1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setExceptionPointerRegister(SystemZ::R6D); 118 setExceptionSelectorRegister(SystemZ::R7D); 119 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 120 121 // TODO: It may be better to default to latency-oriented scheduling, however 122 // LLVM's current latency-oriented scheduler can't handle physreg definitions 123 // such as SystemZ has with CC, so set this to the register-pressure 124 // scheduler, because it can. 125 setSchedulingPreference(Sched::RegPressure); 126 127 setBooleanContents(ZeroOrOneBooleanContent); 128 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 129 130 // Instructions are strings of 2-byte aligned 2-byte values. 131 setMinFunctionAlignment(2); 132 133 // Handle operations that are handled in a similar way for all types. 134 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 135 I <= MVT::LAST_FP_VALUETYPE; 136 ++I) { 137 MVT VT = MVT::SimpleValueType(I); 138 if (isTypeLegal(VT)) { 139 // Lower SET_CC into an IPM-based sequence. 140 setOperationAction(ISD::SETCC, VT, Custom); 141 142 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 143 setOperationAction(ISD::SELECT, VT, Expand); 144 145 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 146 setOperationAction(ISD::SELECT_CC, VT, Custom); 147 setOperationAction(ISD::BR_CC, VT, Custom); 148 } 149 } 150 151 // Expand jump table branches as address arithmetic followed by an 152 // indirect jump. 153 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 154 155 // Expand BRCOND into a BR_CC (see above). 156 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 157 158 // Handle integer types. 159 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 160 I <= MVT::LAST_INTEGER_VALUETYPE; 161 ++I) { 162 MVT VT = MVT::SimpleValueType(I); 163 if (isTypeLegal(VT)) { 164 // Expand individual DIV and REMs into DIVREMs. 165 setOperationAction(ISD::SDIV, VT, Expand); 166 setOperationAction(ISD::UDIV, VT, Expand); 167 setOperationAction(ISD::SREM, VT, Expand); 168 setOperationAction(ISD::UREM, VT, Expand); 169 setOperationAction(ISD::SDIVREM, VT, Custom); 170 setOperationAction(ISD::UDIVREM, VT, Custom); 171 172 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 173 // stores, putting a serialization instruction after the stores. 174 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 175 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 176 177 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 178 // available, or if the operand is constant. 179 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 180 181 // Use POPCNT on z196 and above. 182 if (Subtarget.hasPopulationCount()) 183 setOperationAction(ISD::CTPOP, VT, Custom); 184 else 185 setOperationAction(ISD::CTPOP, VT, Expand); 186 187 // No special instructions for these. 188 setOperationAction(ISD::CTTZ, VT, Expand); 189 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 190 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 191 setOperationAction(ISD::ROTR, VT, Expand); 192 193 // Use *MUL_LOHI where possible instead of MULH*. 194 setOperationAction(ISD::MULHS, VT, Expand); 195 setOperationAction(ISD::MULHU, VT, Expand); 196 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 197 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 198 199 // Only z196 and above have native support for conversions to unsigned. 200 if (!Subtarget.hasFPExtension()) 201 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 202 } 203 } 204 205 // Type legalization will convert 8- and 16-bit atomic operations into 206 // forms that operate on i32s (but still keeping the original memory VT). 207 // Lower them into full i32 operations. 208 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 220 221 // z10 has instructions for signed but not unsigned FP conversion. 222 // Handle unsigned 32-bit types as signed 64-bit types. 223 if (!Subtarget.hasFPExtension()) { 224 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 225 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 226 } 227 228 // We have native support for a 64-bit CTLZ, via FLOGR. 229 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 230 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 231 232 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 233 setOperationAction(ISD::OR, MVT::i64, Custom); 234 235 // FIXME: Can we support these natively? 236 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 237 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 238 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 239 240 // We have native instructions for i8, i16 and i32 extensions, but not i1. 241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 242 for (MVT VT : MVT::integer_valuetypes()) { 243 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 244 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 245 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 246 } 247 248 // Handle the various types of symbolic address. 249 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 250 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 251 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 252 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 253 setOperationAction(ISD::JumpTable, PtrVT, Custom); 254 255 // We need to handle dynamic allocations specially because of the 256 // 160-byte area at the bottom of the stack. 257 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 258 259 // Use custom expanders so that we can force the function to use 260 // a frame pointer. 261 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 262 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 263 264 // Handle prefetches with PFD or PFDRL. 265 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 266 267 for (MVT VT : MVT::vector_valuetypes()) { 268 // Assume by default that all vector operations need to be expanded. 269 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 270 if (getOperationAction(Opcode, VT) == Legal) 271 setOperationAction(Opcode, VT, Expand); 272 273 // Likewise all truncating stores and extending loads. 274 for (MVT InnerVT : MVT::vector_valuetypes()) { 275 setTruncStoreAction(VT, InnerVT, Expand); 276 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 277 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 278 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 279 } 280 281 if (isTypeLegal(VT)) { 282 // These operations are legal for anything that can be stored in a 283 // vector register, even if there is no native support for the format 284 // as such. In particular, we can do these for v4f32 even though there 285 // are no specific instructions for that format. 286 setOperationAction(ISD::LOAD, VT, Legal); 287 setOperationAction(ISD::STORE, VT, Legal); 288 setOperationAction(ISD::VSELECT, VT, Legal); 289 setOperationAction(ISD::BITCAST, VT, Legal); 290 setOperationAction(ISD::UNDEF, VT, Legal); 291 292 // Likewise, except that we need to replace the nodes with something 293 // more specific. 294 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 295 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 296 } 297 } 298 299 // Handle integer vector types. 300 for (MVT VT : MVT::integer_vector_valuetypes()) { 301 if (isTypeLegal(VT)) { 302 // These operations have direct equivalents. 303 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 304 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 305 setOperationAction(ISD::ADD, VT, Legal); 306 setOperationAction(ISD::SUB, VT, Legal); 307 if (VT != MVT::v2i64) 308 setOperationAction(ISD::MUL, VT, Legal); 309 setOperationAction(ISD::AND, VT, Legal); 310 setOperationAction(ISD::OR, VT, Legal); 311 setOperationAction(ISD::XOR, VT, Legal); 312 setOperationAction(ISD::CTPOP, VT, Custom); 313 setOperationAction(ISD::CTTZ, VT, Legal); 314 setOperationAction(ISD::CTLZ, VT, Legal); 315 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 316 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 317 318 // Convert a GPR scalar to a vector by inserting it into element 0. 319 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 320 321 // Use a series of unpacks for extensions. 322 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 323 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 324 325 // Detect shifts by a scalar amount and convert them into 326 // V*_BY_SCALAR. 327 setOperationAction(ISD::SHL, VT, Custom); 328 setOperationAction(ISD::SRA, VT, Custom); 329 setOperationAction(ISD::SRL, VT, Custom); 330 331 // At present ROTL isn't matched by DAGCombiner. ROTR should be 332 // converted into ROTL. 333 setOperationAction(ISD::ROTL, VT, Expand); 334 setOperationAction(ISD::ROTR, VT, Expand); 335 336 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 337 // and inverting the result as necessary. 338 setOperationAction(ISD::SETCC, VT, Custom); 339 } 340 } 341 342 if (Subtarget.hasVector()) { 343 // There should be no need to check for float types other than v2f64 344 // since <2 x f32> isn't a legal type. 345 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 346 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 348 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 349 } 350 351 // Handle floating-point types. 352 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 353 I <= MVT::LAST_FP_VALUETYPE; 354 ++I) { 355 MVT VT = MVT::SimpleValueType(I); 356 if (isTypeLegal(VT)) { 357 // We can use FI for FRINT. 358 setOperationAction(ISD::FRINT, VT, Legal); 359 360 // We can use the extended form of FI for other rounding operations. 361 if (Subtarget.hasFPExtension()) { 362 setOperationAction(ISD::FNEARBYINT, VT, Legal); 363 setOperationAction(ISD::FFLOOR, VT, Legal); 364 setOperationAction(ISD::FCEIL, VT, Legal); 365 setOperationAction(ISD::FTRUNC, VT, Legal); 366 setOperationAction(ISD::FROUND, VT, Legal); 367 } 368 369 // No special instructions for these. 370 setOperationAction(ISD::FSIN, VT, Expand); 371 setOperationAction(ISD::FCOS, VT, Expand); 372 setOperationAction(ISD::FREM, VT, Expand); 373 } 374 } 375 376 // Handle floating-point vector types. 377 if (Subtarget.hasVector()) { 378 // Scalar-to-vector conversion is just a subreg. 379 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 381 382 // Some insertions and extractions can be done directly but others 383 // need to go via integers. 384 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 388 389 // These operations have direct equivalents. 390 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 391 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 392 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 393 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 394 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 395 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 396 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 397 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 398 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 401 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 402 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 403 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 404 } 405 406 // We have fused multiply-addition for f32 and f64 but not f128. 407 setOperationAction(ISD::FMA, MVT::f32, Legal); 408 setOperationAction(ISD::FMA, MVT::f64, Legal); 409 setOperationAction(ISD::FMA, MVT::f128, Expand); 410 411 // Needed so that we don't try to implement f128 constant loads using 412 // a load-and-extend of a f80 constant (in cases where the constant 413 // would fit in an f80). 414 for (MVT VT : MVT::fp_valuetypes()) 415 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 416 417 // Floating-point truncation and stores need to be done separately. 418 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 419 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 420 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 421 422 // We have 64-bit FPR<->GPR moves, but need special handling for 423 // 32-bit forms. 424 if (!Subtarget.hasVector()) { 425 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 426 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 427 } 428 429 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 430 // structure, but VAEND is a no-op. 431 setOperationAction(ISD::VASTART, MVT::Other, Custom); 432 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 433 setOperationAction(ISD::VAEND, MVT::Other, Expand); 434 435 // Codes for which we want to perform some z-specific combinations. 436 setTargetDAGCombine(ISD::SIGN_EXTEND); 437 setTargetDAGCombine(ISD::STORE); 438 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 439 setTargetDAGCombine(ISD::FP_ROUND); 440 441 // Handle intrinsics. 442 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 443 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 444 445 // We want to use MVC in preference to even a single load/store pair. 446 MaxStoresPerMemcpy = 0; 447 MaxStoresPerMemcpyOptSize = 0; 448 449 // The main memset sequence is a byte store followed by an MVC. 450 // Two STC or MV..I stores win over that, but the kind of fused stores 451 // generated by target-independent code don't when the byte value is 452 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 453 // than "STC;MVC". Handle the choice in target-specific code instead. 454 MaxStoresPerMemset = 0; 455 MaxStoresPerMemsetOptSize = 0; 456 } 457 458 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 459 LLVMContext &, EVT VT) const { 460 if (!VT.isVector()) 461 return MVT::i32; 462 return VT.changeVectorElementTypeToInteger(); 463 } 464 465 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 466 VT = VT.getScalarType(); 467 468 if (!VT.isSimple()) 469 return false; 470 471 switch (VT.getSimpleVT().SimpleTy) { 472 case MVT::f32: 473 case MVT::f64: 474 return true; 475 case MVT::f128: 476 return false; 477 default: 478 break; 479 } 480 481 return false; 482 } 483 484 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 485 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 486 return Imm.isZero() || Imm.isNegZero(); 487 } 488 489 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 490 // We can use CGFI or CLGFI. 491 return isInt<32>(Imm) || isUInt<32>(Imm); 492 } 493 494 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 495 // We can use ALGFI or SLGFI. 496 return isUInt<32>(Imm) || isUInt<32>(-Imm); 497 } 498 499 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 500 unsigned, 501 unsigned, 502 bool *Fast) const { 503 // Unaligned accesses should never be slower than the expanded version. 504 // We check specifically for aligned accesses in the few cases where 505 // they are required. 506 if (Fast) 507 *Fast = true; 508 return true; 509 } 510 511 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 512 const AddrMode &AM, Type *Ty, 513 unsigned AS) const { 514 // Punt on globals for now, although they can be used in limited 515 // RELATIVE LONG cases. 516 if (AM.BaseGV) 517 return false; 518 519 // Require a 20-bit signed offset. 520 if (!isInt<20>(AM.BaseOffs)) 521 return false; 522 523 // Indexing is OK but no scale factor can be applied. 524 return AM.Scale == 0 || AM.Scale == 1; 525 } 526 527 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 528 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 529 return false; 530 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 531 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 532 return FromBits > ToBits; 533 } 534 535 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 536 if (!FromVT.isInteger() || !ToVT.isInteger()) 537 return false; 538 unsigned FromBits = FromVT.getSizeInBits(); 539 unsigned ToBits = ToVT.getSizeInBits(); 540 return FromBits > ToBits; 541 } 542 543 //===----------------------------------------------------------------------===// 544 // Inline asm support 545 //===----------------------------------------------------------------------===// 546 547 TargetLowering::ConstraintType 548 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 549 if (Constraint.size() == 1) { 550 switch (Constraint[0]) { 551 case 'a': // Address register 552 case 'd': // Data register (equivalent to 'r') 553 case 'f': // Floating-point register 554 case 'h': // High-part register 555 case 'r': // General-purpose register 556 return C_RegisterClass; 557 558 case 'Q': // Memory with base and unsigned 12-bit displacement 559 case 'R': // Likewise, plus an index 560 case 'S': // Memory with base and signed 20-bit displacement 561 case 'T': // Likewise, plus an index 562 case 'm': // Equivalent to 'T'. 563 return C_Memory; 564 565 case 'I': // Unsigned 8-bit constant 566 case 'J': // Unsigned 12-bit constant 567 case 'K': // Signed 16-bit constant 568 case 'L': // Signed 20-bit displacement (on all targets we support) 569 case 'M': // 0x7fffffff 570 return C_Other; 571 572 default: 573 break; 574 } 575 } 576 return TargetLowering::getConstraintType(Constraint); 577 } 578 579 TargetLowering::ConstraintWeight SystemZTargetLowering:: 580 getSingleConstraintMatchWeight(AsmOperandInfo &info, 581 const char *constraint) const { 582 ConstraintWeight weight = CW_Invalid; 583 Value *CallOperandVal = info.CallOperandVal; 584 // If we don't have a value, we can't do a match, 585 // but allow it at the lowest weight. 586 if (!CallOperandVal) 587 return CW_Default; 588 Type *type = CallOperandVal->getType(); 589 // Look at the constraint type. 590 switch (*constraint) { 591 default: 592 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 593 break; 594 595 case 'a': // Address register 596 case 'd': // Data register (equivalent to 'r') 597 case 'h': // High-part register 598 case 'r': // General-purpose register 599 if (CallOperandVal->getType()->isIntegerTy()) 600 weight = CW_Register; 601 break; 602 603 case 'f': // Floating-point register 604 if (type->isFloatingPointTy()) 605 weight = CW_Register; 606 break; 607 608 case 'I': // Unsigned 8-bit constant 609 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 610 if (isUInt<8>(C->getZExtValue())) 611 weight = CW_Constant; 612 break; 613 614 case 'J': // Unsigned 12-bit constant 615 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 616 if (isUInt<12>(C->getZExtValue())) 617 weight = CW_Constant; 618 break; 619 620 case 'K': // Signed 16-bit constant 621 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 622 if (isInt<16>(C->getSExtValue())) 623 weight = CW_Constant; 624 break; 625 626 case 'L': // Signed 20-bit displacement (on all targets we support) 627 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 628 if (isInt<20>(C->getSExtValue())) 629 weight = CW_Constant; 630 break; 631 632 case 'M': // 0x7fffffff 633 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 634 if (C->getZExtValue() == 0x7fffffff) 635 weight = CW_Constant; 636 break; 637 } 638 return weight; 639 } 640 641 // Parse a "{tNNN}" register constraint for which the register type "t" 642 // has already been verified. MC is the class associated with "t" and 643 // Map maps 0-based register numbers to LLVM register numbers. 644 static std::pair<unsigned, const TargetRegisterClass *> 645 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 646 const unsigned *Map) { 647 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 648 if (isdigit(Constraint[2])) { 649 unsigned Index; 650 bool Failed = 651 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 652 if (!Failed && Index < 16 && Map[Index]) 653 return std::make_pair(Map[Index], RC); 654 } 655 return std::make_pair(0U, nullptr); 656 } 657 658 std::pair<unsigned, const TargetRegisterClass *> 659 SystemZTargetLowering::getRegForInlineAsmConstraint( 660 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 661 if (Constraint.size() == 1) { 662 // GCC Constraint Letters 663 switch (Constraint[0]) { 664 default: break; 665 case 'd': // Data register (equivalent to 'r') 666 case 'r': // General-purpose register 667 if (VT == MVT::i64) 668 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 669 else if (VT == MVT::i128) 670 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 671 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 672 673 case 'a': // Address register 674 if (VT == MVT::i64) 675 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 676 else if (VT == MVT::i128) 677 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 678 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 679 680 case 'h': // High-part register (an LLVM extension) 681 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 682 683 case 'f': // Floating-point register 684 if (VT == MVT::f64) 685 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 686 else if (VT == MVT::f128) 687 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 688 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 689 } 690 } 691 if (Constraint.size() > 0 && Constraint[0] == '{') { 692 // We need to override the default register parsing for GPRs and FPRs 693 // because the interpretation depends on VT. The internal names of 694 // the registers are also different from the external names 695 // (F0D and F0S instead of F0, etc.). 696 if (Constraint[1] == 'r') { 697 if (VT == MVT::i32) 698 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 699 SystemZMC::GR32Regs); 700 if (VT == MVT::i128) 701 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 702 SystemZMC::GR128Regs); 703 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 704 SystemZMC::GR64Regs); 705 } 706 if (Constraint[1] == 'f') { 707 if (VT == MVT::f32) 708 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 709 SystemZMC::FP32Regs); 710 if (VT == MVT::f128) 711 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 712 SystemZMC::FP128Regs); 713 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 714 SystemZMC::FP64Regs); 715 } 716 } 717 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 718 } 719 720 void SystemZTargetLowering:: 721 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 722 std::vector<SDValue> &Ops, 723 SelectionDAG &DAG) const { 724 // Only support length 1 constraints for now. 725 if (Constraint.length() == 1) { 726 switch (Constraint[0]) { 727 case 'I': // Unsigned 8-bit constant 728 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 729 if (isUInt<8>(C->getZExtValue())) 730 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 731 Op.getValueType())); 732 return; 733 734 case 'J': // Unsigned 12-bit constant 735 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 736 if (isUInt<12>(C->getZExtValue())) 737 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 738 Op.getValueType())); 739 return; 740 741 case 'K': // Signed 16-bit constant 742 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 743 if (isInt<16>(C->getSExtValue())) 744 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 745 Op.getValueType())); 746 return; 747 748 case 'L': // Signed 20-bit displacement (on all targets we support) 749 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 750 if (isInt<20>(C->getSExtValue())) 751 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 752 Op.getValueType())); 753 return; 754 755 case 'M': // 0x7fffffff 756 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 757 if (C->getZExtValue() == 0x7fffffff) 758 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 759 Op.getValueType())); 760 return; 761 } 762 } 763 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // Calling conventions 768 //===----------------------------------------------------------------------===// 769 770 #include "SystemZGenCallingConv.inc" 771 772 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 773 Type *ToType) const { 774 return isTruncateFree(FromType, ToType); 775 } 776 777 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 778 if (!CI->isTailCall()) 779 return false; 780 return true; 781 } 782 783 // We do not yet support 128-bit single-element vector types. If the user 784 // attempts to use such types as function argument or return type, prefer 785 // to error out instead of emitting code violating the ABI. 786 static void VerifyVectorType(MVT VT, EVT ArgVT) { 787 if (ArgVT.isVector() && !VT.isVector()) 788 report_fatal_error("Unsupported vector argument or return type"); 789 } 790 791 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 792 for (unsigned i = 0; i < Ins.size(); ++i) 793 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 794 } 795 796 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 797 for (unsigned i = 0; i < Outs.size(); ++i) 798 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 799 } 800 801 // Value is a value that has been passed to us in the location described by VA 802 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 803 // any loads onto Chain. 804 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 805 CCValAssign &VA, SDValue Chain, 806 SDValue Value) { 807 // If the argument has been promoted from a smaller type, insert an 808 // assertion to capture this. 809 if (VA.getLocInfo() == CCValAssign::SExt) 810 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 811 DAG.getValueType(VA.getValVT())); 812 else if (VA.getLocInfo() == CCValAssign::ZExt) 813 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 814 DAG.getValueType(VA.getValVT())); 815 816 if (VA.isExtInLoc()) 817 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 818 else if (VA.getLocInfo() == CCValAssign::Indirect) 819 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 820 MachinePointerInfo(), false, false, false, 0); 821 else if (VA.getLocInfo() == CCValAssign::BCvt) { 822 // If this is a short vector argument loaded from the stack, 823 // extend from i64 to full vector size and then bitcast. 824 assert(VA.getLocVT() == MVT::i64); 825 assert(VA.getValVT().isVector()); 826 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 827 Value, DAG.getUNDEF(MVT::i64)); 828 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 829 } else 830 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 831 return Value; 832 } 833 834 // Value is a value of type VA.getValVT() that we need to copy into 835 // the location described by VA. Return a copy of Value converted to 836 // VA.getValVT(). The caller is responsible for handling indirect values. 837 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 838 CCValAssign &VA, SDValue Value) { 839 switch (VA.getLocInfo()) { 840 case CCValAssign::SExt: 841 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 842 case CCValAssign::ZExt: 843 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 844 case CCValAssign::AExt: 845 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 846 case CCValAssign::BCvt: 847 // If this is a short vector argument to be stored to the stack, 848 // bitcast to v2i64 and then extract first element. 849 assert(VA.getLocVT() == MVT::i64); 850 assert(VA.getValVT().isVector()); 851 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 852 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 853 DAG.getConstant(0, DL, MVT::i32)); 854 case CCValAssign::Full: 855 return Value; 856 default: 857 llvm_unreachable("Unhandled getLocInfo()"); 858 } 859 } 860 861 SDValue SystemZTargetLowering:: 862 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 863 const SmallVectorImpl<ISD::InputArg> &Ins, 864 SDLoc DL, SelectionDAG &DAG, 865 SmallVectorImpl<SDValue> &InVals) const { 866 MachineFunction &MF = DAG.getMachineFunction(); 867 MachineFrameInfo *MFI = MF.getFrameInfo(); 868 MachineRegisterInfo &MRI = MF.getRegInfo(); 869 SystemZMachineFunctionInfo *FuncInfo = 870 MF.getInfo<SystemZMachineFunctionInfo>(); 871 auto *TFL = 872 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 873 874 // Detect unsupported vector argument types. 