3131 // Load the offset from the GOT. 3132 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3133 SystemZII::MO_INDNTPOFF); 3134 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3135 Offset = 3136 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3137 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3138 break; 3139 } 3140 3141 case TLSModel::LocalExec: { 3142 // Force the offset into the constant pool and load it from there. 3143 SystemZConstantPoolValue *CPV = 3144 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3145 3146 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3147 Offset = DAG.getLoad( 3148 PtrVT, DL, DAG.getEntryNode(), Offset, 3149 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3150 break; 3151 } 3152 } 3153 3154 // Add the base and offset together. 3155 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3156 } 3157 3158 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3159 SelectionDAG &DAG) const { 3160 SDLoc DL(Node); 3161 const BlockAddress *BA = Node->getBlockAddress(); 3162 int64_t Offset = Node->getOffset(); 3163 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3164 3165 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3166 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3167 return Result; 3168 } 3169 3170 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3171 SelectionDAG &DAG) const { 3172 SDLoc DL(JT); 3173 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3174 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3175 3176 // Use LARL to load the address of the table. 3177 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3178 } 3179 3180 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3181 SelectionDAG &DAG) const { 3182 SDLoc DL(CP); 3183 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3184 3185 SDValue Result; 3186 if (CP->isMachineConstantPoolEntry()) 3187 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3188 CP->getAlignment()); 3189 else 3190 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3191 CP->getAlignment(), CP->getOffset()); 3192 3193 // Use LARL to load the address of the constant pool entry. 3194 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3195 } 3196 3197 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3198 SelectionDAG &DAG) const { 3199 MachineFunction &MF = DAG.getMachineFunction(); 3200 MachineFrameInfo &MFI = MF.getFrameInfo(); 3201 MFI.setFrameAddressIsTaken(true); 3202 3203 SDLoc DL(Op); 3204 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3205 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3206 3207 // If the back chain frame index has not been allocated yet, do so. 3208 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 3209 int BackChainIdx = FI->getFramePointerSaveIndex(); 3210 if (!BackChainIdx) { 3211 // By definition, the frame address is the address of the back chain. 3212 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 3213 FI->setFramePointerSaveIndex(BackChainIdx); 3214 } 3215 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3216 3217 // FIXME The frontend should detect this case. 3218 if (Depth > 0) { 3219 report_fatal_error("Unsupported stack frame traversal count"); 3220 } 3221 3222 return BackChain; 3223 } 3224 3225 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3226 SelectionDAG &DAG) const { 3227 MachineFunction &MF = DAG.getMachineFunction(); 3228 MachineFrameInfo &MFI = MF.getFrameInfo(); 3229 MFI.setReturnAddressIsTaken(true); 3230 3231 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3232 return SDValue(); 3233 3234 SDLoc DL(Op); 3235 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3236 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3237 3238 // FIXME The frontend should detect this case. 3239 if (Depth > 0) { 3240 report_fatal_error("Unsupported stack frame traversal count"); 3241 } 3242 3243 // Return R14D, which has the return address. Mark it an implicit live-in. 3244 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3245 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3246 } 3247 3248 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3249 SelectionDAG &DAG) const { 3250 SDLoc DL(Op); 3251 SDValue In = Op.getOperand(0); 3252 EVT InVT = In.getValueType(); 3253 EVT ResVT = Op.getValueType(); 3254 3255 // Convert loads directly. This is normally done by DAGCombiner, 3256 // but we need this case for bitcasts that are created during lowering 3257 // and which are then lowered themselves. 3258 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3259 if (ISD::isNormalLoad(LoadN)) { 3260 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3261 LoadN->getBasePtr(), LoadN->getMemOperand()); 3262 // Update the chain uses. 3263 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3264 return NewLoad; 3265 } 3266 3267 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3268 SDValue In64; 3269 if (Subtarget.hasHighWord()) { 3270 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3271 MVT::i64); 3272 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3273 MVT::i64, SDValue(U64, 0), In); 3274 } else { 3275 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3276 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3277 DAG.getConstant(32, DL, MVT::i64)); 3278 } 3279 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3280 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3281 DL, MVT::f32, Out64); 3282 } 3283 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3284 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3285 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3286 MVT::f64, SDValue(U64, 0), In); 3287 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3288 if (Subtarget.hasHighWord()) 3289 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3290 MVT::i32, Out64); 3291 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3292 DAG.getConstant(32, DL, MVT::i64)); 3293 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3294 } 3295 llvm_unreachable("Unexpected bitcast combination"); 3296 } 3297 3298 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3299 SelectionDAG &DAG) const { 3300 MachineFunction &MF = DAG.getMachineFunction(); 3301 SystemZMachineFunctionInfo *FuncInfo = 3302 MF.getInfo<SystemZMachineFunctionInfo>(); 3303 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3304 3305 SDValue Chain = Op.getOperand(0); 3306 SDValue Addr = Op.getOperand(1); 3307 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3308 SDLoc DL(Op); 3309 3310 // The initial values of each field. 3311 const unsigned NumFields = 4; 3312 SDValue Fields[NumFields] = { 3313 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3314 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3315 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3316 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3317 }; 3318 3319 // Store each field into its respective slot. 3320 SDValue MemOps[NumFields]; 3321 unsigned Offset = 0; 3322 for (unsigned I = 0; I < NumFields; ++I) { 3323 SDValue FieldAddr = Addr; 3324 if (Offset != 0) 3325 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3326 DAG.getIntPtrConstant(Offset, DL)); 3327 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3328 MachinePointerInfo(SV, Offset)); 3329 Offset += 8; 3330 } 3331 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3332 } 3333 3334 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3335 SelectionDAG &DAG) const { 3336 SDValue Chain = Op.getOperand(0); 3337 SDValue DstPtr = Op.getOperand(1); 3338 SDValue SrcPtr = Op.getOperand(2); 3339 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3340 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3341 SDLoc DL(Op); 3342 3343 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3344 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3345 /*isTailCall*/false, 3346 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3347 } 3348 3349 SDValue SystemZTargetLowering:: 3350 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3351 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3352 MachineFunction &MF = DAG.getMachineFunction(); 3353 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3354 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3355 3356 SDValue Chain = Op.getOperand(0); 3357 SDValue Size = Op.getOperand(1); 3358 SDValue Align = Op.getOperand(2); 3359 SDLoc DL(Op); 3360 3361 // If user has set the no alignment function attribute, ignore 3362 // alloca alignments. 3363 uint64_t AlignVal = (RealignOpt ? 3364 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3365 3366 uint64_t StackAlign = TFI->getStackAlignment(); 3367 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3368 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3369 3370 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3371 SDValue NeededSpace = Size; 3372 3373 // Get a reference to the stack pointer. 3374 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3375 3376 // If we need a backchain, save it now. 3377 SDValue Backchain; 3378 if (StoreBackchain) 3379 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3380 3381 // Add extra space for alignment if needed. 3382 if (ExtraAlignSpace) 3383 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3384 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3385 3386 // Get the new stack pointer value. 3387 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3388 3389 // Copy the new stack pointer back. 3390 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3391 3392 // The allocated data lives above the 160 bytes allocated for the standard 3393 // frame, plus any outgoing stack arguments. We don't know how much that 3394 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3395 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3396 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3397 3398 // Dynamically realign if needed. 3399 if (RequiredAlign > StackAlign) { 3400 Result = 3401 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3402 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3403 Result = 3404 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3405 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3406 } 3407 3408 if (StoreBackchain) 3409 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3410 3411 SDValue Ops[2] = { Result, Chain }; 3412 return DAG.getMergeValues(Ops, DL); 3413 } 3414 3415 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3416 SDValue Op, SelectionDAG &DAG) const { 3417 SDLoc DL(Op); 3418 3419 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3420 } 3421 3422 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3423 SelectionDAG &DAG) const { 3424 EVT VT = Op.getValueType(); 3425 SDLoc DL(Op); 3426 SDValue Ops[2]; 3427 if (is32Bit(VT)) 3428 // Just do a normal 64-bit multiplication and extract the results. 3429 // We define this so that it can be used for constant division. 3430 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3431 Op.getOperand(1), Ops[1], Ops[0]); 3432 else if (Subtarget.hasMiscellaneousExtensions2()) 3433 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3434 // the high result in the even register. ISD::SMUL_LOHI is defined to 3435 // return the low half first, so the results are in reverse order. 3436 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3437 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3438 else { 3439 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3440 // 3441 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3442 // 3443 // but using the fact that the upper halves are either all zeros 3444 // or all ones: 3445 // 3446 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3447 // 3448 // and grouping the right terms together since they are quicker than the 3449 // multiplication: 3450 // 3451 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3452 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3453 SDValue LL = Op.getOperand(0); 3454 SDValue RL = Op.getOperand(1); 3455 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3456 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3457 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3458 // the high result in the even register. ISD::SMUL_LOHI is defined to 3459 // return the low half first, so the results are in reverse order. 3460 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3461 LL, RL, Ops[1], Ops[0]); 3462 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3463 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3464 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3465 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3466 } 3467 return DAG.getMergeValues(Ops, DL); 3468 } 3469 3470 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3471 SelectionDAG &DAG) const { 3472 EVT VT = Op.getValueType(); 3473 SDLoc DL(Op); 3474 SDValue Ops[2]; 3475 if (is32Bit(VT)) 3476 // Just do a normal 64-bit multiplication and extract the results. 3477 // We define this so that it can be used for constant division. 3478 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3479 Op.getOperand(1), Ops[1], Ops[0]); 3480 else 3481 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3482 // the high result in the even register. ISD::UMUL_LOHI is defined to 3483 // return the low half first, so the results are in reverse order. 3484 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3485 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3486 return DAG.getMergeValues(Ops, DL); 3487 } 3488 3489 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3490 SelectionDAG &DAG) const { 3491 SDValue Op0 = Op.getOperand(0); 3492 SDValue Op1 = Op.getOperand(1); 3493 EVT VT = Op.getValueType(); 3494 SDLoc DL(Op); 3495 3496 // We use DSGF for 32-bit division. This means the first operand must 3497 // always be 64-bit, and the second operand should be 32-bit whenever 3498 // that is possible, to improve performance. 3499 if (is32Bit(VT)) 3500 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3501 else if (DAG.ComputeNumSignBits(Op1) > 32) 3502 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3503 3504 // DSG(F) returns the remainder in the even register and the 3505 // quotient in the odd register. 3506 SDValue Ops[2]; 3507 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3508 return DAG.getMergeValues(Ops, DL); 3509 } 3510 3511 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3512 SelectionDAG &DAG) const { 3513 EVT VT = Op.getValueType(); 3514 SDLoc DL(Op); 3515 3516 // DL(G) returns the remainder in the even register and the 3517 // quotient in the odd register. 3518 SDValue Ops[2]; 3519 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3520 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3521 return DAG.getMergeValues(Ops, DL); 3522 } 3523 3524 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3525 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3526 3527 // Get the known-zero masks for each operand. 3528 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3529 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3530 DAG.computeKnownBits(Ops[1])}; 3531 3532 // See if the upper 32 bits of one operand and the lower 32 bits of the 3533 // other are known zero. They are the low and high operands respectively. 3534 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3535 Known[1].Zero.getZExtValue() }; 3536 unsigned High, Low; 3537 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3538 High = 1, Low = 0; 3539 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3540 High = 0, Low = 1; 3541 else 3542 return Op; 3543 3544 SDValue LowOp = Ops[Low]; 3545 SDValue HighOp = Ops[High]; 3546 3547 // If the high part is a constant, we're better off using IILH. 3548 if (HighOp.getOpcode() == ISD::Constant) 3549 return Op; 3550 3551 // If the low part is a constant that is outside the range of LHI, 3552 // then we're better off using IILF. 3553 if (LowOp.getOpcode() == ISD::Constant) { 3554 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3555 if (!isInt<16>(Value)) 3556 return Op; 3557 } 3558 3559 // Check whether the high part is an AND that doesn't change the 3560 // high 32 bits and just masks out low bits. We can skip it if so. 3561 if (HighOp.getOpcode() == ISD::AND && 3562 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3563 SDValue HighOp0 = HighOp.getOperand(0); 3564 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3565 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3566 HighOp = HighOp0; 3567 } 3568 3569 // Take advantage of the fact that all GR32 operations only change the 3570 // low 32 bits by truncating Low to an i32 and inserting it directly 3571 // using a subreg. The interesting cases are those where the truncation 3572 // can be folded. 3573 SDLoc DL(Op); 3574 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3575 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3576 MVT::i64, HighOp, Low32); 3577 } 3578 3579 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3580 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3581 SelectionDAG &DAG) const { 3582 SDNode *N = Op.getNode(); 3583 SDValue LHS = N->getOperand(0); 3584 SDValue RHS = N->getOperand(1); 3585 SDLoc DL(N); 3586 unsigned BaseOp = 0; 3587 unsigned CCValid = 0; 3588 unsigned CCMask = 0; 3589 3590 switch (Op.getOpcode()) { 3591 default: llvm_unreachable("Unknown instruction!"); 3592 case ISD::SADDO: 3593 BaseOp = SystemZISD::SADDO; 3594 CCValid = SystemZ::CCMASK_ARITH; 3595 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3596 break; 3597 case ISD::SSUBO: 3598 BaseOp = SystemZISD::SSUBO; 3599 CCValid = SystemZ::CCMASK_ARITH; 3600 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3601 break; 3602 case ISD::UADDO: 3603 BaseOp = SystemZISD::UADDO; 3604 CCValid = SystemZ::CCMASK_LOGICAL; 3605 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3606 break; 3607 case ISD::USUBO: 3608 BaseOp = SystemZISD::USUBO; 3609 CCValid = SystemZ::CCMASK_LOGICAL; 3610 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3611 break; 3612 } 3613 3614 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3615 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3616 3617 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3618 if (N->getValueType(1) == MVT::i1) 3619 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3620 3621 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3622 } 3623 3624 static bool isAddCarryChain(SDValue Carry) { 3625 while (Carry.getOpcode() == ISD::ADDCARRY) 3626 Carry = Carry.getOperand(2); 3627 return Carry.getOpcode() == ISD::UADDO; 3628 } 3629 3630 static bool isSubBorrowChain(SDValue Carry) { 3631 while (Carry.getOpcode() == ISD::SUBCARRY) 3632 Carry = Carry.getOperand(2); 3633 return Carry.getOpcode() == ISD::USUBO; 3634 } 3635 3636 // Lower ADDCARRY/SUBCARRY nodes. 3637 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3638 SelectionDAG &DAG) const { 3639 3640 SDNode *N = Op.getNode(); 3641 MVT VT = N->getSimpleValueType(0); 3642 3643 // Let legalize expand this if it isn't a legal type yet. 3644 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3645 return SDValue(); 3646 3647 SDValue LHS = N->getOperand(0); 3648 SDValue RHS = N->getOperand(1); 3649 SDValue Carry = Op.getOperand(2); 3650 SDLoc DL(N); 3651 unsigned BaseOp = 0; 3652 unsigned CCValid = 0; 3653 unsigned CCMask = 0; 3654 3655 switch (Op.getOpcode()) { 3656 default: llvm_unreachable("Unknown instruction!"); 3657 case ISD::ADDCARRY: 3658 if (!isAddCarryChain(Carry)) 3659 return SDValue(); 3660 3661 BaseOp = SystemZISD::ADDCARRY; 3662 CCValid = SystemZ::CCMASK_LOGICAL; 3663 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3664 break; 3665 case ISD::SUBCARRY: 3666 if (!isSubBorrowChain(Carry)) 3667 return SDValue(); 3668 3669 BaseOp = SystemZISD::SUBCARRY; 3670 CCValid = SystemZ::CCMASK_LOGICAL; 3671 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3672 break; 3673 } 3674 3675 // Set the condition code from the carry flag. 3676 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3677 DAG.getConstant(CCValid, DL, MVT::i32), 3678 DAG.getConstant(CCMask, DL, MVT::i32)); 3679 3680 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3681 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3682 3683 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3684 if (N->getValueType(1) == MVT::i1) 3685 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3686 3687 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3688 } 3689 3690 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3691 SelectionDAG &DAG) const { 3692 EVT VT = Op.getValueType(); 3693 SDLoc DL(Op); 3694 Op = Op.getOperand(0); 3695 3696 // Handle vector types via VPOPCT. 3697 if (VT.isVector()) { 3698 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3699 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3700 switch (VT.getScalarSizeInBits()) { 3701 case 8: 3702 break; 3703 case 16: { 3704 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3705 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3706 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3707 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3708 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3709 break; 3710 } 3711 case 32: { 3712 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3713 DAG.getConstant(0, DL, MVT::i32)); 3714 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3715 break; 3716 } 3717 case 64: { 3718 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3719 DAG.getConstant(0, DL, MVT::i32)); 3720 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3721 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3722 break; 3723 } 3724 default: 3725 llvm_unreachable("Unexpected type"); 3726 } 3727 return Op; 3728 } 3729 3730 // Get the known-zero mask for the operand. 3731 KnownBits Known = DAG.computeKnownBits(Op); 3732 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3733 if (NumSignificantBits == 0) 3734 return DAG.getConstant(0, DL, VT); 3735 3736 // Skip known-zero high parts of the operand. 3737 int64_t OrigBitSize = VT.getSizeInBits(); 3738 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3739 BitSize = std::min(BitSize, OrigBitSize); 3740 3741 // The POPCNT instruction counts the number of bits in each byte. 3742 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3743 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3744 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3745 3746 // Add up per-byte counts in a binary tree. All bits of Op at 3747 // position larger than BitSize remain zero throughout. 