1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Special treatment.
475       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
476 
477       // Handle constrained floating-point operations.
478       setOperationAction(ISD::STRICT_FADD, VT, Legal);
479       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
480       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
481       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
482       setOperationAction(ISD::STRICT_FMA, VT, Legal);
483       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
484       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
485       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
486       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
487       if (Subtarget.hasFPExtension()) {
488         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
489         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
490         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
491         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
492         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
493       }
494     }
495   }
496 
497   // Handle floating-point vector types.
498   if (Subtarget.hasVector()) {
499     // Scalar-to-vector conversion is just a subreg.
500     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
501     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
502 
503     // Some insertions and extractions can be done directly but others
504     // need to go via integers.
505     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
506     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
507     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
508     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
509 
510     // These operations have direct equivalents.
511     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
512     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
513     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
514     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
515     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
516     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
517     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
518     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
519     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
520     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
521     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
522     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
523     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
524     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
525 
526     // Handle constrained floating-point operations.
527     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
536     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
537     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
538     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
539   }
540 
541   // The vector enhancements facility 1 has instructions for these.
542   if (Subtarget.hasVectorEnhancements1()) {
543     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
544     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
545     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
546     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
547     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
548     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
549     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
550     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
551     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
553     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
554     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
555     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
556     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
557 
558     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
559     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
560     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
561     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
562 
563     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
564     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
565     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
566     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
567 
568     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
569     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
570     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
571     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
572 
573     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
574     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
575     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
576     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
577 
578     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
579     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
580     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
581     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
582 
583     // Handle constrained floating-point operations.
584     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
593     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
594     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
595     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
596     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
597                      MVT::v4f32, MVT::v2f64 }) {
598       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
599       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
600       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
601       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
602     }
603   }
604 
605   // We only have fused f128 multiply-addition on vector registers.
606   if (!Subtarget.hasVectorEnhancements1()) {
607     setOperationAction(ISD::FMA, MVT::f128, Expand);
608     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
609   }
610 
611   // We don't have a copysign instruction on vector registers.
612   if (Subtarget.hasVectorEnhancements1())
613     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
614 
615   // Needed so that we don't try to implement f128 constant loads using
616   // a load-and-extend of a f80 constant (in cases where the constant
617   // would fit in an f80).
618   for (MVT VT : MVT::fp_valuetypes())
619     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
620 
621   // We don't have extending load instruction on vector registers.
622   if (Subtarget.hasVectorEnhancements1()) {
623     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
624     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
625   }
626 
627   // Floating-point truncation and stores need to be done separately.
628   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
629   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
630   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
631 
632   // We have 64-bit FPR<->GPR moves, but need special handling for
633   // 32-bit forms.
634   if (!Subtarget.hasVector()) {
635     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
636     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
637   }
638 
639   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
640   // structure, but VAEND is a no-op.
641   setOperationAction(ISD::VASTART, MVT::Other, Custom);
642   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
643   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
644 
645   // Codes for which we want to perform some z-specific combinations.
646   setTargetDAGCombine({ISD::ZERO_EXTEND,
647                        ISD::SIGN_EXTEND,
648                        ISD::SIGN_EXTEND_INREG,
649                        ISD::LOAD,
650                        ISD::STORE,
651                        ISD::VECTOR_SHUFFLE,
652                        ISD::EXTRACT_VECTOR_ELT,
653                        ISD::FP_ROUND,
654                        ISD::STRICT_FP_ROUND,
655                        ISD::FP_EXTEND,
656                        ISD::SINT_TO_FP,
657                        ISD::UINT_TO_FP,
658                        ISD::STRICT_FP_EXTEND,
659                        ISD::BSWAP,
660                        ISD::SDIV,
661                        ISD::UDIV,
662                        ISD::SREM,
663                        ISD::UREM,
664                        ISD::INTRINSIC_VOID,
665                        ISD::INTRINSIC_W_CHAIN});
666 
667   // Handle intrinsics.
668   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
669   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
670 
671   // We want to use MVC in preference to even a single load/store pair.
672   MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
673   MaxStoresPerMemcpyOptSize = 0;
674 
675   // The main memset sequence is a byte store followed by an MVC.
676   // Two STC or MV..I stores win over that, but the kind of fused stores
677   // generated by target-independent code don't when the byte value is
678   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
679   // than "STC;MVC".  Handle the choice in target-specific code instead.
680   MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
681   MaxStoresPerMemsetOptSize = 0;
682 
683   // Default to having -disable-strictnode-mutation on
684   IsStrictFPEnabled = true;
685 }
686 
687 bool SystemZTargetLowering::useSoftFloat() const {
688   return Subtarget.hasSoftFloat();
689 }
690 
691 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
692                                               LLVMContext &, EVT VT) const {
693   if (!VT.isVector())
694     return MVT::i32;
695   return VT.changeVectorElementTypeToInteger();
696 }
697 
698 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
699     const MachineFunction &MF, EVT VT) const {
700   VT = VT.getScalarType();
701 
702   if (!VT.isSimple())
703     return false;
704 
705   switch (VT.getSimpleVT().SimpleTy) {
706   case MVT::f32:
707   case MVT::f64:
708     return true;
709   case MVT::f128:
710     return Subtarget.hasVectorEnhancements1();
711   default:
712     break;
713   }
714 
715   return false;
716 }
717 
718 // Return true if the constant can be generated with a vector instruction,
719 // such as VGM, VGMB or VREPI.
720 bool SystemZVectorConstantInfo::isVectorConstantLegal(
721     const SystemZSubtarget &Subtarget) {
722   const SystemZInstrInfo *TII =
723       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
724   if (!Subtarget.hasVector() ||
725       (isFP128 && !Subtarget.hasVectorEnhancements1()))
726     return false;
727 
728   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
729   // preferred way of creating all-zero and all-one vectors so give it
730   // priority over other methods below.
731   unsigned Mask = 0;
732   unsigned I = 0;
733   for (; I < SystemZ::VectorBytes; ++I) {
734     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
735     if (Byte == 0xff)
736       Mask |= 1ULL << I;
737     else if (Byte != 0)
738       break;
739   }
740   if (I == SystemZ::VectorBytes) {
741     Opcode = SystemZISD::BYTE_MASK;
742     OpVals.push_back(Mask);
743     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
744     return true;
745   }
746 
747   if (SplatBitSize > 64)
748     return false;
749 
750   auto tryValue = [&](uint64_t Value) -> bool {
751     // Try VECTOR REPLICATE IMMEDIATE
752     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
753     if (isInt<16>(SignedValue)) {
754       OpVals.push_back(((unsigned) SignedValue));
755       Opcode = SystemZISD::REPLICATE;
756       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
757                                SystemZ::VectorBits / SplatBitSize);
758       return true;
759     }
760     // Try VECTOR GENERATE MASK
761     unsigned Start, End;
762     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
763       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
764       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
765       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
766       OpVals.push_back(Start - (64 - SplatBitSize));
767       OpVals.push_back(End - (64 - SplatBitSize));
768       Opcode = SystemZISD::ROTATE_MASK;
769       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
770                                SystemZ::VectorBits / SplatBitSize);
771       return true;
772     }
773     return false;
774   };
775 
776   // First try assuming that any undefined bits above the highest set bit
777   // and below the lowest set bit are 1s.  This increases the likelihood of
778   // being able to use a sign-extended element value in VECTOR REPLICATE
779   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
780   uint64_t SplatBitsZ = SplatBits.getZExtValue();
781   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
782   uint64_t Lower =
783       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
784   uint64_t Upper =
785       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
786   if (tryValue(SplatBitsZ | Upper | Lower))
787     return true;
788 
789   // Now try assuming that any undefined bits between the first and
790   // last defined set bits are set.  This increases the chances of
791   // using a non-wraparound mask.
792   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
793   return tryValue(SplatBitsZ | Middle);
794 }
795 
796 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
797   if (IntImm.isSingleWord()) {
798     IntBits = APInt(128, IntImm.getZExtValue());
799     IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
800   } else
801     IntBits = IntImm;
802   assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
803 
804   // Find the smallest splat.
805   SplatBits = IntImm;
806   unsigned Width = SplatBits.getBitWidth();
807   while (Width > 8) {
808     unsigned HalfSize = Width / 2;
809     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
810     APInt LowValue = SplatBits.trunc(HalfSize);
811 
812     // If the two halves do not match, stop here.
813     if (HighValue != LowValue || 8 > HalfSize)
814       break;
815 
816     SplatBits = HighValue;
817     Width = HalfSize;
818   }
819   SplatUndef = 0;
820   SplatBitSize = Width;
821 }
822 
823 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
824   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
825   bool HasAnyUndefs;
826 
827   // Get IntBits by finding the 128 bit splat.
828   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
829                        true);
830 
831   // Get SplatBits by finding the 8 bit or greater splat.
832   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
833                        true);
834 }
835 
836 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
837                                          bool ForCodeSize) const {
838   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
839   if (Imm.isZero() || Imm.isNegZero())
840     return true;
841 
842   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
843 }
844 
845 /// Returns true if stack probing through inline assembly is requested.
846 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
847   // If the function specifically requests inline stack probes, emit them.
848   if (MF.getFunction().hasFnAttribute("probe-stack"))
849     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
850            "inline-asm";
851   return false;
852 }
853 
854 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
855   // We can use CGFI or CLGFI.
856   return isInt<32>(Imm) || isUInt<32>(Imm);
857 }
858 
859 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
860   // We can use ALGFI or SLGFI.
861   return isUInt<32>(Imm) || isUInt<32>(-Imm);
862 }
863 
864 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
865     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
866   // Unaligned accesses should never be slower than the expanded version.
867   // We check specifically for aligned accesses in the few cases where
868   // they are required.
869   if (Fast)
870     *Fast = true;
871   return true;
872 }
873 
874 // Information about the addressing mode for a memory access.
875 struct AddressingMode {
876   // True if a long displacement is supported.
877   bool LongDisplacement;
878 
879   // True if use of index register is supported.
880   bool IndexReg;
881 
882   AddressingMode(bool LongDispl, bool IdxReg) :
883     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
884 };
885 
886 // Return the desired addressing mode for a Load which has only one use (in
887 // the same block) which is a Store.
888 static AddressingMode getLoadStoreAddrMode(bool HasVector,
889                                           Type *Ty) {
890   // With vector support a Load->Store combination may be combined to either
891   // an MVC or vector operations and it seems to work best to allow the
892   // vector addressing mode.
893   if (HasVector)
894     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
895 
896   // Otherwise only the MVC case is special.
897   bool MVC = Ty->isIntegerTy(8);
898   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
899 }
900 
901 // Return the addressing mode which seems most desirable given an LLVM
902 // Instruction pointer.
903 static AddressingMode
904 supportedAddressingMode(Instruction *I, bool HasVector) {
905   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
906     switch (II->getIntrinsicID()) {
907     default: break;
908     case Intrinsic::memset:
909     case Intrinsic::memmove:
910     case Intrinsic::memcpy:
911       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
912     }
913   }
914 
915   if (isa<LoadInst>(I) && I->hasOneUse()) {
916     auto *SingleUser = cast<Instruction>(*I->user_begin());
917     if (SingleUser->getParent() == I->getParent()) {
918       if (isa<ICmpInst>(SingleUser)) {
919         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
920           if (C->getBitWidth() <= 64 &&
921               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
922             // Comparison of memory with 16 bit signed / unsigned immediate
923             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
924       } else if (isa<StoreInst>(SingleUser))
925         // Load->Store
926         return getLoadStoreAddrMode(HasVector, I->getType());
927     }
928   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
929     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
930       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
931         // Load->Store
932         return getLoadStoreAddrMode(HasVector, LoadI->getType());
933   }
934 
935   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
936 
937     // * Use LDE instead of LE/LEY for z13 to avoid partial register
938     //   dependencies (LDE only supports small offsets).