875 if (Subtarget.hasVector()) 876 VerifyVectorTypes(Ins); 877 878 // Assign locations to all of the incoming arguments. 879 SmallVector<CCValAssign, 16> ArgLocs; 880 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 881 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 882 883 unsigned NumFixedGPRs = 0; 884 unsigned NumFixedFPRs = 0; 885 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 886 SDValue ArgValue; 887 CCValAssign &VA = ArgLocs[I]; 888 EVT LocVT = VA.getLocVT(); 889 if (VA.isRegLoc()) { 890 // Arguments passed in registers 891 const TargetRegisterClass *RC; 892 switch (LocVT.getSimpleVT().SimpleTy) { 893 default: 894 // Integers smaller than i64 should be promoted to i64. 895 llvm_unreachable("Unexpected argument type"); 896 case MVT::i32: 897 NumFixedGPRs += 1; 898 RC = &SystemZ::GR32BitRegClass; 899 break; 900 case MVT::i64: 901 NumFixedGPRs += 1; 902 RC = &SystemZ::GR64BitRegClass; 903 break; 904 case MVT::f32: 905 NumFixedFPRs += 1; 906 RC = &SystemZ::FP32BitRegClass; 907 break; 908 case MVT::f64: 909 NumFixedFPRs += 1; 910 RC = &SystemZ::FP64BitRegClass; 911 break; 912 case MVT::v16i8: 913 case MVT::v8i16: 914 case MVT::v4i32: 915 case MVT::v2i64: 916 case MVT::v4f32: 917 case MVT::v2f64: 918 RC = &SystemZ::VR128BitRegClass; 919 break; 920 } 921 922 unsigned VReg = MRI.createVirtualRegister(RC); 923 MRI.addLiveIn(VA.getLocReg(), VReg); 924 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 925 } else { 926 assert(VA.isMemLoc() && "Argument not register or memory"); 927 928 // Create the frame index object for this incoming parameter. 929 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 930 VA.getLocMemOffset(), true); 931 932 // Create the SelectionDAG nodes corresponding to a load 933 // from this parameter. Unpromoted ints and floats are 934 // passed as right-justified 8-byte values. 935 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 936 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 937 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 938 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 939 DAG.getIntPtrConstant(4, DL)); 940 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 941 MachinePointerInfo::getFixedStack(MF, FI), false, 942 false, false, 0); 943 } 944 945 // Convert the value of the argument register into the value that's 946 // being passed. 947 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 948 } 949 950 if (IsVarArg) { 951 // Save the number of non-varargs registers for later use by va_start, etc. 952 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 953 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 954 955 // Likewise the address (in the form of a frame index) of where the 956 // first stack vararg would be. The 1-byte size here is arbitrary. 957 int64_t StackSize = CCInfo.getNextStackOffset(); 958 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 959 960 // ...and a similar frame index for the caller-allocated save area 961 // that will be used to store the incoming registers. 962 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 963 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 964 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 965 966 // Store the FPR varargs in the reserved frame slots. (We store the 967 // GPRs as part of the prologue.) 968 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 969 SDValue MemOps[SystemZ::NumArgFPRs]; 970 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 971 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 972 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 973 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 974 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 975 &SystemZ::FP64BitRegClass); 976 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 977 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 978 MachinePointerInfo::getFixedStack(MF, FI), 979 false, false, 0); 980 } 981 // Join the stores, which are independent of one another. 982 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 983 makeArrayRef(&MemOps[NumFixedFPRs], 984 SystemZ::NumArgFPRs-NumFixedFPRs)); 985 } 986 } 987 988 return Chain; 989 } 990 991 static bool canUseSiblingCall(const CCState &ArgCCInfo, 992 SmallVectorImpl<CCValAssign> &ArgLocs) { 993 // Punt if there are any indirect or stack arguments, or if the call 994 // needs the call-saved argument register R6. 995 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 996 CCValAssign &VA = ArgLocs[I]; 997 if (VA.getLocInfo() == CCValAssign::Indirect) 998 return false; 999 if (!VA.isRegLoc()) 1000 return false; 1001 unsigned Reg = VA.getLocReg(); 1002 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1003 return false; 1004 } 1005 return true; 1006 } 1007 1008 SDValue 1009 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1010 SmallVectorImpl<SDValue> &InVals) const { 1011 SelectionDAG &DAG = CLI.DAG; 1012 SDLoc &DL = CLI.DL; 1013 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1014 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1015 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1016 SDValue Chain = CLI.Chain; 1017 SDValue Callee = CLI.Callee; 1018 bool &IsTailCall = CLI.IsTailCall; 1019 CallingConv::ID CallConv = CLI.CallConv; 1020 bool IsVarArg = CLI.IsVarArg; 1021 MachineFunction &MF = DAG.getMachineFunction(); 1022 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1023 1024 // Detect unsupported vector argument and return types. 1025 if (Subtarget.hasVector()) { 1026 VerifyVectorTypes(Outs); 1027 VerifyVectorTypes(Ins); 1028 } 1029 1030 // Analyze the operands of the call, assigning locations to each operand. 1031 SmallVector<CCValAssign, 16> ArgLocs; 1032 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1033 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1034 1035 // We don't support GuaranteedTailCallOpt, only automatically-detected 1036 // sibling calls. 1037 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1038 IsTailCall = false; 1039 1040 // Get a count of how many bytes are to be pushed on the stack. 1041 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1042 1043 // Mark the start of the call. 1044 if (!IsTailCall) 1045 Chain = DAG.getCALLSEQ_START(Chain, 1046 DAG.getConstant(NumBytes, DL, PtrVT, true), 1047 DL); 1048 1049 // Copy argument values to their designated locations. 1050 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1051 SmallVector<SDValue, 8> MemOpChains; 1052 SDValue StackPtr; 1053 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1054 CCValAssign &VA = ArgLocs[I]; 1055 SDValue ArgValue = OutVals[I]; 1056 1057 if (VA.getLocInfo() == CCValAssign::Indirect) { 1058 // Store the argument in a stack slot and pass its address. 1059 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1060 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1061 MemOpChains.push_back(DAG.getStore( 1062 Chain, DL, ArgValue, SpillSlot, 1063 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1064 ArgValue = SpillSlot; 1065 } else 1066 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1067 1068 if (VA.isRegLoc()) 1069 // Queue up the argument copies and emit them at the end. 1070 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1071 else { 1072 assert(VA.isMemLoc() && "Argument not register or memory"); 1073 1074 // Work out the address of the stack slot. Unpromoted ints and 1075 // floats are passed as right-justified 8-byte values. 1076 if (!StackPtr.getNode()) 1077 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1078 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1079 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1080 Offset += 4; 1081 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1082 DAG.getIntPtrConstant(Offset, DL)); 1083 1084 // Emit the store. 1085 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1086 MachinePointerInfo(), 1087 false, false, 0)); 1088 } 1089 } 1090 1091 // Join the stores, which are independent of one another. 1092 if (!MemOpChains.empty()) 1093 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1094 1095 // Accept direct calls by converting symbolic call addresses to the 1096 // associated Target* opcodes. Force %r1 to be used for indirect 1097 // tail calls. 1098 SDValue Glue; 1099 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1100 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1101 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1102 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1103 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1104 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1105 } else if (IsTailCall) { 1106 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1107 Glue = Chain.getValue(1); 1108 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1109 } 1110 1111 // Build a sequence of copy-to-reg nodes, chained and glued together. 1112 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1113 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1114 RegsToPass[I].second, Glue); 1115 Glue = Chain.getValue(1); 1116 } 1117 1118 // The first call operand is the chain and the second is the target address. 1119 SmallVector<SDValue, 8> Ops; 1120 Ops.push_back(Chain); 1121 Ops.push_back(Callee); 1122 1123 // Add argument registers to the end of the list so that they are 1124 // known live into the call. 1125 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1126 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1127 RegsToPass[I].second.getValueType())); 1128 1129 // Add a register mask operand representing the call-preserved registers. 1130 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1131 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1132 assert(Mask && "Missing call preserved mask for calling convention"); 1133 Ops.push_back(DAG.getRegisterMask(Mask)); 1134 1135 // Glue the call to the argument copies, if any. 1136 if (Glue.getNode()) 1137 Ops.push_back(Glue); 1138 1139 // Emit the call. 1140 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1141 if (IsTailCall) 1142 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1143 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1144 Glue = Chain.getValue(1); 1145 1146 // Mark the end of the call, which is glued to the call itself. 1147 Chain = DAG.getCALLSEQ_END(Chain, 1148 DAG.getConstant(NumBytes, DL, PtrVT, true), 1149 DAG.getConstant(0, DL, PtrVT, true), 1150 Glue, DL); 1151 Glue = Chain.getValue(1); 1152 1153 // Assign locations to each value returned by this call. 1154 SmallVector<CCValAssign, 16> RetLocs; 1155 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1156 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1157 1158 // Copy all of the result registers out of their specified physreg. 1159 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1160 CCValAssign &VA = RetLocs[I]; 1161 1162 // Copy the value out, gluing the copy to the end of the call sequence. 1163 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1164 VA.getLocVT(), Glue); 1165 Chain = RetValue.getValue(1); 1166 Glue = RetValue.getValue(2); 1167 1168 // Convert the value of the return register into the value that's 1169 // being returned. 1170 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1171 } 1172 1173 return Chain; 1174 } 1175 1176 bool SystemZTargetLowering:: 1177 CanLowerReturn(CallingConv::ID CallConv, 1178 MachineFunction &MF, bool isVarArg, 1179 const SmallVectorImpl<ISD::OutputArg> &Outs, 1180 LLVMContext &Context) const { 1181 // Detect unsupported vector return types. 1182 if (Subtarget.hasVector()) 1183 VerifyVectorTypes(Outs); 1184 1185 SmallVector<CCValAssign, 16> RetLocs; 1186 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1187 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1188 } 1189 1190 SDValue 1191 SystemZTargetLowering::LowerReturn(SDValue Chain, 1192 CallingConv::ID CallConv, bool IsVarArg, 1193 const SmallVectorImpl<ISD::OutputArg> &Outs, 1194 const SmallVectorImpl<SDValue> &OutVals, 1195 SDLoc DL, SelectionDAG &DAG) const { 1196 MachineFunction &MF = DAG.getMachineFunction(); 1197 1198 // Detect unsupported vector return types. 1199 if (Subtarget.hasVector()) 1200 VerifyVectorTypes(Outs); 1201 1202 // Assign locations to each returned value. 1203 SmallVector<CCValAssign, 16> RetLocs; 1204 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1205 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1206 1207 // Quick exit for void returns 1208 if (RetLocs.empty()) 1209 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1210 1211 // Copy the result values into the output registers. 1212 SDValue Glue; 1213 SmallVector<SDValue, 4> RetOps; 1214 RetOps.push_back(Chain); 1215 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1216 CCValAssign &VA = RetLocs[I]; 1217 SDValue RetValue = OutVals[I]; 1218 1219 // Make the return register live on exit. 1220 assert(VA.isRegLoc() && "Can only return in registers!"); 1221 1222 // Promote the value as required. 1223 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1224 1225 // Chain and glue the copies together. 1226 unsigned Reg = VA.getLocReg(); 1227 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1228 Glue = Chain.getValue(1); 1229 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1230 } 1231 1232 // Update chain and glue. 1233 RetOps[0] = Chain; 1234 if (Glue.getNode()) 1235 RetOps.push_back(Glue); 1236 1237 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1238 } 1239 1240 SDValue SystemZTargetLowering:: 1241 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1242 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1243 } 1244 1245 // Return true if Op is an intrinsic node with chain that returns the CC value 1246 // as its only (other) argument. Provide the associated SystemZISD opcode and 1247 // the mask of valid CC values if so. 1248 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1249 unsigned &CCValid) { 1250 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1251 switch (Id) { 1252 case Intrinsic::s390_tbegin: 1253 Opcode = SystemZISD::TBEGIN; 1254 CCValid = SystemZ::CCMASK_TBEGIN; 1255 return true; 1256 1257 case Intrinsic::s390_tbegin_nofloat: 1258 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1259 CCValid = SystemZ::CCMASK_TBEGIN; 1260 return true; 1261 1262 case Intrinsic::s390_tend: 1263 Opcode = SystemZISD::TEND; 1264 CCValid = SystemZ::CCMASK_TEND; 1265 return true; 1266 1267 default: 1268 return false; 1269 } 1270 } 1271 1272 // Return true if Op is an intrinsic node without chain that returns the 1273 // CC value as its final argument. Provide the associated SystemZISD 1274 // opcode and the mask of valid CC values if so. 1275 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1276 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1277 switch (Id) { 1278 case Intrinsic::s390_vpkshs: 1279 case Intrinsic::s390_vpksfs: 1280 case Intrinsic::s390_vpksgs: 1281 Opcode = SystemZISD::PACKS_CC; 1282 CCValid = SystemZ::CCMASK_VCMP; 1283 return true; 1284 1285 case Intrinsic::s390_vpklshs: 1286 case Intrinsic::s390_vpklsfs: 1287 case Intrinsic::s390_vpklsgs: 1288 Opcode = SystemZISD::PACKLS_CC; 1289 CCValid = SystemZ::CCMASK_VCMP; 1290 return true; 1291 1292 case Intrinsic::s390_vceqbs: 1293 case Intrinsic::s390_vceqhs: 1294 case Intrinsic::s390_vceqfs: 1295 case Intrinsic::s390_vceqgs: 1296 Opcode = SystemZISD::VICMPES; 1297 CCValid = SystemZ::CCMASK_VCMP; 1298 return true; 1299 1300 case Intrinsic::s390_vchbs: 1301 case Intrinsic::s390_vchhs: 1302 case Intrinsic::s390_vchfs: 1303 case Intrinsic::s390_vchgs: 1304 Opcode = SystemZISD::VICMPHS; 1305 CCValid = SystemZ::CCMASK_VCMP; 1306 return true; 1307 1308 case Intrinsic::s390_vchlbs: 1309 case Intrinsic::s390_vchlhs: 1310 case Intrinsic::s390_vchlfs: 1311 case Intrinsic::s390_vchlgs: 1312 Opcode = SystemZISD::VICMPHLS; 1313 CCValid = SystemZ::CCMASK_VCMP; 1314 return true; 1315 1316 case Intrinsic::s390_vtm: 1317 Opcode = SystemZISD::VTM; 1318 CCValid = SystemZ::CCMASK_VCMP; 1319 return true; 1320 1321 case Intrinsic::s390_vfaebs: 1322 case Intrinsic::s390_vfaehs: 1323 case Intrinsic::s390_vfaefs: 1324 Opcode = SystemZISD::VFAE_CC; 1325 CCValid = SystemZ::CCMASK_ANY; 1326 return true; 1327 1328 case Intrinsic::s390_vfaezbs: 1329 case Intrinsic::s390_vfaezhs: 1330 case Intrinsic::s390_vfaezfs: 1331 Opcode = SystemZISD::VFAEZ_CC; 1332 CCValid = SystemZ::CCMASK_ANY; 1333 return true; 1334 1335 case Intrinsic::s390_vfeebs: 1336 case Intrinsic::s390_vfeehs: 1337 case Intrinsic::s390_vfeefs: 1338 Opcode = SystemZISD::VFEE_CC; 1339 CCValid = SystemZ::CCMASK_ANY; 1340 return true; 1341 1342 case Intrinsic::s390_vfeezbs: 1343 case Intrinsic::s390_vfeezhs: 1344 case Intrinsic::s390_vfeezfs: 1345 Opcode = SystemZISD::VFEEZ_CC; 1346 CCValid = SystemZ::CCMASK_ANY; 1347 return true; 1348 1349 case Intrinsic::s390_vfenebs: 1350 case Intrinsic::s390_vfenehs: 1351 case Intrinsic::s390_vfenefs: 1352 Opcode = SystemZISD::VFENE_CC; 1353 CCValid = SystemZ::CCMASK_ANY; 1354 return true; 1355 1356 case Intrinsic::s390_vfenezbs: 1357 case Intrinsic::s390_vfenezhs: 1358 case Intrinsic::s390_vfenezfs: 1359 Opcode = SystemZISD::VFENEZ_CC; 1360 CCValid = SystemZ::CCMASK_ANY; 1361 return true; 1362 1363 case Intrinsic::s390_vistrbs: 1364 case Intrinsic::s390_vistrhs: 1365 case Intrinsic::s390_vistrfs: 1366 Opcode = SystemZISD::VISTR_CC; 1367 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1368 return true; 1369 1370 case Intrinsic::s390_vstrcbs: 1371 case Intrinsic::s390_vstrchs: 1372 case Intrinsic::s390_vstrcfs: 1373 Opcode = SystemZISD::VSTRC_CC; 1374 CCValid = SystemZ::CCMASK_ANY; 1375 return true; 1376 1377 case Intrinsic::s390_vstrczbs: 1378 case Intrinsic::s390_vstrczhs: 1379 case Intrinsic::s390_vstrczfs: 1380 Opcode = SystemZISD::VSTRCZ_CC; 1381 CCValid = SystemZ::CCMASK_ANY; 1382 return true; 1383 1384 case Intrinsic::s390_vfcedbs: 1385 Opcode = SystemZISD::VFCMPES; 1386 CCValid = SystemZ::CCMASK_VCMP; 1387 return true; 1388 1389 case Intrinsic::s390_vfchdbs: 1390 Opcode = SystemZISD::VFCMPHS; 1391 CCValid = SystemZ::CCMASK_VCMP; 1392 return true; 1393 1394 case Intrinsic::s390_vfchedbs: 1395 Opcode = SystemZISD::VFCMPHES; 1396 CCValid = SystemZ::CCMASK_VCMP; 1397 return true; 1398 1399 case Intrinsic::s390_vftcidb: 1400 Opcode = SystemZISD::VFTCI; 1401 CCValid = SystemZ::CCMASK_VCMP; 1402 return true; 1403 1404 default: 1405 return false; 1406 } 1407 } 1408 1409 // Emit an intrinsic with chain with a glued value instead of its CC result. 1410 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1411 unsigned Opcode) { 1412 // Copy all operands except the intrinsic ID. 1413 unsigned NumOps = Op.getNumOperands(); 1414 SmallVector<SDValue, 6> Ops; 1415 Ops.reserve(NumOps - 1); 1416 Ops.push_back(Op.getOperand(0)); 1417 for (unsigned I = 2; I < NumOps; ++I) 1418 Ops.push_back(Op.getOperand(I)); 1419 1420 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1421 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1422 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1423 SDValue OldChain = SDValue(Op.getNode(), 1); 1424 SDValue NewChain = SDValue(Intr.getNode(), 0); 1425 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1426 return Intr; 1427 } 1428 1429 // Emit an intrinsic with a glued value instead of its CC result. 1430 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1431 unsigned Opcode) { 1432 // Copy all operands except the intrinsic ID. 1433 unsigned NumOps = Op.getNumOperands(); 1434 SmallVector<SDValue, 6> Ops; 1435 Ops.reserve(NumOps - 1); 1436 for (unsigned I = 1; I < NumOps; ++I) 1437 Ops.push_back(Op.getOperand(I)); 1438 1439 if (Op->getNumValues() == 1) 1440 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1441 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1442 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1443 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1444 } 1445 1446 // CC is a comparison that will be implemented using an integer or 1447 // floating-point comparison. Return the condition code mask for 1448 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1449 // unsigned comparisons and clear for signed ones. In the floating-point 1450 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1451 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1452 #define CONV(X) \ 1453 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1454 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1455 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1456 1457 switch (CC) { 1458 default: 1459 llvm_unreachable("Invalid integer condition!"); 1460 1461 CONV(EQ); 1462 CONV(NE); 1463 CONV(GT); 1464 CONV(GE); 1465 CONV(LT); 1466 CONV(LE); 1467 1468 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1469 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1470 } 1471 #undef CONV 1472 } 1473 1474 // Return a sequence for getting a 1 from an IPM result when CC has a 1475 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1476 // The handling of CC values outside CCValid doesn't matter. 1477 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1478 // Deal with cases where the result can be taken directly from a bit 1479 // of the IPM result. 1480 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1481 return IPMConversion(0, 0, SystemZ::IPM_CC); 1482 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1483 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1484 1485 // Deal with cases where we can add a value to force the sign bit 1486 // to contain the right value. Putting the bit in 31 means we can 1487 // use SRL rather than RISBG(L), and also makes it easier to get a 1488 // 0/-1 value, so it has priority over the other tests below. 1489 // 1490 // These sequences rely on the fact that the upper two bits of the 1491 // IPM result are zero. 1492 uint64_t TopBit = uint64_t(1) << 31; 1493 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1494 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1495 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1496 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1497 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1498 | SystemZ::CCMASK_1 1499 | SystemZ::CCMASK_2))) 1500 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1501 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1502 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1503 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1504 | SystemZ::CCMASK_2 1505 | SystemZ::CCMASK_3))) 1506 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1507 1508 // Next try inverting the value and testing a bit. 0/1 could be 1509 // handled this way too, but we dealt with that case above. 1510 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1511 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1512 1513 // Handle cases where adding a value forces a non-sign bit to contain 1514 // the right value. 1515 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1516 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1517 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1518 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1519 1520 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1521 // can be done by inverting the low CC bit and applying one of the 1522 // sign-based extractions above. 1523 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1524 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1525 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1526 return IPMConversion(1 << SystemZ::IPM_CC, 1527 TopBit - (3 << SystemZ::IPM_CC), 31); 1528 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1529 | SystemZ::CCMASK_1 1530 | SystemZ::CCMASK_3))) 1531 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1532 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1533 | SystemZ::CCMASK_2 1534 | SystemZ::CCMASK_3))) 1535 return IPMConversion(1 << SystemZ::IPM_CC, 1536 TopBit - (1 << SystemZ::IPM_CC), 31); 1537 1538 llvm_unreachable("Unexpected CC combination"); 1539 } 1540 1541 // If C can be converted to a comparison against zero, adjust the operands 1542 // as necessary. 1543 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1544 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1545 return; 1546 1547 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1548 if (!ConstOp1) 1549 return; 1550 1551 int64_t Value = ConstOp1->getSExtValue(); 1552 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1553 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1554 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1555 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1556 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1557 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1558 } 1559 } 1560 1561 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1562 // adjust the operands as necessary. 1563 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1564 // For us to make any changes, it must a comparison between a single-use 1565 // load and a constant. 1566 if (!C.Op0.hasOneUse() || 1567 C.Op0.getOpcode() != ISD::LOAD || 1568 C.Op1.getOpcode() != ISD::Constant) 1569 return; 1570 1571 // We must have an 8- or 16-bit load. 1572 auto *Load = cast<LoadSDNode>(C.Op0); 1573 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1574 if (NumBits != 8 && NumBits != 16) 1575 return; 1576 1577 // The load must be an extending one and the constant must be within the 1578 // range of the unextended value. 1579 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1580 uint64_t Value = ConstOp1->getZExtValue(); 1581 uint64_t Mask = (1 << NumBits) - 1; 1582 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1583 // Make sure that ConstOp1 is in range of C.Op0. 1584 int64_t SignedValue = ConstOp1->getSExtValue(); 1585 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1586 return; 1587 if (C.ICmpType != SystemZICMP::SignedOnly) { 1588 // Unsigned comparison between two sign-extended values is equivalent 1589 // to unsigned comparison between two zero-extended values. 1590 Value &= Mask; 1591 } else if (NumBits == 8) { 1592 // Try to treat the comparison as unsigned, so that we can use CLI. 1593 // Adjust CCMask and Value as necessary. 1594 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1595 // Test whether the high bit of the byte is set. 1596 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1597 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1598 // Test whether the high bit of the byte is clear. 1599 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1600 else 1601 // No instruction exists for this combination. 