3748 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3749 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3750 if (BitSize != OrigBitSize) 3751 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3752 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3753 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3754 } 3755 3756 // Extract overall result from high byte. 3757 if (BitSize > 8) 3758 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3759 DAG.getConstant(BitSize - 8, DL, VT)); 3760 3761 return Op; 3762 } 3763 3764 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3765 SelectionDAG &DAG) const { 3766 SDLoc DL(Op); 3767 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3768 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3769 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3770 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3771 3772 // The only fence that needs an instruction is a sequentially-consistent 3773 // cross-thread fence. 3774 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3775 FenceSSID == SyncScope::System) { 3776 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3777 Op.getOperand(0)), 3778 0); 3779 } 3780 3781 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3782 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3783 } 3784 3785 // Op is an atomic load. Lower it into a normal volatile load. 3786 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3787 SelectionDAG &DAG) const { 3788 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3789 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3790 Node->getChain(), Node->getBasePtr(), 3791 Node->getMemoryVT(), Node->getMemOperand()); 3792 } 3793 3794 // Op is an atomic store. Lower it into a normal volatile store. 3795 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3796 SelectionDAG &DAG) const { 3797 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3798 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3799 Node->getBasePtr(), Node->getMemoryVT(), 3800 Node->getMemOperand()); 3801 // We have to enforce sequential consistency by performing a 3802 // serialization operation after the store. 3803 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3804 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3805 MVT::Other, Chain), 0); 3806 return Chain; 3807 } 3808 3809 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3810 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3811 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3812 SelectionDAG &DAG, 3813 unsigned Opcode) const { 3814 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3815 3816 // 32-bit operations need no code outside the main loop. 3817 EVT NarrowVT = Node->getMemoryVT(); 3818 EVT WideVT = MVT::i32; 3819 if (NarrowVT == WideVT) 3820 return Op; 3821 3822 int64_t BitSize = NarrowVT.getSizeInBits(); 3823 SDValue ChainIn = Node->getChain(); 3824 SDValue Addr = Node->getBasePtr(); 3825 SDValue Src2 = Node->getVal(); 3826 MachineMemOperand *MMO = Node->getMemOperand(); 3827 SDLoc DL(Node); 3828 EVT PtrVT = Addr.getValueType(); 3829 3830 // Convert atomic subtracts of constants into additions. 3831 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3832 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3833 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3834 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3835 } 3836 3837 // Get the address of the containing word. 3838 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3839 DAG.getConstant(-4, DL, PtrVT)); 3840 3841 // Get the number of bits that the word must be rotated left in order 3842 // to bring the field to the top bits of a GR32. 3843 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3844 DAG.getConstant(3, DL, PtrVT)); 3845 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3846 3847 // Get the complementing shift amount, for rotating a field in the top 3848 // bits back to its proper position. 3849 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3850 DAG.getConstant(0, DL, WideVT), BitShift); 3851 3852 // Extend the source operand to 32 bits and prepare it for the inner loop. 3853 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3854 // operations require the source to be shifted in advance. (This shift 3855 // can be folded if the source is constant.) For AND and NAND, the lower 3856 // bits must be set, while for other opcodes they should be left clear. 3857 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3858 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3859 DAG.getConstant(32 - BitSize, DL, WideVT)); 3860 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3861 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3862 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3863 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3864 3865 // Construct the ATOMIC_LOADW_* node. 3866 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3867 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3868 DAG.getConstant(BitSize, DL, WideVT) }; 3869 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3870 NarrowVT, MMO); 3871 3872 // Rotate the result of the final CS so that the field is in the lower 3873 // bits of a GR32, then truncate it. 3874 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3875 DAG.getConstant(BitSize, DL, WideVT)); 3876 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3877 3878 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3879 return DAG.getMergeValues(RetOps, DL); 3880 } 3881 3882 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3883 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3884 // operations into additions. 3885 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3886 SelectionDAG &DAG) const { 3887 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3888 EVT MemVT = Node->getMemoryVT(); 3889 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3890 // A full-width operation. 3891 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3892 SDValue Src2 = Node->getVal(); 3893 SDValue NegSrc2; 3894 SDLoc DL(Src2); 3895 3896 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3897 // Use an addition if the operand is constant and either LAA(G) is 3898 // available or the negative value is in the range of A(G)FHI. 3899 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3900 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3901 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3902 } else if (Subtarget.hasInterlockedAccess1()) 3903 // Use LAA(G) if available. 3904 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3905 Src2); 3906 3907 if (NegSrc2.getNode()) 3908 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3909 Node->getChain(), Node->getBasePtr(), NegSrc2, 3910 Node->getMemOperand()); 3911 3912 // Use the node as-is. 3913 return Op; 3914 } 3915 3916 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3917 } 3918 3919 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3920 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3921 SelectionDAG &DAG) const { 3922 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3923 SDValue ChainIn = Node->getOperand(0); 3924 SDValue Addr = Node->getOperand(1); 3925 SDValue CmpVal = Node->getOperand(2); 3926 SDValue SwapVal = Node->getOperand(3); 3927 MachineMemOperand *MMO = Node->getMemOperand(); 3928 SDLoc DL(Node); 3929 3930 // We have native support for 32-bit and 64-bit compare and swap, but we 3931 // still need to expand extracting the "success" result from the CC. 3932 EVT NarrowVT = Node->getMemoryVT(); 3933 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3934 if (NarrowVT == WideVT) { 3935 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3936 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3937 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3938 DL, Tys, Ops, NarrowVT, MMO); 3939 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3940 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3941 3942 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3943 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3944 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3945 return SDValue(); 3946 } 3947 3948 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3949 // via a fullword ATOMIC_CMP_SWAPW operation. 3950 int64_t BitSize = NarrowVT.getSizeInBits(); 3951 EVT PtrVT = Addr.getValueType(); 3952 3953 // Get the address of the containing word. 3954 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3955 DAG.getConstant(-4, DL, PtrVT)); 3956 3957 // Get the number of bits that the word must be rotated left in order 3958 // to bring the field to the top bits of a GR32. 3959 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3960 DAG.getConstant(3, DL, PtrVT)); 3961 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3962 3963 // Get the complementing shift amount, for rotating a field in the top 3964 // bits back to its proper position. 3965 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3966 DAG.getConstant(0, DL, WideVT), BitShift); 3967 3968 // Construct the ATOMIC_CMP_SWAPW node. 3969 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3970 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3971 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3972 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3973 VTList, Ops, NarrowVT, MMO); 3974 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3975 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3976 3977 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3978 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3979 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3980 return SDValue(); 3981 } 3982 3983 MachineMemOperand::Flags 3984 SystemZTargetLowering::getMMOFlags(const Instruction &I) const { 3985 // Because of how we convert atomic_load and atomic_store to normal loads and 3986 // stores in the DAG, we need to ensure that the MMOs are marked volatile 3987 // since DAGCombine hasn't been updated to account for atomic, but non 3988 // volatile loads. (See D57601) 3989 if (auto *SI = dyn_cast<StoreInst>(&I)) 3990 if (SI->isAtomic()) 3991 return MachineMemOperand::MOVolatile; 3992 if (auto *LI = dyn_cast<LoadInst>(&I)) 3993 if (LI->isAtomic()) 3994 return MachineMemOperand::MOVolatile; 3995 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 3996 if (AI->isAtomic()) 3997 return MachineMemOperand::MOVolatile; 3998 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 3999 if (AI->isAtomic()) 4000 return MachineMemOperand::MOVolatile; 4001 return MachineMemOperand::MONone; 4002 } 4003 4004 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4005 SelectionDAG &DAG) const { 4006 MachineFunction &MF = DAG.getMachineFunction(); 4007 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4008 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4009 report_fatal_error("Variable-sized stack allocations are not supported " 4010 "in GHC calling convention"); 4011 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4012 SystemZ::R15D, Op.getValueType()); 4013 } 4014 4015 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4016 SelectionDAG &DAG) const { 4017 MachineFunction &MF = DAG.getMachineFunction(); 4018 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4019 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4020 4021 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4022 report_fatal_error("Variable-sized stack allocations are not supported " 4023 "in GHC calling convention"); 4024 4025 SDValue Chain = Op.getOperand(0); 4026 SDValue NewSP = Op.getOperand(1); 4027 SDValue Backchain; 4028 SDLoc DL(Op); 4029 4030 if (StoreBackchain) { 4031 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4032 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4033 } 4034 4035 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4036 4037 if (StoreBackchain) 4038 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4039 4040 return Chain; 4041 } 4042 4043 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4044 SelectionDAG &DAG) const { 4045 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4046 if (!IsData) 4047 // Just preserve the chain. 4048 return Op.getOperand(0); 4049 4050 SDLoc DL(Op); 4051 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4052 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4053 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4054 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4055 Op.getOperand(1)}; 4056 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4057 Node->getVTList(), Ops, 4058 Node->getMemoryVT(), Node->getMemOperand()); 4059 } 4060 4061 // Convert condition code in CCReg to an i32 value. 4062 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4063 SDLoc DL(CCReg); 4064 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4065 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4066 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4067 } 4068 4069 SDValue 4070 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4071 SelectionDAG &DAG) const { 4072 unsigned Opcode, CCValid; 4073 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4074 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4075 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4076 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4077 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4078 return SDValue(); 4079 } 4080 4081 return SDValue(); 4082 } 4083 4084 SDValue 4085 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4086 SelectionDAG &DAG) const { 4087 unsigned Opcode, CCValid; 4088 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4089 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4090 if (Op->getNumValues() == 1) 4091 return getCCResult(DAG, SDValue(Node, 0)); 4092 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4093 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4094 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4095 } 4096 4097 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4098 switch (Id) { 4099 case Intrinsic::thread_pointer: 4100 return lowerThreadPointer(SDLoc(Op), DAG); 4101 4102 case Intrinsic::s390_vpdi: 4103 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4104 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4105 4106 case Intrinsic::s390_vperm: 4107 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4108 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4109 4110 case Intrinsic::s390_vuphb: 4111 case Intrinsic::s390_vuphh: 4112 case Intrinsic::s390_vuphf: 4113 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4114 Op.getOperand(1)); 4115 4116 case Intrinsic::s390_vuplhb: 4117 case Intrinsic::s390_vuplhh: 4118 case Intrinsic::s390_vuplhf: 4119 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4120 Op.getOperand(1)); 4121 4122 case Intrinsic::s390_vuplb: 4123 case Intrinsic::s390_vuplhw: 4124 case Intrinsic::s390_vuplf: 4125 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4126 Op.getOperand(1)); 4127 4128 case Intrinsic::s390_vupllb: 4129 case Intrinsic::s390_vupllh: 4130 case Intrinsic::s390_vupllf: 4131 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4132 Op.getOperand(1)); 4133 4134 case Intrinsic::s390_vsumb: 4135 case Intrinsic::s390_vsumh: 4136 case Intrinsic::s390_vsumgh: 4137 case Intrinsic::s390_vsumgf: 4138 case Intrinsic::s390_vsumqf: 4139 case Intrinsic::s390_vsumqg: 4140 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4141 Op.getOperand(1), Op.getOperand(2)); 4142 } 4143 4144 return SDValue(); 4145 } 4146 4147 namespace { 4148 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4149 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4150 // Operand is the constant third operand, otherwise it is the number of 4151 // bytes in each element of the result. 4152 struct Permute { 4153 unsigned Opcode; 4154 unsigned Operand; 4155 unsigned char Bytes[SystemZ::VectorBytes]; 4156 }; 4157 } 4158 4159 static const Permute PermuteForms[] = { 4160 // VMRHG 4161 { SystemZISD::MERGE_HIGH, 8, 4162 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4163 // VMRHF 4164 { SystemZISD::MERGE_HIGH, 4, 4165 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4166 // VMRHH 4167 { SystemZISD::MERGE_HIGH, 2, 4168 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4169 // VMRHB 4170 { SystemZISD::MERGE_HIGH, 1, 4171 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4172 // VMRLG 4173 { SystemZISD::MERGE_LOW, 8, 4174 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4175 // VMRLF 4176 { SystemZISD::MERGE_LOW, 4, 4177 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4178 // VMRLH 4179 { SystemZISD::MERGE_LOW, 2, 4180 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4181 // VMRLB 4182 { SystemZISD::MERGE_LOW, 1, 4183 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4184 // VPKG 4185 { SystemZISD::PACK, 4, 4186 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4187 // VPKF 4188 { SystemZISD::PACK, 2, 4189 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4190 // VPKH 4191 { SystemZISD::PACK, 1, 4192 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4193 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4194 { SystemZISD::PERMUTE_DWORDS, 4, 4195 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4196 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4197 { SystemZISD::PERMUTE_DWORDS, 1, 4198 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4199 }; 4200 4201 // Called after matching a vector shuffle against a particular pattern. 4202 // Both the original shuffle and the pattern have two vector operands. 4203 // OpNos[0] is the operand of the original shuffle that should be used for 4204 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4205 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4206 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4207 // for operands 0 and 1 of the pattern. 4208 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4209 if (OpNos[0] < 0) { 4210 if (OpNos[1] < 0) 4211 return false; 4212 OpNo0 = OpNo1 = OpNos[1]; 4213 } else if (OpNos[1] < 0) { 4214 OpNo0 = OpNo1 = OpNos[0]; 4215 } else { 4216 OpNo0 = OpNos[0]; 4217 OpNo1 = OpNos[1]; 4218 } 4219 return true; 4220 } 4221 4222 // Bytes is a VPERM-like permute vector, except that -1 is used for 4223 // undefined bytes. Return true if the VPERM can be implemented using P. 4224 // When returning true set OpNo0 to the VPERM operand that should be 4225 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4226 // 4227 // For example, if swapping the VPERM operands allows P to match, OpNo0 4228 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4229 // operand, but rewriting it to use two duplicated operands allows it to 4230 // match P, then OpNo0 and OpNo1 will be the same. 4231 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4232 unsigned &OpNo0, unsigned &OpNo1) { 4233 int OpNos[] = { -1, -1 }; 4234 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4235 int Elt = Bytes[I]; 4236 if (Elt >= 0) { 4237 // Make sure that the two permute vectors use the same suboperand 4238 // byte number. Only the operand numbers (the high bits) are 4239 // allowed to differ. 4240 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4241 return false; 4242 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4243 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4244 // Make sure that the operand mappings are consistent with previous 4245 // elements. 4246 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4247 return false; 4248 OpNos[ModelOpNo] = RealOpNo; 4249 } 4250 } 4251 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4252 } 4253 4254 // As above, but search for a matching permute. 4255 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4256 unsigned &OpNo0, unsigned &OpNo1) { 4257 for (auto &P : PermuteForms) 4258 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4259 return &P; 4260 return nullptr; 4261 } 4262 4263 // Bytes is a VPERM-like permute vector, except that -1 is used for 4264 // undefined bytes. This permute is an operand of an outer permute. 4265 // See whether redistributing the -1 bytes gives a shuffle that can be 4266 // implemented using P. If so, set Transform to a VPERM-like permute vector 4267 // that, when applied to the result of P, gives the original permute in Bytes. 4268 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4269 const Permute &P, 4270 SmallVectorImpl<int> &Transform) { 4271 unsigned To = 0; 4272 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4273 int Elt = Bytes[From]; 4274 if (Elt < 0) 4275 // Byte number From of the result is undefined. 4276 Transform[From] = -1; 4277 else { 4278 while (P.Bytes[To] != Elt) { 4279 To += 1; 4280 if (To == SystemZ::VectorBytes) 4281 return false; 4282 } 4283 Transform[From] = To; 4284 } 4285 } 4286 return true; 4287 } 4288 4289 // As above, but search for a matching permute. 4290 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4291 SmallVectorImpl<int> &Transform) { 4292 for (auto &P : PermuteForms) 4293 if (matchDoublePermute(Bytes, P, Transform)) 4294 return &P; 4295 return nullptr; 4296 } 4297 4298 // Convert the mask of the given shuffle op into a byte-level mask, 4299 // as if it had type vNi8. 4300 static bool getVPermMask(SDValue ShuffleOp, 4301 SmallVectorImpl<int> &Bytes) { 4302 EVT VT = ShuffleOp.getValueType(); 4303 unsigned NumElements = VT.getVectorNumElements(); 4304 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4305 4306 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4307 Bytes.resize(NumElements * BytesPerElement, -1); 4308 for (unsigned I = 0; I < NumElements; ++I) { 4309 int Index = VSN->getMaskElt(I); 4310 if (Index >= 0) 4311 for (unsigned J = 0; J < BytesPerElement; ++J) 4312 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4313 } 4314 return true; 4315 } 4316 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4317 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4318 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4319 Bytes.resize(NumElements * BytesPerElement, -1); 4320 for (unsigned I = 0; I < NumElements; ++I) 4321 for (unsigned J = 0; J < BytesPerElement; ++J) 4322 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4323 return true; 4324 } 4325 return false; 4326 } 4327 4328 // Bytes is a VPERM-like permute vector, except that -1 is used for 4329 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4330 // the result come from a contiguous sequence of bytes from one input. 