1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "systemz-lower" 15 16 #include "SystemZISelLowering.h" 17 #include "SystemZCallingConv.h" 18 #include "SystemZConstantPoolValue.h" 19 #include "SystemZMachineFunctionInfo.h" 20 #include "SystemZTargetMachine.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 25 26 #include <cctype> 27 28 using namespace llvm; 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 } 42 43 // Classify VT as either 32 or 64 bit. 44 static bool is32Bit(EVT VT) { 45 switch (VT.getSimpleVT().SimpleTy) { 46 case MVT::i32: 47 return true; 48 case MVT::i64: 49 return false; 50 default: 51 llvm_unreachable("Unsupported type"); 52 } 53 } 54 55 // Return a version of MachineOperand that can be safely used before the 56 // final use. 57 static MachineOperand earlyUseOperand(MachineOperand Op) { 58 if (Op.isReg()) 59 Op.setIsKill(false); 60 return Op; 61 } 62 63 SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) 64 : TargetLowering(tm, new TargetLoweringObjectFileELF()), 65 Subtarget(*tm.getSubtargetImpl()), TM(tm) { 66 MVT PtrVT = getPointerTy(); 67 68 // Set up the register classes. 69 if (Subtarget.hasHighWord()) 70 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 71 else 72 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 73 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 74 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 75 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 76 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 77 78 // Compute derived properties from the register classes 79 computeRegisterProperties(); 80 81 // Set up special registers. 82 setExceptionPointerRegister(SystemZ::R6D); 83 setExceptionSelectorRegister(SystemZ::R7D); 84 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 85 86 // TODO: It may be better to default to latency-oriented scheduling, however 87 // LLVM's current latency-oriented scheduler can't handle physreg definitions 88 // such as SystemZ has with CC, so set this to the register-pressure 89 // scheduler, because it can. 90 setSchedulingPreference(Sched::RegPressure); 91 92 setBooleanContents(ZeroOrOneBooleanContent); 93 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 94 95 // Instructions are strings of 2-byte aligned 2-byte values. 96 setMinFunctionAlignment(2); 97 98 // Handle operations that are handled in a similar way for all types. 99 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 100 I <= MVT::LAST_FP_VALUETYPE; 101 ++I) { 102 MVT VT = MVT::SimpleValueType(I); 103 if (isTypeLegal(VT)) { 104 // Lower SET_CC into an IPM-based sequence. 105 setOperationAction(ISD::SETCC, VT, Custom); 106 107 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 108 setOperationAction(ISD::SELECT, VT, Expand); 109 110 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 111 setOperationAction(ISD::SELECT_CC, VT, Custom); 112 setOperationAction(ISD::BR_CC, VT, Custom); 113 } 114 } 115 116 // Expand jump table branches as address arithmetic followed by an 117 // indirect jump. 118 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 119 120 // Expand BRCOND into a BR_CC (see above). 121 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 122 123 // Handle integer types. 124 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 125 I <= MVT::LAST_INTEGER_VALUETYPE; 126 ++I) { 127 MVT VT = MVT::SimpleValueType(I); 128 if (isTypeLegal(VT)) { 129 // Expand individual DIV and REMs into DIVREMs. 130 setOperationAction(ISD::SDIV, VT, Expand); 131 setOperationAction(ISD::UDIV, VT, Expand); 132 setOperationAction(ISD::SREM, VT, Expand); 133 setOperationAction(ISD::UREM, VT, Expand); 134 setOperationAction(ISD::SDIVREM, VT, Custom); 135 setOperationAction(ISD::UDIVREM, VT, Custom); 136 137 // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP. 138 // FIXME: probably much too conservative. 139 setOperationAction(ISD::ATOMIC_LOAD, VT, Expand); 140 setOperationAction(ISD::ATOMIC_STORE, VT, Expand); 141 142 // No special instructions for these. 143 setOperationAction(ISD::CTPOP, VT, Expand); 144 setOperationAction(ISD::CTTZ, VT, Expand); 145 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 146 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 147 setOperationAction(ISD::ROTR, VT, Expand); 148 149 // Use *MUL_LOHI where possible instead of MULH*. 150 setOperationAction(ISD::MULHS, VT, Expand); 151 setOperationAction(ISD::MULHU, VT, Expand); 152 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 153 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 154 155 // We have instructions for signed but not unsigned FP conversion. 156 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 157 } 158 } 159 160 // Type legalization will convert 8- and 16-bit atomic operations into 161 // forms that operate on i32s (but still keeping the original memory VT). 162 // Lower them into full i32 operations. 163 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 164 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 165 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 166 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 167 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 168 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 169 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 170 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 171 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 172 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 173 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 174 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 175 176 // We have instructions for signed but not unsigned FP conversion. 177 // Handle unsigned 32-bit types as signed 64-bit types. 178 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 179 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 180 181 // We have native support for a 64-bit CTLZ, via FLOGR. 182 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 183 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 184 185 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 186 setOperationAction(ISD::OR, MVT::i64, Custom); 187 188 // FIXME: Can we support these natively? 189 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 190 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 191 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 192 193 // We have native instructions for i8, i16 and i32 extensions, but not i1. 194 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 195 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 196 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 198 199 // Handle the various types of symbolic address. 200 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 201 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 202 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 203 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 204 setOperationAction(ISD::JumpTable, PtrVT, Custom); 205 206 // We need to handle dynamic allocations specially because of the 207 // 160-byte area at the bottom of the stack. 208 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 209 210 // Use custom expanders so that we can force the function to use 211 // a frame pointer. 212 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 213 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 214 215 // Handle prefetches with PFD or PFDRL. 216 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 217 218 // Handle floating-point types. 219 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 220 I <= MVT::LAST_FP_VALUETYPE; 221 ++I) { 222 MVT VT = MVT::SimpleValueType(I); 223 if (isTypeLegal(VT)) { 224 // We can use FI for FRINT. 225 setOperationAction(ISD::FRINT, VT, Legal); 226 227 // We can use the extended form of FI for other rounding operations. 228 if (Subtarget.hasFPExtension()) { 229 setOperationAction(ISD::FNEARBYINT, VT, Legal); 230 setOperationAction(ISD::FFLOOR, VT, Legal); 231 setOperationAction(ISD::FCEIL, VT, Legal); 232 setOperationAction(ISD::FTRUNC, VT, Legal); 233 setOperationAction(ISD::FROUND, VT, Legal); 234 } 235 236 // No special instructions for these. 237 setOperationAction(ISD::FSIN, VT, Expand); 238 setOperationAction(ISD::FCOS, VT, Expand); 239 setOperationAction(ISD::FREM, VT, Expand); 240 } 241 } 242 243 // We have fused multiply-addition for f32 and f64 but not f128. 244 setOperationAction(ISD::FMA, MVT::f32, Legal); 245 setOperationAction(ISD::FMA, MVT::f64, Legal); 246 setOperationAction(ISD::FMA, MVT::f128, Expand); 247 248 // Needed so that we don't try to implement f128 constant loads using 249 // a load-and-extend of a f80 constant (in cases where the constant 250 // would fit in an f80). 251 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); 252 253 // Floating-point truncation and stores need to be done separately. 254 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 255 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 256 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 257 258 // We have 64-bit FPR<->GPR moves, but need special handling for 259 // 32-bit forms. 260 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 261 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 262 263 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 264 // structure, but VAEND is a no-op. 265 setOperationAction(ISD::VASTART, MVT::Other, Custom); 266 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 267 setOperationAction(ISD::VAEND, MVT::Other, Expand); 268 269 // We want to use MVC in preference to even a single load/store pair. 270 MaxStoresPerMemcpy = 0; 271 MaxStoresPerMemcpyOptSize = 0; 272 273 // The main memset sequence is a byte store followed by an MVC. 274 // Two STC or MV..I stores win over that, but the kind of fused stores 275 // generated by target-independent code don't when the byte value is 276 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 277 // than "STC;MVC". Handle the choice in target-specific code instead. 278 MaxStoresPerMemset = 0; 279 MaxStoresPerMemsetOptSize = 0; 280 } 281 282 bool 283 SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 284 VT = VT.getScalarType(); 285 286 if (!VT.isSimple()) 287 return false; 288 289 switch (VT.getSimpleVT().SimpleTy) { 290 case MVT::f32: 291 case MVT::f64: 292 return true; 293 case MVT::f128: 294 return false; 295 default: 296 break; 297 } 298 299 return false; 300 } 301 302 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 303 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 304 return Imm.isZero() || Imm.isNegZero(); 305 } 306 307 bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, 308 bool *Fast) const { 309 // Unaligned accesses should never be slower than the expanded version. 310 // We check specifically for aligned accesses in the few cases where 311 // they are required. 312 if (Fast) 313 *Fast = true; 314 return true; 315 } 316 317 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM, 318 Type *Ty) const { 319 // Punt on globals for now, although they can be used in limited 320 // RELATIVE LONG cases. 321 if (AM.BaseGV) 322 return false; 323 324 // Require a 20-bit signed offset. 325 if (!isInt<20>(AM.BaseOffs)) 326 return false; 327 328 // Indexing is OK but no scale factor can be applied. 329 return AM.Scale == 0 || AM.Scale == 1; 330 } 331 332 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 333 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 334 return false; 335 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 336 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 337 return FromBits > ToBits; 338 } 339 340 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 341 if (!FromVT.isInteger() || !ToVT.isInteger()) 342 return false; 343 unsigned FromBits = FromVT.getSizeInBits(); 344 unsigned ToBits = ToVT.getSizeInBits(); 345 return FromBits > ToBits; 346 } 347 348 //===----------------------------------------------------------------------===// 349 // Inline asm support 350 //===----------------------------------------------------------------------===// 351 352 TargetLowering::ConstraintType 353 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { 354 if (Constraint.size() == 1) { 355 switch (Constraint[0]) { 356 case 'a': // Address register 357 case 'd': // Data register (equivalent to 'r') 358 case 'f': // Floating-point register 359 case 'h': // High-part register 360 case 'r': // General-purpose register 361 return C_RegisterClass; 362 363 case 'Q': // Memory with base and unsigned 12-bit displacement 364 case 'R': // Likewise, plus an index 365 case 'S': // Memory with base and signed 20-bit displacement 366 case 'T': // Likewise, plus an index 367 case 'm': // Equivalent to 'T'. 368 return C_Memory; 369 370 case 'I': // Unsigned 8-bit constant 371 case 'J': // Unsigned 12-bit constant 372 case 'K': // Signed 16-bit constant 373 case 'L': // Signed 20-bit displacement (on all targets we support) 374 case 'M': // 0x7fffffff 375 return C_Other; 376 377 default: 378 break; 379 } 380 } 381 return TargetLowering::getConstraintType(Constraint); 382 } 383 384 TargetLowering::ConstraintWeight SystemZTargetLowering:: 385 getSingleConstraintMatchWeight(AsmOperandInfo &info, 386 const char *constraint) const { 387 ConstraintWeight weight = CW_Invalid; 388 Value *CallOperandVal = info.CallOperandVal; 389 // If we don't have a value, we can't do a match, 390 // but allow it at the lowest weight. 391 if (CallOperandVal == NULL) 392 return CW_Default; 393 Type *type = CallOperandVal->getType(); 394 // Look at the constraint type. 395 switch (*constraint) { 396 default: 397 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 398 break; 399 400 case 'a': // Address register 401 case 'd': // Data register (equivalent to 'r') 402 case 'h': // High-part register 403 case 'r': // General-purpose register 404 if (CallOperandVal->getType()->isIntegerTy()) 405 weight = CW_Register; 406 break; 407 408 case 'f': // Floating-point register 409 if (type->isFloatingPointTy()) 410 weight = CW_Register; 411 break; 412 413 case 'I': // Unsigned 8-bit constant 414 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 415 if (isUInt<8>(C->getZExtValue())) 416 weight = CW_Constant; 417 break; 418 419 case 'J': // Unsigned 12-bit constant 420 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 421 if (isUInt<12>(C->getZExtValue())) 422 weight = CW_Constant; 423 break; 424 425 case 'K': // Signed 16-bit constant 426 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 427 if (isInt<16>(C->getSExtValue())) 428 weight = CW_Constant; 429 break; 430 431 case 'L': // Signed 20-bit displacement (on all targets we support) 432 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 433 if (isInt<20>(C->getSExtValue())) 434 weight = CW_Constant; 435 break; 436 437 case 'M': // 0x7fffffff 438 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) 439 if (C->getZExtValue() == 0x7fffffff) 440 weight = CW_Constant; 441 break; 442 } 443 return weight; 444 } 445 446 // Parse a "{tNNN}" register constraint for which the register type "t" 447 // has already been verified. MC is the class associated with "t" and 448 // Map maps 0-based register numbers to LLVM register numbers. 