1602 return; 1603 C.ICmpType = SystemZICMP::UnsignedOnly; 1604 } 1605 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1606 if (Value > Mask) 1607 return; 1608 assert(C.ICmpType == SystemZICMP::Any && 1609 "Signedness shouldn't matter here."); 1610 } else 1611 return; 1612 1613 // Make sure that the first operand is an i32 of the right extension type. 1614 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1615 ISD::SEXTLOAD : 1616 ISD::ZEXTLOAD); 1617 if (C.Op0.getValueType() != MVT::i32 || 1618 Load->getExtensionType() != ExtType) 1619 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1620 Load->getChain(), Load->getBasePtr(), 1621 Load->getPointerInfo(), Load->getMemoryVT(), 1622 Load->isVolatile(), Load->isNonTemporal(), 1623 Load->isInvariant(), Load->getAlignment()); 1624 1625 // Make sure that the second operand is an i32 with the right value. 1626 if (C.Op1.getValueType() != MVT::i32 || 1627 Value != ConstOp1->getZExtValue()) 1628 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1629 } 1630 1631 // Return true if Op is either an unextended load, or a load suitable 1632 // for integer register-memory comparisons of type ICmpType. 1633 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1634 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1635 if (Load) { 1636 // There are no instructions to compare a register with a memory byte. 1637 if (Load->getMemoryVT() == MVT::i8) 1638 return false; 1639 // Otherwise decide on extension type. 1640 switch (Load->getExtensionType()) { 1641 case ISD::NON_EXTLOAD: 1642 return true; 1643 case ISD::SEXTLOAD: 1644 return ICmpType != SystemZICMP::UnsignedOnly; 1645 case ISD::ZEXTLOAD: 1646 return ICmpType != SystemZICMP::SignedOnly; 1647 default: 1648 break; 1649 } 1650 } 1651 return false; 1652 } 1653 1654 // Return true if it is better to swap the operands of C. 1655 static bool shouldSwapCmpOperands(const Comparison &C) { 1656 // Leave f128 comparisons alone, since they have no memory forms. 1657 if (C.Op0.getValueType() == MVT::f128) 1658 return false; 1659 1660 // Always keep a floating-point constant second, since comparisons with 1661 // zero can use LOAD TEST and comparisons with other constants make a 1662 // natural memory operand. 1663 if (isa<ConstantFPSDNode>(C.Op1)) 1664 return false; 1665 1666 // Never swap comparisons with zero since there are many ways to optimize 1667 // those later. 1668 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1669 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1670 return false; 1671 1672 // Also keep natural memory operands second if the loaded value is 1673 // only used here. Several comparisons have memory forms. 1674 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1675 return false; 1676 1677 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1678 // In that case we generally prefer the memory to be second. 1679 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1680 // The only exceptions are when the second operand is a constant and 1681 // we can use things like CHHSI. 1682 if (!ConstOp1) 1683 return true; 1684 // The unsigned memory-immediate instructions can handle 16-bit 1685 // unsigned integers. 1686 if (C.ICmpType != SystemZICMP::SignedOnly && 1687 isUInt<16>(ConstOp1->getZExtValue())) 1688 return false; 1689 // The signed memory-immediate instructions can handle 16-bit 1690 // signed integers. 1691 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1692 isInt<16>(ConstOp1->getSExtValue())) 1693 return false; 1694 return true; 1695 } 1696 1697 // Try to promote the use of CGFR and CLGFR. 1698 unsigned Opcode0 = C.Op0.getOpcode(); 1699 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1700 return true; 1701 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1702 return true; 1703 if (C.ICmpType != SystemZICMP::SignedOnly && 1704 Opcode0 == ISD::AND && 1705 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1706 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1707 return true; 1708 1709 return false; 1710 } 1711 1712 // Return a version of comparison CC mask CCMask in which the LT and GT 1713 // actions are swapped. 1714 static unsigned reverseCCMask(unsigned CCMask) { 1715 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1716 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1717 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1718 (CCMask & SystemZ::CCMASK_CMP_UO)); 1719 } 1720 1721 // Check whether C tests for equality between X and Y and whether X - Y 1722 // or Y - X is also computed. In that case it's better to compare the 1723 // result of the subtraction against zero. 1724 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1725 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1726 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1727 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1728 SDNode *N = *I; 1729 if (N->getOpcode() == ISD::SUB && 1730 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1731 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1732 C.Op0 = SDValue(N, 0); 1733 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1734 return; 1735 } 1736 } 1737 } 1738 } 1739 1740 // Check whether C compares a floating-point value with zero and if that 1741 // floating-point value is also negated. In this case we can use the 1742 // negation to set CC, so avoiding separate LOAD AND TEST and 1743 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1744 static void adjustForFNeg(Comparison &C) { 1745 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1746 if (C1 && C1->isZero()) { 1747 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1748 SDNode *N = *I; 1749 if (N->getOpcode() == ISD::FNEG) { 1750 C.Op0 = SDValue(N, 0); 1751 C.CCMask = reverseCCMask(C.CCMask); 1752 return; 1753 } 1754 } 1755 } 1756 } 1757 1758 // Check whether C compares (shl X, 32) with 0 and whether X is 1759 // also sign-extended. In that case it is better to test the result 1760 // of the sign extension using LTGFR. 1761 // 1762 // This case is important because InstCombine transforms a comparison 1763 // with (sext (trunc X)) into a comparison with (shl X, 32). 1764 static void adjustForLTGFR(Comparison &C) { 1765 // Check for a comparison between (shl X, 32) and 0. 1766 if (C.Op0.getOpcode() == ISD::SHL && 1767 C.Op0.getValueType() == MVT::i64 && 1768 C.Op1.getOpcode() == ISD::Constant && 1769 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1770 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1771 if (C1 && C1->getZExtValue() == 32) { 1772 SDValue ShlOp0 = C.Op0.getOperand(0); 1773 // See whether X has any SIGN_EXTEND_INREG uses. 1774 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1775 SDNode *N = *I; 1776 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1777 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1778 C.Op0 = SDValue(N, 0); 1779 return; 1780 } 1781 } 1782 } 1783 } 1784 } 1785 1786 // If C compares the truncation of an extending load, try to compare 1787 // the untruncated value instead. This exposes more opportunities to 1788 // reuse CC. 1789 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1790 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1791 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1792 C.Op1.getOpcode() == ISD::Constant && 1793 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1794 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1795 if (L->getMemoryVT().getStoreSizeInBits() 1796 <= C.Op0.getValueType().getSizeInBits()) { 1797 unsigned Type = L->getExtensionType(); 1798 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1799 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1800 C.Op0 = C.Op0.getOperand(0); 1801 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1802 } 1803 } 1804 } 1805 } 1806 1807 // Return true if shift operation N has an in-range constant shift value. 1808 // Store it in ShiftVal if so. 1809 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1810 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1811 if (!Shift) 1812 return false; 1813 1814 uint64_t Amount = Shift->getZExtValue(); 1815 if (Amount >= N.getValueType().getSizeInBits()) 1816 return false; 1817 1818 ShiftVal = Amount; 1819 return true; 1820 } 1821 1822 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1823 // instruction and whether the CC value is descriptive enough to handle 1824 // a comparison of type Opcode between the AND result and CmpVal. 1825 // CCMask says which comparison result is being tested and BitSize is 1826 // the number of bits in the operands. If TEST UNDER MASK can be used, 1827 // return the corresponding CC mask, otherwise return 0. 1828 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1829 uint64_t Mask, uint64_t CmpVal, 1830 unsigned ICmpType) { 1831 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1832 1833 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1834 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1835 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1836 return 0; 1837 1838 // Work out the masks for the lowest and highest bits. 1839 unsigned HighShift = 63 - countLeadingZeros(Mask); 1840 uint64_t High = uint64_t(1) << HighShift; 1841 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1842 1843 // Signed ordered comparisons are effectively unsigned if the sign 1844 // bit is dropped. 1845 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1846 1847 // Check for equality comparisons with 0, or the equivalent. 1848 if (CmpVal == 0) { 1849 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1850 return SystemZ::CCMASK_TM_ALL_0; 1851 if (CCMask == SystemZ::CCMASK_CMP_NE) 1852 return SystemZ::CCMASK_TM_SOME_1; 1853 } 1854 if (EffectivelyUnsigned && CmpVal <= Low) { 1855 if (CCMask == SystemZ::CCMASK_CMP_LT) 1856 return SystemZ::CCMASK_TM_ALL_0; 1857 if (CCMask == SystemZ::CCMASK_CMP_GE) 1858 return SystemZ::CCMASK_TM_SOME_1; 1859 } 1860 if (EffectivelyUnsigned && CmpVal < Low) { 1861 if (CCMask == SystemZ::CCMASK_CMP_LE) 1862 return SystemZ::CCMASK_TM_ALL_0; 1863 if (CCMask == SystemZ::CCMASK_CMP_GT) 1864 return SystemZ::CCMASK_TM_SOME_1; 1865 } 1866 1867 // Check for equality comparisons with the mask, or the equivalent. 1868 if (CmpVal == Mask) { 1869 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1870 return SystemZ::CCMASK_TM_ALL_1; 1871 if (CCMask == SystemZ::CCMASK_CMP_NE) 1872 return SystemZ::CCMASK_TM_SOME_0; 1873 } 1874 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1875 if (CCMask == SystemZ::CCMASK_CMP_GT) 1876 return SystemZ::CCMASK_TM_ALL_1; 1877 if (CCMask == SystemZ::CCMASK_CMP_LE) 1878 return SystemZ::CCMASK_TM_SOME_0; 1879 } 1880 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1881 if (CCMask == SystemZ::CCMASK_CMP_GE) 1882 return SystemZ::CCMASK_TM_ALL_1; 1883 if (CCMask == SystemZ::CCMASK_CMP_LT) 1884 return SystemZ::CCMASK_TM_SOME_0; 1885 } 1886 1887 // Check for ordered comparisons with the top bit. 1888 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1889 if (CCMask == SystemZ::CCMASK_CMP_LE) 1890 return SystemZ::CCMASK_TM_MSB_0; 1891 if (CCMask == SystemZ::CCMASK_CMP_GT) 1892 return SystemZ::CCMASK_TM_MSB_1; 1893 } 1894 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1895 if (CCMask == SystemZ::CCMASK_CMP_LT) 1896 return SystemZ::CCMASK_TM_MSB_0; 1897 if (CCMask == SystemZ::CCMASK_CMP_GE) 1898 return SystemZ::CCMASK_TM_MSB_1; 1899 } 1900 1901 // If there are just two bits, we can do equality checks for Low and High 1902 // as well. 1903 if (Mask == Low + High) { 1904 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1905 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1906 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1907 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1908 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1909 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1910 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1911 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1912 } 1913 1914 // Looks like we've exhausted our options. 1915 return 0; 1916 } 1917 1918 // See whether C can be implemented as a TEST UNDER MASK instruction. 1919 // Update the arguments with the TM version if so. 1920 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1921 // Check that we have a comparison with a constant. 1922 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1923 if (!ConstOp1) 1924 return; 1925 uint64_t CmpVal = ConstOp1->getZExtValue(); 1926 1927 // Check whether the nonconstant input is an AND with a constant mask. 1928 Comparison NewC(C); 1929 uint64_t MaskVal; 1930 ConstantSDNode *Mask = nullptr; 1931 if (C.Op0.getOpcode() == ISD::AND) { 1932 NewC.Op0 = C.Op0.getOperand(0); 1933 NewC.Op1 = C.Op0.getOperand(1); 1934 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1935 if (!Mask) 1936 return; 1937 MaskVal = Mask->getZExtValue(); 1938 } else { 1939 // There is no instruction to compare with a 64-bit immediate 1940 // so use TMHH instead if possible. We need an unsigned ordered 1941 // comparison with an i64 immediate. 1942 if (NewC.Op0.getValueType() != MVT::i64 || 1943 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1944 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1945 NewC.ICmpType == SystemZICMP::SignedOnly) 1946 return; 1947 // Convert LE and GT comparisons into LT and GE. 1948 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1949 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1950 if (CmpVal == uint64_t(-1)) 1951 return; 1952 CmpVal += 1; 1953 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1954 } 1955 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1956 // be masked off without changing the result. 1957 MaskVal = -(CmpVal & -CmpVal); 1958 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1959 } 1960 if (!MaskVal) 1961 return; 1962 1963 // Check whether the combination of mask, comparison value and comparison 1964 // type are suitable. 1965 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1966 unsigned NewCCMask, ShiftVal; 1967 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1968 NewC.Op0.getOpcode() == ISD::SHL && 1969 isSimpleShift(NewC.Op0, ShiftVal) && 1970 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1971 MaskVal >> ShiftVal, 1972 CmpVal >> ShiftVal, 1973 SystemZICMP::Any))) { 1974 NewC.Op0 = NewC.Op0.getOperand(0); 1975 MaskVal >>= ShiftVal; 1976 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1977 NewC.Op0.getOpcode() == ISD::SRL && 1978 isSimpleShift(NewC.Op0, ShiftVal) && 1979 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1980 MaskVal << ShiftVal, 1981 CmpVal << ShiftVal, 1982 SystemZICMP::UnsignedOnly))) { 1983 NewC.Op0 = NewC.Op0.getOperand(0); 1984 MaskVal <<= ShiftVal; 1985 } else { 1986 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1987 NewC.ICmpType); 1988 if (!NewCCMask) 1989 return; 1990 } 1991 1992 // Go ahead and make the change. 1993 C.Opcode = SystemZISD::TM; 1994 C.Op0 = NewC.Op0; 1995 if (Mask && Mask->getZExtValue() == MaskVal) 1996 C.Op1 = SDValue(Mask, 0); 1997 else 1998 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 1999 C.CCValid = SystemZ::CCMASK_TM; 2000 C.CCMask = NewCCMask; 2001 } 2002 2003 // Return a Comparison that tests the condition-code result of intrinsic 2004 // node Call against constant integer CC using comparison code Cond. 2005 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2006 // and CCValid is the set of possible condition-code results. 2007 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2008 SDValue Call, unsigned CCValid, uint64_t CC, 2009 ISD::CondCode Cond) { 2010 Comparison C(Call, SDValue()); 2011 C.Opcode = Opcode; 2012 C.CCValid = CCValid; 2013 if (Cond == ISD::SETEQ) 2014 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2015 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2016 else if (Cond == ISD::SETNE) 2017 // ...and the inverse of that. 2018 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2019 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2020 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2021 // always true for CC>3. 2022 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2023 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2024 // ...and the inverse of that. 2025 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2026 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2027 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2028 // always true for CC>3. 2029 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2030 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2031 // ...and the inverse of that. 2032 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2033 else 2034 llvm_unreachable("Unexpected integer comparison type"); 2035 C.CCMask &= CCValid; 2036 return C; 2037 } 2038 2039 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2040 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2041 ISD::CondCode Cond, SDLoc DL) { 2042 if (CmpOp1.getOpcode() == ISD::Constant) { 2043 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2044 unsigned Opcode, CCValid; 2045 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2046 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2047 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2048 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2049 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2050 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2051 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2052 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2053 } 2054 Comparison C(CmpOp0, CmpOp1); 2055 C.CCMask = CCMaskForCondCode(Cond); 2056 if (C.Op0.getValueType().isFloatingPoint()) { 2057 C.CCValid = SystemZ::CCMASK_FCMP; 2058 C.Opcode = SystemZISD::FCMP; 2059 adjustForFNeg(C); 2060 } else { 2061 C.CCValid = SystemZ::CCMASK_ICMP; 2062 C.Opcode = SystemZISD::ICMP; 2063 // Choose the type of comparison. Equality and inequality tests can 2064 // use either signed or unsigned comparisons. The choice also doesn't 2065 // matter if both sign bits are known to be clear. In those cases we 2066 // want to give the main isel code the freedom to choose whichever 2067 // form fits best. 2068 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2069 C.CCMask == SystemZ::CCMASK_CMP_NE || 2070 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2071 C.ICmpType = SystemZICMP::Any; 2072 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2073 C.ICmpType = SystemZICMP::UnsignedOnly; 2074 else 2075 C.ICmpType = SystemZICMP::SignedOnly; 2076 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2077 adjustZeroCmp(DAG, DL, C); 2078 adjustSubwordCmp(DAG, DL, C); 2079 adjustForSubtraction(DAG, DL, C); 2080 adjustForLTGFR(C); 2081 adjustICmpTruncate(DAG, DL, C); 2082 } 2083 2084 if (shouldSwapCmpOperands(C)) { 2085 std::swap(C.Op0, C.Op1); 2086 C.CCMask = reverseCCMask(C.CCMask); 2087 } 2088 2089 adjustForTestUnderMask(DAG, DL, C); 2090 return C; 2091 } 2092 2093 // Emit the comparison instruction described by C. 2094 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2095 if (!C.Op1.getNode()) { 2096 SDValue Op; 2097 switch (C.Op0.getOpcode()) { 2098 case ISD::INTRINSIC_W_CHAIN: 2099 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2100 break; 2101 case ISD::INTRINSIC_WO_CHAIN: 2102 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2103 break; 2104 default: 2105 llvm_unreachable("Invalid comparison operands"); 2106 } 2107 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2108 } 2109 if (C.Opcode == SystemZISD::ICMP) 2110 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2111 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2112 if (C.Opcode == SystemZISD::TM) { 2113 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2114 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2115 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2116 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2117 } 2118 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2119 } 2120 2121 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2122 // 64 bits. Extend is the extension type to use. Store the high part 2123 // in Hi and the low part in Lo. 2124 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2125 unsigned Extend, SDValue Op0, SDValue Op1, 2126 SDValue &Hi, SDValue &Lo) { 2127 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2128 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2129 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2130 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2131 DAG.getConstant(32, DL, MVT::i64)); 2132 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2133 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2134 } 2135 2136 // Lower a binary operation that produces two VT results, one in each 2137 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2138 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2139 // on the extended Op0 and (unextended) Op1. Store the even register result 2140 // in Even and the odd register result in Odd. 2141 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2142 unsigned Extend, unsigned Opcode, 2143 SDValue Op0, SDValue Op1, 2144 SDValue &Even, SDValue &Odd) { 2145 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2146 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2147 SDValue(In128, 0), Op1); 2148 bool Is32Bit = is32Bit(VT); 2149 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2150 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2151 } 2152 2153 // Return an i32 value that is 1 if the CC value produced by Glue is 2154 // in the mask CCMask and 0 otherwise. CC is known to have a value 2155 // in CCValid, so other values can be ignored. 2156 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2157 unsigned CCValid, unsigned CCMask) { 2158 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2159 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2160 2161 if (Conversion.XORValue) 2162 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2163 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2164 2165 if (Conversion.AddValue) 2166 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2167 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2168 2169 // The SHR/AND sequence should get optimized to an RISBG. 2170 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2171 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2172 if (Conversion.Bit != 31) 2173 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2174 DAG.getConstant(1, DL, MVT::i32)); 2175 return Result; 2176 } 2177 2178 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2179 // be done directly. IsFP is true if CC is for a floating-point rather than 2180 // integer comparison. 2181 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2182 switch (CC) { 2183 case ISD::SETOEQ: 2184 case ISD::SETEQ: 2185 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2186 2187 case ISD::SETOGE: 2188 case ISD::SETGE: 2189 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2190 2191 case ISD::SETOGT: 2192 case ISD::SETGT: 2193 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2194 2195 case ISD::SETUGT: 2196 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2197 2198 default: 2199 return 0; 2200 } 2201 } 2202 2203 // Return the SystemZISD vector comparison operation for CC or its inverse, 2204 // or 0 if neither can be done directly. Indicate in Invert whether the 2205 // result is for the inverse of CC. IsFP is true if CC is for a 2206 // floating-point rather than integer comparison. 2207 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2208 bool &Invert) { 2209 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2210 Invert = false; 2211 return Opcode; 2212 } 2213 2214 CC = ISD::getSetCCInverse(CC, !IsFP); 2215 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2216 Invert = true; 2217 return Opcode; 2218 } 2219 2220 return 0; 2221 } 2222 2223 // Return a v2f64 that contains the extended form of elements Start and Start+1 2224 // of v4f32 value Op. 2225 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2226 SDValue Op) { 2227 int Mask[] = { Start, -1, Start + 1, -1 }; 2228 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2229 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2230 } 2231 2232 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2233 // producing a result of type VT. 2234 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2235 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2236 // There is no hardware support for v4f32, so extend the vector into 2237 // two v2f64s and compare those. 2238 if (CmpOp0.getValueType() == MVT::v4f32) { 2239 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2240 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2241 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2242 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2243 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2244 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2245 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2246 } 2247 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2248 } 2249 2250 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2251 // an integer mask of type VT. 2252 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2253 ISD::CondCode CC, SDValue CmpOp0, 2254 SDValue CmpOp1) { 2255 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2256 bool Invert = false; 2257 SDValue Cmp; 2258 switch (CC) { 2259 // Handle tests for order using (or (ogt y x) (oge x y)). 2260 case ISD::SETUO: 2261 Invert = true; 2262 case ISD::SETO: { 2263 assert(IsFP && "Unexpected integer comparison"); 2264 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2265 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2266 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2267 break; 2268 } 2269 2270 // Handle <> tests using (or (ogt y x) (ogt x y)). 2271 case ISD::SETUEQ: 2272 Invert = true; 2273 case ISD::SETONE: { 2274 assert(IsFP && "Unexpected integer comparison"); 2275 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2276 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2277 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2278 break; 2279 } 2280 2281 // Otherwise a single comparison is enough. It doesn't really 2282 // matter whether we try the inversion or the swap first, since 2283 // there are no cases where both work. 2284 default: 2285 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2286 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2287 else { 2288 CC = ISD::getSetCCSwappedOperands(CC); 2289 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2290 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2291 else 2292 llvm_unreachable("Unhandled comparison"); 2293 } 2294 break; 2295 } 2296 if (Invert) { 2297 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2298 DAG.getConstant(65535, DL, MVT::i32)); 2299 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2300 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2301 } 2302 return Cmp; 2303 } 2304 2305 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2306 SelectionDAG &DAG) const { 2307 SDValue CmpOp0 = Op.getOperand(0); 2308 SDValue CmpOp1 = Op.getOperand(1); 2309 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2310 SDLoc DL(Op); 2311 EVT VT = Op.getValueType(); 2312 if (VT.isVector()) 2313 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2314 2315 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2316 SDValue Glue = emitCmp(DAG, DL, C); 2317 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2318 } 2319 2320 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2321 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2322 SDValue CmpOp0 = Op.getOperand(2); 2323 SDValue CmpOp1 = Op.getOperand(3); 2324 SDValue Dest = Op.getOperand(4); 2325 SDLoc DL(Op); 2326 2327 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2328 SDValue Glue = emitCmp(DAG, DL, C); 2329 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2330 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2331 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2332 } 2333 2334 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2335 // allowing Pos and Neg to be wider than CmpOp. 