939     // * Utilize the vector registers to hold floating point
940     //   values (vector load / store instructions only support small
941     //   offsets).
942 
943     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
944                          I->getOperand(0)->getType());
945     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
946     bool IsVectorAccess = MemAccessTy->isVectorTy();
947 
948     // A store of an extracted vector element will be combined into a VSTE type
949     // instruction.
950     if (!IsVectorAccess && isa<StoreInst>(I)) {
951       Value *DataOp = I->getOperand(0);
952       if (isa<ExtractElementInst>(DataOp))
953         IsVectorAccess = true;
954     }
955 
956     // A load which gets inserted into a vector element will be combined into a
957     // VLE type instruction.
958     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
959       User *LoadUser = *I->user_begin();
960       if (isa<InsertElementInst>(LoadUser))
961         IsVectorAccess = true;
962     }
963 
964     if (IsFPAccess || IsVectorAccess)
965       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
966   }
967 
968   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
969 }
970 
971 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
972        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
973   // Punt on globals for now, although they can be used in limited
974   // RELATIVE LONG cases.
975   if (AM.BaseGV)
976     return false;
977 
978   // Require a 20-bit signed offset.
979   if (!isInt<20>(AM.BaseOffs))
980     return false;
981 
982   bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy();
983   AddressingMode SupportedAM(!RequireD12, true);
984   if (I != nullptr)
985     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
986 
987   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
988     return false;
989 
990   if (!SupportedAM.IndexReg)
991     // No indexing allowed.
992     return AM.Scale == 0;
993   else
994     // Indexing is OK but no scale factor can be applied.
995     return AM.Scale == 0 || AM.Scale == 1;
996 }
997 
998 bool SystemZTargetLowering::findOptimalMemOpLowering(
999     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1000     unsigned SrcAS, const AttributeList &FuncAttributes) const {
1001   const int MVCFastLen = 16;
1002 
1003   if (Limit != ~unsigned(0)) {
1004     // Don't expand Op into scalar loads/stores in these cases:
1005     if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1006       return false; // Small memcpy: Use MVC
1007     if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1008       return false; // Small memset (first byte with STC/MVI): Use MVC
1009     if (Op.isZeroMemset())
1010       return false; // Memset zero: Use XC
1011   }
1012 
1013   return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1014                                                   SrcAS, FuncAttributes);
1015 }
1016 
1017 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1018                                    const AttributeList &FuncAttributes) const {
1019   return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1020 }
1021 
1022 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1023   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1024     return false;
1025   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
1026   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
1027   return FromBits > ToBits;
1028 }
1029 
1030 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1031   if (!FromVT.isInteger() || !ToVT.isInteger())
1032     return false;
1033   unsigned FromBits = FromVT.getFixedSizeInBits();
1034   unsigned ToBits = ToVT.getFixedSizeInBits();
1035   return FromBits > ToBits;
1036 }
1037 
1038 //===----------------------------------------------------------------------===//
1039 // Inline asm support
1040 //===----------------------------------------------------------------------===//
1041 
1042 TargetLowering::ConstraintType
1043 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1044   if (Constraint.size() == 1) {
1045     switch (Constraint[0]) {
1046     case 'a': // Address register
1047     case 'd': // Data register (equivalent to 'r')
1048     case 'f': // Floating-point register
1049     case 'h': // High-part register
1050     case 'r': // General-purpose register
1051     case 'v': // Vector register
1052       return C_RegisterClass;
1053 
1054     case 'Q': // Memory with base and unsigned 12-bit displacement
1055     case 'R': // Likewise, plus an index
1056     case 'S': // Memory with base and signed 20-bit displacement
1057     case 'T': // Likewise, plus an index
1058     case 'm': // Equivalent to 'T'.
1059       return C_Memory;
1060 
1061     case 'I': // Unsigned 8-bit constant
1062     case 'J': // Unsigned 12-bit constant
1063     case 'K': // Signed 16-bit constant
1064     case 'L': // Signed 20-bit displacement (on all targets we support)
1065     case 'M': // 0x7fffffff
1066       return C_Immediate;
1067 
1068     default:
1069       break;
1070     }
1071   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1072     switch (Constraint[1]) {
1073     case 'Q': // Address with base and unsigned 12-bit displacement
1074     case 'R': // Likewise, plus an index
1075     case 'S': // Address with base and signed 20-bit displacement
1076     case 'T': // Likewise, plus an index
1077       return C_Address;
1078 
1079     default:
1080       break;
1081     }
1082   }
1083   return TargetLowering::getConstraintType(Constraint);
1084 }
1085 
1086 TargetLowering::ConstraintWeight SystemZTargetLowering::
1087 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1088                                const char *constraint) const {
1089   ConstraintWeight weight = CW_Invalid;
1090   Value *CallOperandVal = info.CallOperandVal;
1091   // If we don't have a value, we can't do a match,
1092   // but allow it at the lowest weight.
1093   if (!CallOperandVal)
1094     return CW_Default;
1095   Type *type = CallOperandVal->getType();
1096   // Look at the constraint type.
1097   switch (*constraint) {
1098   default:
1099     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1100     break;
1101 
1102   case 'a': // Address register
1103   case 'd': // Data register (equivalent to 'r')
1104   case 'h': // High-part register
1105   case 'r': // General-purpose register
1106     if (CallOperandVal->getType()->isIntegerTy())
1107       weight = CW_Register;
1108     break;
1109 
1110   case 'f': // Floating-point register
1111     if (type->isFloatingPointTy())
1112       weight = CW_Register;
1113     break;
1114 
1115   case 'v': // Vector register
1116     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1117         Subtarget.hasVector())
1118       weight = CW_Register;
1119     break;
1120 
1121   case 'I': // Unsigned 8-bit constant
1122     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1123       if (isUInt<8>(C->getZExtValue()))
1124         weight = CW_Constant;
1125     break;
1126 
1127   case 'J': // Unsigned 12-bit constant
1128     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1129       if (isUInt<12>(C->getZExtValue()))
1130         weight = CW_Constant;
1131     break;
1132 
1133   case 'K': // Signed 16-bit constant
1134     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1135       if (isInt<16>(C->getSExtValue()))
1136         weight = CW_Constant;
1137     break;
1138 
1139   case 'L': // Signed 20-bit displacement (on all targets we support)
1140     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1141       if (isInt<20>(C->getSExtValue()))
1142         weight = CW_Constant;
1143     break;
1144 
1145   case 'M': // 0x7fffffff
1146     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1147       if (C->getZExtValue() == 0x7fffffff)
1148         weight = CW_Constant;
1149     break;
1150   }
1151   return weight;
1152 }
1153 
1154 // Parse a "{tNNN}" register constraint for which the register type "t"
1155 // has already been verified.  MC is the class associated with "t" and
1156 // Map maps 0-based register numbers to LLVM register numbers.
1157 static std::pair<unsigned, const TargetRegisterClass *>
1158 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1159                     const unsigned *Map, unsigned Size) {
1160   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1161   if (isdigit(Constraint[2])) {
1162     unsigned Index;
1163     bool Failed =
1164         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1165     if (!Failed && Index < Size && Map[Index])
1166       return std::make_pair(Map[Index], RC);
1167   }
1168   return std::make_pair(0U, nullptr);
1169 }
1170 
1171 std::pair<unsigned, const TargetRegisterClass *>
1172 SystemZTargetLowering::getRegForInlineAsmConstraint(
1173     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1174   if (Constraint.size() == 1) {
1175     // GCC Constraint Letters
1176     switch (Constraint[0]) {
1177     default: break;
1178     case 'd': // Data register (equivalent to 'r')
1179     case 'r': // General-purpose register
1180       if (VT == MVT::i64)
1181         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1182       else if (VT == MVT::i128)
1183         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1184       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1185 
1186     case 'a': // Address register
1187       if (VT == MVT::i64)
1188         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1189       else if (VT == MVT::i128)
1190         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1191       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1192 
1193     case 'h': // High-part register (an LLVM extension)
1194       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1195 
1196     case 'f': // Floating-point register
1197       if (!useSoftFloat()) {
1198         if (VT == MVT::f64)
1199           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1200         else if (VT == MVT::f128)
1201           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1202         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1203       }
1204       break;
1205     case 'v': // Vector register
1206       if (Subtarget.hasVector()) {
1207         if (VT == MVT::f32)
1208           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1209         if (VT == MVT::f64)
1210           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1211         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1212       }
1213       break;
1214     }
1215   }
1216   if (Constraint.size() > 0 && Constraint[0] == '{') {
1217     // We need to override the default register parsing for GPRs and FPRs
1218     // because the interpretation depends on VT.  The internal names of
1219     // the registers are also different from the external names
1220     // (F0D and F0S instead of F0, etc.).
1221     if (Constraint[1] == 'r') {
1222       if (VT == MVT::i32)
1223         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1224                                    SystemZMC::GR32Regs, 16);
1225       if (VT == MVT::i128)
1226         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1227                                    SystemZMC::GR128Regs, 16);
1228       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1229                                  SystemZMC::GR64Regs, 16);
1230     }
1231     if (Constraint[1] == 'f') {
1232       if (useSoftFloat())
1233         return std::make_pair(
1234             0u, static_cast<const TargetRegisterClass *>(nullptr));
1235       if (VT == MVT::f32)
1236         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1237                                    SystemZMC::FP32Regs, 16);
1238       if (VT == MVT::f128)
1239         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1240                                    SystemZMC::FP128Regs, 16);
1241       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1242                                  SystemZMC::FP64Regs, 16);
1243     }
1244     if (Constraint[1] == 'v') {
1245       if (!Subtarget.hasVector())
1246         return std::make_pair(
1247             0u, static_cast<const TargetRegisterClass *>(nullptr));
1248       if (VT == MVT::f32)
1249         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1250                                    SystemZMC::VR32Regs, 32);
1251       if (VT == MVT::f64)
1252         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1253                                    SystemZMC::VR64Regs, 32);
1254       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1255                                  SystemZMC::VR128Regs, 32);
1256     }
1257   }
1258   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1259 }
1260 
1261 // FIXME? Maybe this could be a TableGen attribute on some registers and
1262 // this table could be generated automatically from RegInfo.
1263 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1264                                                   const MachineFunction &MF) const {
1265 
1266   Register Reg = StringSwitch<Register>(RegName)
1267                    .Case("r15", SystemZ::R15D)
1268                    .Default(0);
1269   if (Reg)
1270     return Reg;
1271   report_fatal_error("Invalid register name global variable");
1272 }
1273 
1274 void SystemZTargetLowering::
1275 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1276                              std::vector<SDValue> &Ops,
1277                              SelectionDAG &DAG) const {
1278   // Only support length 1 constraints for now.