449 static std::pair<unsigned, const TargetRegisterClass *> 450 parseRegisterNumber(const std::string &Constraint, 451 const TargetRegisterClass *RC, const unsigned *Map) { 452 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 453 if (isdigit(Constraint[2])) { 454 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2); 455 unsigned Index = atoi(Suffix.c_str()); 456 if (Index < 16 && Map[Index]) 457 return std::make_pair(Map[Index], RC); 458 } 459 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 460 } 461 462 std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering:: 463 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { 464 if (Constraint.size() == 1) { 465 // GCC Constraint Letters 466 switch (Constraint[0]) { 467 default: break; 468 case 'd': // Data register (equivalent to 'r') 469 case 'r': // General-purpose register 470 if (VT == MVT::i64) 471 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 472 else if (VT == MVT::i128) 473 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 474 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 475 476 case 'a': // Address register 477 if (VT == MVT::i64) 478 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 479 else if (VT == MVT::i128) 480 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 481 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 482 483 case 'h': // High-part register (an LLVM extension) 484 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 485 486 case 'f': // Floating-point register 487 if (VT == MVT::f64) 488 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 489 else if (VT == MVT::f128) 490 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 491 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 492 } 493 } 494 if (Constraint[0] == '{') { 495 // We need to override the default register parsing for GPRs and FPRs 496 // because the interpretation depends on VT. The internal names of 497 // the registers are also different from the external names 498 // (F0D and F0S instead of F0, etc.). 499 if (Constraint[1] == 'r') { 500 if (VT == MVT::i32) 501 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 502 SystemZMC::GR32Regs); 503 if (VT == MVT::i128) 504 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 505 SystemZMC::GR128Regs); 506 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 507 SystemZMC::GR64Regs); 508 } 509 if (Constraint[1] == 'f') { 510 if (VT == MVT::f32) 511 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 512 SystemZMC::FP32Regs); 513 if (VT == MVT::f128) 514 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 515 SystemZMC::FP128Regs); 516 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 517 SystemZMC::FP64Regs); 518 } 519 } 520 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 521 } 522 523 void SystemZTargetLowering:: 524 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 525 std::vector<SDValue> &Ops, 526 SelectionDAG &DAG) const { 527 // Only support length 1 constraints for now. 528 if (Constraint.length() == 1) { 529 switch (Constraint[0]) { 530 case 'I': // Unsigned 8-bit constant 531 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 532 if (isUInt<8>(C->getZExtValue())) 533 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 534 Op.getValueType())); 535 return; 536 537 case 'J': // Unsigned 12-bit constant 538 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 539 if (isUInt<12>(C->getZExtValue())) 540 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 541 Op.getValueType())); 542 return; 543 544 case 'K': // Signed 16-bit constant 545 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 546 if (isInt<16>(C->getSExtValue())) 547 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 548 Op.getValueType())); 549 return; 550 551 case 'L': // Signed 20-bit displacement (on all targets we support) 552 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 553 if (isInt<20>(C->getSExtValue())) 554 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 555 Op.getValueType())); 556 return; 557 558 case 'M': // 0x7fffffff 559 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 560 if (C->getZExtValue() == 0x7fffffff) 561 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 562 Op.getValueType())); 563 return; 564 } 565 } 566 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 567 } 568 569 //===----------------------------------------------------------------------===// 570 // Calling conventions 571 //===----------------------------------------------------------------------===// 572 573 #include "SystemZGenCallingConv.inc" 574 575 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 576 Type *ToType) const { 577 return isTruncateFree(FromType, ToType); 578 } 579 580 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 581 if (!CI->isTailCall()) 582 return false; 583 return true; 584 } 585 586 // Value is a value that has been passed to us in the location described by VA 587 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 588 // any loads onto Chain. 589 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 590 CCValAssign &VA, SDValue Chain, 591 SDValue Value) { 592 // If the argument has been promoted from a smaller type, insert an 593 // assertion to capture this. 594 if (VA.getLocInfo() == CCValAssign::SExt) 595 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 596 DAG.getValueType(VA.getValVT())); 597 else if (VA.getLocInfo() == CCValAssign::ZExt) 598 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 599 DAG.getValueType(VA.getValVT())); 600 601 if (VA.isExtInLoc()) 602 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 603 else if (VA.getLocInfo() == CCValAssign::Indirect) 604 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 605 MachinePointerInfo(), false, false, false, 0); 606 else 607 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 608 return Value; 609 } 610 611 // Value is a value of type VA.getValVT() that we need to copy into 612 // the location described by VA. Return a copy of Value converted to 613 // VA.getValVT(). The caller is responsible for handling indirect values. 614 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 615 CCValAssign &VA, SDValue Value) { 616 switch (VA.getLocInfo()) { 617 case CCValAssign::SExt: 618 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 619 case CCValAssign::ZExt: 620 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 621 case CCValAssign::AExt: 622 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 623 case CCValAssign::Full: 624 return Value; 625 default: 626 llvm_unreachable("Unhandled getLocInfo()"); 627 } 628 } 629 630 SDValue SystemZTargetLowering:: 631 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 632 const SmallVectorImpl<ISD::InputArg> &Ins, 633 SDLoc DL, SelectionDAG &DAG, 634 SmallVectorImpl<SDValue> &InVals) const { 635 MachineFunction &MF = DAG.getMachineFunction(); 636 MachineFrameInfo *MFI = MF.getFrameInfo(); 637 MachineRegisterInfo &MRI = MF.getRegInfo(); 638 SystemZMachineFunctionInfo *FuncInfo = 639 MF.getInfo<SystemZMachineFunctionInfo>(); 640 const SystemZFrameLowering *TFL = 641 static_cast<const SystemZFrameLowering *>(TM.getFrameLowering()); 642 643 // Assign locations to all of the incoming arguments. 644 SmallVector<CCValAssign, 16> ArgLocs; 645 CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); 646 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 647 648 unsigned NumFixedGPRs = 0; 649 unsigned NumFixedFPRs = 0; 650 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 651 SDValue ArgValue; 652 CCValAssign &VA = ArgLocs[I]; 653 EVT LocVT = VA.getLocVT(); 654 if (VA.isRegLoc()) { 655 // Arguments passed in registers 656 const TargetRegisterClass *RC; 657 switch (LocVT.getSimpleVT().SimpleTy) { 658 default: 659 // Integers smaller than i64 should be promoted to i64. 660 llvm_unreachable("Unexpected argument type"); 661 case MVT::i32: 662 NumFixedGPRs += 1; 663 RC = &SystemZ::GR32BitRegClass; 664 break; 665 case MVT::i64: 666 NumFixedGPRs += 1; 667 RC = &SystemZ::GR64BitRegClass; 668 break; 669 case MVT::f32: 670 NumFixedFPRs += 1; 671 RC = &SystemZ::FP32BitRegClass; 672 break; 673 case MVT::f64: 674 NumFixedFPRs += 1; 675 RC = &SystemZ::FP64BitRegClass; 676 break; 677 } 678 679 unsigned VReg = MRI.createVirtualRegister(RC); 680 MRI.addLiveIn(VA.getLocReg(), VReg); 681 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 682 } else { 683 assert(VA.isMemLoc() && "Argument not register or memory"); 684 685 // Create the frame index object for this incoming parameter. 686 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 687 VA.getLocMemOffset(), true); 688 689 // Create the SelectionDAG nodes corresponding to a load 690 // from this parameter. Unpromoted ints and floats are 691 // passed as right-justified 8-byte values. 692 EVT PtrVT = getPointerTy(); 693 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 694 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 695 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4)); 696 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 697 MachinePointerInfo::getFixedStack(FI), 698 false, false, false, 0); 699 } 700 701 // Convert the value of the argument register into the value that's 702 // being passed. 703 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 704 } 705 706 if (IsVarArg) { 707 // Save the number of non-varargs registers for later use by va_start, etc. 708 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 709 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 710 711 // Likewise the address (in the form of a frame index) of where the 712 // first stack vararg would be. The 1-byte size here is arbitrary. 713 int64_t StackSize = CCInfo.getNextStackOffset(); 714 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 715 716 // ...and a similar frame index for the caller-allocated save area 717 // that will be used to store the incoming registers. 718 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 719 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 720 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 721 722 // Store the FPR varargs in the reserved frame slots. (We store the 723 // GPRs as part of the prologue.) 724 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 725 SDValue MemOps[SystemZ::NumArgFPRs]; 726 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 727 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 728 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 729 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 730 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 731 &SystemZ::FP64BitRegClass); 732 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 733 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 734 MachinePointerInfo::getFixedStack(FI), 735 false, false, 0); 736 737 } 738 // Join the stores, which are independent of one another. 739 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 740 &MemOps[NumFixedFPRs], 741 SystemZ::NumArgFPRs - NumFixedFPRs); 742 } 743 } 744 745 return Chain; 746 } 747 748 static bool canUseSiblingCall(CCState ArgCCInfo, 749 SmallVectorImpl<CCValAssign> &ArgLocs) { 750 // Punt if there are any indirect or stack arguments, or if the call 751 // needs the call-saved argument register R6. 752 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 753 CCValAssign &VA = ArgLocs[I]; 754 if (VA.getLocInfo() == CCValAssign::Indirect) 755 return false; 756 if (!VA.isRegLoc()) 757 return false; 758 unsigned Reg = VA.getLocReg(); 759 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 760 return false; 761 } 762 return true; 763 } 764 765 SDValue 766 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 767 SmallVectorImpl<SDValue> &InVals) const { 768 SelectionDAG &DAG = CLI.DAG; 769 SDLoc &DL = CLI.DL; 770 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 771 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 772 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 773 SDValue Chain = CLI.Chain; 774 SDValue Callee = CLI.Callee; 775 bool &IsTailCall = CLI.IsTailCall; 776 CallingConv::ID CallConv = CLI.CallConv; 777 bool IsVarArg = CLI.IsVarArg; 778 MachineFunction &MF = DAG.getMachineFunction(); 779 EVT PtrVT = getPointerTy(); 780 781 // Analyze the operands of the call, assigning locations to each operand. 782 SmallVector<CCValAssign, 16> ArgLocs; 783 CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); 784 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 785 786 // We don't support GuaranteedTailCallOpt, only automatically-detected 787 // sibling calls. 788 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 789 IsTailCall = false; 790 791 // Get a count of how many bytes are to be pushed on the stack. 792 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 793 794 // Mark the start of the call. 795 if (!IsTailCall) 796 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true), 797 DL); 798 799 // Copy argument values to their designated locations. 800 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 801 SmallVector<SDValue, 8> MemOpChains; 802 SDValue StackPtr; 803 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 804 CCValAssign &VA = ArgLocs[I]; 805 SDValue ArgValue = OutVals[I]; 806 807 if (VA.getLocInfo() == CCValAssign::Indirect) { 808 // Store the argument in a stack slot and pass its address. 809 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 810 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 811 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, 812 MachinePointerInfo::getFixedStack(FI), 813 false, false, 0)); 814 ArgValue = SpillSlot; 815 } else 816 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 817 818 if (VA.isRegLoc()) 819 // Queue up the argument copies and emit them at the end. 820 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 821 else { 822 assert(VA.isMemLoc() && "Argument not register or memory"); 823 824 // Work out the address of the stack slot. Unpromoted ints and 825 // floats are passed as right-justified 8-byte values. 826 if (!StackPtr.getNode()) 827 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 828 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 829 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 830 Offset += 4; 831 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 832 DAG.getIntPtrConstant(Offset)); 833 834 // Emit the store. 835 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 836 MachinePointerInfo(), 837 false, false, 0)); 838 } 839 } 840 841 // Join the stores, which are independent of one another. 842 if (!MemOpChains.empty()) 843 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 844 &MemOpChains[0], MemOpChains.size()); 845 846 // Accept direct calls by converting symbolic call addresses to the 847 // associated Target* opcodes. Force %r1 to be used for indirect 848 // tail calls. 849 SDValue Glue; 850 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 851 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 852 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 853 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 854 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 855 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 856 } else if (IsTailCall) { 857 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 858 Glue = Chain.getValue(1); 859 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 860 } 861 862 // Build a sequence of copy-to-reg nodes, chained and glued together. 863 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 864 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 865 RegsToPass[I].second, Glue); 866 Glue = Chain.getValue(1); 867 } 868 869 // The first call operand is the chain and the second is the target address. 