4331 // Set Base to the selector for the first byte if so. 4332 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4333 unsigned BytesPerElement, int &Base) { 4334 Base = -1; 4335 for (unsigned I = 0; I < BytesPerElement; ++I) { 4336 if (Bytes[Start + I] >= 0) { 4337 unsigned Elem = Bytes[Start + I]; 4338 if (Base < 0) { 4339 Base = Elem - I; 4340 // Make sure the bytes would come from one input operand. 4341 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4342 return false; 4343 } else if (unsigned(Base) != Elem - I) 4344 return false; 4345 } 4346 } 4347 return true; 4348 } 4349 4350 // Bytes is a VPERM-like permute vector, except that -1 is used for 4351 // undefined bytes. Return true if it can be performed using VSLDI. 4352 // When returning true, set StartIndex to the shift amount and OpNo0 4353 // and OpNo1 to the VPERM operands that should be used as the first 4354 // and second shift operand respectively. 4355 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4356 unsigned &StartIndex, unsigned &OpNo0, 4357 unsigned &OpNo1) { 4358 int OpNos[] = { -1, -1 }; 4359 int Shift = -1; 4360 for (unsigned I = 0; I < 16; ++I) { 4361 int Index = Bytes[I]; 4362 if (Index >= 0) { 4363 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4364 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4365 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4366 if (Shift < 0) 4367 Shift = ExpectedShift; 4368 else if (Shift != ExpectedShift) 4369 return false; 4370 // Make sure that the operand mappings are consistent with previous 4371 // elements. 4372 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4373 return false; 4374 OpNos[ModelOpNo] = RealOpNo; 4375 } 4376 } 4377 StartIndex = Shift; 4378 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4379 } 4380 4381 // Create a node that performs P on operands Op0 and Op1, casting the 4382 // operands to the appropriate type. The type of the result is determined by P. 4383 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4384 const Permute &P, SDValue Op0, SDValue Op1) { 4385 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4386 // elements of a PACK are twice as wide as the outputs. 4387 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4388 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4389 P.Operand); 4390 // Cast both operands to the appropriate type. 4391 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4392 SystemZ::VectorBytes / InBytes); 4393 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4394 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4395 SDValue Op; 4396 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4397 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4398 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4399 } else if (P.Opcode == SystemZISD::PACK) { 4400 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4401 SystemZ::VectorBytes / P.Operand); 4402 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4403 } else { 4404 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4405 } 4406 return Op; 4407 } 4408 4409 // Bytes is a VPERM-like permute vector, except that -1 is used for 4410 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4411 // VSLDI or VPERM. 4412 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4413 SDValue *Ops, 4414 const SmallVectorImpl<int> &Bytes) { 4415 for (unsigned I = 0; I < 2; ++I) 4416 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4417 4418 // First see whether VSLDI can be used. 4419 unsigned StartIndex, OpNo0, OpNo1; 4420 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4421 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4422 Ops[OpNo1], 4423 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4424 4425 // Fall back on VPERM. Construct an SDNode for the permute vector. 4426 SDValue IndexNodes[SystemZ::VectorBytes]; 4427 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4428 if (Bytes[I] >= 0) 4429 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4430 else 4431 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4432 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4433 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4434 } 4435 4436 namespace { 4437 // Describes a general N-operand vector shuffle. 4438 struct GeneralShuffle { 4439 GeneralShuffle(EVT vt) : VT(vt) {} 4440 void addUndef(); 4441 bool add(SDValue, unsigned); 4442 SDValue getNode(SelectionDAG &, const SDLoc &); 4443 4444 // The operands of the shuffle. 4445 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4446 4447 // Index I is -1 if byte I of the result is undefined. Otherwise the 4448 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4449 // Bytes[I] / SystemZ::VectorBytes. 4450 SmallVector<int, SystemZ::VectorBytes> Bytes; 4451 4452 // The type of the shuffle result. 4453 EVT VT; 4454 }; 4455 } 4456 4457 // Add an extra undefined element to the shuffle. 4458 void GeneralShuffle::addUndef() { 4459 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4460 for (unsigned I = 0; I < BytesPerElement; ++I) 4461 Bytes.push_back(-1); 4462 } 4463 4464 // Add an extra element to the shuffle, taking it from element Elem of Op. 4465 // A null Op indicates a vector input whose value will be calculated later; 4466 // there is at most one such input per shuffle and it always has the same 4467 // type as the result. Aborts and returns false if the source vector elements 4468 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4469 // LLVM they become implicitly extended, but this is rare and not optimized. 4470 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4471 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4472 4473 // The source vector can have wider elements than the result, 4474 // either through an explicit TRUNCATE or because of type legalization. 4475 // We want the least significant part. 4476 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4477 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4478 4479 // Return false if the source elements are smaller than their destination 4480 // elements. 4481 if (FromBytesPerElement < BytesPerElement) 4482 return false; 4483 4484 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4485 (FromBytesPerElement - BytesPerElement)); 4486 4487 // Look through things like shuffles and bitcasts. 4488 while (Op.getNode()) { 4489 if (Op.getOpcode() == ISD::BITCAST) 4490 Op = Op.getOperand(0); 4491 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4492 // See whether the bytes we need come from a contiguous part of one 4493 // operand. 4494 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4495 if (!getVPermMask(Op, OpBytes)) 4496 break; 4497 int NewByte; 4498 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4499 break; 4500 if (NewByte < 0) { 4501 addUndef(); 4502 return true; 4503 } 4504 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4505 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4506 } else if (Op.isUndef()) { 4507 addUndef(); 4508 return true; 4509 } else 4510 break; 4511 } 4512 4513 // Make sure that the source of the extraction is in Ops. 4514 unsigned OpNo = 0; 4515 for (; OpNo < Ops.size(); ++OpNo) 4516 if (Ops[OpNo] == Op) 4517 break; 4518 if (OpNo == Ops.size()) 4519 Ops.push_back(Op); 4520 4521 // Add the element to Bytes. 4522 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4523 for (unsigned I = 0; I < BytesPerElement; ++I) 4524 Bytes.push_back(Base + I); 4525 4526 return true; 4527 } 4528 4529 // Return SDNodes for the completed shuffle. 4530 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4531 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4532 4533 if (Ops.size() == 0) 4534 return DAG.getUNDEF(VT); 4535 4536 // Make sure that there are at least two shuffle operands. 4537 if (Ops.size() == 1) 4538 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4539 4540 // Create a tree of shuffles, deferring root node until after the loop. 4541 // Try to redistribute the undefined elements of non-root nodes so that 4542 // the non-root shuffles match something like a pack or merge, then adjust 4543 // the parent node's permute vector to compensate for the new order. 4544 // Among other things, this copes with vectors like <2 x i16> that were 4545 // padded with undefined elements during type legalization. 4546 // 4547 // In the best case this redistribution will lead to the whole tree 4548 // using packs and merges. It should rarely be a loss in other cases. 4549 unsigned Stride = 1; 4550 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4551 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4552 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4553 4554 // Create a mask for just these two operands. 4555 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4556 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4557 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4558 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4559 if (OpNo == I) 4560 NewBytes[J] = Byte; 4561 else if (OpNo == I + Stride) 4562 NewBytes[J] = SystemZ::VectorBytes + Byte; 4563 else 4564 NewBytes[J] = -1; 4565 } 4566 // See if it would be better to reorganize NewMask to avoid using VPERM. 4567 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4568 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4569 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4570 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4571 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4572 if (NewBytes[J] >= 0) { 4573 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4574 "Invalid double permute"); 4575 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4576 } else 4577 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4578 } 4579 } else { 4580 // Just use NewBytes on the operands. 4581 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4582 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4583 if (NewBytes[J] >= 0) 4584 Bytes[J] = I * SystemZ::VectorBytes + J; 4585 } 4586 } 4587 } 4588 4589 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4590 if (Stride > 1) { 4591 Ops[1] = Ops[Stride]; 4592 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4593 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4594 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4595 } 4596 4597 // Look for an instruction that can do the permute without resorting 4598 // to VPERM. 4599 unsigned OpNo0, OpNo1; 4600 SDValue Op; 4601 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4602 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4603 else 4604 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4605 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4606 } 4607 4608 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4609 static bool isScalarToVector(SDValue Op) { 4610 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4611 if (!Op.getOperand(I).isUndef()) 4612 return false; 4613 return true; 4614 } 4615 4616 // Return a vector of type VT that contains Value in the first element. 4617 // The other elements don't matter. 4618 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4619 SDValue Value) { 4620 // If we have a constant, replicate it to all elements and let the 4621 // BUILD_VECTOR lowering take care of it. 4622 if (Value.getOpcode() == ISD::Constant || 4623 Value.getOpcode() == ISD::ConstantFP) { 4624 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4625 return DAG.getBuildVector(VT, DL, Ops); 4626 } 4627 if (Value.isUndef()) 4628 return DAG.getUNDEF(VT); 4629 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4630 } 4631 4632 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4633 // element 1. Used for cases in which replication is cheap. 4634 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4635 SDValue Op0, SDValue Op1) { 4636 if (Op0.isUndef()) { 4637 if (Op1.isUndef()) 4638 return DAG.getUNDEF(VT); 4639 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4640 } 4641 if (Op1.isUndef()) 4642 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4643 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4644 buildScalarToVector(DAG, DL, VT, Op0), 4645 buildScalarToVector(DAG, DL, VT, Op1)); 4646 } 4647 4648 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4649 // vector for them. 4650 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4651 SDValue Op1) { 4652 if (Op0.isUndef() && Op1.isUndef()) 4653 return DAG.getUNDEF(MVT::v2i64); 4654 // If one of the two inputs is undefined then replicate the other one, 4655 // in order to avoid using another register unnecessarily. 4656 if (Op0.isUndef()) 4657 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4658 else if (Op1.isUndef()) 4659 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4660 else { 4661 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4662 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4663 } 4664 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4665 } 4666 4667 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4668 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4669 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4670 // would benefit from this representation and return it if so. 4671 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4672 BuildVectorSDNode *BVN) { 4673 EVT VT = BVN->getValueType(0); 4674 unsigned NumElements = VT.getVectorNumElements(); 4675 4676 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4677 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4678 // need a BUILD_VECTOR, add an additional placeholder operand for that 4679 // BUILD_VECTOR and store its operands in ResidueOps. 4680 GeneralShuffle GS(VT); 4681 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4682 bool FoundOne = false; 4683 for (unsigned I = 0; I < NumElements; ++I) { 4684 SDValue Op = BVN->getOperand(I); 4685 if (Op.getOpcode() == ISD::TRUNCATE) 4686 Op = Op.getOperand(0); 4687 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4688 Op.getOperand(1).getOpcode() == ISD::Constant) { 4689 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4690 if (!GS.add(Op.getOperand(0), Elem)) 4691 return SDValue(); 4692 FoundOne = true; 4693 } else if (Op.isUndef()) { 4694 GS.addUndef(); 4695 } else { 4696 if (!GS.add(SDValue(), ResidueOps.size())) 4697 return SDValue(); 4698 ResidueOps.push_back(BVN->getOperand(I)); 4699 } 4700 } 4701 4702 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4703 if (!FoundOne) 4704 return SDValue(); 4705 4706 // Create the BUILD_VECTOR for the remaining elements, if any. 4707 if (!ResidueOps.empty()) { 4708 while (ResidueOps.size() < NumElements) 4709 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4710 for (auto &Op : GS.Ops) { 4711 if (!Op.getNode()) { 4712 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4713 break; 4714 } 4715 } 4716 } 4717 return GS.getNode(DAG, SDLoc(BVN)); 4718 } 4719 4720 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4721 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4722 return true; 4723 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4724 return true; 4725 return false; 4726 } 4727 4728 // Combine GPR scalar values Elems into a vector of type VT. 4729 SDValue 4730 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4731 SmallVectorImpl<SDValue> &Elems) const { 4732 // See whether there is a single replicated value. 4733 SDValue Single; 4734 unsigned int NumElements = Elems.size(); 4735 unsigned int Count = 0; 4736 for (auto Elem : Elems) { 4737 if (!Elem.isUndef()) { 4738 if (!Single.getNode()) 4739 Single = Elem; 4740 else if (Elem != Single) { 4741 Single = SDValue(); 4742 break; 4743 } 4744 Count += 1; 4745 } 4746 } 4747 // There are three cases here: 4748 // 4749 // - if the only defined element is a loaded one, the best sequence 4750 // is a replicating load. 4751 // 4752 // - otherwise, if the only defined element is an i64 value, we will 4753 // end up with the same VLVGP sequence regardless of whether we short-cut 4754 // for replication or fall through to the later code. 4755 // 4756 // - otherwise, if the only defined element is an i32 or smaller value, 4757 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4758 // This is only a win if the single defined element is used more than once. 4759 // In other cases we're better off using a single VLVGx. 4760 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4761 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4762 4763 // If all elements are loads, use VLREP/VLEs (below). 4764 bool AllLoads = true; 4765 for (auto Elem : Elems) 4766 if (!isVectorElementLoad(Elem)) { 4767 AllLoads = false; 4768 break; 4769 } 4770 4771 // The best way of building a v2i64 from two i64s is to use VLVGP. 4772 if (VT == MVT::v2i64 && !AllLoads) 4773 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4774 4775 // Use a 64-bit merge high to combine two doubles. 4776 if (VT == MVT::v2f64 && !AllLoads) 4777 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4778 4779 // Build v4f32 values directly from the FPRs: 4780 // 4781 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4782 // V V VMRHF 4783 // <ABxx> <CDxx> 4784 // V VMRHG 4785 // <ABCD> 4786 if (VT == MVT::v4f32 && !AllLoads) { 4787 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4788 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4789 // Avoid unnecessary undefs by reusing the other operand. 4790 if (Op01.isUndef()) 4791 Op01 = Op23; 4792 else if (Op23.isUndef()) 4793 Op23 = Op01; 4794 // Merging identical replications is a no-op. 4795 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4796 return Op01; 4797 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4798 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4799 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4800 DL, MVT::v2i64, Op01, Op23); 4801 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4802 } 4803 4804 // Collect the constant terms. 4805 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4806 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4807 4808 unsigned NumConstants = 0; 4809 for (unsigned I = 0; I < NumElements; ++I) { 4810 SDValue Elem = Elems[I]; 4811 if (Elem.getOpcode() == ISD::Constant || 4812 Elem.getOpcode() == ISD::ConstantFP) { 4813 NumConstants += 1; 4814 Constants[I] = Elem; 4815 Done[I] = true; 4816 } 4817 } 4818 // If there was at least one constant, fill in the other elements of 4819 // Constants with undefs to get a full vector constant and use that 4820 // as the starting point. 4821 SDValue Result; 4822 SDValue ReplicatedVal; 4823 if (NumConstants > 0) { 4824 for (unsigned I = 0; I < NumElements; ++I) 4825 if (!Constants[I].getNode()) 4826 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4827 Result = DAG.getBuildVector(VT, DL, Constants); 4828 } else { 4829 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4830 // avoid a false dependency on any previous contents of the vector 4831 // register. 4832 4833 // Use a VLREP if at least one element is a load. Make sure to replicate 4834 // the load with the most elements having its value. 4835 std::map<const SDNode*, unsigned> UseCounts; 4836 SDNode *LoadMaxUses = nullptr; 4837 for (unsigned I = 0; I < NumElements; ++I) 4838 if (isVectorElementLoad(Elems[I])) { 4839 SDNode *Ld = Elems[I].getNode(); 4840 UseCounts[Ld]++; 4841 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4842 LoadMaxUses = Ld; 4843 } 4844 if (LoadMaxUses != nullptr) { 4845 ReplicatedVal = SDValue(LoadMaxUses, 0); 4846 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4847 } else { 4848 // Try to use VLVGP. 4849 unsigned I1 = NumElements / 2 - 1; 4850 unsigned I2 = NumElements - 1; 4851 bool Def1 = !Elems[I1].isUndef(); 4852 bool Def2 = !Elems[I2].isUndef(); 4853 if (Def1 || Def2) { 4854 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4855 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4856 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4857 joinDwords(DAG, DL, Elem1, Elem2)); 4858 Done[I1] = true; 4859 Done[I2] = true; 4860 } else 4861 Result = DAG.getUNDEF(VT); 4862 } 4863 } 4864 4865 // Use VLVGx to insert the other elements. 4866 for (unsigned I = 0; I < NumElements; ++I) 4867 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4868 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4869 DAG.getConstant(I, DL, MVT::i32)); 4870 return Result; 4871 } 4872 4873 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4874 SelectionDAG &DAG) const { 4875 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4876 SDLoc DL(Op); 4877 EVT VT = Op.getValueType(); 4878 4879 if (BVN->isConstant()) { 4880 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4881 return Op; 4882 4883 // Fall back to loading it from memory. 4884 return SDValue(); 4885 } 4886 4887 // See if we should use shuffles to construct the vector from other vectors. 4888 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4889 return Res; 4890 4891 // Detect SCALAR_TO_VECTOR conversions. 4892 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4893 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4894 4895 // Otherwise use buildVector to build the vector up from GPRs. 4896 unsigned NumElements = Op.getNumOperands(); 4897 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4898 for (unsigned I = 0; I < NumElements; ++I) 4899 Ops[I] = Op.getOperand(I); 4900 return buildVector(DAG, DL, VT, Ops); 4901 } 4902 4903 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4904 SelectionDAG &DAG) const { 4905 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4906 SDLoc DL(Op); 4907 EVT VT = Op.getValueType(); 4908 unsigned NumElements = VT.getVectorNumElements(); 4909 4910 if (VSN->isSplat()) { 4911 SDValue Op0 = Op.getOperand(0); 4912 unsigned Index = VSN->getSplatIndex(); 4913 assert(Index < VT.getVectorNumElements() && 4914 "Splat index should be defined and in first operand"); 4915 // See whether the value we're splatting is directly available as a scalar. 4916 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4917 Op0.getOpcode() == ISD::BUILD_VECTOR) 4918 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4919 // Otherwise keep it as a vector-to-vector operation. 4920 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4921 DAG.getTargetConstant(Index, DL, MVT::i32)); 4922 } 4923 4924 GeneralShuffle GS(VT); 4925 for (unsigned I = 0; I < NumElements; ++I) { 4926 int Elt = VSN->getMaskElt(I); 4927 if (Elt < 0) 4928 GS.addUndef(); 4929 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4930 unsigned(Elt) % NumElements)) 4931 return SDValue(); 4932 } 4933 return GS.getNode(DAG, SDLoc(VSN)); 4934 } 4935 4936 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4937 SelectionDAG &DAG) const { 4938 SDLoc DL(Op); 4939 // Just insert the scalar into element 0 of an undefined vector. 