1279   if (Constraint.length() == 1) {
1280     switch (Constraint[0]) {
1281     case 'I': // Unsigned 8-bit constant
1282       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1283         if (isUInt<8>(C->getZExtValue()))
1284           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1285                                               Op.getValueType()));
1286       return;
1287 
1288     case 'J': // Unsigned 12-bit constant
1289       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1290         if (isUInt<12>(C->getZExtValue()))
1291           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1292                                               Op.getValueType()));
1293       return;
1294 
1295     case 'K': // Signed 16-bit constant
1296       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1297         if (isInt<16>(C->getSExtValue()))
1298           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1299                                               Op.getValueType()));
1300       return;
1301 
1302     case 'L': // Signed 20-bit displacement (on all targets we support)
1303       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1304         if (isInt<20>(C->getSExtValue()))
1305           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1306                                               Op.getValueType()));
1307       return;
1308 
1309     case 'M': // 0x7fffffff
1310       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1311         if (C->getZExtValue() == 0x7fffffff)
1312           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1313                                               Op.getValueType()));
1314       return;
1315     }
1316   }
1317   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1318 }
1319 
1320 //===----------------------------------------------------------------------===//
1321 // Calling conventions
1322 //===----------------------------------------------------------------------===//
1323 
1324 #include "SystemZGenCallingConv.inc"
1325 
1326 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1327   CallingConv::ID) const {
1328   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1329                                            SystemZ::R14D, 0 };
1330   return ScratchRegs;
1331 }
1332 
1333 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1334                                                      Type *ToType) const {
1335   return isTruncateFree(FromType, ToType);
1336 }
1337 
1338 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1339   return CI->isTailCall();
1340 }
1341 
1342 // We do not yet support 128-bit single-element vector types.  If the user
1343 // attempts to use such types as function argument or return type, prefer
1344 // to error out instead of emitting code violating the ABI.
1345 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1346   if (ArgVT.isVector() && !VT.isVector())
1347     report_fatal_error("Unsupported vector argument or return type");
1348 }
1349 
1350 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1351   for (unsigned i = 0; i < Ins.size(); ++i)
1352     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1353 }
1354 
1355 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1356   for (unsigned i = 0; i < Outs.size(); ++i)
1357     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1358 }
1359 
1360 // Value is a value that has been passed to us in the location described by VA
1361 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1362 // any loads onto Chain.
1363 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1364                                    CCValAssign &VA, SDValue Chain,
1365                                    SDValue Value) {
1366   // If the argument has been promoted from a smaller type, insert an
1367   // assertion to capture this.
1368   if (VA.getLocInfo() == CCValAssign::SExt)
1369     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1370                         DAG.getValueType(VA.getValVT()));
1371   else if (VA.getLocInfo() == CCValAssign::ZExt)
1372     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1373                         DAG.getValueType(VA.getValVT()));
1374 
1375   if (VA.isExtInLoc())
1376     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1377   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1378     // If this is a short vector argument loaded from the stack,
1379     // extend from i64 to full vector size and then bitcast.
1380     assert(VA.getLocVT() == MVT::i64);
1381     assert(VA.getValVT().isVector());
1382     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1383     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1384   } else
1385     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1386   return Value;
1387 }
1388 
1389 // Value is a value of type VA.getValVT() that we need to copy into
1390 // the location described by VA.  Return a copy of Value converted to
1391 // VA.getValVT().  The caller is responsible for handling indirect values.
1392 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1393                                    CCValAssign &VA, SDValue Value) {
1394   switch (VA.getLocInfo()) {
1395   case CCValAssign::SExt:
1396     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1397   case CCValAssign::ZExt:
1398     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1399   case CCValAssign::AExt:
1400     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1401   case CCValAssign::BCvt: {
1402     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1403     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1404            VA.getValVT() == MVT::f128);
1405     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1406                             ? MVT::v2i64
1407                             : VA.getLocVT();
1408     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1409     // For ELF, this is a short vector argument to be stored to the stack,
1410     // bitcast to v2i64 and then extract first element.
1411     if (BitCastToType == MVT::v2i64)
1412       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1413                          DAG.getConstant(0, DL, MVT::i32));
1414     return Value;
1415   }
1416   case CCValAssign::Full:
1417     return Value;
1418   default:
1419     llvm_unreachable("Unhandled getLocInfo()");
1420   }
1421 }
1422 
1423 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1424   SDLoc DL(In);
1425   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1426                            DAG.getIntPtrConstant(0, DL));
1427   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1428                            DAG.getIntPtrConstant(1, DL));
1429   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1430                                     MVT::Untyped, Hi, Lo);
1431   return SDValue(Pair, 0);
1432 }
1433 
1434 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1435   SDLoc DL(In);
1436   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1437                                           DL, MVT::i64, In);
1438   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1439                                           DL, MVT::i64, In);
1440   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1441 }
1442 
1443 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1444     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1445     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1446   EVT ValueVT = Val.getValueType();
1447   assert((ValueVT != MVT::i128 ||
1448           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1449            (NumParts == 2 && PartVT == MVT::i64))) &&
1450          "Unknown handling of i128 value.");
1451   if (ValueVT == MVT::i128 && NumParts == 1) {
1452     // Inline assembly operand.
1453     Parts[0] = lowerI128ToGR128(DAG, Val);
1454     return true;
1455   }
1456   return false;
1457 }
1458 
1459 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1460     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1461     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1462   assert((ValueVT != MVT::i128 ||
1463           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1464            (NumParts == 2 && PartVT == MVT::i64))) &&
1465          "Unknown handling of i128 value.");
1466   if (ValueVT == MVT::i128 && NumParts == 1)
1467     // Inline assembly operand.
1468     return lowerGR128ToI128(DAG, Parts[0]);
1469   return SDValue();
1470 }
1471 
1472 SDValue SystemZTargetLowering::LowerFormalArguments(
1473     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1474     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1475     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1476   MachineFunction &MF = DAG.getMachineFunction();
1477   MachineFrameInfo &MFI = MF.getFrameInfo();
1478   MachineRegisterInfo &MRI = MF.getRegInfo();
1479   SystemZMachineFunctionInfo *FuncInfo =
1480       MF.getInfo<SystemZMachineFunctionInfo>();
1481   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1482   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1483 
1484   // Detect unsupported vector argument types.
1485   if (Subtarget.hasVector())
1486     VerifyVectorTypes(Ins);
1487 
1488   // Assign locations to all of the incoming arguments.
1489   SmallVector<CCValAssign, 16> ArgLocs;
1490   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1491   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1492 
1493   unsigned NumFixedGPRs = 0;
1494   unsigned NumFixedFPRs = 0;
1495   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1496     SDValue ArgValue;
1497     CCValAssign &VA = ArgLocs[I];
1498     EVT LocVT = VA.getLocVT();
1499     if (VA.isRegLoc()) {
1500       // Arguments passed in registers
1501       const TargetRegisterClass *RC;
1502       switch (LocVT.getSimpleVT().SimpleTy) {
1503       default:
1504         // Integers smaller than i64 should be promoted to i64.
1505         llvm_unreachable("Unexpected argument type");
1506       case MVT::i32:
1507         NumFixedGPRs += 1;
1508         RC = &SystemZ::GR32BitRegClass;
1509         break;
1510       case MVT::i64:
1511         NumFixedGPRs += 1;
1512         RC = &SystemZ::GR64BitRegClass;
1513         break;
1514       case MVT::f32:
1515         NumFixedFPRs += 1;
1516         RC = &SystemZ::FP32BitRegClass;
1517         break;
1518       case MVT::f64:
1519         NumFixedFPRs += 1;
1520         RC = &SystemZ::FP64BitRegClass;
1521         break;
1522       case MVT::f128:
1523         NumFixedFPRs += 2;
1524         RC = &SystemZ::FP128BitRegClass;
1525         break;
1526       case MVT::v16i8:
1527       case MVT::v8i16:
1528       case MVT::v4i32:
1529       case MVT::v2i64:
1530       case MVT::v4f32:
1531       case MVT::v2f64:
1532         RC = &SystemZ::VR128BitRegClass;
1533         break;
1534       }
1535 
1536       Register VReg = MRI.createVirtualRegister(RC);
1537       MRI.addLiveIn(VA.getLocReg(), VReg);
1538       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1539     } else {
1540       assert(VA.isMemLoc() && "Argument not register or memory");
1541 
1542       // Create the frame index object for this incoming parameter.
1543       // FIXME: Pre-include call frame size in the offset, should not
1544       // need to manually add it here.
1545       int64_t ArgSPOffset = VA.getLocMemOffset();
1546       if (Subtarget.isTargetXPLINK64()) {
1547         auto &XPRegs =
1548             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1549         ArgSPOffset += XPRegs.getCallFrameSize();
1550       }
1551       int FI =
1552           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1553 
1554       // Create the SelectionDAG nodes corresponding to a load
1555       // from this parameter.  Unpromoted ints and floats are
1556       // passed as right-justified 8-byte values.
1557       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1558       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1559         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1560                           DAG.getIntPtrConstant(4, DL));
1561       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1562                              MachinePointerInfo::getFixedStack(MF, FI));
1563     }
1564 
1565     // Convert the value of the argument register into the value that's
1566     // being passed.
1567     if (VA.getLocInfo() == CCValAssign::Indirect) {
1568       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1569                                    MachinePointerInfo()));
1570       // If the original argument was split (e.g. i128), we need
1571       // to load all parts of it here (using the same address).
1572       unsigned ArgIndex = Ins[I].OrigArgIndex;
1573       assert (Ins[I].PartOffset == 0);
1574       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1575         CCValAssign &PartVA = ArgLocs[I + 1];
1576         unsigned PartOffset = Ins[I + 1].PartOffset;
1577         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1578                                       DAG.getIntPtrConstant(PartOffset, DL));
1579         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1580                                      MachinePointerInfo()));
1581         ++I;
1582       }
1583     } else
1584       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1585   }
1586 
1587   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1588   if (IsVarArg && Subtarget.isTargetELF()) {
1589     // Save the number of non-varargs registers for later use by va_start, etc.
1590     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1591     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1592 
1593     // Likewise the address (in the form of a frame index) of where the
1594     // first stack vararg would be.  The 1-byte size here is arbitrary.
1595     int64_t StackSize = CCInfo.getNextStackOffset();
1596     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1597 
1598     // ...and a similar frame index for the caller-allocated save area
1599     // that will be used to store the incoming registers.
1600     int64_t RegSaveOffset =
1601       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1602     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1603     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1604 
1605     // Store the FPR varargs in the reserved frame slots.  (We store the
1606     // GPRs as part of the prologue.)
1607     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1608       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1609       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1610         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1611         int FI =
1612           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1613         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1614         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1615                                      &SystemZ::FP64BitRegClass);
1616         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1617         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1618                                  MachinePointerInfo::getFixedStack(MF, FI));
1619       }
1620       // Join the stores, which are independent of one another.
1621       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1622                           makeArrayRef(&MemOps[NumFixedFPRs],
1623                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1624     }
1625   }
1626 
1627   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1628   // register (R5)
1629   return Chain;
1630 }
1631 
1632 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1633                               SmallVectorImpl<CCValAssign> &ArgLocs,
1634                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1635   // Punt if there are any indirect or stack arguments, or if the call
1636   // needs the callee-saved argument register R6, or if the call uses
1637   // the callee-saved register arguments SwiftSelf and SwiftError.
1638   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1639     CCValAssign &VA = ArgLocs[I];
1640     if (VA.getLocInfo() == CCValAssign::Indirect)
1641       return false;
1642     if (!VA.isRegLoc())
1643       return false;
1644     Register Reg = VA.getLocReg();
1645     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1646       return false;
1647     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1648       return false;
1649   }
1650   return true;
1651 }
1652 
1653 SDValue
1654 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1655                                  SmallVectorImpl<SDValue> &InVals) const {
1656   SelectionDAG &DAG = CLI.DAG;
1657   SDLoc &DL = CLI.DL;
1658   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1659   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1660   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1661   SDValue Chain = CLI.Chain;
1662   SDValue Callee = CLI.Callee;
1663   bool &IsTailCall = CLI.IsTailCall;
1664   CallingConv::ID CallConv = CLI.CallConv;
1665   bool IsVarArg = CLI.IsVarArg;
1666   MachineFunction &MF = DAG.getMachineFunction();
1667   EVT PtrVT = getPointerTy(MF.getDataLayout());
1668   LLVMContext &Ctx = *DAG.getContext();
1669   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1670 
1671   // FIXME: z/OS support to be added in later.