870 SmallVector<SDValue, 8> Ops; 871 Ops.push_back(Chain); 872 Ops.push_back(Callee); 873 874 // Add argument registers to the end of the list so that they are 875 // known live into the call. 876 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 877 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 878 RegsToPass[I].second.getValueType())); 879 880 // Glue the call to the argument copies, if any. 881 if (Glue.getNode()) 882 Ops.push_back(Glue); 883 884 // Emit the call. 885 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 886 if (IsTailCall) 887 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size()); 888 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size()); 889 Glue = Chain.getValue(1); 890 891 // Mark the end of the call, which is glued to the call itself. 892 Chain = DAG.getCALLSEQ_END(Chain, 893 DAG.getConstant(NumBytes, PtrVT, true), 894 DAG.getConstant(0, PtrVT, true), 895 Glue, DL); 896 Glue = Chain.getValue(1); 897 898 // Assign locations to each value returned by this call. 899 SmallVector<CCValAssign, 16> RetLocs; 900 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); 901 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 902 903 // Copy all of the result registers out of their specified physreg. 904 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 905 CCValAssign &VA = RetLocs[I]; 906 907 // Copy the value out, gluing the copy to the end of the call sequence. 908 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 909 VA.getLocVT(), Glue); 910 Chain = RetValue.getValue(1); 911 Glue = RetValue.getValue(2); 912 913 // Convert the value of the return register into the value that's 914 // being returned. 915 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 916 } 917 918 return Chain; 919 } 920 921 SDValue 922 SystemZTargetLowering::LowerReturn(SDValue Chain, 923 CallingConv::ID CallConv, bool IsVarArg, 924 const SmallVectorImpl<ISD::OutputArg> &Outs, 925 const SmallVectorImpl<SDValue> &OutVals, 926 SDLoc DL, SelectionDAG &DAG) const { 927 MachineFunction &MF = DAG.getMachineFunction(); 928 929 // Assign locations to each returned value. 930 SmallVector<CCValAssign, 16> RetLocs; 931 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext()); 932 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 933 934 // Quick exit for void returns 935 if (RetLocs.empty()) 936 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 937 938 // Copy the result values into the output registers. 939 SDValue Glue; 940 SmallVector<SDValue, 4> RetOps; 941 RetOps.push_back(Chain); 942 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 943 CCValAssign &VA = RetLocs[I]; 944 SDValue RetValue = OutVals[I]; 945 946 // Make the return register live on exit. 947 assert(VA.isRegLoc() && "Can only return in registers!"); 948 949 // Promote the value as required. 950 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 951 952 // Chain and glue the copies together. 953 unsigned Reg = VA.getLocReg(); 954 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 955 Glue = Chain.getValue(1); 956 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 957 } 958 959 // Update chain and glue. 960 RetOps[0] = Chain; 961 if (Glue.getNode()) 962 RetOps.push_back(Glue); 963 964 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, 965 RetOps.data(), RetOps.size()); 966 } 967 968 // CC is a comparison that will be implemented using an integer or 969 // floating-point comparison. Return the condition code mask for 970 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 971 // unsigned comparisons and clear for signed ones. In the floating-point 972 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 973 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 974 #define CONV(X) \ 975 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 976 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 977 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 978 979 switch (CC) { 980 default: 981 llvm_unreachable("Invalid integer condition!"); 982 983 CONV(EQ); 984 CONV(NE); 985 CONV(GT); 986 CONV(GE); 987 CONV(LT); 988 CONV(LE); 989 990 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 991 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 992 } 993 #undef CONV 994 } 995 996 // Return a sequence for getting a 1 from an IPM result when CC has a 997 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 998 // The handling of CC values outside CCValid doesn't matter. 999 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1000 // Deal with cases where the result can be taken directly from a bit 1001 // of the IPM result. 1002 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1003 return IPMConversion(0, 0, SystemZ::IPM_CC); 1004 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1005 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1006 1007 // Deal with cases where we can add a value to force the sign bit 1008 // to contain the right value. Putting the bit in 31 means we can 1009 // use SRL rather than RISBG(L), and also makes it easier to get a 1010 // 0/-1 value, so it has priority over the other tests below. 1011 // 1012 // These sequences rely on the fact that the upper two bits of the 1013 // IPM result are zero. 1014 uint64_t TopBit = uint64_t(1) << 31; 1015 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1016 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1017 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1018 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1019 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1020 | SystemZ::CCMASK_1 1021 | SystemZ::CCMASK_2))) 1022 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1023 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1024 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1025 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1026 | SystemZ::CCMASK_2 1027 | SystemZ::CCMASK_3))) 1028 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1029 1030 // Next try inverting the value and testing a bit. 0/1 could be 1031 // handled this way too, but we dealt with that case above. 1032 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1033 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1034 1035 // Handle cases where adding a value forces a non-sign bit to contain 1036 // the right value. 1037 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1038 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1039 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1040 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1041 1042 // The remaing cases are 1, 2, 0/1/3 and 0/2/3. All these are 1043 // can be done by inverting the low CC bit and applying one of the 1044 // sign-based extractions above. 1045 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1046 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1047 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1048 return IPMConversion(1 << SystemZ::IPM_CC, 1049 TopBit - (3 << SystemZ::IPM_CC), 31); 1050 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1051 | SystemZ::CCMASK_1 1052 | SystemZ::CCMASK_3))) 1053 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1054 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1055 | SystemZ::CCMASK_2 1056 | SystemZ::CCMASK_3))) 1057 return IPMConversion(1 << SystemZ::IPM_CC, 1058 TopBit - (1 << SystemZ::IPM_CC), 31); 1059 1060 llvm_unreachable("Unexpected CC combination"); 1061 } 1062 1063 // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 1064 // can be converted to a comparison against zero, adjust the operands 1065 // as necessary. 1066 static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned, 1067 SDValue &CmpOp0, SDValue &CmpOp1, 1068 unsigned &CCMask) { 1069 if (IsUnsigned) 1070 return; 1071 1072 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode()); 1073 if (!ConstOp1) 1074 return; 1075 1076 int64_t Value = ConstOp1->getSExtValue(); 1077 if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) || 1078 (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) || 1079 (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) || 1080 (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) { 1081 CCMask ^= SystemZ::CCMASK_CMP_EQ; 1082 CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType()); 1083 } 1084 } 1085 1086 // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 1087 // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary. 1088 static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, 1089 SDValue &CmpOp0, SDValue &CmpOp1, 1090 unsigned &CCMask) { 1091 // For us to make any changes, it must a comparison between a single-use 1092 // load and a constant. 1093 if (!CmpOp0.hasOneUse() || 1094 CmpOp0.getOpcode() != ISD::LOAD || 1095 CmpOp1.getOpcode() != ISD::Constant) 1096 return; 1097 1098 // We must have an 8- or 16-bit load. 1099 LoadSDNode *Load = cast<LoadSDNode>(CmpOp0); 1100 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1101 if (NumBits != 8 && NumBits != 16) 1102 return; 1103 1104 // The load must be an extending one and the constant must be within the 1105 // range of the unextended value. 1106 ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1); 1107 uint64_t Value = Constant->getZExtValue(); 1108 uint64_t Mask = (1 << NumBits) - 1; 1109 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1110 int64_t SignedValue = Constant->getSExtValue(); 1111 if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask) 1112 return; 1113 // Unsigned comparison between two sign-extended values is equivalent 1114 // to unsigned comparison between two zero-extended values. 1115 if (IsUnsigned) 1116 Value &= Mask; 1117 else if (CCMask == SystemZ::CCMASK_CMP_EQ || 1118 CCMask == SystemZ::CCMASK_CMP_NE) 1119 // Any choice of IsUnsigned is OK for equality comparisons. 1120 // We could use either CHHSI or CLHHSI for 16-bit comparisons, 1121 // but since we use CLHHSI for zero extensions, it seems better 1122 // to be consistent and do the same here. 1123 Value &= Mask, IsUnsigned = true; 1124 else if (NumBits == 8) { 1125 // Try to treat the comparison as unsigned, so that we can use CLI. 1126 // Adjust CCMask and Value as necessary. 1127 if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT) 1128 // Test whether the high bit of the byte is set. 1129 Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true; 1130 else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE) 1131 // Test whether the high bit of the byte is clear. 1132 Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true; 1133 else 1134 // No instruction exists for this combination. 1135 return; 1136 } 1137 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1138 if (Value > Mask) 1139 return; 1140 // Signed comparison between two zero-extended values is equivalent 1141 // to unsigned comparison. 1142 IsUnsigned = true; 1143 } else 1144 return; 1145 1146 // Make sure that the first operand is an i32 of the right extension type. 1147 ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD; 1148 if (CmpOp0.getValueType() != MVT::i32 || 1149 Load->getExtensionType() != ExtType) 1150 CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1151 Load->getChain(), Load->getBasePtr(), 1152 Load->getPointerInfo(), Load->getMemoryVT(), 1153 Load->isVolatile(), Load->isNonTemporal(), 1154 Load->getAlignment()); 1155 1156 // Make sure that the second operand is an i32 with the right value. 1157 if (CmpOp1.getValueType() != MVT::i32 || 1158 Value != Constant->getZExtValue()) 1159 CmpOp1 = DAG.getConstant(Value, MVT::i32); 1160 } 1161 1162 // Return true if Op is either an unextended load, or a load suitable 1163 // for integer register-memory comparisons of type ICmpType. 1164 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1165 LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1166 if (Load) { 1167 // There are no instructions to compare a register with a memory byte. 1168 if (Load->getMemoryVT() == MVT::i8) 1169 return false; 1170 // Otherwise decide on extension type. 1171 switch (Load->getExtensionType()) { 1172 case ISD::NON_EXTLOAD: 1173 return true; 1174 case ISD::SEXTLOAD: 1175 return ICmpType != SystemZICMP::UnsignedOnly; 1176 case ISD::ZEXTLOAD: 1177 return ICmpType != SystemZICMP::SignedOnly; 1178 default: 1179 break; 1180 } 1181 } 1182 return false; 1183 } 1184 1185 // Return true if it is better to swap comparison operands Op0 and Op1. 1186 // ICmpType is the type of an integer comparison. 1187 static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1, 1188 unsigned ICmpType) { 1189 // Leave f128 comparisons alone, since they have no memory forms. 1190 if (Op0.getValueType() == MVT::f128) 1191 return false; 1192 1193 // Always keep a floating-point constant second, since comparisons with 1194 // zero can use LOAD TEST and comparisons with other constants make a 1195 // natural memory operand. 1196 if (isa<ConstantFPSDNode>(Op1)) 1197 return false; 1198 1199 // Never swap comparisons with zero since there are many ways to optimize 1200 // those later. 1201 ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1); 1202 if (COp1 && COp1->getZExtValue() == 0) 1203 return false; 1204 1205 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1206 // In that case we generally prefer the memory to be second. 1207 if ((isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) && 1208 !(isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())) { 1209 // The only exceptions are when the second operand is a constant and 1210 // we can use things like CHHSI. 1211 if (!COp1) 1212 return true; 1213 // The unsigned memory-immediate instructions can handle 16-bit 1214 // unsigned integers. 1215 if (ICmpType != SystemZICMP::SignedOnly && 1216 isUInt<16>(COp1->getZExtValue())) 1217 return false; 1218 // The signed memory-immediate instructions can handle 16-bit 1219 // signed integers. 1220 if (ICmpType != SystemZICMP::UnsignedOnly && 1221 isInt<16>(COp1->getSExtValue())) 1222 return false; 1223 return true; 1224 } 1225 return false; 1226 } 1227 1228 // Return true if shift operation N has an in-range constant shift value. 1229 // Store it in ShiftVal if so. 1230 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1231 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1232 if (!Shift) 1233 return false; 1234 1235 uint64_t Amount = Shift->getZExtValue(); 1236 if (Amount >= N.getValueType().getSizeInBits()) 1237 return false; 1238 1239 ShiftVal = Amount; 1240 return true; 1241 } 1242 1243 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1244 // instruction and whether the CC value is descriptive enough to handle 1245 // a comparison of type Opcode between the AND result and CmpVal. 1246 // CCMask says which comparison result is being tested and BitSize is 1247 // the number of bits in the operands. If TEST UNDER MASK can be used, 1248 // return the corresponding CC mask, otherwise return 0. 1249 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1250 uint64_t Mask, uint64_t CmpVal, 1251 unsigned ICmpType) { 1252 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1253 1254 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1255 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1256 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1257 return 0; 1258 1259 // Work out the masks for the lowest and highest bits. 1260 unsigned HighShift = 63 - countLeadingZeros(Mask); 1261 uint64_t High = uint64_t(1) << HighShift; 1262 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1263 1264 // Signed ordered comparisons are effectively unsigned if the sign 1265 // bit is dropped. 1266 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1267 1268 // Check for equality comparisons with 0, or the equivalent. 