1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 118 119 // TODO: It may be better to default to latency-oriented scheduling, however 120 // LLVM's current latency-oriented scheduler can't handle physreg definitions 121 // such as SystemZ has with CC, so set this to the register-pressure 122 // scheduler, because it can. 123 setSchedulingPreference(Sched::RegPressure); 124 125 setBooleanContents(ZeroOrOneBooleanContent); 126 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 127 128 // Instructions are strings of 2-byte aligned 2-byte values. 129 setMinFunctionAlignment(2); 130 131 // Handle operations that are handled in a similar way for all types. 132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 133 I <= MVT::LAST_FP_VALUETYPE; 134 ++I) { 135 MVT VT = MVT::SimpleValueType(I); 136 if (isTypeLegal(VT)) { 137 // Lower SET_CC into an IPM-based sequence. 138 setOperationAction(ISD::SETCC, VT, Custom); 139 140 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 141 setOperationAction(ISD::SELECT, VT, Expand); 142 143 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 144 setOperationAction(ISD::SELECT_CC, VT, Custom); 145 setOperationAction(ISD::BR_CC, VT, Custom); 146 } 147 } 148 149 // Expand jump table branches as address arithmetic followed by an 150 // indirect jump. 151 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 152 153 // Expand BRCOND into a BR_CC (see above). 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // Handle integer types. 157 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 158 I <= MVT::LAST_INTEGER_VALUETYPE; 159 ++I) { 160 MVT VT = MVT::SimpleValueType(I); 161 if (isTypeLegal(VT)) { 162 // Expand individual DIV and REMs into DIVREMs. 163 setOperationAction(ISD::SDIV, VT, Expand); 164 setOperationAction(ISD::UDIV, VT, Expand); 165 setOperationAction(ISD::SREM, VT, Expand); 166 setOperationAction(ISD::UREM, VT, Expand); 167 setOperationAction(ISD::SDIVREM, VT, Custom); 168 setOperationAction(ISD::UDIVREM, VT, Custom); 169 170 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 171 // stores, putting a serialization instruction after the stores. 172 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 173 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 174 175 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 176 // available, or if the operand is constant. 177 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 178 179 // Use POPCNT on z196 and above. 180 if (Subtarget.hasPopulationCount()) 181 setOperationAction(ISD::CTPOP, VT, Custom); 182 else 183 setOperationAction(ISD::CTPOP, VT, Expand); 184 185 // No special instructions for these. 186 setOperationAction(ISD::CTTZ, VT, Expand); 187 setOperationAction(ISD::ROTR, VT, Expand); 188 189 // Use *MUL_LOHI where possible instead of MULH*. 190 setOperationAction(ISD::MULHS, VT, Expand); 191 setOperationAction(ISD::MULHU, VT, Expand); 192 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 193 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 194 195 // Only z196 and above have native support for conversions to unsigned. 196 if (!Subtarget.hasFPExtension()) 197 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 198 } 199 } 200 201 // Type legalization will convert 8- and 16-bit atomic operations into 202 // forms that operate on i32s (but still keeping the original memory VT). 203 // Lower them into full i32 operations. 204 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 205 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 206 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 208 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 216 217 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 218 219 // z10 has instructions for signed but not unsigned FP conversion. 220 // Handle unsigned 32-bit types as signed 64-bit types. 221 if (!Subtarget.hasFPExtension()) { 222 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 224 } 225 226 // We have native support for a 64-bit CTLZ, via FLOGR. 227 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 228 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 229 230 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 231 setOperationAction(ISD::OR, MVT::i64, Custom); 232 233 // FIXME: Can we support these natively? 234 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 235 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 236 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 237 238 // We have native instructions for i8, i16 and i32 extensions, but not i1. 239 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 240 for (MVT VT : MVT::integer_valuetypes()) { 241 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 242 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 243 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 244 } 245 246 // Handle the various types of symbolic address. 247 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 248 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 249 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 250 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 251 setOperationAction(ISD::JumpTable, PtrVT, Custom); 252 253 // We need to handle dynamic allocations specially because of the 254 // 160-byte area at the bottom of the stack. 255 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 256 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 257 258 // Use custom expanders so that we can force the function to use 259 // a frame pointer. 260 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 261 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 262 263 // Handle prefetches with PFD or PFDRL. 264 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 265 266 for (MVT VT : MVT::vector_valuetypes()) { 267 // Assume by default that all vector operations need to be expanded. 268 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 269 if (getOperationAction(Opcode, VT) == Legal) 270 setOperationAction(Opcode, VT, Expand); 271 272 // Likewise all truncating stores and extending loads. 273 for (MVT InnerVT : MVT::vector_valuetypes()) { 274 setTruncStoreAction(VT, InnerVT, Expand); 275 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 276 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 277 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 278 } 279 280 if (isTypeLegal(VT)) { 281 // These operations are legal for anything that can be stored in a 282 // vector register, even if there is no native support for the format 283 // as such. In particular, we can do these for v4f32 even though there 284 // are no specific instructions for that format. 285 setOperationAction(ISD::LOAD, VT, Legal); 286 setOperationAction(ISD::STORE, VT, Legal); 287 setOperationAction(ISD::VSELECT, VT, Legal); 288 setOperationAction(ISD::BITCAST, VT, Legal); 289 setOperationAction(ISD::UNDEF, VT, Legal); 290 291 // Likewise, except that we need to replace the nodes with something 292 // more specific. 293 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 294 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 295 } 296 } 297 298 // Handle integer vector types. 299 for (MVT VT : MVT::integer_vector_valuetypes()) { 300 if (isTypeLegal(VT)) { 301 // These operations have direct equivalents. 302 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 303 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 304 setOperationAction(ISD::ADD, VT, Legal); 305 setOperationAction(ISD::SUB, VT, Legal); 306 if (VT != MVT::v2i64) 307 setOperationAction(ISD::MUL, VT, Legal); 308 setOperationAction(ISD::AND, VT, Legal); 309 setOperationAction(ISD::OR, VT, Legal); 310 setOperationAction(ISD::XOR, VT, Legal); 311 setOperationAction(ISD::CTPOP, VT, Custom); 312 setOperationAction(ISD::CTTZ, VT, Legal); 313 setOperationAction(ISD::CTLZ, VT, Legal); 314 315 // Convert a GPR scalar to a vector by inserting it into element 0. 316 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 317 318 // Use a series of unpacks for extensions. 319 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 320 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 321 322 // Detect shifts by a scalar amount and convert them into 323 // V*_BY_SCALAR. 324 setOperationAction(ISD::SHL, VT, Custom); 325 setOperationAction(ISD::SRA, VT, Custom); 326 setOperationAction(ISD::SRL, VT, Custom); 327 328 // At present ROTL isn't matched by DAGCombiner. ROTR should be 329 // converted into ROTL. 330 setOperationAction(ISD::ROTL, VT, Expand); 331 setOperationAction(ISD::ROTR, VT, Expand); 332 333 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 334 // and inverting the result as necessary. 335 setOperationAction(ISD::SETCC, VT, Custom); 336 } 337 } 338 339 if (Subtarget.hasVector()) { 340 // There should be no need to check for float types other than v2f64 341 // since <2 x f32> isn't a legal type. 342 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 343 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 344 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 345 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 346 } 347 348 // Handle floating-point types. 349 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 350 I <= MVT::LAST_FP_VALUETYPE; 351 ++I) { 352 MVT VT = MVT::SimpleValueType(I); 353 if (isTypeLegal(VT)) { 354 // We can use FI for FRINT. 355 setOperationAction(ISD::FRINT, VT, Legal); 356 357 // We can use the extended form of FI for other rounding operations. 358 if (Subtarget.hasFPExtension()) { 359 setOperationAction(ISD::FNEARBYINT, VT, Legal); 360 setOperationAction(ISD::FFLOOR, VT, Legal); 361 setOperationAction(ISD::FCEIL, VT, Legal); 362 setOperationAction(ISD::FTRUNC, VT, Legal); 363 setOperationAction(ISD::FROUND, VT, Legal); 364 } 365 366 // No special instructions for these. 367 setOperationAction(ISD::FSIN, VT, Expand); 368 setOperationAction(ISD::FCOS, VT, Expand); 369 setOperationAction(ISD::FSINCOS, VT, Expand); 370 setOperationAction(ISD::FREM, VT, Expand); 371 setOperationAction(ISD::FPOW, VT, Expand); 372 } 373 } 374 375 // Handle floating-point vector types. 376 if (Subtarget.hasVector()) { 377 // Scalar-to-vector conversion is just a subreg. 378 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 379 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 380 381 // Some insertions and extractions can be done directly but others 382 // need to go via integers. 383 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 384 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 385 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 387 388 // These operations have direct equivalents. 389 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 390 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 391 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 392 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 393 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 394 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 395 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 396 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 397 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 398 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 400 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 401 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 402 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 403 } 404 405 // We have fused multiply-addition for f32 and f64 but not f128. 406 setOperationAction(ISD::FMA, MVT::f32, Legal); 407 setOperationAction(ISD::FMA, MVT::f64, Legal); 408 setOperationAction(ISD::FMA, MVT::f128, Expand); 409 410 // Needed so that we don't try to implement f128 constant loads using 411 // a load-and-extend of a f80 constant (in cases where the constant 412 // would fit in an f80). 413 for (MVT VT : MVT::fp_valuetypes()) 414 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 415 416 // Floating-point truncation and stores need to be done separately. 417 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 418 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 419 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 420 421 // We have 64-bit FPR<->GPR moves, but need special handling for 422 // 32-bit forms. 423 if (!Subtarget.hasVector()) { 424 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 425 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 426 } 427 428 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 429 // structure, but VAEND is a no-op. 430 setOperationAction(ISD::VASTART, MVT::Other, Custom); 431 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 432 setOperationAction(ISD::VAEND, MVT::Other, Expand); 433 434 // Codes for which we want to perform some z-specific combinations. 435 setTargetDAGCombine(ISD::SIGN_EXTEND); 436 setTargetDAGCombine(ISD::STORE); 437 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 438 setTargetDAGCombine(ISD::FP_ROUND); 439 setTargetDAGCombine(ISD::BSWAP); 440 441 // Handle intrinsics. 442 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 443 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 444 445 // We want to use MVC in preference to even a single load/store pair. 446 MaxStoresPerMemcpy = 0; 447 MaxStoresPerMemcpyOptSize = 0; 448 449 // The main memset sequence is a byte store followed by an MVC. 450 // Two STC or MV..I stores win over that, but the kind of fused stores 451 // generated by target-independent code don't when the byte value is 452 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 453 // than "STC;MVC". Handle the choice in target-specific code instead. 454 MaxStoresPerMemset = 0; 455 MaxStoresPerMemsetOptSize = 0; 456 } 457 458 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 459 LLVMContext &, EVT VT) const { 460 if (!VT.isVector()) 461 return MVT::i32; 462 return VT.changeVectorElementTypeToInteger(); 463 } 464 465 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 466 VT = VT.getScalarType(); 467 468 if (!VT.isSimple()) 469 return false; 470 471 switch (VT.getSimpleVT().SimpleTy) { 472 case MVT::f32: 473 case MVT::f64: 474 return true; 475 case MVT::f128: 476 return false; 477 default: 478 break; 479 } 480 481 return false; 482 } 483 484 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 485 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 486 return Imm.isZero() || Imm.isNegZero(); 487 } 488 489 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 490 // We can use CGFI or CLGFI. 491 return isInt<32>(Imm) || isUInt<32>(Imm); 492 } 493 494 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 495 // We can use ALGFI or SLGFI. 496 return isUInt<32>(Imm) || isUInt<32>(-Imm); 497 } 498 499 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 500 unsigned, 501 unsigned, 502 bool *Fast) const { 503 // Unaligned accesses should never be slower than the expanded version. 504 // We check specifically for aligned accesses in the few cases where 505 // they are required. 506 if (Fast) 507 *Fast = true; 508 return true; 509 } 510 511 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 512 const AddrMode &AM, Type *Ty, 513 unsigned AS) const { 514 // Punt on globals for now, although they can be used in limited 515 // RELATIVE LONG cases. 516 if (AM.BaseGV) 517 return false; 518 519 // Require a 20-bit signed offset. 520 if (!isInt<20>(AM.BaseOffs)) 521 return false; 522 523 // Indexing is OK but no scale factor can be applied. 524 return AM.Scale == 0 || AM.Scale == 1; 525 } 526 527 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 528 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 529 return false; 530 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 531 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 532 return FromBits > ToBits; 533 } 534 535 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 536 if (!FromVT.isInteger() || !ToVT.isInteger()) 537 return false; 538 unsigned FromBits = FromVT.getSizeInBits(); 539 unsigned ToBits = ToVT.getSizeInBits(); 540 return FromBits > ToBits; 541 } 542 543 //===----------------------------------------------------------------------===// 544 // Inline asm support 545 //===----------------------------------------------------------------------===// 546 547 TargetLowering::ConstraintType 548 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 549 if (Constraint.size() == 1) { 550 switch (Constraint[0]) { 551 case 'a': // Address register 552 case 'd': // Data register (equivalent to 'r') 553 case 'f': // Floating-point register 554 case 'h': // High-part register 555 case 'r': // General-purpose register 556 return C_RegisterClass; 557 558 case 'Q': // Memory with base and unsigned 12-bit displacement 559 case 'R': // Likewise, plus an index 560 case 'S': // Memory with base and signed 20-bit displacement 561 case 'T': // Likewise, plus an index 562 case 'm': // Equivalent to 'T'. 563 return C_Memory; 564 565 case 'I': // Unsigned 8-bit constant 566 case 'J': // Unsigned 12-bit constant 567 case 'K': // Signed 16-bit constant 568 case 'L': // Signed 20-bit displacement (on all targets we support) 569 case 'M': // 0x7fffffff 570 return C_Other; 571 572 default: 573 break; 574 } 575 } 576 return TargetLowering::getConstraintType(Constraint); 577 } 578 579 TargetLowering::ConstraintWeight SystemZTargetLowering:: 580 getSingleConstraintMatchWeight(AsmOperandInfo &info, 581 const char *constraint) const { 582 ConstraintWeight weight = CW_Invalid; 583 Value *CallOperandVal = info.CallOperandVal; 584 // If we don't have a value, we can't do a match, 585 // but allow it at the lowest weight. 586 if (!CallOperandVal) 587 return CW_Default; 588 Type *type = CallOperandVal->getType(); 589 // Look at the constraint type. 590 switch (*constraint) { 591 default: 592 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 593 break; 594 595 case 'a': // Address register 596 case 'd': // Data register (equivalent to 'r') 597 case 'h': // High-part register 598 case 'r': // General-purpose register 599 if (CallOperandVal->getType()->isIntegerTy()) 600 weight = CW_Register; 601 break; 602 603 case 'f': // Floating-point register 604 if (type->isFloatingPointTy()) 605 weight = CW_Register; 606 break; 607 608 case 'I': // Unsigned 8-bit constant 609 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 610 if (isUInt<8>(C->getZExtValue())) 611 weight = CW_Constant; 612 break; 613 614 case 'J': // Unsigned 12-bit constant 615 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 616 if (isUInt<12>(C->getZExtValue())) 617 weight = CW_Constant; 618 break; 619 620 case 'K': // Signed 16-bit constant 621 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 622 if (isInt<16>(C->getSExtValue())) 623 weight = CW_Constant; 624 break; 625 626 case 'L': // Signed 20-bit displacement (on all targets we support) 627 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 628 if (isInt<20>(C->getSExtValue())) 629 weight = CW_Constant; 630 break; 631 632 case 'M': // 0x7fffffff 633 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 634 if (C->getZExtValue() == 0x7fffffff) 635 weight = CW_Constant; 636 break; 637 } 638 return weight; 639 } 640 641 // Parse a "{tNNN}" register constraint for which the register type "t" 642 // has already been verified. MC is the class associated with "t" and 643 // Map maps 0-based register numbers to LLVM register numbers. 644 static std::pair<unsigned, const TargetRegisterClass *> 645 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 646 const unsigned *Map) { 647 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 648 if (isdigit(Constraint[2])) { 649 unsigned Index; 650 bool Failed = 651 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 652 if (!Failed && Index < 16 && Map[Index]) 653 return std::make_pair(Map[Index], RC); 654 } 655 return std::make_pair(0U, nullptr); 656 } 657 658 std::pair<unsigned, const TargetRegisterClass *> 659 SystemZTargetLowering::getRegForInlineAsmConstraint( 660 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 661 if (Constraint.size() == 1) { 662 // GCC Constraint Letters 663 switch (Constraint[0]) { 664 default: break; 665 case 'd': // Data register (equivalent to 'r') 666 case 'r': // General-purpose register 667 if (VT == MVT::i64) 668 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 669 else if (VT == MVT::i128) 670 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 671 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 672 673 case 'a': // Address register 674 if (VT == MVT::i64) 675 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 676 else if (VT == MVT::i128) 677 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 678 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 679 680 case 'h': // High-part register (an LLVM extension) 681 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 682 683 case 'f': // Floating-point register 684 if (VT == MVT::f64) 685 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 686 else if (VT == MVT::f128) 687 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 688 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 689 } 690 } 691 if (Constraint.size() > 0 && Constraint[0] == '{') { 692 // We need to override the default register parsing for GPRs and FPRs 693 // because the interpretation depends on VT. The internal names of 694 // the registers are also different from the external names 695 // (F0D and F0S instead of F0, etc.). 696 if (Constraint[1] == 'r') { 697 if (VT == MVT::i32) 698 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 699 SystemZMC::GR32Regs); 700 if (VT == MVT::i128) 701 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 702 SystemZMC::GR128Regs); 703 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 704 SystemZMC::GR64Regs); 705 } 706 if (Constraint[1] == 'f') { 707 if (VT == MVT::f32) 708 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 709 SystemZMC::FP32Regs); 710 if (VT == MVT::f128) 711 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 712 SystemZMC::FP128Regs); 713 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 714 SystemZMC::FP64Regs); 715 } 716 } 717 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 718 } 719 720 void SystemZTargetLowering:: 721 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 722 std::vector<SDValue> &Ops, 723 SelectionDAG &DAG) const { 724 // Only support length 1 constraints for now. 725 if (Constraint.length() == 1) { 726 switch (Constraint[0]) { 727 case 'I': // Unsigned 8-bit constant 728 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 729 if (isUInt<8>(C->getZExtValue())) 730 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 731 Op.getValueType())); 732 return; 733 734 case 'J': // Unsigned 12-bit constant 735 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 736 if (isUInt<12>(C->getZExtValue())) 737 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 738 Op.getValueType())); 739 return; 740 741 case 'K': // Signed 16-bit constant 742 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 743 if (isInt<16>(C->getSExtValue())) 744 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 745 Op.getValueType())); 746 return; 747 748 case 'L': // Signed 20-bit displacement (on all targets we support) 749 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 750 if (isInt<20>(C->getSExtValue())) 751 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 752 Op.getValueType())); 753 return; 754 755 case 'M': // 0x7fffffff 756 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 757 if (C->getZExtValue() == 0x7fffffff) 758 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 759 Op.getValueType())); 760 return; 761 } 762 } 763 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // Calling conventions 768 //===----------------------------------------------------------------------===// 769 770 #include "SystemZGenCallingConv.inc" 771 772 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 773 Type *ToType) const { 774 return isTruncateFree(FromType, ToType); 775 } 776 777 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 778 return CI->isTailCall(); 779 } 780 781 // We do not yet support 128-bit single-element vector types. If the user 782 // attempts to use such types as function argument or return type, prefer 783 // to error out instead of emitting code violating the ABI. 784 static void VerifyVectorType(MVT VT, EVT ArgVT) { 785 if (ArgVT.isVector() && !VT.isVector()) 786 report_fatal_error("Unsupported vector argument or return type"); 787 } 788 789 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 790 for (unsigned i = 0; i < Ins.size(); ++i) 791 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 792 } 793 794 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 795 for (unsigned i = 0; i < Outs.size(); ++i) 796 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 797 } 798 799 // Value is a value that has been passed to us in the location described by VA 800 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 801 // any loads onto Chain. 802 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 803 CCValAssign &VA, SDValue Chain, 804 SDValue Value) { 805 // If the argument has been promoted from a smaller type, insert an 806 // assertion to capture this. 807 if (VA.getLocInfo() == CCValAssign::SExt) 808 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 809 DAG.getValueType(VA.getValVT())); 810 else if (VA.getLocInfo() == CCValAssign::ZExt) 811 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 812 DAG.getValueType(VA.getValVT())); 813 814 if (VA.isExtInLoc()) 815 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 816 else if (VA.getLocInfo() == CCValAssign::BCvt) { 817 // If this is a short vector argument loaded from the stack, 818 // extend from i64 to full vector size and then bitcast. 819 assert(VA.getLocVT() == MVT::i64); 820 assert(VA.getValVT().isVector()); 821 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 822 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 823 } else 824 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 825 return Value; 826 } 827 828 // Value is a value of type VA.getValVT() that we need to copy into 829 // the location described by VA. Return a copy of Value converted to 830 // VA.getValVT(). The caller is responsible for handling indirect values. 831 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 832 CCValAssign &VA, SDValue Value) { 833 switch (VA.getLocInfo()) { 834 case CCValAssign::SExt: 835 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 836 case CCValAssign::ZExt: 837 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 838 case CCValAssign::AExt: 839 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 840 case CCValAssign::BCvt: 841 // If this is a short vector argument to be stored to the stack, 842 // bitcast to v2i64 and then extract first element. 843 assert(VA.getLocVT() == MVT::i64); 844 assert(VA.getValVT().isVector()); 845 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 846 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 847 DAG.getConstant(0, DL, MVT::i32)); 848 case CCValAssign::Full: 849 return Value; 850 default: 851 llvm_unreachable("Unhandled getLocInfo()"); 852 } 853 } 854 855 SDValue SystemZTargetLowering:: 856 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 857 const SmallVectorImpl<ISD::InputArg> &Ins, 858 SDLoc DL, SelectionDAG &DAG, 859 SmallVectorImpl<SDValue> &InVals) const { 860 MachineFunction &MF = DAG.getMachineFunction(); 861 MachineFrameInfo *MFI = MF.getFrameInfo(); 862 MachineRegisterInfo &MRI = MF.getRegInfo(); 863 SystemZMachineFunctionInfo *FuncInfo = 864 MF.getInfo<SystemZMachineFunctionInfo>(); 865 auto *TFL = 866 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 867 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 868 869 // Detect unsupported vector argument types. 870 if (Subtarget.hasVector()) 871 VerifyVectorTypes(Ins); 872 873 // Assign locations to all of the incoming arguments. 874 SmallVector<CCValAssign, 16> ArgLocs; 875 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 876 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 877 878 unsigned NumFixedGPRs = 0; 879 unsigned NumFixedFPRs = 0; 880 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 881 SDValue ArgValue; 882 CCValAssign &VA = ArgLocs[I]; 883 EVT LocVT = VA.getLocVT(); 884 if (VA.isRegLoc()) { 885 // Arguments passed in registers 886 const TargetRegisterClass *RC; 887 switch (LocVT.getSimpleVT().SimpleTy) { 888 default: 889 // Integers smaller than i64 should be promoted to i64. 