2336 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2337 return (Neg.getOpcode() == ISD::SUB && 2338 Neg.getOperand(0).getOpcode() == ISD::Constant && 2339 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2340 Neg.getOperand(1) == Pos && 2341 (Pos == CmpOp || 2342 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2343 Pos.getOperand(0) == CmpOp))); 2344 } 2345 2346 // Return the absolute or negative absolute of Op; IsNegative decides which. 2347 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2348 bool IsNegative) { 2349 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2350 if (IsNegative) 2351 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2352 DAG.getConstant(0, DL, Op.getValueType()), Op); 2353 return Op; 2354 } 2355 2356 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2357 SelectionDAG &DAG) const { 2358 SDValue CmpOp0 = Op.getOperand(0); 2359 SDValue CmpOp1 = Op.getOperand(1); 2360 SDValue TrueOp = Op.getOperand(2); 2361 SDValue FalseOp = Op.getOperand(3); 2362 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2363 SDLoc DL(Op); 2364 2365 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2366 2367 // Check for absolute and negative-absolute selections, including those 2368 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2369 // This check supplements the one in DAGCombiner. 2370 if (C.Opcode == SystemZISD::ICMP && 2371 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2372 C.CCMask != SystemZ::CCMASK_CMP_NE && 2373 C.Op1.getOpcode() == ISD::Constant && 2374 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2375 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2376 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2377 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2378 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2379 } 2380 2381 SDValue Glue = emitCmp(DAG, DL, C); 2382 2383 // Special case for handling -1/0 results. The shifts we use here 2384 // should get optimized with the IPM conversion sequence. 2385 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2386 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2387 if (TrueC && FalseC) { 2388 int64_t TrueVal = TrueC->getSExtValue(); 2389 int64_t FalseVal = FalseC->getSExtValue(); 2390 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2391 // Invert the condition if we want -1 on false. 2392 if (TrueVal == 0) 2393 C.CCMask ^= C.CCValid; 2394 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2395 EVT VT = Op.getValueType(); 2396 // Extend the result to VT. Upper bits are ignored. 2397 if (!is32Bit(VT)) 2398 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2399 // Sign-extend from the low bit. 2400 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2401 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2402 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2403 } 2404 } 2405 2406 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2407 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2408 2409 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2410 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2411 } 2412 2413 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2414 SelectionDAG &DAG) const { 2415 SDLoc DL(Node); 2416 const GlobalValue *GV = Node->getGlobal(); 2417 int64_t Offset = Node->getOffset(); 2418 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2419 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2420 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2421 2422 SDValue Result; 2423 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2424 // Assign anchors at 1<<12 byte boundaries. 2425 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2426 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2427 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2428 2429 // The offset can be folded into the address if it is aligned to a halfword. 2430 Offset -= Anchor; 2431 if (Offset != 0 && (Offset & 1) == 0) { 2432 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2433 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2434 Offset = 0; 2435 } 2436 } else { 2437 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2438 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2439 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2440 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2441 false, false, false, 0); 2442 } 2443 2444 // If there was a non-zero offset that we didn't fold, create an explicit 2445 // addition for it. 2446 if (Offset != 0) 2447 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2448 DAG.getConstant(Offset, DL, PtrVT)); 2449 2450 return Result; 2451 } 2452 2453 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2454 SelectionDAG &DAG, 2455 unsigned Opcode, 2456 SDValue GOTOffset) const { 2457 SDLoc DL(Node); 2458 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2459 SDValue Chain = DAG.getEntryNode(); 2460 SDValue Glue; 2461 2462 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2463 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2464 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2465 Glue = Chain.getValue(1); 2466 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2467 Glue = Chain.getValue(1); 2468 2469 // The first call operand is the chain and the second is the TLS symbol. 2470 SmallVector<SDValue, 8> Ops; 2471 Ops.push_back(Chain); 2472 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2473 Node->getValueType(0), 2474 0, 0)); 2475 2476 // Add argument registers to the end of the list so that they are 2477 // known live into the call. 2478 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2479 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2480 2481 // Add a register mask operand representing the call-preserved registers. 2482 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2483 const uint32_t *Mask = 2484 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2485 assert(Mask && "Missing call preserved mask for calling convention"); 2486 Ops.push_back(DAG.getRegisterMask(Mask)); 2487 2488 // Glue the call to the argument copies. 2489 Ops.push_back(Glue); 2490 2491 // Emit the call. 2492 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2493 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2494 Glue = Chain.getValue(1); 2495 2496 // Copy the return value from %r2. 2497 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2498 } 2499 2500 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2501 SelectionDAG &DAG) const { 2502 if (DAG.getTarget().Options.EmulatedTLS) 2503 return LowerToTLSEmulatedModel(Node, DAG); 2504 SDLoc DL(Node); 2505 const GlobalValue *GV = Node->getGlobal(); 2506 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2507 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2508 2509 // The high part of the thread pointer is in access register 0. 2510 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2511 DAG.getConstant(0, DL, MVT::i32)); 2512 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2513 2514 // The low part of the thread pointer is in access register 1. 2515 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2516 DAG.getConstant(1, DL, MVT::i32)); 2517 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2518 2519 // Merge them into a single 64-bit address. 2520 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2521 DAG.getConstant(32, DL, PtrVT)); 2522 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2523 2524 // Get the offset of GA from the thread pointer, based on the TLS model. 2525 SDValue Offset; 2526 switch (model) { 2527 case TLSModel::GeneralDynamic: { 2528 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2529 SystemZConstantPoolValue *CPV = 2530 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2531 2532 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2533 Offset = DAG.getLoad( 2534 PtrVT, DL, DAG.getEntryNode(), Offset, 2535 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2536 false, false, 0); 2537 2538 // Call __tls_get_offset to retrieve the offset. 2539 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2540 break; 2541 } 2542 2543 case TLSModel::LocalDynamic: { 2544 // Load the GOT offset of the module ID. 2545 SystemZConstantPoolValue *CPV = 2546 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2547 2548 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2549 Offset = DAG.getLoad( 2550 PtrVT, DL, DAG.getEntryNode(), Offset, 2551 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2552 false, false, 0); 2553 2554 // Call __tls_get_offset to retrieve the module base offset. 2555 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2556 2557 // Note: The SystemZLDCleanupPass will remove redundant computations 2558 // of the module base offset. Count total number of local-dynamic 2559 // accesses to trigger execution of that pass. 2560 SystemZMachineFunctionInfo* MFI = 2561 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2562 MFI->incNumLocalDynamicTLSAccesses(); 2563 2564 // Add the per-symbol offset. 2565 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2566 2567 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2568 DTPOffset = DAG.getLoad( 2569 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2570 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2571 false, false, 0); 2572 2573 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2574 break; 2575 } 2576 2577 case TLSModel::InitialExec: { 2578 // Load the offset from the GOT. 2579 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2580 SystemZII::MO_INDNTPOFF); 2581 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2582 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2583 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2584 false, false, false, 0); 2585 break; 2586 } 2587 2588 case TLSModel::LocalExec: { 2589 // Force the offset into the constant pool and load it from there. 2590 SystemZConstantPoolValue *CPV = 2591 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2592 2593 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2594 Offset = DAG.getLoad( 2595 PtrVT, DL, DAG.getEntryNode(), Offset, 2596 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2597 false, false, 0); 2598 break; 2599 } 2600 } 2601 2602 // Add the base and offset together. 2603 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2604 } 2605 2606 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2607 SelectionDAG &DAG) const { 2608 SDLoc DL(Node); 2609 const BlockAddress *BA = Node->getBlockAddress(); 2610 int64_t Offset = Node->getOffset(); 2611 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2612 2613 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2614 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2615 return Result; 2616 } 2617 2618 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2619 SelectionDAG &DAG) const { 2620 SDLoc DL(JT); 2621 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2622 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2623 2624 // Use LARL to load the address of the table. 2625 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2626 } 2627 2628 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2629 SelectionDAG &DAG) const { 2630 SDLoc DL(CP); 2631 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2632 2633 SDValue Result; 2634 if (CP->isMachineConstantPoolEntry()) 2635 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2636 CP->getAlignment()); 2637 else 2638 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2639 CP->getAlignment(), CP->getOffset()); 2640 2641 // Use LARL to load the address of the constant pool entry. 2642 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2643 } 2644 2645 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2646 SelectionDAG &DAG) const { 2647 SDLoc DL(Op); 2648 SDValue In = Op.getOperand(0); 2649 EVT InVT = In.getValueType(); 2650 EVT ResVT = Op.getValueType(); 2651 2652 // Convert loads directly. This is normally done by DAGCombiner, 2653 // but we need this case for bitcasts that are created during lowering 2654 // and which are then lowered themselves. 2655 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2656 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2657 LoadN->getMemOperand()); 2658 2659 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2660 SDValue In64; 2661 if (Subtarget.hasHighWord()) { 2662 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2663 MVT::i64); 2664 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2665 MVT::i64, SDValue(U64, 0), In); 2666 } else { 2667 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2668 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2669 DAG.getConstant(32, DL, MVT::i64)); 2670 } 2671 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2672 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2673 DL, MVT::f32, Out64); 2674 } 2675 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2676 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2677 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2678 MVT::f64, SDValue(U64, 0), In); 2679 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2680 if (Subtarget.hasHighWord()) 2681 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2682 MVT::i32, Out64); 2683 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2684 DAG.getConstant(32, DL, MVT::i64)); 2685 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2686 } 2687 llvm_unreachable("Unexpected bitcast combination"); 2688 } 2689 2690 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2691 SelectionDAG &DAG) const { 2692 MachineFunction &MF = DAG.getMachineFunction(); 2693 SystemZMachineFunctionInfo *FuncInfo = 2694 MF.getInfo<SystemZMachineFunctionInfo>(); 2695 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2696 2697 SDValue Chain = Op.getOperand(0); 2698 SDValue Addr = Op.getOperand(1); 2699 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2700 SDLoc DL(Op); 2701 2702 // The initial values of each field. 2703 const unsigned NumFields = 4; 2704 SDValue Fields[NumFields] = { 2705 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2706 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2707 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2708 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2709 }; 2710 2711 // Store each field into its respective slot. 2712 SDValue MemOps[NumFields]; 2713 unsigned Offset = 0; 2714 for (unsigned I = 0; I < NumFields; ++I) { 2715 SDValue FieldAddr = Addr; 2716 if (Offset != 0) 2717 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2718 DAG.getIntPtrConstant(Offset, DL)); 2719 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2720 MachinePointerInfo(SV, Offset), 2721 false, false, 0); 2722 Offset += 8; 2723 } 2724 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2725 } 2726 2727 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2728 SelectionDAG &DAG) const { 2729 SDValue Chain = Op.getOperand(0); 2730 SDValue DstPtr = Op.getOperand(1); 2731 SDValue SrcPtr = Op.getOperand(2); 2732 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2733 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2734 SDLoc DL(Op); 2735 2736 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2737 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2738 /*isTailCall*/false, 2739 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2740 } 2741 2742 SDValue SystemZTargetLowering:: 2743 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2744 SDValue Chain = Op.getOperand(0); 2745 SDValue Size = Op.getOperand(1); 2746 SDLoc DL(Op); 2747 2748 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2749 2750 // Get a reference to the stack pointer. 2751 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2752 2753 // Get the new stack pointer value. 2754 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2755 2756 // Copy the new stack pointer back. 2757 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2758 2759 // The allocated data lives above the 160 bytes allocated for the standard 2760 // frame, plus any outgoing stack arguments. We don't know how much that 2761 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2762 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2763 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2764 2765 SDValue Ops[2] = { Result, Chain }; 2766 return DAG.getMergeValues(Ops, DL); 2767 } 2768 2769 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2770 SelectionDAG &DAG) const { 2771 EVT VT = Op.getValueType(); 2772 SDLoc DL(Op); 2773 SDValue Ops[2]; 2774 if (is32Bit(VT)) 2775 // Just do a normal 64-bit multiplication and extract the results. 2776 // We define this so that it can be used for constant division. 2777 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2778 Op.getOperand(1), Ops[1], Ops[0]); 2779 else { 2780 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2781 // 2782 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2783 // 2784 // but using the fact that the upper halves are either all zeros 2785 // or all ones: 2786 // 2787 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2788 // 2789 // and grouping the right terms together since they are quicker than the 2790 // multiplication: 2791 // 2792 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2793 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2794 SDValue LL = Op.getOperand(0); 2795 SDValue RL = Op.getOperand(1); 2796 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2797 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2798 // UMUL_LOHI64 returns the low result in the odd register and the high 2799 // result in the even register. SMUL_LOHI is defined to return the 2800 // low half first, so the results are in reverse order. 2801 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2802 LL, RL, Ops[1], Ops[0]); 2803 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2804 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2805 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2806 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2807 } 2808 return DAG.getMergeValues(Ops, DL); 2809 } 2810 2811 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2812 SelectionDAG &DAG) const { 2813 EVT VT = Op.getValueType(); 2814 SDLoc DL(Op); 2815 SDValue Ops[2]; 2816 if (is32Bit(VT)) 2817 // Just do a normal 64-bit multiplication and extract the results. 2818 // We define this so that it can be used for constant division. 2819 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2820 Op.getOperand(1), Ops[1], Ops[0]); 2821 else 2822 // UMUL_LOHI64 returns the low result in the odd register and the high 2823 // result in the even register. UMUL_LOHI is defined to return the 2824 // low half first, so the results are in reverse order. 2825 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2826 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2827 return DAG.getMergeValues(Ops, DL); 2828 } 2829 2830 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2831 SelectionDAG &DAG) const { 2832 SDValue Op0 = Op.getOperand(0); 2833 SDValue Op1 = Op.getOperand(1); 2834 EVT VT = Op.getValueType(); 2835 SDLoc DL(Op); 2836 unsigned Opcode; 2837 2838 // We use DSGF for 32-bit division. 2839 if (is32Bit(VT)) { 2840 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2841 Opcode = SystemZISD::SDIVREM32; 2842 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2843 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2844 Opcode = SystemZISD::SDIVREM32; 2845 } else 2846 Opcode = SystemZISD::SDIVREM64; 2847 2848 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2849 // input is "don't care". The instruction returns the remainder in 2850 // the even register and the quotient in the odd register. 2851 SDValue Ops[2]; 2852 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2853 Op0, Op1, Ops[1], Ops[0]); 2854 return DAG.getMergeValues(Ops, DL); 2855 } 2856 2857 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2858 SelectionDAG &DAG) const { 2859 EVT VT = Op.getValueType(); 2860 SDLoc DL(Op); 2861 2862 // DL(G) uses a double-width dividend, so we need to clear the even 2863 // register in the GR128 input. The instruction returns the remainder 2864 // in the even register and the quotient in the odd register. 2865 SDValue Ops[2]; 2866 if (is32Bit(VT)) 2867 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2868 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2869 else 2870 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2871 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2872 return DAG.getMergeValues(Ops, DL); 2873 } 2874 2875 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2876 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2877 2878 // Get the known-zero masks for each operand. 2879 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2880 APInt KnownZero[2], KnownOne[2]; 2881 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2882 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2883 2884 // See if the upper 32 bits of one operand and the lower 32 bits of the 2885 // other are known zero. They are the low and high operands respectively. 2886 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2887 KnownZero[1].getZExtValue() }; 2888 unsigned High, Low; 2889 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2890 High = 1, Low = 0; 2891 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2892 High = 0, Low = 1; 2893 else 2894 return Op; 2895 2896 SDValue LowOp = Ops[Low]; 2897 SDValue HighOp = Ops[High]; 2898 2899 // If the high part is a constant, we're better off using IILH. 2900 if (HighOp.getOpcode() == ISD::Constant) 2901 return Op; 2902 2903 // If the low part is a constant that is outside the range of LHI, 2904 // then we're better off using IILF. 2905 if (LowOp.getOpcode() == ISD::Constant) { 2906 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2907 if (!isInt<16>(Value)) 2908 return Op; 2909 } 2910 2911 // Check whether the high part is an AND that doesn't change the 2912 // high 32 bits and just masks out low bits. We can skip it if so. 2913 if (HighOp.getOpcode() == ISD::AND && 2914 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2915 SDValue HighOp0 = HighOp.getOperand(0); 2916 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2917 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2918 HighOp = HighOp0; 2919 } 2920 2921 // Take advantage of the fact that all GR32 operations only change the 2922 // low 32 bits by truncating Low to an i32 and inserting it directly 2923 // using a subreg. The interesting cases are those where the truncation 2924 // can be folded. 2925 SDLoc DL(Op); 2926 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2927 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2928 MVT::i64, HighOp, Low32); 2929 } 2930 2931 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2932 SelectionDAG &DAG) const { 2933 EVT VT = Op.getValueType(); 2934 SDLoc DL(Op); 2935 Op = Op.getOperand(0); 2936 2937 // Handle vector types via VPOPCT. 2938 if (VT.isVector()) { 2939 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 2940 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 2941 switch (VT.getVectorElementType().getSizeInBits()) { 2942 case 8: 2943 break; 2944 case 16: { 2945 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 2946 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 2947 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 2948 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2949 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 2950 break; 2951 } 2952 case 32: { 2953 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2954 DAG.getConstant(0, DL, MVT::i32)); 2955 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2956 break; 2957 } 2958 case 64: { 2959 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2960 DAG.getConstant(0, DL, MVT::i32)); 2961 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 2962 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2963 break; 2964 } 2965 default: 2966 llvm_unreachable("Unexpected type"); 2967 } 2968 return Op; 2969 } 2970 2971 // Get the known-zero mask for the operand. 2972 APInt KnownZero, KnownOne; 2973 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2974 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 2975 if (NumSignificantBits == 0) 2976 return DAG.getConstant(0, DL, VT); 2977 2978 // Skip known-zero high parts of the operand. 2979 int64_t OrigBitSize = VT.getSizeInBits(); 2980 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 2981 BitSize = std::min(BitSize, OrigBitSize); 2982 2983 // The POPCNT instruction counts the number of bits in each byte. 2984 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 2985 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 2986 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 2987 2988 // Add up per-byte counts in a binary tree. All bits of Op at 2989 // position larger than BitSize remain zero throughout. 2990 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 2991 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 2992 if (BitSize != OrigBitSize) 2993 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 2994 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 2995 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2996 } 2997 2998 // Extract overall result from high byte. 2999 if (BitSize > 8) 3000 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3001 DAG.getConstant(BitSize - 8, DL, VT)); 3002 3003 return Op; 3004 } 3005 3006 // Op is an atomic load. Lower it into a normal volatile load. 3007 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3008 SelectionDAG &DAG) const { 3009 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3010 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3011 Node->getChain(), Node->getBasePtr(), 3012 Node->getMemoryVT(), Node->getMemOperand()); 3013 } 3014 3015 // Op is an atomic store. Lower it into a normal volatile store followed 3016 // by a serialization. 3017 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3018 SelectionDAG &DAG) const { 3019 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3020 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3021 Node->getBasePtr(), Node->getMemoryVT(), 3022 Node->getMemOperand()); 3023 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3024 Chain), 0); 3025 } 3026 3027 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3028 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3029 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3030 SelectionDAG &DAG, 3031 unsigned Opcode) const { 3032 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3033 3034 // 32-bit operations need no code outside the main loop. 3035 EVT NarrowVT = Node->getMemoryVT(); 3036 EVT WideVT = MVT::i32; 3037 if (NarrowVT == WideVT) 3038 return Op; 3039 3040 int64_t BitSize = NarrowVT.getSizeInBits(); 3041 SDValue ChainIn = Node->getChain(); 3042 SDValue Addr = Node->getBasePtr(); 3043 SDValue Src2 = Node->getVal(); 3044 MachineMemOperand *MMO = Node->getMemOperand(); 3045 SDLoc DL(Node); 3046 EVT PtrVT = Addr.getValueType(); 3047 3048 // Convert atomic subtracts of constants into additions. 