1672   if (Subtarget.isTargetXPLINK64())
1673     IsTailCall = false;
1674 
1675   // Detect unsupported vector argument and return types.
1676   if (Subtarget.hasVector()) {
1677     VerifyVectorTypes(Outs);
1678     VerifyVectorTypes(Ins);
1679   }
1680 
1681   // Analyze the operands of the call, assigning locations to each operand.
1682   SmallVector<CCValAssign, 16> ArgLocs;
1683   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1684   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1685 
1686   // We don't support GuaranteedTailCallOpt, only automatically-detected
1687   // sibling calls.
1688   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1689     IsTailCall = false;
1690 
1691   // Get a count of how many bytes are to be pushed on the stack.
1692   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1693 
1694   if (Subtarget.isTargetXPLINK64())
1695     // Although the XPLINK specifications for AMODE64 state that minimum size
1696     // of the param area is minimum 32 bytes and no rounding is otherwise
1697     // specified, we round this area in 64 bytes increments to be compatible
1698     // with existing compilers.
1699     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1700 
1701   // Mark the start of the call.
1702   if (!IsTailCall)
1703     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1704 
1705   // Copy argument values to their designated locations.
1706   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1707   SmallVector<SDValue, 8> MemOpChains;
1708   SDValue StackPtr;
1709   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1710     CCValAssign &VA = ArgLocs[I];
1711     SDValue ArgValue = OutVals[I];
1712 
1713     if (VA.getLocInfo() == CCValAssign::Indirect) {
1714       // Store the argument in a stack slot and pass its address.
1715       unsigned ArgIndex = Outs[I].OrigArgIndex;
1716       EVT SlotVT;
1717       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1718         // Allocate the full stack space for a promoted (and split) argument.
1719         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1720         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1721         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1722         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1723         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1724       } else {
1725         SlotVT = Outs[I].ArgVT;
1726       }
1727       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1728       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1729       MemOpChains.push_back(
1730           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1731                        MachinePointerInfo::getFixedStack(MF, FI)));
1732       // If the original argument was split (e.g. i128), we need
1733       // to store all parts of it here (and pass just one address).
1734       assert (Outs[I].PartOffset == 0);
1735       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1736         SDValue PartValue = OutVals[I + 1];
1737         unsigned PartOffset = Outs[I + 1].PartOffset;
1738         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1739                                       DAG.getIntPtrConstant(PartOffset, DL));
1740         MemOpChains.push_back(
1741             DAG.getStore(Chain, DL, PartValue, Address,
1742                          MachinePointerInfo::getFixedStack(MF, FI)));
1743         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1744                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1745         ++I;
1746       }
1747       ArgValue = SpillSlot;
1748     } else
1749       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1750 
1751     if (VA.isRegLoc()) {
1752       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1753       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1754       // and low values.
1755       if (VA.getLocVT() == MVT::i128)
1756         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1757       // Queue up the argument copies and emit them at the end.
1758       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1759     } else {
1760       assert(VA.isMemLoc() && "Argument not register or memory");
1761 
1762       // Work out the address of the stack slot.  Unpromoted ints and
1763       // floats are passed as right-justified 8-byte values.
1764       if (!StackPtr.getNode())
1765         StackPtr = DAG.getCopyFromReg(Chain, DL,
1766                                       Regs->getStackPointerRegister(), PtrVT);
1767       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1768                         VA.getLocMemOffset();
1769       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1770         Offset += 4;
1771       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1772                                     DAG.getIntPtrConstant(Offset, DL));
1773 
1774       // Emit the store.
1775       MemOpChains.push_back(
1776           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1777 
1778       // Although long doubles or vectors are passed through the stack when
1779       // they are vararg (non-fixed arguments), if a long double or vector
1780       // occupies the third and fourth slot of the argument list GPR3 should
1781       // still shadow the third slot of the argument list.
1782       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1783         SDValue ShadowArgValue =
1784             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1785                         DAG.getIntPtrConstant(1, DL));
1786         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1787       }
1788     }
1789   }
1790 
1791   // Join the stores, which are independent of one another.
1792   if (!MemOpChains.empty())
1793     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1794 
1795   // Accept direct calls by converting symbolic call addresses to the
1796   // associated Target* opcodes.  Force %r1 to be used for indirect
1797   // tail calls.
1798   SDValue Glue;
1799   // FIXME: Add support for XPLINK using the ADA register.
1800   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1801     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1802     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1803   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1804     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1805     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1806   } else if (IsTailCall) {
1807     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1808     Glue = Chain.getValue(1);
1809     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1810   }
1811 
1812   // Build a sequence of copy-to-reg nodes, chained and glued together.
1813   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1814     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1815                              RegsToPass[I].second, Glue);
1816     Glue = Chain.getValue(1);
1817   }
1818 
1819   // The first call operand is the chain and the second is the target address.
1820   SmallVector<SDValue, 8> Ops;
1821   Ops.push_back(Chain);
1822   Ops.push_back(Callee);
1823 
1824   // Add argument registers to the end of the list so that they are
1825   // known live into the call.
1826   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1827     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1828                                   RegsToPass[I].second.getValueType()));
1829 
1830   // Add a register mask operand representing the call-preserved registers.
1831   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1832   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1833   assert(Mask && "Missing call preserved mask for calling convention");
1834   Ops.push_back(DAG.getRegisterMask(Mask));
1835 
1836   // Glue the call to the argument copies, if any.
1837   if (Glue.getNode())
1838     Ops.push_back(Glue);
1839 
1840   // Emit the call.
1841   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1842   if (IsTailCall)
1843     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1844   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1845   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1846   Glue = Chain.getValue(1);
1847 
1848   // Mark the end of the call, which is glued to the call itself.
1849   Chain = DAG.getCALLSEQ_END(Chain,
1850                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1851                              DAG.getConstant(0, DL, PtrVT, true),
1852                              Glue, DL);
1853   Glue = Chain.getValue(1);
1854 
1855   // Assign locations to each value returned by this call.
1856   SmallVector<CCValAssign, 16> RetLocs;
1857   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1858   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1859 
1860   // Copy all of the result registers out of their specified physreg.
1861   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1862     CCValAssign &VA = RetLocs[I];
1863 
1864     // Copy the value out, gluing the copy to the end of the call sequence.
1865     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1866                                           VA.getLocVT(), Glue);
1867     Chain = RetValue.getValue(1);
1868     Glue = RetValue.getValue(2);
1869 
1870     // Convert the value of the return register into the value that's
1871     // being returned.
1872     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1873   }
1874 
1875   return Chain;
1876 }
1877 
1878 // Generate a call taking the given operands as arguments and returning a
1879 // result of type RetVT.
1880 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
1881     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
1882     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
1883     bool DoesNotReturn, bool IsReturnValueUsed) const {
1884   TargetLowering::ArgListTy Args;
1885   Args.reserve(Ops.size());
1886 
1887   TargetLowering::ArgListEntry Entry;
1888   for (SDValue Op : Ops) {
1889     Entry.Node = Op;
1890     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1891     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1892     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1893     Args.push_back(Entry);
1894   }
1895 
1896   SDValue Callee =
1897       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
1898 
1899   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1900   TargetLowering::CallLoweringInfo CLI(DAG);
1901   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
1902   CLI.setDebugLoc(DL)
1903       .setChain(Chain)
1904       .setCallee(CallConv, RetTy, Callee, std::move(Args))
1905       .setNoReturn(DoesNotReturn)
1906       .setDiscardResult(!IsReturnValueUsed)
1907       .setSExtResult(SignExtend)
1908       .setZExtResult(!SignExtend);
1909   return LowerCallTo(CLI);
1910 }
1911 
1912 bool SystemZTargetLowering::
1913 CanLowerReturn(CallingConv::ID CallConv,
1914                MachineFunction &MF, bool isVarArg,
1915                const SmallVectorImpl<ISD::OutputArg> &Outs,
1916                LLVMContext &Context) const {
1917   // Detect unsupported vector return types.
1918   if (Subtarget.hasVector())
1919     VerifyVectorTypes(Outs);
1920 
1921   // Special case that we cannot easily detect in RetCC_SystemZ since
1922   // i128 is not a legal type.
1923   for (auto &Out : Outs)
1924     if (Out.ArgVT == MVT::i128)
1925       return false;
1926 
1927   SmallVector<CCValAssign, 16> RetLocs;
1928   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1929   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1930 }
1931 
1932 SDValue
1933 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1934                                    bool IsVarArg,
1935                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1936                                    const SmallVectorImpl<SDValue> &OutVals,
1937                                    const SDLoc &DL, SelectionDAG &DAG) const {
1938   MachineFunction &MF = DAG.getMachineFunction();
1939 
1940   // Detect unsupported vector return types.
1941   if (Subtarget.hasVector())
1942     VerifyVectorTypes(Outs);
1943 
1944   // Assign locations to each returned value.
1945   SmallVector<CCValAssign, 16> RetLocs;
1946   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1947   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1948 
1949   // Quick exit for void returns
1950   if (RetLocs.empty())
1951     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1952 
1953   if (CallConv == CallingConv::GHC)
1954     report_fatal_error("GHC functions return void only");
1955 
1956   // Copy the result values into the output registers.
1957   SDValue Glue;
1958   SmallVector<SDValue, 4> RetOps;
1959   RetOps.push_back(Chain);
1960   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1961     CCValAssign &VA = RetLocs[I];
1962     SDValue RetValue = OutVals[I];
1963 
1964     // Make the return register live on exit.
1965     assert(VA.isRegLoc() && "Can only return in registers!");
1966 
1967     // Promote the value as required.
1968     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1969 
1970     // Chain and glue the copies together.
1971     Register Reg = VA.getLocReg();
1972     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1973     Glue = Chain.getValue(1);
1974     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1975   }
1976 
1977   // Update chain and glue.
1978   RetOps[0] = Chain;
1979   if (Glue.getNode())
1980     RetOps.push_back(Glue);
1981 
1982   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1983 }
1984 
1985 // Return true if Op is an intrinsic node with chain that returns the CC value
1986 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1987 // the mask of valid CC values if so.
1988 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1989                                       unsigned &CCValid) {
1990   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1991   switch (Id) {
1992   case Intrinsic::s390_tbegin:
1993     Opcode = SystemZISD::TBEGIN;
1994     CCValid = SystemZ::CCMASK_TBEGIN;
1995     return true;
1996 
1997   case Intrinsic::s390_tbegin_nofloat:
1998     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1999     CCValid = SystemZ::CCMASK_TBEGIN;
2000     return true;
2001 
2002   case Intrinsic::s390_tend:
2003     Opcode = SystemZISD::TEND;
2004     CCValid = SystemZ::CCMASK_TEND;
2005     return true;
2006 
2007   default:
2008     return false;
2009   }
2010 }
2011 
2012 // Return true if Op is an intrinsic node without chain that returns the
2013 // CC value as its final argument.  Provide the associated SystemZISD
2014 // opcode and the mask of valid CC values if so.