890 llvm_unreachable("Unexpected argument type"); 891 case MVT::i32: 892 NumFixedGPRs += 1; 893 RC = &SystemZ::GR32BitRegClass; 894 break; 895 case MVT::i64: 896 NumFixedGPRs += 1; 897 RC = &SystemZ::GR64BitRegClass; 898 break; 899 case MVT::f32: 900 NumFixedFPRs += 1; 901 RC = &SystemZ::FP32BitRegClass; 902 break; 903 case MVT::f64: 904 NumFixedFPRs += 1; 905 RC = &SystemZ::FP64BitRegClass; 906 break; 907 case MVT::v16i8: 908 case MVT::v8i16: 909 case MVT::v4i32: 910 case MVT::v2i64: 911 case MVT::v4f32: 912 case MVT::v2f64: 913 RC = &SystemZ::VR128BitRegClass; 914 break; 915 } 916 917 unsigned VReg = MRI.createVirtualRegister(RC); 918 MRI.addLiveIn(VA.getLocReg(), VReg); 919 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 920 } else { 921 assert(VA.isMemLoc() && "Argument not register or memory"); 922 923 // Create the frame index object for this incoming parameter. 924 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 925 VA.getLocMemOffset(), true); 926 927 // Create the SelectionDAG nodes corresponding to a load 928 // from this parameter. Unpromoted ints and floats are 929 // passed as right-justified 8-byte values. 930 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 931 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 932 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 933 DAG.getIntPtrConstant(4, DL)); 934 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 935 MachinePointerInfo::getFixedStack(MF, FI), false, 936 false, false, 0); 937 } 938 939 // Convert the value of the argument register into the value that's 940 // being passed. 941 if (VA.getLocInfo() == CCValAssign::Indirect) { 942 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, 943 ArgValue, MachinePointerInfo(), 944 false, false, false, 0)); 945 // If the original argument was split (e.g. i128), we need 946 // to load all parts of it here (using the same address). 947 unsigned ArgIndex = Ins[I].OrigArgIndex; 948 assert (Ins[I].PartOffset == 0); 949 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 950 CCValAssign &PartVA = ArgLocs[I + 1]; 951 unsigned PartOffset = Ins[I + 1].PartOffset; 952 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 953 DAG.getIntPtrConstant(PartOffset, DL)); 954 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, 955 Address, MachinePointerInfo(), 956 false, false, false, 0)); 957 ++I; 958 } 959 } else 960 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 961 } 962 963 if (IsVarArg) { 964 // Save the number of non-varargs registers for later use by va_start, etc. 965 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 966 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 967 968 // Likewise the address (in the form of a frame index) of where the 969 // first stack vararg would be. The 1-byte size here is arbitrary. 970 int64_t StackSize = CCInfo.getNextStackOffset(); 971 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 972 973 // ...and a similar frame index for the caller-allocated save area 974 // that will be used to store the incoming registers. 975 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 976 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 977 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 978 979 // Store the FPR varargs in the reserved frame slots. (We store the 980 // GPRs as part of the prologue.) 981 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 982 SDValue MemOps[SystemZ::NumArgFPRs]; 983 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 984 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 985 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 986 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 987 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 988 &SystemZ::FP64BitRegClass); 989 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 990 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 991 MachinePointerInfo::getFixedStack(MF, FI), 992 false, false, 0); 993 } 994 // Join the stores, which are independent of one another. 995 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 996 makeArrayRef(&MemOps[NumFixedFPRs], 997 SystemZ::NumArgFPRs-NumFixedFPRs)); 998 } 999 } 1000 1001 return Chain; 1002 } 1003 1004 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1005 SmallVectorImpl<CCValAssign> &ArgLocs, 1006 SmallVectorImpl<ISD::OutputArg> &Outs) { 1007 // Punt if there are any indirect or stack arguments, or if the call 1008 // needs the callee-saved argument register R6, or if the call uses 1009 // the callee-saved register arguments SwiftSelf and SwiftError. 1010 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1011 CCValAssign &VA = ArgLocs[I]; 1012 if (VA.getLocInfo() == CCValAssign::Indirect) 1013 return false; 1014 if (!VA.isRegLoc()) 1015 return false; 1016 unsigned Reg = VA.getLocReg(); 1017 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1018 return false; 1019 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1020 return false; 1021 } 1022 return true; 1023 } 1024 1025 SDValue 1026 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1027 SmallVectorImpl<SDValue> &InVals) const { 1028 SelectionDAG &DAG = CLI.DAG; 1029 SDLoc &DL = CLI.DL; 1030 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1031 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1032 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1033 SDValue Chain = CLI.Chain; 1034 SDValue Callee = CLI.Callee; 1035 bool &IsTailCall = CLI.IsTailCall; 1036 CallingConv::ID CallConv = CLI.CallConv; 1037 bool IsVarArg = CLI.IsVarArg; 1038 MachineFunction &MF = DAG.getMachineFunction(); 1039 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1040 1041 // Detect unsupported vector argument and return types. 1042 if (Subtarget.hasVector()) { 1043 VerifyVectorTypes(Outs); 1044 VerifyVectorTypes(Ins); 1045 } 1046 1047 // Analyze the operands of the call, assigning locations to each operand. 1048 SmallVector<CCValAssign, 16> ArgLocs; 1049 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1050 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1051 1052 // We don't support GuaranteedTailCallOpt, only automatically-detected 1053 // sibling calls. 1054 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1055 IsTailCall = false; 1056 1057 // Get a count of how many bytes are to be pushed on the stack. 1058 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1059 1060 // Mark the start of the call. 1061 if (!IsTailCall) 1062 Chain = DAG.getCALLSEQ_START(Chain, 1063 DAG.getConstant(NumBytes, DL, PtrVT, true), 1064 DL); 1065 1066 // Copy argument values to their designated locations. 1067 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1068 SmallVector<SDValue, 8> MemOpChains; 1069 SDValue StackPtr; 1070 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1071 CCValAssign &VA = ArgLocs[I]; 1072 SDValue ArgValue = OutVals[I]; 1073 1074 if (VA.getLocInfo() == CCValAssign::Indirect) { 1075 // Store the argument in a stack slot and pass its address. 1076 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1077 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1078 MemOpChains.push_back(DAG.getStore( 1079 Chain, DL, ArgValue, SpillSlot, 1080 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1081 // If the original argument was split (e.g. i128), we need 1082 // to store all parts of it here (and pass just one address). 1083 unsigned ArgIndex = Outs[I].OrigArgIndex; 1084 assert (Outs[I].PartOffset == 0); 1085 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1086 SDValue PartValue = OutVals[I + 1]; 1087 unsigned PartOffset = Outs[I + 1].PartOffset; 1088 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1089 DAG.getIntPtrConstant(PartOffset, DL)); 1090 MemOpChains.push_back(DAG.getStore( 1091 Chain, DL, PartValue, Address, 1092 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1093 ++I; 1094 } 1095 ArgValue = SpillSlot; 1096 } else 1097 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1098 1099 if (VA.isRegLoc()) 1100 // Queue up the argument copies and emit them at the end. 1101 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1102 else { 1103 assert(VA.isMemLoc() && "Argument not register or memory"); 1104 1105 // Work out the address of the stack slot. Unpromoted ints and 1106 // floats are passed as right-justified 8-byte values. 1107 if (!StackPtr.getNode()) 1108 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1109 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1110 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1111 Offset += 4; 1112 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1113 DAG.getIntPtrConstant(Offset, DL)); 1114 1115 // Emit the store. 1116 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1117 MachinePointerInfo(), 1118 false, false, 0)); 1119 } 1120 } 1121 1122 // Join the stores, which are independent of one another. 1123 if (!MemOpChains.empty()) 1124 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1125 1126 // Accept direct calls by converting symbolic call addresses to the 1127 // associated Target* opcodes. Force %r1 to be used for indirect 1128 // tail calls. 1129 SDValue Glue; 1130 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1131 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1132 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1133 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1134 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1135 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1136 } else if (IsTailCall) { 1137 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1138 Glue = Chain.getValue(1); 1139 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1140 } 1141 1142 // Build a sequence of copy-to-reg nodes, chained and glued together. 1143 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1144 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1145 RegsToPass[I].second, Glue); 1146 Glue = Chain.getValue(1); 1147 } 1148 1149 // The first call operand is the chain and the second is the target address. 1150 SmallVector<SDValue, 8> Ops; 1151 Ops.push_back(Chain); 1152 Ops.push_back(Callee); 1153 1154 // Add argument registers to the end of the list so that they are 1155 // known live into the call. 1156 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1157 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1158 RegsToPass[I].second.getValueType())); 1159 1160 // Add a register mask operand representing the call-preserved registers. 1161 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1162 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1163 assert(Mask && "Missing call preserved mask for calling convention"); 1164 Ops.push_back(DAG.getRegisterMask(Mask)); 1165 1166 // Glue the call to the argument copies, if any. 1167 if (Glue.getNode()) 1168 Ops.push_back(Glue); 1169 1170 // Emit the call. 1171 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1172 if (IsTailCall) 1173 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1174 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1175 Glue = Chain.getValue(1); 1176 1177 // Mark the end of the call, which is glued to the call itself. 1178 Chain = DAG.getCALLSEQ_END(Chain, 1179 DAG.getConstant(NumBytes, DL, PtrVT, true), 1180 DAG.getConstant(0, DL, PtrVT, true), 1181 Glue, DL); 1182 Glue = Chain.getValue(1); 1183 1184 // Assign locations to each value returned by this call. 1185 SmallVector<CCValAssign, 16> RetLocs; 1186 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1187 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1188 1189 // Copy all of the result registers out of their specified physreg. 1190 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1191 CCValAssign &VA = RetLocs[I]; 1192 1193 // Copy the value out, gluing the copy to the end of the call sequence. 1194 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1195 VA.getLocVT(), Glue); 1196 Chain = RetValue.getValue(1); 1197 Glue = RetValue.getValue(2); 1198 1199 // Convert the value of the return register into the value that's 1200 // being returned. 1201 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1202 } 1203 1204 return Chain; 1205 } 1206 1207 bool SystemZTargetLowering:: 1208 CanLowerReturn(CallingConv::ID CallConv, 1209 MachineFunction &MF, bool isVarArg, 1210 const SmallVectorImpl<ISD::OutputArg> &Outs, 1211 LLVMContext &Context) const { 1212 // Detect unsupported vector return types. 1213 if (Subtarget.hasVector()) 1214 VerifyVectorTypes(Outs); 1215 1216 // Special case that we cannot easily detect in RetCC_SystemZ since 1217 // i128 is not a legal type. 1218 for (auto &Out : Outs) 1219 if (Out.ArgVT == MVT::i128) 1220 return false; 1221 1222 SmallVector<CCValAssign, 16> RetLocs; 1223 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1224 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1225 } 1226 1227 SDValue 1228 SystemZTargetLowering::LowerReturn(SDValue Chain, 1229 CallingConv::ID CallConv, bool IsVarArg, 1230 const SmallVectorImpl<ISD::OutputArg> &Outs, 1231 const SmallVectorImpl<SDValue> &OutVals, 1232 SDLoc DL, SelectionDAG &DAG) const { 1233 MachineFunction &MF = DAG.getMachineFunction(); 1234 1235 // Detect unsupported vector return types. 1236 if (Subtarget.hasVector()) 1237 VerifyVectorTypes(Outs); 1238 1239 // Assign locations to each returned value. 1240 SmallVector<CCValAssign, 16> RetLocs; 1241 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1242 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1243 1244 // Quick exit for void returns 1245 if (RetLocs.empty()) 1246 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1247 1248 // Copy the result values into the output registers. 1249 SDValue Glue; 1250 SmallVector<SDValue, 4> RetOps; 1251 RetOps.push_back(Chain); 1252 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1253 CCValAssign &VA = RetLocs[I]; 1254 SDValue RetValue = OutVals[I]; 1255 1256 // Make the return register live on exit. 1257 assert(VA.isRegLoc() && "Can only return in registers!"); 1258 1259 // Promote the value as required. 1260 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1261 1262 // Chain and glue the copies together. 1263 unsigned Reg = VA.getLocReg(); 1264 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1265 Glue = Chain.getValue(1); 1266 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1267 } 1268 1269 // Update chain and glue. 1270 RetOps[0] = Chain; 1271 if (Glue.getNode()) 1272 RetOps.push_back(Glue); 1273 1274 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1275 } 1276 1277 SDValue SystemZTargetLowering:: 1278 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1279 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1280 } 1281 1282 // Return true if Op is an intrinsic node with chain that returns the CC value 1283 // as its only (other) argument. Provide the associated SystemZISD opcode and 1284 // the mask of valid CC values if so. 1285 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1286 unsigned &CCValid) { 1287 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1288 switch (Id) { 1289 case Intrinsic::s390_tbegin: 1290 Opcode = SystemZISD::TBEGIN; 1291 CCValid = SystemZ::CCMASK_TBEGIN; 1292 return true; 1293 1294 case Intrinsic::s390_tbegin_nofloat: 1295 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1296 CCValid = SystemZ::CCMASK_TBEGIN; 1297 return true; 1298 1299 case Intrinsic::s390_tend: 1300 Opcode = SystemZISD::TEND; 1301 CCValid = SystemZ::CCMASK_TEND; 1302 return true; 1303 1304 default: 1305 return false; 1306 } 1307 } 1308 1309 // Return true if Op is an intrinsic node without chain that returns the 1310 // CC value as its final argument. Provide the associated SystemZISD 1311 // opcode and the mask of valid CC values if so. 1312 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1313 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1314 switch (Id) { 1315 case Intrinsic::s390_vpkshs: 1316 case Intrinsic::s390_vpksfs: 1317 case Intrinsic::s390_vpksgs: 1318 Opcode = SystemZISD::PACKS_CC; 1319 CCValid = SystemZ::CCMASK_VCMP; 1320 return true; 1321 1322 case Intrinsic::s390_vpklshs: 1323 case Intrinsic::s390_vpklsfs: 1324 case Intrinsic::s390_vpklsgs: 1325 Opcode = SystemZISD::PACKLS_CC; 1326 CCValid = SystemZ::CCMASK_VCMP; 1327 return true; 1328 1329 case Intrinsic::s390_vceqbs: 1330 case Intrinsic::s390_vceqhs: 1331 case Intrinsic::s390_vceqfs: 1332 case Intrinsic::s390_vceqgs: 1333 Opcode = SystemZISD::VICMPES; 1334 CCValid = SystemZ::CCMASK_VCMP; 1335 return true; 1336 1337 case Intrinsic::s390_vchbs: 1338 case Intrinsic::s390_vchhs: 1339 case Intrinsic::s390_vchfs: 1340 case Intrinsic::s390_vchgs: 1341 Opcode = SystemZISD::VICMPHS; 1342 CCValid = SystemZ::CCMASK_VCMP; 1343 return true; 1344 1345 case Intrinsic::s390_vchlbs: 1346 case Intrinsic::s390_vchlhs: 1347 case Intrinsic::s390_vchlfs: 1348 case Intrinsic::s390_vchlgs: 1349 Opcode = SystemZISD::VICMPHLS; 1350 CCValid = SystemZ::CCMASK_VCMP; 1351 return true; 1352 1353 case Intrinsic::s390_vtm: 1354 Opcode = SystemZISD::VTM; 1355 CCValid = SystemZ::CCMASK_VCMP; 1356 return true; 1357 1358 case Intrinsic::s390_vfaebs: 1359 case Intrinsic::s390_vfaehs: 1360 case Intrinsic::s390_vfaefs: 1361 Opcode = SystemZISD::VFAE_CC; 1362 CCValid = SystemZ::CCMASK_ANY; 1363 return true; 1364 1365 case Intrinsic::s390_vfaezbs: 1366 case Intrinsic::s390_vfaezhs: 1367 case Intrinsic::s390_vfaezfs: 1368 Opcode = SystemZISD::VFAEZ_CC; 1369 CCValid = SystemZ::CCMASK_ANY; 1370 return true; 1371 1372 case Intrinsic::s390_vfeebs: 1373 case Intrinsic::s390_vfeehs: 1374 case Intrinsic::s390_vfeefs: 1375 Opcode = SystemZISD::VFEE_CC; 1376 CCValid = SystemZ::CCMASK_ANY; 1377 return true; 1378 1379 case Intrinsic::s390_vfeezbs: 1380 case Intrinsic::s390_vfeezhs: 1381 case Intrinsic::s390_vfeezfs: 1382 Opcode = SystemZISD::VFEEZ_CC; 1383 CCValid = SystemZ::CCMASK_ANY; 1384 return true; 1385 1386 case Intrinsic::s390_vfenebs: 1387 case Intrinsic::s390_vfenehs: 1388 case Intrinsic::s390_vfenefs: 1389 Opcode = SystemZISD::VFENE_CC; 1390 CCValid = SystemZ::CCMASK_ANY; 1391 return true; 1392 1393 case Intrinsic::s390_vfenezbs: 1394 case Intrinsic::s390_vfenezhs: 1395 case Intrinsic::s390_vfenezfs: 1396 Opcode = SystemZISD::VFENEZ_CC; 1397 CCValid = SystemZ::CCMASK_ANY; 1398 return true; 1399 1400 case Intrinsic::s390_vistrbs: 1401 case Intrinsic::s390_vistrhs: 1402 case Intrinsic::s390_vistrfs: 1403 Opcode = SystemZISD::VISTR_CC; 1404 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1405 return true; 1406 1407 case Intrinsic::s390_vstrcbs: 1408 case Intrinsic::s390_vstrchs: 1409 case Intrinsic::s390_vstrcfs: 1410 Opcode = SystemZISD::VSTRC_CC; 1411 CCValid = SystemZ::CCMASK_ANY; 1412 return true; 1413 1414 case Intrinsic::s390_vstrczbs: 1415 case Intrinsic::s390_vstrczhs: 1416 case Intrinsic::s390_vstrczfs: 1417 Opcode = SystemZISD::VSTRCZ_CC; 1418 CCValid = SystemZ::CCMASK_ANY; 1419 return true; 1420 1421 case Intrinsic::s390_vfcedbs: 1422 Opcode = SystemZISD::VFCMPES; 1423 CCValid = SystemZ::CCMASK_VCMP; 1424 return true; 1425 1426 case Intrinsic::s390_vfchdbs: 1427 Opcode = SystemZISD::VFCMPHS; 1428 CCValid = SystemZ::CCMASK_VCMP; 1429 return true; 1430 1431 case Intrinsic::s390_vfchedbs: 1432 Opcode = SystemZISD::VFCMPHES; 1433 CCValid = SystemZ::CCMASK_VCMP; 1434 return true; 1435 1436 case Intrinsic::s390_vftcidb: 1437 Opcode = SystemZISD::VFTCI; 1438 CCValid = SystemZ::CCMASK_VCMP; 1439 return true; 1440 1441 default: 1442 return false; 1443 } 1444 } 1445 1446 // Emit an intrinsic with chain with a glued value instead of its CC result. 1447 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1448 unsigned Opcode) { 1449 // Copy all operands except the intrinsic ID. 1450 unsigned NumOps = Op.getNumOperands(); 1451 SmallVector<SDValue, 6> Ops; 1452 Ops.reserve(NumOps - 1); 1453 Ops.push_back(Op.getOperand(0)); 1454 for (unsigned I = 2; I < NumOps; ++I) 1455 Ops.push_back(Op.getOperand(I)); 1456 1457 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1458 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1459 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1460 SDValue OldChain = SDValue(Op.getNode(), 1); 1461 SDValue NewChain = SDValue(Intr.getNode(), 0); 1462 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1463 return Intr; 1464 } 1465 1466 // Emit an intrinsic with a glued value instead of its CC result. 1467 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1468 unsigned Opcode) { 1469 // Copy all operands except the intrinsic ID. 1470 unsigned NumOps = Op.getNumOperands(); 1471 SmallVector<SDValue, 6> Ops; 1472 Ops.reserve(NumOps - 1); 1473 for (unsigned I = 1; I < NumOps; ++I) 1474 Ops.push_back(Op.getOperand(I)); 1475 1476 if (Op->getNumValues() == 1) 1477 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1478 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1479 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1480 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1481 } 1482 1483 // CC is a comparison that will be implemented using an integer or 1484 // floating-point comparison. Return the condition code mask for 1485 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1486 // unsigned comparisons and clear for signed ones. In the floating-point 1487 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1488 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1489 #define CONV(X) \ 1490 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1491 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1492 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1493 1494 switch (CC) { 1495 default: 1496 llvm_unreachable("Invalid integer condition!"); 1497 1498 CONV(EQ); 1499 CONV(NE); 1500 CONV(GT); 1501 CONV(GE); 1502 CONV(LT); 1503 CONV(LE); 1504 1505 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1506 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1507 } 1508 #undef CONV 1509 } 1510 1511 // Return a sequence for getting a 1 from an IPM result when CC has a 1512 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1513 // The handling of CC values outside CCValid doesn't matter. 1514 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1515 // Deal with cases where the result can be taken directly from a bit 1516 // of the IPM result. 1517 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1518 return IPMConversion(0, 0, SystemZ::IPM_CC); 1519 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1520 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1521 1522 // Deal with cases where we can add a value to force the sign bit 1523 // to contain the right value. Putting the bit in 31 means we can 1524 // use SRL rather than RISBG(L), and also makes it easier to get a 1525 // 0/-1 value, so it has priority over the other tests below. 1526 // 1527 // These sequences rely on the fact that the upper two bits of the 1528 // IPM result are zero. 1529 uint64_t TopBit = uint64_t(1) << 31; 1530 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1531 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1532 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1533 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1534 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1535 | SystemZ::CCMASK_1 1536 | SystemZ::CCMASK_2))) 1537 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1538 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1539 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1540 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1541 | SystemZ::CCMASK_2 1542 | SystemZ::CCMASK_3))) 1543 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1544 1545 // Next try inverting the value and testing a bit. 0/1 could be 1546 // handled this way too, but we dealt with that case above. 1547 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1548 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1549 1550 // Handle cases where adding a value forces a non-sign bit to contain 1551 // the right value. 1552 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1553 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1554 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1555 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1556 1557 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1558 // can be done by inverting the low CC bit and applying one of the 1559 // sign-based extractions above. 1560 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1561 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1562 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1563 return IPMConversion(1 << SystemZ::IPM_CC, 1564 TopBit - (3 << SystemZ::IPM_CC), 31); 1565 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1566 | SystemZ::CCMASK_1 1567 | SystemZ::CCMASK_3))) 1568 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1569 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1570 | SystemZ::CCMASK_2 1571 | SystemZ::CCMASK_3))) 1572 return IPMConversion(1 << SystemZ::IPM_CC, 1573 TopBit - (1 << SystemZ::IPM_CC), 31); 1574 1575 llvm_unreachable("Unexpected CC combination"); 1576 } 1577 1578 // If C can be converted to a comparison against zero, adjust the operands 1579 // as necessary. 1580 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1581 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1582 return; 1583 1584 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1585 if (!ConstOp1) 1586 return; 1587 1588 int64_t Value = ConstOp1->getSExtValue(); 1589 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1590 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1591 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1592 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1593 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1594 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1595 } 1596 } 1597 1598 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1599 // adjust the operands as necessary. 1600 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1601 // For us to make any changes, it must a comparison between a single-use 1602 // load and a constant. 1603 if (!C.Op0.hasOneUse() || 1604 C.Op0.getOpcode() != ISD::LOAD || 1605 C.Op1.getOpcode() != ISD::Constant) 1606 return; 1607 1608 // We must have an 8- or 16-bit load. 1609 auto *Load = cast<LoadSDNode>(C.Op0); 1610 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1611 if (NumBits != 8 && NumBits != 16) 1612 return; 1613 1614 // The load must be an extending one and the constant must be within the 1615 // range of the unextended value. 1616 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1617 uint64_t Value = ConstOp1->getZExtValue(); 1618 uint64_t Mask = (1 << NumBits) - 1; 1619 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1620 // Make sure that ConstOp1 is in range of C.Op0. 1621 int64_t SignedValue = ConstOp1->getSExtValue(); 1622 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1623 return; 1624 if (C.ICmpType != SystemZICMP::SignedOnly) { 1625 // Unsigned comparison between two sign-extended values is equivalent 1626 // to unsigned comparison between two zero-extended values. 1627 Value &= Mask; 1628 } else if (NumBits == 8) { 1629 // Try to treat the comparison as unsigned, so that we can use CLI. 1630 // Adjust CCMask and Value as necessary. 1631 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1632 // Test whether the high bit of the byte is set. 1633 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1634 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1635 // Test whether the high bit of the byte is clear. 1636 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1637 else 1638 // No instruction exists for this combination. 1639 return; 1640 C.ICmpType = SystemZICMP::UnsignedOnly; 1641 } 1642 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1643 if (Value > Mask) 1644 return; 1645 // If the constant is in range, we can use any comparison. 1646 C.ICmpType = SystemZICMP::Any; 1647 } else 1648 return; 1649 1650 // Make sure that the first operand is an i32 of the right extension type. 1651 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1652 ISD::SEXTLOAD : 1653 ISD::ZEXTLOAD); 1654 if (C.Op0.getValueType() != MVT::i32 || 1655 Load->getExtensionType() != ExtType) 1656 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1657 Load->getChain(), Load->getBasePtr(), 1658 Load->getPointerInfo(), Load->getMemoryVT(), 1659 Load->isVolatile(), Load->isNonTemporal(), 1660 Load->isInvariant(), Load->getAlignment()); 1661 1662 // Make sure that the second operand is an i32 with the right value. 1663 if (C.Op1.getValueType() != MVT::i32 || 1664 Value != ConstOp1->getZExtValue()) 1665 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1666 } 1667 1668 // Return true if Op is either an unextended load, or a load suitable 1669 // for integer register-memory comparisons of type ICmpType. 