4940 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4941 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4942 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4943 } 4944 4945 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4946 SelectionDAG &DAG) const { 4947 // Handle insertions of floating-point values. 4948 SDLoc DL(Op); 4949 SDValue Op0 = Op.getOperand(0); 4950 SDValue Op1 = Op.getOperand(1); 4951 SDValue Op2 = Op.getOperand(2); 4952 EVT VT = Op.getValueType(); 4953 4954 // Insertions into constant indices of a v2f64 can be done using VPDI. 4955 // However, if the inserted value is a bitcast or a constant then it's 4956 // better to use GPRs, as below. 4957 if (VT == MVT::v2f64 && 4958 Op1.getOpcode() != ISD::BITCAST && 4959 Op1.getOpcode() != ISD::ConstantFP && 4960 Op2.getOpcode() == ISD::Constant) { 4961 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4962 unsigned Mask = VT.getVectorNumElements() - 1; 4963 if (Index <= Mask) 4964 return Op; 4965 } 4966 4967 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4968 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4969 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4970 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4971 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4972 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4973 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4974 } 4975 4976 SDValue 4977 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4978 SelectionDAG &DAG) const { 4979 // Handle extractions of floating-point values. 4980 SDLoc DL(Op); 4981 SDValue Op0 = Op.getOperand(0); 4982 SDValue Op1 = Op.getOperand(1); 4983 EVT VT = Op.getValueType(); 4984 EVT VecVT = Op0.getValueType(); 4985 4986 // Extractions of constant indices can be done directly. 4987 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4988 uint64_t Index = CIndexN->getZExtValue(); 4989 unsigned Mask = VecVT.getVectorNumElements() - 1; 4990 if (Index <= Mask) 4991 return Op; 4992 } 4993 4994 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4995 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4996 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4997 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4998 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4999 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5000 } 5001 5002 SDValue 5003 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 5004 unsigned UnpackHigh) const { 5005 SDValue PackedOp = Op.getOperand(0); 5006 EVT OutVT = Op.getValueType(); 5007 EVT InVT = PackedOp.getValueType(); 5008 unsigned ToBits = OutVT.getScalarSizeInBits(); 5009 unsigned FromBits = InVT.getScalarSizeInBits(); 5010 do { 5011 FromBits *= 2; 5012 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5013 SystemZ::VectorBits / FromBits); 5014 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 5015 } while (FromBits != ToBits); 5016 return PackedOp; 5017 } 5018 5019 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5020 unsigned ByScalar) const { 5021 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5022 SDValue Op0 = Op.getOperand(0); 5023 SDValue Op1 = Op.getOperand(1); 5024 SDLoc DL(Op); 5025 EVT VT = Op.getValueType(); 5026 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5027 5028 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5029 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5030 APInt SplatBits, SplatUndef; 5031 unsigned SplatBitSize; 5032 bool HasAnyUndefs; 5033 // Check for constant splats. Use ElemBitSize as the minimum element 5034 // width and reject splats that need wider elements. 5035 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5036 ElemBitSize, true) && 5037 SplatBitSize == ElemBitSize) { 5038 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5039 DL, MVT::i32); 5040 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5041 } 5042 // Check for variable splats. 5043 BitVector UndefElements; 5044 SDValue Splat = BVN->getSplatValue(&UndefElements); 5045 if (Splat) { 5046 // Since i32 is the smallest legal type, we either need a no-op 5047 // or a truncation. 5048 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5049 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5050 } 5051 } 5052 5053 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5054 // and the shift amount is directly available in a GPR. 5055 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5056 if (VSN->isSplat()) { 5057 SDValue VSNOp0 = VSN->getOperand(0); 5058 unsigned Index = VSN->getSplatIndex(); 5059 assert(Index < VT.getVectorNumElements() && 5060 "Splat index should be defined and in first operand"); 5061 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5062 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5063 // Since i32 is the smallest legal type, we either need a no-op 5064 // or a truncation. 5065 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5066 VSNOp0.getOperand(Index)); 5067 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5068 } 5069 } 5070 } 5071 5072 // Otherwise just treat the current form as legal. 5073 return Op; 5074 } 5075 5076 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5077 SelectionDAG &DAG) const { 5078 switch (Op.getOpcode()) { 5079 case ISD::FRAMEADDR: 5080 return lowerFRAMEADDR(Op, DAG); 5081 case ISD::RETURNADDR: 5082 return lowerRETURNADDR(Op, DAG); 5083 case ISD::BR_CC: 5084 return lowerBR_CC(Op, DAG); 5085 case ISD::SELECT_CC: 5086 return lowerSELECT_CC(Op, DAG); 5087 case ISD::SETCC: 5088 return lowerSETCC(Op, DAG); 5089 case ISD::STRICT_FSETCC: 5090 return lowerSTRICT_FSETCC(Op, DAG, false); 5091 case ISD::STRICT_FSETCCS: 5092 return lowerSTRICT_FSETCC(Op, DAG, true); 5093 case ISD::GlobalAddress: 5094 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5095 case ISD::GlobalTLSAddress: 5096 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5097 case ISD::BlockAddress: 5098 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5099 case ISD::JumpTable: 5100 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5101 case ISD::ConstantPool: 5102 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5103 case ISD::BITCAST: 5104 return lowerBITCAST(Op, DAG); 5105 case ISD::VASTART: 5106 return lowerVASTART(Op, DAG); 5107 case ISD::VACOPY: 5108 return lowerVACOPY(Op, DAG); 5109 case ISD::DYNAMIC_STACKALLOC: 5110 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5111 case ISD::GET_DYNAMIC_AREA_OFFSET: 5112 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5113 case ISD::SMUL_LOHI: 5114 return lowerSMUL_LOHI(Op, DAG); 5115 case ISD::UMUL_LOHI: 5116 return lowerUMUL_LOHI(Op, DAG); 5117 case ISD::SDIVREM: 5118 return lowerSDIVREM(Op, DAG); 5119 case ISD::UDIVREM: 5120 return lowerUDIVREM(Op, DAG); 5121 case ISD::SADDO: 5122 case ISD::SSUBO: 5123 case ISD::UADDO: 5124 case ISD::USUBO: 5125 return lowerXALUO(Op, DAG); 5126 case ISD::ADDCARRY: 5127 case ISD::SUBCARRY: 5128 return lowerADDSUBCARRY(Op, DAG); 5129 case ISD::OR: 5130 return lowerOR(Op, DAG); 5131 case ISD::CTPOP: 5132 return lowerCTPOP(Op, DAG); 5133 case ISD::ATOMIC_FENCE: 5134 return lowerATOMIC_FENCE(Op, DAG); 5135 case ISD::ATOMIC_SWAP: 5136 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5137 case ISD::ATOMIC_STORE: 5138 return lowerATOMIC_STORE(Op, DAG); 5139 case ISD::ATOMIC_LOAD: 5140 return lowerATOMIC_LOAD(Op, DAG); 5141 case ISD::ATOMIC_LOAD_ADD: 5142 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5143 case ISD::ATOMIC_LOAD_SUB: 5144 return lowerATOMIC_LOAD_SUB(Op, DAG); 5145 case ISD::ATOMIC_LOAD_AND: 5146 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5147 case ISD::ATOMIC_LOAD_OR: 5148 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5149 case ISD::ATOMIC_LOAD_XOR: 5150 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5151 case ISD::ATOMIC_LOAD_NAND: 5152 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5153 case ISD::ATOMIC_LOAD_MIN: 5154 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5155 case ISD::ATOMIC_LOAD_MAX: 5156 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5157 case ISD::ATOMIC_LOAD_UMIN: 5158 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5159 case ISD::ATOMIC_LOAD_UMAX: 5160 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5161 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5162 return lowerATOMIC_CMP_SWAP(Op, DAG); 5163 case ISD::STACKSAVE: 5164 return lowerSTACKSAVE(Op, DAG); 5165 case ISD::STACKRESTORE: 5166 return lowerSTACKRESTORE(Op, DAG); 5167 case ISD::PREFETCH: 5168 return lowerPREFETCH(Op, DAG); 5169 case ISD::INTRINSIC_W_CHAIN: 5170 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5171 case ISD::INTRINSIC_WO_CHAIN: 5172 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5173 case ISD::BUILD_VECTOR: 5174 return lowerBUILD_VECTOR(Op, DAG); 5175 case ISD::VECTOR_SHUFFLE: 5176 return lowerVECTOR_SHUFFLE(Op, DAG); 5177 case ISD::SCALAR_TO_VECTOR: 5178 return lowerSCALAR_TO_VECTOR(Op, DAG); 5179 case ISD::INSERT_VECTOR_ELT: 5180 return lowerINSERT_VECTOR_ELT(Op, DAG); 5181 case ISD::EXTRACT_VECTOR_ELT: 5182 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5183 case ISD::SIGN_EXTEND_VECTOR_INREG: 5184 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5185 case ISD::ZERO_EXTEND_VECTOR_INREG: 5186 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5187 case ISD::SHL: 5188 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5189 case ISD::SRL: 5190 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5191 case ISD::SRA: 5192 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5193 default: 5194 llvm_unreachable("Unexpected node to lower"); 5195 } 5196 } 5197 5198 // Lower operations with invalid operand or result types (currently used 5199 // only for 128-bit integer types). 5200 5201 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5202 SDLoc DL(In); 5203 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5204 DAG.getIntPtrConstant(0, DL)); 5205 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5206 DAG.getIntPtrConstant(1, DL)); 5207 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5208 MVT::Untyped, Hi, Lo); 5209 return SDValue(Pair, 0); 5210 } 5211 5212 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5213 SDLoc DL(In); 5214 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5215 DL, MVT::i64, In); 5216 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5217 DL, MVT::i64, In); 5218 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5219 } 5220 5221 void 5222 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5223 SmallVectorImpl<SDValue> &Results, 5224 SelectionDAG &DAG) const { 5225 switch (N->getOpcode()) { 5226 case ISD::ATOMIC_LOAD: { 5227 SDLoc DL(N); 5228 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5229 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5230 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5231 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5232 DL, Tys, Ops, MVT::i128, MMO); 5233 Results.push_back(lowerGR128ToI128(DAG, Res)); 5234 Results.push_back(Res.getValue(1)); 5235 break; 5236 } 5237 case ISD::ATOMIC_STORE: { 5238 SDLoc DL(N); 5239 SDVTList Tys = DAG.getVTList(MVT::Other); 5240 SDValue Ops[] = { N->getOperand(0), 5241 lowerI128ToGR128(DAG, N->getOperand(2)), 5242 N->getOperand(1) }; 5243 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5244 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5245 DL, Tys, Ops, MVT::i128, MMO); 5246 // We have to enforce sequential consistency by performing a 5247 // serialization operation after the store. 5248 if (cast<AtomicSDNode>(N)->getOrdering() == 5249 AtomicOrdering::SequentiallyConsistent) 5250 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5251 MVT::Other, Res), 0); 5252 Results.push_back(Res); 5253 break; 5254 } 5255 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5256 SDLoc DL(N); 5257 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5258 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5259 lowerI128ToGR128(DAG, N->getOperand(2)), 5260 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5261 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5262 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5263 DL, Tys, Ops, MVT::i128, MMO); 5264 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5265 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5266 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5267 Results.push_back(lowerGR128ToI128(DAG, Res)); 5268 Results.push_back(Success); 5269 Results.push_back(Res.getValue(2)); 5270 break; 5271 } 5272 default: 5273 llvm_unreachable("Unexpected node to lower"); 5274 } 5275 } 5276 5277 void 5278 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5279 SmallVectorImpl<SDValue> &Results, 5280 SelectionDAG &DAG) const { 5281 return LowerOperationWrapper(N, Results, DAG); 5282 } 5283 5284 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5285 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5286 switch ((SystemZISD::NodeType)Opcode) { 5287 case SystemZISD::FIRST_NUMBER: break; 5288 OPCODE(RET_FLAG); 5289 OPCODE(CALL); 5290 OPCODE(SIBCALL); 5291 OPCODE(TLS_GDCALL); 5292 OPCODE(TLS_LDCALL); 5293 OPCODE(PCREL_WRAPPER); 5294 OPCODE(PCREL_OFFSET); 5295 OPCODE(IABS); 5296 OPCODE(ICMP); 5297 OPCODE(FCMP); 5298 OPCODE(STRICT_FCMP); 5299 OPCODE(STRICT_FCMPS); 5300 OPCODE(TM); 5301 OPCODE(BR_CCMASK); 5302 OPCODE(SELECT_CCMASK); 5303 OPCODE(ADJDYNALLOC); 5304 OPCODE(POPCNT); 5305 OPCODE(SMUL_LOHI); 5306 OPCODE(UMUL_LOHI); 5307 OPCODE(SDIVREM); 5308 OPCODE(UDIVREM); 5309 OPCODE(SADDO); 5310 OPCODE(SSUBO); 5311 OPCODE(UADDO); 5312 OPCODE(USUBO); 5313 OPCODE(ADDCARRY); 5314 OPCODE(SUBCARRY); 5315 OPCODE(GET_CCMASK); 5316 OPCODE(MVC); 5317 OPCODE(MVC_LOOP); 5318 OPCODE(NC); 5319 OPCODE(NC_LOOP); 5320 OPCODE(OC); 5321 OPCODE(OC_LOOP); 5322 OPCODE(XC); 5323 OPCODE(XC_LOOP); 5324 OPCODE(CLC); 5325 OPCODE(CLC_LOOP); 5326 OPCODE(STPCPY); 5327 OPCODE(STRCMP); 5328 OPCODE(SEARCH_STRING); 5329 OPCODE(IPM); 5330 OPCODE(MEMBARRIER); 5331 OPCODE(TBEGIN); 5332 OPCODE(TBEGIN_NOFLOAT); 5333 OPCODE(TEND); 5334 OPCODE(BYTE_MASK); 5335 OPCODE(ROTATE_MASK); 5336 OPCODE(REPLICATE); 5337 OPCODE(JOIN_DWORDS); 5338 OPCODE(SPLAT); 5339 OPCODE(MERGE_HIGH); 5340 OPCODE(MERGE_LOW); 5341 OPCODE(SHL_DOUBLE); 5342 OPCODE(PERMUTE_DWORDS); 5343 OPCODE(PERMUTE); 5344 OPCODE(PACK); 5345 OPCODE(PACKS_CC); 5346 OPCODE(PACKLS_CC); 5347 OPCODE(UNPACK_HIGH); 5348 OPCODE(UNPACKL_HIGH); 5349 OPCODE(UNPACK_LOW); 5350 OPCODE(UNPACKL_LOW); 5351 OPCODE(VSHL_BY_SCALAR); 5352 OPCODE(VSRL_BY_SCALAR); 5353 OPCODE(VSRA_BY_SCALAR); 5354 OPCODE(VSUM); 5355 OPCODE(VICMPE); 5356 OPCODE(VICMPH); 5357 OPCODE(VICMPHL); 5358 OPCODE(VICMPES); 5359 OPCODE(VICMPHS); 5360 OPCODE(VICMPHLS); 5361 OPCODE(VFCMPE); 5362 OPCODE(STRICT_VFCMPE); 5363 OPCODE(STRICT_VFCMPES); 5364 OPCODE(VFCMPH); 5365 OPCODE(STRICT_VFCMPH); 5366 OPCODE(STRICT_VFCMPHS); 5367 OPCODE(VFCMPHE); 5368 OPCODE(STRICT_VFCMPHE); 5369 OPCODE(STRICT_VFCMPHES); 5370 OPCODE(VFCMPES); 5371 OPCODE(VFCMPHS); 5372 OPCODE(VFCMPHES); 5373 OPCODE(VFTCI); 5374 OPCODE(VEXTEND); 5375 OPCODE(STRICT_VEXTEND); 5376 OPCODE(VROUND); 5377 OPCODE(VTM); 5378 OPCODE(VFAE_CC); 5379 OPCODE(VFAEZ_CC); 5380 OPCODE(VFEE_CC); 5381 OPCODE(VFEEZ_CC); 5382 OPCODE(VFENE_CC); 5383 OPCODE(VFENEZ_CC); 5384 OPCODE(VISTR_CC); 5385 OPCODE(VSTRC_CC); 5386 OPCODE(VSTRCZ_CC); 5387 OPCODE(VSTRS_CC); 5388 OPCODE(VSTRSZ_CC); 5389 OPCODE(TDC); 5390 OPCODE(ATOMIC_SWAPW); 5391 OPCODE(ATOMIC_LOADW_ADD); 5392 OPCODE(ATOMIC_LOADW_SUB); 5393 OPCODE(ATOMIC_LOADW_AND); 5394 OPCODE(ATOMIC_LOADW_OR); 5395 OPCODE(ATOMIC_LOADW_XOR); 5396 OPCODE(ATOMIC_LOADW_NAND); 5397 OPCODE(ATOMIC_LOADW_MIN); 5398 OPCODE(ATOMIC_LOADW_MAX); 5399 OPCODE(ATOMIC_LOADW_UMIN); 5400 OPCODE(ATOMIC_LOADW_UMAX); 5401 OPCODE(ATOMIC_CMP_SWAPW); 5402 OPCODE(ATOMIC_CMP_SWAP); 5403 OPCODE(ATOMIC_LOAD_128); 5404 OPCODE(ATOMIC_STORE_128); 5405 OPCODE(ATOMIC_CMP_SWAP_128); 5406 OPCODE(LRV); 5407 OPCODE(STRV); 5408 OPCODE(VLER); 5409 OPCODE(VSTER); 5410 OPCODE(PREFETCH); 5411 } 5412 return nullptr; 5413 #undef OPCODE 5414 } 5415 5416 // Return true if VT is a vector whose elements are a whole number of bytes 5417 // in width. Also check for presence of vector support. 5418 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5419 if (!Subtarget.hasVector()) 5420 return false; 5421 5422 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5423 } 5424 5425 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5426 // producing a result of type ResVT. Op is a possibly bitcast version 5427 // of the input vector and Index is the index (based on type VecVT) that 5428 // should be extracted. Return the new extraction if a simplification 5429 // was possible or if Force is true. 5430 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5431 EVT VecVT, SDValue Op, 5432 unsigned Index, 5433 DAGCombinerInfo &DCI, 5434 bool Force) const { 5435 SelectionDAG &DAG = DCI.DAG; 5436 5437 // The number of bytes being extracted. 5438 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5439 5440 for (;;) { 5441 unsigned Opcode = Op.getOpcode(); 5442 if (Opcode == ISD::BITCAST) 5443 // Look through bitcasts. 5444 Op = Op.getOperand(0); 5445 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5446 canTreatAsByteVector(Op.getValueType())) { 5447 // Get a VPERM-like permute mask and see whether the bytes covered 5448 // by the extracted element are a contiguous sequence from one 5449 // source operand. 5450 SmallVector<int, SystemZ::VectorBytes> Bytes; 5451 if (!getVPermMask(Op, Bytes)) 5452 break; 5453 int First; 5454 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5455 BytesPerElement, First)) 5456 break; 5457 if (First < 0) 5458 return DAG.getUNDEF(ResVT); 5459 // Make sure the contiguous sequence starts at a multiple of the 5460 // original element size. 5461 unsigned Byte = unsigned(First) % Bytes.size(); 5462 if (Byte % BytesPerElement != 0) 5463 break; 5464 // We can get the extracted value directly from an input. 5465 Index = Byte / BytesPerElement; 5466 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5467 Force = true; 5468 } else if (Opcode == ISD::BUILD_VECTOR && 5469 canTreatAsByteVector(Op.getValueType())) { 5470 // We can only optimize this case if the BUILD_VECTOR elements are 5471 // at least as wide as the extracted value. 5472 EVT OpVT = Op.getValueType(); 5473 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5474 if (OpBytesPerElement < BytesPerElement) 5475 break; 5476 // Make sure that the least-significant bit of the extracted value 5477 // is the least significant bit of an input. 5478 unsigned End = (Index + 1) * BytesPerElement; 5479 if (End % OpBytesPerElement != 0) 5480 break; 5481 // We're extracting the low part of one operand of the BUILD_VECTOR. 5482 Op = Op.getOperand(End / OpBytesPerElement - 1); 5483 if (!Op.getValueType().isInteger()) { 5484 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5485 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5486 DCI.AddToWorklist(Op.getNode()); 5487 } 5488 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5489 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5490 if (VT != ResVT) { 5491 DCI.AddToWorklist(Op.getNode()); 5492 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5493 } 5494 return Op; 5495 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5496 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5497 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5498 canTreatAsByteVector(Op.getValueType()) && 5499 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5500 // Make sure that only the unextended bits are significant. 5501 EVT ExtVT = Op.getValueType(); 5502 EVT OpVT = Op.getOperand(0).getValueType(); 5503 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5504 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5505 unsigned Byte = Index * BytesPerElement; 5506 unsigned SubByte = Byte % ExtBytesPerElement; 5507 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5508 if (SubByte < MinSubByte || 5509 SubByte + BytesPerElement > ExtBytesPerElement) 5510 break; 5511 // Get the byte offset of the unextended element 5512 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5513 // ...then add the byte offset relative to that element. 5514 Byte += SubByte - MinSubByte; 5515 if (Byte % BytesPerElement != 0) 5516 break; 5517 Op = Op.getOperand(0); 5518 Index = Byte / BytesPerElement; 5519 Force = true; 5520 } else 5521 break; 5522 } 5523 if (Force) { 5524 if (Op.getValueType() != VecVT) { 5525 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5526 DCI.AddToWorklist(Op.getNode()); 5527 } 5528 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5529 DAG.getConstant(Index, DL, MVT::i32)); 5530 } 5531 return SDValue(); 5532 } 5533 5534 // Optimize vector operations in scalar value Op on the basis that Op 5535 // is truncated to TruncVT. 5536 SDValue SystemZTargetLowering::combineTruncateExtract( 5537 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5538 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5539 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5540 // of type TruncVT. 5541 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5542 TruncVT.getSizeInBits() % 8 == 0) { 5543 SDValue Vec = Op.getOperand(0); 5544 EVT VecVT = Vec.getValueType(); 5545 if (canTreatAsByteVector(VecVT)) { 5546 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5547 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5548 unsigned TruncBytes = TruncVT.getStoreSize(); 5549 if (BytesPerElement % TruncBytes == 0) { 5550 // Calculate the value of Y' in the above description. We are 5551 // splitting the original elements into Scale equal-sized pieces 5552 // and for truncation purposes want the last (least-significant) 5553 // of these pieces for IndexN. This is easiest to do by calculating 5554 // the start index of the following element and then subtracting 1. 5555 unsigned Scale = BytesPerElement / TruncBytes; 5556 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5557 5558 // Defer the creation of the bitcast from X to combineExtract, 5559 // which might be able to optimize the extraction. 