3049 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3050 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3051 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3052 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3053 } 3054 3055 // Get the address of the containing word. 3056 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3057 DAG.getConstant(-4, DL, PtrVT)); 3058 3059 // Get the number of bits that the word must be rotated left in order 3060 // to bring the field to the top bits of a GR32. 3061 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3062 DAG.getConstant(3, DL, PtrVT)); 3063 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3064 3065 // Get the complementing shift amount, for rotating a field in the top 3066 // bits back to its proper position. 3067 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3068 DAG.getConstant(0, DL, WideVT), BitShift); 3069 3070 // Extend the source operand to 32 bits and prepare it for the inner loop. 3071 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3072 // operations require the source to be shifted in advance. (This shift 3073 // can be folded if the source is constant.) For AND and NAND, the lower 3074 // bits must be set, while for other opcodes they should be left clear. 3075 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3076 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3077 DAG.getConstant(32 - BitSize, DL, WideVT)); 3078 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3079 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3080 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3081 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3082 3083 // Construct the ATOMIC_LOADW_* node. 3084 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3085 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3086 DAG.getConstant(BitSize, DL, WideVT) }; 3087 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3088 NarrowVT, MMO); 3089 3090 // Rotate the result of the final CS so that the field is in the lower 3091 // bits of a GR32, then truncate it. 3092 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3093 DAG.getConstant(BitSize, DL, WideVT)); 3094 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3095 3096 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3097 return DAG.getMergeValues(RetOps, DL); 3098 } 3099 3100 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3101 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3102 // operations into additions. 3103 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3104 SelectionDAG &DAG) const { 3105 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3106 EVT MemVT = Node->getMemoryVT(); 3107 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3108 // A full-width operation. 3109 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3110 SDValue Src2 = Node->getVal(); 3111 SDValue NegSrc2; 3112 SDLoc DL(Src2); 3113 3114 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3115 // Use an addition if the operand is constant and either LAA(G) is 3116 // available or the negative value is in the range of A(G)FHI. 3117 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3118 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3119 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3120 } else if (Subtarget.hasInterlockedAccess1()) 3121 // Use LAA(G) if available. 3122 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3123 Src2); 3124 3125 if (NegSrc2.getNode()) 3126 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3127 Node->getChain(), Node->getBasePtr(), NegSrc2, 3128 Node->getMemOperand(), Node->getOrdering(), 3129 Node->getSynchScope()); 3130 3131 // Use the node as-is. 3132 return Op; 3133 } 3134 3135 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3136 } 3137 3138 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3139 // into a fullword ATOMIC_CMP_SWAPW operation. 3140 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3141 SelectionDAG &DAG) const { 3142 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3143 3144 // We have native support for 32-bit compare and swap. 3145 EVT NarrowVT = Node->getMemoryVT(); 3146 EVT WideVT = MVT::i32; 3147 if (NarrowVT == WideVT) 3148 return Op; 3149 3150 int64_t BitSize = NarrowVT.getSizeInBits(); 3151 SDValue ChainIn = Node->getOperand(0); 3152 SDValue Addr = Node->getOperand(1); 3153 SDValue CmpVal = Node->getOperand(2); 3154 SDValue SwapVal = Node->getOperand(3); 3155 MachineMemOperand *MMO = Node->getMemOperand(); 3156 SDLoc DL(Node); 3157 EVT PtrVT = Addr.getValueType(); 3158 3159 // Get the address of the containing word. 3160 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3161 DAG.getConstant(-4, DL, PtrVT)); 3162 3163 // Get the number of bits that the word must be rotated left in order 3164 // to bring the field to the top bits of a GR32. 3165 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3166 DAG.getConstant(3, DL, PtrVT)); 3167 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3168 3169 // Get the complementing shift amount, for rotating a field in the top 3170 // bits back to its proper position. 3171 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3172 DAG.getConstant(0, DL, WideVT), BitShift); 3173 3174 // Construct the ATOMIC_CMP_SWAPW node. 3175 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3176 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3177 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3178 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3179 VTList, Ops, NarrowVT, MMO); 3180 return AtomicOp; 3181 } 3182 3183 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3184 SelectionDAG &DAG) const { 3185 MachineFunction &MF = DAG.getMachineFunction(); 3186 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3187 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3188 SystemZ::R15D, Op.getValueType()); 3189 } 3190 3191 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3192 SelectionDAG &DAG) const { 3193 MachineFunction &MF = DAG.getMachineFunction(); 3194 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3195 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3196 SystemZ::R15D, Op.getOperand(1)); 3197 } 3198 3199 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3200 SelectionDAG &DAG) const { 3201 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3202 if (!IsData) 3203 // Just preserve the chain. 3204 return Op.getOperand(0); 3205 3206 SDLoc DL(Op); 3207 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3208 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3209 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3210 SDValue Ops[] = { 3211 Op.getOperand(0), 3212 DAG.getConstant(Code, DL, MVT::i32), 3213 Op.getOperand(1) 3214 }; 3215 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3216 Node->getVTList(), Ops, 3217 Node->getMemoryVT(), Node->getMemOperand()); 3218 } 3219 3220 // Return an i32 that contains the value of CC immediately after After, 3221 // whose final operand must be MVT::Glue. 3222 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3223 SDLoc DL(After); 3224 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3225 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3226 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3227 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3228 } 3229 3230 SDValue 3231 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3232 SelectionDAG &DAG) const { 3233 unsigned Opcode, CCValid; 3234 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3235 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3236 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3237 SDValue CC = getCCResult(DAG, Glued.getNode()); 3238 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3239 return SDValue(); 3240 } 3241 3242 return SDValue(); 3243 } 3244 3245 SDValue 3246 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3247 SelectionDAG &DAG) const { 3248 unsigned Opcode, CCValid; 3249 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3250 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3251 SDValue CC = getCCResult(DAG, Glued.getNode()); 3252 if (Op->getNumValues() == 1) 3253 return CC; 3254 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3255 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3256 Glued, CC); 3257 } 3258 3259 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3260 switch (Id) { 3261 case Intrinsic::s390_vpdi: 3262 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3263 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3264 3265 case Intrinsic::s390_vperm: 3266 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3267 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3268 3269 case Intrinsic::s390_vuphb: 3270 case Intrinsic::s390_vuphh: 3271 case Intrinsic::s390_vuphf: 3272 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3273 Op.getOperand(1)); 3274 3275 case Intrinsic::s390_vuplhb: 3276 case Intrinsic::s390_vuplhh: 3277 case Intrinsic::s390_vuplhf: 3278 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3279 Op.getOperand(1)); 3280 3281 case Intrinsic::s390_vuplb: 3282 case Intrinsic::s390_vuplhw: 3283 case Intrinsic::s390_vuplf: 3284 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3285 Op.getOperand(1)); 3286 3287 case Intrinsic::s390_vupllb: 3288 case Intrinsic::s390_vupllh: 3289 case Intrinsic::s390_vupllf: 3290 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3291 Op.getOperand(1)); 3292 3293 case Intrinsic::s390_vsumb: 3294 case Intrinsic::s390_vsumh: 3295 case Intrinsic::s390_vsumgh: 3296 case Intrinsic::s390_vsumgf: 3297 case Intrinsic::s390_vsumqf: 3298 case Intrinsic::s390_vsumqg: 3299 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3300 Op.getOperand(1), Op.getOperand(2)); 3301 } 3302 3303 return SDValue(); 3304 } 3305 3306 namespace { 3307 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3308 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3309 // Operand is the constant third operand, otherwise it is the number of 3310 // bytes in each element of the result. 3311 struct Permute { 3312 unsigned Opcode; 3313 unsigned Operand; 3314 unsigned char Bytes[SystemZ::VectorBytes]; 3315 }; 3316 } 3317 3318 static const Permute PermuteForms[] = { 3319 // VMRHG 3320 { SystemZISD::MERGE_HIGH, 8, 3321 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3322 // VMRHF 3323 { SystemZISD::MERGE_HIGH, 4, 3324 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3325 // VMRHH 3326 { SystemZISD::MERGE_HIGH, 2, 3327 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3328 // VMRHB 3329 { SystemZISD::MERGE_HIGH, 1, 3330 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3331 // VMRLG 3332 { SystemZISD::MERGE_LOW, 8, 3333 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3334 // VMRLF 3335 { SystemZISD::MERGE_LOW, 4, 3336 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3337 // VMRLH 3338 { SystemZISD::MERGE_LOW, 2, 3339 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3340 // VMRLB 3341 { SystemZISD::MERGE_LOW, 1, 3342 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3343 // VPKG 3344 { SystemZISD::PACK, 4, 3345 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3346 // VPKF 3347 { SystemZISD::PACK, 2, 3348 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3349 // VPKH 3350 { SystemZISD::PACK, 1, 3351 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3352 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3353 { SystemZISD::PERMUTE_DWORDS, 4, 3354 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3355 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3356 { SystemZISD::PERMUTE_DWORDS, 1, 3357 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3358 }; 3359 3360 // Called after matching a vector shuffle against a particular pattern. 3361 // Both the original shuffle and the pattern have two vector operands. 3362 // OpNos[0] is the operand of the original shuffle that should be used for 3363 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3364 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3365 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3366 // for operands 0 and 1 of the pattern. 3367 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3368 if (OpNos[0] < 0) { 3369 if (OpNos[1] < 0) 3370 return false; 3371 OpNo0 = OpNo1 = OpNos[1]; 3372 } else if (OpNos[1] < 0) { 3373 OpNo0 = OpNo1 = OpNos[0]; 3374 } else { 3375 OpNo0 = OpNos[0]; 3376 OpNo1 = OpNos[1]; 3377 } 3378 return true; 3379 } 3380 3381 // Bytes is a VPERM-like permute vector, except that -1 is used for 3382 // undefined bytes. Return true if the VPERM can be implemented using P. 3383 // When returning true set OpNo0 to the VPERM operand that should be 3384 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3385 // 3386 // For example, if swapping the VPERM operands allows P to match, OpNo0 3387 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3388 // operand, but rewriting it to use two duplicated operands allows it to 3389 // match P, then OpNo0 and OpNo1 will be the same. 3390 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3391 unsigned &OpNo0, unsigned &OpNo1) { 3392 int OpNos[] = { -1, -1 }; 3393 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3394 int Elt = Bytes[I]; 3395 if (Elt >= 0) { 3396 // Make sure that the two permute vectors use the same suboperand 3397 // byte number. Only the operand numbers (the high bits) are 3398 // allowed to differ. 3399 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3400 return false; 3401 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3402 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3403 // Make sure that the operand mappings are consistent with previous 3404 // elements. 3405 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3406 return false; 3407 OpNos[ModelOpNo] = RealOpNo; 3408 } 3409 } 3410 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3411 } 3412 3413 // As above, but search for a matching permute. 3414 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3415 unsigned &OpNo0, unsigned &OpNo1) { 3416 for (auto &P : PermuteForms) 3417 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3418 return &P; 3419 return nullptr; 3420 } 3421 3422 // Bytes is a VPERM-like permute vector, except that -1 is used for 3423 // undefined bytes. This permute is an operand of an outer permute. 3424 // See whether redistributing the -1 bytes gives a shuffle that can be 3425 // implemented using P. If so, set Transform to a VPERM-like permute vector 3426 // that, when applied to the result of P, gives the original permute in Bytes. 3427 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3428 const Permute &P, 3429 SmallVectorImpl<int> &Transform) { 3430 unsigned To = 0; 3431 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3432 int Elt = Bytes[From]; 3433 if (Elt < 0) 3434 // Byte number From of the result is undefined. 3435 Transform[From] = -1; 3436 else { 3437 while (P.Bytes[To] != Elt) { 3438 To += 1; 3439 if (To == SystemZ::VectorBytes) 3440 return false; 3441 } 3442 Transform[From] = To; 3443 } 3444 } 3445 return true; 3446 } 3447 3448 // As above, but search for a matching permute. 3449 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3450 SmallVectorImpl<int> &Transform) { 3451 for (auto &P : PermuteForms) 3452 if (matchDoublePermute(Bytes, P, Transform)) 3453 return &P; 3454 return nullptr; 3455 } 3456 3457 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3458 // as if it had type vNi8. 3459 static void getVPermMask(ShuffleVectorSDNode *VSN, 3460 SmallVectorImpl<int> &Bytes) { 3461 EVT VT = VSN->getValueType(0); 3462 unsigned NumElements = VT.getVectorNumElements(); 3463 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3464 Bytes.resize(NumElements * BytesPerElement, -1); 3465 for (unsigned I = 0; I < NumElements; ++I) { 3466 int Index = VSN->getMaskElt(I); 3467 if (Index >= 0) 3468 for (unsigned J = 0; J < BytesPerElement; ++J) 3469 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3470 } 3471 } 3472 3473 // Bytes is a VPERM-like permute vector, except that -1 is used for 3474 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3475 // the result come from a contiguous sequence of bytes from one input. 3476 // Set Base to the selector for the first byte if so. 3477 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3478 unsigned BytesPerElement, int &Base) { 3479 Base = -1; 3480 for (unsigned I = 0; I < BytesPerElement; ++I) { 3481 if (Bytes[Start + I] >= 0) { 3482 unsigned Elem = Bytes[Start + I]; 3483 if (Base < 0) { 3484 Base = Elem - I; 3485 // Make sure the bytes would come from one input operand. 3486 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3487 return false; 3488 } else if (unsigned(Base) != Elem - I) 3489 return false; 3490 } 3491 } 3492 return true; 3493 } 3494 3495 // Bytes is a VPERM-like permute vector, except that -1 is used for 3496 // undefined bytes. Return true if it can be performed using VSLDI. 3497 // When returning true, set StartIndex to the shift amount and OpNo0 3498 // and OpNo1 to the VPERM operands that should be used as the first 3499 // and second shift operand respectively. 3500 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3501 unsigned &StartIndex, unsigned &OpNo0, 3502 unsigned &OpNo1) { 3503 int OpNos[] = { -1, -1 }; 3504 int Shift = -1; 3505 for (unsigned I = 0; I < 16; ++I) { 3506 int Index = Bytes[I]; 3507 if (Index >= 0) { 3508 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3509 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3510 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3511 if (Shift < 0) 3512 Shift = ExpectedShift; 3513 else if (Shift != ExpectedShift) 3514 return false; 3515 // Make sure that the operand mappings are consistent with previous 3516 // elements. 3517 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3518 return false; 3519 OpNos[ModelOpNo] = RealOpNo; 3520 } 3521 } 3522 StartIndex = Shift; 3523 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3524 } 3525 3526 // Create a node that performs P on operands Op0 and Op1, casting the 3527 // operands to the appropriate type. The type of the result is determined by P. 3528 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3529 const Permute &P, SDValue Op0, SDValue Op1) { 3530 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3531 // elements of a PACK are twice as wide as the outputs. 3532 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3533 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3534 P.Operand); 3535 // Cast both operands to the appropriate type. 3536 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3537 SystemZ::VectorBytes / InBytes); 3538 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3539 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3540 SDValue Op; 3541 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3542 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3543 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3544 } else if (P.Opcode == SystemZISD::PACK) { 3545 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3546 SystemZ::VectorBytes / P.Operand); 3547 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3548 } else { 3549 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3550 } 3551 return Op; 3552 } 3553 3554 // Bytes is a VPERM-like permute vector, except that -1 is used for 3555 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3556 // VSLDI or VPERM. 3557 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3558 const SmallVectorImpl<int> &Bytes) { 3559 for (unsigned I = 0; I < 2; ++I) 3560 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3561 3562 // First see whether VSLDI can be used. 3563 unsigned StartIndex, OpNo0, OpNo1; 3564 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3565 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3566 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3567 3568 // Fall back on VPERM. Construct an SDNode for the permute vector. 3569 SDValue IndexNodes[SystemZ::VectorBytes]; 3570 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3571 if (Bytes[I] >= 0) 3572 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3573 else 3574 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3575 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3576 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3577 } 3578 3579 namespace { 3580 // Describes a general N-operand vector shuffle. 3581 struct GeneralShuffle { 3582 GeneralShuffle(EVT vt) : VT(vt) {} 3583 void addUndef(); 3584 void add(SDValue, unsigned); 3585 SDValue getNode(SelectionDAG &, SDLoc); 3586 3587 // The operands of the shuffle. 3588 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3589 3590 // Index I is -1 if byte I of the result is undefined. Otherwise the 3591 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3592 // Bytes[I] / SystemZ::VectorBytes. 3593 SmallVector<int, SystemZ::VectorBytes> Bytes; 3594 3595 // The type of the shuffle result. 3596 EVT VT; 3597 }; 3598 } 3599 3600 // Add an extra undefined element to the shuffle. 3601 void GeneralShuffle::addUndef() { 3602 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3603 for (unsigned I = 0; I < BytesPerElement; ++I) 3604 Bytes.push_back(-1); 3605 } 3606 3607 // Add an extra element to the shuffle, taking it from element Elem of Op. 3608 // A null Op indicates a vector input whose value will be calculated later; 3609 // there is at most one such input per shuffle and it always has the same 3610 // type as the result. 3611 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3612 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3613 3614 // The source vector can have wider elements than the result, 3615 // either through an explicit TRUNCATE or because of type legalization. 3616 // We want the least significant part. 3617 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3618 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3619 assert(FromBytesPerElement >= BytesPerElement && 3620 "Invalid EXTRACT_VECTOR_ELT"); 3621 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3622 (FromBytesPerElement - BytesPerElement)); 3623 3624 // Look through things like shuffles and bitcasts. 3625 while (Op.getNode()) { 3626 if (Op.getOpcode() == ISD::BITCAST) 3627 Op = Op.getOperand(0); 3628 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3629 // See whether the bytes we need come from a contiguous part of one 3630 // operand. 3631 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3632 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3633 int NewByte; 3634 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3635 break; 3636 if (NewByte < 0) { 3637 addUndef(); 3638 return; 3639 } 3640 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3641 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3642 } else if (Op.getOpcode() == ISD::UNDEF) { 3643 addUndef(); 3644 return; 3645 } else 3646 break; 3647 } 3648 3649 // Make sure that the source of the extraction is in Ops. 3650 unsigned OpNo = 0; 3651 for (; OpNo < Ops.size(); ++OpNo) 3652 if (Ops[OpNo] == Op) 3653 break; 3654 if (OpNo == Ops.size()) 3655 Ops.push_back(Op); 3656 3657 // Add the element to Bytes. 3658 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3659 for (unsigned I = 0; I < BytesPerElement; ++I) 3660 Bytes.push_back(Base + I); 3661 } 3662 3663 // Return SDNodes for the completed shuffle. 3664 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3665 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3666 3667 if (Ops.size() == 0) 3668 return DAG.getUNDEF(VT); 3669 3670 // Make sure that there are at least two shuffle operands. 3671 if (Ops.size() == 1) 3672 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3673 3674 // Create a tree of shuffles, deferring root node until after the loop. 3675 // Try to redistribute the undefined elements of non-root nodes so that 3676 // the non-root shuffles match something like a pack or merge, then adjust 3677 // the parent node's permute vector to compensate for the new order. 3678 // Among other things, this copes with vectors like <2 x i16> that were 3679 // padded with undefined elements during type legalization. 3680 // 3681 // In the best case this redistribution will lead to the whole tree 3682 // using packs and merges. It should rarely be a loss in other cases. 3683 unsigned Stride = 1; 3684 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3685 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3686 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3687 3688 // Create a mask for just these two operands. 3689 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3690 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3691 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3692 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3693 if (OpNo == I) 3694 NewBytes[J] = Byte; 3695 else if (OpNo == I + Stride) 3696 NewBytes[J] = SystemZ::VectorBytes + Byte; 3697 else 3698 NewBytes[J] = -1; 3699 } 3700 // See if it would be better to reorganize NewMask to avoid using VPERM. 3701 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3702 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3703 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3704 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3705 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3706 if (NewBytes[J] >= 0) { 3707 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3708 "Invalid double permute"); 3709 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3710 } else 3711 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3712 } 3713 } else { 3714 // Just use NewBytes on the operands. 3715 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3716 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3717 if (NewBytes[J] >= 0) 3718 Bytes[J] = I * SystemZ::VectorBytes + J; 3719 } 3720 } 3721 } 3722 3723 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3724 if (Stride > 1) { 3725 Ops[1] = Ops[Stride]; 3726 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3727 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3728 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3729 } 3730 3731 // Look for an instruction that can do the permute without resorting 3732 // to VPERM. 3733 unsigned OpNo0, OpNo1; 3734 SDValue Op; 3735 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3736 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3737 else 3738 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3739 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3740 } 3741 3742 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3743 static bool isScalarToVector(SDValue Op) { 3744 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3745 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3746 return false; 3747 return true; 3748 } 3749 3750 // Return a vector of type VT that contains Value in the first element. 3751 // The other elements don't matter. 