1670 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1671 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1672 if (Load) { 1673 // There are no instructions to compare a register with a memory byte. 1674 if (Load->getMemoryVT() == MVT::i8) 1675 return false; 1676 // Otherwise decide on extension type. 1677 switch (Load->getExtensionType()) { 1678 case ISD::NON_EXTLOAD: 1679 return true; 1680 case ISD::SEXTLOAD: 1681 return ICmpType != SystemZICMP::UnsignedOnly; 1682 case ISD::ZEXTLOAD: 1683 return ICmpType != SystemZICMP::SignedOnly; 1684 default: 1685 break; 1686 } 1687 } 1688 return false; 1689 } 1690 1691 // Return true if it is better to swap the operands of C. 1692 static bool shouldSwapCmpOperands(const Comparison &C) { 1693 // Leave f128 comparisons alone, since they have no memory forms. 1694 if (C.Op0.getValueType() == MVT::f128) 1695 return false; 1696 1697 // Always keep a floating-point constant second, since comparisons with 1698 // zero can use LOAD TEST and comparisons with other constants make a 1699 // natural memory operand. 1700 if (isa<ConstantFPSDNode>(C.Op1)) 1701 return false; 1702 1703 // Never swap comparisons with zero since there are many ways to optimize 1704 // those later. 1705 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1706 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1707 return false; 1708 1709 // Also keep natural memory operands second if the loaded value is 1710 // only used here. Several comparisons have memory forms. 1711 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1712 return false; 1713 1714 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1715 // In that case we generally prefer the memory to be second. 1716 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1717 // The only exceptions are when the second operand is a constant and 1718 // we can use things like CHHSI. 1719 if (!ConstOp1) 1720 return true; 1721 // The unsigned memory-immediate instructions can handle 16-bit 1722 // unsigned integers. 1723 if (C.ICmpType != SystemZICMP::SignedOnly && 1724 isUInt<16>(ConstOp1->getZExtValue())) 1725 return false; 1726 // The signed memory-immediate instructions can handle 16-bit 1727 // signed integers. 1728 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1729 isInt<16>(ConstOp1->getSExtValue())) 1730 return false; 1731 return true; 1732 } 1733 1734 // Try to promote the use of CGFR and CLGFR. 1735 unsigned Opcode0 = C.Op0.getOpcode(); 1736 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1737 return true; 1738 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1739 return true; 1740 if (C.ICmpType != SystemZICMP::SignedOnly && 1741 Opcode0 == ISD::AND && 1742 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1743 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1744 return true; 1745 1746 return false; 1747 } 1748 1749 // Return a version of comparison CC mask CCMask in which the LT and GT 1750 // actions are swapped. 1751 static unsigned reverseCCMask(unsigned CCMask) { 1752 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1753 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1754 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1755 (CCMask & SystemZ::CCMASK_CMP_UO)); 1756 } 1757 1758 // Check whether C tests for equality between X and Y and whether X - Y 1759 // or Y - X is also computed. In that case it's better to compare the 1760 // result of the subtraction against zero. 1761 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1762 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1763 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1764 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1765 SDNode *N = *I; 1766 if (N->getOpcode() == ISD::SUB && 1767 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1768 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1769 C.Op0 = SDValue(N, 0); 1770 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1771 return; 1772 } 1773 } 1774 } 1775 } 1776 1777 // Check whether C compares a floating-point value with zero and if that 1778 // floating-point value is also negated. In this case we can use the 1779 // negation to set CC, so avoiding separate LOAD AND TEST and 1780 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1781 static void adjustForFNeg(Comparison &C) { 1782 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1783 if (C1 && C1->isZero()) { 1784 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1785 SDNode *N = *I; 1786 if (N->getOpcode() == ISD::FNEG) { 1787 C.Op0 = SDValue(N, 0); 1788 C.CCMask = reverseCCMask(C.CCMask); 1789 return; 1790 } 1791 } 1792 } 1793 } 1794 1795 // Check whether C compares (shl X, 32) with 0 and whether X is 1796 // also sign-extended. In that case it is better to test the result 1797 // of the sign extension using LTGFR. 1798 // 1799 // This case is important because InstCombine transforms a comparison 1800 // with (sext (trunc X)) into a comparison with (shl X, 32). 1801 static void adjustForLTGFR(Comparison &C) { 1802 // Check for a comparison between (shl X, 32) and 0. 1803 if (C.Op0.getOpcode() == ISD::SHL && 1804 C.Op0.getValueType() == MVT::i64 && 1805 C.Op1.getOpcode() == ISD::Constant && 1806 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1807 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1808 if (C1 && C1->getZExtValue() == 32) { 1809 SDValue ShlOp0 = C.Op0.getOperand(0); 1810 // See whether X has any SIGN_EXTEND_INREG uses. 1811 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1812 SDNode *N = *I; 1813 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1814 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1815 C.Op0 = SDValue(N, 0); 1816 return; 1817 } 1818 } 1819 } 1820 } 1821 } 1822 1823 // If C compares the truncation of an extending load, try to compare 1824 // the untruncated value instead. This exposes more opportunities to 1825 // reuse CC. 1826 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1827 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1828 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1829 C.Op1.getOpcode() == ISD::Constant && 1830 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1831 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1832 if (L->getMemoryVT().getStoreSizeInBits() 1833 <= C.Op0.getValueType().getSizeInBits()) { 1834 unsigned Type = L->getExtensionType(); 1835 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1836 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1837 C.Op0 = C.Op0.getOperand(0); 1838 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1839 } 1840 } 1841 } 1842 } 1843 1844 // Return true if shift operation N has an in-range constant shift value. 1845 // Store it in ShiftVal if so. 1846 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1847 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1848 if (!Shift) 1849 return false; 1850 1851 uint64_t Amount = Shift->getZExtValue(); 1852 if (Amount >= N.getValueType().getSizeInBits()) 1853 return false; 1854 1855 ShiftVal = Amount; 1856 return true; 1857 } 1858 1859 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1860 // instruction and whether the CC value is descriptive enough to handle 1861 // a comparison of type Opcode between the AND result and CmpVal. 1862 // CCMask says which comparison result is being tested and BitSize is 1863 // the number of bits in the operands. If TEST UNDER MASK can be used, 1864 // return the corresponding CC mask, otherwise return 0. 1865 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1866 uint64_t Mask, uint64_t CmpVal, 1867 unsigned ICmpType) { 1868 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1869 1870 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1871 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1872 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1873 return 0; 1874 1875 // Work out the masks for the lowest and highest bits. 1876 unsigned HighShift = 63 - countLeadingZeros(Mask); 1877 uint64_t High = uint64_t(1) << HighShift; 1878 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1879 1880 // Signed ordered comparisons are effectively unsigned if the sign 1881 // bit is dropped. 1882 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1883 1884 // Check for equality comparisons with 0, or the equivalent. 1885 if (CmpVal == 0) { 1886 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1887 return SystemZ::CCMASK_TM_ALL_0; 1888 if (CCMask == SystemZ::CCMASK_CMP_NE) 1889 return SystemZ::CCMASK_TM_SOME_1; 1890 } 1891 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1892 if (CCMask == SystemZ::CCMASK_CMP_LT) 1893 return SystemZ::CCMASK_TM_ALL_0; 1894 if (CCMask == SystemZ::CCMASK_CMP_GE) 1895 return SystemZ::CCMASK_TM_SOME_1; 1896 } 1897 if (EffectivelyUnsigned && CmpVal < Low) { 1898 if (CCMask == SystemZ::CCMASK_CMP_LE) 1899 return SystemZ::CCMASK_TM_ALL_0; 1900 if (CCMask == SystemZ::CCMASK_CMP_GT) 1901 return SystemZ::CCMASK_TM_SOME_1; 1902 } 1903 1904 // Check for equality comparisons with the mask, or the equivalent. 1905 if (CmpVal == Mask) { 1906 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1907 return SystemZ::CCMASK_TM_ALL_1; 1908 if (CCMask == SystemZ::CCMASK_CMP_NE) 1909 return SystemZ::CCMASK_TM_SOME_0; 1910 } 1911 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1912 if (CCMask == SystemZ::CCMASK_CMP_GT) 1913 return SystemZ::CCMASK_TM_ALL_1; 1914 if (CCMask == SystemZ::CCMASK_CMP_LE) 1915 return SystemZ::CCMASK_TM_SOME_0; 1916 } 1917 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1918 if (CCMask == SystemZ::CCMASK_CMP_GE) 1919 return SystemZ::CCMASK_TM_ALL_1; 1920 if (CCMask == SystemZ::CCMASK_CMP_LT) 1921 return SystemZ::CCMASK_TM_SOME_0; 1922 } 1923 1924 // Check for ordered comparisons with the top bit. 1925 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1926 if (CCMask == SystemZ::CCMASK_CMP_LE) 1927 return SystemZ::CCMASK_TM_MSB_0; 1928 if (CCMask == SystemZ::CCMASK_CMP_GT) 1929 return SystemZ::CCMASK_TM_MSB_1; 1930 } 1931 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1932 if (CCMask == SystemZ::CCMASK_CMP_LT) 1933 return SystemZ::CCMASK_TM_MSB_0; 1934 if (CCMask == SystemZ::CCMASK_CMP_GE) 1935 return SystemZ::CCMASK_TM_MSB_1; 1936 } 1937 1938 // If there are just two bits, we can do equality checks for Low and High 1939 // as well. 1940 if (Mask == Low + High) { 1941 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1942 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1943 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1944 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1945 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1946 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1947 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1948 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1949 } 1950 1951 // Looks like we've exhausted our options. 1952 return 0; 1953 } 1954 1955 // See whether C can be implemented as a TEST UNDER MASK instruction. 1956 // Update the arguments with the TM version if so. 1957 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1958 // Check that we have a comparison with a constant. 1959 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1960 if (!ConstOp1) 1961 return; 1962 uint64_t CmpVal = ConstOp1->getZExtValue(); 1963 1964 // Check whether the nonconstant input is an AND with a constant mask. 1965 Comparison NewC(C); 1966 uint64_t MaskVal; 1967 ConstantSDNode *Mask = nullptr; 1968 if (C.Op0.getOpcode() == ISD::AND) { 1969 NewC.Op0 = C.Op0.getOperand(0); 1970 NewC.Op1 = C.Op0.getOperand(1); 1971 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1972 if (!Mask) 1973 return; 1974 MaskVal = Mask->getZExtValue(); 1975 } else { 1976 // There is no instruction to compare with a 64-bit immediate 1977 // so use TMHH instead if possible. We need an unsigned ordered 1978 // comparison with an i64 immediate. 1979 if (NewC.Op0.getValueType() != MVT::i64 || 1980 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1981 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1982 NewC.ICmpType == SystemZICMP::SignedOnly) 1983 return; 1984 // Convert LE and GT comparisons into LT and GE. 1985 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1986 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1987 if (CmpVal == uint64_t(-1)) 1988 return; 1989 CmpVal += 1; 1990 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1991 } 1992 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1993 // be masked off without changing the result. 1994 MaskVal = -(CmpVal & -CmpVal); 1995 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1996 } 1997 if (!MaskVal) 1998 return; 1999 2000 // Check whether the combination of mask, comparison value and comparison 2001 // type are suitable. 2002 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 2003 unsigned NewCCMask, ShiftVal; 2004 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2005 NewC.Op0.getOpcode() == ISD::SHL && 2006 isSimpleShift(NewC.Op0, ShiftVal) && 2007 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2008 MaskVal >> ShiftVal, 2009 CmpVal >> ShiftVal, 2010 SystemZICMP::Any))) { 2011 NewC.Op0 = NewC.Op0.getOperand(0); 2012 MaskVal >>= ShiftVal; 2013 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2014 NewC.Op0.getOpcode() == ISD::SRL && 2015 isSimpleShift(NewC.Op0, ShiftVal) && 2016 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2017 MaskVal << ShiftVal, 2018 CmpVal << ShiftVal, 2019 SystemZICMP::UnsignedOnly))) { 2020 NewC.Op0 = NewC.Op0.getOperand(0); 2021 MaskVal <<= ShiftVal; 2022 } else { 2023 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2024 NewC.ICmpType); 2025 if (!NewCCMask) 2026 return; 2027 } 2028 2029 // Go ahead and make the change. 2030 C.Opcode = SystemZISD::TM; 2031 C.Op0 = NewC.Op0; 2032 if (Mask && Mask->getZExtValue() == MaskVal) 2033 C.Op1 = SDValue(Mask, 0); 2034 else 2035 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2036 C.CCValid = SystemZ::CCMASK_TM; 2037 C.CCMask = NewCCMask; 2038 } 2039 2040 // Return a Comparison that tests the condition-code result of intrinsic 2041 // node Call against constant integer CC using comparison code Cond. 2042 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2043 // and CCValid is the set of possible condition-code results. 2044 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2045 SDValue Call, unsigned CCValid, uint64_t CC, 2046 ISD::CondCode Cond) { 2047 Comparison C(Call, SDValue()); 2048 C.Opcode = Opcode; 2049 C.CCValid = CCValid; 2050 if (Cond == ISD::SETEQ) 2051 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2052 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2053 else if (Cond == ISD::SETNE) 2054 // ...and the inverse of that. 2055 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2056 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2057 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2058 // always true for CC>3. 2059 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2060 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2061 // ...and the inverse of that. 2062 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2063 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2064 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2065 // always true for CC>3. 2066 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2067 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2068 // ...and the inverse of that. 2069 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2070 else 2071 llvm_unreachable("Unexpected integer comparison type"); 2072 C.CCMask &= CCValid; 2073 return C; 2074 } 2075 2076 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2077 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2078 ISD::CondCode Cond, SDLoc DL) { 2079 if (CmpOp1.getOpcode() == ISD::Constant) { 2080 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2081 unsigned Opcode, CCValid; 2082 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2083 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2084 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2085 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2086 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2087 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2088 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2089 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2090 } 2091 Comparison C(CmpOp0, CmpOp1); 2092 C.CCMask = CCMaskForCondCode(Cond); 2093 if (C.Op0.getValueType().isFloatingPoint()) { 2094 C.CCValid = SystemZ::CCMASK_FCMP; 2095 C.Opcode = SystemZISD::FCMP; 2096 adjustForFNeg(C); 2097 } else { 2098 C.CCValid = SystemZ::CCMASK_ICMP; 2099 C.Opcode = SystemZISD::ICMP; 2100 // Choose the type of comparison. Equality and inequality tests can 2101 // use either signed or unsigned comparisons. The choice also doesn't 2102 // matter if both sign bits are known to be clear. In those cases we 2103 // want to give the main isel code the freedom to choose whichever 2104 // form fits best. 2105 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2106 C.CCMask == SystemZ::CCMASK_CMP_NE || 2107 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2108 C.ICmpType = SystemZICMP::Any; 2109 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2110 C.ICmpType = SystemZICMP::UnsignedOnly; 2111 else 2112 C.ICmpType = SystemZICMP::SignedOnly; 2113 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2114 adjustZeroCmp(DAG, DL, C); 2115 adjustSubwordCmp(DAG, DL, C); 2116 adjustForSubtraction(DAG, DL, C); 2117 adjustForLTGFR(C); 2118 adjustICmpTruncate(DAG, DL, C); 2119 } 2120 2121 if (shouldSwapCmpOperands(C)) { 2122 std::swap(C.Op0, C.Op1); 2123 C.CCMask = reverseCCMask(C.CCMask); 2124 } 2125 2126 adjustForTestUnderMask(DAG, DL, C); 2127 return C; 2128 } 2129 2130 // Emit the comparison instruction described by C. 2131 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2132 if (!C.Op1.getNode()) { 2133 SDValue Op; 2134 switch (C.Op0.getOpcode()) { 2135 case ISD::INTRINSIC_W_CHAIN: 2136 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2137 break; 2138 case ISD::INTRINSIC_WO_CHAIN: 2139 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2140 break; 2141 default: 2142 llvm_unreachable("Invalid comparison operands"); 2143 } 2144 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2145 } 2146 if (C.Opcode == SystemZISD::ICMP) 2147 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2148 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2149 if (C.Opcode == SystemZISD::TM) { 2150 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2151 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2152 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2153 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2154 } 2155 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2156 } 2157 2158 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2159 // 64 bits. Extend is the extension type to use. Store the high part 2160 // in Hi and the low part in Lo. 2161 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2162 unsigned Extend, SDValue Op0, SDValue Op1, 2163 SDValue &Hi, SDValue &Lo) { 2164 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2165 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2166 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2167 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2168 DAG.getConstant(32, DL, MVT::i64)); 2169 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2170 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2171 } 2172 2173 // Lower a binary operation that produces two VT results, one in each 2174 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2175 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2176 // on the extended Op0 and (unextended) Op1. Store the even register result 2177 // in Even and the odd register result in Odd. 2178 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2179 unsigned Extend, unsigned Opcode, 2180 SDValue Op0, SDValue Op1, 2181 SDValue &Even, SDValue &Odd) { 2182 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2183 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2184 SDValue(In128, 0), Op1); 2185 bool Is32Bit = is32Bit(VT); 2186 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2187 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2188 } 2189 2190 // Return an i32 value that is 1 if the CC value produced by Glue is 2191 // in the mask CCMask and 0 otherwise. CC is known to have a value 2192 // in CCValid, so other values can be ignored. 2193 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2194 unsigned CCValid, unsigned CCMask) { 2195 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2196 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2197 2198 if (Conversion.XORValue) 2199 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2200 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2201 2202 if (Conversion.AddValue) 2203 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2204 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2205 2206 // The SHR/AND sequence should get optimized to an RISBG. 2207 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2208 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2209 if (Conversion.Bit != 31) 2210 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2211 DAG.getConstant(1, DL, MVT::i32)); 2212 return Result; 2213 } 2214 2215 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2216 // be done directly. IsFP is true if CC is for a floating-point rather than 2217 // integer comparison. 2218 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2219 switch (CC) { 2220 case ISD::SETOEQ: 2221 case ISD::SETEQ: 2222 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2223 2224 case ISD::SETOGE: 2225 case ISD::SETGE: 2226 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2227 2228 case ISD::SETOGT: 2229 case ISD::SETGT: 2230 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2231 2232 case ISD::SETUGT: 2233 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2234 2235 default: 2236 return 0; 2237 } 2238 } 2239 2240 // Return the SystemZISD vector comparison operation for CC or its inverse, 2241 // or 0 if neither can be done directly. Indicate in Invert whether the 2242 // result is for the inverse of CC. IsFP is true if CC is for a 2243 // floating-point rather than integer comparison. 2244 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2245 bool &Invert) { 2246 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2247 Invert = false; 2248 return Opcode; 2249 } 2250 2251 CC = ISD::getSetCCInverse(CC, !IsFP); 2252 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2253 Invert = true; 2254 return Opcode; 2255 } 2256 2257 return 0; 2258 } 2259 2260 // Return a v2f64 that contains the extended form of elements Start and Start+1 2261 // of v4f32 value Op. 2262 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2263 SDValue Op) { 2264 int Mask[] = { Start, -1, Start + 1, -1 }; 2265 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2266 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2267 } 2268 2269 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2270 // producing a result of type VT. 2271 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2272 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2273 // There is no hardware support for v4f32, so extend the vector into 2274 // two v2f64s and compare those. 2275 if (CmpOp0.getValueType() == MVT::v4f32) { 2276 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2277 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2278 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2279 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2280 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2281 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2282 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2283 } 2284 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2285 } 2286 2287 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2288 // an integer mask of type VT. 2289 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2290 ISD::CondCode CC, SDValue CmpOp0, 2291 SDValue CmpOp1) { 2292 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2293 bool Invert = false; 2294 SDValue Cmp; 2295 switch (CC) { 2296 // Handle tests for order using (or (ogt y x) (oge x y)). 2297 case ISD::SETUO: 2298 Invert = true; 2299 case ISD::SETO: { 2300 assert(IsFP && "Unexpected integer comparison"); 2301 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2302 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2303 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2304 break; 2305 } 2306 2307 // Handle <> tests using (or (ogt y x) (ogt x y)). 2308 case ISD::SETUEQ: 2309 Invert = true; 2310 case ISD::SETONE: { 2311 assert(IsFP && "Unexpected integer comparison"); 2312 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2313 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2314 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2315 break; 2316 } 2317 2318 // Otherwise a single comparison is enough. It doesn't really 2319 // matter whether we try the inversion or the swap first, since 2320 // there are no cases where both work. 2321 default: 2322 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2323 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2324 else { 2325 CC = ISD::getSetCCSwappedOperands(CC); 2326 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2327 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2328 else 2329 llvm_unreachable("Unhandled comparison"); 2330 } 2331 break; 2332 } 2333 if (Invert) { 2334 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2335 DAG.getConstant(65535, DL, MVT::i32)); 2336 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2337 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2338 } 2339 return Cmp; 2340 } 2341 2342 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2343 SelectionDAG &DAG) const { 2344 SDValue CmpOp0 = Op.getOperand(0); 2345 SDValue CmpOp1 = Op.getOperand(1); 2346 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2347 SDLoc DL(Op); 2348 EVT VT = Op.getValueType(); 2349 if (VT.isVector()) 2350 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2351 2352 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2353 SDValue Glue = emitCmp(DAG, DL, C); 2354 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2355 } 2356 2357 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2358 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2359 SDValue CmpOp0 = Op.getOperand(2); 2360 SDValue CmpOp1 = Op.getOperand(3); 2361 SDValue Dest = Op.getOperand(4); 2362 SDLoc DL(Op); 2363 2364 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2365 SDValue Glue = emitCmp(DAG, DL, C); 2366 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2367 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2368 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2369 } 2370 2371 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2372 // allowing Pos and Neg to be wider than CmpOp. 2373 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2374 return (Neg.getOpcode() == ISD::SUB && 2375 Neg.getOperand(0).getOpcode() == ISD::Constant && 2376 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2377 Neg.getOperand(1) == Pos && 2378 (Pos == CmpOp || 2379 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2380 Pos.getOperand(0) == CmpOp))); 2381 } 2382 2383 // Return the absolute or negative absolute of Op; IsNegative decides which. 2384 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2385 bool IsNegative) { 2386 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2387 if (IsNegative) 2388 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2389 DAG.getConstant(0, DL, Op.getValueType()), Op); 2390 return Op; 2391 } 2392 2393 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2394 SelectionDAG &DAG) const { 2395 SDValue CmpOp0 = Op.getOperand(0); 2396 SDValue CmpOp1 = Op.getOperand(1); 2397 SDValue TrueOp = Op.getOperand(2); 2398 SDValue FalseOp = Op.getOperand(3); 2399 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2400 SDLoc DL(Op); 2401 2402 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2403 2404 // Check for absolute and negative-absolute selections, including those 2405 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2406 // This check supplements the one in DAGCombiner. 