1269 if (CmpVal == 0) { 1270 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1271 return SystemZ::CCMASK_TM_ALL_0; 1272 if (CCMask == SystemZ::CCMASK_CMP_NE) 1273 return SystemZ::CCMASK_TM_SOME_1; 1274 } 1275 if (EffectivelyUnsigned && CmpVal <= Low) { 1276 if (CCMask == SystemZ::CCMASK_CMP_LT) 1277 return SystemZ::CCMASK_TM_ALL_0; 1278 if (CCMask == SystemZ::CCMASK_CMP_GE) 1279 return SystemZ::CCMASK_TM_SOME_1; 1280 } 1281 if (EffectivelyUnsigned && CmpVal < Low) { 1282 if (CCMask == SystemZ::CCMASK_CMP_LE) 1283 return SystemZ::CCMASK_TM_ALL_0; 1284 if (CCMask == SystemZ::CCMASK_CMP_GT) 1285 return SystemZ::CCMASK_TM_SOME_1; 1286 } 1287 1288 // Check for equality comparisons with the mask, or the equivalent. 1289 if (CmpVal == Mask) { 1290 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1291 return SystemZ::CCMASK_TM_ALL_1; 1292 if (CCMask == SystemZ::CCMASK_CMP_NE) 1293 return SystemZ::CCMASK_TM_SOME_0; 1294 } 1295 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1296 if (CCMask == SystemZ::CCMASK_CMP_GT) 1297 return SystemZ::CCMASK_TM_ALL_1; 1298 if (CCMask == SystemZ::CCMASK_CMP_LE) 1299 return SystemZ::CCMASK_TM_SOME_0; 1300 } 1301 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1302 if (CCMask == SystemZ::CCMASK_CMP_GE) 1303 return SystemZ::CCMASK_TM_ALL_1; 1304 if (CCMask == SystemZ::CCMASK_CMP_LT) 1305 return SystemZ::CCMASK_TM_SOME_0; 1306 } 1307 1308 // Check for ordered comparisons with the top bit. 1309 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1310 if (CCMask == SystemZ::CCMASK_CMP_LE) 1311 return SystemZ::CCMASK_TM_MSB_0; 1312 if (CCMask == SystemZ::CCMASK_CMP_GT) 1313 return SystemZ::CCMASK_TM_MSB_1; 1314 } 1315 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1316 if (CCMask == SystemZ::CCMASK_CMP_LT) 1317 return SystemZ::CCMASK_TM_MSB_0; 1318 if (CCMask == SystemZ::CCMASK_CMP_GE) 1319 return SystemZ::CCMASK_TM_MSB_1; 1320 } 1321 1322 // If there are just two bits, we can do equality checks for Low and High 1323 // as well. 1324 if (Mask == Low + High) { 1325 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1326 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1327 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1328 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1329 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1330 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1331 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1332 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1333 } 1334 1335 // Looks like we've exhausted our options. 1336 return 0; 1337 } 1338 1339 // See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be 1340 // implemented as a TEST UNDER MASK instruction when the condition being 1341 // tested is as described by CCValid and CCMask. Update the arguments 1342 // with the TM version if so. 1343 static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode, 1344 SDValue &CmpOp0, SDValue &CmpOp1, 1345 unsigned &CCValid, unsigned &CCMask, 1346 unsigned &ICmpType) { 1347 // Check that we have a comparison with a constant. 1348 ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1); 1349 if (!ConstCmpOp1) 1350 return; 1351 uint64_t CmpVal = ConstCmpOp1->getZExtValue(); 1352 1353 // Check whether the nonconstant input is an AND with a constant mask. 1354 if (CmpOp0.getOpcode() != ISD::AND) 1355 return; 1356 SDValue AndOp0 = CmpOp0.getOperand(0); 1357 SDValue AndOp1 = CmpOp0.getOperand(1); 1358 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode()); 1359 if (!Mask) 1360 return; 1361 uint64_t MaskVal = Mask->getZExtValue(); 1362 1363 // Check whether the combination of mask, comparison value and comparison 1364 // type are suitable. 1365 unsigned BitSize = CmpOp0.getValueType().getSizeInBits(); 1366 unsigned NewCCMask, ShiftVal; 1367 if (ICmpType != SystemZICMP::SignedOnly && 1368 AndOp0.getOpcode() == ISD::SHL && 1369 isSimpleShift(AndOp0, ShiftVal) && 1370 (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal, 1371 CmpVal >> ShiftVal, 1372 SystemZICMP::Any))) { 1373 AndOp0 = AndOp0.getOperand(0); 1374 AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType()); 1375 } else if (ICmpType != SystemZICMP::SignedOnly && 1376 AndOp0.getOpcode() == ISD::SRL && 1377 isSimpleShift(AndOp0, ShiftVal) && 1378 (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, 1379 MaskVal << ShiftVal, 1380 CmpVal << ShiftVal, 1381 SystemZICMP::UnsignedOnly))) { 1382 AndOp0 = AndOp0.getOperand(0); 1383 AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType()); 1384 } else { 1385 NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal, 1386 ICmpType); 1387 if (!NewCCMask) 1388 return; 1389 } 1390 1391 // Go ahead and make the change. 1392 Opcode = SystemZISD::TM; 1393 CmpOp0 = AndOp0; 1394 CmpOp1 = AndOp1; 1395 ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 1396 bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 1397 CCValid = SystemZ::CCMASK_TM; 1398 CCMask = NewCCMask; 1399 } 1400 1401 // Return a target node that compares CmpOp0 with CmpOp1 and stores a 1402 // 2-bit result in CC. Set CCValid to the CCMASK_* of all possible 1403 // 2-bit results and CCMask to the subset of those results that are 1404 // associated with Cond. 1405 static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG, 1406 SDLoc DL, SDValue CmpOp0, SDValue CmpOp1, 1407 ISD::CondCode Cond, unsigned &CCValid, 1408 unsigned &CCMask) { 1409 bool IsUnsigned = false; 1410 CCMask = CCMaskForCondCode(Cond); 1411 unsigned Opcode, ICmpType = 0; 1412 if (CmpOp0.getValueType().isFloatingPoint()) { 1413 CCValid = SystemZ::CCMASK_FCMP; 1414 Opcode = SystemZISD::FCMP; 1415 } else { 1416 IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO; 1417 CCValid = SystemZ::CCMASK_ICMP; 1418 CCMask &= CCValid; 1419 adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); 1420 adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); 1421 Opcode = SystemZISD::ICMP; 1422 // Choose the type of comparison. Equality and inequality tests can 1423 // use either signed or unsigned comparisons. The choice also doesn't 1424 // matter if both sign bits are known to be clear. In those cases we 1425 // want to give the main isel code the freedom to choose whichever 1426 // form fits best. 1427 if (CCMask == SystemZ::CCMASK_CMP_EQ || 1428 CCMask == SystemZ::CCMASK_CMP_NE || 1429 (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1))) 1430 ICmpType = SystemZICMP::Any; 1431 else if (IsUnsigned) 1432 ICmpType = SystemZICMP::UnsignedOnly; 1433 else 1434 ICmpType = SystemZICMP::SignedOnly; 1435 } 1436 1437 if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) { 1438 std::swap(CmpOp0, CmpOp1); 1439 CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1440 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1441 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1442 (CCMask & SystemZ::CCMASK_CMP_UO)); 1443 } 1444 1445 adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask, 1446 ICmpType); 1447 if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM) 1448 return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1, 1449 DAG.getConstant(ICmpType, MVT::i32)); 1450 return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1); 1451 } 1452 1453 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 1454 // 64 bits. Extend is the extension type to use. Store the high part 1455 // in Hi and the low part in Lo. 1456 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 1457 unsigned Extend, SDValue Op0, SDValue Op1, 1458 SDValue &Hi, SDValue &Lo) { 1459 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 1460 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 1461 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 1462 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64)); 1463 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 1464 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 1465 } 1466 1467 // Lower a binary operation that produces two VT results, one in each 1468 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 1469 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 1470 // on the extended Op0 and (unextended) Op1. Store the even register result 1471 // in Even and the odd register result in Odd. 1472 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 1473 unsigned Extend, unsigned Opcode, 1474 SDValue Op0, SDValue Op1, 1475 SDValue &Even, SDValue &Odd) { 1476 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 1477 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 1478 SDValue(In128, 0), Op1); 1479 bool Is32Bit = is32Bit(VT); 1480 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 1481 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 1482 } 1483 1484 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 1485 SelectionDAG &DAG) const { 1486 SDValue CmpOp0 = Op.getOperand(0); 1487 SDValue CmpOp1 = Op.getOperand(1); 1488 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1489 SDLoc DL(Op); 1490 1491 unsigned CCValid, CCMask; 1492 SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); 1493 1494 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 1495 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 1496 1497 if (Conversion.XORValue) 1498 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 1499 DAG.getConstant(Conversion.XORValue, MVT::i32)); 1500 1501 if (Conversion.AddValue) 1502 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 1503 DAG.getConstant(Conversion.AddValue, MVT::i32)); 1504 1505 // The SHR/AND sequence should get optimized to an RISBG. 1506 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 1507 DAG.getConstant(Conversion.Bit, MVT::i32)); 1508 if (Conversion.Bit != 31) 1509 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 1510 DAG.getConstant(1, MVT::i32)); 1511 return Result; 1512 } 1513 1514 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 1515 SDValue Chain = Op.getOperand(0); 1516 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 1517 SDValue CmpOp0 = Op.getOperand(2); 1518 SDValue CmpOp1 = Op.getOperand(3); 1519 SDValue Dest = Op.getOperand(4); 1520 SDLoc DL(Op); 1521 1522 unsigned CCValid, CCMask; 1523 SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); 1524 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 1525 Chain, DAG.getConstant(CCValid, MVT::i32), 1526 DAG.getConstant(CCMask, MVT::i32), Dest, Flags); 1527 } 1528 1529 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 1530 SelectionDAG &DAG) const { 1531 SDValue CmpOp0 = Op.getOperand(0); 1532 SDValue CmpOp1 = Op.getOperand(1); 1533 SDValue TrueOp = Op.getOperand(2); 1534 SDValue FalseOp = Op.getOperand(3); 1535 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 1536 SDLoc DL(Op); 1537 1538 unsigned CCValid, CCMask; 1539 SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); 1540 1541 SmallVector<SDValue, 5> Ops; 1542 Ops.push_back(TrueOp); 1543 Ops.push_back(FalseOp); 1544 Ops.push_back(DAG.getConstant(CCValid, MVT::i32)); 1545 Ops.push_back(DAG.getConstant(CCMask, MVT::i32)); 1546 Ops.push_back(Flags); 1547 1548 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1549 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size()); 1550 } 1551 1552 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 1553 SelectionDAG &DAG) const { 1554 SDLoc DL(Node); 1555 const GlobalValue *GV = Node->getGlobal(); 1556 int64_t Offset = Node->getOffset(); 1557 EVT PtrVT = getPointerTy(); 1558 Reloc::Model RM = TM.getRelocationModel(); 1559 CodeModel::Model CM = TM.getCodeModel(); 1560 1561 SDValue Result; 1562 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 1563 // Assign anchors at 1<<12 byte boundaries. 1564 uint64_t Anchor = Offset & ~uint64_t(0xfff); 1565 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 1566 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1567 1568 // The offset can be folded into the address if it is aligned to a halfword. 1569 Offset -= Anchor; 1570 if (Offset != 0 && (Offset & 1) == 0) { 1571 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 1572 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 1573 Offset = 0; 1574 } 1575 } else { 1576 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 1577 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1578 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 1579 MachinePointerInfo::getGOT(), false, false, false, 0); 1580 } 1581 1582 // If there was a non-zero offset that we didn't fold, create an explicit 1583 // addition for it. 1584 if (Offset != 0) 1585 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 1586 DAG.getConstant(Offset, PtrVT)); 1587 1588 return Result; 1589 } 1590 1591 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 1592 SelectionDAG &DAG) const { 1593 SDLoc DL(Node); 1594 const GlobalValue *GV = Node->getGlobal(); 1595 EVT PtrVT = getPointerTy(); 1596 TLSModel::Model model = TM.getTLSModel(GV); 1597 1598 if (model != TLSModel::LocalExec) 1599 llvm_unreachable("only local-exec TLS mode supported"); 1600 1601 // The high part of the thread pointer is in access register 0. 1602 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 1603 DAG.getConstant(0, MVT::i32)); 1604 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 1605 1606 // The low part of the thread pointer is in access register 1. 1607 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 1608 DAG.getConstant(1, MVT::i32)); 1609 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 1610 1611 // Merge them into a single 64-bit address. 1612 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 1613 DAG.getConstant(32, PtrVT)); 1614 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 1615 1616 // Get the offset of GA from the thread pointer. 1617 SystemZConstantPoolValue *CPV = 1618 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 1619 1620 // Force the offset into the constant pool and load it from there. 1621 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8); 1622 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 1623 CPAddr, MachinePointerInfo::getConstantPool(), 1624 false, false, false, 0); 1625 1626 // Add the base and offset together. 1627 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 1628 } 1629 1630 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 1631 SelectionDAG &DAG) const { 1632 SDLoc DL(Node); 1633 const BlockAddress *BA = Node->getBlockAddress(); 1634 int64_t Offset = Node->getOffset(); 1635 EVT PtrVT = getPointerTy(); 1636 1637 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 1638 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1639 return Result; 1640 } 1641 1642 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 1643 SelectionDAG &DAG) const { 1644 SDLoc DL(JT); 1645 EVT PtrVT = getPointerTy(); 1646 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1647 1648 // Use LARL to load the address of the table. 1649 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1650 } 1651 1652 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 1653 SelectionDAG &DAG) const { 1654 SDLoc DL(CP); 1655 EVT PtrVT = getPointerTy(); 1656 1657 SDValue Result; 1658 if (CP->isMachineConstantPoolEntry()) 1659 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 1660 CP->getAlignment()); 1661 else 1662 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 1663 CP->getAlignment(), CP->getOffset()); 1664 1665 // Use LARL to load the address of the constant pool entry. 