5560 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5561 VecVT.getStoreSize() / TruncBytes); 5562 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5563 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5564 } 5565 } 5566 } 5567 } 5568 return SDValue(); 5569 } 5570 5571 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5572 SDNode *N, DAGCombinerInfo &DCI) const { 5573 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5574 SelectionDAG &DAG = DCI.DAG; 5575 SDValue N0 = N->getOperand(0); 5576 EVT VT = N->getValueType(0); 5577 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5578 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5579 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5580 if (TrueOp && FalseOp) { 5581 SDLoc DL(N0); 5582 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5583 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5584 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5585 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5586 // If N0 has multiple uses, change other uses as well. 5587 if (!N0.hasOneUse()) { 5588 SDValue TruncSelect = 5589 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5590 DCI.CombineTo(N0.getNode(), TruncSelect); 5591 } 5592 return NewSelect; 5593 } 5594 } 5595 return SDValue(); 5596 } 5597 5598 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5599 SDNode *N, DAGCombinerInfo &DCI) const { 5600 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5601 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5602 // into (select_cc LHS, RHS, -1, 0, COND) 5603 SelectionDAG &DAG = DCI.DAG; 5604 SDValue N0 = N->getOperand(0); 5605 EVT VT = N->getValueType(0); 5606 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5607 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5608 N0 = N0.getOperand(0); 5609 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5610 SDLoc DL(N0); 5611 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5612 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5613 N0.getOperand(2) }; 5614 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5615 } 5616 return SDValue(); 5617 } 5618 5619 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5620 SDNode *N, DAGCombinerInfo &DCI) const { 5621 // Convert (sext (ashr (shl X, C1), C2)) to 5622 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5623 // cheap as narrower ones. 5624 SelectionDAG &DAG = DCI.DAG; 5625 SDValue N0 = N->getOperand(0); 5626 EVT VT = N->getValueType(0); 5627 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5628 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5629 SDValue Inner = N0.getOperand(0); 5630 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5631 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5632 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5633 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5634 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5635 EVT ShiftVT = N0.getOperand(1).getValueType(); 5636 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5637 Inner.getOperand(0)); 5638 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5639 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5640 ShiftVT)); 5641 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5642 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5643 } 5644 } 5645 } 5646 return SDValue(); 5647 } 5648 5649 SDValue SystemZTargetLowering::combineMERGE( 5650 SDNode *N, DAGCombinerInfo &DCI) const { 5651 SelectionDAG &DAG = DCI.DAG; 5652 unsigned Opcode = N->getOpcode(); 5653 SDValue Op0 = N->getOperand(0); 5654 SDValue Op1 = N->getOperand(1); 5655 if (Op0.getOpcode() == ISD::BITCAST) 5656 Op0 = Op0.getOperand(0); 5657 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5658 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5659 // for v4f32. 5660 if (Op1 == N->getOperand(0)) 5661 return Op1; 5662 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5663 EVT VT = Op1.getValueType(); 5664 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5665 if (ElemBytes <= 4) { 5666 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5667 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5668 EVT InVT = VT.changeVectorElementTypeToInteger(); 5669 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5670 SystemZ::VectorBytes / ElemBytes / 2); 5671 if (VT != InVT) { 5672 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5673 DCI.AddToWorklist(Op1.getNode()); 5674 } 5675 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5676 DCI.AddToWorklist(Op.getNode()); 5677 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5678 } 5679 } 5680 return SDValue(); 5681 } 5682 5683 SDValue SystemZTargetLowering::combineLOAD( 5684 SDNode *N, DAGCombinerInfo &DCI) const { 5685 SelectionDAG &DAG = DCI.DAG; 5686 EVT LdVT = N->getValueType(0); 5687 if (LdVT.isVector() || LdVT.isInteger()) 5688 return SDValue(); 5689 // Transform a scalar load that is REPLICATEd as well as having other 5690 // use(s) to the form where the other use(s) use the first element of the 5691 // REPLICATE instead of the load. Otherwise instruction selection will not 5692 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5693 // point loads. 5694 5695 SDValue Replicate; 5696 SmallVector<SDNode*, 8> OtherUses; 5697 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5698 UI != UE; ++UI) { 5699 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5700 if (Replicate) 5701 return SDValue(); // Should never happen 5702 Replicate = SDValue(*UI, 0); 5703 } 5704 else if (UI.getUse().getResNo() == 0) 5705 OtherUses.push_back(*UI); 5706 } 5707 if (!Replicate || OtherUses.empty()) 5708 return SDValue(); 5709 5710 SDLoc DL(N); 5711 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5712 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5713 // Update uses of the loaded Value while preserving old chains. 5714 for (SDNode *U : OtherUses) { 5715 SmallVector<SDValue, 8> Ops; 5716 for (SDValue Op : U->ops()) 5717 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5718 DAG.UpdateNodeOperands(U, Ops); 5719 } 5720 return SDValue(N, 0); 5721 } 5722 5723 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5724 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5725 return true; 5726 if (Subtarget.hasVectorEnhancements2()) 5727 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5728 return true; 5729 return false; 5730 } 5731 5732 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5733 if (!VT.isVector() || !VT.isSimple() || 5734 VT.getSizeInBits() != 128 || 5735 VT.getScalarSizeInBits() % 8 != 0) 5736 return false; 5737 5738 unsigned NumElts = VT.getVectorNumElements(); 5739 for (unsigned i = 0; i < NumElts; ++i) { 5740 if (M[i] < 0) continue; // ignore UNDEF indices 5741 if ((unsigned) M[i] != NumElts - 1 - i) 5742 return false; 5743 } 5744 5745 return true; 5746 } 5747 5748 SDValue SystemZTargetLowering::combineSTORE( 5749 SDNode *N, DAGCombinerInfo &DCI) const { 5750 SelectionDAG &DAG = DCI.DAG; 5751 auto *SN = cast<StoreSDNode>(N); 5752 auto &Op1 = N->getOperand(1); 5753 EVT MemVT = SN->getMemoryVT(); 5754 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5755 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5756 // If X has wider elements then convert it to: 5757 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5758 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5759 if (SDValue Value = 5760 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5761 DCI.AddToWorklist(Value.getNode()); 5762 5763 // Rewrite the store with the new form of stored value. 5764 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5765 SN->getBasePtr(), SN->getMemoryVT(), 5766 SN->getMemOperand()); 5767 } 5768 } 5769 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5770 if (!SN->isTruncatingStore() && 5771 Op1.getOpcode() == ISD::BSWAP && 5772 Op1.getNode()->hasOneUse() && 5773 canLoadStoreByteSwapped(Op1.getValueType())) { 5774 5775 SDValue BSwapOp = Op1.getOperand(0); 5776 5777 if (BSwapOp.getValueType() == MVT::i16) 5778 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5779 5780 SDValue Ops[] = { 5781 N->getOperand(0), BSwapOp, N->getOperand(2) 5782 }; 5783 5784 return 5785 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5786 Ops, MemVT, SN->getMemOperand()); 5787 } 5788 // Combine STORE (element-swap) into VSTER 5789 if (!SN->isTruncatingStore() && 5790 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5791 Op1.getNode()->hasOneUse() && 5792 Subtarget.hasVectorEnhancements2()) { 5793 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5794 ArrayRef<int> ShuffleMask = SVN->getMask(); 5795 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5796 SDValue Ops[] = { 5797 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5798 }; 5799 5800 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5801 DAG.getVTList(MVT::Other), 5802 Ops, MemVT, SN->getMemOperand()); 5803 } 5804 } 5805 5806 return SDValue(); 5807 } 5808 5809 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5810 SDNode *N, DAGCombinerInfo &DCI) const { 5811 SelectionDAG &DAG = DCI.DAG; 5812 // Combine element-swap (LOAD) into VLER 5813 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5814 N->getOperand(0).hasOneUse() && 5815 Subtarget.hasVectorEnhancements2()) { 5816 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5817 ArrayRef<int> ShuffleMask = SVN->getMask(); 5818 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5819 SDValue Load = N->getOperand(0); 5820 LoadSDNode *LD = cast<LoadSDNode>(Load); 5821 5822 // Create the element-swapping load. 5823 SDValue Ops[] = { 5824 LD->getChain(), // Chain 5825 LD->getBasePtr() // Ptr 5826 }; 5827 SDValue ESLoad = 5828 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5829 DAG.getVTList(LD->getValueType(0), MVT::Other), 5830 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5831 5832 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5833 // by the load dead. 5834 DCI.CombineTo(N, ESLoad); 5835 5836 // Next, combine the load away, we give it a bogus result value but a real 5837 // chain result. The result value is dead because the shuffle is dead. 5838 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5839 5840 // Return N so it doesn't get rechecked! 5841 return SDValue(N, 0); 5842 } 5843 } 5844 5845 return SDValue(); 5846 } 5847 5848 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5849 SDNode *N, DAGCombinerInfo &DCI) const { 5850 SelectionDAG &DAG = DCI.DAG; 5851 5852 if (!Subtarget.hasVector()) 5853 return SDValue(); 5854 5855 // Look through bitcasts that retain the number of vector elements. 5856 SDValue Op = N->getOperand(0); 5857 if (Op.getOpcode() == ISD::BITCAST && 5858 Op.getValueType().isVector() && 5859 Op.getOperand(0).getValueType().isVector() && 5860 Op.getValueType().getVectorNumElements() == 5861 Op.getOperand(0).getValueType().getVectorNumElements()) 5862 Op = Op.getOperand(0); 5863 5864 // Pull BSWAP out of a vector extraction. 5865 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5866 EVT VecVT = Op.getValueType(); 5867 EVT EltVT = VecVT.getVectorElementType(); 5868 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5869 Op.getOperand(0), N->getOperand(1)); 5870 DCI.AddToWorklist(Op.getNode()); 5871 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5872 if (EltVT != N->getValueType(0)) { 5873 DCI.AddToWorklist(Op.getNode()); 5874 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5875 } 5876 return Op; 5877 } 5878 5879 // Try to simplify a vector extraction. 5880 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5881 SDValue Op0 = N->getOperand(0); 5882 EVT VecVT = Op0.getValueType(); 5883 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5884 IndexN->getZExtValue(), DCI, false); 5885 } 5886 return SDValue(); 5887 } 5888 5889 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5890 SDNode *N, DAGCombinerInfo &DCI) const { 5891 SelectionDAG &DAG = DCI.DAG; 5892 // (join_dwords X, X) == (replicate X) 5893 if (N->getOperand(0) == N->getOperand(1)) 5894 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5895 N->getOperand(0)); 5896 return SDValue(); 5897 } 5898 5899 SDValue SystemZTargetLowering::combineFP_ROUND( 5900 SDNode *N, DAGCombinerInfo &DCI) const { 5901 5902 if (!Subtarget.hasVector()) 5903 return SDValue(); 5904 5905 // (fpround (extract_vector_elt X 0)) 5906 // (fpround (extract_vector_elt X 1)) -> 5907 // (extract_vector_elt (VROUND X) 0) 5908 // (extract_vector_elt (VROUND X) 2) 5909 // 5910 // This is a special case since the target doesn't really support v2f32s. 5911 SelectionDAG &DAG = DCI.DAG; 5912 SDValue Op0 = N->getOperand(0); 5913 if (N->getValueType(0) == MVT::f32 && 5914 Op0.hasOneUse() && 5915 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5916 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5917 Op0.getOperand(1).getOpcode() == ISD::Constant && 5918 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5919 SDValue Vec = Op0.getOperand(0); 5920 for (auto *U : Vec->uses()) { 5921 if (U != Op0.getNode() && 5922 U->hasOneUse() && 5923 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5924 U->getOperand(0) == Vec && 5925 U->getOperand(1).getOpcode() == ISD::Constant && 5926 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5927 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5928 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5929 OtherRound.getOperand(0) == SDValue(U, 0) && 5930 OtherRound.getValueType() == MVT::f32) { 5931 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5932 MVT::v4f32, Vec); 5933 DCI.AddToWorklist(VRound.getNode()); 5934 SDValue Extract1 = 5935 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5936 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5937 DCI.AddToWorklist(Extract1.getNode()); 5938 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5939 SDValue Extract0 = 5940 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5941 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5942 return Extract0; 5943 } 5944 } 5945 } 5946 } 5947 return SDValue(); 5948 } 5949 5950 SDValue SystemZTargetLowering::combineFP_EXTEND( 5951 SDNode *N, DAGCombinerInfo &DCI) const { 5952 5953 if (!Subtarget.hasVector()) 5954 return SDValue(); 5955 5956 // (fpextend (extract_vector_elt X 0)) 5957 // (fpextend (extract_vector_elt X 2)) -> 5958 // (extract_vector_elt (VEXTEND X) 0) 5959 // (extract_vector_elt (VEXTEND X) 1) 5960 // 5961 // This is a special case since the target doesn't really support v2f32s. 5962 SelectionDAG &DAG = DCI.DAG; 5963 SDValue Op0 = N->getOperand(0); 5964 if (N->getValueType(0) == MVT::f64 && 5965 Op0.hasOneUse() && 5966 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5967 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5968 Op0.getOperand(1).getOpcode() == ISD::Constant && 5969 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5970 SDValue Vec = Op0.getOperand(0); 5971 for (auto *U : Vec->uses()) { 5972 if (U != Op0.getNode() && 5973 U->hasOneUse() && 5974 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5975 U->getOperand(0) == Vec && 5976 U->getOperand(1).getOpcode() == ISD::Constant && 5977 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5978 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5979 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5980 OtherExtend.getOperand(0) == SDValue(U, 0) && 5981 OtherExtend.getValueType() == MVT::f64) { 5982 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5983 MVT::v2f64, Vec); 5984 DCI.AddToWorklist(VExtend.getNode()); 5985 SDValue Extract1 = 5986 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5987 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5988 DCI.AddToWorklist(Extract1.getNode()); 5989 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5990 SDValue Extract0 = 5991 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5992 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5993 return Extract0; 5994 } 5995 } 5996 } 5997 } 5998 return SDValue(); 5999 } 6000 6001 SDValue SystemZTargetLowering::combineBSWAP( 6002 SDNode *N, DAGCombinerInfo &DCI) const { 6003 SelectionDAG &DAG = DCI.DAG; 6004 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6005 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6006 N->getOperand(0).hasOneUse() && 6007 canLoadStoreByteSwapped(N->getValueType(0))) { 6008 SDValue Load = N->getOperand(0); 6009 LoadSDNode *LD = cast<LoadSDNode>(Load); 6010 6011 // Create the byte-swapping load. 6012 SDValue Ops[] = { 6013 LD->getChain(), // Chain 6014 LD->getBasePtr() // Ptr 6015 }; 6016 EVT LoadVT = N->getValueType(0); 6017 if (LoadVT == MVT::i16) 6018 LoadVT = MVT::i32; 6019 SDValue BSLoad = 6020 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6021 DAG.getVTList(LoadVT, MVT::Other), 6022 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6023 6024 // If this is an i16 load, insert the truncate. 6025 SDValue ResVal = BSLoad; 6026 if (N->getValueType(0) == MVT::i16) 6027 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6028 6029 // First, combine the bswap away. This makes the value produced by the 6030 // load dead. 6031 DCI.CombineTo(N, ResVal); 6032 6033 // Next, combine the load away, we give it a bogus result value but a real 6034 // chain result. The result value is dead because the bswap is dead. 6035 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6036 6037 // Return N so it doesn't get rechecked! 6038 return SDValue(N, 0); 6039 } 6040 6041 // Look through bitcasts that retain the number of vector elements. 6042 SDValue Op = N->getOperand(0); 6043 if (Op.getOpcode() == ISD::BITCAST && 6044 Op.getValueType().isVector() && 6045 Op.getOperand(0).getValueType().isVector() && 6046 Op.getValueType().getVectorNumElements() == 6047 Op.getOperand(0).getValueType().getVectorNumElements()) 6048 Op = Op.getOperand(0); 6049 6050 // Push BSWAP into a vector insertion if at least one side then simplifies. 6051 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6052 SDValue Vec = Op.getOperand(0); 6053 SDValue Elt = Op.getOperand(1); 6054 SDValue Idx = Op.getOperand(2); 6055 6056 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6057 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6058 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6059 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6060 (canLoadStoreByteSwapped(N->getValueType(0)) && 6061 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6062 EVT VecVT = N->getValueType(0); 6063 EVT EltVT = N->getValueType(0).getVectorElementType(); 6064 if (VecVT != Vec.getValueType()) { 6065 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6066 DCI.AddToWorklist(Vec.getNode()); 6067 } 6068 if (EltVT != Elt.getValueType()) { 6069 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6070 DCI.AddToWorklist(Elt.getNode()); 6071 } 6072 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6073 DCI.AddToWorklist(Vec.getNode()); 6074 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6075 DCI.AddToWorklist(Elt.getNode()); 6076 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6077 Vec, Elt, Idx); 6078 } 6079 } 6080 6081 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6082 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6083 if (SV && Op.hasOneUse()) { 6084 SDValue Op0 = Op.getOperand(0); 6085 SDValue Op1 = Op.getOperand(1); 6086 6087 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6088 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6089 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6090 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6091 EVT VecVT = N->getValueType(0); 6092 if (VecVT != Op0.getValueType()) { 6093 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6094 DCI.AddToWorklist(Op0.getNode()); 6095 } 6096 if (VecVT != Op1.getValueType()) { 6097 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6098 DCI.AddToWorklist(Op1.getNode()); 6099 } 6100 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6101 DCI.AddToWorklist(Op0.getNode()); 6102 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6103 DCI.AddToWorklist(Op1.getNode()); 6104 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6105 } 6106 } 6107 6108 return SDValue(); 6109 } 6110 6111 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6112 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6113 // set by the CCReg instruction using the CCValid / CCMask masks, 6114 // If the CCReg instruction is itself a ICMP testing the condition 6115 // code set by some other instruction, see whether we can directly 6116 // use that condition code. 6117 6118 // Verify that we have an ICMP against some constant. 6119 if (CCValid != SystemZ::CCMASK_ICMP) 6120 return false; 6121 auto *ICmp = CCReg.getNode(); 6122 if (ICmp->getOpcode() != SystemZISD::ICMP) 6123 return false; 6124 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6125 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6126 if (!CompareRHS) 6127 return false; 6128 6129 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6130 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6131 // Verify that we have an appropriate mask for a EQ or NE comparison. 6132 bool Invert = false; 6133 if (CCMask == SystemZ::CCMASK_CMP_NE) 6134 Invert = !Invert; 6135 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6136 return false; 6137 6138 // Verify that the ICMP compares against one of select values. 6139 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6140 if (!TrueVal) 6141 return false; 6142 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6143 if (!FalseVal) 6144 return false; 6145 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6146 Invert = !Invert; 6147 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6148 return false; 6149 6150 // Compute the effective CC mask for the new branch or select. 6151 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6152 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6153 if (!NewCCValid || !NewCCMask) 6154 return false; 6155 CCValid = NewCCValid->getZExtValue(); 6156 CCMask = NewCCMask->getZExtValue(); 6157 if (Invert) 6158 CCMask ^= CCValid; 6159 6160 // Return the updated CCReg link. 6161 CCReg = CompareLHS->getOperand(4); 6162 return true; 6163 } 6164 6165 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6166 if (CompareLHS->getOpcode() == ISD::SRA) { 6167 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6168 if (!SRACount || SRACount->getZExtValue() != 30) 6169 return false; 6170 auto *SHL = CompareLHS->getOperand(0).getNode(); 6171 if (SHL->getOpcode() != ISD::SHL) 6172 return false; 6173 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6174 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6175 return false; 6176 auto *IPM = SHL->getOperand(0).getNode(); 6177 if (IPM->getOpcode() != SystemZISD::IPM) 6178 return false; 6179 6180 // Avoid introducing CC spills (because SRA would clobber CC). 6181 if (!CompareLHS->hasOneUse()) 6182 return false; 6183 // Verify that the ICMP compares against zero. 6184 if (CompareRHS->getZExtValue() != 0) 6185 return false; 6186 6187 // Compute the effective CC mask for the new branch or select. 