2407 if (C.Opcode == SystemZISD::ICMP && 2408 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2409 C.CCMask != SystemZ::CCMASK_CMP_NE && 2410 C.Op1.getOpcode() == ISD::Constant && 2411 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2412 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2413 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2414 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2415 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2416 } 2417 2418 SDValue Glue = emitCmp(DAG, DL, C); 2419 2420 // Special case for handling -1/0 results. The shifts we use here 2421 // should get optimized with the IPM conversion sequence. 2422 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2423 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2424 if (TrueC && FalseC) { 2425 int64_t TrueVal = TrueC->getSExtValue(); 2426 int64_t FalseVal = FalseC->getSExtValue(); 2427 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2428 // Invert the condition if we want -1 on false. 2429 if (TrueVal == 0) 2430 C.CCMask ^= C.CCValid; 2431 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2432 EVT VT = Op.getValueType(); 2433 // Extend the result to VT. Upper bits are ignored. 2434 if (!is32Bit(VT)) 2435 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2436 // Sign-extend from the low bit. 2437 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2438 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2439 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2440 } 2441 } 2442 2443 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2444 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2445 2446 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2447 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2448 } 2449 2450 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2451 SelectionDAG &DAG) const { 2452 SDLoc DL(Node); 2453 const GlobalValue *GV = Node->getGlobal(); 2454 int64_t Offset = Node->getOffset(); 2455 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2456 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2457 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2458 2459 SDValue Result; 2460 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2461 // Assign anchors at 1<<12 byte boundaries. 2462 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2463 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2464 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2465 2466 // The offset can be folded into the address if it is aligned to a halfword. 2467 Offset -= Anchor; 2468 if (Offset != 0 && (Offset & 1) == 0) { 2469 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2470 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2471 Offset = 0; 2472 } 2473 } else { 2474 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2475 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2476 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2477 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2478 false, false, false, 0); 2479 } 2480 2481 // If there was a non-zero offset that we didn't fold, create an explicit 2482 // addition for it. 2483 if (Offset != 0) 2484 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2485 DAG.getConstant(Offset, DL, PtrVT)); 2486 2487 return Result; 2488 } 2489 2490 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2491 SelectionDAG &DAG, 2492 unsigned Opcode, 2493 SDValue GOTOffset) const { 2494 SDLoc DL(Node); 2495 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2496 SDValue Chain = DAG.getEntryNode(); 2497 SDValue Glue; 2498 2499 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2500 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2501 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2502 Glue = Chain.getValue(1); 2503 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2504 Glue = Chain.getValue(1); 2505 2506 // The first call operand is the chain and the second is the TLS symbol. 2507 SmallVector<SDValue, 8> Ops; 2508 Ops.push_back(Chain); 2509 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2510 Node->getValueType(0), 2511 0, 0)); 2512 2513 // Add argument registers to the end of the list so that they are 2514 // known live into the call. 2515 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2516 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2517 2518 // Add a register mask operand representing the call-preserved registers. 2519 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2520 const uint32_t *Mask = 2521 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2522 assert(Mask && "Missing call preserved mask for calling convention"); 2523 Ops.push_back(DAG.getRegisterMask(Mask)); 2524 2525 // Glue the call to the argument copies. 2526 Ops.push_back(Glue); 2527 2528 // Emit the call. 2529 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2530 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2531 Glue = Chain.getValue(1); 2532 2533 // Copy the return value from %r2. 2534 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2535 } 2536 2537 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2538 SelectionDAG &DAG) const { 2539 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2540 2541 // The high part of the thread pointer is in access register 0. 2542 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2543 DAG.getConstant(0, DL, MVT::i32)); 2544 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2545 2546 // The low part of the thread pointer is in access register 1. 2547 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2548 DAG.getConstant(1, DL, MVT::i32)); 2549 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2550 2551 // Merge them into a single 64-bit address. 2552 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2553 DAG.getConstant(32, DL, PtrVT)); 2554 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2555 } 2556 2557 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2558 SelectionDAG &DAG) const { 2559 if (DAG.getTarget().Options.EmulatedTLS) 2560 return LowerToTLSEmulatedModel(Node, DAG); 2561 SDLoc DL(Node); 2562 const GlobalValue *GV = Node->getGlobal(); 2563 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2564 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2565 2566 SDValue TP = lowerThreadPointer(DL, DAG); 2567 2568 // Get the offset of GA from the thread pointer, based on the TLS model. 2569 SDValue Offset; 2570 switch (model) { 2571 case TLSModel::GeneralDynamic: { 2572 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2573 SystemZConstantPoolValue *CPV = 2574 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2575 2576 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2577 Offset = DAG.getLoad( 2578 PtrVT, DL, DAG.getEntryNode(), Offset, 2579 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2580 false, false, 0); 2581 2582 // Call __tls_get_offset to retrieve the offset. 2583 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2584 break; 2585 } 2586 2587 case TLSModel::LocalDynamic: { 2588 // Load the GOT offset of the module ID. 2589 SystemZConstantPoolValue *CPV = 2590 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2591 2592 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2593 Offset = DAG.getLoad( 2594 PtrVT, DL, DAG.getEntryNode(), Offset, 2595 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2596 false, false, 0); 2597 2598 // Call __tls_get_offset to retrieve the module base offset. 2599 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2600 2601 // Note: The SystemZLDCleanupPass will remove redundant computations 2602 // of the module base offset. Count total number of local-dynamic 2603 // accesses to trigger execution of that pass. 2604 SystemZMachineFunctionInfo* MFI = 2605 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2606 MFI->incNumLocalDynamicTLSAccesses(); 2607 2608 // Add the per-symbol offset. 2609 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2610 2611 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2612 DTPOffset = DAG.getLoad( 2613 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2614 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2615 false, false, 0); 2616 2617 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2618 break; 2619 } 2620 2621 case TLSModel::InitialExec: { 2622 // Load the offset from the GOT. 2623 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2624 SystemZII::MO_INDNTPOFF); 2625 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2626 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2627 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2628 false, false, false, 0); 2629 break; 2630 } 2631 2632 case TLSModel::LocalExec: { 2633 // Force the offset into the constant pool and load it from there. 2634 SystemZConstantPoolValue *CPV = 2635 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2636 2637 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2638 Offset = DAG.getLoad( 2639 PtrVT, DL, DAG.getEntryNode(), Offset, 2640 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2641 false, false, 0); 2642 break; 2643 } 2644 } 2645 2646 // Add the base and offset together. 2647 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2648 } 2649 2650 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2651 SelectionDAG &DAG) const { 2652 SDLoc DL(Node); 2653 const BlockAddress *BA = Node->getBlockAddress(); 2654 int64_t Offset = Node->getOffset(); 2655 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2656 2657 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2658 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2659 return Result; 2660 } 2661 2662 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2663 SelectionDAG &DAG) const { 2664 SDLoc DL(JT); 2665 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2666 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2667 2668 // Use LARL to load the address of the table. 2669 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2670 } 2671 2672 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2673 SelectionDAG &DAG) const { 2674 SDLoc DL(CP); 2675 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2676 2677 SDValue Result; 2678 if (CP->isMachineConstantPoolEntry()) 2679 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2680 CP->getAlignment()); 2681 else 2682 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2683 CP->getAlignment(), CP->getOffset()); 2684 2685 // Use LARL to load the address of the constant pool entry. 2686 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2687 } 2688 2689 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2690 SelectionDAG &DAG) const { 2691 MachineFunction &MF = DAG.getMachineFunction(); 2692 MachineFrameInfo *MFI = MF.getFrameInfo(); 2693 MFI->setFrameAddressIsTaken(true); 2694 2695 SDLoc DL(Op); 2696 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2697 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2698 2699 // If the back chain frame index has not been allocated yet, do so. 2700 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2701 int BackChainIdx = FI->getFramePointerSaveIndex(); 2702 if (!BackChainIdx) { 2703 // By definition, the frame address is the address of the back chain. 2704 BackChainIdx = MFI->CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2705 FI->setFramePointerSaveIndex(BackChainIdx); 2706 } 2707 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2708 2709 // FIXME The frontend should detect this case. 2710 if (Depth > 0) { 2711 report_fatal_error("Unsupported stack frame traversal count"); 2712 } 2713 2714 return BackChain; 2715 } 2716 2717 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2718 SelectionDAG &DAG) const { 2719 MachineFunction &MF = DAG.getMachineFunction(); 2720 MachineFrameInfo *MFI = MF.getFrameInfo(); 2721 MFI->setReturnAddressIsTaken(true); 2722 2723 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2724 return SDValue(); 2725 2726 SDLoc DL(Op); 2727 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2728 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2729 2730 // FIXME The frontend should detect this case. 2731 if (Depth > 0) { 2732 report_fatal_error("Unsupported stack frame traversal count"); 2733 } 2734 2735 // Return R14D, which has the return address. Mark it an implicit live-in. 2736 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2737 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2738 } 2739 2740 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2741 SelectionDAG &DAG) const { 2742 SDLoc DL(Op); 2743 SDValue In = Op.getOperand(0); 2744 EVT InVT = In.getValueType(); 2745 EVT ResVT = Op.getValueType(); 2746 2747 // Convert loads directly. This is normally done by DAGCombiner, 2748 // but we need this case for bitcasts that are created during lowering 2749 // and which are then lowered themselves. 2750 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2751 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2752 LoadN->getMemOperand()); 2753 2754 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2755 SDValue In64; 2756 if (Subtarget.hasHighWord()) { 2757 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2758 MVT::i64); 2759 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2760 MVT::i64, SDValue(U64, 0), In); 2761 } else { 2762 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2763 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2764 DAG.getConstant(32, DL, MVT::i64)); 2765 } 2766 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2767 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2768 DL, MVT::f32, Out64); 2769 } 2770 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2771 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2772 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2773 MVT::f64, SDValue(U64, 0), In); 2774 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2775 if (Subtarget.hasHighWord()) 2776 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2777 MVT::i32, Out64); 2778 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2779 DAG.getConstant(32, DL, MVT::i64)); 2780 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2781 } 2782 llvm_unreachable("Unexpected bitcast combination"); 2783 } 2784 2785 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2786 SelectionDAG &DAG) const { 2787 MachineFunction &MF = DAG.getMachineFunction(); 2788 SystemZMachineFunctionInfo *FuncInfo = 2789 MF.getInfo<SystemZMachineFunctionInfo>(); 2790 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2791 2792 SDValue Chain = Op.getOperand(0); 2793 SDValue Addr = Op.getOperand(1); 2794 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2795 SDLoc DL(Op); 2796 2797 // The initial values of each field. 2798 const unsigned NumFields = 4; 2799 SDValue Fields[NumFields] = { 2800 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2801 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2802 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2803 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2804 }; 2805 2806 // Store each field into its respective slot. 2807 SDValue MemOps[NumFields]; 2808 unsigned Offset = 0; 2809 for (unsigned I = 0; I < NumFields; ++I) { 2810 SDValue FieldAddr = Addr; 2811 if (Offset != 0) 2812 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2813 DAG.getIntPtrConstant(Offset, DL)); 2814 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2815 MachinePointerInfo(SV, Offset), 2816 false, false, 0); 2817 Offset += 8; 2818 } 2819 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2820 } 2821 2822 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2823 SelectionDAG &DAG) const { 2824 SDValue Chain = Op.getOperand(0); 2825 SDValue DstPtr = Op.getOperand(1); 2826 SDValue SrcPtr = Op.getOperand(2); 2827 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2828 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2829 SDLoc DL(Op); 2830 2831 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2832 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2833 /*isTailCall*/false, 2834 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2835 } 2836 2837 SDValue SystemZTargetLowering:: 2838 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2839 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2840 MachineFunction &MF = DAG.getMachineFunction(); 2841 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack"); 2842 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 2843 2844 SDValue Chain = Op.getOperand(0); 2845 SDValue Size = Op.getOperand(1); 2846 SDValue Align = Op.getOperand(2); 2847 SDLoc DL(Op); 2848 2849 // If user has set the no alignment function attribute, ignore 2850 // alloca alignments. 2851 uint64_t AlignVal = (RealignOpt ? 2852 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2853 2854 uint64_t StackAlign = TFI->getStackAlignment(); 2855 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2856 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2857 2858 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2859 SDValue NeededSpace = Size; 2860 2861 // Get a reference to the stack pointer. 2862 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2863 2864 // If we need a backchain, save it now. 2865 SDValue Backchain; 2866 if (StoreBackchain) 2867 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo(), 2868 false, false, false, 0); 2869 2870 // Add extra space for alignment if needed. 2871 if (ExtraAlignSpace) 2872 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2873 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2874 2875 // Get the new stack pointer value. 2876 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2877 2878 // Copy the new stack pointer back. 2879 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2880 2881 // The allocated data lives above the 160 bytes allocated for the standard 2882 // frame, plus any outgoing stack arguments. We don't know how much that 2883 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2884 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2885 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2886 2887 // Dynamically realign if needed. 2888 if (RequiredAlign > StackAlign) { 2889 Result = 2890 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2891 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2892 Result = 2893 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2894 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2895 } 2896 2897 if (StoreBackchain) 2898 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo(), 2899 false, false, 0); 2900 2901 SDValue Ops[2] = { Result, Chain }; 2902 return DAG.getMergeValues(Ops, DL); 2903 } 2904 2905 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 2906 SDValue Op, SelectionDAG &DAG) const { 2907 SDLoc DL(Op); 2908 2909 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2910 } 2911 2912 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2913 SelectionDAG &DAG) const { 2914 EVT VT = Op.getValueType(); 2915 SDLoc DL(Op); 2916 SDValue Ops[2]; 2917 if (is32Bit(VT)) 2918 // Just do a normal 64-bit multiplication and extract the results. 2919 // We define this so that it can be used for constant division. 2920 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2921 Op.getOperand(1), Ops[1], Ops[0]); 2922 else { 2923 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2924 // 2925 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2926 // 2927 // but using the fact that the upper halves are either all zeros 2928 // or all ones: 2929 // 2930 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2931 // 2932 // and grouping the right terms together since they are quicker than the 2933 // multiplication: 2934 // 2935 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2936 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2937 SDValue LL = Op.getOperand(0); 2938 SDValue RL = Op.getOperand(1); 2939 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2940 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2941 // UMUL_LOHI64 returns the low result in the odd register and the high 2942 // result in the even register. SMUL_LOHI is defined to return the 2943 // low half first, so the results are in reverse order. 2944 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2945 LL, RL, Ops[1], Ops[0]); 2946 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2947 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2948 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2949 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2950 } 2951 return DAG.getMergeValues(Ops, DL); 2952 } 2953 2954 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2955 SelectionDAG &DAG) const { 2956 EVT VT = Op.getValueType(); 2957 SDLoc DL(Op); 2958 SDValue Ops[2]; 2959 if (is32Bit(VT)) 2960 // Just do a normal 64-bit multiplication and extract the results. 2961 // We define this so that it can be used for constant division. 2962 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2963 Op.getOperand(1), Ops[1], Ops[0]); 2964 else 2965 // UMUL_LOHI64 returns the low result in the odd register and the high 2966 // result in the even register. UMUL_LOHI is defined to return the 2967 // low half first, so the results are in reverse order. 2968 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2969 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2970 return DAG.getMergeValues(Ops, DL); 2971 } 2972 2973 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2974 SelectionDAG &DAG) const { 2975 SDValue Op0 = Op.getOperand(0); 2976 SDValue Op1 = Op.getOperand(1); 2977 EVT VT = Op.getValueType(); 2978 SDLoc DL(Op); 2979 unsigned Opcode; 2980 2981 // We use DSGF for 32-bit division. 2982 if (is32Bit(VT)) { 2983 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2984 Opcode = SystemZISD::SDIVREM32; 2985 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2986 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2987 Opcode = SystemZISD::SDIVREM32; 2988 } else 2989 Opcode = SystemZISD::SDIVREM64; 2990 2991 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2992 // input is "don't care". The instruction returns the remainder in 2993 // the even register and the quotient in the odd register. 2994 SDValue Ops[2]; 2995 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2996 Op0, Op1, Ops[1], Ops[0]); 2997 return DAG.getMergeValues(Ops, DL); 2998 } 2999 3000 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3001 SelectionDAG &DAG) const { 3002 EVT VT = Op.getValueType(); 3003 SDLoc DL(Op); 3004 3005 // DL(G) uses a double-width dividend, so we need to clear the even 3006 // register in the GR128 input. The instruction returns the remainder 3007 // in the even register and the quotient in the odd register. 3008 SDValue Ops[2]; 3009 if (is32Bit(VT)) 3010 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 3011 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3012 else 3013 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 3014 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3015 return DAG.getMergeValues(Ops, DL); 3016 } 3017 3018 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3019 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3020 3021 // Get the known-zero masks for each operand. 3022 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3023 APInt KnownZero[2], KnownOne[2]; 3024 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 3025 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 3026 3027 // See if the upper 32 bits of one operand and the lower 32 bits of the 3028 // other are known zero. They are the low and high operands respectively. 3029 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 3030 KnownZero[1].getZExtValue() }; 3031 unsigned High, Low; 3032 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3033 High = 1, Low = 0; 3034 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3035 High = 0, Low = 1; 3036 else 3037 return Op; 3038 3039 SDValue LowOp = Ops[Low]; 3040 SDValue HighOp = Ops[High]; 3041 3042 // If the high part is a constant, we're better off using IILH. 3043 if (HighOp.getOpcode() == ISD::Constant) 3044 return Op; 3045 3046 // If the low part is a constant that is outside the range of LHI, 3047 // then we're better off using IILF. 3048 if (LowOp.getOpcode() == ISD::Constant) { 3049 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3050 if (!isInt<16>(Value)) 3051 return Op; 3052 } 3053 3054 // Check whether the high part is an AND that doesn't change the 3055 // high 32 bits and just masks out low bits. We can skip it if so. 3056 if (HighOp.getOpcode() == ISD::AND && 3057 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3058 SDValue HighOp0 = HighOp.getOperand(0); 3059 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3060 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3061 HighOp = HighOp0; 3062 } 3063 3064 // Take advantage of the fact that all GR32 operations only change the 3065 // low 32 bits by truncating Low to an i32 and inserting it directly 3066 // using a subreg. The interesting cases are those where the truncation 3067 // can be folded. 3068 SDLoc DL(Op); 3069 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3070 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3071 MVT::i64, HighOp, Low32); 3072 } 3073 3074 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3075 SelectionDAG &DAG) const { 3076 EVT VT = Op.getValueType(); 3077 SDLoc DL(Op); 3078 Op = Op.getOperand(0); 3079 3080 // Handle vector types via VPOPCT. 3081 if (VT.isVector()) { 3082 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3083 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3084 switch (VT.getVectorElementType().getSizeInBits()) { 3085 case 8: 3086 break; 3087 case 16: { 3088 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3089 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3090 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3091 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3092 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3093 break; 3094 } 3095 case 32: { 3096 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3097 DAG.getConstant(0, DL, MVT::i32)); 3098 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3099 break; 3100 } 3101 case 64: { 3102 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3103 DAG.getConstant(0, DL, MVT::i32)); 3104 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3105 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3106 break; 3107 } 3108 default: 3109 llvm_unreachable("Unexpected type"); 3110 } 3111 return Op; 3112 } 3113 3114 // Get the known-zero mask for the operand. 3115 APInt KnownZero, KnownOne; 3116 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3117 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3118 if (NumSignificantBits == 0) 3119 return DAG.getConstant(0, DL, VT); 3120 3121 // Skip known-zero high parts of the operand. 3122 int64_t OrigBitSize = VT.getSizeInBits(); 3123 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3124 BitSize = std::min(BitSize, OrigBitSize); 3125 3126 // The POPCNT instruction counts the number of bits in each byte. 3127 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3128 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3129 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3130 3131 // Add up per-byte counts in a binary tree. All bits of Op at 3132 // position larger than BitSize remain zero throughout. 3133 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3134 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3135 if (BitSize != OrigBitSize) 3136 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3137 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3138 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3139 } 3140 3141 // Extract overall result from high byte. 3142 if (BitSize > 8) 3143 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3144 DAG.getConstant(BitSize - 8, DL, VT)); 3145 3146 return Op; 3147 } 3148 3149 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3150 SelectionDAG &DAG) const { 3151 SDLoc DL(Op); 3152 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3153 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3154 SynchronizationScope FenceScope = static_cast<SynchronizationScope>( 3155 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3156 3157 // The only fence that needs an instruction is a sequentially-consistent 3158 // cross-thread fence. 3159 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3160 FenceScope == CrossThread) { 3161 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3162 Op.getOperand(0)), 3163 0); 3164 } 3165 3166 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3167 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3168 } 3169 3170 // Op is an atomic load. Lower it into a normal volatile load. 3171 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3172 SelectionDAG &DAG) const { 3173 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3174 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3175 Node->getChain(), Node->getBasePtr(), 3176 Node->getMemoryVT(), Node->getMemOperand()); 3177 } 3178 3179 // Op is an atomic store. Lower it into a normal volatile store followed 3180 // by a serialization. 