1666 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1667 } 1668 1669 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 1670 SelectionDAG &DAG) const { 1671 SDLoc DL(Op); 1672 SDValue In = Op.getOperand(0); 1673 EVT InVT = In.getValueType(); 1674 EVT ResVT = Op.getValueType(); 1675 1676 if (InVT == MVT::i32 && ResVT == MVT::f32) { 1677 SDValue In64; 1678 if (Subtarget.hasHighWord()) { 1679 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 1680 MVT::i64); 1681 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 1682 MVT::i64, SDValue(U64, 0), In); 1683 } else { 1684 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 1685 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 1686 DAG.getConstant(32, MVT::i64)); 1687 } 1688 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 1689 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 1690 DL, MVT::f32, Out64); 1691 } 1692 if (InVT == MVT::f32 && ResVT == MVT::i32) { 1693 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 1694 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 1695 MVT::f64, SDValue(U64, 0), In); 1696 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 1697 if (Subtarget.hasHighWord()) 1698 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 1699 MVT::i32, Out64); 1700 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 1701 DAG.getConstant(32, MVT::i64)); 1702 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 1703 } 1704 llvm_unreachable("Unexpected bitcast combination"); 1705 } 1706 1707 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 1708 SelectionDAG &DAG) const { 1709 MachineFunction &MF = DAG.getMachineFunction(); 1710 SystemZMachineFunctionInfo *FuncInfo = 1711 MF.getInfo<SystemZMachineFunctionInfo>(); 1712 EVT PtrVT = getPointerTy(); 1713 1714 SDValue Chain = Op.getOperand(0); 1715 SDValue Addr = Op.getOperand(1); 1716 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1717 SDLoc DL(Op); 1718 1719 // The initial values of each field. 1720 const unsigned NumFields = 4; 1721 SDValue Fields[NumFields] = { 1722 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT), 1723 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT), 1724 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 1725 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 1726 }; 1727 1728 // Store each field into its respective slot. 1729 SDValue MemOps[NumFields]; 1730 unsigned Offset = 0; 1731 for (unsigned I = 0; I < NumFields; ++I) { 1732 SDValue FieldAddr = Addr; 1733 if (Offset != 0) 1734 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 1735 DAG.getIntPtrConstant(Offset)); 1736 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 1737 MachinePointerInfo(SV, Offset), 1738 false, false, 0); 1739 Offset += 8; 1740 } 1741 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields); 1742 } 1743 1744 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 1745 SelectionDAG &DAG) const { 1746 SDValue Chain = Op.getOperand(0); 1747 SDValue DstPtr = Op.getOperand(1); 1748 SDValue SrcPtr = Op.getOperand(2); 1749 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 1750 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 1751 SDLoc DL(Op); 1752 1753 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32), 1754 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 1755 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 1756 } 1757 1758 SDValue SystemZTargetLowering:: 1759 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 1760 SDValue Chain = Op.getOperand(0); 1761 SDValue Size = Op.getOperand(1); 1762 SDLoc DL(Op); 1763 1764 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 1765 1766 // Get a reference to the stack pointer. 1767 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 1768 1769 // Get the new stack pointer value. 1770 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 1771 1772 // Copy the new stack pointer back. 1773 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 1774 1775 // The allocated data lives above the 160 bytes allocated for the standard 1776 // frame, plus any outgoing stack arguments. We don't know how much that 1777 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 1778 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 1779 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 1780 1781 SDValue Ops[2] = { Result, Chain }; 1782 return DAG.getMergeValues(Ops, 2, DL); 1783 } 1784 1785 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 1786 SelectionDAG &DAG) const { 1787 EVT VT = Op.getValueType(); 1788 SDLoc DL(Op); 1789 SDValue Ops[2]; 1790 if (is32Bit(VT)) 1791 // Just do a normal 64-bit multiplication and extract the results. 1792 // We define this so that it can be used for constant division. 1793 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 1794 Op.getOperand(1), Ops[1], Ops[0]); 1795 else { 1796 // Do a full 128-bit multiplication based on UMUL_LOHI64: 1797 // 1798 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 1799 // 1800 // but using the fact that the upper halves are either all zeros 1801 // or all ones: 1802 // 1803 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 1804 // 1805 // and grouping the right terms together since they are quicker than the 1806 // multiplication: 1807 // 1808 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 1809 SDValue C63 = DAG.getConstant(63, MVT::i64); 1810 SDValue LL = Op.getOperand(0); 1811 SDValue RL = Op.getOperand(1); 1812 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 1813 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 1814 // UMUL_LOHI64 returns the low result in the odd register and the high 1815 // result in the even register. SMUL_LOHI is defined to return the 1816 // low half first, so the results are in reverse order. 1817 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 1818 LL, RL, Ops[1], Ops[0]); 1819 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 1820 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 1821 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 1822 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 1823 } 1824 return DAG.getMergeValues(Ops, 2, DL); 1825 } 1826 1827 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 1828 SelectionDAG &DAG) const { 1829 EVT VT = Op.getValueType(); 1830 SDLoc DL(Op); 1831 SDValue Ops[2]; 1832 if (is32Bit(VT)) 1833 // Just do a normal 64-bit multiplication and extract the results. 1834 // We define this so that it can be used for constant division. 1835 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 1836 Op.getOperand(1), Ops[1], Ops[0]); 1837 else 1838 // UMUL_LOHI64 returns the low result in the odd register and the high 1839 // result in the even register. UMUL_LOHI is defined to return the 1840 // low half first, so the results are in reverse order. 1841 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 1842 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 1843 return DAG.getMergeValues(Ops, 2, DL); 1844 } 1845 1846 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 1847 SelectionDAG &DAG) const { 1848 SDValue Op0 = Op.getOperand(0); 1849 SDValue Op1 = Op.getOperand(1); 1850 EVT VT = Op.getValueType(); 1851 SDLoc DL(Op); 1852 unsigned Opcode; 1853 1854 // We use DSGF for 32-bit division. 1855 if (is32Bit(VT)) { 1856 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 1857 Opcode = SystemZISD::SDIVREM32; 1858 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 1859 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 1860 Opcode = SystemZISD::SDIVREM32; 1861 } else 1862 Opcode = SystemZISD::SDIVREM64; 1863 1864 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 1865 // input is "don't care". The instruction returns the remainder in 1866 // the even register and the quotient in the odd register. 1867 SDValue Ops[2]; 1868 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 1869 Op0, Op1, Ops[1], Ops[0]); 1870 return DAG.getMergeValues(Ops, 2, DL); 1871 } 1872 1873 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 1874 SelectionDAG &DAG) const { 1875 EVT VT = Op.getValueType(); 1876 SDLoc DL(Op); 1877 1878 // DL(G) uses a double-width dividend, so we need to clear the even 1879 // register in the GR128 input. The instruction returns the remainder 1880 // in the even register and the quotient in the odd register. 1881 SDValue Ops[2]; 1882 if (is32Bit(VT)) 1883 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 1884 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 1885 else 1886 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 1887 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 1888 return DAG.getMergeValues(Ops, 2, DL); 1889 } 1890 1891 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 1892 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 1893 1894 // Get the known-zero masks for each operand. 1895 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 1896 APInt KnownZero[2], KnownOne[2]; 1897 DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]); 1898 DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]); 1899 1900 // See if the upper 32 bits of one operand and the lower 32 bits of the 1901 // other are known zero. They are the low and high operands respectively. 1902 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 1903 KnownZero[1].getZExtValue() }; 1904 unsigned High, Low; 1905 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 1906 High = 1, Low = 0; 1907 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 1908 High = 0, Low = 1; 1909 else 1910 return Op; 1911 1912 SDValue LowOp = Ops[Low]; 1913 SDValue HighOp = Ops[High]; 1914 1915 // If the high part is a constant, we're better off using IILH. 1916 if (HighOp.getOpcode() == ISD::Constant) 1917 return Op; 1918 1919 // If the low part is a constant that is outside the range of LHI, 1920 // then we're better off using IILF. 1921 if (LowOp.getOpcode() == ISD::Constant) { 1922 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 1923 if (!isInt<16>(Value)) 1924 return Op; 1925 } 1926 1927 // Check whether the high part is an AND that doesn't change the 1928 // high 32 bits and just masks out low bits. We can skip it if so. 1929 if (HighOp.getOpcode() == ISD::AND && 1930 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 1931 ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1)); 1932 uint64_t Mask = MaskNode->getZExtValue() | Masks[High]; 1933 if ((Mask >> 32) == 0xffffffff) 1934 HighOp = HighOp.getOperand(0); 1935 } 1936 1937 // Take advantage of the fact that all GR32 operations only change the 1938 // low 32 bits by truncating Low to an i32 and inserting it directly 1939 // using a subreg. The interesting cases are those where the truncation 1940 // can be folded. 1941 SDLoc DL(Op); 1942 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 1943 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 1944 MVT::i64, HighOp, Low32); 1945 } 1946 1947 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 1948 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 1949 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 1950 SelectionDAG &DAG, 1951 unsigned Opcode) const { 1952 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 1953 1954 // 32-bit operations need no code outside the main loop. 1955 EVT NarrowVT = Node->getMemoryVT(); 1956 EVT WideVT = MVT::i32; 1957 if (NarrowVT == WideVT) 1958 return Op; 1959 1960 int64_t BitSize = NarrowVT.getSizeInBits(); 1961 SDValue ChainIn = Node->getChain(); 1962 SDValue Addr = Node->getBasePtr(); 1963 SDValue Src2 = Node->getVal(); 1964 MachineMemOperand *MMO = Node->getMemOperand(); 1965 SDLoc DL(Node); 1966 EVT PtrVT = Addr.getValueType(); 1967 1968 // Convert atomic subtracts of constants into additions. 1969 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 1970 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) { 1971 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 1972 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType()); 1973 } 1974 1975 // Get the address of the containing word. 1976 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 1977 DAG.getConstant(-4, PtrVT)); 1978 1979 // Get the number of bits that the word must be rotated left in order 1980 // to bring the field to the top bits of a GR32. 1981 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 1982 DAG.getConstant(3, PtrVT)); 1983 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 1984 1985 // Get the complementing shift amount, for rotating a field in the top 1986 // bits back to its proper position. 1987 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 1988 DAG.getConstant(0, WideVT), BitShift); 1989 1990 // Extend the source operand to 32 bits and prepare it for the inner loop. 1991 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 1992 // operations require the source to be shifted in advance. (This shift 1993 // can be folded if the source is constant.) For AND and NAND, the lower 1994 // bits must be set, while for other opcodes they should be left clear. 1995 if (Opcode != SystemZISD::ATOMIC_SWAPW) 1996 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 1997 DAG.getConstant(32 - BitSize, WideVT)); 1998 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 1999 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 2000 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 2001 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT)); 2002 2003 // Construct the ATOMIC_LOADW_* node. 2004 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 2005 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 2006 DAG.getConstant(BitSize, WideVT) }; 2007 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 2008 array_lengthof(Ops), 2009 NarrowVT, MMO); 2010 2011 // Rotate the result of the final CS so that the field is in the lower 2012 // bits of a GR32, then truncate it. 2013 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 2014 DAG.getConstant(BitSize, WideVT)); 2015 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 2016 2017 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 2018 return DAG.getMergeValues(RetOps, 2, DL); 2019 } 2020 2021 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 2022 // into a fullword ATOMIC_CMP_SWAPW operation. 2023 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 2024 SelectionDAG &DAG) const { 2025 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode()); 2026 2027 // We have native support for 32-bit compare and swap. 2028 EVT NarrowVT = Node->getMemoryVT(); 2029 EVT WideVT = MVT::i32; 2030 if (NarrowVT == WideVT) 2031 return Op; 2032 2033 int64_t BitSize = NarrowVT.getSizeInBits(); 2034 SDValue ChainIn = Node->getOperand(0); 2035 SDValue Addr = Node->getOperand(1); 2036 SDValue CmpVal = Node->getOperand(2); 2037 SDValue SwapVal = Node->getOperand(3); 2038 MachineMemOperand *MMO = Node->getMemOperand(); 2039 SDLoc DL(Node); 2040 EVT PtrVT = Addr.getValueType(); 2041 2042 // Get the address of the containing word. 2043 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 2044 DAG.getConstant(-4, PtrVT)); 2045 2046 // Get the number of bits that the word must be rotated left in order 2047 // to bring the field to the top bits of a GR32. 2048 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 2049 DAG.getConstant(3, PtrVT)); 2050 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 2051 2052 // Get the complementing shift amount, for rotating a field in the top 2053 // bits back to its proper position. 