6188 switch (CCMask) { 6189 case SystemZ::CCMASK_CMP_EQ: break; 6190 case SystemZ::CCMASK_CMP_NE: break; 6191 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 6192 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 6193 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 6194 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 6195 default: return false; 6196 } 6197 6198 // Return the updated CCReg link. 6199 CCReg = IPM->getOperand(0); 6200 return true; 6201 } 6202 6203 return false; 6204 } 6205 6206 SDValue SystemZTargetLowering::combineBR_CCMASK( 6207 SDNode *N, DAGCombinerInfo &DCI) const { 6208 SelectionDAG &DAG = DCI.DAG; 6209 6210 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6211 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6212 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6213 if (!CCValid || !CCMask) 6214 return SDValue(); 6215 6216 int CCValidVal = CCValid->getZExtValue(); 6217 int CCMaskVal = CCMask->getZExtValue(); 6218 SDValue Chain = N->getOperand(0); 6219 SDValue CCReg = N->getOperand(4); 6220 6221 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6222 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6223 Chain, 6224 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6225 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6226 N->getOperand(3), CCReg); 6227 return SDValue(); 6228 } 6229 6230 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6231 SDNode *N, DAGCombinerInfo &DCI) const { 6232 SelectionDAG &DAG = DCI.DAG; 6233 6234 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6235 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6236 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6237 if (!CCValid || !CCMask) 6238 return SDValue(); 6239 6240 int CCValidVal = CCValid->getZExtValue(); 6241 int CCMaskVal = CCMask->getZExtValue(); 6242 SDValue CCReg = N->getOperand(4); 6243 6244 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6245 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6246 N->getOperand(0), N->getOperand(1), 6247 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6248 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6249 CCReg); 6250 return SDValue(); 6251 } 6252 6253 6254 SDValue SystemZTargetLowering::combineGET_CCMASK( 6255 SDNode *N, DAGCombinerInfo &DCI) const { 6256 6257 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6258 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6259 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6260 if (!CCValid || !CCMask) 6261 return SDValue(); 6262 int CCValidVal = CCValid->getZExtValue(); 6263 int CCMaskVal = CCMask->getZExtValue(); 6264 6265 SDValue Select = N->getOperand(0); 6266 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6267 return SDValue(); 6268 6269 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6270 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6271 if (!SelectCCValid || !SelectCCMask) 6272 return SDValue(); 6273 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6274 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6275 6276 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6277 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6278 if (!TrueVal || !FalseVal) 6279 return SDValue(); 6280 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6281 ; 6282 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6283 SelectCCMaskVal ^= SelectCCValidVal; 6284 else 6285 return SDValue(); 6286 6287 if (SelectCCValidVal & ~CCValidVal) 6288 return SDValue(); 6289 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6290 return SDValue(); 6291 6292 return Select->getOperand(4); 6293 } 6294 6295 SDValue SystemZTargetLowering::combineIntDIVREM( 6296 SDNode *N, DAGCombinerInfo &DCI) const { 6297 SelectionDAG &DAG = DCI.DAG; 6298 EVT VT = N->getValueType(0); 6299 // In the case where the divisor is a vector of constants a cheaper 6300 // sequence of instructions can replace the divide. BuildSDIV is called to 6301 // do this during DAG combining, but it only succeeds when it can build a 6302 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6303 // since it is not Legal but Custom it can only happen before 6304 // legalization. Therefore we must scalarize this early before Combine 6305 // 1. For widened vectors, this is already the result of type legalization. 6306 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6307 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6308 return DAG.UnrollVectorOp(N); 6309 return SDValue(); 6310 } 6311 6312 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6313 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6314 return N->getOperand(0); 6315 return N; 6316 } 6317 6318 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6319 DAGCombinerInfo &DCI) const { 6320 switch(N->getOpcode()) { 6321 default: break; 6322 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6323 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6324 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6325 case SystemZISD::MERGE_HIGH: 6326 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6327 case ISD::LOAD: return combineLOAD(N, DCI); 6328 case ISD::STORE: return combineSTORE(N, DCI); 6329 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6330 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6331 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6332 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6333 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6334 case ISD::BSWAP: return combineBSWAP(N, DCI); 6335 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6336 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6337 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6338 case ISD::SDIV: 6339 case ISD::UDIV: 6340 case ISD::SREM: 6341 case ISD::UREM: return combineIntDIVREM(N, DCI); 6342 } 6343 6344 return SDValue(); 6345 } 6346 6347 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6348 // are for Op. 6349 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6350 unsigned OpNo) { 6351 EVT VT = Op.getValueType(); 6352 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6353 APInt SrcDemE; 6354 unsigned Opcode = Op.getOpcode(); 6355 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6356 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6357 switch (Id) { 6358 case Intrinsic::s390_vpksh: // PACKS 6359 case Intrinsic::s390_vpksf: 6360 case Intrinsic::s390_vpksg: 6361 case Intrinsic::s390_vpkshs: // PACKS_CC 6362 case Intrinsic::s390_vpksfs: 6363 case Intrinsic::s390_vpksgs: 6364 case Intrinsic::s390_vpklsh: // PACKLS 6365 case Intrinsic::s390_vpklsf: 6366 case Intrinsic::s390_vpklsg: 6367 case Intrinsic::s390_vpklshs: // PACKLS_CC 6368 case Intrinsic::s390_vpklsfs: 6369 case Intrinsic::s390_vpklsgs: 6370 // VECTOR PACK truncates the elements of two source vectors into one. 6371 SrcDemE = DemandedElts; 6372 if (OpNo == 2) 6373 SrcDemE.lshrInPlace(NumElts / 2); 6374 SrcDemE = SrcDemE.trunc(NumElts / 2); 6375 break; 6376 // VECTOR UNPACK extends half the elements of the source vector. 6377 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6378 case Intrinsic::s390_vuphh: 6379 case Intrinsic::s390_vuphf: 6380 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6381 case Intrinsic::s390_vuplhh: 6382 case Intrinsic::s390_vuplhf: 6383 SrcDemE = APInt(NumElts * 2, 0); 6384 SrcDemE.insertBits(DemandedElts, 0); 6385 break; 6386 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6387 case Intrinsic::s390_vuplhw: 6388 case Intrinsic::s390_vuplf: 6389 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6390 case Intrinsic::s390_vupllh: 6391 case Intrinsic::s390_vupllf: 6392 SrcDemE = APInt(NumElts * 2, 0); 6393 SrcDemE.insertBits(DemandedElts, NumElts); 6394 break; 6395 case Intrinsic::s390_vpdi: { 6396 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6397 SrcDemE = APInt(NumElts, 0); 6398 if (!DemandedElts[OpNo - 1]) 6399 break; 6400 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6401 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6402 // Demand input element 0 or 1, given by the mask bit value. 6403 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6404 break; 6405 } 6406 case Intrinsic::s390_vsldb: { 6407 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6408 assert(VT == MVT::v16i8 && "Unexpected type."); 6409 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6410 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6411 unsigned NumSrc0Els = 16 - FirstIdx; 6412 SrcDemE = APInt(NumElts, 0); 6413 if (OpNo == 1) { 6414 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6415 SrcDemE.insertBits(DemEls, FirstIdx); 6416 } else { 6417 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6418 SrcDemE.insertBits(DemEls, 0); 6419 } 6420 break; 6421 } 6422 case Intrinsic::s390_vperm: 6423 SrcDemE = APInt(NumElts, 1); 6424 break; 6425 default: 6426 llvm_unreachable("Unhandled intrinsic."); 6427 break; 6428 } 6429 } else { 6430 switch (Opcode) { 6431 case SystemZISD::JOIN_DWORDS: 6432 // Scalar operand. 6433 SrcDemE = APInt(1, 1); 6434 break; 6435 case SystemZISD::SELECT_CCMASK: 6436 SrcDemE = DemandedElts; 6437 break; 6438 default: 6439 llvm_unreachable("Unhandled opcode."); 6440 break; 6441 } 6442 } 6443 return SrcDemE; 6444 } 6445 6446 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6447 const APInt &DemandedElts, 6448 const SelectionDAG &DAG, unsigned Depth, 6449 unsigned OpNo) { 6450 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6451 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6452 KnownBits LHSKnown = 6453 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6454 KnownBits RHSKnown = 6455 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6456 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6457 Known.One = LHSKnown.One & RHSKnown.One; 6458 } 6459 6460 void 6461 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6462 KnownBits &Known, 6463 const APInt &DemandedElts, 6464 const SelectionDAG &DAG, 6465 unsigned Depth) const { 6466 Known.resetAll(); 6467 6468 // Intrinsic CC result is returned in the two low bits. 6469 unsigned tmp0, tmp1; // not used 6470 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6471 Known.Zero.setBitsFrom(2); 6472 return; 6473 } 6474 EVT VT = Op.getValueType(); 6475 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6476 return; 6477 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6478 "KnownBits does not match VT in bitwidth"); 6479 assert ((!VT.isVector() || 6480 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6481 "DemandedElts does not match VT number of elements"); 6482 unsigned BitWidth = Known.getBitWidth(); 6483 unsigned Opcode = Op.getOpcode(); 6484 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6485 bool IsLogical = false; 6486 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6487 switch (Id) { 6488 case Intrinsic::s390_vpksh: // PACKS 6489 case Intrinsic::s390_vpksf: 6490 case Intrinsic::s390_vpksg: 6491 case Intrinsic::s390_vpkshs: // PACKS_CC 6492 case Intrinsic::s390_vpksfs: 6493 case Intrinsic::s390_vpksgs: 6494 case Intrinsic::s390_vpklsh: // PACKLS 6495 case Intrinsic::s390_vpklsf: 6496 case Intrinsic::s390_vpklsg: 6497 case Intrinsic::s390_vpklshs: // PACKLS_CC 6498 case Intrinsic::s390_vpklsfs: 6499 case Intrinsic::s390_vpklsgs: 6500 case Intrinsic::s390_vpdi: 6501 case Intrinsic::s390_vsldb: 6502 case Intrinsic::s390_vperm: 6503 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6504 break; 6505 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6506 case Intrinsic::s390_vuplhh: 6507 case Intrinsic::s390_vuplhf: 6508 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6509 case Intrinsic::s390_vupllh: 6510 case Intrinsic::s390_vupllf: 6511 IsLogical = true; 6512 LLVM_FALLTHROUGH; 6513 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6514 case Intrinsic::s390_vuphh: 6515 case Intrinsic::s390_vuphf: 6516 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6517 case Intrinsic::s390_vuplhw: 6518 case Intrinsic::s390_vuplf: { 6519 SDValue SrcOp = Op.getOperand(1); 6520 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6521 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6522 if (IsLogical) { 6523 Known = Known.zext(BitWidth, true); 6524 } else 6525 Known = Known.sext(BitWidth); 6526 break; 6527 } 6528 default: 6529 break; 6530 } 6531 } else { 6532 switch (Opcode) { 6533 case SystemZISD::JOIN_DWORDS: 6534 case SystemZISD::SELECT_CCMASK: 6535 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6536 break; 6537 case SystemZISD::REPLICATE: { 6538 SDValue SrcOp = Op.getOperand(0); 6539 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6540 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6541 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6542 break; 6543 } 6544 default: 6545 break; 6546 } 6547 } 6548 6549 // Known has the width of the source operand(s). Adjust if needed to match 6550 // the passed bitwidth. 6551 if (Known.getBitWidth() != BitWidth) 6552 Known = Known.zextOrTrunc(BitWidth, false); 6553 } 6554 6555 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6556 const SelectionDAG &DAG, unsigned Depth, 6557 unsigned OpNo) { 6558 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6559 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6560 if (LHS == 1) return 1; // Early out. 6561 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6562 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6563 if (RHS == 1) return 1; // Early out. 6564 unsigned Common = std::min(LHS, RHS); 6565 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6566 EVT VT = Op.getValueType(); 6567 unsigned VTBits = VT.getScalarSizeInBits(); 6568 if (SrcBitWidth > VTBits) { // PACK 6569 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6570 if (Common > SrcExtraBits) 6571 return (Common - SrcExtraBits); 6572 return 1; 6573 } 6574 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6575 return Common; 6576 } 6577 6578 unsigned 6579 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6580 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6581 unsigned Depth) const { 6582 if (Op.getResNo() != 0) 6583 return 1; 6584 unsigned Opcode = Op.getOpcode(); 6585 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6586 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6587 switch (Id) { 6588 case Intrinsic::s390_vpksh: // PACKS 6589 case Intrinsic::s390_vpksf: 6590 case Intrinsic::s390_vpksg: 6591 case Intrinsic::s390_vpkshs: // PACKS_CC 6592 case Intrinsic::s390_vpksfs: 6593 case Intrinsic::s390_vpksgs: 6594 case Intrinsic::s390_vpklsh: // PACKLS 6595 case Intrinsic::s390_vpklsf: 6596 case Intrinsic::s390_vpklsg: 6597 case Intrinsic::s390_vpklshs: // PACKLS_CC 6598 case Intrinsic::s390_vpklsfs: 6599 case Intrinsic::s390_vpklsgs: 6600 case Intrinsic::s390_vpdi: 6601 case Intrinsic::s390_vsldb: 6602 case Intrinsic::s390_vperm: 6603 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6604 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6605 case Intrinsic::s390_vuphh: 6606 case Intrinsic::s390_vuphf: 6607 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6608 case Intrinsic::s390_vuplhw: 6609 case Intrinsic::s390_vuplf: { 6610 SDValue PackedOp = Op.getOperand(1); 6611 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6612 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6613 EVT VT = Op.getValueType(); 6614 unsigned VTBits = VT.getScalarSizeInBits(); 6615 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6616 return Tmp; 6617 } 6618 default: 6619 break; 6620 } 6621 } else { 6622 switch (Opcode) { 6623 case SystemZISD::SELECT_CCMASK: 6624 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6625 default: 6626 break; 6627 } 6628 } 6629 6630 return 1; 6631 } 6632 6633 //===----------------------------------------------------------------------===// 6634 // Custom insertion 6635 //===----------------------------------------------------------------------===// 6636 6637 // Create a new basic block after MBB. 6638 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6639 MachineFunction &MF = *MBB->getParent(); 6640 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6641 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6642 return NewMBB; 6643 } 6644 6645 // Split MBB after MI and return the new block (the one that contains 6646 // instructions after MI). 6647 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6648 MachineBasicBlock *MBB) { 6649 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6650 NewMBB->splice(NewMBB->begin(), MBB, 6651 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6652 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6653 return NewMBB; 6654 } 6655 6656 // Split MBB before MI and return the new block (the one that contains MI). 6657 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6658 MachineBasicBlock *MBB) { 6659 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6660 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6661 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6662 return NewMBB; 6663 } 6664 6665 // Force base value Base into a register before MI. Return the register. 6666 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6667 const SystemZInstrInfo *TII) { 6668 if (Base.isReg()) 6669 return Base.getReg(); 6670 6671 MachineBasicBlock *MBB = MI.getParent(); 6672 MachineFunction &MF = *MBB->getParent(); 6673 MachineRegisterInfo &MRI = MF.getRegInfo(); 6674 6675 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6676 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6677 .add(Base) 6678 .addImm(0) 6679 .addReg(0); 6680 return Reg; 6681 } 6682 6683 // The CC operand of MI might be missing a kill marker because there 6684 // were multiple uses of CC, and ISel didn't know which to mark. 6685 // Figure out whether MI should have had a kill marker. 6686 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6687 // Scan forward through BB for a use/def of CC. 6688 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6689 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6690 const MachineInstr& mi = *miI; 6691 if (mi.readsRegister(SystemZ::CC)) 6692 return false; 6693 if (mi.definesRegister(SystemZ::CC)) 6694 break; // Should have kill-flag - update below. 6695 } 6696 6697 // If we hit the end of the block, check whether CC is live into a 6698 // successor. 6699 if (miI == MBB->end()) { 6700 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6701 if ((*SI)->isLiveIn(SystemZ::CC)) 6702 return false; 6703 } 6704 6705 return true; 6706 } 6707 6708 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6709 // together with other Select pseudo-opcodes into a single basic-block with 6710 // a conditional jump around it. 6711 static bool isSelectPseudo(MachineInstr &MI) { 6712 switch (MI.getOpcode()) { 6713 case SystemZ::Select32: 6714 case SystemZ::Select64: 6715 case SystemZ::SelectF32: 6716 case SystemZ::SelectF64: 6717 case SystemZ::SelectF128: 6718 case SystemZ::SelectVR32: 6719 case SystemZ::SelectVR64: 6720 case SystemZ::SelectVR128: 6721 return true; 6722 6723 default: 6724 return false; 6725 } 6726 } 6727 6728 // Helper function, which inserts PHI functions into SinkMBB: 6729 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6730 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6731 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6732 MachineBasicBlock *TrueMBB, 6733 MachineBasicBlock *FalseMBB, 6734 MachineBasicBlock *SinkMBB) { 6735 MachineFunction *MF = TrueMBB->getParent(); 6736 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6737 6738 MachineInstr *FirstMI = Selects.front(); 6739 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6740 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6741 6742 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6743 6744 // As we are creating the PHIs, we have to be careful if there is more than 6745 // one. Later Selects may reference the results of earlier Selects, but later 6746 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6747 // That also means that PHI construction must work forward from earlier to 6748 // later, and that the code must maintain a mapping from earlier PHI's 6749 // destination registers, and the registers that went into the PHI. 6750 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6751 6752 for (auto MI : Selects) { 6753 Register DestReg = MI->getOperand(0).getReg(); 6754 Register TrueReg = MI->getOperand(1).getReg(); 6755 Register FalseReg = MI->getOperand(2).getReg(); 6756 6757 // If this Select we are generating is the opposite condition from 6758 // the jump we generated, then we have to swap the operands for the 6759 // PHI that is going to be generated. 6760 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6761 std::swap(TrueReg, FalseReg); 6762 6763 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6764 TrueReg = RegRewriteTable[TrueReg].first; 6765 6766 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6767 FalseReg = RegRewriteTable[FalseReg].second; 6768 6769 DebugLoc DL = MI->getDebugLoc(); 6770 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6771 .addReg(TrueReg).addMBB(TrueMBB) 6772 .addReg(FalseReg).addMBB(FalseMBB); 6773 6774 // Add this PHI to the rewrite table. 6775 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6776 } 6777 6778 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6779 } 6780 6781 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6782 MachineBasicBlock * 6783 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6784 MachineBasicBlock *MBB) const { 6785 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6786 const SystemZInstrInfo *TII = 6787 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6788 6789 unsigned CCValid = MI.getOperand(3).getImm(); 6790 unsigned CCMask = MI.getOperand(4).getImm(); 6791 6792 // If we have a sequence of Select* pseudo instructions using the 6793 // same condition code value, we want to expand all of them into 6794 // a single pair of basic blocks using the same condition. 