3181 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3182 SelectionDAG &DAG) const { 3183 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3184 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3185 Node->getBasePtr(), Node->getMemoryVT(), 3186 Node->getMemOperand()); 3187 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3188 Chain), 0); 3189 } 3190 3191 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3192 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3193 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3194 SelectionDAG &DAG, 3195 unsigned Opcode) const { 3196 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3197 3198 // 32-bit operations need no code outside the main loop. 3199 EVT NarrowVT = Node->getMemoryVT(); 3200 EVT WideVT = MVT::i32; 3201 if (NarrowVT == WideVT) 3202 return Op; 3203 3204 int64_t BitSize = NarrowVT.getSizeInBits(); 3205 SDValue ChainIn = Node->getChain(); 3206 SDValue Addr = Node->getBasePtr(); 3207 SDValue Src2 = Node->getVal(); 3208 MachineMemOperand *MMO = Node->getMemOperand(); 3209 SDLoc DL(Node); 3210 EVT PtrVT = Addr.getValueType(); 3211 3212 // Convert atomic subtracts of constants into additions. 3213 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3214 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3215 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3216 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3217 } 3218 3219 // Get the address of the containing word. 3220 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3221 DAG.getConstant(-4, DL, PtrVT)); 3222 3223 // Get the number of bits that the word must be rotated left in order 3224 // to bring the field to the top bits of a GR32. 3225 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3226 DAG.getConstant(3, DL, PtrVT)); 3227 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3228 3229 // Get the complementing shift amount, for rotating a field in the top 3230 // bits back to its proper position. 3231 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3232 DAG.getConstant(0, DL, WideVT), BitShift); 3233 3234 // Extend the source operand to 32 bits and prepare it for the inner loop. 3235 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3236 // operations require the source to be shifted in advance. (This shift 3237 // can be folded if the source is constant.) For AND and NAND, the lower 3238 // bits must be set, while for other opcodes they should be left clear. 3239 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3240 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3241 DAG.getConstant(32 - BitSize, DL, WideVT)); 3242 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3243 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3244 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3245 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3246 3247 // Construct the ATOMIC_LOADW_* node. 3248 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3249 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3250 DAG.getConstant(BitSize, DL, WideVT) }; 3251 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3252 NarrowVT, MMO); 3253 3254 // Rotate the result of the final CS so that the field is in the lower 3255 // bits of a GR32, then truncate it. 3256 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3257 DAG.getConstant(BitSize, DL, WideVT)); 3258 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3259 3260 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3261 return DAG.getMergeValues(RetOps, DL); 3262 } 3263 3264 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3265 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3266 // operations into additions. 3267 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3268 SelectionDAG &DAG) const { 3269 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3270 EVT MemVT = Node->getMemoryVT(); 3271 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3272 // A full-width operation. 3273 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3274 SDValue Src2 = Node->getVal(); 3275 SDValue NegSrc2; 3276 SDLoc DL(Src2); 3277 3278 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3279 // Use an addition if the operand is constant and either LAA(G) is 3280 // available or the negative value is in the range of A(G)FHI. 3281 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3282 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3283 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3284 } else if (Subtarget.hasInterlockedAccess1()) 3285 // Use LAA(G) if available. 3286 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3287 Src2); 3288 3289 if (NegSrc2.getNode()) 3290 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3291 Node->getChain(), Node->getBasePtr(), NegSrc2, 3292 Node->getMemOperand(), Node->getOrdering(), 3293 Node->getSynchScope()); 3294 3295 // Use the node as-is. 3296 return Op; 3297 } 3298 3299 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3300 } 3301 3302 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3303 // into a fullword ATOMIC_CMP_SWAPW operation. 3304 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3305 SelectionDAG &DAG) const { 3306 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3307 3308 // We have native support for 32-bit compare and swap. 3309 EVT NarrowVT = Node->getMemoryVT(); 3310 EVT WideVT = MVT::i32; 3311 if (NarrowVT == WideVT) 3312 return Op; 3313 3314 int64_t BitSize = NarrowVT.getSizeInBits(); 3315 SDValue ChainIn = Node->getOperand(0); 3316 SDValue Addr = Node->getOperand(1); 3317 SDValue CmpVal = Node->getOperand(2); 3318 SDValue SwapVal = Node->getOperand(3); 3319 MachineMemOperand *MMO = Node->getMemOperand(); 3320 SDLoc DL(Node); 3321 EVT PtrVT = Addr.getValueType(); 3322 3323 // Get the address of the containing word. 3324 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3325 DAG.getConstant(-4, DL, PtrVT)); 3326 3327 // Get the number of bits that the word must be rotated left in order 3328 // to bring the field to the top bits of a GR32. 3329 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3330 DAG.getConstant(3, DL, PtrVT)); 3331 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3332 3333 // Get the complementing shift amount, for rotating a field in the top 3334 // bits back to its proper position. 3335 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3336 DAG.getConstant(0, DL, WideVT), BitShift); 3337 3338 // Construct the ATOMIC_CMP_SWAPW node. 3339 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3340 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3341 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3342 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3343 VTList, Ops, NarrowVT, MMO); 3344 return AtomicOp; 3345 } 3346 3347 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3348 SelectionDAG &DAG) const { 3349 MachineFunction &MF = DAG.getMachineFunction(); 3350 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3351 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3352 SystemZ::R15D, Op.getValueType()); 3353 } 3354 3355 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3356 SelectionDAG &DAG) const { 3357 MachineFunction &MF = DAG.getMachineFunction(); 3358 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3359 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3360 3361 SDValue Chain = Op.getOperand(0); 3362 SDValue NewSP = Op.getOperand(1); 3363 SDValue Backchain; 3364 SDLoc DL(Op); 3365 3366 if (StoreBackchain) { 3367 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3368 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo(), 3369 false, false, false, 0); 3370 } 3371 3372 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3373 3374 if (StoreBackchain) 3375 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo(), 3376 false, false, 0); 3377 3378 return Chain; 3379 } 3380 3381 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3382 SelectionDAG &DAG) const { 3383 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3384 if (!IsData) 3385 // Just preserve the chain. 3386 return Op.getOperand(0); 3387 3388 SDLoc DL(Op); 3389 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3390 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3391 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3392 SDValue Ops[] = { 3393 Op.getOperand(0), 3394 DAG.getConstant(Code, DL, MVT::i32), 3395 Op.getOperand(1) 3396 }; 3397 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3398 Node->getVTList(), Ops, 3399 Node->getMemoryVT(), Node->getMemOperand()); 3400 } 3401 3402 // Return an i32 that contains the value of CC immediately after After, 3403 // whose final operand must be MVT::Glue. 3404 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3405 SDLoc DL(After); 3406 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3407 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3408 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3409 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3410 } 3411 3412 SDValue 3413 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3414 SelectionDAG &DAG) const { 3415 unsigned Opcode, CCValid; 3416 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3417 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3418 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3419 SDValue CC = getCCResult(DAG, Glued.getNode()); 3420 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3421 return SDValue(); 3422 } 3423 3424 return SDValue(); 3425 } 3426 3427 SDValue 3428 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3429 SelectionDAG &DAG) const { 3430 unsigned Opcode, CCValid; 3431 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3432 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3433 SDValue CC = getCCResult(DAG, Glued.getNode()); 3434 if (Op->getNumValues() == 1) 3435 return CC; 3436 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3437 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3438 CC); 3439 } 3440 3441 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3442 switch (Id) { 3443 case Intrinsic::thread_pointer: 3444 return lowerThreadPointer(SDLoc(Op), DAG); 3445 3446 case Intrinsic::s390_vpdi: 3447 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3448 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3449 3450 case Intrinsic::s390_vperm: 3451 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3452 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3453 3454 case Intrinsic::s390_vuphb: 3455 case Intrinsic::s390_vuphh: 3456 case Intrinsic::s390_vuphf: 3457 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3458 Op.getOperand(1)); 3459 3460 case Intrinsic::s390_vuplhb: 3461 case Intrinsic::s390_vuplhh: 3462 case Intrinsic::s390_vuplhf: 3463 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3464 Op.getOperand(1)); 3465 3466 case Intrinsic::s390_vuplb: 3467 case Intrinsic::s390_vuplhw: 3468 case Intrinsic::s390_vuplf: 3469 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3470 Op.getOperand(1)); 3471 3472 case Intrinsic::s390_vupllb: 3473 case Intrinsic::s390_vupllh: 3474 case Intrinsic::s390_vupllf: 3475 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3476 Op.getOperand(1)); 3477 3478 case Intrinsic::s390_vsumb: 3479 case Intrinsic::s390_vsumh: 3480 case Intrinsic::s390_vsumgh: 3481 case Intrinsic::s390_vsumgf: 3482 case Intrinsic::s390_vsumqf: 3483 case Intrinsic::s390_vsumqg: 3484 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3485 Op.getOperand(1), Op.getOperand(2)); 3486 } 3487 3488 return SDValue(); 3489 } 3490 3491 namespace { 3492 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3493 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3494 // Operand is the constant third operand, otherwise it is the number of 3495 // bytes in each element of the result. 3496 struct Permute { 3497 unsigned Opcode; 3498 unsigned Operand; 3499 unsigned char Bytes[SystemZ::VectorBytes]; 3500 }; 3501 } 3502 3503 static const Permute PermuteForms[] = { 3504 // VMRHG 3505 { SystemZISD::MERGE_HIGH, 8, 3506 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3507 // VMRHF 3508 { SystemZISD::MERGE_HIGH, 4, 3509 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3510 // VMRHH 3511 { SystemZISD::MERGE_HIGH, 2, 3512 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3513 // VMRHB 3514 { SystemZISD::MERGE_HIGH, 1, 3515 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3516 // VMRLG 3517 { SystemZISD::MERGE_LOW, 8, 3518 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3519 // VMRLF 3520 { SystemZISD::MERGE_LOW, 4, 3521 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3522 // VMRLH 3523 { SystemZISD::MERGE_LOW, 2, 3524 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3525 // VMRLB 3526 { SystemZISD::MERGE_LOW, 1, 3527 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3528 // VPKG 3529 { SystemZISD::PACK, 4, 3530 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3531 // VPKF 3532 { SystemZISD::PACK, 2, 3533 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3534 // VPKH 3535 { SystemZISD::PACK, 1, 3536 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3537 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3538 { SystemZISD::PERMUTE_DWORDS, 4, 3539 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3540 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3541 { SystemZISD::PERMUTE_DWORDS, 1, 3542 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3543 }; 3544 3545 // Called after matching a vector shuffle against a particular pattern. 3546 // Both the original shuffle and the pattern have two vector operands. 3547 // OpNos[0] is the operand of the original shuffle that should be used for 3548 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3549 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3550 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3551 // for operands 0 and 1 of the pattern. 3552 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3553 if (OpNos[0] < 0) { 3554 if (OpNos[1] < 0) 3555 return false; 3556 OpNo0 = OpNo1 = OpNos[1]; 3557 } else if (OpNos[1] < 0) { 3558 OpNo0 = OpNo1 = OpNos[0]; 3559 } else { 3560 OpNo0 = OpNos[0]; 3561 OpNo1 = OpNos[1]; 3562 } 3563 return true; 3564 } 3565 3566 // Bytes is a VPERM-like permute vector, except that -1 is used for 3567 // undefined bytes. Return true if the VPERM can be implemented using P. 3568 // When returning true set OpNo0 to the VPERM operand that should be 3569 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3570 // 3571 // For example, if swapping the VPERM operands allows P to match, OpNo0 3572 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3573 // operand, but rewriting it to use two duplicated operands allows it to 3574 // match P, then OpNo0 and OpNo1 will be the same. 3575 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3576 unsigned &OpNo0, unsigned &OpNo1) { 3577 int OpNos[] = { -1, -1 }; 3578 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3579 int Elt = Bytes[I]; 3580 if (Elt >= 0) { 3581 // Make sure that the two permute vectors use the same suboperand 3582 // byte number. Only the operand numbers (the high bits) are 3583 // allowed to differ. 3584 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3585 return false; 3586 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3587 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3588 // Make sure that the operand mappings are consistent with previous 3589 // elements. 3590 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3591 return false; 3592 OpNos[ModelOpNo] = RealOpNo; 3593 } 3594 } 3595 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3596 } 3597 3598 // As above, but search for a matching permute. 3599 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3600 unsigned &OpNo0, unsigned &OpNo1) { 3601 for (auto &P : PermuteForms) 3602 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3603 return &P; 3604 return nullptr; 3605 } 3606 3607 // Bytes is a VPERM-like permute vector, except that -1 is used for 3608 // undefined bytes. This permute is an operand of an outer permute. 3609 // See whether redistributing the -1 bytes gives a shuffle that can be 3610 // implemented using P. If so, set Transform to a VPERM-like permute vector 3611 // that, when applied to the result of P, gives the original permute in Bytes. 3612 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3613 const Permute &P, 3614 SmallVectorImpl<int> &Transform) { 3615 unsigned To = 0; 3616 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3617 int Elt = Bytes[From]; 3618 if (Elt < 0) 3619 // Byte number From of the result is undefined. 3620 Transform[From] = -1; 3621 else { 3622 while (P.Bytes[To] != Elt) { 3623 To += 1; 3624 if (To == SystemZ::VectorBytes) 3625 return false; 3626 } 3627 Transform[From] = To; 3628 } 3629 } 3630 return true; 3631 } 3632 3633 // As above, but search for a matching permute. 3634 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3635 SmallVectorImpl<int> &Transform) { 3636 for (auto &P : PermuteForms) 3637 if (matchDoublePermute(Bytes, P, Transform)) 3638 return &P; 3639 return nullptr; 3640 } 3641 3642 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3643 // as if it had type vNi8. 3644 static void getVPermMask(ShuffleVectorSDNode *VSN, 3645 SmallVectorImpl<int> &Bytes) { 3646 EVT VT = VSN->getValueType(0); 3647 unsigned NumElements = VT.getVectorNumElements(); 3648 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3649 Bytes.resize(NumElements * BytesPerElement, -1); 3650 for (unsigned I = 0; I < NumElements; ++I) { 3651 int Index = VSN->getMaskElt(I); 3652 if (Index >= 0) 3653 for (unsigned J = 0; J < BytesPerElement; ++J) 3654 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3655 } 3656 } 3657 3658 // Bytes is a VPERM-like permute vector, except that -1 is used for 3659 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3660 // the result come from a contiguous sequence of bytes from one input. 3661 // Set Base to the selector for the first byte if so. 3662 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3663 unsigned BytesPerElement, int &Base) { 3664 Base = -1; 3665 for (unsigned I = 0; I < BytesPerElement; ++I) { 3666 if (Bytes[Start + I] >= 0) { 3667 unsigned Elem = Bytes[Start + I]; 3668 if (Base < 0) { 3669 Base = Elem - I; 3670 // Make sure the bytes would come from one input operand. 3671 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3672 return false; 3673 } else if (unsigned(Base) != Elem - I) 3674 return false; 3675 } 3676 } 3677 return true; 3678 } 3679 3680 // Bytes is a VPERM-like permute vector, except that -1 is used for 3681 // undefined bytes. Return true if it can be performed using VSLDI. 3682 // When returning true, set StartIndex to the shift amount and OpNo0 3683 // and OpNo1 to the VPERM operands that should be used as the first 3684 // and second shift operand respectively. 3685 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3686 unsigned &StartIndex, unsigned &OpNo0, 3687 unsigned &OpNo1) { 3688 int OpNos[] = { -1, -1 }; 3689 int Shift = -1; 3690 for (unsigned I = 0; I < 16; ++I) { 3691 int Index = Bytes[I]; 3692 if (Index >= 0) { 3693 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3694 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3695 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3696 if (Shift < 0) 3697 Shift = ExpectedShift; 3698 else if (Shift != ExpectedShift) 3699 return false; 3700 // Make sure that the operand mappings are consistent with previous 3701 // elements. 3702 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3703 return false; 3704 OpNos[ModelOpNo] = RealOpNo; 3705 } 3706 } 3707 StartIndex = Shift; 3708 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3709 } 3710 3711 // Create a node that performs P on operands Op0 and Op1, casting the 3712 // operands to the appropriate type. The type of the result is determined by P. 3713 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3714 const Permute &P, SDValue Op0, SDValue Op1) { 3715 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3716 // elements of a PACK are twice as wide as the outputs. 3717 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3718 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3719 P.Operand); 3720 // Cast both operands to the appropriate type. 3721 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3722 SystemZ::VectorBytes / InBytes); 3723 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3724 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3725 SDValue Op; 3726 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3727 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3728 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3729 } else if (P.Opcode == SystemZISD::PACK) { 3730 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3731 SystemZ::VectorBytes / P.Operand); 3732 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3733 } else { 3734 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3735 } 3736 return Op; 3737 } 3738 3739 // Bytes is a VPERM-like permute vector, except that -1 is used for 3740 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3741 // VSLDI or VPERM. 3742 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3743 const SmallVectorImpl<int> &Bytes) { 3744 for (unsigned I = 0; I < 2; ++I) 3745 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3746 3747 // First see whether VSLDI can be used. 3748 unsigned StartIndex, OpNo0, OpNo1; 3749 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3750 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3751 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3752 3753 // Fall back on VPERM. Construct an SDNode for the permute vector. 3754 SDValue IndexNodes[SystemZ::VectorBytes]; 3755 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3756 if (Bytes[I] >= 0) 3757 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3758 else 3759 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3760 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3761 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3762 } 3763 3764 namespace { 3765 // Describes a general N-operand vector shuffle. 3766 struct GeneralShuffle { 3767 GeneralShuffle(EVT vt) : VT(vt) {} 3768 void addUndef(); 3769 void add(SDValue, unsigned); 3770 SDValue getNode(SelectionDAG &, SDLoc); 3771 3772 // The operands of the shuffle. 3773 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3774 3775 // Index I is -1 if byte I of the result is undefined. Otherwise the 3776 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3777 // Bytes[I] / SystemZ::VectorBytes. 3778 SmallVector<int, SystemZ::VectorBytes> Bytes; 3779 3780 // The type of the shuffle result. 3781 EVT VT; 3782 }; 3783 } 3784 3785 // Add an extra undefined element to the shuffle. 3786 void GeneralShuffle::addUndef() { 3787 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3788 for (unsigned I = 0; I < BytesPerElement; ++I) 3789 Bytes.push_back(-1); 3790 } 3791 3792 // Add an extra element to the shuffle, taking it from element Elem of Op. 3793 // A null Op indicates a vector input whose value will be calculated later; 3794 // there is at most one such input per shuffle and it always has the same 3795 // type as the result. 3796 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3797 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3798 3799 // The source vector can have wider elements than the result, 3800 // either through an explicit TRUNCATE or because of type legalization. 3801 // We want the least significant part. 3802 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3803 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3804 assert(FromBytesPerElement >= BytesPerElement && 3805 "Invalid EXTRACT_VECTOR_ELT"); 3806 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3807 (FromBytesPerElement - BytesPerElement)); 3808 3809 // Look through things like shuffles and bitcasts. 3810 while (Op.getNode()) { 3811 if (Op.getOpcode() == ISD::BITCAST) 3812 Op = Op.getOperand(0); 3813 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3814 // See whether the bytes we need come from a contiguous part of one 3815 // operand. 3816 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3817 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3818 int NewByte; 3819 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3820 break; 3821 if (NewByte < 0) { 3822 addUndef(); 3823 return; 3824 } 3825 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3826 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3827 } else if (Op.isUndef()) { 3828 addUndef(); 3829 return; 3830 } else 3831 break; 3832 } 3833 3834 // Make sure that the source of the extraction is in Ops. 3835 unsigned OpNo = 0; 3836 for (; OpNo < Ops.size(); ++OpNo) 3837 if (Ops[OpNo] == Op) 3838 break; 3839 if (OpNo == Ops.size()) 3840 Ops.push_back(Op); 3841 3842 // Add the element to Bytes. 3843 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3844 for (unsigned I = 0; I < BytesPerElement; ++I) 3845 Bytes.push_back(Base + I); 3846 } 3847 3848 // Return SDNodes for the completed shuffle. 3849 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3850 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3851 3852 if (Ops.size() == 0) 3853 return DAG.getUNDEF(VT); 3854 3855 // Make sure that there are at least two shuffle operands. 3856 if (Ops.size() == 1) 3857 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3858 3859 // Create a tree of shuffles, deferring root node until after the loop. 3860 // Try to redistribute the undefined elements of non-root nodes so that 3861 // the non-root shuffles match something like a pack or merge, then adjust 3862 // the parent node's permute vector to compensate for the new order. 3863 // Among other things, this copes with vectors like <2 x i16> that were 3864 // padded with undefined elements during type legalization. 3865 // 3866 // In the best case this redistribution will lead to the whole tree 3867 // using packs and merges. It should rarely be a loss in other cases. 3868 unsigned Stride = 1; 3869 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3870 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3871 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3872 3873 // Create a mask for just these two operands. 3874 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3875 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3876 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3877 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3878 if (OpNo == I) 3879 NewBytes[J] = Byte; 3880 else if (OpNo == I + Stride) 3881 NewBytes[J] = SystemZ::VectorBytes + Byte; 3882 else 3883 NewBytes[J] = -1; 3884 } 3885 // See if it would be better to reorganize NewMask to avoid using VPERM. 3886 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3887 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3888 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3889 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3890 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3891 if (NewBytes[J] >= 0) { 3892 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3893 "Invalid double permute"); 3894 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3895 } else 3896 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3897 } 3898 } else { 3899 // Just use NewBytes on the operands. 3900 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3901 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3902 if (NewBytes[J] >= 0) 3903 Bytes[J] = I * SystemZ::VectorBytes + J; 3904 } 3905 } 3906 } 3907 3908 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3909 if (Stride > 1) { 3910 Ops[1] = Ops[Stride]; 3911 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3912 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3913 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3914 } 3915 3916 // Look for an instruction that can do the permute without resorting 3917 // to VPERM. 3918 unsigned OpNo0, OpNo1; 3919 SDValue Op; 3920 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3921 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3922 else 3923 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3924 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3925 } 3926 3927 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3928 static bool isScalarToVector(SDValue Op) { 3929 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3930 if (!Op.getOperand(I).isUndef()) 3931 return false; 3932 return true; 3933 } 3934 3935 // Return a vector of type VT that contains Value in the first element. 