2054 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 2055 DAG.getConstant(0, WideVT), BitShift); 2056 2057 // Construct the ATOMIC_CMP_SWAPW node. 2058 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 2059 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 2060 NegBitShift, DAG.getConstant(BitSize, WideVT) }; 2061 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 2062 VTList, Ops, array_lengthof(Ops), 2063 NarrowVT, MMO); 2064 return AtomicOp; 2065 } 2066 2067 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 2068 SelectionDAG &DAG) const { 2069 MachineFunction &MF = DAG.getMachineFunction(); 2070 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 2071 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 2072 SystemZ::R15D, Op.getValueType()); 2073 } 2074 2075 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 2076 SelectionDAG &DAG) const { 2077 MachineFunction &MF = DAG.getMachineFunction(); 2078 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 2079 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 2080 SystemZ::R15D, Op.getOperand(1)); 2081 } 2082 2083 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 2084 SelectionDAG &DAG) const { 2085 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2086 if (!IsData) 2087 // Just preserve the chain. 2088 return Op.getOperand(0); 2089 2090 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2091 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 2092 MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 2093 SDValue Ops[] = { 2094 Op.getOperand(0), 2095 DAG.getConstant(Code, MVT::i32), 2096 Op.getOperand(1) 2097 }; 2098 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op), 2099 Node->getVTList(), Ops, array_lengthof(Ops), 2100 Node->getMemoryVT(), Node->getMemOperand()); 2101 } 2102 2103 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 2104 SelectionDAG &DAG) const { 2105 switch (Op.getOpcode()) { 2106 case ISD::BR_CC: 2107 return lowerBR_CC(Op, DAG); 2108 case ISD::SELECT_CC: 2109 return lowerSELECT_CC(Op, DAG); 2110 case ISD::SETCC: 2111 return lowerSETCC(Op, DAG); 2112 case ISD::GlobalAddress: 2113 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 2114 case ISD::GlobalTLSAddress: 2115 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 2116 case ISD::BlockAddress: 2117 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 2118 case ISD::JumpTable: 2119 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 2120 case ISD::ConstantPool: 2121 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 2122 case ISD::BITCAST: 2123 return lowerBITCAST(Op, DAG); 2124 case ISD::VASTART: 2125 return lowerVASTART(Op, DAG); 2126 case ISD::VACOPY: 2127 return lowerVACOPY(Op, DAG); 2128 case ISD::DYNAMIC_STACKALLOC: 2129 return lowerDYNAMIC_STACKALLOC(Op, DAG); 2130 case ISD::SMUL_LOHI: 2131 return lowerSMUL_LOHI(Op, DAG); 2132 case ISD::UMUL_LOHI: 2133 return lowerUMUL_LOHI(Op, DAG); 2134 case ISD::SDIVREM: 2135 return lowerSDIVREM(Op, DAG); 2136 case ISD::UDIVREM: 2137 return lowerUDIVREM(Op, DAG); 2138 case ISD::OR: 2139 return lowerOR(Op, DAG); 2140 case ISD::ATOMIC_SWAP: 2141 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW); 2142 case ISD::ATOMIC_LOAD_ADD: 2143 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 2144 case ISD::ATOMIC_LOAD_SUB: 2145 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 2146 case ISD::ATOMIC_LOAD_AND: 2147 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 2148 case ISD::ATOMIC_LOAD_OR: 2149 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 2150 case ISD::ATOMIC_LOAD_XOR: 2151 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 2152 case ISD::ATOMIC_LOAD_NAND: 2153 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 2154 case ISD::ATOMIC_LOAD_MIN: 2155 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 2156 case ISD::ATOMIC_LOAD_MAX: 2157 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 2158 case ISD::ATOMIC_LOAD_UMIN: 2159 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 2160 case ISD::ATOMIC_LOAD_UMAX: 2161 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 2162 case ISD::ATOMIC_CMP_SWAP: 2163 return lowerATOMIC_CMP_SWAP(Op, DAG); 2164 case ISD::STACKSAVE: 2165 return lowerSTACKSAVE(Op, DAG); 2166 case ISD::STACKRESTORE: 2167 return lowerSTACKRESTORE(Op, DAG); 2168 case ISD::PREFETCH: 2169 return lowerPREFETCH(Op, DAG); 2170 default: 2171 llvm_unreachable("Unexpected node to lower"); 2172 } 2173 } 2174 2175 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 2176 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 2177 switch (Opcode) { 2178 OPCODE(RET_FLAG); 2179 OPCODE(CALL); 2180 OPCODE(SIBCALL); 2181 OPCODE(PCREL_WRAPPER); 2182 OPCODE(PCREL_OFFSET); 2183 OPCODE(ICMP); 2184 OPCODE(FCMP); 2185 OPCODE(TM); 2186 OPCODE(BR_CCMASK); 2187 OPCODE(SELECT_CCMASK); 2188 OPCODE(ADJDYNALLOC); 2189 OPCODE(EXTRACT_ACCESS); 2190 OPCODE(UMUL_LOHI64); 2191 OPCODE(SDIVREM64); 2192 OPCODE(UDIVREM32); 2193 OPCODE(UDIVREM64); 2194 OPCODE(MVC); 2195 OPCODE(MVC_LOOP); 2196 OPCODE(NC); 2197 OPCODE(NC_LOOP); 2198 OPCODE(OC); 2199 OPCODE(OC_LOOP); 2200 OPCODE(XC); 2201 OPCODE(XC_LOOP); 2202 OPCODE(CLC); 2203 OPCODE(CLC_LOOP); 2204 OPCODE(STRCMP); 2205 OPCODE(STPCPY); 2206 OPCODE(SEARCH_STRING); 2207 OPCODE(IPM); 2208 OPCODE(ATOMIC_SWAPW); 2209 OPCODE(ATOMIC_LOADW_ADD); 2210 OPCODE(ATOMIC_LOADW_SUB); 2211 OPCODE(ATOMIC_LOADW_AND); 2212 OPCODE(ATOMIC_LOADW_OR); 2213 OPCODE(ATOMIC_LOADW_XOR); 2214 OPCODE(ATOMIC_LOADW_NAND); 2215 OPCODE(ATOMIC_LOADW_MIN); 2216 OPCODE(ATOMIC_LOADW_MAX); 2217 OPCODE(ATOMIC_LOADW_UMIN); 2218 OPCODE(ATOMIC_LOADW_UMAX); 2219 OPCODE(ATOMIC_CMP_SWAPW); 2220 OPCODE(PREFETCH); 2221 } 2222 return NULL; 2223 #undef OPCODE 2224 } 2225 2226 //===----------------------------------------------------------------------===// 2227 // Custom insertion 2228 //===----------------------------------------------------------------------===// 2229 2230 // Create a new basic block after MBB. 2231 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 2232 MachineFunction &MF = *MBB->getParent(); 2233 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 2234 MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB); 2235 return NewMBB; 2236 } 2237 2238 // Split MBB after MI and return the new block (the one that contains 2239 // instructions after MI). 2240 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 2241 MachineBasicBlock *MBB) { 2242 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 2243 NewMBB->splice(NewMBB->begin(), MBB, 2244 llvm::next(MachineBasicBlock::iterator(MI)), 2245 MBB->end()); 2246 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 2247 return NewMBB; 2248 } 2249 2250 // Split MBB before MI and return the new block (the one that contains MI). 2251 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 2252 MachineBasicBlock *MBB) { 2253 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 2254 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 2255 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 2256 return NewMBB; 2257 } 2258 2259 // Force base value Base into a register before MI. Return the register. 2260 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 2261 const SystemZInstrInfo *TII) { 2262 if (Base.isReg()) 2263 return Base.getReg(); 2264 2265 MachineBasicBlock *MBB = MI->getParent(); 2266 MachineFunction &MF = *MBB->getParent(); 2267 MachineRegisterInfo &MRI = MF.getRegInfo(); 2268 2269 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 2270 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 2271 .addOperand(Base).addImm(0).addReg(0); 2272 return Reg; 2273 } 2274 2275 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 2276 MachineBasicBlock * 2277 SystemZTargetLowering::emitSelect(MachineInstr *MI, 2278 MachineBasicBlock *MBB) const { 2279 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2280 2281 unsigned DestReg = MI->getOperand(0).getReg(); 2282 unsigned TrueReg = MI->getOperand(1).getReg(); 2283 unsigned FalseReg = MI->getOperand(2).getReg(); 2284 unsigned CCValid = MI->getOperand(3).getImm(); 2285 unsigned CCMask = MI->getOperand(4).getImm(); 2286 DebugLoc DL = MI->getDebugLoc(); 2287 2288 MachineBasicBlock *StartMBB = MBB; 2289 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 2290 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 2291 2292 // StartMBB: 2293 // BRC CCMask, JoinMBB 2294 // # fallthrough to FalseMBB 2295 MBB = StartMBB; 2296 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2297 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 2298 MBB->addSuccessor(JoinMBB); 2299 MBB->addSuccessor(FalseMBB); 2300 2301 // FalseMBB: 2302 // # fallthrough to JoinMBB 2303 MBB = FalseMBB; 2304 MBB->addSuccessor(JoinMBB); 2305 2306 // JoinMBB: 2307 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 2308 // ... 2309 MBB = JoinMBB; 2310 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 2311 .addReg(TrueReg).addMBB(StartMBB) 2312 .addReg(FalseReg).addMBB(FalseMBB); 2313 2314 MI->eraseFromParent(); 2315 return JoinMBB; 2316 } 2317 2318 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 2319 // StoreOpcode is the store to use and Invert says whether the store should 2320 // happen when the condition is false rather than true. If a STORE ON 2321 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 2322 MachineBasicBlock * 2323 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 2324 MachineBasicBlock *MBB, 2325 unsigned StoreOpcode, unsigned STOCOpcode, 2326 bool Invert) const { 2327 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2328 2329 unsigned SrcReg = MI->getOperand(0).getReg(); 2330 MachineOperand Base = MI->getOperand(1); 2331 int64_t Disp = MI->getOperand(2).getImm(); 2332 unsigned IndexReg = MI->getOperand(3).getReg(); 2333 unsigned CCValid = MI->getOperand(4).getImm(); 2334 unsigned CCMask = MI->getOperand(5).getImm(); 2335 DebugLoc DL = MI->getDebugLoc(); 2336 2337 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 2338 2339 // Use STOCOpcode if possible. We could use different store patterns in 2340 // order to avoid matching the index register, but the performance trade-offs 2341 // might be more complicated in that case. 2342 if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) { 2343 if (Invert) 2344 CCMask ^= CCValid; 2345 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 2346 .addReg(SrcReg).addOperand(Base).addImm(Disp) 2347 .addImm(CCValid).addImm(CCMask); 2348 MI->eraseFromParent(); 2349 return MBB; 2350 } 2351 2352 // Get the condition needed to branch around the store. 2353 if (!Invert) 2354 CCMask ^= CCValid; 2355 2356 MachineBasicBlock *StartMBB = MBB; 2357 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 2358 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 2359 2360 // StartMBB: 2361 // BRC CCMask, JoinMBB 2362 // # fallthrough to FalseMBB 2363 MBB = StartMBB; 2364 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2365 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 2366 MBB->addSuccessor(JoinMBB); 2367 MBB->addSuccessor(FalseMBB); 2368 2369 // FalseMBB: 2370 // store %SrcReg, %Disp(%Index,%Base) 2371 // # fallthrough to JoinMBB 2372 MBB = FalseMBB; 2373 BuildMI(MBB, DL, TII->get(StoreOpcode)) 2374 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 2375 MBB->addSuccessor(JoinMBB); 2376 2377 MI->eraseFromParent(); 2378 return JoinMBB; 2379 } 2380 2381 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 2382 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 2383 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 2384 // BitSize is the width of the field in bits, or 0 if this is a partword 2385 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 2386 // is one of the operands. Invert says whether the field should be 2387 // inverted after performing BinOpcode (e.g. for NAND). 2388 MachineBasicBlock * 2389 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 2390 MachineBasicBlock *MBB, 2391 unsigned BinOpcode, 2392 unsigned BitSize, 2393 bool Invert) const { 2394 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2395 MachineFunction &MF = *MBB->getParent(); 2396 MachineRegisterInfo &MRI = MF.getRegInfo(); 2397 bool IsSubWord = (BitSize < 32); 2398 2399 // Extract the operands. Base can be a register or a frame index. 2400 // Src2 can be a register or immediate. 2401 unsigned Dest = MI->getOperand(0).getReg(); 2402 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2403 int64_t Disp = MI->getOperand(2).getImm(); 2404 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 2405 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 2406 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 2407 DebugLoc DL = MI->getDebugLoc(); 2408 if (IsSubWord) 2409 BitSize = MI->getOperand(6).getImm(); 2410 2411 // Subword operations use 32-bit registers. 2412 const TargetRegisterClass *RC = (BitSize <= 32 ? 2413 &SystemZ::GR32BitRegClass : 2414 &SystemZ::GR64BitRegClass); 2415 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 2416 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 2417 2418 // Get the right opcodes for the displacement. 2419 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 2420 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 2421 assert(LOpcode && CSOpcode && "Displacement out of range"); 2422 2423 // Create virtual registers for temporary results. 2424 unsigned OrigVal = MRI.createVirtualRegister(RC); 2425 unsigned OldVal = MRI.createVirtualRegister(RC); 2426 unsigned NewVal = (BinOpcode || IsSubWord ? 2427 MRI.createVirtualRegister(RC) : Src2.getReg()); 2428 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 2429 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 2430 2431 // Insert a basic block for the main loop. 2432 MachineBasicBlock *StartMBB = MBB; 2433 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2434 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2435 2436 // StartMBB: 2437 // ... 2438 // %OrigVal = L Disp(%Base) 2439 // # fall through to LoopMMB 2440 MBB = StartMBB; 2441 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 2442 .addOperand(Base).addImm(Disp).addReg(0); 2443 MBB->addSuccessor(LoopMBB); 2444 2445 // LoopMBB: 2446 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 2447 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 2448 // %RotatedNewVal = OP %RotatedOldVal, %Src2 2449 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 2450 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 2451 // JNE LoopMBB 2452 // # fall through to DoneMMB 2453 MBB = LoopMBB; 2454 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2455 .addReg(OrigVal).addMBB(StartMBB) 2456 .addReg(Dest).addMBB(LoopMBB); 2457 if (IsSubWord) 2458 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 2459 .addReg(OldVal).addReg(BitShift).addImm(0); 2460 if (Invert) { 2461 // Perform the operation normally and then invert every bit of the field. 2462 unsigned Tmp = MRI.createVirtualRegister(RC); 2463 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 2464 .addReg(RotatedOldVal).addOperand(Src2); 2465 if (BitSize < 32) 2466 // XILF with the upper BitSize bits set. 2467 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 2468 .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize))); 2469 else if (BitSize == 32) 2470 // XILF with every bit set. 2471 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 2472 .addReg(Tmp).addImm(~uint32_t(0)); 2473 else { 2474 // Use LCGR and add -1 to the result, which is more compact than 2475 // an XILF, XILH pair. 2476 unsigned Tmp2 = MRI.createVirtualRegister(RC); 2477 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 2478 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 2479 .addReg(Tmp2).addImm(-1); 2480 } 2481 } else if (BinOpcode) 2482 // A simply binary operation. 2483 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 2484 .addReg(RotatedOldVal).addOperand(Src2); 2485 else if (IsSubWord) 2486 // Use RISBG to rotate Src2 into position and use it to replace the 2487 // field in RotatedOldVal. 