6795 SmallVector<MachineInstr*, 8> Selects; 6796 SmallVector<MachineInstr*, 8> DbgValues; 6797 Selects.push_back(&MI); 6798 unsigned Count = 0; 6799 for (MachineBasicBlock::iterator NextMIIt = 6800 std::next(MachineBasicBlock::iterator(MI)); 6801 NextMIIt != MBB->end(); ++NextMIIt) { 6802 if (NextMIIt->definesRegister(SystemZ::CC)) 6803 break; 6804 if (isSelectPseudo(*NextMIIt)) { 6805 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6806 "Bad CCValid operands since CC was not redefined."); 6807 if (NextMIIt->getOperand(4).getImm() == CCMask || 6808 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6809 Selects.push_back(&*NextMIIt); 6810 continue; 6811 } 6812 break; 6813 } 6814 bool User = false; 6815 for (auto SelMI : Selects) 6816 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6817 User = true; 6818 break; 6819 } 6820 if (NextMIIt->isDebugInstr()) { 6821 if (User) { 6822 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6823 DbgValues.push_back(&*NextMIIt); 6824 } 6825 } 6826 else if (User || ++Count > 20) 6827 break; 6828 } 6829 6830 MachineInstr *LastMI = Selects.back(); 6831 bool CCKilled = 6832 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6833 MachineBasicBlock *StartMBB = MBB; 6834 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6835 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6836 6837 // Unless CC was killed in the last Select instruction, mark it as 6838 // live-in to both FalseMBB and JoinMBB. 6839 if (!CCKilled) { 6840 FalseMBB->addLiveIn(SystemZ::CC); 6841 JoinMBB->addLiveIn(SystemZ::CC); 6842 } 6843 6844 // StartMBB: 6845 // BRC CCMask, JoinMBB 6846 // # fallthrough to FalseMBB 6847 MBB = StartMBB; 6848 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6849 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6850 MBB->addSuccessor(JoinMBB); 6851 MBB->addSuccessor(FalseMBB); 6852 6853 // FalseMBB: 6854 // # fallthrough to JoinMBB 6855 MBB = FalseMBB; 6856 MBB->addSuccessor(JoinMBB); 6857 6858 // JoinMBB: 6859 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6860 // ... 6861 MBB = JoinMBB; 6862 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6863 for (auto SelMI : Selects) 6864 SelMI->eraseFromParent(); 6865 6866 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6867 for (auto DbgMI : DbgValues) 6868 MBB->splice(InsertPos, StartMBB, DbgMI); 6869 6870 return JoinMBB; 6871 } 6872 6873 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6874 // StoreOpcode is the store to use and Invert says whether the store should 6875 // happen when the condition is false rather than true. If a STORE ON 6876 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6877 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6878 MachineBasicBlock *MBB, 6879 unsigned StoreOpcode, 6880 unsigned STOCOpcode, 6881 bool Invert) const { 6882 const SystemZInstrInfo *TII = 6883 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6884 6885 Register SrcReg = MI.getOperand(0).getReg(); 6886 MachineOperand Base = MI.getOperand(1); 6887 int64_t Disp = MI.getOperand(2).getImm(); 6888 Register IndexReg = MI.getOperand(3).getReg(); 6889 unsigned CCValid = MI.getOperand(4).getImm(); 6890 unsigned CCMask = MI.getOperand(5).getImm(); 6891 DebugLoc DL = MI.getDebugLoc(); 6892 6893 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6894 6895 // Use STOCOpcode if possible. We could use different store patterns in 6896 // order to avoid matching the index register, but the performance trade-offs 6897 // might be more complicated in that case. 6898 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6899 if (Invert) 6900 CCMask ^= CCValid; 6901 6902 // ISel pattern matching also adds a load memory operand of the same 6903 // address, so take special care to find the storing memory operand. 6904 MachineMemOperand *MMO = nullptr; 6905 for (auto *I : MI.memoperands()) 6906 if (I->isStore()) { 6907 MMO = I; 6908 break; 6909 } 6910 6911 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6912 .addReg(SrcReg) 6913 .add(Base) 6914 .addImm(Disp) 6915 .addImm(CCValid) 6916 .addImm(CCMask) 6917 .addMemOperand(MMO); 6918 6919 MI.eraseFromParent(); 6920 return MBB; 6921 } 6922 6923 // Get the condition needed to branch around the store. 6924 if (!Invert) 6925 CCMask ^= CCValid; 6926 6927 MachineBasicBlock *StartMBB = MBB; 6928 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6929 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6930 6931 // Unless CC was killed in the CondStore instruction, mark it as 6932 // live-in to both FalseMBB and JoinMBB. 6933 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6934 FalseMBB->addLiveIn(SystemZ::CC); 6935 JoinMBB->addLiveIn(SystemZ::CC); 6936 } 6937 6938 // StartMBB: 6939 // BRC CCMask, JoinMBB 6940 // # fallthrough to FalseMBB 6941 MBB = StartMBB; 6942 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6943 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6944 MBB->addSuccessor(JoinMBB); 6945 MBB->addSuccessor(FalseMBB); 6946 6947 // FalseMBB: 6948 // store %SrcReg, %Disp(%Index,%Base) 6949 // # fallthrough to JoinMBB 6950 MBB = FalseMBB; 6951 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6952 .addReg(SrcReg) 6953 .add(Base) 6954 .addImm(Disp) 6955 .addReg(IndexReg); 6956 MBB->addSuccessor(JoinMBB); 6957 6958 MI.eraseFromParent(); 6959 return JoinMBB; 6960 } 6961 6962 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6963 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6964 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6965 // BitSize is the width of the field in bits, or 0 if this is a partword 6966 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6967 // is one of the operands. Invert says whether the field should be 6968 // inverted after performing BinOpcode (e.g. for NAND). 6969 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6970 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6971 unsigned BitSize, bool Invert) const { 6972 MachineFunction &MF = *MBB->getParent(); 6973 const SystemZInstrInfo *TII = 6974 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6975 MachineRegisterInfo &MRI = MF.getRegInfo(); 6976 bool IsSubWord = (BitSize < 32); 6977 6978 // Extract the operands. Base can be a register or a frame index. 6979 // Src2 can be a register or immediate. 6980 Register Dest = MI.getOperand(0).getReg(); 6981 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6982 int64_t Disp = MI.getOperand(2).getImm(); 6983 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6984 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 6985 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 6986 DebugLoc DL = MI.getDebugLoc(); 6987 if (IsSubWord) 6988 BitSize = MI.getOperand(6).getImm(); 6989 6990 // Subword operations use 32-bit registers. 6991 const TargetRegisterClass *RC = (BitSize <= 32 ? 6992 &SystemZ::GR32BitRegClass : 6993 &SystemZ::GR64BitRegClass); 6994 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6995 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6996 6997 // Get the right opcodes for the displacement. 6998 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6999 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7000 assert(LOpcode && CSOpcode && "Displacement out of range"); 7001 7002 // Create virtual registers for temporary results. 7003 Register OrigVal = MRI.createVirtualRegister(RC); 7004 Register OldVal = MRI.createVirtualRegister(RC); 7005 Register NewVal = (BinOpcode || IsSubWord ? 7006 MRI.createVirtualRegister(RC) : Src2.getReg()); 7007 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7008 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7009 7010 // Insert a basic block for the main loop. 7011 MachineBasicBlock *StartMBB = MBB; 7012 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7013 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7014 7015 // StartMBB: 7016 // ... 7017 // %OrigVal = L Disp(%Base) 7018 // # fall through to LoopMMB 7019 MBB = StartMBB; 7020 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7021 MBB->addSuccessor(LoopMBB); 7022 7023 // LoopMBB: 7024 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7025 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7026 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7027 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7028 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7029 // JNE LoopMBB 7030 // # fall through to DoneMMB 7031 MBB = LoopMBB; 7032 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7033 .addReg(OrigVal).addMBB(StartMBB) 7034 .addReg(Dest).addMBB(LoopMBB); 7035 if (IsSubWord) 7036 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7037 .addReg(OldVal).addReg(BitShift).addImm(0); 7038 if (Invert) { 7039 // Perform the operation normally and then invert every bit of the field. 7040 Register Tmp = MRI.createVirtualRegister(RC); 7041 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7042 if (BitSize <= 32) 7043 // XILF with the upper BitSize bits set. 7044 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7045 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7046 else { 7047 // Use LCGR and add -1 to the result, which is more compact than 7048 // an XILF, XILH pair. 7049 Register Tmp2 = MRI.createVirtualRegister(RC); 7050 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7051 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7052 .addReg(Tmp2).addImm(-1); 7053 } 7054 } else if (BinOpcode) 7055 // A simply binary operation. 7056 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7057 .addReg(RotatedOldVal) 7058 .add(Src2); 7059 else if (IsSubWord) 7060 // Use RISBG to rotate Src2 into position and use it to replace the 7061 // field in RotatedOldVal. 7062 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7063 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7064 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7065 if (IsSubWord) 7066 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7067 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7068 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7069 .addReg(OldVal) 7070 .addReg(NewVal) 7071 .add(Base) 7072 .addImm(Disp); 7073 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7074 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7075 MBB->addSuccessor(LoopMBB); 7076 MBB->addSuccessor(DoneMBB); 7077 7078 MI.eraseFromParent(); 7079 return DoneMBB; 7080 } 7081 7082 // Implement EmitInstrWithCustomInserter for pseudo 7083 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7084 // instruction that should be used to compare the current field with the 7085 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7086 // for when the current field should be kept. BitSize is the width of 7087 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7088 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7089 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7090 unsigned KeepOldMask, unsigned BitSize) const { 7091 MachineFunction &MF = *MBB->getParent(); 7092 const SystemZInstrInfo *TII = 7093 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7094 MachineRegisterInfo &MRI = MF.getRegInfo(); 7095 bool IsSubWord = (BitSize < 32); 7096 7097 // Extract the operands. Base can be a register or a frame index. 7098 Register Dest = MI.getOperand(0).getReg(); 7099 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7100 int64_t Disp = MI.getOperand(2).getImm(); 7101 Register Src2 = MI.getOperand(3).getReg(); 7102 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7103 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7104 DebugLoc DL = MI.getDebugLoc(); 7105 if (IsSubWord) 7106 BitSize = MI.getOperand(6).getImm(); 7107 7108 // Subword operations use 32-bit registers. 7109 const TargetRegisterClass *RC = (BitSize <= 32 ? 7110 &SystemZ::GR32BitRegClass : 7111 &SystemZ::GR64BitRegClass); 7112 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7113 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7114 7115 // Get the right opcodes for the displacement. 7116 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7117 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7118 assert(LOpcode && CSOpcode && "Displacement out of range"); 7119 7120 // Create virtual registers for temporary results. 7121 Register OrigVal = MRI.createVirtualRegister(RC); 7122 Register OldVal = MRI.createVirtualRegister(RC); 7123 Register NewVal = MRI.createVirtualRegister(RC); 7124 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7125 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7126 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7127 7128 // Insert 3 basic blocks for the loop. 7129 MachineBasicBlock *StartMBB = MBB; 7130 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7131 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7132 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7133 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7134 7135 // StartMBB: 7136 // ... 7137 // %OrigVal = L Disp(%Base) 7138 // # fall through to LoopMMB 7139 MBB = StartMBB; 7140 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7141 MBB->addSuccessor(LoopMBB); 7142 7143 // LoopMBB: 7144 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7145 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7146 // CompareOpcode %RotatedOldVal, %Src2 7147 // BRC KeepOldMask, UpdateMBB 7148 MBB = LoopMBB; 7149 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7150 .addReg(OrigVal).addMBB(StartMBB) 7151 .addReg(Dest).addMBB(UpdateMBB); 7152 if (IsSubWord) 7153 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7154 .addReg(OldVal).addReg(BitShift).addImm(0); 7155 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7156 .addReg(RotatedOldVal).addReg(Src2); 7157 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7158 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7159 MBB->addSuccessor(UpdateMBB); 7160 MBB->addSuccessor(UseAltMBB); 7161 7162 // UseAltMBB: 7163 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7164 // # fall through to UpdateMMB 7165 MBB = UseAltMBB; 7166 if (IsSubWord) 7167 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7168 .addReg(RotatedOldVal).addReg(Src2) 7169 .addImm(32).addImm(31 + BitSize).addImm(0); 7170 MBB->addSuccessor(UpdateMBB); 7171 7172 // UpdateMBB: 7173 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7174 // [ %RotatedAltVal, UseAltMBB ] 7175 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7176 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7177 // JNE LoopMBB 7178 // # fall through to DoneMMB 7179 MBB = UpdateMBB; 7180 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7181 .addReg(RotatedOldVal).addMBB(LoopMBB) 7182 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7183 if (IsSubWord) 7184 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7185 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7186 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7187 .addReg(OldVal) 7188 .addReg(NewVal) 7189 .add(Base) 7190 .addImm(Disp); 7191 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7192 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7193 MBB->addSuccessor(LoopMBB); 7194 MBB->addSuccessor(DoneMBB); 7195 7196 MI.eraseFromParent(); 7197 return DoneMBB; 7198 } 7199 7200 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7201 // instruction MI. 7202 MachineBasicBlock * 7203 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7204 MachineBasicBlock *MBB) const { 7205 7206 MachineFunction &MF = *MBB->getParent(); 7207 const SystemZInstrInfo *TII = 7208 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7209 MachineRegisterInfo &MRI = MF.getRegInfo(); 7210 7211 // Extract the operands. Base can be a register or a frame index. 7212 Register Dest = MI.getOperand(0).getReg(); 7213 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7214 int64_t Disp = MI.getOperand(2).getImm(); 7215 Register OrigCmpVal = MI.getOperand(3).getReg(); 7216 Register OrigSwapVal = MI.getOperand(4).getReg(); 7217 Register BitShift = MI.getOperand(5).getReg(); 7218 Register NegBitShift = MI.getOperand(6).getReg(); 7219 int64_t BitSize = MI.getOperand(7).getImm(); 7220 DebugLoc DL = MI.getDebugLoc(); 7221 7222 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7223 7224 // Get the right opcodes for the displacement. 7225 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7226 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7227 assert(LOpcode && CSOpcode && "Displacement out of range"); 7228 7229 // Create virtual registers for temporary results. 7230 Register OrigOldVal = MRI.createVirtualRegister(RC); 7231 Register OldVal = MRI.createVirtualRegister(RC); 7232 Register CmpVal = MRI.createVirtualRegister(RC); 7233 Register SwapVal = MRI.createVirtualRegister(RC); 7234 Register StoreVal = MRI.createVirtualRegister(RC); 7235 Register RetryOldVal = MRI.createVirtualRegister(RC); 7236 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7237 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7238 7239 // Insert 2 basic blocks for the loop. 7240 MachineBasicBlock *StartMBB = MBB; 7241 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7242 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7243 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7244 7245 // StartMBB: 7246 // ... 7247 // %OrigOldVal = L Disp(%Base) 7248 // # fall through to LoopMMB 7249 MBB = StartMBB; 7250 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7251 .add(Base) 7252 .addImm(Disp) 7253 .addReg(0); 7254 MBB->addSuccessor(LoopMBB); 7255 7256 // LoopMBB: 7257 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7258 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7259 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7260 // %Dest = RLL %OldVal, BitSize(%BitShift) 7261 // ^^ The low BitSize bits contain the field 7262 // of interest. 7263 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7264 // ^^ Replace the upper 32-BitSize bits of the 7265 // comparison value with those that we loaded, 7266 // so that we can use a full word comparison. 7267 // CR %Dest, %RetryCmpVal 7268 // JNE DoneMBB 7269 // # Fall through to SetMBB 7270 MBB = LoopMBB; 7271 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7272 .addReg(OrigOldVal).addMBB(StartMBB) 7273 .addReg(RetryOldVal).addMBB(SetMBB); 7274 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7275 .addReg(OrigCmpVal).addMBB(StartMBB) 7276 .addReg(RetryCmpVal).addMBB(SetMBB); 7277 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7278 .addReg(OrigSwapVal).addMBB(StartMBB) 7279 .addReg(RetrySwapVal).addMBB(SetMBB); 7280 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7281 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7282 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7283 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7284 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7285 .addReg(Dest).addReg(RetryCmpVal); 7286 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7287 .addImm(SystemZ::CCMASK_ICMP) 7288 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7289 MBB->addSuccessor(DoneMBB); 7290 MBB->addSuccessor(SetMBB); 7291 7292 // SetMBB: 7293 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7294 // ^^ Replace the upper 32-BitSize bits of the new 7295 // value with those that we loaded. 7296 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7297 // ^^ Rotate the new field to its proper position. 7298 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7299 // JNE LoopMBB 7300 // # fall through to ExitMMB 7301 MBB = SetMBB; 7302 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7303 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7304 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7305 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7306 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7307 .addReg(OldVal) 7308 .addReg(StoreVal) 7309 .add(Base) 7310 .addImm(Disp); 7311 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7312 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7313 MBB->addSuccessor(LoopMBB); 7314 MBB->addSuccessor(DoneMBB); 7315 7316 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7317 // to the block after the loop. At this point, CC may have been defined 7318 // either by the CR in LoopMBB or by the CS in SetMBB. 7319 if (!MI.registerDefIsDead(SystemZ::CC)) 7320 DoneMBB->addLiveIn(SystemZ::CC); 7321 7322 MI.eraseFromParent(); 7323 return DoneMBB; 7324 } 7325 7326 // Emit a move from two GR64s to a GR128. 7327 MachineBasicBlock * 7328 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7329 MachineBasicBlock *MBB) const { 7330 MachineFunction &MF = *MBB->getParent(); 7331 const SystemZInstrInfo *TII = 7332 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7333 MachineRegisterInfo &MRI = MF.getRegInfo(); 7334 DebugLoc DL = MI.getDebugLoc(); 7335 7336 Register Dest = MI.getOperand(0).getReg(); 7337 Register Hi = MI.getOperand(1).getReg(); 7338 Register Lo = MI.getOperand(2).getReg(); 7339 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7340 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7341 7342 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7343 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7344 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7345 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7346 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7347 7348 MI.eraseFromParent(); 7349 return MBB; 7350 } 7351 7352 // Emit an extension from a GR64 to a GR128. ClearEven is true 7353 // if the high register of the GR128 value must be cleared or false if 7354 // it's "don't care". 7355 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7356 MachineBasicBlock *MBB, 7357 bool ClearEven) const { 7358 MachineFunction &MF = *MBB->getParent(); 7359 const SystemZInstrInfo *TII = 7360 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7361 MachineRegisterInfo &MRI = MF.getRegInfo(); 7362 DebugLoc DL = MI.getDebugLoc(); 7363 7364 Register Dest = MI.getOperand(0).getReg(); 7365 Register Src = MI.getOperand(1).getReg(); 7366 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7367 7368 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7369 if (ClearEven) { 7370 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7371 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7372 7373 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7374 .addImm(0); 7375 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7376 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7377 In128 = NewIn128; 7378 } 7379 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7380 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7381 7382 MI.eraseFromParent(); 7383 return MBB; 7384 } 7385 7386 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7387 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7388 MachineFunction &MF = *MBB->getParent(); 7389 const SystemZInstrInfo *TII = 7390 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7391 MachineRegisterInfo &MRI = MF.getRegInfo(); 7392 DebugLoc DL = MI.getDebugLoc(); 7393 7394 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7395 uint64_t DestDisp = MI.getOperand(1).getImm(); 7396 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7397 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7398 uint64_t Length = MI.getOperand(4).getImm(); 7399 7400 // When generating more than one CLC, all but the last will need to 7401 // branch to the end when a difference is found. 