3752 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3753 SDValue Value) { 3754 // If we have a constant, replicate it to all elements and let the 3755 // BUILD_VECTOR lowering take care of it. 3756 if (Value.getOpcode() == ISD::Constant || 3757 Value.getOpcode() == ISD::ConstantFP) { 3758 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3759 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3760 } 3761 if (Value.getOpcode() == ISD::UNDEF) 3762 return DAG.getUNDEF(VT); 3763 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3764 } 3765 3766 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3767 // element 1. Used for cases in which replication is cheap. 3768 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3769 SDValue Op0, SDValue Op1) { 3770 if (Op0.getOpcode() == ISD::UNDEF) { 3771 if (Op1.getOpcode() == ISD::UNDEF) 3772 return DAG.getUNDEF(VT); 3773 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3774 } 3775 if (Op1.getOpcode() == ISD::UNDEF) 3776 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3777 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3778 buildScalarToVector(DAG, DL, VT, Op0), 3779 buildScalarToVector(DAG, DL, VT, Op1)); 3780 } 3781 3782 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3783 // vector for them. 3784 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3785 SDValue Op1) { 3786 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3787 return DAG.getUNDEF(MVT::v2i64); 3788 // If one of the two inputs is undefined then replicate the other one, 3789 // in order to avoid using another register unnecessarily. 3790 if (Op0.getOpcode() == ISD::UNDEF) 3791 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3792 else if (Op1.getOpcode() == ISD::UNDEF) 3793 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3794 else { 3795 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3796 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3797 } 3798 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3799 } 3800 3801 // Try to represent constant BUILD_VECTOR node BVN using a 3802 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3803 // on success. 3804 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3805 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3806 unsigned BytesPerElement = ElemVT.getStoreSize(); 3807 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3808 SDValue Op = BVN->getOperand(I); 3809 if (Op.getOpcode() != ISD::UNDEF) { 3810 uint64_t Value; 3811 if (Op.getOpcode() == ISD::Constant) 3812 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3813 else if (Op.getOpcode() == ISD::ConstantFP) 3814 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3815 .getZExtValue()); 3816 else 3817 return false; 3818 for (unsigned J = 0; J < BytesPerElement; ++J) { 3819 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3820 if (Byte == 0xff) 3821 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3822 else if (Byte != 0) 3823 return false; 3824 } 3825 } 3826 } 3827 return true; 3828 } 3829 3830 // Try to load a vector constant in which BitsPerElement-bit value Value 3831 // is replicated to fill the vector. VT is the type of the resulting 3832 // constant, which may have elements of a different size from BitsPerElement. 3833 // Return the SDValue of the constant on success, otherwise return 3834 // an empty value. 3835 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3836 const SystemZInstrInfo *TII, 3837 SDLoc DL, EVT VT, uint64_t Value, 3838 unsigned BitsPerElement) { 3839 // Signed 16-bit values can be replicated using VREPI. 3840 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3841 if (isInt<16>(SignedValue)) { 3842 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3843 SystemZ::VectorBits / BitsPerElement); 3844 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3845 DAG.getConstant(SignedValue, DL, MVT::i32)); 3846 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3847 } 3848 // See whether rotating the constant left some N places gives a value that 3849 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3850 // If so we can use VGM. 3851 unsigned Start, End; 3852 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3853 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3854 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3855 // bit numbers for an BitsPerElement value, so that 0 denotes 3856 // 1 << (BitsPerElement-1). 3857 Start -= 64 - BitsPerElement; 3858 End -= 64 - BitsPerElement; 3859 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3860 SystemZ::VectorBits / BitsPerElement); 3861 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3862 DAG.getConstant(Start, DL, MVT::i32), 3863 DAG.getConstant(End, DL, MVT::i32)); 3864 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3865 } 3866 return SDValue(); 3867 } 3868 3869 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3870 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3871 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3872 // would benefit from this representation and return it if so. 3873 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3874 BuildVectorSDNode *BVN) { 3875 EVT VT = BVN->getValueType(0); 3876 unsigned NumElements = VT.getVectorNumElements(); 3877 3878 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3879 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3880 // need a BUILD_VECTOR, add an additional placeholder operand for that 3881 // BUILD_VECTOR and store its operands in ResidueOps. 3882 GeneralShuffle GS(VT); 3883 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3884 bool FoundOne = false; 3885 for (unsigned I = 0; I < NumElements; ++I) { 3886 SDValue Op = BVN->getOperand(I); 3887 if (Op.getOpcode() == ISD::TRUNCATE) 3888 Op = Op.getOperand(0); 3889 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3890 Op.getOperand(1).getOpcode() == ISD::Constant) { 3891 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3892 GS.add(Op.getOperand(0), Elem); 3893 FoundOne = true; 3894 } else if (Op.getOpcode() == ISD::UNDEF) { 3895 GS.addUndef(); 3896 } else { 3897 GS.add(SDValue(), ResidueOps.size()); 3898 ResidueOps.push_back(Op); 3899 } 3900 } 3901 3902 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3903 if (!FoundOne) 3904 return SDValue(); 3905 3906 // Create the BUILD_VECTOR for the remaining elements, if any. 3907 if (!ResidueOps.empty()) { 3908 while (ResidueOps.size() < NumElements) 3909 ResidueOps.push_back(DAG.getUNDEF(VT.getVectorElementType())); 3910 for (auto &Op : GS.Ops) { 3911 if (!Op.getNode()) { 3912 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3913 break; 3914 } 3915 } 3916 } 3917 return GS.getNode(DAG, SDLoc(BVN)); 3918 } 3919 3920 // Combine GPR scalar values Elems into a vector of type VT. 3921 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3922 SmallVectorImpl<SDValue> &Elems) { 3923 // See whether there is a single replicated value. 3924 SDValue Single; 3925 unsigned int NumElements = Elems.size(); 3926 unsigned int Count = 0; 3927 for (auto Elem : Elems) { 3928 if (Elem.getOpcode() != ISD::UNDEF) { 3929 if (!Single.getNode()) 3930 Single = Elem; 3931 else if (Elem != Single) { 3932 Single = SDValue(); 3933 break; 3934 } 3935 Count += 1; 3936 } 3937 } 3938 // There are three cases here: 3939 // 3940 // - if the only defined element is a loaded one, the best sequence 3941 // is a replicating load. 3942 // 3943 // - otherwise, if the only defined element is an i64 value, we will 3944 // end up with the same VLVGP sequence regardless of whether we short-cut 3945 // for replication or fall through to the later code. 3946 // 3947 // - otherwise, if the only defined element is an i32 or smaller value, 3948 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 3949 // This is only a win if the single defined element is used more than once. 3950 // In other cases we're better off using a single VLVGx. 3951 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 3952 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 3953 3954 // The best way of building a v2i64 from two i64s is to use VLVGP. 3955 if (VT == MVT::v2i64) 3956 return joinDwords(DAG, DL, Elems[0], Elems[1]); 3957 3958 // Use a 64-bit merge high to combine two doubles. 3959 if (VT == MVT::v2f64) 3960 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3961 3962 // Build v4f32 values directly from the FPRs: 3963 // 3964 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 3965 // V V VMRHF 3966 // <ABxx> <CDxx> 3967 // V VMRHG 3968 // <ABCD> 3969 if (VT == MVT::v4f32) { 3970 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3971 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 3972 // Avoid unnecessary undefs by reusing the other operand. 3973 if (Op01.getOpcode() == ISD::UNDEF) 3974 Op01 = Op23; 3975 else if (Op23.getOpcode() == ISD::UNDEF) 3976 Op23 = Op01; 3977 // Merging identical replications is a no-op. 3978 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 3979 return Op01; 3980 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 3981 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 3982 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 3983 DL, MVT::v2i64, Op01, Op23); 3984 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3985 } 3986 3987 // Collect the constant terms. 3988 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 3989 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 3990 3991 unsigned NumConstants = 0; 3992 for (unsigned I = 0; I < NumElements; ++I) { 3993 SDValue Elem = Elems[I]; 3994 if (Elem.getOpcode() == ISD::Constant || 3995 Elem.getOpcode() == ISD::ConstantFP) { 3996 NumConstants += 1; 3997 Constants[I] = Elem; 3998 Done[I] = true; 3999 } 4000 } 4001 // If there was at least one constant, fill in the other elements of 4002 // Constants with undefs to get a full vector constant and use that 4003 // as the starting point. 4004 SDValue Result; 4005 if (NumConstants > 0) { 4006 for (unsigned I = 0; I < NumElements; ++I) 4007 if (!Constants[I].getNode()) 4008 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4009 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 4010 } else { 4011 // Otherwise try to use VLVGP to start the sequence in order to 4012 // avoid a false dependency on any previous contents of the vector 4013 // register. This only makes sense if one of the associated elements 4014 // is defined. 4015 unsigned I1 = NumElements / 2 - 1; 4016 unsigned I2 = NumElements - 1; 4017 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 4018 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 4019 if (Def1 || Def2) { 4020 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4021 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4022 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4023 joinDwords(DAG, DL, Elem1, Elem2)); 4024 Done[I1] = true; 4025 Done[I2] = true; 4026 } else 4027 Result = DAG.getUNDEF(VT); 4028 } 4029 4030 // Use VLVGx to insert the other elements. 4031 for (unsigned I = 0; I < NumElements; ++I) 4032 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4033 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4034 DAG.getConstant(I, DL, MVT::i32)); 4035 return Result; 4036 } 4037 4038 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4039 SelectionDAG &DAG) const { 4040 const SystemZInstrInfo *TII = 4041 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4042 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4043 SDLoc DL(Op); 4044 EVT VT = Op.getValueType(); 4045 4046 if (BVN->isConstant()) { 4047 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4048 // preferred way of creating all-zero and all-one vectors so give it 4049 // priority over other methods below. 4050 uint64_t Mask = 0; 4051 if (tryBuildVectorByteMask(BVN, Mask)) { 4052 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4053 DAG.getConstant(Mask, DL, MVT::i32)); 4054 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4055 } 4056 4057 // Try using some form of replication. 4058 APInt SplatBits, SplatUndef; 4059 unsigned SplatBitSize; 4060 bool HasAnyUndefs; 4061 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4062 8, true) && 4063 SplatBitSize <= 64) { 4064 // First try assuming that any undefined bits above the highest set bit 4065 // and below the lowest set bit are 1s. This increases the likelihood of 4066 // being able to use a sign-extended element value in VECTOR REPLICATE 4067 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4068 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4069 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4070 uint64_t Lower = (SplatUndefZ 4071 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4072 uint64_t Upper = (SplatUndefZ 4073 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4074 uint64_t Value = SplatBitsZ | Upper | Lower; 4075 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4076 SplatBitSize); 4077 if (Op.getNode()) 4078 return Op; 4079 4080 // Now try assuming that any undefined bits between the first and 4081 // last defined set bits are set. This increases the chances of 4082 // using a non-wraparound mask. 4083 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4084 Value = SplatBitsZ | Middle; 4085 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4086 if (Op.getNode()) 4087 return Op; 4088 } 4089 4090 // Fall back to loading it from memory. 4091 return SDValue(); 4092 } 4093 4094 // See if we should use shuffles to construct the vector from other vectors. 4095 SDValue Res = tryBuildVectorShuffle(DAG, BVN); 4096 if (Res.getNode()) 4097 return Res; 4098 4099 // Detect SCALAR_TO_VECTOR conversions. 4100 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4101 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4102 4103 // Otherwise use buildVector to build the vector up from GPRs. 4104 unsigned NumElements = Op.getNumOperands(); 4105 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4106 for (unsigned I = 0; I < NumElements; ++I) 4107 Ops[I] = Op.getOperand(I); 4108 return buildVector(DAG, DL, VT, Ops); 4109 } 4110 4111 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4112 SelectionDAG &DAG) const { 4113 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4114 SDLoc DL(Op); 4115 EVT VT = Op.getValueType(); 4116 unsigned NumElements = VT.getVectorNumElements(); 4117 4118 if (VSN->isSplat()) { 4119 SDValue Op0 = Op.getOperand(0); 4120 unsigned Index = VSN->getSplatIndex(); 4121 assert(Index < VT.getVectorNumElements() && 4122 "Splat index should be defined and in first operand"); 4123 // See whether the value we're splatting is directly available as a scalar. 4124 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4125 Op0.getOpcode() == ISD::BUILD_VECTOR) 4126 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4127 // Otherwise keep it as a vector-to-vector operation. 4128 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4129 DAG.getConstant(Index, DL, MVT::i32)); 4130 } 4131 4132 GeneralShuffle GS(VT); 4133 for (unsigned I = 0; I < NumElements; ++I) { 4134 int Elt = VSN->getMaskElt(I); 4135 if (Elt < 0) 4136 GS.addUndef(); 4137 else 4138 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4139 unsigned(Elt) % NumElements); 4140 } 4141 return GS.getNode(DAG, SDLoc(VSN)); 4142 } 4143 4144 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4145 SelectionDAG &DAG) const { 4146 SDLoc DL(Op); 4147 // Just insert the scalar into element 0 of an undefined vector. 4148 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4149 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4150 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4151 } 4152 4153 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4154 SelectionDAG &DAG) const { 4155 // Handle insertions of floating-point values. 4156 SDLoc DL(Op); 4157 SDValue Op0 = Op.getOperand(0); 4158 SDValue Op1 = Op.getOperand(1); 4159 SDValue Op2 = Op.getOperand(2); 4160 EVT VT = Op.getValueType(); 4161 4162 // Insertions into constant indices of a v2f64 can be done using VPDI. 4163 // However, if the inserted value is a bitcast or a constant then it's 4164 // better to use GPRs, as below. 4165 if (VT == MVT::v2f64 && 4166 Op1.getOpcode() != ISD::BITCAST && 4167 Op1.getOpcode() != ISD::ConstantFP && 4168 Op2.getOpcode() == ISD::Constant) { 4169 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4170 unsigned Mask = VT.getVectorNumElements() - 1; 4171 if (Index <= Mask) 4172 return Op; 4173 } 4174 4175 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4176 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4177 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4178 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4179 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4180 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4181 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4182 } 4183 4184 SDValue 4185 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4186 SelectionDAG &DAG) const { 4187 // Handle extractions of floating-point values. 4188 SDLoc DL(Op); 4189 SDValue Op0 = Op.getOperand(0); 4190 SDValue Op1 = Op.getOperand(1); 4191 EVT VT = Op.getValueType(); 4192 EVT VecVT = Op0.getValueType(); 4193 4194 // Extractions of constant indices can be done directly. 4195 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4196 uint64_t Index = CIndexN->getZExtValue(); 4197 unsigned Mask = VecVT.getVectorNumElements() - 1; 4198 if (Index <= Mask) 4199 return Op; 4200 } 4201 4202 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4203 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4204 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4205 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4206 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4207 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4208 } 4209 4210 SDValue 4211 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4212 unsigned UnpackHigh) const { 4213 SDValue PackedOp = Op.getOperand(0); 4214 EVT OutVT = Op.getValueType(); 4215 EVT InVT = PackedOp.getValueType(); 4216 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4217 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4218 do { 4219 FromBits *= 2; 4220 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4221 SystemZ::VectorBits / FromBits); 4222 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4223 } while (FromBits != ToBits); 4224 return PackedOp; 4225 } 4226 4227 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4228 unsigned ByScalar) const { 4229 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4230 SDValue Op0 = Op.getOperand(0); 4231 SDValue Op1 = Op.getOperand(1); 4232 SDLoc DL(Op); 4233 EVT VT = Op.getValueType(); 4234 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4235 4236 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4237 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4238 APInt SplatBits, SplatUndef; 4239 unsigned SplatBitSize; 4240 bool HasAnyUndefs; 4241 // Check for constant splats. Use ElemBitSize as the minimum element 4242 // width and reject splats that need wider elements. 4243 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4244 ElemBitSize, true) && 4245 SplatBitSize == ElemBitSize) { 4246 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4247 DL, MVT::i32); 4248 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4249 } 4250 // Check for variable splats. 4251 BitVector UndefElements; 4252 SDValue Splat = BVN->getSplatValue(&UndefElements); 4253 if (Splat) { 4254 // Since i32 is the smallest legal type, we either need a no-op 4255 // or a truncation. 4256 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4257 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4258 } 4259 } 4260 4261 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4262 // and the shift amount is directly available in a GPR. 4263 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4264 if (VSN->isSplat()) { 4265 SDValue VSNOp0 = VSN->getOperand(0); 4266 unsigned Index = VSN->getSplatIndex(); 4267 assert(Index < VT.getVectorNumElements() && 4268 "Splat index should be defined and in first operand"); 4269 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4270 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4271 // Since i32 is the smallest legal type, we either need a no-op 4272 // or a truncation. 4273 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4274 VSNOp0.getOperand(Index)); 4275 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4276 } 4277 } 4278 } 4279 4280 // Otherwise just treat the current form as legal. 4281 return Op; 4282 } 4283 4284 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4285 SelectionDAG &DAG) const { 4286 switch (Op.getOpcode()) { 4287 case ISD::BR_CC: 4288 return lowerBR_CC(Op, DAG); 4289 case ISD::SELECT_CC: 4290 return lowerSELECT_CC(Op, DAG); 4291 case ISD::SETCC: 4292 return lowerSETCC(Op, DAG); 4293 case ISD::GlobalAddress: 4294 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4295 case ISD::GlobalTLSAddress: 4296 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4297 case ISD::BlockAddress: 4298 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4299 case ISD::JumpTable: 4300 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4301 case ISD::ConstantPool: 4302 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4303 case ISD::BITCAST: 4304 return lowerBITCAST(Op, DAG); 4305 case ISD::VASTART: 4306 return lowerVASTART(Op, DAG); 4307 case ISD::VACOPY: 4308 return lowerVACOPY(Op, DAG); 4309 case ISD::DYNAMIC_STACKALLOC: 4310 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4311 case ISD::SMUL_LOHI: 4312 return lowerSMUL_LOHI(Op, DAG); 4313 case ISD::UMUL_LOHI: 4314 return lowerUMUL_LOHI(Op, DAG); 4315 case ISD::SDIVREM: 4316 return lowerSDIVREM(Op, DAG); 4317 case ISD::UDIVREM: 4318 return lowerUDIVREM(Op, DAG); 4319 case ISD::OR: 4320 return lowerOR(Op, DAG); 4321 case ISD::CTPOP: 4322 return lowerCTPOP(Op, DAG); 4323 case ISD::CTLZ_ZERO_UNDEF: 4324 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4325 Op.getValueType(), Op.getOperand(0)); 4326 case ISD::CTTZ_ZERO_UNDEF: 4327 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4328 Op.getValueType(), Op.getOperand(0)); 4329 case ISD::ATOMIC_SWAP: 4330 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4331 case ISD::ATOMIC_STORE: 4332 return lowerATOMIC_STORE(Op, DAG); 4333 case ISD::ATOMIC_LOAD: 4334 return lowerATOMIC_LOAD(Op, DAG); 4335 case ISD::ATOMIC_LOAD_ADD: 4336 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4337 case ISD::ATOMIC_LOAD_SUB: 4338 return lowerATOMIC_LOAD_SUB(Op, DAG); 4339 case ISD::ATOMIC_LOAD_AND: 4340 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4341 case ISD::ATOMIC_LOAD_OR: 4342 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4343 case ISD::ATOMIC_LOAD_XOR: 4344 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4345 case ISD::ATOMIC_LOAD_NAND: 4346 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4347 case ISD::ATOMIC_LOAD_MIN: 4348 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4349 case ISD::ATOMIC_LOAD_MAX: 4350 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4351 case ISD::ATOMIC_LOAD_UMIN: 4352 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4353 case ISD::ATOMIC_LOAD_UMAX: 4354 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4355 case ISD::ATOMIC_CMP_SWAP: 4356 return lowerATOMIC_CMP_SWAP(Op, DAG); 4357 case ISD::STACKSAVE: 4358 return lowerSTACKSAVE(Op, DAG); 4359 case ISD::STACKRESTORE: 4360 return lowerSTACKRESTORE(Op, DAG); 4361 case ISD::PREFETCH: 4362 return lowerPREFETCH(Op, DAG); 4363 case ISD::INTRINSIC_W_CHAIN: 4364 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4365 case ISD::INTRINSIC_WO_CHAIN: 4366 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4367 case ISD::BUILD_VECTOR: 4368 return lowerBUILD_VECTOR(Op, DAG); 4369 case ISD::VECTOR_SHUFFLE: 4370 return lowerVECTOR_SHUFFLE(Op, DAG); 4371 case ISD::SCALAR_TO_VECTOR: 4372 return lowerSCALAR_TO_VECTOR(Op, DAG); 4373 case ISD::INSERT_VECTOR_ELT: 4374 return lowerINSERT_VECTOR_ELT(Op, DAG); 4375 case ISD::EXTRACT_VECTOR_ELT: 4376 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4377 case ISD::SIGN_EXTEND_VECTOR_INREG: 4378 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4379 case ISD::ZERO_EXTEND_VECTOR_INREG: 4380 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4381 case ISD::SHL: 4382 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4383 case ISD::SRL: 4384 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4385 case ISD::SRA: 4386 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4387 default: 4388 llvm_unreachable("Unexpected node to lower"); 4389 } 4390 } 4391 4392 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4393 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4394 switch ((SystemZISD::NodeType)Opcode) { 4395 case SystemZISD::FIRST_NUMBER: break; 4396 OPCODE(RET_FLAG); 4397 OPCODE(CALL); 4398 OPCODE(SIBCALL); 4399 OPCODE(TLS_GDCALL); 4400 OPCODE(TLS_LDCALL); 4401 OPCODE(PCREL_WRAPPER); 4402 OPCODE(PCREL_OFFSET); 4403 OPCODE(IABS); 4404 OPCODE(ICMP); 4405 OPCODE(FCMP); 4406 OPCODE(TM); 4407 OPCODE(BR_CCMASK); 4408 OPCODE(SELECT_CCMASK); 4409 OPCODE(ADJDYNALLOC); 4410 OPCODE(EXTRACT_ACCESS); 4411 OPCODE(POPCNT); 4412 OPCODE(UMUL_LOHI64); 4413 OPCODE(SDIVREM32); 4414 OPCODE(SDIVREM64); 4415 OPCODE(UDIVREM32); 4416 OPCODE(UDIVREM64); 4417 OPCODE(MVC); 4418 OPCODE(MVC_LOOP); 4419 OPCODE(NC); 4420 OPCODE(NC_LOOP); 4421 OPCODE(OC); 4422 OPCODE(OC_LOOP); 4423 OPCODE(XC); 4424 OPCODE(XC_LOOP); 4425 OPCODE(CLC); 4426 OPCODE(CLC_LOOP); 4427 OPCODE(STPCPY); 4428 OPCODE(STRCMP); 4429 OPCODE(SEARCH_STRING); 4430 OPCODE(IPM); 4431 OPCODE(SERIALIZE); 4432 OPCODE(TBEGIN); 4433 OPCODE(TBEGIN_NOFLOAT); 4434 OPCODE(TEND); 4435 OPCODE(BYTE_MASK); 4436 OPCODE(ROTATE_MASK); 4437 OPCODE(REPLICATE); 4438 OPCODE(JOIN_DWORDS); 4439 OPCODE(SPLAT); 4440 OPCODE(MERGE_HIGH); 4441 OPCODE(MERGE_LOW); 4442 OPCODE(SHL_DOUBLE); 4443 OPCODE(PERMUTE_DWORDS); 4444 OPCODE(PERMUTE); 4445 OPCODE(PACK); 4446 OPCODE(PACKS_CC); 4447 OPCODE(PACKLS_CC); 4448 OPCODE(UNPACK_HIGH); 4449 OPCODE(UNPACKL_HIGH); 4450 OPCODE(UNPACK_LOW); 4451 OPCODE(UNPACKL_LOW); 4452 OPCODE(VSHL_BY_SCALAR); 4453 OPCODE(VSRL_BY_SCALAR); 4454 OPCODE(VSRA_BY_SCALAR); 4455 OPCODE(VSUM); 4456 OPCODE(VICMPE); 4457 OPCODE(VICMPH); 4458 OPCODE(VICMPHL); 4459 OPCODE(VICMPES); 4460 OPCODE(VICMPHS); 4461 OPCODE(VICMPHLS); 4462 OPCODE(VFCMPE); 4463 OPCODE(VFCMPH); 4464 OPCODE(VFCMPHE); 4465 OPCODE(VFCMPES); 4466 OPCODE(VFCMPHS); 4467 OPCODE(VFCMPHES); 4468 OPCODE(VFTCI); 4469 OPCODE(VEXTEND); 4470 OPCODE(VROUND); 4471 OPCODE(VTM); 4472 OPCODE(VFAE_CC); 4473 OPCODE(VFAEZ_CC); 4474 OPCODE(VFEE_CC); 4475 OPCODE(VFEEZ_CC); 4476 OPCODE(VFENE_CC); 4477 OPCODE(VFENEZ_CC); 4478 OPCODE(VISTR_CC); 4479 OPCODE(VSTRC_CC); 4480 OPCODE(VSTRCZ_CC); 4481 OPCODE(ATOMIC_SWAPW); 4482 OPCODE(ATOMIC_LOADW_ADD); 4483 OPCODE(ATOMIC_LOADW_SUB); 4484 OPCODE(ATOMIC_LOADW_AND); 4485 OPCODE(ATOMIC_LOADW_OR); 4486 OPCODE(ATOMIC_LOADW_XOR); 4487 OPCODE(ATOMIC_LOADW_NAND); 4488 OPCODE(ATOMIC_LOADW_MIN); 4489 OPCODE(ATOMIC_LOADW_MAX); 4490 OPCODE(ATOMIC_LOADW_UMIN); 4491 OPCODE(ATOMIC_LOADW_UMAX); 4492 OPCODE(ATOMIC_CMP_SWAPW); 4493 OPCODE(PREFETCH); 4494 } 4495 return nullptr; 4496 #undef OPCODE 4497 } 4498 4499 // Return true if VT is a vector whose elements are a whole number of bytes 4500 // in width. 