2488 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 2489 .addReg(RotatedOldVal).addReg(Src2.getReg()) 2490 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 2491 if (IsSubWord) 2492 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 2493 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 2494 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 2495 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 2496 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2497 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2498 MBB->addSuccessor(LoopMBB); 2499 MBB->addSuccessor(DoneMBB); 2500 2501 MI->eraseFromParent(); 2502 return DoneMBB; 2503 } 2504 2505 // Implement EmitInstrWithCustomInserter for pseudo 2506 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 2507 // instruction that should be used to compare the current field with the 2508 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 2509 // for when the current field should be kept. BitSize is the width of 2510 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 2511 MachineBasicBlock * 2512 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 2513 MachineBasicBlock *MBB, 2514 unsigned CompareOpcode, 2515 unsigned KeepOldMask, 2516 unsigned BitSize) const { 2517 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2518 MachineFunction &MF = *MBB->getParent(); 2519 MachineRegisterInfo &MRI = MF.getRegInfo(); 2520 bool IsSubWord = (BitSize < 32); 2521 2522 // Extract the operands. Base can be a register or a frame index. 2523 unsigned Dest = MI->getOperand(0).getReg(); 2524 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2525 int64_t Disp = MI->getOperand(2).getImm(); 2526 unsigned Src2 = MI->getOperand(3).getReg(); 2527 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 2528 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 2529 DebugLoc DL = MI->getDebugLoc(); 2530 if (IsSubWord) 2531 BitSize = MI->getOperand(6).getImm(); 2532 2533 // Subword operations use 32-bit registers. 2534 const TargetRegisterClass *RC = (BitSize <= 32 ? 2535 &SystemZ::GR32BitRegClass : 2536 &SystemZ::GR64BitRegClass); 2537 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 2538 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 2539 2540 // Get the right opcodes for the displacement. 2541 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 2542 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 2543 assert(LOpcode && CSOpcode && "Displacement out of range"); 2544 2545 // Create virtual registers for temporary results. 2546 unsigned OrigVal = MRI.createVirtualRegister(RC); 2547 unsigned OldVal = MRI.createVirtualRegister(RC); 2548 unsigned NewVal = MRI.createVirtualRegister(RC); 2549 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 2550 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 2551 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 2552 2553 // Insert 3 basic blocks for the loop. 2554 MachineBasicBlock *StartMBB = MBB; 2555 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2556 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2557 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 2558 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 2559 2560 // StartMBB: 2561 // ... 2562 // %OrigVal = L Disp(%Base) 2563 // # fall through to LoopMMB 2564 MBB = StartMBB; 2565 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 2566 .addOperand(Base).addImm(Disp).addReg(0); 2567 MBB->addSuccessor(LoopMBB); 2568 2569 // LoopMBB: 2570 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 2571 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 2572 // CompareOpcode %RotatedOldVal, %Src2 2573 // BRC KeepOldMask, UpdateMBB 2574 MBB = LoopMBB; 2575 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2576 .addReg(OrigVal).addMBB(StartMBB) 2577 .addReg(Dest).addMBB(UpdateMBB); 2578 if (IsSubWord) 2579 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 2580 .addReg(OldVal).addReg(BitShift).addImm(0); 2581 BuildMI(MBB, DL, TII->get(CompareOpcode)) 2582 .addReg(RotatedOldVal).addReg(Src2); 2583 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2584 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 2585 MBB->addSuccessor(UpdateMBB); 2586 MBB->addSuccessor(UseAltMBB); 2587 2588 // UseAltMBB: 2589 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 2590 // # fall through to UpdateMMB 2591 MBB = UseAltMBB; 2592 if (IsSubWord) 2593 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 2594 .addReg(RotatedOldVal).addReg(Src2) 2595 .addImm(32).addImm(31 + BitSize).addImm(0); 2596 MBB->addSuccessor(UpdateMBB); 2597 2598 // UpdateMBB: 2599 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 2600 // [ %RotatedAltVal, UseAltMBB ] 2601 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 2602 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 2603 // JNE LoopMBB 2604 // # fall through to DoneMMB 2605 MBB = UpdateMBB; 2606 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 2607 .addReg(RotatedOldVal).addMBB(LoopMBB) 2608 .addReg(RotatedAltVal).addMBB(UseAltMBB); 2609 if (IsSubWord) 2610 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 2611 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 2612 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 2613 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 2614 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2615 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2616 MBB->addSuccessor(LoopMBB); 2617 MBB->addSuccessor(DoneMBB); 2618 2619 MI->eraseFromParent(); 2620 return DoneMBB; 2621 } 2622 2623 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 2624 // instruction MI. 2625 MachineBasicBlock * 2626 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 2627 MachineBasicBlock *MBB) const { 2628 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2629 MachineFunction &MF = *MBB->getParent(); 2630 MachineRegisterInfo &MRI = MF.getRegInfo(); 2631 2632 // Extract the operands. Base can be a register or a frame index. 2633 unsigned Dest = MI->getOperand(0).getReg(); 2634 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2635 int64_t Disp = MI->getOperand(2).getImm(); 2636 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 2637 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 2638 unsigned BitShift = MI->getOperand(5).getReg(); 2639 unsigned NegBitShift = MI->getOperand(6).getReg(); 2640 int64_t BitSize = MI->getOperand(7).getImm(); 2641 DebugLoc DL = MI->getDebugLoc(); 2642 2643 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 2644 2645 // Get the right opcodes for the displacement. 2646 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 2647 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 2648 assert(LOpcode && CSOpcode && "Displacement out of range"); 2649 2650 // Create virtual registers for temporary results. 2651 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 2652 unsigned OldVal = MRI.createVirtualRegister(RC); 2653 unsigned CmpVal = MRI.createVirtualRegister(RC); 2654 unsigned SwapVal = MRI.createVirtualRegister(RC); 2655 unsigned StoreVal = MRI.createVirtualRegister(RC); 2656 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 2657 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 2658 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 2659 2660 // Insert 2 basic blocks for the loop. 2661 MachineBasicBlock *StartMBB = MBB; 2662 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2663 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2664 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 2665 2666 // StartMBB: 2667 // ... 2668 // %OrigOldVal = L Disp(%Base) 2669 // # fall through to LoopMMB 2670 MBB = StartMBB; 2671 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 2672 .addOperand(Base).addImm(Disp).addReg(0); 2673 MBB->addSuccessor(LoopMBB); 2674 2675 // LoopMBB: 2676 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 2677 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 2678 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 2679 // %Dest = RLL %OldVal, BitSize(%BitShift) 2680 // ^^ The low BitSize bits contain the field 2681 // of interest. 2682 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 2683 // ^^ Replace the upper 32-BitSize bits of the 2684 // comparison value with those that we loaded, 2685 // so that we can use a full word comparison. 2686 // CR %Dest, %RetryCmpVal 2687 // JNE DoneMBB 2688 // # Fall through to SetMBB 2689 MBB = LoopMBB; 2690 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2691 .addReg(OrigOldVal).addMBB(StartMBB) 2692 .addReg(RetryOldVal).addMBB(SetMBB); 2693 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 2694 .addReg(OrigCmpVal).addMBB(StartMBB) 2695 .addReg(RetryCmpVal).addMBB(SetMBB); 2696 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 2697 .addReg(OrigSwapVal).addMBB(StartMBB) 2698 .addReg(RetrySwapVal).addMBB(SetMBB); 2699 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 2700 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 2701 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 2702 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 2703 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 2704 .addReg(Dest).addReg(RetryCmpVal); 2705 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2706 .addImm(SystemZ::CCMASK_ICMP) 2707 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 2708 MBB->addSuccessor(DoneMBB); 2709 MBB->addSuccessor(SetMBB); 2710 2711 // SetMBB: 2712 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 2713 // ^^ Replace the upper 32-BitSize bits of the new 2714 // value with those that we loaded. 2715 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 2716 // ^^ Rotate the new field to its proper position. 2717 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 2718 // JNE LoopMBB 2719 // # fall through to ExitMMB 2720 MBB = SetMBB; 2721 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 2722 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 2723 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 2724 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 2725 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 2726 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 2727 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2728 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2729 MBB->addSuccessor(LoopMBB); 2730 MBB->addSuccessor(DoneMBB); 2731 2732 MI->eraseFromParent(); 2733 return DoneMBB; 2734 } 2735 2736 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 2737 // if the high register of the GR128 value must be cleared or false if 2738 // it's "don't care". SubReg is subreg_l32 when extending a GR32 2739 // and subreg_l64 when extending a GR64. 2740 MachineBasicBlock * 2741 SystemZTargetLowering::emitExt128(MachineInstr *MI, 2742 MachineBasicBlock *MBB, 2743 bool ClearEven, unsigned SubReg) const { 2744 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2745 MachineFunction &MF = *MBB->getParent(); 2746 MachineRegisterInfo &MRI = MF.getRegInfo(); 2747 DebugLoc DL = MI->getDebugLoc(); 2748 2749 unsigned Dest = MI->getOperand(0).getReg(); 2750 unsigned Src = MI->getOperand(1).getReg(); 2751 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 2752 2753 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 2754 if (ClearEven) { 2755 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 2756 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 2757 2758 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 2759 .addImm(0); 2760 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 2761 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 2762 In128 = NewIn128; 2763 } 2764 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 2765 .addReg(In128).addReg(Src).addImm(SubReg); 2766 2767 MI->eraseFromParent(); 2768 return MBB; 2769 } 2770 2771 MachineBasicBlock * 2772 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 2773 MachineBasicBlock *MBB, 2774 unsigned Opcode) const { 2775 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2776 MachineFunction &MF = *MBB->getParent(); 2777 MachineRegisterInfo &MRI = MF.getRegInfo(); 2778 DebugLoc DL = MI->getDebugLoc(); 2779 2780 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 2781 uint64_t DestDisp = MI->getOperand(1).getImm(); 2782 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 2783 uint64_t SrcDisp = MI->getOperand(3).getImm(); 2784 uint64_t Length = MI->getOperand(4).getImm(); 2785 2786 // When generating more than one CLC, all but the last will need to 2787 // branch to the end when a difference is found. 2788 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 2789 splitBlockAfter(MI, MBB) : 0); 2790 2791 // Check for the loop form, in which operand 5 is the trip count. 2792 if (MI->getNumExplicitOperands() > 5) { 2793 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 2794 2795 uint64_t StartCountReg = MI->getOperand(5).getReg(); 2796 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 2797 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 2798 forceReg(MI, DestBase, TII)); 2799 2800 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 2801 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 2802 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 2803 MRI.createVirtualRegister(RC)); 2804 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 2805 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 2806 MRI.createVirtualRegister(RC)); 2807 2808 RC = &SystemZ::GR64BitRegClass; 2809 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 2810 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 2811 2812 MachineBasicBlock *StartMBB = MBB; 2813 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2814 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2815 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 2816 2817 // StartMBB: 2818 // # fall through to LoopMMB 2819 MBB->addSuccessor(LoopMBB); 2820 2821 // LoopMBB: 2822 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 2823 // [ %NextDestReg, NextMBB ] 2824 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 2825 // [ %NextSrcReg, NextMBB ] 2826 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 2827 // [ %NextCountReg, NextMBB ] 2828 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 2829 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 2830 // ( JLH EndMBB ) 2831 // 2832 // The prefetch is used only for MVC. The JLH is used only for CLC. 2833 MBB = LoopMBB; 2834 2835 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 2836 .addReg(StartDestReg).addMBB(StartMBB) 2837 .addReg(NextDestReg).addMBB(NextMBB); 2838 if (!HaveSingleBase) 2839 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 2840 .addReg(StartSrcReg).addMBB(StartMBB) 2841 .addReg(NextSrcReg).addMBB(NextMBB); 2842 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 2843 .addReg(StartCountReg).addMBB(StartMBB) 2844 .addReg(NextCountReg).addMBB(NextMBB); 2845 if (Opcode == SystemZ::MVC) 2846 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 2847 .addImm(SystemZ::PFD_WRITE) 2848 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 2849 BuildMI(MBB, DL, TII->get(Opcode)) 2850 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 2851 .addReg(ThisSrcReg).addImm(SrcDisp); 2852 if (EndMBB) { 2853 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2854 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 2855 .addMBB(EndMBB); 2856 MBB->addSuccessor(EndMBB); 2857 MBB->addSuccessor(NextMBB); 2858 } 2859 2860 // NextMBB: 2861 // %NextDestReg = LA 256(%ThisDestReg) 2862 // %NextSrcReg = LA 256(%ThisSrcReg) 2863 // %NextCountReg = AGHI %ThisCountReg, -1 2864 // CGHI %NextCountReg, 0 2865 // JLH LoopMBB 2866 // # fall through to DoneMMB 2867 // 2868 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 2869 MBB = NextMBB; 2870 2871 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 2872 .addReg(ThisDestReg).addImm(256).addReg(0); 2873 if (!HaveSingleBase) 2874 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 2875 .addReg(ThisSrcReg).addImm(256).addReg(0); 2876 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 2877 .addReg(ThisCountReg).addImm(-1); 2878 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 2879 .addReg(NextCountReg).addImm(0); 2880 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2881 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 2882 .addMBB(LoopMBB); 2883 MBB->addSuccessor(LoopMBB); 2884 MBB->addSuccessor(DoneMBB); 2885 2886 DestBase = MachineOperand::CreateReg(NextDestReg, false); 2887 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 2888 Length &= 255; 2889 MBB = DoneMBB; 2890 } 2891 // Handle any remaining bytes with straight-line code. 2892 while (Length > 0) { 2893 uint64_t ThisLength = std::min(Length, uint64_t(256)); 2894 // The previous iteration might have created out-of-range displacements. 