7402 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7403 splitBlockAfter(MI, MBB) : nullptr); 7404 7405 // Check for the loop form, in which operand 5 is the trip count. 7406 if (MI.getNumExplicitOperands() > 5) { 7407 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7408 7409 Register StartCountReg = MI.getOperand(5).getReg(); 7410 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7411 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7412 forceReg(MI, DestBase, TII)); 7413 7414 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7415 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7416 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7417 MRI.createVirtualRegister(RC)); 7418 Register NextSrcReg = MRI.createVirtualRegister(RC); 7419 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7420 MRI.createVirtualRegister(RC)); 7421 7422 RC = &SystemZ::GR64BitRegClass; 7423 Register ThisCountReg = MRI.createVirtualRegister(RC); 7424 Register NextCountReg = MRI.createVirtualRegister(RC); 7425 7426 MachineBasicBlock *StartMBB = MBB; 7427 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7428 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7429 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7430 7431 // StartMBB: 7432 // # fall through to LoopMMB 7433 MBB->addSuccessor(LoopMBB); 7434 7435 // LoopMBB: 7436 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7437 // [ %NextDestReg, NextMBB ] 7438 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7439 // [ %NextSrcReg, NextMBB ] 7440 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7441 // [ %NextCountReg, NextMBB ] 7442 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7443 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7444 // ( JLH EndMBB ) 7445 // 7446 // The prefetch is used only for MVC. The JLH is used only for CLC. 7447 MBB = LoopMBB; 7448 7449 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7450 .addReg(StartDestReg).addMBB(StartMBB) 7451 .addReg(NextDestReg).addMBB(NextMBB); 7452 if (!HaveSingleBase) 7453 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7454 .addReg(StartSrcReg).addMBB(StartMBB) 7455 .addReg(NextSrcReg).addMBB(NextMBB); 7456 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7457 .addReg(StartCountReg).addMBB(StartMBB) 7458 .addReg(NextCountReg).addMBB(NextMBB); 7459 if (Opcode == SystemZ::MVC) 7460 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7461 .addImm(SystemZ::PFD_WRITE) 7462 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7463 BuildMI(MBB, DL, TII->get(Opcode)) 7464 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7465 .addReg(ThisSrcReg).addImm(SrcDisp); 7466 if (EndMBB) { 7467 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7468 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7469 .addMBB(EndMBB); 7470 MBB->addSuccessor(EndMBB); 7471 MBB->addSuccessor(NextMBB); 7472 } 7473 7474 // NextMBB: 7475 // %NextDestReg = LA 256(%ThisDestReg) 7476 // %NextSrcReg = LA 256(%ThisSrcReg) 7477 // %NextCountReg = AGHI %ThisCountReg, -1 7478 // CGHI %NextCountReg, 0 7479 // JLH LoopMBB 7480 // # fall through to DoneMMB 7481 // 7482 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7483 MBB = NextMBB; 7484 7485 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7486 .addReg(ThisDestReg).addImm(256).addReg(0); 7487 if (!HaveSingleBase) 7488 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7489 .addReg(ThisSrcReg).addImm(256).addReg(0); 7490 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7491 .addReg(ThisCountReg).addImm(-1); 7492 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7493 .addReg(NextCountReg).addImm(0); 7494 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7495 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7496 .addMBB(LoopMBB); 7497 MBB->addSuccessor(LoopMBB); 7498 MBB->addSuccessor(DoneMBB); 7499 7500 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7501 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7502 Length &= 255; 7503 if (EndMBB && !Length) 7504 // If the loop handled the whole CLC range, DoneMBB will be empty with 7505 // CC live-through into EndMBB, so add it as live-in. 7506 DoneMBB->addLiveIn(SystemZ::CC); 7507 MBB = DoneMBB; 7508 } 7509 // Handle any remaining bytes with straight-line code. 7510 while (Length > 0) { 7511 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7512 // The previous iteration might have created out-of-range displacements. 7513 // Apply them using LAY if so. 7514 if (!isUInt<12>(DestDisp)) { 7515 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7516 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7517 .add(DestBase) 7518 .addImm(DestDisp) 7519 .addReg(0); 7520 DestBase = MachineOperand::CreateReg(Reg, false); 7521 DestDisp = 0; 7522 } 7523 if (!isUInt<12>(SrcDisp)) { 7524 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7525 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7526 .add(SrcBase) 7527 .addImm(SrcDisp) 7528 .addReg(0); 7529 SrcBase = MachineOperand::CreateReg(Reg, false); 7530 SrcDisp = 0; 7531 } 7532 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7533 .add(DestBase) 7534 .addImm(DestDisp) 7535 .addImm(ThisLength) 7536 .add(SrcBase) 7537 .addImm(SrcDisp) 7538 .setMemRefs(MI.memoperands()); 7539 DestDisp += ThisLength; 7540 SrcDisp += ThisLength; 7541 Length -= ThisLength; 7542 // If there's another CLC to go, branch to the end if a difference 7543 // was found. 7544 if (EndMBB && Length > 0) { 7545 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7546 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7547 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7548 .addMBB(EndMBB); 7549 MBB->addSuccessor(EndMBB); 7550 MBB->addSuccessor(NextMBB); 7551 MBB = NextMBB; 7552 } 7553 } 7554 if (EndMBB) { 7555 MBB->addSuccessor(EndMBB); 7556 MBB = EndMBB; 7557 MBB->addLiveIn(SystemZ::CC); 7558 } 7559 7560 MI.eraseFromParent(); 7561 return MBB; 7562 } 7563 7564 // Decompose string pseudo-instruction MI into a loop that continually performs 7565 // Opcode until CC != 3. 7566 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7567 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7568 MachineFunction &MF = *MBB->getParent(); 7569 const SystemZInstrInfo *TII = 7570 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7571 MachineRegisterInfo &MRI = MF.getRegInfo(); 7572 DebugLoc DL = MI.getDebugLoc(); 7573 7574 uint64_t End1Reg = MI.getOperand(0).getReg(); 7575 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7576 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7577 uint64_t CharReg = MI.getOperand(3).getReg(); 7578 7579 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7580 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7581 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7582 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7583 7584 MachineBasicBlock *StartMBB = MBB; 7585 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7586 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7587 7588 // StartMBB: 7589 // # fall through to LoopMMB 7590 MBB->addSuccessor(LoopMBB); 7591 7592 // LoopMBB: 7593 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7594 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7595 // R0L = %CharReg 7596 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7597 // JO LoopMBB 7598 // # fall through to DoneMMB 7599 // 7600 // The load of R0L can be hoisted by post-RA LICM. 7601 MBB = LoopMBB; 7602 7603 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7604 .addReg(Start1Reg).addMBB(StartMBB) 7605 .addReg(End1Reg).addMBB(LoopMBB); 7606 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7607 .addReg(Start2Reg).addMBB(StartMBB) 7608 .addReg(End2Reg).addMBB(LoopMBB); 7609 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7610 BuildMI(MBB, DL, TII->get(Opcode)) 7611 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7612 .addReg(This1Reg).addReg(This2Reg); 7613 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7614 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7615 MBB->addSuccessor(LoopMBB); 7616 MBB->addSuccessor(DoneMBB); 7617 7618 DoneMBB->addLiveIn(SystemZ::CC); 7619 7620 MI.eraseFromParent(); 7621 return DoneMBB; 7622 } 7623 7624 // Update TBEGIN instruction with final opcode and register clobbers. 7625 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7626 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7627 bool NoFloat) const { 7628 MachineFunction &MF = *MBB->getParent(); 7629 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7630 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7631 7632 // Update opcode. 7633 MI.setDesc(TII->get(Opcode)); 7634 7635 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7636 // Make sure to add the corresponding GRSM bits if they are missing. 7637 uint64_t Control = MI.getOperand(2).getImm(); 7638 static const unsigned GPRControlBit[16] = { 7639 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7640 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7641 }; 7642 Control |= GPRControlBit[15]; 7643 if (TFI->hasFP(MF)) 7644 Control |= GPRControlBit[11]; 7645 MI.getOperand(2).setImm(Control); 7646 7647 // Add GPR clobbers. 7648 for (int I = 0; I < 16; I++) { 7649 if ((Control & GPRControlBit[I]) == 0) { 7650 unsigned Reg = SystemZMC::GR64Regs[I]; 7651 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7652 } 7653 } 7654 7655 // Add FPR/VR clobbers. 7656 if (!NoFloat && (Control & 4) != 0) { 7657 if (Subtarget.hasVector()) { 7658 for (int I = 0; I < 32; I++) { 7659 unsigned Reg = SystemZMC::VR128Regs[I]; 7660 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7661 } 7662 } else { 7663 for (int I = 0; I < 16; I++) { 7664 unsigned Reg = SystemZMC::FP64Regs[I]; 7665 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7666 } 7667 } 7668 } 7669 7670 return MBB; 7671 } 7672 7673 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7674 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7675 MachineFunction &MF = *MBB->getParent(); 7676 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7677 const SystemZInstrInfo *TII = 7678 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7679 DebugLoc DL = MI.getDebugLoc(); 7680 7681 Register SrcReg = MI.getOperand(0).getReg(); 7682 7683 // Create new virtual register of the same class as source. 7684 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7685 Register DstReg = MRI->createVirtualRegister(RC); 7686 7687 // Replace pseudo with a normal load-and-test that models the def as 7688 // well. 7689 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7690 .addReg(SrcReg) 7691 .setMIFlags(MI.getFlags()); 7692 MI.eraseFromParent(); 7693 7694 return MBB; 7695 } 7696 7697 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7698 MachineInstr &MI, MachineBasicBlock *MBB) const { 7699 switch (MI.getOpcode()) { 7700 case SystemZ::Select32: 7701 case SystemZ::Select64: 7702 case SystemZ::SelectF32: 7703 case SystemZ::SelectF64: 7704 case SystemZ::SelectF128: 7705 case SystemZ::SelectVR32: 7706 case SystemZ::SelectVR64: 7707 case SystemZ::SelectVR128: 7708 return emitSelect(MI, MBB); 7709 7710 case SystemZ::CondStore8Mux: 7711 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7712 case SystemZ::CondStore8MuxInv: 7713 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7714 case SystemZ::CondStore16Mux: 7715 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7716 case SystemZ::CondStore16MuxInv: 7717 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7718 case SystemZ::CondStore32Mux: 7719 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7720 case SystemZ::CondStore32MuxInv: 7721 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7722 case SystemZ::CondStore8: 7723 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7724 case SystemZ::CondStore8Inv: 7725 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7726 case SystemZ::CondStore16: 7727 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7728 case SystemZ::CondStore16Inv: 7729 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7730 case SystemZ::CondStore32: 7731 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7732 case SystemZ::CondStore32Inv: 7733 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7734 case SystemZ::CondStore64: 7735 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7736 case SystemZ::CondStore64Inv: 7737 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7738 case SystemZ::CondStoreF32: 7739 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7740 case SystemZ::CondStoreF32Inv: 7741 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7742 case SystemZ::CondStoreF64: 7743 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7744 case SystemZ::CondStoreF64Inv: 7745 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7746 7747 case SystemZ::PAIR128: 7748 return emitPair128(MI, MBB); 7749 case SystemZ::AEXT128: 7750 return emitExt128(MI, MBB, false); 7751 case SystemZ::ZEXT128: 7752 return emitExt128(MI, MBB, true); 7753 7754 case SystemZ::ATOMIC_SWAPW: 7755 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7756 case SystemZ::ATOMIC_SWAP_32: 7757 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7758 case SystemZ::ATOMIC_SWAP_64: 7759 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7760 7761 case SystemZ::ATOMIC_LOADW_AR: 7762 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7763 case SystemZ::ATOMIC_LOADW_AFI: 7764 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7765 case SystemZ::ATOMIC_LOAD_AR: 7766 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7767 case SystemZ::ATOMIC_LOAD_AHI: 7768 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7769 case SystemZ::ATOMIC_LOAD_AFI: 7770 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7771 case SystemZ::ATOMIC_LOAD_AGR: 7772 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7773 case SystemZ::ATOMIC_LOAD_AGHI: 7774 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7775 case SystemZ::ATOMIC_LOAD_AGFI: 7776 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7777 7778 case SystemZ::ATOMIC_LOADW_SR: 7779 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7780 case SystemZ::ATOMIC_LOAD_SR: 7781 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7782 case SystemZ::ATOMIC_LOAD_SGR: 7783 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7784 7785 case SystemZ::ATOMIC_LOADW_NR: 7786 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7787 case SystemZ::ATOMIC_LOADW_NILH: 7788 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7789 case SystemZ::ATOMIC_LOAD_NR: 7790 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7791 case SystemZ::ATOMIC_LOAD_NILL: 7792 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7793 case SystemZ::ATOMIC_LOAD_NILH: 7794 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7795 case SystemZ::ATOMIC_LOAD_NILF: 7796 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7797 case SystemZ::ATOMIC_LOAD_NGR: 7798 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7799 case SystemZ::ATOMIC_LOAD_NILL64: 7800 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7801 case SystemZ::ATOMIC_LOAD_NILH64: 7802 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7803 case SystemZ::ATOMIC_LOAD_NIHL64: 7804 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7805 case SystemZ::ATOMIC_LOAD_NIHH64: 7806 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7807 case SystemZ::ATOMIC_LOAD_NILF64: 7808 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7809 case SystemZ::ATOMIC_LOAD_NIHF64: 7810 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7811 7812 case SystemZ::ATOMIC_LOADW_OR: 7813 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7814 case SystemZ::ATOMIC_LOADW_OILH: 7815 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7816 case SystemZ::ATOMIC_LOAD_OR: 7817 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7818 case SystemZ::ATOMIC_LOAD_OILL: 7819 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7820 case SystemZ::ATOMIC_LOAD_OILH: 7821 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7822 case SystemZ::ATOMIC_LOAD_OILF: 7823 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7824 case SystemZ::ATOMIC_LOAD_OGR: 7825 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7826 case SystemZ::ATOMIC_LOAD_OILL64: 7827 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7828 case SystemZ::ATOMIC_LOAD_OILH64: 7829 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7830 case SystemZ::ATOMIC_LOAD_OIHL64: 7831 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7832 case SystemZ::ATOMIC_LOAD_OIHH64: 7833 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7834 case SystemZ::ATOMIC_LOAD_OILF64: 7835 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7836 case SystemZ::ATOMIC_LOAD_OIHF64: 7837 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7838 7839 case SystemZ::ATOMIC_LOADW_XR: 7840 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7841 case SystemZ::ATOMIC_LOADW_XILF: 7842 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7843 case SystemZ::ATOMIC_LOAD_XR: 7844 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7845 case SystemZ::ATOMIC_LOAD_XILF: 7846 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7847 case SystemZ::ATOMIC_LOAD_XGR: 7848 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7849 case SystemZ::ATOMIC_LOAD_XILF64: 7850 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7851 case SystemZ::ATOMIC_LOAD_XIHF64: 7852 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7853 7854 case SystemZ::ATOMIC_LOADW_NRi: 7855 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7856 case SystemZ::ATOMIC_LOADW_NILHi: 7857 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7858 case SystemZ::ATOMIC_LOAD_NRi: 7859 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7860 case SystemZ::ATOMIC_LOAD_NILLi: 7861 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7862 case SystemZ::ATOMIC_LOAD_NILHi: 7863 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7864 case SystemZ::ATOMIC_LOAD_NILFi: 7865 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7866 case SystemZ::ATOMIC_LOAD_NGRi: 7867 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7868 case SystemZ::ATOMIC_LOAD_NILL64i: 7869 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7870 case SystemZ::ATOMIC_LOAD_NILH64i: 7871 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7872 case SystemZ::ATOMIC_LOAD_NIHL64i: 7873 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7874 case SystemZ::ATOMIC_LOAD_NIHH64i: 7875 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7876 case SystemZ::ATOMIC_LOAD_NILF64i: 7877 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7878 case SystemZ::ATOMIC_LOAD_NIHF64i: 7879 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7880 7881 case SystemZ::ATOMIC_LOADW_MIN: 7882 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7883 SystemZ::CCMASK_CMP_LE, 0); 7884 case SystemZ::ATOMIC_LOAD_MIN_32: 7885 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7886 SystemZ::CCMASK_CMP_LE, 32); 7887 case SystemZ::ATOMIC_LOAD_MIN_64: 7888 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7889 SystemZ::CCMASK_CMP_LE, 64); 7890 7891 case SystemZ::ATOMIC_LOADW_MAX: 7892 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7893 SystemZ::CCMASK_CMP_GE, 0); 7894 case SystemZ::ATOMIC_LOAD_MAX_32: 7895 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7896 SystemZ::CCMASK_CMP_GE, 32); 7897 case SystemZ::ATOMIC_LOAD_MAX_64: 7898 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7899 SystemZ::CCMASK_CMP_GE, 64); 7900 7901 case SystemZ::ATOMIC_LOADW_UMIN: 7902 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7903 SystemZ::CCMASK_CMP_LE, 0); 7904 case SystemZ::ATOMIC_LOAD_UMIN_32: 7905 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7906 SystemZ::CCMASK_CMP_LE, 32); 7907 case SystemZ::ATOMIC_LOAD_UMIN_64: 7908 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7909 SystemZ::CCMASK_CMP_LE, 64); 7910 7911 case SystemZ::ATOMIC_LOADW_UMAX: 7912 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7913 SystemZ::CCMASK_CMP_GE, 0); 7914 case SystemZ::ATOMIC_LOAD_UMAX_32: 7915 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7916 SystemZ::CCMASK_CMP_GE, 32); 7917 case SystemZ::ATOMIC_LOAD_UMAX_64: 7918 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7919 SystemZ::CCMASK_CMP_GE, 64); 7920 7921 case SystemZ::ATOMIC_CMP_SWAPW: 7922 return emitAtomicCmpSwapW(MI, MBB); 7923 case SystemZ::MVCSequence: 7924 case SystemZ::MVCLoop: 7925 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7926 case SystemZ::NCSequence: 7927 case SystemZ::NCLoop: 7928 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7929 case SystemZ::OCSequence: 7930 case SystemZ::OCLoop: 7931 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7932 case SystemZ::XCSequence: 7933 case SystemZ::XCLoop: 7934 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7935 case SystemZ::CLCSequence: 7936 case SystemZ::CLCLoop: 7937 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7938 case SystemZ::CLSTLoop: 7939 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7940 case SystemZ::MVSTLoop: 7941 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7942 case SystemZ::SRSTLoop: 7943 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7944 case SystemZ::TBEGIN: 7945 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7946 case SystemZ::TBEGIN_nofloat: 7947 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7948 case SystemZ::TBEGINC: 7949 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7950 case SystemZ::LTEBRCompare_VecPseudo: 7951 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7952 case SystemZ::LTDBRCompare_VecPseudo: 7953 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7954 case SystemZ::LTXBRCompare_VecPseudo: 7955 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7956 7957 case TargetOpcode::STACKMAP: 7958 case TargetOpcode::PATCHPOINT: 7959 return emitPatchPoint(MI, MBB); 7960 7961 default: 7962 llvm_unreachable("Unexpected instr type to insert"); 7963 } 7964 } 7965 7966 // This is only used by the isel schedulers, and is needed only to prevent 7967 // compiler from crashing when list-ilp is used. 7968 const TargetRegisterClass * 7969 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7970 if (VT == MVT::Untyped) 7971 return &SystemZ::ADDR128BitRegClass; 7972 return TargetLowering::getRepRegClassFor(VT); 7973 } 7974