3936 // The other elements don't matter. 3937 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3938 SDValue Value) { 3939 // If we have a constant, replicate it to all elements and let the 3940 // BUILD_VECTOR lowering take care of it. 3941 if (Value.getOpcode() == ISD::Constant || 3942 Value.getOpcode() == ISD::ConstantFP) { 3943 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3944 return DAG.getBuildVector(VT, DL, Ops); 3945 } 3946 if (Value.isUndef()) 3947 return DAG.getUNDEF(VT); 3948 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3949 } 3950 3951 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3952 // element 1. Used for cases in which replication is cheap. 3953 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3954 SDValue Op0, SDValue Op1) { 3955 if (Op0.isUndef()) { 3956 if (Op1.isUndef()) 3957 return DAG.getUNDEF(VT); 3958 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3959 } 3960 if (Op1.isUndef()) 3961 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3962 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3963 buildScalarToVector(DAG, DL, VT, Op0), 3964 buildScalarToVector(DAG, DL, VT, Op1)); 3965 } 3966 3967 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3968 // vector for them. 3969 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3970 SDValue Op1) { 3971 if (Op0.isUndef() && Op1.isUndef()) 3972 return DAG.getUNDEF(MVT::v2i64); 3973 // If one of the two inputs is undefined then replicate the other one, 3974 // in order to avoid using another register unnecessarily. 3975 if (Op0.isUndef()) 3976 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3977 else if (Op1.isUndef()) 3978 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3979 else { 3980 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3981 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3982 } 3983 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3984 } 3985 3986 // Try to represent constant BUILD_VECTOR node BVN using a 3987 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3988 // on success. 3989 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3990 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3991 unsigned BytesPerElement = ElemVT.getStoreSize(); 3992 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3993 SDValue Op = BVN->getOperand(I); 3994 if (!Op.isUndef()) { 3995 uint64_t Value; 3996 if (Op.getOpcode() == ISD::Constant) 3997 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3998 else if (Op.getOpcode() == ISD::ConstantFP) 3999 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4000 .getZExtValue()); 4001 else 4002 return false; 4003 for (unsigned J = 0; J < BytesPerElement; ++J) { 4004 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4005 if (Byte == 0xff) 4006 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4007 else if (Byte != 0) 4008 return false; 4009 } 4010 } 4011 } 4012 return true; 4013 } 4014 4015 // Try to load a vector constant in which BitsPerElement-bit value Value 4016 // is replicated to fill the vector. VT is the type of the resulting 4017 // constant, which may have elements of a different size from BitsPerElement. 4018 // Return the SDValue of the constant on success, otherwise return 4019 // an empty value. 4020 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4021 const SystemZInstrInfo *TII, 4022 SDLoc DL, EVT VT, uint64_t Value, 4023 unsigned BitsPerElement) { 4024 // Signed 16-bit values can be replicated using VREPI. 4025 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4026 if (isInt<16>(SignedValue)) { 4027 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4028 SystemZ::VectorBits / BitsPerElement); 4029 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 4030 DAG.getConstant(SignedValue, DL, MVT::i32)); 4031 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4032 } 4033 // See whether rotating the constant left some N places gives a value that 4034 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4035 // If so we can use VGM. 4036 unsigned Start, End; 4037 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4038 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4039 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4040 // bit numbers for an BitsPerElement value, so that 0 denotes 4041 // 1 << (BitsPerElement-1). 4042 Start -= 64 - BitsPerElement; 4043 End -= 64 - BitsPerElement; 4044 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4045 SystemZ::VectorBits / BitsPerElement); 4046 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4047 DAG.getConstant(Start, DL, MVT::i32), 4048 DAG.getConstant(End, DL, MVT::i32)); 4049 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4050 } 4051 return SDValue(); 4052 } 4053 4054 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4055 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4056 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4057 // would benefit from this representation and return it if so. 4058 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4059 BuildVectorSDNode *BVN) { 4060 EVT VT = BVN->getValueType(0); 4061 unsigned NumElements = VT.getVectorNumElements(); 4062 4063 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4064 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4065 // need a BUILD_VECTOR, add an additional placeholder operand for that 4066 // BUILD_VECTOR and store its operands in ResidueOps. 4067 GeneralShuffle GS(VT); 4068 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4069 bool FoundOne = false; 4070 for (unsigned I = 0; I < NumElements; ++I) { 4071 SDValue Op = BVN->getOperand(I); 4072 if (Op.getOpcode() == ISD::TRUNCATE) 4073 Op = Op.getOperand(0); 4074 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4075 Op.getOperand(1).getOpcode() == ISD::Constant) { 4076 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4077 GS.add(Op.getOperand(0), Elem); 4078 FoundOne = true; 4079 } else if (Op.isUndef()) { 4080 GS.addUndef(); 4081 } else { 4082 GS.add(SDValue(), ResidueOps.size()); 4083 ResidueOps.push_back(BVN->getOperand(I)); 4084 } 4085 } 4086 4087 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4088 if (!FoundOne) 4089 return SDValue(); 4090 4091 // Create the BUILD_VECTOR for the remaining elements, if any. 4092 if (!ResidueOps.empty()) { 4093 while (ResidueOps.size() < NumElements) 4094 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4095 for (auto &Op : GS.Ops) { 4096 if (!Op.getNode()) { 4097 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4098 break; 4099 } 4100 } 4101 } 4102 return GS.getNode(DAG, SDLoc(BVN)); 4103 } 4104 4105 // Combine GPR scalar values Elems into a vector of type VT. 4106 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 4107 SmallVectorImpl<SDValue> &Elems) { 4108 // See whether there is a single replicated value. 4109 SDValue Single; 4110 unsigned int NumElements = Elems.size(); 4111 unsigned int Count = 0; 4112 for (auto Elem : Elems) { 4113 if (!Elem.isUndef()) { 4114 if (!Single.getNode()) 4115 Single = Elem; 4116 else if (Elem != Single) { 4117 Single = SDValue(); 4118 break; 4119 } 4120 Count += 1; 4121 } 4122 } 4123 // There are three cases here: 4124 // 4125 // - if the only defined element is a loaded one, the best sequence 4126 // is a replicating load. 4127 // 4128 // - otherwise, if the only defined element is an i64 value, we will 4129 // end up with the same VLVGP sequence regardless of whether we short-cut 4130 // for replication or fall through to the later code. 4131 // 4132 // - otherwise, if the only defined element is an i32 or smaller value, 4133 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4134 // This is only a win if the single defined element is used more than once. 4135 // In other cases we're better off using a single VLVGx. 4136 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4137 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4138 4139 // The best way of building a v2i64 from two i64s is to use VLVGP. 4140 if (VT == MVT::v2i64) 4141 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4142 4143 // Use a 64-bit merge high to combine two doubles. 4144 if (VT == MVT::v2f64) 4145 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4146 4147 // Build v4f32 values directly from the FPRs: 4148 // 4149 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4150 // V V VMRHF 4151 // <ABxx> <CDxx> 4152 // V VMRHG 4153 // <ABCD> 4154 if (VT == MVT::v4f32) { 4155 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4156 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4157 // Avoid unnecessary undefs by reusing the other operand. 4158 if (Op01.isUndef()) 4159 Op01 = Op23; 4160 else if (Op23.isUndef()) 4161 Op23 = Op01; 4162 // Merging identical replications is a no-op. 4163 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4164 return Op01; 4165 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4166 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4167 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4168 DL, MVT::v2i64, Op01, Op23); 4169 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4170 } 4171 4172 // Collect the constant terms. 4173 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4174 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4175 4176 unsigned NumConstants = 0; 4177 for (unsigned I = 0; I < NumElements; ++I) { 4178 SDValue Elem = Elems[I]; 4179 if (Elem.getOpcode() == ISD::Constant || 4180 Elem.getOpcode() == ISD::ConstantFP) { 4181 NumConstants += 1; 4182 Constants[I] = Elem; 4183 Done[I] = true; 4184 } 4185 } 4186 // If there was at least one constant, fill in the other elements of 4187 // Constants with undefs to get a full vector constant and use that 4188 // as the starting point. 4189 SDValue Result; 4190 if (NumConstants > 0) { 4191 for (unsigned I = 0; I < NumElements; ++I) 4192 if (!Constants[I].getNode()) 4193 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4194 Result = DAG.getBuildVector(VT, DL, Constants); 4195 } else { 4196 // Otherwise try to use VLVGP to start the sequence in order to 4197 // avoid a false dependency on any previous contents of the vector 4198 // register. This only makes sense if one of the associated elements 4199 // is defined. 4200 unsigned I1 = NumElements / 2 - 1; 4201 unsigned I2 = NumElements - 1; 4202 bool Def1 = !Elems[I1].isUndef(); 4203 bool Def2 = !Elems[I2].isUndef(); 4204 if (Def1 || Def2) { 4205 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4206 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4207 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4208 joinDwords(DAG, DL, Elem1, Elem2)); 4209 Done[I1] = true; 4210 Done[I2] = true; 4211 } else 4212 Result = DAG.getUNDEF(VT); 4213 } 4214 4215 // Use VLVGx to insert the other elements. 4216 for (unsigned I = 0; I < NumElements; ++I) 4217 if (!Done[I] && !Elems[I].isUndef()) 4218 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4219 DAG.getConstant(I, DL, MVT::i32)); 4220 return Result; 4221 } 4222 4223 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4224 SelectionDAG &DAG) const { 4225 const SystemZInstrInfo *TII = 4226 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4227 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4228 SDLoc DL(Op); 4229 EVT VT = Op.getValueType(); 4230 4231 if (BVN->isConstant()) { 4232 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4233 // preferred way of creating all-zero and all-one vectors so give it 4234 // priority over other methods below. 4235 uint64_t Mask = 0; 4236 if (tryBuildVectorByteMask(BVN, Mask)) { 4237 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4238 DAG.getConstant(Mask, DL, MVT::i32)); 4239 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4240 } 4241 4242 // Try using some form of replication. 4243 APInt SplatBits, SplatUndef; 4244 unsigned SplatBitSize; 4245 bool HasAnyUndefs; 4246 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4247 8, true) && 4248 SplatBitSize <= 64) { 4249 // First try assuming that any undefined bits above the highest set bit 4250 // and below the lowest set bit are 1s. This increases the likelihood of 4251 // being able to use a sign-extended element value in VECTOR REPLICATE 4252 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4253 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4254 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4255 uint64_t Lower = (SplatUndefZ 4256 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4257 uint64_t Upper = (SplatUndefZ 4258 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4259 uint64_t Value = SplatBitsZ | Upper | Lower; 4260 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4261 SplatBitSize); 4262 if (Op.getNode()) 4263 return Op; 4264 4265 // Now try assuming that any undefined bits between the first and 4266 // last defined set bits are set. This increases the chances of 4267 // using a non-wraparound mask. 4268 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4269 Value = SplatBitsZ | Middle; 4270 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4271 if (Op.getNode()) 4272 return Op; 4273 } 4274 4275 // Fall back to loading it from memory. 4276 return SDValue(); 4277 } 4278 4279 // See if we should use shuffles to construct the vector from other vectors. 4280 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4281 return Res; 4282 4283 // Detect SCALAR_TO_VECTOR conversions. 4284 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4285 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4286 4287 // Otherwise use buildVector to build the vector up from GPRs. 4288 unsigned NumElements = Op.getNumOperands(); 4289 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4290 for (unsigned I = 0; I < NumElements; ++I) 4291 Ops[I] = Op.getOperand(I); 4292 return buildVector(DAG, DL, VT, Ops); 4293 } 4294 4295 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4296 SelectionDAG &DAG) const { 4297 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4298 SDLoc DL(Op); 4299 EVT VT = Op.getValueType(); 4300 unsigned NumElements = VT.getVectorNumElements(); 4301 4302 if (VSN->isSplat()) { 4303 SDValue Op0 = Op.getOperand(0); 4304 unsigned Index = VSN->getSplatIndex(); 4305 assert(Index < VT.getVectorNumElements() && 4306 "Splat index should be defined and in first operand"); 4307 // See whether the value we're splatting is directly available as a scalar. 4308 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4309 Op0.getOpcode() == ISD::BUILD_VECTOR) 4310 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4311 // Otherwise keep it as a vector-to-vector operation. 4312 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4313 DAG.getConstant(Index, DL, MVT::i32)); 4314 } 4315 4316 GeneralShuffle GS(VT); 4317 for (unsigned I = 0; I < NumElements; ++I) { 4318 int Elt = VSN->getMaskElt(I); 4319 if (Elt < 0) 4320 GS.addUndef(); 4321 else 4322 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4323 unsigned(Elt) % NumElements); 4324 } 4325 return GS.getNode(DAG, SDLoc(VSN)); 4326 } 4327 4328 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4329 SelectionDAG &DAG) const { 4330 SDLoc DL(Op); 4331 // Just insert the scalar into element 0 of an undefined vector. 4332 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4333 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4334 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4335 } 4336 4337 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4338 SelectionDAG &DAG) const { 4339 // Handle insertions of floating-point values. 4340 SDLoc DL(Op); 4341 SDValue Op0 = Op.getOperand(0); 4342 SDValue Op1 = Op.getOperand(1); 4343 SDValue Op2 = Op.getOperand(2); 4344 EVT VT = Op.getValueType(); 4345 4346 // Insertions into constant indices of a v2f64 can be done using VPDI. 4347 // However, if the inserted value is a bitcast or a constant then it's 4348 // better to use GPRs, as below. 4349 if (VT == MVT::v2f64 && 4350 Op1.getOpcode() != ISD::BITCAST && 4351 Op1.getOpcode() != ISD::ConstantFP && 4352 Op2.getOpcode() == ISD::Constant) { 4353 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4354 unsigned Mask = VT.getVectorNumElements() - 1; 4355 if (Index <= Mask) 4356 return Op; 4357 } 4358 4359 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4360 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4361 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4362 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4363 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4364 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4365 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4366 } 4367 4368 SDValue 4369 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4370 SelectionDAG &DAG) const { 4371 // Handle extractions of floating-point values. 4372 SDLoc DL(Op); 4373 SDValue Op0 = Op.getOperand(0); 4374 SDValue Op1 = Op.getOperand(1); 4375 EVT VT = Op.getValueType(); 4376 EVT VecVT = Op0.getValueType(); 4377 4378 // Extractions of constant indices can be done directly. 4379 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4380 uint64_t Index = CIndexN->getZExtValue(); 4381 unsigned Mask = VecVT.getVectorNumElements() - 1; 4382 if (Index <= Mask) 4383 return Op; 4384 } 4385 4386 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4387 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4388 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4389 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4390 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4391 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4392 } 4393 4394 SDValue 4395 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4396 unsigned UnpackHigh) const { 4397 SDValue PackedOp = Op.getOperand(0); 4398 EVT OutVT = Op.getValueType(); 4399 EVT InVT = PackedOp.getValueType(); 4400 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4401 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4402 do { 4403 FromBits *= 2; 4404 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4405 SystemZ::VectorBits / FromBits); 4406 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4407 } while (FromBits != ToBits); 4408 return PackedOp; 4409 } 4410 4411 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4412 unsigned ByScalar) const { 4413 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4414 SDValue Op0 = Op.getOperand(0); 4415 SDValue Op1 = Op.getOperand(1); 4416 SDLoc DL(Op); 4417 EVT VT = Op.getValueType(); 4418 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4419 4420 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4421 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4422 APInt SplatBits, SplatUndef; 4423 unsigned SplatBitSize; 4424 bool HasAnyUndefs; 4425 // Check for constant splats. Use ElemBitSize as the minimum element 4426 // width and reject splats that need wider elements. 4427 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4428 ElemBitSize, true) && 4429 SplatBitSize == ElemBitSize) { 4430 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4431 DL, MVT::i32); 4432 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4433 } 4434 // Check for variable splats. 4435 BitVector UndefElements; 4436 SDValue Splat = BVN->getSplatValue(&UndefElements); 4437 if (Splat) { 4438 // Since i32 is the smallest legal type, we either need a no-op 4439 // or a truncation. 4440 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4441 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4442 } 4443 } 4444 4445 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4446 // and the shift amount is directly available in a GPR. 4447 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4448 if (VSN->isSplat()) { 4449 SDValue VSNOp0 = VSN->getOperand(0); 4450 unsigned Index = VSN->getSplatIndex(); 4451 assert(Index < VT.getVectorNumElements() && 4452 "Splat index should be defined and in first operand"); 4453 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4454 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4455 // Since i32 is the smallest legal type, we either need a no-op 4456 // or a truncation. 4457 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4458 VSNOp0.getOperand(Index)); 4459 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4460 } 4461 } 4462 } 4463 4464 // Otherwise just treat the current form as legal. 4465 return Op; 4466 } 4467 4468 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4469 SelectionDAG &DAG) const { 4470 switch (Op.getOpcode()) { 4471 case ISD::FRAMEADDR: 4472 return lowerFRAMEADDR(Op, DAG); 4473 case ISD::RETURNADDR: 4474 return lowerRETURNADDR(Op, DAG); 4475 case ISD::BR_CC: 4476 return lowerBR_CC(Op, DAG); 4477 case ISD::SELECT_CC: 4478 return lowerSELECT_CC(Op, DAG); 4479 case ISD::SETCC: 4480 return lowerSETCC(Op, DAG); 4481 case ISD::GlobalAddress: 4482 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4483 case ISD::GlobalTLSAddress: 4484 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4485 case ISD::BlockAddress: 4486 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4487 case ISD::JumpTable: 4488 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4489 case ISD::ConstantPool: 4490 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4491 case ISD::BITCAST: 4492 return lowerBITCAST(Op, DAG); 4493 case ISD::VASTART: 4494 return lowerVASTART(Op, DAG); 4495 case ISD::VACOPY: 4496 return lowerVACOPY(Op, DAG); 4497 case ISD::DYNAMIC_STACKALLOC: 4498 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4499 case ISD::GET_DYNAMIC_AREA_OFFSET: 4500 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4501 case ISD::SMUL_LOHI: 4502 return lowerSMUL_LOHI(Op, DAG); 4503 case ISD::UMUL_LOHI: 4504 return lowerUMUL_LOHI(Op, DAG); 4505 case ISD::SDIVREM: 4506 return lowerSDIVREM(Op, DAG); 4507 case ISD::UDIVREM: 4508 return lowerUDIVREM(Op, DAG); 4509 case ISD::OR: 4510 return lowerOR(Op, DAG); 4511 case ISD::CTPOP: 4512 return lowerCTPOP(Op, DAG); 4513 case ISD::ATOMIC_FENCE: 4514 return lowerATOMIC_FENCE(Op, DAG); 4515 case ISD::ATOMIC_SWAP: 4516 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4517 case ISD::ATOMIC_STORE: 4518 return lowerATOMIC_STORE(Op, DAG); 4519 case ISD::ATOMIC_LOAD: 4520 return lowerATOMIC_LOAD(Op, DAG); 4521 case ISD::ATOMIC_LOAD_ADD: 4522 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4523 case ISD::ATOMIC_LOAD_SUB: 4524 return lowerATOMIC_LOAD_SUB(Op, DAG); 4525 case ISD::ATOMIC_LOAD_AND: 4526 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4527 case ISD::ATOMIC_LOAD_OR: 4528 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4529 case ISD::ATOMIC_LOAD_XOR: 4530 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4531 case ISD::ATOMIC_LOAD_NAND: 4532 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4533 case ISD::ATOMIC_LOAD_MIN: 4534 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4535 case ISD::ATOMIC_LOAD_MAX: 4536 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4537 case ISD::ATOMIC_LOAD_UMIN: 4538 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4539 case ISD::ATOMIC_LOAD_UMAX: 4540 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4541 case ISD::ATOMIC_CMP_SWAP: 4542 return lowerATOMIC_CMP_SWAP(Op, DAG); 4543 case ISD::STACKSAVE: 4544 return lowerSTACKSAVE(Op, DAG); 4545 case ISD::STACKRESTORE: 4546 return lowerSTACKRESTORE(Op, DAG); 4547 case ISD::PREFETCH: 4548 return lowerPREFETCH(Op, DAG); 4549 case ISD::INTRINSIC_W_CHAIN: 4550 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4551 case ISD::INTRINSIC_WO_CHAIN: 4552 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4553 case ISD::BUILD_VECTOR: 4554 return lowerBUILD_VECTOR(Op, DAG); 4555 case ISD::VECTOR_SHUFFLE: 4556 return lowerVECTOR_SHUFFLE(Op, DAG); 4557 case ISD::SCALAR_TO_VECTOR: 4558 return lowerSCALAR_TO_VECTOR(Op, DAG); 4559 case ISD::INSERT_VECTOR_ELT: 4560 return lowerINSERT_VECTOR_ELT(Op, DAG); 4561 case ISD::EXTRACT_VECTOR_ELT: 4562 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4563 case ISD::SIGN_EXTEND_VECTOR_INREG: 4564 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4565 case ISD::ZERO_EXTEND_VECTOR_INREG: 4566 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4567 case ISD::SHL: 4568 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4569 case ISD::SRL: 4570 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4571 case ISD::SRA: 4572 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4573 default: 4574 llvm_unreachable("Unexpected node to lower"); 4575 } 4576 } 4577 4578 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4579 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4580 switch ((SystemZISD::NodeType)Opcode) { 4581 case SystemZISD::FIRST_NUMBER: break; 4582 OPCODE(RET_FLAG); 4583 OPCODE(CALL); 4584 OPCODE(SIBCALL); 4585 OPCODE(TLS_GDCALL); 4586 OPCODE(TLS_LDCALL); 4587 OPCODE(PCREL_WRAPPER); 4588 OPCODE(PCREL_OFFSET); 4589 OPCODE(IABS); 4590 OPCODE(ICMP); 4591 OPCODE(FCMP); 4592 OPCODE(TM); 4593 OPCODE(BR_CCMASK); 4594 OPCODE(SELECT_CCMASK); 4595 OPCODE(ADJDYNALLOC); 4596 OPCODE(EXTRACT_ACCESS); 4597 OPCODE(POPCNT); 4598 OPCODE(UMUL_LOHI64); 4599 OPCODE(SDIVREM32); 4600 OPCODE(SDIVREM64); 4601 OPCODE(UDIVREM32); 4602 OPCODE(UDIVREM64); 4603 OPCODE(MVC); 4604 OPCODE(MVC_LOOP); 4605 OPCODE(NC); 4606 OPCODE(NC_LOOP); 4607 OPCODE(OC); 4608 OPCODE(OC_LOOP); 4609 OPCODE(XC); 4610 OPCODE(XC_LOOP); 4611 OPCODE(CLC); 4612 OPCODE(CLC_LOOP); 4613 OPCODE(STPCPY); 4614 OPCODE(STRCMP); 4615 OPCODE(SEARCH_STRING); 4616 OPCODE(IPM); 4617 OPCODE(SERIALIZE); 4618 OPCODE(MEMBARRIER); 4619 OPCODE(TBEGIN); 4620 OPCODE(TBEGIN_NOFLOAT); 4621 OPCODE(TEND); 4622 OPCODE(BYTE_MASK); 4623 OPCODE(ROTATE_MASK); 4624 OPCODE(REPLICATE); 4625 OPCODE(JOIN_DWORDS); 4626 OPCODE(SPLAT); 4627 OPCODE(MERGE_HIGH); 4628 OPCODE(MERGE_LOW); 4629 OPCODE(SHL_DOUBLE); 4630 OPCODE(PERMUTE_DWORDS); 4631 OPCODE(PERMUTE); 4632 OPCODE(PACK); 4633 OPCODE(PACKS_CC); 4634 OPCODE(PACKLS_CC); 4635 OPCODE(UNPACK_HIGH); 4636 OPCODE(UNPACKL_HIGH); 4637 OPCODE(UNPACK_LOW); 4638 OPCODE(UNPACKL_LOW); 4639 OPCODE(VSHL_BY_SCALAR); 4640 OPCODE(VSRL_BY_SCALAR); 4641 OPCODE(VSRA_BY_SCALAR); 4642 OPCODE(VSUM); 4643 OPCODE(VICMPE); 4644 OPCODE(VICMPH); 4645 OPCODE(VICMPHL); 4646 OPCODE(VICMPES); 4647 OPCODE(VICMPHS); 4648 OPCODE(VICMPHLS); 4649 OPCODE(VFCMPE); 4650 OPCODE(VFCMPH); 4651 OPCODE(VFCMPHE); 4652 OPCODE(VFCMPES); 4653 OPCODE(VFCMPHS); 4654 OPCODE(VFCMPHES); 4655 OPCODE(VFTCI); 4656 OPCODE(VEXTEND); 4657 OPCODE(VROUND); 4658 OPCODE(VTM); 4659 OPCODE(VFAE_CC); 4660 OPCODE(VFAEZ_CC); 4661 OPCODE(VFEE_CC); 4662 OPCODE(VFEEZ_CC); 4663 OPCODE(VFENE_CC); 4664 OPCODE(VFENEZ_CC); 4665 OPCODE(VISTR_CC); 4666 OPCODE(VSTRC_CC); 4667 OPCODE(VSTRCZ_CC); 4668 OPCODE(ATOMIC_SWAPW); 4669 OPCODE(ATOMIC_LOADW_ADD); 4670 OPCODE(ATOMIC_LOADW_SUB); 4671 OPCODE(ATOMIC_LOADW_AND); 4672 OPCODE(ATOMIC_LOADW_OR); 4673 OPCODE(ATOMIC_LOADW_XOR); 4674 OPCODE(ATOMIC_LOADW_NAND); 4675 OPCODE(ATOMIC_LOADW_MIN); 4676 OPCODE(ATOMIC_LOADW_MAX); 4677 OPCODE(ATOMIC_LOADW_UMIN); 4678 OPCODE(ATOMIC_LOADW_UMAX); 4679 OPCODE(ATOMIC_CMP_SWAPW); 4680 OPCODE(LRV); 4681 OPCODE(STRV); 4682 OPCODE(PREFETCH); 4683 } 4684 return nullptr; 4685 #undef OPCODE 4686 } 4687 4688 // Return true if VT is a vector whose elements are a whole number of bytes 4689 // in width. 4690 static bool canTreatAsByteVector(EVT VT) { 4691 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4692 } 4693 4694 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4695 // producing a result of type ResVT. Op is a possibly bitcast version 4696 // of the input vector and Index is the index (based on type VecVT) that 4697 // should be extracted. Return the new extraction if a simplification 4698 // was possible or if Force is true. 4699 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4700 SDValue Op, unsigned Index, 4701 DAGCombinerInfo &DCI, 4702 bool Force) const { 4703 SelectionDAG &DAG = DCI.DAG; 4704 4705 // The number of bytes being extracted. 4706 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4707 4708 for (;;) { 4709 unsigned Opcode = Op.getOpcode(); 4710 if (Opcode == ISD::BITCAST) 4711 // Look through bitcasts. 4712 Op = Op.getOperand(0); 4713 else if (Opcode == ISD::VECTOR_SHUFFLE && 4714 canTreatAsByteVector(Op.getValueType())) { 4715 // Get a VPERM-like permute mask and see whether the bytes covered 4716 // by the extracted element are a contiguous sequence from one 4717 // source operand. 