2015 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2016   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2017   switch (Id) {
2018   case Intrinsic::s390_vpkshs:
2019   case Intrinsic::s390_vpksfs:
2020   case Intrinsic::s390_vpksgs:
2021     Opcode = SystemZISD::PACKS_CC;
2022     CCValid = SystemZ::CCMASK_VCMP;
2023     return true;
2024 
2025   case Intrinsic::s390_vpklshs:
2026   case Intrinsic::s390_vpklsfs:
2027   case Intrinsic::s390_vpklsgs:
2028     Opcode = SystemZISD::PACKLS_CC;
2029     CCValid = SystemZ::CCMASK_VCMP;
2030     return true;
2031 
2032   case Intrinsic::s390_vceqbs:
2033   case Intrinsic::s390_vceqhs:
2034   case Intrinsic::s390_vceqfs:
2035   case Intrinsic::s390_vceqgs:
2036     Opcode = SystemZISD::VICMPES;
2037     CCValid = SystemZ::CCMASK_VCMP;
2038     return true;
2039 
2040   case Intrinsic::s390_vchbs:
2041   case Intrinsic::s390_vchhs:
2042   case Intrinsic::s390_vchfs:
2043   case Intrinsic::s390_vchgs:
2044     Opcode = SystemZISD::VICMPHS;
2045     CCValid = SystemZ::CCMASK_VCMP;
2046     return true;
2047 
2048   case Intrinsic::s390_vchlbs:
2049   case Intrinsic::s390_vchlhs:
2050   case Intrinsic::s390_vchlfs:
2051   case Intrinsic::s390_vchlgs:
2052     Opcode = SystemZISD::VICMPHLS;
2053     CCValid = SystemZ::CCMASK_VCMP;
2054     return true;
2055 
2056   case Intrinsic::s390_vtm:
2057     Opcode = SystemZISD::VTM;
2058     CCValid = SystemZ::CCMASK_VCMP;
2059     return true;
2060 
2061   case Intrinsic::s390_vfaebs:
2062   case Intrinsic::s390_vfaehs:
2063   case Intrinsic::s390_vfaefs:
2064     Opcode = SystemZISD::VFAE_CC;
2065     CCValid = SystemZ::CCMASK_ANY;
2066     return true;
2067 
2068   case Intrinsic::s390_vfaezbs:
2069   case Intrinsic::s390_vfaezhs:
2070   case Intrinsic::s390_vfaezfs:
2071     Opcode = SystemZISD::VFAEZ_CC;
2072     CCValid = SystemZ::CCMASK_ANY;
2073     return true;
2074 
2075   case Intrinsic::s390_vfeebs:
2076   case Intrinsic::s390_vfeehs:
2077   case Intrinsic::s390_vfeefs:
2078     Opcode = SystemZISD::VFEE_CC;
2079     CCValid = SystemZ::CCMASK_ANY;
2080     return true;
2081 
2082   case Intrinsic::s390_vfeezbs:
2083   case Intrinsic::s390_vfeezhs:
2084   case Intrinsic::s390_vfeezfs:
2085     Opcode = SystemZISD::VFEEZ_CC;
2086     CCValid = SystemZ::CCMASK_ANY;
2087     return true;
2088 
2089   case Intrinsic::s390_vfenebs:
2090   case Intrinsic::s390_vfenehs:
2091   case Intrinsic::s390_vfenefs:
2092     Opcode = SystemZISD::VFENE_CC;
2093     CCValid = SystemZ::CCMASK_ANY;
2094     return true;
2095 
2096   case Intrinsic::s390_vfenezbs:
2097   case Intrinsic::s390_vfenezhs:
2098   case Intrinsic::s390_vfenezfs:
2099     Opcode = SystemZISD::VFENEZ_CC;
2100     CCValid = SystemZ::CCMASK_ANY;
2101     return true;
2102 
2103   case Intrinsic::s390_vistrbs:
2104   case Intrinsic::s390_vistrhs:
2105   case Intrinsic::s390_vistrfs:
2106     Opcode = SystemZISD::VISTR_CC;
2107     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2108     return true;
2109 
2110   case Intrinsic::s390_vstrcbs:
2111   case Intrinsic::s390_vstrchs:
2112   case Intrinsic::s390_vstrcfs:
2113     Opcode = SystemZISD::VSTRC_CC;
2114     CCValid = SystemZ::CCMASK_ANY;
2115     return true;
2116 
2117   case Intrinsic::s390_vstrczbs:
2118   case Intrinsic::s390_vstrczhs:
2119   case Intrinsic::s390_vstrczfs:
2120     Opcode = SystemZISD::VSTRCZ_CC;
2121     CCValid = SystemZ::CCMASK_ANY;
2122     return true;
2123 
2124   case Intrinsic::s390_vstrsb:
2125   case Intrinsic::s390_vstrsh:
2126   case Intrinsic::s390_vstrsf:
2127     Opcode = SystemZISD::VSTRS_CC;
2128     CCValid = SystemZ::CCMASK_ANY;
2129     return true;
2130 
2131   case Intrinsic::s390_vstrszb:
2132   case Intrinsic::s390_vstrszh:
2133   case Intrinsic::s390_vstrszf:
2134     Opcode = SystemZISD::VSTRSZ_CC;
2135     CCValid = SystemZ::CCMASK_ANY;
2136     return true;
2137 
2138   case Intrinsic::s390_vfcedbs:
2139   case Intrinsic::s390_vfcesbs:
2140     Opcode = SystemZISD::VFCMPES;
2141     CCValid = SystemZ::CCMASK_VCMP;
2142     return true;
2143 
2144   case Intrinsic::s390_vfchdbs:
2145   case Intrinsic::s390_vfchsbs:
2146     Opcode = SystemZISD::VFCMPHS;
2147     CCValid = SystemZ::CCMASK_VCMP;
2148     return true;
2149 
2150   case Intrinsic::s390_vfchedbs:
2151   case Intrinsic::s390_vfchesbs:
2152     Opcode = SystemZISD::VFCMPHES;
2153     CCValid = SystemZ::CCMASK_VCMP;
2154     return true;
2155 
2156   case Intrinsic::s390_vftcidb:
2157   case Intrinsic::s390_vftcisb:
2158     Opcode = SystemZISD::VFTCI;
2159     CCValid = SystemZ::CCMASK_VCMP;
2160     return true;
2161 
2162   case Intrinsic::s390_tdc:
2163     Opcode = SystemZISD::TDC;
2164     CCValid = SystemZ::CCMASK_TDC;
2165     return true;
2166 
2167   default:
2168     return false;
2169   }
2170 }
2171 
2172 // Emit an intrinsic with chain and an explicit CC register result.
2173 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2174                                            unsigned Opcode) {
2175   // Copy all operands except the intrinsic ID.
2176   unsigned NumOps = Op.getNumOperands();
2177   SmallVector<SDValue, 6> Ops;
2178   Ops.reserve(NumOps - 1);
2179   Ops.push_back(Op.getOperand(0));
2180   for (unsigned I = 2; I < NumOps; ++I)
2181     Ops.push_back(Op.getOperand(I));
2182 
2183   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2184   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2185   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2186   SDValue OldChain = SDValue(Op.getNode(), 1);
2187   SDValue NewChain = SDValue(Intr.getNode(), 1);
2188   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2189   return Intr.getNode();
2190 }
2191 
2192 // Emit an intrinsic with an explicit CC register result.
2193 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2194                                    unsigned Opcode) {
2195   // Copy all operands except the intrinsic ID.
2196   unsigned NumOps = Op.getNumOperands();
2197   SmallVector<SDValue, 6> Ops;
2198   Ops.reserve(NumOps - 1);
2199   for (unsigned I = 1; I < NumOps; ++I)
2200     Ops.push_back(Op.getOperand(I));
2201 
2202   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2203   return Intr.getNode();
2204 }
2205 
2206 // CC is a comparison that will be implemented using an integer or
2207 // floating-point comparison.  Return the condition code mask for
2208 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2209 // unsigned comparisons and clear for signed ones.  In the floating-point
2210 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2211 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2212 #define CONV(X) \
2213   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2214   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2215   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2216 
2217   switch (CC) {
2218   default:
2219     llvm_unreachable("Invalid integer condition!");
2220 
2221   CONV(EQ);
2222   CONV(NE);
2223   CONV(GT);
2224   CONV(GE);
2225   CONV(LT);
2226   CONV(LE);
2227 
2228   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2229   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2230   }
2231 #undef CONV
2232 }
2233 
2234 // If C can be converted to a comparison against zero, adjust the operands
2235 // as necessary.
2236 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2237   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2238     return;
2239 
2240   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2241   if (!ConstOp1)
2242     return;
2243 
2244   int64_t Value = ConstOp1->getSExtValue();
2245   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2246       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2247       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2248       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2249     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2250     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2251   }
2252 }
2253 
2254 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2255 // adjust the operands as necessary.
2256 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2257                              Comparison &C) {
2258   // For us to make any changes, it must a comparison between a single-use
2259   // load and a constant.
2260   if (!C.Op0.hasOneUse() ||
2261       C.Op0.getOpcode() != ISD::LOAD ||
2262       C.Op1.getOpcode() != ISD::Constant)
2263     return;
2264 
2265   // We must have an 8- or 16-bit load.
2266   auto *Load = cast<LoadSDNode>(C.Op0);
2267   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2268   if ((NumBits != 8 && NumBits != 16) ||
2269       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2270     return;
2271 
2272   // The load must be an extending one and the constant must be within the
2273   // range of the unextended value.
2274   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2275   uint64_t Value = ConstOp1->getZExtValue();
2276   uint64_t Mask = (1 << NumBits) - 1;
2277   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2278     // Make sure that ConstOp1 is in range of C.Op0.
2279     int64_t SignedValue = ConstOp1->getSExtValue();
2280     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2281       return;
2282     if (C.ICmpType != SystemZICMP::SignedOnly) {
2283       // Unsigned comparison between two sign-extended values is equivalent
2284       // to unsigned comparison between two zero-extended values.
2285       Value &= Mask;
2286     } else if (NumBits == 8) {
2287       // Try to treat the comparison as unsigned, so that we can use CLI.
2288       // Adjust CCMask and Value as necessary.
2289       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2290         // Test whether the high bit of the byte is set.
2291         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2292       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2293         // Test whether the high bit of the byte is clear.
2294         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2295       else
2296         // No instruction exists for this combination.
2297         return;
2298       C.ICmpType = SystemZICMP::UnsignedOnly;
2299     }
2300   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2301     if (Value > Mask)
2302       return;
2303     // If the constant is in range, we can use any comparison.
2304     C.ICmpType = SystemZICMP::Any;
2305   } else
2306     return;
2307 
2308   // Make sure that the first operand is an i32 of the right extension type.
2309   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2310                               ISD::SEXTLOAD :
2311                               ISD::ZEXTLOAD);
2312   if (C.Op0.getValueType() != MVT::i32 ||
2313       Load->getExtensionType() != ExtType) {
2314     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2315                            Load->getBasePtr(), Load->getPointerInfo(),
2316                            Load->getMemoryVT(), Load->getAlign(),
2317                            Load->getMemOperand()->getFlags());
2318     // Update the chain uses.
2319     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2320   }
2321 
2322   // Make sure that the second operand is an i32 with the right value.
2323   if (C.Op1.getValueType() != MVT::i32 ||
2324       Value != ConstOp1->getZExtValue())
2325     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2326 }
2327 
2328 // Return true if Op is either an unextended load, or a load suitable
2329 // for integer register-memory comparisons of type ICmpType.
2330 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2331   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2332   if (Load) {
2333     // There are no instructions to compare a register with a memory byte.