4501 static bool canTreatAsByteVector(EVT VT) { 4502 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4503 } 4504 4505 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4506 // producing a result of type ResVT. Op is a possibly bitcast version 4507 // of the input vector and Index is the index (based on type VecVT) that 4508 // should be extracted. Return the new extraction if a simplification 4509 // was possible or if Force is true. 4510 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4511 SDValue Op, unsigned Index, 4512 DAGCombinerInfo &DCI, 4513 bool Force) const { 4514 SelectionDAG &DAG = DCI.DAG; 4515 4516 // The number of bytes being extracted. 4517 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4518 4519 for (;;) { 4520 unsigned Opcode = Op.getOpcode(); 4521 if (Opcode == ISD::BITCAST) 4522 // Look through bitcasts. 4523 Op = Op.getOperand(0); 4524 else if (Opcode == ISD::VECTOR_SHUFFLE && 4525 canTreatAsByteVector(Op.getValueType())) { 4526 // Get a VPERM-like permute mask and see whether the bytes covered 4527 // by the extracted element are a contiguous sequence from one 4528 // source operand. 4529 SmallVector<int, SystemZ::VectorBytes> Bytes; 4530 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4531 int First; 4532 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4533 BytesPerElement, First)) 4534 break; 4535 if (First < 0) 4536 return DAG.getUNDEF(ResVT); 4537 // Make sure the contiguous sequence starts at a multiple of the 4538 // original element size. 4539 unsigned Byte = unsigned(First) % Bytes.size(); 4540 if (Byte % BytesPerElement != 0) 4541 break; 4542 // We can get the extracted value directly from an input. 4543 Index = Byte / BytesPerElement; 4544 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4545 Force = true; 4546 } else if (Opcode == ISD::BUILD_VECTOR && 4547 canTreatAsByteVector(Op.getValueType())) { 4548 // We can only optimize this case if the BUILD_VECTOR elements are 4549 // at least as wide as the extracted value. 4550 EVT OpVT = Op.getValueType(); 4551 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4552 if (OpBytesPerElement < BytesPerElement) 4553 break; 4554 // Make sure that the least-significant bit of the extracted value 4555 // is the least significant bit of an input. 4556 unsigned End = (Index + 1) * BytesPerElement; 4557 if (End % OpBytesPerElement != 0) 4558 break; 4559 // We're extracting the low part of one operand of the BUILD_VECTOR. 4560 Op = Op.getOperand(End / OpBytesPerElement - 1); 4561 if (!Op.getValueType().isInteger()) { 4562 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4563 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4564 DCI.AddToWorklist(Op.getNode()); 4565 } 4566 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4567 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4568 if (VT != ResVT) { 4569 DCI.AddToWorklist(Op.getNode()); 4570 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4571 } 4572 return Op; 4573 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4574 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4575 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4576 canTreatAsByteVector(Op.getValueType()) && 4577 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4578 // Make sure that only the unextended bits are significant. 4579 EVT ExtVT = Op.getValueType(); 4580 EVT OpVT = Op.getOperand(0).getValueType(); 4581 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4582 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4583 unsigned Byte = Index * BytesPerElement; 4584 unsigned SubByte = Byte % ExtBytesPerElement; 4585 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4586 if (SubByte < MinSubByte || 4587 SubByte + BytesPerElement > ExtBytesPerElement) 4588 break; 4589 // Get the byte offset of the unextended element 4590 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4591 // ...then add the byte offset relative to that element. 4592 Byte += SubByte - MinSubByte; 4593 if (Byte % BytesPerElement != 0) 4594 break; 4595 Op = Op.getOperand(0); 4596 Index = Byte / BytesPerElement; 4597 Force = true; 4598 } else 4599 break; 4600 } 4601 if (Force) { 4602 if (Op.getValueType() != VecVT) { 4603 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4604 DCI.AddToWorklist(Op.getNode()); 4605 } 4606 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4607 DAG.getConstant(Index, DL, MVT::i32)); 4608 } 4609 return SDValue(); 4610 } 4611 4612 // Optimize vector operations in scalar value Op on the basis that Op 4613 // is truncated to TruncVT. 4614 SDValue 4615 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4616 DAGCombinerInfo &DCI) const { 4617 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4618 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4619 // of type TruncVT. 4620 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4621 TruncVT.getSizeInBits() % 8 == 0) { 4622 SDValue Vec = Op.getOperand(0); 4623 EVT VecVT = Vec.getValueType(); 4624 if (canTreatAsByteVector(VecVT)) { 4625 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4626 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4627 unsigned TruncBytes = TruncVT.getStoreSize(); 4628 if (BytesPerElement % TruncBytes == 0) { 4629 // Calculate the value of Y' in the above description. We are 4630 // splitting the original elements into Scale equal-sized pieces 4631 // and for truncation purposes want the last (least-significant) 4632 // of these pieces for IndexN. This is easiest to do by calculating 4633 // the start index of the following element and then subtracting 1. 4634 unsigned Scale = BytesPerElement / TruncBytes; 4635 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4636 4637 // Defer the creation of the bitcast from X to combineExtract, 4638 // which might be able to optimize the extraction. 4639 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4640 VecVT.getStoreSize() / TruncBytes); 4641 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4642 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4643 } 4644 } 4645 } 4646 } 4647 return SDValue(); 4648 } 4649 4650 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4651 DAGCombinerInfo &DCI) const { 4652 SelectionDAG &DAG = DCI.DAG; 4653 unsigned Opcode = N->getOpcode(); 4654 if (Opcode == ISD::SIGN_EXTEND) { 4655 // Convert (sext (ashr (shl X, C1), C2)) to 4656 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4657 // cheap as narrower ones. 4658 SDValue N0 = N->getOperand(0); 4659 EVT VT = N->getValueType(0); 4660 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4661 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4662 SDValue Inner = N0.getOperand(0); 4663 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4664 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4665 unsigned Extra = (VT.getSizeInBits() - 4666 N0.getValueType().getSizeInBits()); 4667 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4668 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4669 EVT ShiftVT = N0.getOperand(1).getValueType(); 4670 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4671 Inner.getOperand(0)); 4672 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4673 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4674 ShiftVT)); 4675 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4676 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4677 } 4678 } 4679 } 4680 } 4681 if (Opcode == SystemZISD::MERGE_HIGH || 4682 Opcode == SystemZISD::MERGE_LOW) { 4683 SDValue Op0 = N->getOperand(0); 4684 SDValue Op1 = N->getOperand(1); 4685 if (Op0.getOpcode() == ISD::BITCAST) 4686 Op0 = Op0.getOperand(0); 4687 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4688 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4689 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4690 // for v4f32. 4691 if (Op1 == N->getOperand(0)) 4692 return Op1; 4693 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4694 EVT VT = Op1.getValueType(); 4695 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4696 if (ElemBytes <= 4) { 4697 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4698 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4699 EVT InVT = VT.changeVectorElementTypeToInteger(); 4700 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4701 SystemZ::VectorBytes / ElemBytes / 2); 4702 if (VT != InVT) { 4703 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4704 DCI.AddToWorklist(Op1.getNode()); 4705 } 4706 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4707 DCI.AddToWorklist(Op.getNode()); 4708 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4709 } 4710 } 4711 } 4712 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4713 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4714 // If X has wider elements then convert it to: 4715 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4716 if (Opcode == ISD::STORE) { 4717 auto *SN = cast<StoreSDNode>(N); 4718 EVT MemVT = SN->getMemoryVT(); 4719 if (MemVT.isInteger()) { 4720 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, 4721 SN->getValue(), DCI); 4722 if (Value.getNode()) { 4723 DCI.AddToWorklist(Value.getNode()); 4724 4725 // Rewrite the store with the new form of stored value. 4726 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4727 SN->getBasePtr(), SN->getMemoryVT(), 4728 SN->getMemOperand()); 4729 } 4730 } 4731 } 4732 // Try to simplify a vector extraction. 4733 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4734 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4735 SDValue Op0 = N->getOperand(0); 4736 EVT VecVT = Op0.getValueType(); 4737 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4738 IndexN->getZExtValue(), DCI, false); 4739 } 4740 } 4741 // (join_dwords X, X) == (replicate X) 4742 if (Opcode == SystemZISD::JOIN_DWORDS && 4743 N->getOperand(0) == N->getOperand(1)) 4744 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4745 N->getOperand(0)); 4746 // (fround (extract_vector_elt X 0)) 4747 // (fround (extract_vector_elt X 1)) -> 4748 // (extract_vector_elt (VROUND X) 0) 4749 // (extract_vector_elt (VROUND X) 1) 4750 // 4751 // This is a special case since the target doesn't really support v2f32s. 4752 if (Opcode == ISD::FP_ROUND) { 4753 SDValue Op0 = N->getOperand(0); 4754 if (N->getValueType(0) == MVT::f32 && 4755 Op0.hasOneUse() && 4756 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4757 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4758 Op0.getOperand(1).getOpcode() == ISD::Constant && 4759 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4760 SDValue Vec = Op0.getOperand(0); 4761 for (auto *U : Vec->uses()) { 4762 if (U != Op0.getNode() && 4763 U->hasOneUse() && 4764 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4765 U->getOperand(0) == Vec && 4766 U->getOperand(1).getOpcode() == ISD::Constant && 4767 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4768 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4769 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4770 OtherRound.getOperand(0) == SDValue(U, 0) && 4771 OtherRound.getValueType() == MVT::f32) { 4772 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4773 MVT::v4f32, Vec); 4774 DCI.AddToWorklist(VRound.getNode()); 4775 SDValue Extract1 = 4776 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4777 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4778 DCI.AddToWorklist(Extract1.getNode()); 4779 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4780 SDValue Extract0 = 4781 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4782 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4783 return Extract0; 4784 } 4785 } 4786 } 4787 } 4788 } 4789 return SDValue(); 4790 } 4791 4792 //===----------------------------------------------------------------------===// 4793 // Custom insertion 4794 //===----------------------------------------------------------------------===// 4795 4796 // Create a new basic block after MBB. 4797 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4798 MachineFunction &MF = *MBB->getParent(); 4799 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4800 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4801 return NewMBB; 4802 } 4803 4804 // Split MBB after MI and return the new block (the one that contains 4805 // instructions after MI). 4806 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4807 MachineBasicBlock *MBB) { 4808 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4809 NewMBB->splice(NewMBB->begin(), MBB, 4810 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4811 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4812 return NewMBB; 4813 } 4814 4815 // Split MBB before MI and return the new block (the one that contains MI). 4816 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4817 MachineBasicBlock *MBB) { 4818 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4819 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4820 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4821 return NewMBB; 4822 } 4823 4824 // Force base value Base into a register before MI. Return the register. 4825 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4826 const SystemZInstrInfo *TII) { 4827 if (Base.isReg()) 4828 return Base.getReg(); 4829 4830 MachineBasicBlock *MBB = MI->getParent(); 4831 MachineFunction &MF = *MBB->getParent(); 4832 MachineRegisterInfo &MRI = MF.getRegInfo(); 4833 4834 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4835 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4836 .addOperand(Base).addImm(0).addReg(0); 4837 return Reg; 4838 } 4839 4840 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4841 MachineBasicBlock * 4842 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4843 MachineBasicBlock *MBB) const { 4844 const SystemZInstrInfo *TII = 4845 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4846 4847 unsigned DestReg = MI->getOperand(0).getReg(); 4848 unsigned TrueReg = MI->getOperand(1).getReg(); 4849 unsigned FalseReg = MI->getOperand(2).getReg(); 4850 unsigned CCValid = MI->getOperand(3).getImm(); 4851 unsigned CCMask = MI->getOperand(4).getImm(); 4852 DebugLoc DL = MI->getDebugLoc(); 4853 4854 MachineBasicBlock *StartMBB = MBB; 4855 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4856 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4857 4858 // StartMBB: 4859 // BRC CCMask, JoinMBB 4860 // # fallthrough to FalseMBB 4861 MBB = StartMBB; 4862 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4863 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4864 MBB->addSuccessor(JoinMBB); 4865 MBB->addSuccessor(FalseMBB); 4866 4867 // FalseMBB: 4868 // # fallthrough to JoinMBB 4869 MBB = FalseMBB; 4870 MBB->addSuccessor(JoinMBB); 4871 4872 // JoinMBB: 4873 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4874 // ... 4875 MBB = JoinMBB; 4876 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4877 .addReg(TrueReg).addMBB(StartMBB) 4878 .addReg(FalseReg).addMBB(FalseMBB); 4879 4880 MI->eraseFromParent(); 4881 return JoinMBB; 4882 } 4883 4884 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4885 // StoreOpcode is the store to use and Invert says whether the store should 4886 // happen when the condition is false rather than true. If a STORE ON 4887 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4888 MachineBasicBlock * 4889 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4890 MachineBasicBlock *MBB, 4891 unsigned StoreOpcode, unsigned STOCOpcode, 4892 bool Invert) const { 4893 const SystemZInstrInfo *TII = 4894 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4895 4896 unsigned SrcReg = MI->getOperand(0).getReg(); 4897 MachineOperand Base = MI->getOperand(1); 4898 int64_t Disp = MI->getOperand(2).getImm(); 4899 unsigned IndexReg = MI->getOperand(3).getReg(); 4900 unsigned CCValid = MI->getOperand(4).getImm(); 4901 unsigned CCMask = MI->getOperand(5).getImm(); 4902 DebugLoc DL = MI->getDebugLoc(); 4903 4904 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4905 4906 // Use STOCOpcode if possible. We could use different store patterns in 4907 // order to avoid matching the index register, but the performance trade-offs 4908 // might be more complicated in that case. 4909 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4910 if (Invert) 4911 CCMask ^= CCValid; 4912 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4913 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4914 .addImm(CCValid).addImm(CCMask); 4915 MI->eraseFromParent(); 4916 return MBB; 4917 } 4918 4919 // Get the condition needed to branch around the store. 4920 if (!Invert) 4921 CCMask ^= CCValid; 4922 4923 MachineBasicBlock *StartMBB = MBB; 4924 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4925 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4926 4927 // StartMBB: 4928 // BRC CCMask, JoinMBB 4929 // # fallthrough to FalseMBB 4930 MBB = StartMBB; 4931 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4932 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4933 MBB->addSuccessor(JoinMBB); 4934 MBB->addSuccessor(FalseMBB); 4935 4936 // FalseMBB: 4937 // store %SrcReg, %Disp(%Index,%Base) 4938 // # fallthrough to JoinMBB 4939 MBB = FalseMBB; 4940 BuildMI(MBB, DL, TII->get(StoreOpcode)) 4941 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 4942 MBB->addSuccessor(JoinMBB); 4943 4944 MI->eraseFromParent(); 4945 return JoinMBB; 4946 } 4947 4948 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 4949 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 4950 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 4951 // BitSize is the width of the field in bits, or 0 if this is a partword 4952 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 4953 // is one of the operands. Invert says whether the field should be 4954 // inverted after performing BinOpcode (e.g. for NAND). 4955 MachineBasicBlock * 4956 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 4957 MachineBasicBlock *MBB, 4958 unsigned BinOpcode, 4959 unsigned BitSize, 4960 bool Invert) const { 4961 MachineFunction &MF = *MBB->getParent(); 4962 const SystemZInstrInfo *TII = 4963 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4964 MachineRegisterInfo &MRI = MF.getRegInfo(); 4965 bool IsSubWord = (BitSize < 32); 4966 4967 // Extract the operands. Base can be a register or a frame index. 4968 // Src2 can be a register or immediate. 4969 unsigned Dest = MI->getOperand(0).getReg(); 4970 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 4971 int64_t Disp = MI->getOperand(2).getImm(); 4972 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 4973 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 4974 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 4975 DebugLoc DL = MI->getDebugLoc(); 4976 if (IsSubWord) 4977 BitSize = MI->getOperand(6).getImm(); 4978 4979 // Subword operations use 32-bit registers. 4980 const TargetRegisterClass *RC = (BitSize <= 32 ? 4981 &SystemZ::GR32BitRegClass : 4982 &SystemZ::GR64BitRegClass); 4983 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 4984 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 4985 4986 // Get the right opcodes for the displacement. 4987 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 4988 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 4989 assert(LOpcode && CSOpcode && "Displacement out of range"); 4990 4991 // Create virtual registers for temporary results. 4992 unsigned OrigVal = MRI.createVirtualRegister(RC); 4993 unsigned OldVal = MRI.createVirtualRegister(RC); 4994 unsigned NewVal = (BinOpcode || IsSubWord ? 4995 MRI.createVirtualRegister(RC) : Src2.getReg()); 4996 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 4997 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 4998 4999 // Insert a basic block for the main loop. 5000 MachineBasicBlock *StartMBB = MBB; 5001 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5002 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5003 5004 // StartMBB: 5005 // ... 5006 // %OrigVal = L Disp(%Base) 5007 // # fall through to LoopMMB 5008 MBB = StartMBB; 5009 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5010 .addOperand(Base).addImm(Disp).addReg(0); 5011 MBB->addSuccessor(LoopMBB); 5012 5013 // LoopMBB: 5014 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5015 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5016 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5017 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5018 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5019 // JNE LoopMBB 5020 // # fall through to DoneMMB 5021 MBB = LoopMBB; 5022 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5023 .addReg(OrigVal).addMBB(StartMBB) 5024 .addReg(Dest).addMBB(LoopMBB); 5025 if (IsSubWord) 5026 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5027 .addReg(OldVal).addReg(BitShift).addImm(0); 5028 if (Invert) { 5029 // Perform the operation normally and then invert every bit of the field. 5030 unsigned Tmp = MRI.createVirtualRegister(RC); 5031 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5032 .addReg(RotatedOldVal).addOperand(Src2); 5033 if (BitSize <= 32) 5034 // XILF with the upper BitSize bits set. 5035 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5036 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5037 else { 5038 // Use LCGR and add -1 to the result, which is more compact than 5039 // an XILF, XILH pair. 5040 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5041 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5042 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5043 .addReg(Tmp2).addImm(-1); 5044 } 5045 } else if (BinOpcode) 5046 // A simply binary operation. 5047 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5048 .addReg(RotatedOldVal).addOperand(Src2); 5049 else if (IsSubWord) 5050 // Use RISBG to rotate Src2 into position and use it to replace the 5051 // field in RotatedOldVal. 5052 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5053 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5054 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5055 if (IsSubWord) 5056 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5057 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5058 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5059 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5060 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5061 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5062 MBB->addSuccessor(LoopMBB); 5063 MBB->addSuccessor(DoneMBB); 5064 5065 MI->eraseFromParent(); 5066 return DoneMBB; 5067 } 5068 5069 // Implement EmitInstrWithCustomInserter for pseudo 5070 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5071 // instruction that should be used to compare the current field with the 5072 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5073 // for when the current field should be kept. BitSize is the width of 5074 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5075 MachineBasicBlock * 5076 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5077 MachineBasicBlock *MBB, 5078 unsigned CompareOpcode, 5079 unsigned KeepOldMask, 5080 unsigned BitSize) const { 5081 MachineFunction &MF = *MBB->getParent(); 5082 const SystemZInstrInfo *TII = 5083 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5084 MachineRegisterInfo &MRI = MF.getRegInfo(); 5085 bool IsSubWord = (BitSize < 32); 5086 5087 // Extract the operands. Base can be a register or a frame index. 5088 unsigned Dest = MI->getOperand(0).getReg(); 5089 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5090 int64_t Disp = MI->getOperand(2).getImm(); 5091 unsigned Src2 = MI->getOperand(3).getReg(); 5092 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5093 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5094 DebugLoc DL = MI->getDebugLoc(); 5095 if (IsSubWord) 5096 BitSize = MI->getOperand(6).getImm(); 5097 5098 // Subword operations use 32-bit registers. 5099 const TargetRegisterClass *RC = (BitSize <= 32 ? 5100 &SystemZ::GR32BitRegClass : 5101 &SystemZ::GR64BitRegClass); 5102 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5103 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5104 5105 // Get the right opcodes for the displacement. 5106 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5107 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5108 assert(LOpcode && CSOpcode && "Displacement out of range"); 5109 5110 // Create virtual registers for temporary results. 5111 unsigned OrigVal = MRI.createVirtualRegister(RC); 5112 unsigned OldVal = MRI.createVirtualRegister(RC); 5113 unsigned NewVal = MRI.createVirtualRegister(RC); 5114 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5115 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5116 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5117 5118 // Insert 3 basic blocks for the loop. 5119 MachineBasicBlock *StartMBB = MBB; 5120 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5121 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5122 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5123 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5124 5125 // StartMBB: 5126 // ... 5127 // %OrigVal = L Disp(%Base) 5128 // # fall through to LoopMMB 5129 MBB = StartMBB; 5130 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5131 .addOperand(Base).addImm(Disp).addReg(0); 5132 MBB->addSuccessor(LoopMBB); 5133 5134 // LoopMBB: 5135 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5136 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5137 // CompareOpcode %RotatedOldVal, %Src2 5138 // BRC KeepOldMask, UpdateMBB 5139 MBB = LoopMBB; 5140 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5141 .addReg(OrigVal).addMBB(StartMBB) 5142 .addReg(Dest).addMBB(UpdateMBB); 5143 if (IsSubWord) 5144 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5145 .addReg(OldVal).addReg(BitShift).addImm(0); 5146 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5147 .addReg(RotatedOldVal).addReg(Src2); 5148 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5149 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5150 MBB->addSuccessor(UpdateMBB); 5151 MBB->addSuccessor(UseAltMBB); 5152 5153 // UseAltMBB: 5154 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5155 // # fall through to UpdateMMB 5156 MBB = UseAltMBB; 5157 if (IsSubWord) 5158 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5159 .addReg(RotatedOldVal).addReg(Src2) 5160 .addImm(32).addImm(31 + BitSize).addImm(0); 5161 MBB->addSuccessor(UpdateMBB); 5162 5163 // UpdateMBB: 5164 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5165 // [ %RotatedAltVal, UseAltMBB ] 5166 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5167 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5168 // JNE LoopMBB 5169 // # fall through to DoneMMB 5170 MBB = UpdateMBB; 5171 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5172 .addReg(RotatedOldVal).addMBB(LoopMBB) 5173 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5174 if (IsSubWord) 5175 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5176 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5177 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5178 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5179 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5180 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5181 MBB->addSuccessor(LoopMBB); 5182 MBB->addSuccessor(DoneMBB); 5183 5184 MI->eraseFromParent(); 5185 return DoneMBB; 5186 } 5187 5188 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5189 // instruction MI. 5190 MachineBasicBlock * 5191 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5192 MachineBasicBlock *MBB) const { 5193 MachineFunction &MF = *MBB->getParent(); 5194 const SystemZInstrInfo *TII = 5195 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5196 MachineRegisterInfo &MRI = MF.getRegInfo(); 5197 5198 // Extract the operands. Base can be a register or a frame index. 