2895 // Apply them using LAY if so. 2896 if (!isUInt<12>(DestDisp)) { 2897 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 2898 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 2899 .addOperand(DestBase).addImm(DestDisp).addReg(0); 2900 DestBase = MachineOperand::CreateReg(Reg, false); 2901 DestDisp = 0; 2902 } 2903 if (!isUInt<12>(SrcDisp)) { 2904 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 2905 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 2906 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 2907 SrcBase = MachineOperand::CreateReg(Reg, false); 2908 SrcDisp = 0; 2909 } 2910 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 2911 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 2912 .addOperand(SrcBase).addImm(SrcDisp); 2913 DestDisp += ThisLength; 2914 SrcDisp += ThisLength; 2915 Length -= ThisLength; 2916 // If there's another CLC to go, branch to the end if a difference 2917 // was found. 2918 if (EndMBB && Length > 0) { 2919 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 2920 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2921 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 2922 .addMBB(EndMBB); 2923 MBB->addSuccessor(EndMBB); 2924 MBB->addSuccessor(NextMBB); 2925 MBB = NextMBB; 2926 } 2927 } 2928 if (EndMBB) { 2929 MBB->addSuccessor(EndMBB); 2930 MBB = EndMBB; 2931 MBB->addLiveIn(SystemZ::CC); 2932 } 2933 2934 MI->eraseFromParent(); 2935 return MBB; 2936 } 2937 2938 // Decompose string pseudo-instruction MI into a loop that continually performs 2939 // Opcode until CC != 3. 2940 MachineBasicBlock * 2941 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 2942 MachineBasicBlock *MBB, 2943 unsigned Opcode) const { 2944 const SystemZInstrInfo *TII = TM.getInstrInfo(); 2945 MachineFunction &MF = *MBB->getParent(); 2946 MachineRegisterInfo &MRI = MF.getRegInfo(); 2947 DebugLoc DL = MI->getDebugLoc(); 2948 2949 uint64_t End1Reg = MI->getOperand(0).getReg(); 2950 uint64_t Start1Reg = MI->getOperand(1).getReg(); 2951 uint64_t Start2Reg = MI->getOperand(2).getReg(); 2952 uint64_t CharReg = MI->getOperand(3).getReg(); 2953 2954 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 2955 uint64_t This1Reg = MRI.createVirtualRegister(RC); 2956 uint64_t This2Reg = MRI.createVirtualRegister(RC); 2957 uint64_t End2Reg = MRI.createVirtualRegister(RC); 2958 2959 MachineBasicBlock *StartMBB = MBB; 2960 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2961 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2962 2963 // StartMBB: 2964 // # fall through to LoopMMB 2965 MBB->addSuccessor(LoopMBB); 2966 2967 // LoopMBB: 2968 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 2969 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 2970 // R0L = %CharReg 2971 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 2972 // JO LoopMBB 2973 // # fall through to DoneMMB 2974 // 2975 // The load of R0L can be hoisted by post-RA LICM. 2976 MBB = LoopMBB; 2977 2978 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 2979 .addReg(Start1Reg).addMBB(StartMBB) 2980 .addReg(End1Reg).addMBB(LoopMBB); 2981 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 2982 .addReg(Start2Reg).addMBB(StartMBB) 2983 .addReg(End2Reg).addMBB(LoopMBB); 2984 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 2985 BuildMI(MBB, DL, TII->get(Opcode)) 2986 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 2987 .addReg(This1Reg).addReg(This2Reg); 2988 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2989 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 2990 MBB->addSuccessor(LoopMBB); 2991 MBB->addSuccessor(DoneMBB); 2992 2993 DoneMBB->addLiveIn(SystemZ::CC); 2994 2995 MI->eraseFromParent(); 2996 return DoneMBB; 2997 } 2998 2999 MachineBasicBlock *SystemZTargetLowering:: 3000 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 3001 switch (MI->getOpcode()) { 3002 case SystemZ::Select32Mux: 3003 case SystemZ::Select32: 3004 case SystemZ::SelectF32: 3005 case SystemZ::Select64: 3006 case SystemZ::SelectF64: 3007 case SystemZ::SelectF128: 3008 return emitSelect(MI, MBB); 3009 3010 case SystemZ::CondStore8Mux: 3011 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 3012 case SystemZ::CondStore8MuxInv: 3013 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 3014 case SystemZ::CondStore16Mux: 3015 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 3016 case SystemZ::CondStore16MuxInv: 3017 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 3018 case SystemZ::CondStore8: 3019 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 3020 case SystemZ::CondStore8Inv: 3021 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 3022 case SystemZ::CondStore16: 3023 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 3024 case SystemZ::CondStore16Inv: 3025 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 3026 case SystemZ::CondStore32: 3027 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 3028 case SystemZ::CondStore32Inv: 3029 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 3030 case SystemZ::CondStore64: 3031 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 3032 case SystemZ::CondStore64Inv: 3033 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 3034 case SystemZ::CondStoreF32: 3035 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 3036 case SystemZ::CondStoreF32Inv: 3037 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 3038 case SystemZ::CondStoreF64: 3039 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 3040 case SystemZ::CondStoreF64Inv: 3041 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 3042 3043 case SystemZ::AEXT128_64: 3044 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 3045 case SystemZ::ZEXT128_32: 3046 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 3047 case SystemZ::ZEXT128_64: 3048 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 3049 3050 case SystemZ::ATOMIC_SWAPW: 3051 return emitAtomicLoadBinary(MI, MBB, 0, 0); 3052 case SystemZ::ATOMIC_SWAP_32: 3053 return emitAtomicLoadBinary(MI, MBB, 0, 32); 3054 case SystemZ::ATOMIC_SWAP_64: 3055 return emitAtomicLoadBinary(MI, MBB, 0, 64); 3056 3057 case SystemZ::ATOMIC_LOADW_AR: 3058 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 3059 case SystemZ::ATOMIC_LOADW_AFI: 3060 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 3061 case SystemZ::ATOMIC_LOAD_AR: 3062 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 3063 case SystemZ::ATOMIC_LOAD_AHI: 3064 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 3065 case SystemZ::ATOMIC_LOAD_AFI: 3066 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 3067 case SystemZ::ATOMIC_LOAD_AGR: 3068 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 3069 case SystemZ::ATOMIC_LOAD_AGHI: 3070 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 3071 case SystemZ::ATOMIC_LOAD_AGFI: 3072 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 3073 3074 case SystemZ::ATOMIC_LOADW_SR: 3075 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 3076 case SystemZ::ATOMIC_LOAD_SR: 3077 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 3078 case SystemZ::ATOMIC_LOAD_SGR: 3079 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 3080 3081 case SystemZ::ATOMIC_LOADW_NR: 3082 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 3083 case SystemZ::ATOMIC_LOADW_NILH: 3084 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 3085 case SystemZ::ATOMIC_LOAD_NR: 3086 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 3087 case SystemZ::ATOMIC_LOAD_NILL: 3088 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 3089 case SystemZ::ATOMIC_LOAD_NILH: 3090 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 3091 case SystemZ::ATOMIC_LOAD_NILF: 3092 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 3093 case SystemZ::ATOMIC_LOAD_NGR: 3094 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 3095 case SystemZ::ATOMIC_LOAD_NILL64: 3096 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 3097 case SystemZ::ATOMIC_LOAD_NILH64: 3098 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 3099 case SystemZ::ATOMIC_LOAD_NIHL64: 3100 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 3101 case SystemZ::ATOMIC_LOAD_NIHH64: 3102 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 3103 case SystemZ::ATOMIC_LOAD_NILF64: 3104 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 3105 case SystemZ::ATOMIC_LOAD_NIHF64: 3106 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 3107 3108 case SystemZ::ATOMIC_LOADW_OR: 3109 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 3110 case SystemZ::ATOMIC_LOADW_OILH: 3111 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 3112 case SystemZ::ATOMIC_LOAD_OR: 3113 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 3114 case SystemZ::ATOMIC_LOAD_OILL: 3115 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 3116 case SystemZ::ATOMIC_LOAD_OILH: 3117 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 3118 case SystemZ::ATOMIC_LOAD_OILF: 3119 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 3120 case SystemZ::ATOMIC_LOAD_OGR: 3121 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 3122 case SystemZ::ATOMIC_LOAD_OILL64: 3123 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 3124 case SystemZ::ATOMIC_LOAD_OILH64: 3125 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 3126 case SystemZ::ATOMIC_LOAD_OIHL64: 3127 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 3128 case SystemZ::ATOMIC_LOAD_OIHH64: 3129 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 3130 case SystemZ::ATOMIC_LOAD_OILF64: 3131 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 3132 case SystemZ::ATOMIC_LOAD_OIHF64: 3133 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 3134 3135 case SystemZ::ATOMIC_LOADW_XR: 3136 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 3137 case SystemZ::ATOMIC_LOADW_XILF: 3138 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 3139 case SystemZ::ATOMIC_LOAD_XR: 3140 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 3141 case SystemZ::ATOMIC_LOAD_XILF: 3142 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 3143 case SystemZ::ATOMIC_LOAD_XGR: 3144 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 3145 case SystemZ::ATOMIC_LOAD_XILF64: 3146 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 3147 case SystemZ::ATOMIC_LOAD_XIHF64: 3148 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 3149 3150 case SystemZ::ATOMIC_LOADW_NRi: 3151 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 3152 case SystemZ::ATOMIC_LOADW_NILHi: 3153 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 3154 case SystemZ::ATOMIC_LOAD_NRi: 3155 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 3156 case SystemZ::ATOMIC_LOAD_NILLi: 3157 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 3158 case SystemZ::ATOMIC_LOAD_NILHi: 3159 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 3160 case SystemZ::ATOMIC_LOAD_NILFi: 3161 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 3162 case SystemZ::ATOMIC_LOAD_NGRi: 3163 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 3164 case SystemZ::ATOMIC_LOAD_NILL64i: 3165 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 3166 case SystemZ::ATOMIC_LOAD_NILH64i: 3167 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 3168 case SystemZ::ATOMIC_LOAD_NIHL64i: 3169 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 3170 case SystemZ::ATOMIC_LOAD_NIHH64i: 3171 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 3172 case SystemZ::ATOMIC_LOAD_NILF64i: 3173 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 3174 case SystemZ::ATOMIC_LOAD_NIHF64i: 3175 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 3176 3177 case SystemZ::ATOMIC_LOADW_MIN: 3178 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3179 SystemZ::CCMASK_CMP_LE, 0); 3180 case SystemZ::ATOMIC_LOAD_MIN_32: 3181 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3182 SystemZ::CCMASK_CMP_LE, 32); 3183 case SystemZ::ATOMIC_LOAD_MIN_64: 3184 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 3185 SystemZ::CCMASK_CMP_LE, 64); 3186 3187 case SystemZ::ATOMIC_LOADW_MAX: 3188 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3189 SystemZ::CCMASK_CMP_GE, 0); 3190 case SystemZ::ATOMIC_LOAD_MAX_32: 3191 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3192 SystemZ::CCMASK_CMP_GE, 32); 3193 case SystemZ::ATOMIC_LOAD_MAX_64: 3194 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 3195 SystemZ::CCMASK_CMP_GE, 64); 3196 3197 case SystemZ::ATOMIC_LOADW_UMIN: 3198 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3199 SystemZ::CCMASK_CMP_LE, 0); 3200 case SystemZ::ATOMIC_LOAD_UMIN_32: 3201 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3202 SystemZ::CCMASK_CMP_LE, 32); 3203 case SystemZ::ATOMIC_LOAD_UMIN_64: 3204 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 3205 SystemZ::CCMASK_CMP_LE, 64); 3206 3207 case SystemZ::ATOMIC_LOADW_UMAX: 3208 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3209 SystemZ::CCMASK_CMP_GE, 0); 3210 case SystemZ::ATOMIC_LOAD_UMAX_32: 3211 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3212 SystemZ::CCMASK_CMP_GE, 32); 3213 case SystemZ::ATOMIC_LOAD_UMAX_64: 3214 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 3215 SystemZ::CCMASK_CMP_GE, 64); 3216 3217 case SystemZ::ATOMIC_CMP_SWAPW: 3218 return emitAtomicCmpSwapW(MI, MBB); 3219 case SystemZ::MVCSequence: 3220 case SystemZ::MVCLoop: 3221 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 3222 case SystemZ::NCSequence: 3223 case SystemZ::NCLoop: 3224 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 3225 case SystemZ::OCSequence: 3226 case SystemZ::OCLoop: 3227 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 3228 case SystemZ::XCSequence: 3229 case SystemZ::XCLoop: 3230 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 3231 case SystemZ::CLCSequence: 3232 case SystemZ::CLCLoop: 3233 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 3234 case SystemZ::CLSTLoop: 3235 return emitStringWrapper(MI, MBB, SystemZ::CLST); 3236 case SystemZ::MVSTLoop: 3237 return emitStringWrapper(MI, MBB, SystemZ::MVST); 3238 case SystemZ::SRSTLoop: 3239 return emitStringWrapper(MI, MBB, SystemZ::SRST); 3240 default: 3241 llvm_unreachable("Unexpected instr type to insert"); 3242 } 3243 } 3244