2334     if (Load->getMemoryVT() == MVT::i8)
2335       return false;
2336     // Otherwise decide on extension type.
2337     switch (Load->getExtensionType()) {
2338     case ISD::NON_EXTLOAD:
2339       return true;
2340     case ISD::SEXTLOAD:
2341       return ICmpType != SystemZICMP::UnsignedOnly;
2342     case ISD::ZEXTLOAD:
2343       return ICmpType != SystemZICMP::SignedOnly;
2344     default:
2345       break;
2346     }
2347   }
2348   return false;
2349 }
2350 
2351 // Return true if it is better to swap the operands of C.
2352 static bool shouldSwapCmpOperands(const Comparison &C) {
2353   // Leave f128 comparisons alone, since they have no memory forms.
2354   if (C.Op0.getValueType() == MVT::f128)
2355     return false;
2356 
2357   // Always keep a floating-point constant second, since comparisons with
2358   // zero can use LOAD TEST and comparisons with other constants make a
2359   // natural memory operand.
2360   if (isa<ConstantFPSDNode>(C.Op1))
2361     return false;
2362 
2363   // Never swap comparisons with zero since there are many ways to optimize
2364   // those later.
2365   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2366   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2367     return false;
2368 
2369   // Also keep natural memory operands second if the loaded value is
2370   // only used here.  Several comparisons have memory forms.
2371   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2372     return false;
2373 
2374   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2375   // In that case we generally prefer the memory to be second.
2376   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2377     // The only exceptions are when the second operand is a constant and
2378     // we can use things like CHHSI.
2379     if (!ConstOp1)
2380       return true;
2381     // The unsigned memory-immediate instructions can handle 16-bit
2382     // unsigned integers.
2383     if (C.ICmpType != SystemZICMP::SignedOnly &&
2384         isUInt<16>(ConstOp1->getZExtValue()))
2385       return false;
2386     // The signed memory-immediate instructions can handle 16-bit
2387     // signed integers.
2388     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2389         isInt<16>(ConstOp1->getSExtValue()))
2390       return false;
2391     return true;
2392   }
2393 
2394   // Try to promote the use of CGFR and CLGFR.
2395   unsigned Opcode0 = C.Op0.getOpcode();
2396   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2397     return true;
2398   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2399     return true;
2400   if (C.ICmpType != SystemZICMP::SignedOnly &&
2401       Opcode0 == ISD::AND &&
2402       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2403       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2404     return true;
2405 
2406   return false;
2407 }
2408 
2409 // Check whether C tests for equality between X and Y and whether X - Y
2410 // or Y - X is also computed.  In that case it's better to compare the
2411 // result of the subtraction against zero.
2412 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2413                                  Comparison &C) {
2414   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2415       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2416     for (SDNode *N : C.Op0->uses()) {
2417       if (N->getOpcode() == ISD::SUB &&
2418           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2419            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2420         C.Op0 = SDValue(N, 0);
2421         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2422         return;
2423       }
2424     }
2425   }
2426 }
2427 
2428 // Check whether C compares a floating-point value with zero and if that
2429 // floating-point value is also negated.  In this case we can use the
2430 // negation to set CC, so avoiding separate LOAD AND TEST and
2431 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2432 static void adjustForFNeg(Comparison &C) {
2433   // This optimization is invalid for strict comparisons, since FNEG
2434   // does not raise any exceptions.
2435   if (C.Chain)
2436     return;
2437   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2438   if (C1 && C1->isZero()) {
2439     for (SDNode *N : C.Op0->uses()) {
2440       if (N->getOpcode() == ISD::FNEG) {
2441         C.Op0 = SDValue(N, 0);
2442         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2443         return;
2444       }
2445     }
2446   }
2447 }
2448 
2449 // Check whether C compares (shl X, 32) with 0 and whether X is
2450 // also sign-extended.  In that case it is better to test the result
2451 // of the sign extension using LTGFR.
2452 //
2453 // This case is important because InstCombine transforms a comparison
2454 // with (sext (trunc X)) into a comparison with (shl X, 32).
2455 static void adjustForLTGFR(Comparison &C) {
2456   // Check for a comparison between (shl X, 32) and 0.
2457   if (C.Op0.getOpcode() == ISD::SHL &&
2458       C.Op0.getValueType() == MVT::i64 &&
2459       C.Op1.getOpcode() == ISD::Constant &&
2460       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2461     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2462     if (C1 && C1->getZExtValue() == 32) {
2463       SDValue ShlOp0 = C.Op0.getOperand(0);
2464       // See whether X has any SIGN_EXTEND_INREG uses.
2465       for (SDNode *N : ShlOp0->uses()) {
2466         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2467             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2468           C.Op0 = SDValue(N, 0);
2469           return;
2470         }
2471       }
2472     }
2473   }
2474 }
2475 
2476 // If C compares the truncation of an extending load, try to compare
2477 // the untruncated value instead.  This exposes more opportunities to
2478 // reuse CC.
2479 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2480                                Comparison &C) {
2481   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2482       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2483       C.Op1.getOpcode() == ISD::Constant &&
2484       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2485     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2486     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2487         C.Op0.getValueSizeInBits().getFixedSize()) {
2488       unsigned Type = L->getExtensionType();
2489       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2490           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2491         C.Op0 = C.Op0.getOperand(0);
2492         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2493       }
2494     }
2495   }
2496 }
2497 
2498 // Return true if shift operation N has an in-range constant shift value.
2499 // Store it in ShiftVal if so.
2500 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2501   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2502   if (!Shift)
2503     return false;
2504 
2505   uint64_t Amount = Shift->getZExtValue();
2506   if (Amount >= N.getValueSizeInBits())
2507     return false;
2508 
2509   ShiftVal = Amount;
2510   return true;
2511 }
2512 
2513 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2514 // instruction and whether the CC value is descriptive enough to handle
2515 // a comparison of type Opcode between the AND result and CmpVal.
2516 // CCMask says which comparison result is being tested and BitSize is
2517 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2518 // return the corresponding CC mask, otherwise return 0.
2519 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2520                                      uint64_t Mask, uint64_t CmpVal,
2521                                      unsigned ICmpType) {
2522   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2523 
2524   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2525   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2526       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2527     return 0;
2528 
2529   // Work out the masks for the lowest and highest bits.
2530   unsigned HighShift = 63 - countLeadingZeros(Mask);
2531   uint64_t High = uint64_t(1) << HighShift;
2532   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2533 
2534   // Signed ordered comparisons are effectively unsigned if the sign
2535   // bit is dropped.
2536   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2537 
2538   // Check for equality comparisons with 0, or the equivalent.
2539   if (CmpVal == 0) {
2540     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2541       return SystemZ::CCMASK_TM_ALL_0;
2542     if (CCMask == SystemZ::CCMASK_CMP_NE)
2543       return SystemZ::CCMASK_TM_SOME_1;
2544   }
2545   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2546     if (CCMask == SystemZ::CCMASK_CMP_LT)
2547       return SystemZ::CCMASK_TM_ALL_0;
2548     if (CCMask == SystemZ::CCMASK_CMP_GE)
2549       return SystemZ::CCMASK_TM_SOME_1;
2550   }
2551   if (EffectivelyUnsigned && CmpVal < Low) {
2552     if (CCMask == SystemZ::CCMASK_CMP_LE)
2553       return SystemZ::CCMASK_TM_ALL_0;
2554     if (CCMask == SystemZ::CCMASK_CMP_GT)
2555       return SystemZ::CCMASK_TM_SOME_1;
2556   }
2557 
2558   // Check for equality comparisons with the mask, or the equivalent.
2559   if (CmpVal == Mask) {
2560     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2561       return SystemZ::CCMASK_TM_ALL_1;
2562     if (CCMask == SystemZ::CCMASK_CMP_NE)
2563       return SystemZ::CCMASK_TM_SOME_0;
2564   }
2565   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2566     if (CCMask == SystemZ::CCMASK_CMP_GT)
2567       return SystemZ::CCMASK_TM_ALL_1;
2568     if (CCMask == SystemZ::CCMASK_CMP_LE)
2569       return SystemZ::CCMASK_TM_SOME_0;
2570   }
2571   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2572     if (CCMask == SystemZ::CCMASK_CMP_GE)
2573       return SystemZ::CCMASK_TM_ALL_1;
2574     if (CCMask == SystemZ::CCMASK_CMP_LT)
2575       return SystemZ::CCMASK_TM_SOME_0;
2576   }
2577 
2578   // Check for ordered comparisons with the top bit.
2579   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2580     if (CCMask == SystemZ::CCMASK_CMP_LE)
2581       return SystemZ::CCMASK_TM_MSB_0;
2582     if (CCMask == SystemZ::CCMASK_CMP_GT)
2583       return SystemZ::CCMASK_TM_MSB_1;
2584   }
2585   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2586     if (CCMask == SystemZ::CCMASK_CMP_LT)
2587       return SystemZ::CCMASK_TM_MSB_0;
2588     if (CCMask == SystemZ::CCMASK_CMP_GE)
2589       return SystemZ::CCMASK_TM_MSB_1;
2590   }
2591 
2592   // If there are just two bits, we can do equality checks for Low and High
2593   // as well.
2594   if (Mask == Low + High) {
2595     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2596       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2597     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2598       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2599     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2600       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2601     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2602       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2603   }
2604 
2605   // Looks like we've exhausted our options.
2606   return 0;
2607 }
2608 
2609 // See whether C can be implemented as a TEST UNDER MASK instruction.
2610 // Update the arguments with the TM version if so.
2611 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2612                                    Comparison &C) {
2613   // Check that we have a comparison with a constant.
2614   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2615   if (!ConstOp1)
2616     return;
2617   uint64_t CmpVal = ConstOp1->getZExtValue();
2618 
2619   // Check whether the nonconstant input is an AND with a constant mask.
2620   Comparison NewC(C);
2621   uint64_t MaskVal;
2622   ConstantSDNode *Mask = nullptr;
2623   if (C.Op0.getOpcode() == ISD::AND) {
2624     NewC.Op0 = C.Op0.getOperand(0);
2625     NewC.Op1 = C.Op0.getOperand(1);
2626     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2627     if (!Mask)
2628       return;
2629     MaskVal = Mask->getZExtValue();
2630   } else {
2631     // There is no instruction to compare with a 64-bit immediate
2632     // so use TMHH instead if possible.  We need an unsigned ordered
2633     // comparison with an i64 immediate.
2634     if (NewC.Op0.getValueType() != MVT::i64 ||
2635         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2636         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2637         NewC.ICmpType == SystemZICMP::SignedOnly)
2638       return;
2639     // Convert LE and GT comparisons into LT and GE.
2640     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2641         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2642       if (CmpVal == uint64_t(-1))
2643         return;
2644       CmpVal += 1;
2645       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2646     }
2647     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2648     // be masked off without changing the result.
2649     MaskVal = -(CmpVal & -CmpVal);
2650     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2651   }
2652   if (!MaskVal)
2653     return;
2654 
2655   // Check whether the combination of mask, comparison value and comparison
2656   // type are suitable.