5199 unsigned Dest = MI->getOperand(0).getReg(); 5200 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5201 int64_t Disp = MI->getOperand(2).getImm(); 5202 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5203 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5204 unsigned BitShift = MI->getOperand(5).getReg(); 5205 unsigned NegBitShift = MI->getOperand(6).getReg(); 5206 int64_t BitSize = MI->getOperand(7).getImm(); 5207 DebugLoc DL = MI->getDebugLoc(); 5208 5209 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5210 5211 // Get the right opcodes for the displacement. 5212 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5213 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5214 assert(LOpcode && CSOpcode && "Displacement out of range"); 5215 5216 // Create virtual registers for temporary results. 5217 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5218 unsigned OldVal = MRI.createVirtualRegister(RC); 5219 unsigned CmpVal = MRI.createVirtualRegister(RC); 5220 unsigned SwapVal = MRI.createVirtualRegister(RC); 5221 unsigned StoreVal = MRI.createVirtualRegister(RC); 5222 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5223 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5224 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5225 5226 // Insert 2 basic blocks for the loop. 5227 MachineBasicBlock *StartMBB = MBB; 5228 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5229 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5230 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5231 5232 // StartMBB: 5233 // ... 5234 // %OrigOldVal = L Disp(%Base) 5235 // # fall through to LoopMMB 5236 MBB = StartMBB; 5237 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5238 .addOperand(Base).addImm(Disp).addReg(0); 5239 MBB->addSuccessor(LoopMBB); 5240 5241 // LoopMBB: 5242 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5243 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5244 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5245 // %Dest = RLL %OldVal, BitSize(%BitShift) 5246 // ^^ The low BitSize bits contain the field 5247 // of interest. 5248 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5249 // ^^ Replace the upper 32-BitSize bits of the 5250 // comparison value with those that we loaded, 5251 // so that we can use a full word comparison. 5252 // CR %Dest, %RetryCmpVal 5253 // JNE DoneMBB 5254 // # Fall through to SetMBB 5255 MBB = LoopMBB; 5256 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5257 .addReg(OrigOldVal).addMBB(StartMBB) 5258 .addReg(RetryOldVal).addMBB(SetMBB); 5259 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5260 .addReg(OrigCmpVal).addMBB(StartMBB) 5261 .addReg(RetryCmpVal).addMBB(SetMBB); 5262 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5263 .addReg(OrigSwapVal).addMBB(StartMBB) 5264 .addReg(RetrySwapVal).addMBB(SetMBB); 5265 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5266 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5267 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5268 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5269 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5270 .addReg(Dest).addReg(RetryCmpVal); 5271 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5272 .addImm(SystemZ::CCMASK_ICMP) 5273 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5274 MBB->addSuccessor(DoneMBB); 5275 MBB->addSuccessor(SetMBB); 5276 5277 // SetMBB: 5278 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5279 // ^^ Replace the upper 32-BitSize bits of the new 5280 // value with those that we loaded. 5281 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5282 // ^^ Rotate the new field to its proper position. 5283 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5284 // JNE LoopMBB 5285 // # fall through to ExitMMB 5286 MBB = SetMBB; 5287 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5288 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5289 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5290 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5291 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5292 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5293 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5294 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5295 MBB->addSuccessor(LoopMBB); 5296 MBB->addSuccessor(DoneMBB); 5297 5298 MI->eraseFromParent(); 5299 return DoneMBB; 5300 } 5301 5302 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5303 // if the high register of the GR128 value must be cleared or false if 5304 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5305 // and subreg_l64 when extending a GR64. 5306 MachineBasicBlock * 5307 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5308 MachineBasicBlock *MBB, 5309 bool ClearEven, unsigned SubReg) const { 5310 MachineFunction &MF = *MBB->getParent(); 5311 const SystemZInstrInfo *TII = 5312 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5313 MachineRegisterInfo &MRI = MF.getRegInfo(); 5314 DebugLoc DL = MI->getDebugLoc(); 5315 5316 unsigned Dest = MI->getOperand(0).getReg(); 5317 unsigned Src = MI->getOperand(1).getReg(); 5318 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5319 5320 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5321 if (ClearEven) { 5322 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5323 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5324 5325 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5326 .addImm(0); 5327 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5328 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5329 In128 = NewIn128; 5330 } 5331 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5332 .addReg(In128).addReg(Src).addImm(SubReg); 5333 5334 MI->eraseFromParent(); 5335 return MBB; 5336 } 5337 5338 MachineBasicBlock * 5339 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5340 MachineBasicBlock *MBB, 5341 unsigned Opcode) const { 5342 MachineFunction &MF = *MBB->getParent(); 5343 const SystemZInstrInfo *TII = 5344 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5345 MachineRegisterInfo &MRI = MF.getRegInfo(); 5346 DebugLoc DL = MI->getDebugLoc(); 5347 5348 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5349 uint64_t DestDisp = MI->getOperand(1).getImm(); 5350 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5351 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5352 uint64_t Length = MI->getOperand(4).getImm(); 5353 5354 // When generating more than one CLC, all but the last will need to 5355 // branch to the end when a difference is found. 5356 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5357 splitBlockAfter(MI, MBB) : nullptr); 5358 5359 // Check for the loop form, in which operand 5 is the trip count. 5360 if (MI->getNumExplicitOperands() > 5) { 5361 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5362 5363 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5364 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5365 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5366 forceReg(MI, DestBase, TII)); 5367 5368 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5369 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5370 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5371 MRI.createVirtualRegister(RC)); 5372 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5373 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5374 MRI.createVirtualRegister(RC)); 5375 5376 RC = &SystemZ::GR64BitRegClass; 5377 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5378 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5379 5380 MachineBasicBlock *StartMBB = MBB; 5381 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5382 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5383 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5384 5385 // StartMBB: 5386 // # fall through to LoopMMB 5387 MBB->addSuccessor(LoopMBB); 5388 5389 // LoopMBB: 5390 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5391 // [ %NextDestReg, NextMBB ] 5392 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5393 // [ %NextSrcReg, NextMBB ] 5394 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5395 // [ %NextCountReg, NextMBB ] 5396 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5397 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5398 // ( JLH EndMBB ) 5399 // 5400 // The prefetch is used only for MVC. The JLH is used only for CLC. 5401 MBB = LoopMBB; 5402 5403 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5404 .addReg(StartDestReg).addMBB(StartMBB) 5405 .addReg(NextDestReg).addMBB(NextMBB); 5406 if (!HaveSingleBase) 5407 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5408 .addReg(StartSrcReg).addMBB(StartMBB) 5409 .addReg(NextSrcReg).addMBB(NextMBB); 5410 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5411 .addReg(StartCountReg).addMBB(StartMBB) 5412 .addReg(NextCountReg).addMBB(NextMBB); 5413 if (Opcode == SystemZ::MVC) 5414 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5415 .addImm(SystemZ::PFD_WRITE) 5416 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5417 BuildMI(MBB, DL, TII->get(Opcode)) 5418 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5419 .addReg(ThisSrcReg).addImm(SrcDisp); 5420 if (EndMBB) { 5421 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5422 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5423 .addMBB(EndMBB); 5424 MBB->addSuccessor(EndMBB); 5425 MBB->addSuccessor(NextMBB); 5426 } 5427 5428 // NextMBB: 5429 // %NextDestReg = LA 256(%ThisDestReg) 5430 // %NextSrcReg = LA 256(%ThisSrcReg) 5431 // %NextCountReg = AGHI %ThisCountReg, -1 5432 // CGHI %NextCountReg, 0 5433 // JLH LoopMBB 5434 // # fall through to DoneMMB 5435 // 5436 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5437 MBB = NextMBB; 5438 5439 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5440 .addReg(ThisDestReg).addImm(256).addReg(0); 5441 if (!HaveSingleBase) 5442 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5443 .addReg(ThisSrcReg).addImm(256).addReg(0); 5444 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5445 .addReg(ThisCountReg).addImm(-1); 5446 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5447 .addReg(NextCountReg).addImm(0); 5448 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5449 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5450 .addMBB(LoopMBB); 5451 MBB->addSuccessor(LoopMBB); 5452 MBB->addSuccessor(DoneMBB); 5453 5454 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5455 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5456 Length &= 255; 5457 MBB = DoneMBB; 5458 } 5459 // Handle any remaining bytes with straight-line code. 5460 while (Length > 0) { 5461 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5462 // The previous iteration might have created out-of-range displacements. 5463 // Apply them using LAY if so. 5464 if (!isUInt<12>(DestDisp)) { 5465 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5466 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5467 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5468 DestBase = MachineOperand::CreateReg(Reg, false); 5469 DestDisp = 0; 5470 } 5471 if (!isUInt<12>(SrcDisp)) { 5472 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5473 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5474 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5475 SrcBase = MachineOperand::CreateReg(Reg, false); 5476 SrcDisp = 0; 5477 } 5478 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5479 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5480 .addOperand(SrcBase).addImm(SrcDisp); 5481 DestDisp += ThisLength; 5482 SrcDisp += ThisLength; 5483 Length -= ThisLength; 5484 // If there's another CLC to go, branch to the end if a difference 5485 // was found. 5486 if (EndMBB && Length > 0) { 5487 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5488 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5489 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5490 .addMBB(EndMBB); 5491 MBB->addSuccessor(EndMBB); 5492 MBB->addSuccessor(NextMBB); 5493 MBB = NextMBB; 5494 } 5495 } 5496 if (EndMBB) { 5497 MBB->addSuccessor(EndMBB); 5498 MBB = EndMBB; 5499 MBB->addLiveIn(SystemZ::CC); 5500 } 5501 5502 MI->eraseFromParent(); 5503 return MBB; 5504 } 5505 5506 // Decompose string pseudo-instruction MI into a loop that continually performs 5507 // Opcode until CC != 3. 5508 MachineBasicBlock * 5509 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5510 MachineBasicBlock *MBB, 5511 unsigned Opcode) const { 5512 MachineFunction &MF = *MBB->getParent(); 5513 const SystemZInstrInfo *TII = 5514 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5515 MachineRegisterInfo &MRI = MF.getRegInfo(); 5516 DebugLoc DL = MI->getDebugLoc(); 5517 5518 uint64_t End1Reg = MI->getOperand(0).getReg(); 5519 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5520 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5521 uint64_t CharReg = MI->getOperand(3).getReg(); 5522 5523 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5524 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5525 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5526 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5527 5528 MachineBasicBlock *StartMBB = MBB; 5529 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5530 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5531 5532 // StartMBB: 5533 // # fall through to LoopMMB 5534 MBB->addSuccessor(LoopMBB); 5535 5536 // LoopMBB: 5537 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5538 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5539 // R0L = %CharReg 5540 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5541 // JO LoopMBB 5542 // # fall through to DoneMMB 5543 // 5544 // The load of R0L can be hoisted by post-RA LICM. 5545 MBB = LoopMBB; 5546 5547 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5548 .addReg(Start1Reg).addMBB(StartMBB) 5549 .addReg(End1Reg).addMBB(LoopMBB); 5550 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5551 .addReg(Start2Reg).addMBB(StartMBB) 5552 .addReg(End2Reg).addMBB(LoopMBB); 5553 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5554 BuildMI(MBB, DL, TII->get(Opcode)) 5555 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5556 .addReg(This1Reg).addReg(This2Reg); 5557 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5558 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5559 MBB->addSuccessor(LoopMBB); 5560 MBB->addSuccessor(DoneMBB); 5561 5562 DoneMBB->addLiveIn(SystemZ::CC); 5563 5564 MI->eraseFromParent(); 5565 return DoneMBB; 5566 } 5567 5568 // Update TBEGIN instruction with final opcode and register clobbers. 5569 MachineBasicBlock * 5570 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5571 MachineBasicBlock *MBB, 5572 unsigned Opcode, 5573 bool NoFloat) const { 5574 MachineFunction &MF = *MBB->getParent(); 5575 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5576 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5577 5578 // Update opcode. 5579 MI->setDesc(TII->get(Opcode)); 5580 5581 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5582 // Make sure to add the corresponding GRSM bits if they are missing. 5583 uint64_t Control = MI->getOperand(2).getImm(); 5584 static const unsigned GPRControlBit[16] = { 5585 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5586 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5587 }; 5588 Control |= GPRControlBit[15]; 5589 if (TFI->hasFP(MF)) 5590 Control |= GPRControlBit[11]; 5591 MI->getOperand(2).setImm(Control); 5592 5593 // Add GPR clobbers. 5594 for (int I = 0; I < 16; I++) { 5595 if ((Control & GPRControlBit[I]) == 0) { 5596 unsigned Reg = SystemZMC::GR64Regs[I]; 5597 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5598 } 5599 } 5600 5601 // Add FPR/VR clobbers. 5602 if (!NoFloat && (Control & 4) != 0) { 5603 if (Subtarget.hasVector()) { 5604 for (int I = 0; I < 32; I++) { 5605 unsigned Reg = SystemZMC::VR128Regs[I]; 5606 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5607 } 5608 } else { 5609 for (int I = 0; I < 16; I++) { 5610 unsigned Reg = SystemZMC::FP64Regs[I]; 5611 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5612 } 5613 } 5614 } 5615 5616 return MBB; 5617 } 5618 5619 MachineBasicBlock *SystemZTargetLowering:: 5620 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5621 switch (MI->getOpcode()) { 5622 case SystemZ::Select32Mux: 5623 case SystemZ::Select32: 5624 case SystemZ::SelectF32: 5625 case SystemZ::Select64: 5626 case SystemZ::SelectF64: 5627 case SystemZ::SelectF128: 5628 return emitSelect(MI, MBB); 5629 5630 case SystemZ::CondStore8Mux: 5631 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5632 case SystemZ::CondStore8MuxInv: 5633 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5634 case SystemZ::CondStore16Mux: 5635 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5636 case SystemZ::CondStore16MuxInv: 5637 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5638 case SystemZ::CondStore8: 5639 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5640 case SystemZ::CondStore8Inv: 5641 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5642 case SystemZ::CondStore16: 5643 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5644 case SystemZ::CondStore16Inv: 5645 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5646 case SystemZ::CondStore32: 5647 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5648 case SystemZ::CondStore32Inv: 5649 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5650 case SystemZ::CondStore64: 5651 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5652 case SystemZ::CondStore64Inv: 5653 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5654 case SystemZ::CondStoreF32: 5655 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5656 case SystemZ::CondStoreF32Inv: 5657 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5658 case SystemZ::CondStoreF64: 5659 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5660 case SystemZ::CondStoreF64Inv: 5661 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5662 5663 case SystemZ::AEXT128_64: 5664 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5665 case SystemZ::ZEXT128_32: 5666 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5667 case SystemZ::ZEXT128_64: 5668 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5669 5670 case SystemZ::ATOMIC_SWAPW: 5671 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5672 case SystemZ::ATOMIC_SWAP_32: 5673 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5674 case SystemZ::ATOMIC_SWAP_64: 5675 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5676 5677 case SystemZ::ATOMIC_LOADW_AR: 5678 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5679 case SystemZ::ATOMIC_LOADW_AFI: 5680 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5681 case SystemZ::ATOMIC_LOAD_AR: 5682 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5683 case SystemZ::ATOMIC_LOAD_AHI: 5684 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5685 case SystemZ::ATOMIC_LOAD_AFI: 5686 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5687 case SystemZ::ATOMIC_LOAD_AGR: 5688 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5689 case SystemZ::ATOMIC_LOAD_AGHI: 5690 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5691 case SystemZ::ATOMIC_LOAD_AGFI: 5692 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5693 5694 case SystemZ::ATOMIC_LOADW_SR: 5695 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5696 case SystemZ::ATOMIC_LOAD_SR: 5697 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5698 case SystemZ::ATOMIC_LOAD_SGR: 5699 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5700 5701 case SystemZ::ATOMIC_LOADW_NR: 5702 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5703 case SystemZ::ATOMIC_LOADW_NILH: 5704 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5705 case SystemZ::ATOMIC_LOAD_NR: 5706 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5707 case SystemZ::ATOMIC_LOAD_NILL: 5708 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5709 case SystemZ::ATOMIC_LOAD_NILH: 5710 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5711 case SystemZ::ATOMIC_LOAD_NILF: 5712 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5713 case SystemZ::ATOMIC_LOAD_NGR: 5714 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5715 case SystemZ::ATOMIC_LOAD_NILL64: 5716 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5717 case SystemZ::ATOMIC_LOAD_NILH64: 5718 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5719 case SystemZ::ATOMIC_LOAD_NIHL64: 5720 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5721 case SystemZ::ATOMIC_LOAD_NIHH64: 5722 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5723 case SystemZ::ATOMIC_LOAD_NILF64: 5724 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5725 case SystemZ::ATOMIC_LOAD_NIHF64: 5726 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5727 5728 case SystemZ::ATOMIC_LOADW_OR: 5729 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5730 case SystemZ::ATOMIC_LOADW_OILH: 5731 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5732 case SystemZ::ATOMIC_LOAD_OR: 5733 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5734 case SystemZ::ATOMIC_LOAD_OILL: 5735 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5736 case SystemZ::ATOMIC_LOAD_OILH: 5737 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5738 case SystemZ::ATOMIC_LOAD_OILF: 5739 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5740 case SystemZ::ATOMIC_LOAD_OGR: 5741 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5742 case SystemZ::ATOMIC_LOAD_OILL64: 5743 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5744 case SystemZ::ATOMIC_LOAD_OILH64: 5745 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5746 case SystemZ::ATOMIC_LOAD_OIHL64: 5747 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5748 case SystemZ::ATOMIC_LOAD_OIHH64: 5749 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5750 case SystemZ::ATOMIC_LOAD_OILF64: 5751 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5752 case SystemZ::ATOMIC_LOAD_OIHF64: 5753 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5754 5755 case SystemZ::ATOMIC_LOADW_XR: 5756 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5757 case SystemZ::ATOMIC_LOADW_XILF: 5758 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5759 case SystemZ::ATOMIC_LOAD_XR: 5760 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5761 case SystemZ::ATOMIC_LOAD_XILF: 5762 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5763 case SystemZ::ATOMIC_LOAD_XGR: 5764 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5765 case SystemZ::ATOMIC_LOAD_XILF64: 5766 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5767 case SystemZ::ATOMIC_LOAD_XIHF64: 5768 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5769 5770 case SystemZ::ATOMIC_LOADW_NRi: 5771 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5772 case SystemZ::ATOMIC_LOADW_NILHi: 5773 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5774 case SystemZ::ATOMIC_LOAD_NRi: 5775 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5776 case SystemZ::ATOMIC_LOAD_NILLi: 5777 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5778 case SystemZ::ATOMIC_LOAD_NILHi: 5779 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5780 case SystemZ::ATOMIC_LOAD_NILFi: 5781 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5782 case SystemZ::ATOMIC_LOAD_NGRi: 5783 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5784 case SystemZ::ATOMIC_LOAD_NILL64i: 5785 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5786 case SystemZ::ATOMIC_LOAD_NILH64i: 5787 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5788 case SystemZ::ATOMIC_LOAD_NIHL64i: 5789 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5790 case SystemZ::ATOMIC_LOAD_NIHH64i: 5791 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5792 case SystemZ::ATOMIC_LOAD_NILF64i: 5793 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5794 case SystemZ::ATOMIC_LOAD_NIHF64i: 5795 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5796 5797 case SystemZ::ATOMIC_LOADW_MIN: 5798 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5799 SystemZ::CCMASK_CMP_LE, 0); 5800 case SystemZ::ATOMIC_LOAD_MIN_32: 5801 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5802 SystemZ::CCMASK_CMP_LE, 32); 5803 case SystemZ::ATOMIC_LOAD_MIN_64: 5804 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5805 SystemZ::CCMASK_CMP_LE, 64); 5806 5807 case SystemZ::ATOMIC_LOADW_MAX: 5808 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5809 SystemZ::CCMASK_CMP_GE, 0); 5810 case SystemZ::ATOMIC_LOAD_MAX_32: 5811 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5812 SystemZ::CCMASK_CMP_GE, 32); 5813 case SystemZ::ATOMIC_LOAD_MAX_64: 5814 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5815 SystemZ::CCMASK_CMP_GE, 64); 5816 5817 case SystemZ::ATOMIC_LOADW_UMIN: 5818 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5819 SystemZ::CCMASK_CMP_LE, 0); 5820 case SystemZ::ATOMIC_LOAD_UMIN_32: 5821 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5822 SystemZ::CCMASK_CMP_LE, 32); 5823 case SystemZ::ATOMIC_LOAD_UMIN_64: 5824 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5825 SystemZ::CCMASK_CMP_LE, 64); 5826 5827 case SystemZ::ATOMIC_LOADW_UMAX: 5828 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5829 SystemZ::CCMASK_CMP_GE, 0); 5830 case SystemZ::ATOMIC_LOAD_UMAX_32: 5831 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5832 SystemZ::CCMASK_CMP_GE, 32); 5833 case SystemZ::ATOMIC_LOAD_UMAX_64: 5834 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5835 SystemZ::CCMASK_CMP_GE, 64); 5836 5837 case SystemZ::ATOMIC_CMP_SWAPW: 5838 return emitAtomicCmpSwapW(MI, MBB); 5839 case SystemZ::MVCSequence: 5840 case SystemZ::MVCLoop: 5841 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5842 case SystemZ::NCSequence: 5843 case SystemZ::NCLoop: 5844 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5845 case SystemZ::OCSequence: 5846 case SystemZ::OCLoop: 5847 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5848 case SystemZ::XCSequence: 5849 case SystemZ::XCLoop: 5850 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5851 case SystemZ::CLCSequence: 5852 case SystemZ::CLCLoop: 5853 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5854 case SystemZ::CLSTLoop: 5855 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5856 case SystemZ::MVSTLoop: 5857 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5858 case SystemZ::SRSTLoop: 5859 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5860 case SystemZ::TBEGIN: 5861 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5862 case SystemZ::TBEGIN_nofloat: 5863 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5864 case SystemZ::TBEGINC: 5865 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5866 default: 5867 llvm_unreachable("Unexpected instr type to insert"); 5868 } 5869 } 5870