4718 SmallVector<int, SystemZ::VectorBytes> Bytes; 4719 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4720 int First; 4721 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4722 BytesPerElement, First)) 4723 break; 4724 if (First < 0) 4725 return DAG.getUNDEF(ResVT); 4726 // Make sure the contiguous sequence starts at a multiple of the 4727 // original element size. 4728 unsigned Byte = unsigned(First) % Bytes.size(); 4729 if (Byte % BytesPerElement != 0) 4730 break; 4731 // We can get the extracted value directly from an input. 4732 Index = Byte / BytesPerElement; 4733 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4734 Force = true; 4735 } else if (Opcode == ISD::BUILD_VECTOR && 4736 canTreatAsByteVector(Op.getValueType())) { 4737 // We can only optimize this case if the BUILD_VECTOR elements are 4738 // at least as wide as the extracted value. 4739 EVT OpVT = Op.getValueType(); 4740 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4741 if (OpBytesPerElement < BytesPerElement) 4742 break; 4743 // Make sure that the least-significant bit of the extracted value 4744 // is the least significant bit of an input. 4745 unsigned End = (Index + 1) * BytesPerElement; 4746 if (End % OpBytesPerElement != 0) 4747 break; 4748 // We're extracting the low part of one operand of the BUILD_VECTOR. 4749 Op = Op.getOperand(End / OpBytesPerElement - 1); 4750 if (!Op.getValueType().isInteger()) { 4751 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4752 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4753 DCI.AddToWorklist(Op.getNode()); 4754 } 4755 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4756 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4757 if (VT != ResVT) { 4758 DCI.AddToWorklist(Op.getNode()); 4759 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4760 } 4761 return Op; 4762 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4763 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4764 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4765 canTreatAsByteVector(Op.getValueType()) && 4766 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4767 // Make sure that only the unextended bits are significant. 4768 EVT ExtVT = Op.getValueType(); 4769 EVT OpVT = Op.getOperand(0).getValueType(); 4770 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4771 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4772 unsigned Byte = Index * BytesPerElement; 4773 unsigned SubByte = Byte % ExtBytesPerElement; 4774 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4775 if (SubByte < MinSubByte || 4776 SubByte + BytesPerElement > ExtBytesPerElement) 4777 break; 4778 // Get the byte offset of the unextended element 4779 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4780 // ...then add the byte offset relative to that element. 4781 Byte += SubByte - MinSubByte; 4782 if (Byte % BytesPerElement != 0) 4783 break; 4784 Op = Op.getOperand(0); 4785 Index = Byte / BytesPerElement; 4786 Force = true; 4787 } else 4788 break; 4789 } 4790 if (Force) { 4791 if (Op.getValueType() != VecVT) { 4792 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4793 DCI.AddToWorklist(Op.getNode()); 4794 } 4795 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4796 DAG.getConstant(Index, DL, MVT::i32)); 4797 } 4798 return SDValue(); 4799 } 4800 4801 // Optimize vector operations in scalar value Op on the basis that Op 4802 // is truncated to TruncVT. 4803 SDValue 4804 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4805 DAGCombinerInfo &DCI) const { 4806 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4807 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4808 // of type TruncVT. 4809 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4810 TruncVT.getSizeInBits() % 8 == 0) { 4811 SDValue Vec = Op.getOperand(0); 4812 EVT VecVT = Vec.getValueType(); 4813 if (canTreatAsByteVector(VecVT)) { 4814 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4815 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4816 unsigned TruncBytes = TruncVT.getStoreSize(); 4817 if (BytesPerElement % TruncBytes == 0) { 4818 // Calculate the value of Y' in the above description. We are 4819 // splitting the original elements into Scale equal-sized pieces 4820 // and for truncation purposes want the last (least-significant) 4821 // of these pieces for IndexN. This is easiest to do by calculating 4822 // the start index of the following element and then subtracting 1. 4823 unsigned Scale = BytesPerElement / TruncBytes; 4824 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4825 4826 // Defer the creation of the bitcast from X to combineExtract, 4827 // which might be able to optimize the extraction. 4828 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4829 VecVT.getStoreSize() / TruncBytes); 4830 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4831 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4832 } 4833 } 4834 } 4835 } 4836 return SDValue(); 4837 } 4838 4839 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4840 DAGCombinerInfo &DCI) const { 4841 SelectionDAG &DAG = DCI.DAG; 4842 unsigned Opcode = N->getOpcode(); 4843 if (Opcode == ISD::SIGN_EXTEND) { 4844 // Convert (sext (ashr (shl X, C1), C2)) to 4845 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4846 // cheap as narrower ones. 4847 SDValue N0 = N->getOperand(0); 4848 EVT VT = N->getValueType(0); 4849 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4850 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4851 SDValue Inner = N0.getOperand(0); 4852 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4853 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4854 unsigned Extra = (VT.getSizeInBits() - 4855 N0.getValueType().getSizeInBits()); 4856 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4857 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4858 EVT ShiftVT = N0.getOperand(1).getValueType(); 4859 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4860 Inner.getOperand(0)); 4861 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4862 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4863 ShiftVT)); 4864 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4865 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4866 } 4867 } 4868 } 4869 } 4870 if (Opcode == SystemZISD::MERGE_HIGH || 4871 Opcode == SystemZISD::MERGE_LOW) { 4872 SDValue Op0 = N->getOperand(0); 4873 SDValue Op1 = N->getOperand(1); 4874 if (Op0.getOpcode() == ISD::BITCAST) 4875 Op0 = Op0.getOperand(0); 4876 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4877 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4878 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4879 // for v4f32. 4880 if (Op1 == N->getOperand(0)) 4881 return Op1; 4882 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4883 EVT VT = Op1.getValueType(); 4884 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4885 if (ElemBytes <= 4) { 4886 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4887 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4888 EVT InVT = VT.changeVectorElementTypeToInteger(); 4889 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4890 SystemZ::VectorBytes / ElemBytes / 2); 4891 if (VT != InVT) { 4892 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4893 DCI.AddToWorklist(Op1.getNode()); 4894 } 4895 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4896 DCI.AddToWorklist(Op.getNode()); 4897 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4898 } 4899 } 4900 } 4901 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4902 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4903 // If X has wider elements then convert it to: 4904 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4905 if (Opcode == ISD::STORE) { 4906 auto *SN = cast<StoreSDNode>(N); 4907 EVT MemVT = SN->getMemoryVT(); 4908 if (MemVT.isInteger()) { 4909 if (SDValue Value = 4910 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4911 DCI.AddToWorklist(Value.getNode()); 4912 4913 // Rewrite the store with the new form of stored value. 4914 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4915 SN->getBasePtr(), SN->getMemoryVT(), 4916 SN->getMemOperand()); 4917 } 4918 } 4919 } 4920 // Try to simplify a vector extraction. 4921 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4922 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4923 SDValue Op0 = N->getOperand(0); 4924 EVT VecVT = Op0.getValueType(); 4925 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4926 IndexN->getZExtValue(), DCI, false); 4927 } 4928 } 4929 // (join_dwords X, X) == (replicate X) 4930 if (Opcode == SystemZISD::JOIN_DWORDS && 4931 N->getOperand(0) == N->getOperand(1)) 4932 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4933 N->getOperand(0)); 4934 // (fround (extract_vector_elt X 0)) 4935 // (fround (extract_vector_elt X 1)) -> 4936 // (extract_vector_elt (VROUND X) 0) 4937 // (extract_vector_elt (VROUND X) 1) 4938 // 4939 // This is a special case since the target doesn't really support v2f32s. 4940 if (Opcode == ISD::FP_ROUND) { 4941 SDValue Op0 = N->getOperand(0); 4942 if (N->getValueType(0) == MVT::f32 && 4943 Op0.hasOneUse() && 4944 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4945 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4946 Op0.getOperand(1).getOpcode() == ISD::Constant && 4947 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4948 SDValue Vec = Op0.getOperand(0); 4949 for (auto *U : Vec->uses()) { 4950 if (U != Op0.getNode() && 4951 U->hasOneUse() && 4952 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4953 U->getOperand(0) == Vec && 4954 U->getOperand(1).getOpcode() == ISD::Constant && 4955 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4956 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4957 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4958 OtherRound.getOperand(0) == SDValue(U, 0) && 4959 OtherRound.getValueType() == MVT::f32) { 4960 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4961 MVT::v4f32, Vec); 4962 DCI.AddToWorklist(VRound.getNode()); 4963 SDValue Extract1 = 4964 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4965 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4966 DCI.AddToWorklist(Extract1.getNode()); 4967 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4968 SDValue Extract0 = 4969 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4970 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4971 return Extract0; 4972 } 4973 } 4974 } 4975 } 4976 } 4977 4978 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 4979 // These loads are allowed to access memory multiple times, and so we must check 4980 // that the loads are not volatile before performing the combine. 4981 if (Opcode == ISD::BSWAP && 4982 ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 4983 N->getOperand(0).hasOneUse() && 4984 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 4985 N->getValueType(0) == MVT::i64) && 4986 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) { 4987 SDValue Load = N->getOperand(0); 4988 LoadSDNode *LD = cast<LoadSDNode>(Load); 4989 4990 // Create the byte-swapping load. 4991 SDValue Ops[] = { 4992 LD->getChain(), // Chain 4993 LD->getBasePtr(), // Ptr 4994 DAG.getValueType(N->getValueType(0)) // VT 4995 }; 4996 SDValue BSLoad = 4997 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 4998 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 4999 MVT::i64 : MVT::i32, MVT::Other), 5000 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5001 5002 // If this is an i16 load, insert the truncate. 5003 SDValue ResVal = BSLoad; 5004 if (N->getValueType(0) == MVT::i16) 5005 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5006 5007 // First, combine the bswap away. This makes the value produced by the 5008 // load dead. 5009 DCI.CombineTo(N, ResVal); 5010 5011 // Next, combine the load away, we give it a bogus result value but a real 5012 // chain result. The result value is dead because the bswap is dead. 5013 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5014 5015 // Return N so it doesn't get rechecked! 5016 return SDValue(N, 0); 5017 } 5018 5019 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5020 // See comment above about volatile accesses. 5021 if (Opcode == ISD::STORE && 5022 !cast<StoreSDNode>(N)->isVolatile() && 5023 N->getOperand(1).getOpcode() == ISD::BSWAP && 5024 N->getOperand(1).getNode()->hasOneUse() && 5025 (N->getOperand(1).getValueType() == MVT::i16 || 5026 N->getOperand(1).getValueType() == MVT::i32 || 5027 N->getOperand(1).getValueType() == MVT::i64)) { 5028 5029 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5030 5031 if (BSwapOp.getValueType() == MVT::i16) 5032 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5033 5034 SDValue Ops[] = { 5035 N->getOperand(0), BSwapOp, N->getOperand(2), 5036 DAG.getValueType(N->getOperand(1).getValueType()) 5037 }; 5038 5039 return 5040 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5041 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 5042 cast<StoreSDNode>(N)->getMemOperand()); 5043 } 5044 5045 return SDValue(); 5046 } 5047 5048 //===----------------------------------------------------------------------===// 5049 // Custom insertion 5050 //===----------------------------------------------------------------------===// 5051 5052 // Create a new basic block after MBB. 5053 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5054 MachineFunction &MF = *MBB->getParent(); 5055 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5056 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5057 return NewMBB; 5058 } 5059 5060 // Split MBB after MI and return the new block (the one that contains 5061 // instructions after MI). 5062 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 5063 MachineBasicBlock *MBB) { 5064 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5065 NewMBB->splice(NewMBB->begin(), MBB, 5066 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5067 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5068 return NewMBB; 5069 } 5070 5071 // Split MBB before MI and return the new block (the one that contains MI). 5072 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 5073 MachineBasicBlock *MBB) { 5074 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5075 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 5076 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5077 return NewMBB; 5078 } 5079 5080 // Force base value Base into a register before MI. Return the register. 5081 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 5082 const SystemZInstrInfo *TII) { 5083 if (Base.isReg()) 5084 return Base.getReg(); 5085 5086 MachineBasicBlock *MBB = MI->getParent(); 5087 MachineFunction &MF = *MBB->getParent(); 5088 MachineRegisterInfo &MRI = MF.getRegInfo(); 5089 5090 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5091 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 5092 .addOperand(Base).addImm(0).addReg(0); 5093 return Reg; 5094 } 5095 5096 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 5097 MachineBasicBlock * 5098 SystemZTargetLowering::emitSelect(MachineInstr *MI, 5099 MachineBasicBlock *MBB) const { 5100 const SystemZInstrInfo *TII = 5101 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5102 5103 unsigned DestReg = MI->getOperand(0).getReg(); 5104 unsigned TrueReg = MI->getOperand(1).getReg(); 5105 unsigned FalseReg = MI->getOperand(2).getReg(); 5106 unsigned CCValid = MI->getOperand(3).getImm(); 5107 unsigned CCMask = MI->getOperand(4).getImm(); 5108 DebugLoc DL = MI->getDebugLoc(); 5109 5110 MachineBasicBlock *StartMBB = MBB; 5111 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5112 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5113 5114 // StartMBB: 5115 // BRC CCMask, JoinMBB 5116 // # fallthrough to FalseMBB 5117 MBB = StartMBB; 5118 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5119 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5120 MBB->addSuccessor(JoinMBB); 5121 MBB->addSuccessor(FalseMBB); 5122 5123 // FalseMBB: 5124 // # fallthrough to JoinMBB 5125 MBB = FalseMBB; 5126 MBB->addSuccessor(JoinMBB); 5127 5128 // JoinMBB: 5129 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5130 // ... 5131 MBB = JoinMBB; 5132 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5133 .addReg(TrueReg).addMBB(StartMBB) 5134 .addReg(FalseReg).addMBB(FalseMBB); 5135 5136 MI->eraseFromParent(); 5137 return JoinMBB; 5138 } 5139 5140 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5141 // StoreOpcode is the store to use and Invert says whether the store should 5142 // happen when the condition is false rather than true. If a STORE ON 5143 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5144 MachineBasicBlock * 5145 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 5146 MachineBasicBlock *MBB, 5147 unsigned StoreOpcode, unsigned STOCOpcode, 5148 bool Invert) const { 5149 const SystemZInstrInfo *TII = 5150 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5151 5152 unsigned SrcReg = MI->getOperand(0).getReg(); 5153 MachineOperand Base = MI->getOperand(1); 5154 int64_t Disp = MI->getOperand(2).getImm(); 5155 unsigned IndexReg = MI->getOperand(3).getReg(); 5156 unsigned CCValid = MI->getOperand(4).getImm(); 5157 unsigned CCMask = MI->getOperand(5).getImm(); 5158 DebugLoc DL = MI->getDebugLoc(); 5159 5160 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5161 5162 // Use STOCOpcode if possible. We could use different store patterns in 5163 // order to avoid matching the index register, but the performance trade-offs 5164 // might be more complicated in that case. 5165 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5166 if (Invert) 5167 CCMask ^= CCValid; 5168 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5169 .addReg(SrcReg).addOperand(Base).addImm(Disp) 5170 .addImm(CCValid).addImm(CCMask); 5171 MI->eraseFromParent(); 5172 return MBB; 5173 } 5174 5175 // Get the condition needed to branch around the store. 5176 if (!Invert) 5177 CCMask ^= CCValid; 5178 5179 MachineBasicBlock *StartMBB = MBB; 5180 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5181 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5182 5183 // StartMBB: 5184 // BRC CCMask, JoinMBB 5185 // # fallthrough to FalseMBB 5186 MBB = StartMBB; 5187 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5188 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5189 MBB->addSuccessor(JoinMBB); 5190 MBB->addSuccessor(FalseMBB); 5191 5192 // FalseMBB: 5193 // store %SrcReg, %Disp(%Index,%Base) 5194 // # fallthrough to JoinMBB 5195 MBB = FalseMBB; 5196 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5197 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 5198 MBB->addSuccessor(JoinMBB); 5199 5200 MI->eraseFromParent(); 5201 return JoinMBB; 5202 } 5203 5204 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5205 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5206 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5207 // BitSize is the width of the field in bits, or 0 if this is a partword 5208 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5209 // is one of the operands. Invert says whether the field should be 5210 // inverted after performing BinOpcode (e.g. for NAND). 5211 MachineBasicBlock * 5212 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 5213 MachineBasicBlock *MBB, 5214 unsigned BinOpcode, 5215 unsigned BitSize, 5216 bool Invert) const { 5217 MachineFunction &MF = *MBB->getParent(); 5218 const SystemZInstrInfo *TII = 5219 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5220 MachineRegisterInfo &MRI = MF.getRegInfo(); 5221 bool IsSubWord = (BitSize < 32); 5222 5223 // Extract the operands. Base can be a register or a frame index. 5224 // Src2 can be a register or immediate. 5225 unsigned Dest = MI->getOperand(0).getReg(); 5226 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5227 int64_t Disp = MI->getOperand(2).getImm(); 5228 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 5229 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5230 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5231 DebugLoc DL = MI->getDebugLoc(); 5232 if (IsSubWord) 5233 BitSize = MI->getOperand(6).getImm(); 5234 5235 // Subword operations use 32-bit registers. 5236 const TargetRegisterClass *RC = (BitSize <= 32 ? 5237 &SystemZ::GR32BitRegClass : 5238 &SystemZ::GR64BitRegClass); 5239 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5240 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5241 5242 // Get the right opcodes for the displacement. 5243 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5244 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5245 assert(LOpcode && CSOpcode && "Displacement out of range"); 5246 5247 // Create virtual registers for temporary results. 5248 unsigned OrigVal = MRI.createVirtualRegister(RC); 5249 unsigned OldVal = MRI.createVirtualRegister(RC); 5250 unsigned NewVal = (BinOpcode || IsSubWord ? 5251 MRI.createVirtualRegister(RC) : Src2.getReg()); 5252 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5253 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5254 5255 // Insert a basic block for the main loop. 5256 MachineBasicBlock *StartMBB = MBB; 5257 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5258 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5259 5260 // StartMBB: 5261 // ... 5262 // %OrigVal = L Disp(%Base) 5263 // # fall through to LoopMMB 5264 MBB = StartMBB; 5265 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5266 .addOperand(Base).addImm(Disp).addReg(0); 5267 MBB->addSuccessor(LoopMBB); 5268 5269 // LoopMBB: 5270 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5271 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5272 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5273 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5274 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5275 // JNE LoopMBB 5276 // # fall through to DoneMMB 5277 MBB = LoopMBB; 5278 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5279 .addReg(OrigVal).addMBB(StartMBB) 5280 .addReg(Dest).addMBB(LoopMBB); 5281 if (IsSubWord) 5282 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5283 .addReg(OldVal).addReg(BitShift).addImm(0); 5284 if (Invert) { 5285 // Perform the operation normally and then invert every bit of the field. 5286 unsigned Tmp = MRI.createVirtualRegister(RC); 5287 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5288 .addReg(RotatedOldVal).addOperand(Src2); 5289 if (BitSize <= 32) 5290 // XILF with the upper BitSize bits set. 5291 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5292 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5293 else { 5294 // Use LCGR and add -1 to the result, which is more compact than 5295 // an XILF, XILH pair. 5296 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5297 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5298 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5299 .addReg(Tmp2).addImm(-1); 5300 } 5301 } else if (BinOpcode) 5302 // A simply binary operation. 5303 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5304 .addReg(RotatedOldVal).addOperand(Src2); 5305 else if (IsSubWord) 5306 // Use RISBG to rotate Src2 into position and use it to replace the 5307 // field in RotatedOldVal. 5308 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5309 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5310 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5311 if (IsSubWord) 5312 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5313 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5314 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5315 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5316 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5317 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5318 MBB->addSuccessor(LoopMBB); 5319 MBB->addSuccessor(DoneMBB); 5320 5321 MI->eraseFromParent(); 5322 return DoneMBB; 5323 } 5324 5325 // Implement EmitInstrWithCustomInserter for pseudo 5326 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5327 // instruction that should be used to compare the current field with the 5328 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5329 // for when the current field should be kept. BitSize is the width of 5330 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5331 MachineBasicBlock * 5332 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5333 MachineBasicBlock *MBB, 5334 unsigned CompareOpcode, 5335 unsigned KeepOldMask, 5336 unsigned BitSize) const { 5337 MachineFunction &MF = *MBB->getParent(); 5338 const SystemZInstrInfo *TII = 5339 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5340 MachineRegisterInfo &MRI = MF.getRegInfo(); 5341 bool IsSubWord = (BitSize < 32); 5342 5343 // Extract the operands. Base can be a register or a frame index. 5344 unsigned Dest = MI->getOperand(0).getReg(); 5345 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5346 int64_t Disp = MI->getOperand(2).getImm(); 5347 unsigned Src2 = MI->getOperand(3).getReg(); 5348 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5349 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5350 DebugLoc DL = MI->getDebugLoc(); 5351 if (IsSubWord) 5352 BitSize = MI->getOperand(6).getImm(); 5353 5354 // Subword operations use 32-bit registers. 5355 const TargetRegisterClass *RC = (BitSize <= 32 ? 5356 &SystemZ::GR32BitRegClass : 5357 &SystemZ::GR64BitRegClass); 5358 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5359 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5360 5361 // Get the right opcodes for the displacement. 5362 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5363 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5364 assert(LOpcode && CSOpcode && "Displacement out of range"); 5365 5366 // Create virtual registers for temporary results. 5367 unsigned OrigVal = MRI.createVirtualRegister(RC); 5368 unsigned OldVal = MRI.createVirtualRegister(RC); 5369 unsigned NewVal = MRI.createVirtualRegister(RC); 5370 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5371 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5372 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5373 5374 // Insert 3 basic blocks for the loop. 5375 MachineBasicBlock *StartMBB = MBB; 5376 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5377 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5378 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5379 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5380 5381 // StartMBB: 5382 // ... 5383 // %OrigVal = L Disp(%Base) 5384 // # fall through to LoopMMB 5385 MBB = StartMBB; 5386 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5387 .addOperand(Base).addImm(Disp).addReg(0); 5388 MBB->addSuccessor(LoopMBB); 5389 5390 // LoopMBB: 5391 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5392 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5393 // CompareOpcode %RotatedOldVal, %Src2 5394 // BRC KeepOldMask, UpdateMBB 5395 MBB = LoopMBB; 5396 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5397 .addReg(OrigVal).addMBB(StartMBB) 5398 .addReg(Dest).addMBB(UpdateMBB); 5399 if (IsSubWord) 5400 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5401 .addReg(OldVal).addReg(BitShift).addImm(0); 5402 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5403 .addReg(RotatedOldVal).addReg(Src2); 5404 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5405 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5406 MBB->addSuccessor(UpdateMBB); 5407 MBB->addSuccessor(UseAltMBB); 5408 5409 // UseAltMBB: 5410 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5411 // # fall through to UpdateMMB 5412 MBB = UseAltMBB; 5413 if (IsSubWord) 5414 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5415 .addReg(RotatedOldVal).addReg(Src2) 5416 .addImm(32).addImm(31 + BitSize).addImm(0); 5417 MBB->addSuccessor(UpdateMBB); 5418 5419 // UpdateMBB: 5420 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5421 // [ %RotatedAltVal, UseAltMBB ] 5422 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5423 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5424 // JNE LoopMBB 5425 // # fall through to DoneMMB 5426 MBB = UpdateMBB; 5427 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5428 .addReg(RotatedOldVal).addMBB(LoopMBB) 5429 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5430 if (IsSubWord) 5431 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5432 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5433 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5434 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5435 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5436 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5437 MBB->addSuccessor(LoopMBB); 5438 MBB->addSuccessor(DoneMBB); 5439 5440 MI->eraseFromParent(); 5441 return DoneMBB; 5442 } 5443 5444 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5445 // instruction MI. 5446 MachineBasicBlock * 5447 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5448 MachineBasicBlock *MBB) const { 5449 5450 MachineFunction &MF = *MBB->getParent(); 5451 const SystemZInstrInfo *TII = 5452 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5453 MachineRegisterInfo &MRI = MF.getRegInfo(); 5454 5455 // Extract the operands. Base can be a register or a frame index. 