2657   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2658   unsigned NewCCMask, ShiftVal;
2659   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2660       NewC.Op0.getOpcode() == ISD::SHL &&
2661       isSimpleShift(NewC.Op0, ShiftVal) &&
2662       (MaskVal >> ShiftVal != 0) &&
2663       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2664       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2665                                         MaskVal >> ShiftVal,
2666                                         CmpVal >> ShiftVal,
2667                                         SystemZICMP::Any))) {
2668     NewC.Op0 = NewC.Op0.getOperand(0);
2669     MaskVal >>= ShiftVal;
2670   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2671              NewC.Op0.getOpcode() == ISD::SRL &&
2672              isSimpleShift(NewC.Op0, ShiftVal) &&
2673              (MaskVal << ShiftVal != 0) &&
2674              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2675              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2676                                                MaskVal << ShiftVal,
2677                                                CmpVal << ShiftVal,
2678                                                SystemZICMP::UnsignedOnly))) {
2679     NewC.Op0 = NewC.Op0.getOperand(0);
2680     MaskVal <<= ShiftVal;
2681   } else {
2682     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2683                                      NewC.ICmpType);
2684     if (!NewCCMask)
2685       return;
2686   }
2687 
2688   // Go ahead and make the change.
2689   C.Opcode = SystemZISD::TM;
2690   C.Op0 = NewC.Op0;
2691   if (Mask && Mask->getZExtValue() == MaskVal)
2692     C.Op1 = SDValue(Mask, 0);
2693   else
2694     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2695   C.CCValid = SystemZ::CCMASK_TM;
2696   C.CCMask = NewCCMask;
2697 }
2698 
2699 // See whether the comparison argument contains a redundant AND
2700 // and remove it if so.  This sometimes happens due to the generic
2701 // BRCOND expansion.
2702 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2703                                   Comparison &C) {
2704   if (C.Op0.getOpcode() != ISD::AND)
2705     return;
2706   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2707   if (!Mask)
2708     return;
2709   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2710   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2711     return;
2712 
2713   C.Op0 = C.Op0.getOperand(0);
2714 }
2715 
2716 // Return a Comparison that tests the condition-code result of intrinsic
2717 // node Call against constant integer CC using comparison code Cond.
2718 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2719 // and CCValid is the set of possible condition-code results.
2720 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2721                                   SDValue Call, unsigned CCValid, uint64_t CC,
2722                                   ISD::CondCode Cond) {
2723   Comparison C(Call, SDValue(), SDValue());
2724   C.Opcode = Opcode;
2725   C.CCValid = CCValid;
2726   if (Cond == ISD::SETEQ)
2727     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2728     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2729   else if (Cond == ISD::SETNE)
2730     // ...and the inverse of that.
2731     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2732   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2733     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2734     // always true for CC>3.
2735     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2736   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2737     // ...and the inverse of that.
2738     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2739   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2740     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2741     // always true for CC>3.
2742     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2743   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2744     // ...and the inverse of that.
2745     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2746   else
2747     llvm_unreachable("Unexpected integer comparison type");
2748   C.CCMask &= CCValid;
2749   return C;
2750 }
2751 
2752 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2753 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2754                          ISD::CondCode Cond, const SDLoc &DL,
2755                          SDValue Chain = SDValue(),
2756                          bool IsSignaling = false) {
2757   if (CmpOp1.getOpcode() == ISD::Constant) {
2758     assert(!Chain);
2759     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2760     unsigned Opcode, CCValid;
2761     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2762         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2763         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2764       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2765     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2766         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2767         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2768       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2769   }
2770   Comparison C(CmpOp0, CmpOp1, Chain);
2771   C.CCMask = CCMaskForCondCode(Cond);
2772   if (C.Op0.getValueType().isFloatingPoint()) {
2773     C.CCValid = SystemZ::CCMASK_FCMP;
2774     if (!C.Chain)
2775       C.Opcode = SystemZISD::FCMP;
2776     else if (!IsSignaling)
2777       C.Opcode = SystemZISD::STRICT_FCMP;
2778     else
2779       C.Opcode = SystemZISD::STRICT_FCMPS;
2780     adjustForFNeg(C);
2781   } else {
2782     assert(!C.Chain);
2783     C.CCValid = SystemZ::CCMASK_ICMP;
2784     C.Opcode = SystemZISD::ICMP;
2785     // Choose the type of comparison.  Equality and inequality tests can
2786     // use either signed or unsigned comparisons.  The choice also doesn't
2787     // matter if both sign bits are known to be clear.  In those cases we
2788     // want to give the main isel code the freedom to choose whichever
2789     // form fits best.
2790     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2791         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2792         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2793       C.ICmpType = SystemZICMP::Any;
2794     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2795       C.ICmpType = SystemZICMP::UnsignedOnly;
2796     else
2797       C.ICmpType = SystemZICMP::SignedOnly;
2798     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2799     adjustForRedundantAnd(DAG, DL, C);
2800     adjustZeroCmp(DAG, DL, C);
2801     adjustSubwordCmp(DAG, DL, C);
2802     adjustForSubtraction(DAG, DL, C);
2803     adjustForLTGFR(C);
2804     adjustICmpTruncate(DAG, DL, C);
2805   }
2806 
2807   if (shouldSwapCmpOperands(C)) {
2808     std::swap(C.Op0, C.Op1);
2809     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2810   }
2811 
2812   adjustForTestUnderMask(DAG, DL, C);
2813   return C;
2814 }
2815 
2816 // Emit the comparison instruction described by C.
2817 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2818   if (!C.Op1.getNode()) {
2819     SDNode *Node;
2820     switch (C.Op0.getOpcode()) {
2821     case ISD::INTRINSIC_W_CHAIN:
2822       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2823       return SDValue(Node, 0);
2824     case ISD::INTRINSIC_WO_CHAIN:
2825       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2826       return SDValue(Node, Node->getNumValues() - 1);
2827     default:
2828       llvm_unreachable("Invalid comparison operands");
2829     }
2830   }
2831   if (C.Opcode == SystemZISD::ICMP)
2832     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2833                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2834   if (C.Opcode == SystemZISD::TM) {
2835     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2836                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2837     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2838                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2839   }
2840   if (C.Chain) {
2841     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2842     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2843   }
2844   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2845 }
2846 
2847 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2848 // 64 bits.  Extend is the extension type to use.  Store the high part
2849 // in Hi and the low part in Lo.
2850 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2851                             SDValue Op0, SDValue Op1, SDValue &Hi,
2852                             SDValue &Lo) {
2853   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2854   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2855   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2856   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2857                    DAG.getConstant(32, DL, MVT::i64));
2858   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2859   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2860 }
2861 
2862 // Lower a binary operation that produces two VT results, one in each
2863 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2864 // and Opcode performs the GR128 operation.  Store the even register result
2865 // in Even and the odd register result in Odd.
2866 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2867                              unsigned Opcode, SDValue Op0, SDValue Op1,
2868                              SDValue &Even, SDValue &Odd) {
2869   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2870   bool Is32Bit = is32Bit(VT);
2871   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2872   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2873 }
2874 
2875 // Return an i32 value that is 1 if the CC value produced by CCReg is
2876 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2877 // in CCValid, so other values can be ignored.
2878 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2879                          unsigned CCValid, unsigned CCMask) {
2880   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2881                    DAG.getConstant(0, DL, MVT::i32),
2882                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2883                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2884   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2885 }
2886 
2887 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2888 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2889 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2890 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2891 // floating-point comparisons.
2892 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2893 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2894   switch (CC) {
2895   case ISD::SETOEQ:
2896   case ISD::SETEQ:
2897     switch (Mode) {
2898     case CmpMode::Int:         return SystemZISD::VICMPE;
2899     case CmpMode::FP:          return SystemZISD::VFCMPE;
2900     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2901     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2902     }
2903     llvm_unreachable("Bad mode");
2904 
2905   case ISD::SETOGE:
2906   case ISD::SETGE:
2907     switch (Mode) {
2908     case CmpMode::Int:         return 0;
2909     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2910     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2911     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2912     }
2913     llvm_unreachable("Bad mode");
2914 
2915   case ISD::SETOGT:
2916   case ISD::SETGT:
2917     switch (Mode) {
2918     case CmpMode::Int:         return SystemZISD::VICMPH;
2919     case CmpMode::FP:          return SystemZISD::VFCMPH;
2920     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2921     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2922     }
2923     llvm_unreachable("Bad mode");
2924 
2925   case ISD::SETUGT:
2926     switch (Mode) {
2927     case CmpMode::Int:         return SystemZISD::VICMPHL;
2928     case CmpMode::FP:          return 0;
2929     case CmpMode::StrictFP:    return 0;
2930     case CmpMode::SignalingFP: return 0;
2931     }
2932     llvm_unreachable("Bad mode");
2933 
2934   default:
2935     return 0;
2936   }
2937 }
2938 
2939 // Return the SystemZISD vector comparison operation for CC or its inverse,
2940 // or 0 if neither can be done directly.  Indicate in Invert whether the
2941 // result is for the inverse of CC.  Mode is as above.
2942 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2943                                             bool &Invert) {
2944   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2945     Invert = false;
2946     return Opcode;
2947   }
2948 
2949   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2950   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2951     Invert = true;
2952     return Opcode;
2953   }
2954 
2955   return 0;
2956 }
2957 
2958 // Return a v2f64 that contains the extended form of elements Start and Start+1
2959 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2960 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2961                                   SDValue Op, SDValue Chain) {
2962   int Mask[] = { Start, -1, Start + 1, -1 };
2963   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2964   if (Chain) {
2965     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2966     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2967   }
2968   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2969 }
2970 
2971 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2972 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2973 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2974                                             const SDLoc &DL, EVT VT,
2975                                             SDValue CmpOp0,
2976                                             SDValue CmpOp1,
2977                                             SDValue Chain) const {
2978   // There is no hardware support for v4f32 (unless we have the vector
2979   // enhancements facility 1), so extend the vector into two v2f64s
2980   // and compare those.
2981   if (CmpOp0.getValueType() == MVT::v4f32 &&
2982       !Subtarget.hasVectorEnhancements1()) {
2983     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2984     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2985     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2986     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2987     if (Chain) {
2988       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2989       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2990       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2991       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2992       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2993                             H1.getValue(1), L1.getValue(1),
2994                             HRes.getValue(1), LRes.getValue(1) };
2995       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2996       SDValue Ops[2] = { Res, NewChain };
2997       return DAG.getMergeValues(Ops, DL);
2998     }
2999     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3000     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3001     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3002   }
3003   if (Chain) {
3004     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3005     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3006   }
3007   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3008 }
3009 
3010 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3011 // an integer mask of type VT.  If Chain is nonnull, we have a strict
3012 // floating-point comparison.  If in addition IsSignaling is true, we have
3013 // a strict signaling floating-point comparison.
3014 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3015                                                 const SDLoc &DL, EVT VT,
3016                                                 ISD::CondCode CC,
3017                                                 SDValue CmpOp0,
3018                                                 SDValue CmpOp1,
3019                                                 SDValue Chain,
3020                                                 bool IsSignaling) const {
3021   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3022   assert (!Chain || IsFP);
3023   assert (!IsSignaling || Chain);
3024   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3025                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3026   bool Invert = false;
3027   SDValue Cmp;
3028   switch (CC) {
3029     // Handle tests for order using (or (ogt y x) (oge x y)).
3030   case ISD::SETUO:
3031     Invert = true;
3032     LLVM_FALLTHROUGH;
3033   case ISD::SETO: {
3034     assert(IsFP && "Unexpected integer comparison");
3035     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3036                               DL, VT, CmpOp1, CmpOp0, Chain);
3037     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3038                               DL, VT, CmpOp0, CmpOp1, Chain);
3039     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3040     if (Chain)
3041       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3042                           LT.getValue(1), GE.getValue(1));
3043     break;
3044   }
3045 
3046     // Handle <> tests using (or (ogt y x) (ogt x y)).