5456 unsigned Dest = MI->getOperand(0).getReg(); 5457 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5458 int64_t Disp = MI->getOperand(2).getImm(); 5459 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5460 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5461 unsigned BitShift = MI->getOperand(5).getReg(); 5462 unsigned NegBitShift = MI->getOperand(6).getReg(); 5463 int64_t BitSize = MI->getOperand(7).getImm(); 5464 DebugLoc DL = MI->getDebugLoc(); 5465 5466 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5467 5468 // Get the right opcodes for the displacement. 5469 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5470 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5471 assert(LOpcode && CSOpcode && "Displacement out of range"); 5472 5473 // Create virtual registers for temporary results. 5474 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5475 unsigned OldVal = MRI.createVirtualRegister(RC); 5476 unsigned CmpVal = MRI.createVirtualRegister(RC); 5477 unsigned SwapVal = MRI.createVirtualRegister(RC); 5478 unsigned StoreVal = MRI.createVirtualRegister(RC); 5479 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5480 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5481 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5482 5483 // Insert 2 basic blocks for the loop. 5484 MachineBasicBlock *StartMBB = MBB; 5485 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5486 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5487 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5488 5489 // StartMBB: 5490 // ... 5491 // %OrigOldVal = L Disp(%Base) 5492 // # fall through to LoopMMB 5493 MBB = StartMBB; 5494 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5495 .addOperand(Base).addImm(Disp).addReg(0); 5496 MBB->addSuccessor(LoopMBB); 5497 5498 // LoopMBB: 5499 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5500 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5501 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5502 // %Dest = RLL %OldVal, BitSize(%BitShift) 5503 // ^^ The low BitSize bits contain the field 5504 // of interest. 5505 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5506 // ^^ Replace the upper 32-BitSize bits of the 5507 // comparison value with those that we loaded, 5508 // so that we can use a full word comparison. 5509 // CR %Dest, %RetryCmpVal 5510 // JNE DoneMBB 5511 // # Fall through to SetMBB 5512 MBB = LoopMBB; 5513 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5514 .addReg(OrigOldVal).addMBB(StartMBB) 5515 .addReg(RetryOldVal).addMBB(SetMBB); 5516 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5517 .addReg(OrigCmpVal).addMBB(StartMBB) 5518 .addReg(RetryCmpVal).addMBB(SetMBB); 5519 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5520 .addReg(OrigSwapVal).addMBB(StartMBB) 5521 .addReg(RetrySwapVal).addMBB(SetMBB); 5522 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5523 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5524 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5525 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5526 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5527 .addReg(Dest).addReg(RetryCmpVal); 5528 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5529 .addImm(SystemZ::CCMASK_ICMP) 5530 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5531 MBB->addSuccessor(DoneMBB); 5532 MBB->addSuccessor(SetMBB); 5533 5534 // SetMBB: 5535 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5536 // ^^ Replace the upper 32-BitSize bits of the new 5537 // value with those that we loaded. 5538 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5539 // ^^ Rotate the new field to its proper position. 5540 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5541 // JNE LoopMBB 5542 // # fall through to ExitMMB 5543 MBB = SetMBB; 5544 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5545 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5546 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5547 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5548 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5549 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5550 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5551 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5552 MBB->addSuccessor(LoopMBB); 5553 MBB->addSuccessor(DoneMBB); 5554 5555 MI->eraseFromParent(); 5556 return DoneMBB; 5557 } 5558 5559 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5560 // if the high register of the GR128 value must be cleared or false if 5561 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5562 // and subreg_l64 when extending a GR64. 5563 MachineBasicBlock * 5564 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5565 MachineBasicBlock *MBB, 5566 bool ClearEven, unsigned SubReg) const { 5567 MachineFunction &MF = *MBB->getParent(); 5568 const SystemZInstrInfo *TII = 5569 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5570 MachineRegisterInfo &MRI = MF.getRegInfo(); 5571 DebugLoc DL = MI->getDebugLoc(); 5572 5573 unsigned Dest = MI->getOperand(0).getReg(); 5574 unsigned Src = MI->getOperand(1).getReg(); 5575 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5576 5577 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5578 if (ClearEven) { 5579 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5580 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5581 5582 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5583 .addImm(0); 5584 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5585 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5586 In128 = NewIn128; 5587 } 5588 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5589 .addReg(In128).addReg(Src).addImm(SubReg); 5590 5591 MI->eraseFromParent(); 5592 return MBB; 5593 } 5594 5595 MachineBasicBlock * 5596 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5597 MachineBasicBlock *MBB, 5598 unsigned Opcode) const { 5599 MachineFunction &MF = *MBB->getParent(); 5600 const SystemZInstrInfo *TII = 5601 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5602 MachineRegisterInfo &MRI = MF.getRegInfo(); 5603 DebugLoc DL = MI->getDebugLoc(); 5604 5605 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5606 uint64_t DestDisp = MI->getOperand(1).getImm(); 5607 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5608 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5609 uint64_t Length = MI->getOperand(4).getImm(); 5610 5611 // When generating more than one CLC, all but the last will need to 5612 // branch to the end when a difference is found. 5613 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5614 splitBlockAfter(MI, MBB) : nullptr); 5615 5616 // Check for the loop form, in which operand 5 is the trip count. 5617 if (MI->getNumExplicitOperands() > 5) { 5618 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5619 5620 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5621 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5622 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5623 forceReg(MI, DestBase, TII)); 5624 5625 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5626 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5627 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5628 MRI.createVirtualRegister(RC)); 5629 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5630 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5631 MRI.createVirtualRegister(RC)); 5632 5633 RC = &SystemZ::GR64BitRegClass; 5634 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5635 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5636 5637 MachineBasicBlock *StartMBB = MBB; 5638 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5639 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5640 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5641 5642 // StartMBB: 5643 // # fall through to LoopMMB 5644 MBB->addSuccessor(LoopMBB); 5645 5646 // LoopMBB: 5647 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5648 // [ %NextDestReg, NextMBB ] 5649 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5650 // [ %NextSrcReg, NextMBB ] 5651 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5652 // [ %NextCountReg, NextMBB ] 5653 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5654 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5655 // ( JLH EndMBB ) 5656 // 5657 // The prefetch is used only for MVC. The JLH is used only for CLC. 5658 MBB = LoopMBB; 5659 5660 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5661 .addReg(StartDestReg).addMBB(StartMBB) 5662 .addReg(NextDestReg).addMBB(NextMBB); 5663 if (!HaveSingleBase) 5664 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5665 .addReg(StartSrcReg).addMBB(StartMBB) 5666 .addReg(NextSrcReg).addMBB(NextMBB); 5667 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5668 .addReg(StartCountReg).addMBB(StartMBB) 5669 .addReg(NextCountReg).addMBB(NextMBB); 5670 if (Opcode == SystemZ::MVC) 5671 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5672 .addImm(SystemZ::PFD_WRITE) 5673 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5674 BuildMI(MBB, DL, TII->get(Opcode)) 5675 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5676 .addReg(ThisSrcReg).addImm(SrcDisp); 5677 if (EndMBB) { 5678 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5679 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5680 .addMBB(EndMBB); 5681 MBB->addSuccessor(EndMBB); 5682 MBB->addSuccessor(NextMBB); 5683 } 5684 5685 // NextMBB: 5686 // %NextDestReg = LA 256(%ThisDestReg) 5687 // %NextSrcReg = LA 256(%ThisSrcReg) 5688 // %NextCountReg = AGHI %ThisCountReg, -1 5689 // CGHI %NextCountReg, 0 5690 // JLH LoopMBB 5691 // # fall through to DoneMMB 5692 // 5693 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5694 MBB = NextMBB; 5695 5696 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5697 .addReg(ThisDestReg).addImm(256).addReg(0); 5698 if (!HaveSingleBase) 5699 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5700 .addReg(ThisSrcReg).addImm(256).addReg(0); 5701 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5702 .addReg(ThisCountReg).addImm(-1); 5703 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5704 .addReg(NextCountReg).addImm(0); 5705 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5706 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5707 .addMBB(LoopMBB); 5708 MBB->addSuccessor(LoopMBB); 5709 MBB->addSuccessor(DoneMBB); 5710 5711 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5712 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5713 Length &= 255; 5714 MBB = DoneMBB; 5715 } 5716 // Handle any remaining bytes with straight-line code. 5717 while (Length > 0) { 5718 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5719 // The previous iteration might have created out-of-range displacements. 5720 // Apply them using LAY if so. 5721 if (!isUInt<12>(DestDisp)) { 5722 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5723 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5724 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5725 DestBase = MachineOperand::CreateReg(Reg, false); 5726 DestDisp = 0; 5727 } 5728 if (!isUInt<12>(SrcDisp)) { 5729 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5730 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5731 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5732 SrcBase = MachineOperand::CreateReg(Reg, false); 5733 SrcDisp = 0; 5734 } 5735 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5736 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5737 .addOperand(SrcBase).addImm(SrcDisp); 5738 DestDisp += ThisLength; 5739 SrcDisp += ThisLength; 5740 Length -= ThisLength; 5741 // If there's another CLC to go, branch to the end if a difference 5742 // was found. 5743 if (EndMBB && Length > 0) { 5744 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5745 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5746 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5747 .addMBB(EndMBB); 5748 MBB->addSuccessor(EndMBB); 5749 MBB->addSuccessor(NextMBB); 5750 MBB = NextMBB; 5751 } 5752 } 5753 if (EndMBB) { 5754 MBB->addSuccessor(EndMBB); 5755 MBB = EndMBB; 5756 MBB->addLiveIn(SystemZ::CC); 5757 } 5758 5759 MI->eraseFromParent(); 5760 return MBB; 5761 } 5762 5763 // Decompose string pseudo-instruction MI into a loop that continually performs 5764 // Opcode until CC != 3. 5765 MachineBasicBlock * 5766 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5767 MachineBasicBlock *MBB, 5768 unsigned Opcode) const { 5769 MachineFunction &MF = *MBB->getParent(); 5770 const SystemZInstrInfo *TII = 5771 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5772 MachineRegisterInfo &MRI = MF.getRegInfo(); 5773 DebugLoc DL = MI->getDebugLoc(); 5774 5775 uint64_t End1Reg = MI->getOperand(0).getReg(); 5776 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5777 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5778 uint64_t CharReg = MI->getOperand(3).getReg(); 5779 5780 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5781 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5782 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5783 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5784 5785 MachineBasicBlock *StartMBB = MBB; 5786 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5787 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5788 5789 // StartMBB: 5790 // # fall through to LoopMMB 5791 MBB->addSuccessor(LoopMBB); 5792 5793 // LoopMBB: 5794 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5795 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5796 // R0L = %CharReg 5797 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5798 // JO LoopMBB 5799 // # fall through to DoneMMB 5800 // 5801 // The load of R0L can be hoisted by post-RA LICM. 5802 MBB = LoopMBB; 5803 5804 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5805 .addReg(Start1Reg).addMBB(StartMBB) 5806 .addReg(End1Reg).addMBB(LoopMBB); 5807 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5808 .addReg(Start2Reg).addMBB(StartMBB) 5809 .addReg(End2Reg).addMBB(LoopMBB); 5810 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5811 BuildMI(MBB, DL, TII->get(Opcode)) 5812 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5813 .addReg(This1Reg).addReg(This2Reg); 5814 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5815 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5816 MBB->addSuccessor(LoopMBB); 5817 MBB->addSuccessor(DoneMBB); 5818 5819 DoneMBB->addLiveIn(SystemZ::CC); 5820 5821 MI->eraseFromParent(); 5822 return DoneMBB; 5823 } 5824 5825 // Update TBEGIN instruction with final opcode and register clobbers. 5826 MachineBasicBlock * 5827 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5828 MachineBasicBlock *MBB, 5829 unsigned Opcode, 5830 bool NoFloat) const { 5831 MachineFunction &MF = *MBB->getParent(); 5832 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5833 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5834 5835 // Update opcode. 5836 MI->setDesc(TII->get(Opcode)); 5837 5838 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5839 // Make sure to add the corresponding GRSM bits if they are missing. 5840 uint64_t Control = MI->getOperand(2).getImm(); 5841 static const unsigned GPRControlBit[16] = { 5842 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5843 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5844 }; 5845 Control |= GPRControlBit[15]; 5846 if (TFI->hasFP(MF)) 5847 Control |= GPRControlBit[11]; 5848 MI->getOperand(2).setImm(Control); 5849 5850 // Add GPR clobbers. 5851 for (int I = 0; I < 16; I++) { 5852 if ((Control & GPRControlBit[I]) == 0) { 5853 unsigned Reg = SystemZMC::GR64Regs[I]; 5854 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5855 } 5856 } 5857 5858 // Add FPR/VR clobbers. 5859 if (!NoFloat && (Control & 4) != 0) { 5860 if (Subtarget.hasVector()) { 5861 for (int I = 0; I < 32; I++) { 5862 unsigned Reg = SystemZMC::VR128Regs[I]; 5863 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5864 } 5865 } else { 5866 for (int I = 0; I < 16; I++) { 5867 unsigned Reg = SystemZMC::FP64Regs[I]; 5868 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5869 } 5870 } 5871 } 5872 5873 return MBB; 5874 } 5875 5876 MachineBasicBlock * 5877 SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI, 5878 MachineBasicBlock *MBB, 5879 unsigned Opcode) const { 5880 MachineFunction &MF = *MBB->getParent(); 5881 MachineRegisterInfo *MRI = &MF.getRegInfo(); 5882 const SystemZInstrInfo *TII = 5883 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5884 DebugLoc DL = MI->getDebugLoc(); 5885 5886 unsigned SrcReg = MI->getOperand(0).getReg(); 5887 5888 // Create new virtual register of the same class as source. 5889 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 5890 unsigned DstReg = MRI->createVirtualRegister(RC); 5891 5892 // Replace pseudo with a normal load-and-test that models the def as 5893 // well. 5894 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 5895 .addReg(SrcReg); 5896 MI->eraseFromParent(); 5897 5898 return MBB; 5899 } 5900 5901 MachineBasicBlock *SystemZTargetLowering:: 5902 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5903 switch (MI->getOpcode()) { 5904 case SystemZ::Select32Mux: 5905 case SystemZ::Select32: 5906 case SystemZ::SelectF32: 5907 case SystemZ::Select64: 5908 case SystemZ::SelectF64: 5909 case SystemZ::SelectF128: 5910 return emitSelect(MI, MBB); 5911 5912 case SystemZ::CondStore8Mux: 5913 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5914 case SystemZ::CondStore8MuxInv: 5915 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5916 case SystemZ::CondStore16Mux: 5917 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5918 case SystemZ::CondStore16MuxInv: 5919 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5920 case SystemZ::CondStore8: 5921 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5922 case SystemZ::CondStore8Inv: 5923 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5924 case SystemZ::CondStore16: 5925 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5926 case SystemZ::CondStore16Inv: 5927 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5928 case SystemZ::CondStore32: 5929 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5930 case SystemZ::CondStore32Inv: 5931 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5932 case SystemZ::CondStore64: 5933 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5934 case SystemZ::CondStore64Inv: 5935 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5936 case SystemZ::CondStoreF32: 5937 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5938 case SystemZ::CondStoreF32Inv: 5939 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5940 case SystemZ::CondStoreF64: 5941 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5942 case SystemZ::CondStoreF64Inv: 5943 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5944 5945 case SystemZ::AEXT128_64: 5946 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5947 case SystemZ::ZEXT128_32: 5948 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5949 case SystemZ::ZEXT128_64: 5950 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5951 5952 case SystemZ::ATOMIC_SWAPW: 5953 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5954 case SystemZ::ATOMIC_SWAP_32: 5955 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5956 case SystemZ::ATOMIC_SWAP_64: 5957 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5958 5959 case SystemZ::ATOMIC_LOADW_AR: 5960 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5961 case SystemZ::ATOMIC_LOADW_AFI: 5962 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5963 case SystemZ::ATOMIC_LOAD_AR: 5964 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5965 case SystemZ::ATOMIC_LOAD_AHI: 5966 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5967 case SystemZ::ATOMIC_LOAD_AFI: 5968 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5969 case SystemZ::ATOMIC_LOAD_AGR: 5970 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5971 case SystemZ::ATOMIC_LOAD_AGHI: 5972 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5973 case SystemZ::ATOMIC_LOAD_AGFI: 5974 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5975 5976 case SystemZ::ATOMIC_LOADW_SR: 5977 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5978 case SystemZ::ATOMIC_LOAD_SR: 5979 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5980 case SystemZ::ATOMIC_LOAD_SGR: 5981 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5982 5983 case SystemZ::ATOMIC_LOADW_NR: 5984 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5985 case SystemZ::ATOMIC_LOADW_NILH: 5986 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5987 case SystemZ::ATOMIC_LOAD_NR: 5988 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5989 case SystemZ::ATOMIC_LOAD_NILL: 5990 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5991 case SystemZ::ATOMIC_LOAD_NILH: 5992 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5993 case SystemZ::ATOMIC_LOAD_NILF: 5994 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5995 case SystemZ::ATOMIC_LOAD_NGR: 5996 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5997 case SystemZ::ATOMIC_LOAD_NILL64: 5998 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5999 case SystemZ::ATOMIC_LOAD_NILH64: 6000 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 6001 case SystemZ::ATOMIC_LOAD_NIHL64: 6002 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 6003 case SystemZ::ATOMIC_LOAD_NIHH64: 6004 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 6005 case SystemZ::ATOMIC_LOAD_NILF64: 6006 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 6007 case SystemZ::ATOMIC_LOAD_NIHF64: 6008 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 6009 6010 case SystemZ::ATOMIC_LOADW_OR: 6011 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 6012 case SystemZ::ATOMIC_LOADW_OILH: 6013 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 6014 case SystemZ::ATOMIC_LOAD_OR: 6015 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 6016 case SystemZ::ATOMIC_LOAD_OILL: 6017 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 6018 case SystemZ::ATOMIC_LOAD_OILH: 6019 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 6020 case SystemZ::ATOMIC_LOAD_OILF: 6021 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 6022 case SystemZ::ATOMIC_LOAD_OGR: 6023 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 6024 case SystemZ::ATOMIC_LOAD_OILL64: 6025 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 6026 case SystemZ::ATOMIC_LOAD_OILH64: 6027 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 6028 case SystemZ::ATOMIC_LOAD_OIHL64: 6029 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 6030 case SystemZ::ATOMIC_LOAD_OIHH64: 6031 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 6032 case SystemZ::ATOMIC_LOAD_OILF64: 6033 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 6034 case SystemZ::ATOMIC_LOAD_OIHF64: 6035 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 6036 6037 case SystemZ::ATOMIC_LOADW_XR: 6038 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 6039 case SystemZ::ATOMIC_LOADW_XILF: 6040 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 6041 case SystemZ::ATOMIC_LOAD_XR: 6042 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 6043 case SystemZ::ATOMIC_LOAD_XILF: 6044 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 6045 case SystemZ::ATOMIC_LOAD_XGR: 6046 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 6047 case SystemZ::ATOMIC_LOAD_XILF64: 6048 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 6049 case SystemZ::ATOMIC_LOAD_XIHF64: 6050 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 6051 6052 case SystemZ::ATOMIC_LOADW_NRi: 6053 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 6054 case SystemZ::ATOMIC_LOADW_NILHi: 6055 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 6056 case SystemZ::ATOMIC_LOAD_NRi: 6057 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 6058 case SystemZ::ATOMIC_LOAD_NILLi: 6059 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 6060 case SystemZ::ATOMIC_LOAD_NILHi: 6061 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 6062 case SystemZ::ATOMIC_LOAD_NILFi: 6063 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 6064 case SystemZ::ATOMIC_LOAD_NGRi: 6065 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 6066 case SystemZ::ATOMIC_LOAD_NILL64i: 6067 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 6068 case SystemZ::ATOMIC_LOAD_NILH64i: 6069 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 6070 case SystemZ::ATOMIC_LOAD_NIHL64i: 6071 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 6072 case SystemZ::ATOMIC_LOAD_NIHH64i: 6073 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 6074 case SystemZ::ATOMIC_LOAD_NILF64i: 6075 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 6076 case SystemZ::ATOMIC_LOAD_NIHF64i: 6077 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 6078 6079 case SystemZ::ATOMIC_LOADW_MIN: 6080 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6081 SystemZ::CCMASK_CMP_LE, 0); 6082 case SystemZ::ATOMIC_LOAD_MIN_32: 6083 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6084 SystemZ::CCMASK_CMP_LE, 32); 6085 case SystemZ::ATOMIC_LOAD_MIN_64: 6086 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6087 SystemZ::CCMASK_CMP_LE, 64); 6088 6089 case SystemZ::ATOMIC_LOADW_MAX: 6090 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6091 SystemZ::CCMASK_CMP_GE, 0); 6092 case SystemZ::ATOMIC_LOAD_MAX_32: 6093 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6094 SystemZ::CCMASK_CMP_GE, 32); 6095 case SystemZ::ATOMIC_LOAD_MAX_64: 6096 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6097 SystemZ::CCMASK_CMP_GE, 64); 6098 6099 case SystemZ::ATOMIC_LOADW_UMIN: 6100 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6101 SystemZ::CCMASK_CMP_LE, 0); 6102 case SystemZ::ATOMIC_LOAD_UMIN_32: 6103 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6104 SystemZ::CCMASK_CMP_LE, 32); 6105 case SystemZ::ATOMIC_LOAD_UMIN_64: 6106 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6107 SystemZ::CCMASK_CMP_LE, 64); 6108 6109 case SystemZ::ATOMIC_LOADW_UMAX: 6110 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6111 SystemZ::CCMASK_CMP_GE, 0); 6112 case SystemZ::ATOMIC_LOAD_UMAX_32: 6113 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6114 SystemZ::CCMASK_CMP_GE, 32); 6115 case SystemZ::ATOMIC_LOAD_UMAX_64: 6116 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6117 SystemZ::CCMASK_CMP_GE, 64); 6118 6119 case SystemZ::ATOMIC_CMP_SWAPW: 6120 return emitAtomicCmpSwapW(MI, MBB); 6121 case SystemZ::MVCSequence: 6122 case SystemZ::MVCLoop: 6123 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6124 case SystemZ::NCSequence: 6125 case SystemZ::NCLoop: 6126 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6127 case SystemZ::OCSequence: 6128 case SystemZ::OCLoop: 6129 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6130 case SystemZ::XCSequence: 6131 case SystemZ::XCLoop: 6132 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6133 case SystemZ::CLCSequence: 6134 case SystemZ::CLCLoop: 6135 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6136 case SystemZ::CLSTLoop: 6137 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6138 case SystemZ::MVSTLoop: 6139 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6140 case SystemZ::SRSTLoop: 6141 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6142 case SystemZ::TBEGIN: 6143 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6144 case SystemZ::TBEGIN_nofloat: 6145 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6146 case SystemZ::TBEGINC: 6147 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6148 case SystemZ::LTEBRCompare_VecPseudo: 6149 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6150 case SystemZ::LTDBRCompare_VecPseudo: 6151 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6152 case SystemZ::LTXBRCompare_VecPseudo: 6153 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6154 6155 default: 6156 llvm_unreachable("Unexpected instr type to insert"); 6157 } 6158 } 6159