3047   case ISD::SETUEQ:
3048     Invert = true;
3049     LLVM_FALLTHROUGH;
3050   case ISD::SETONE: {
3051     assert(IsFP && "Unexpected integer comparison");
3052     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3053                               DL, VT, CmpOp1, CmpOp0, Chain);
3054     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3055                               DL, VT, CmpOp0, CmpOp1, Chain);
3056     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3057     if (Chain)
3058       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3059                           LT.getValue(1), GT.getValue(1));
3060     break;
3061   }
3062 
3063     // Otherwise a single comparison is enough.  It doesn't really
3064     // matter whether we try the inversion or the swap first, since
3065     // there are no cases where both work.
3066   default:
3067     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3068       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3069     else {
3070       CC = ISD::getSetCCSwappedOperands(CC);
3071       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3072         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3073       else
3074         llvm_unreachable("Unhandled comparison");
3075     }
3076     if (Chain)
3077       Chain = Cmp.getValue(1);
3078     break;
3079   }
3080   if (Invert) {
3081     SDValue Mask =
3082       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3083     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3084   }
3085   if (Chain && Chain.getNode() != Cmp.getNode()) {
3086     SDValue Ops[2] = { Cmp, Chain };
3087     Cmp = DAG.getMergeValues(Ops, DL);
3088   }
3089   return Cmp;
3090 }
3091 
3092 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3093                                           SelectionDAG &DAG) const {
3094   SDValue CmpOp0   = Op.getOperand(0);
3095   SDValue CmpOp1   = Op.getOperand(1);
3096   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3097   SDLoc DL(Op);
3098   EVT VT = Op.getValueType();
3099   if (VT.isVector())
3100     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3101 
3102   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3103   SDValue CCReg = emitCmp(DAG, DL, C);
3104   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3105 }
3106 
3107 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3108                                                   SelectionDAG &DAG,
3109                                                   bool IsSignaling) const {
3110   SDValue Chain    = Op.getOperand(0);
3111   SDValue CmpOp0   = Op.getOperand(1);
3112   SDValue CmpOp1   = Op.getOperand(2);
3113   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3114   SDLoc DL(Op);
3115   EVT VT = Op.getNode()->getValueType(0);
3116   if (VT.isVector()) {
3117     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3118                                    Chain, IsSignaling);
3119     return Res.getValue(Op.getResNo());
3120   }
3121 
3122   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3123   SDValue CCReg = emitCmp(DAG, DL, C);
3124   CCReg->setFlags(Op->getFlags());
3125   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3126   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3127   return DAG.getMergeValues(Ops, DL);
3128 }
3129 
3130 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3131   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3132   SDValue CmpOp0   = Op.getOperand(2);
3133   SDValue CmpOp1   = Op.getOperand(3);
3134   SDValue Dest     = Op.getOperand(4);
3135   SDLoc DL(Op);
3136 
3137   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3138   SDValue CCReg = emitCmp(DAG, DL, C);
3139   return DAG.getNode(
3140       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3141       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3142       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3143 }
3144 
3145 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3146 // allowing Pos and Neg to be wider than CmpOp.
3147 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3148   return (Neg.getOpcode() == ISD::SUB &&
3149           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3150           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3151           Neg.getOperand(1) == Pos &&
3152           (Pos == CmpOp ||
3153            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3154             Pos.getOperand(0) == CmpOp)));
3155 }
3156 
3157 // Return the absolute or negative absolute of Op; IsNegative decides which.
3158 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3159                            bool IsNegative) {
3160   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3161   if (IsNegative)
3162     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3163                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3164   return Op;
3165 }
3166 
3167 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3168                                               SelectionDAG &DAG) const {
3169   SDValue CmpOp0   = Op.getOperand(0);
3170   SDValue CmpOp1   = Op.getOperand(1);
3171   SDValue TrueOp   = Op.getOperand(2);
3172   SDValue FalseOp  = Op.getOperand(3);
3173   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3174   SDLoc DL(Op);
3175 
3176   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3177 
3178   // Check for absolute and negative-absolute selections, including those
3179   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3180   // This check supplements the one in DAGCombiner.
3181   if (C.Opcode == SystemZISD::ICMP &&
3182       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3183       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3184       C.Op1.getOpcode() == ISD::Constant &&
3185       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3186     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3187       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3188     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3189       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3190   }
3191 
3192   SDValue CCReg = emitCmp(DAG, DL, C);
3193   SDValue Ops[] = {TrueOp, FalseOp,
3194                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3195                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3196 
3197   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3198 }
3199 
3200 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3201                                                   SelectionDAG &DAG) const {
3202   SDLoc DL(Node);
3203   const GlobalValue *GV = Node->getGlobal();
3204   int64_t Offset = Node->getOffset();
3205   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3206   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3207 
3208   SDValue Result;
3209   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3210     if (isInt<32>(Offset)) {
3211       // Assign anchors at 1<<12 byte boundaries.
3212       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3213       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3214       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3215 
3216       // The offset can be folded into the address if it is aligned to a
3217       // halfword.
3218       Offset -= Anchor;
3219       if (Offset != 0 && (Offset & 1) == 0) {
3220         SDValue Full =
3221           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3222         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3223         Offset = 0;
3224       }
3225     } else {
3226       // Conservatively load a constant offset greater than 32 bits into a
3227       // register below.
3228       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3229       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3230     }
3231   } else {
3232     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3233     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3234     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3235                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3236   }
3237 
3238   // If there was a non-zero offset that we didn't fold, create an explicit
3239   // addition for it.
3240   if (Offset != 0)
3241     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3242                          DAG.getConstant(Offset, DL, PtrVT));
3243 
3244   return Result;
3245 }
3246 
3247 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3248                                                  SelectionDAG &DAG,
3249                                                  unsigned Opcode,
3250                                                  SDValue GOTOffset) const {
3251   SDLoc DL(Node);
3252   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3253   SDValue Chain = DAG.getEntryNode();
3254   SDValue Glue;
3255 
3256   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3257       CallingConv::GHC)
3258     report_fatal_error("In GHC calling convention TLS is not supported");
3259 
3260   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3261   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3262   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3263   Glue = Chain.getValue(1);
3264   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3265   Glue = Chain.getValue(1);
3266 
3267   // The first call operand is the chain and the second is the TLS symbol.
3268   SmallVector<SDValue, 8> Ops;
3269   Ops.push_back(Chain);
3270   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3271                                            Node->getValueType(0),
3272                                            0, 0));
3273 
3274   // Add argument registers to the end of the list so that they are
3275   // known live into the call.
3276   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3277   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3278 
3279   // Add a register mask operand representing the call-preserved registers.
3280   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3281   const uint32_t *Mask =
3282       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3283   assert(Mask && "Missing call preserved mask for calling convention");
3284   Ops.push_back(DAG.getRegisterMask(Mask));
3285 
3286   // Glue the call to the argument copies.
3287   Ops.push_back(Glue);
3288 
3289   // Emit the call.
3290   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3291   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3292   Glue = Chain.getValue(1);
3293 
3294   // Copy the return value from %r2.
3295   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3296 }
3297 
3298 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3299                                                   SelectionDAG &DAG) const {
3300   SDValue Chain = DAG.getEntryNode();
3301   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3302 
3303   // The high part of the thread pointer is in access register 0.
3304   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3305   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3306 
3307   // The low part of the thread pointer is in access register 1.
3308   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3309   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3310 
3311   // Merge them into a single 64-bit address.
3312   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3313                                     DAG.getConstant(32, DL, PtrVT));
3314   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3315 }
3316 
3317 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3318                                                      SelectionDAG &DAG) const {
3319   if (DAG.getTarget().useEmulatedTLS())
3320     return LowerToTLSEmulatedModel(Node, DAG);
3321   SDLoc DL(Node);
3322   const GlobalValue *GV = Node->getGlobal();
3323   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3324   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3325 
3326   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3327       CallingConv::GHC)
3328     report_fatal_error("In GHC calling convention TLS is not supported");
3329 
3330   SDValue TP = lowerThreadPointer(DL, DAG);
3331 
3332   // Get the offset of GA from the thread pointer, based on the TLS model.
3333   SDValue Offset;
3334   switch (model) {
3335     case TLSModel::GeneralDynamic: {
3336       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3337       SystemZConstantPoolValue *CPV =
3338         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3339 
3340       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3341       Offset = DAG.getLoad(
3342           PtrVT, DL, DAG.getEntryNode(), Offset,
3343           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3344 
3345       // Call __tls_get_offset to retrieve the offset.
3346       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3347       break;
3348     }
3349 
3350     case TLSModel::LocalDynamic: {
3351       // Load the GOT offset of the module ID.
3352       SystemZConstantPoolValue *CPV =
3353         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3354 
3355       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3356       Offset = DAG.getLoad(
3357           PtrVT, DL, DAG.getEntryNode(), Offset,
3358           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3359 
3360       // Call __tls_get_offset to retrieve the module base offset.
3361       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3362 
3363       // Note: The SystemZLDCleanupPass will remove redundant computations
3364       // of the module base offset.  Count total number of local-dynamic
3365       // accesses to trigger execution of that pass.
3366       SystemZMachineFunctionInfo* MFI =
3367         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3368       MFI->incNumLocalDynamicTLSAccesses();
3369 
3370       // Add the per-symbol offset.
3371       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3372 
3373       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3374       DTPOffset = DAG.getLoad(
3375           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3376           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3377 
3378       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3379       break;
3380     }
3381 
3382     case TLSModel::InitialExec: {
3383       // Load the offset from the GOT.
3384       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3385                                           SystemZII::MO_INDNTPOFF);
3386       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3387       Offset =
3388           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3389                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3390       break;
3391     }
3392 
3393     case TLSModel::LocalExec: {
3394       // Force the offset into the constant pool and load it from there.
3395       SystemZConstantPoolValue *CPV =
3396         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3397 
3398       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3399       Offset = DAG.getLoad(
3400           PtrVT, DL, DAG.getEntryNode(), Offset,
3401           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3402       break;
3403     }
3404   }
3405 
3406   // Add the base and offset together.
3407   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3408 }
3409 
3410 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3411                                                  SelectionDAG &DAG) const {
3412   SDLoc DL(Node);
3413   const BlockAddress *BA = Node->getBlockAddress();
3414   int64_t Offset = Node->getOffset();
3415   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3416 
3417   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3418   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3419   return Result;
3420 }
3421 
3422 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3423                                               SelectionDAG &DAG) const {
3424   SDLoc DL(JT);
3425   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3426   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3427 
3428   // Use LARL to load the address of the table.
3429   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3430 }
3431 
3432 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3433                                                  SelectionDAG &DAG) const {
3434   SDLoc DL(CP);
3435   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3436 
3437   SDValue Result;
3438   if (CP->isMachineConstantPoolEntry())
3439     Result =
3440         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3441   else
3442     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3443                                        CP->getOffset());
3444 
3445   // Use LARL to load the address of the constant pool entry.
3446   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3447 }
3448 
3449 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3450                                               SelectionDAG &DAG) const {
3451   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3452   MachineFunction &MF = DAG.getMachineFunction();
3453   MachineFrameInfo &MFI = MF.getFrameInfo();
3454   MFI.setFrameAddressIsTaken(true);
3455 
3456   SDLoc DL(Op);
3457   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3458   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3459 
3460   // By definition, the frame address is the address of the back chain.  (In
3461   // the case of packed stack without backchain, return the address where the
3462   // backchain would have been stored. This will either be an unused space or
3463   // contain a saved register).
3464   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3465   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3466 
3467   // FIXME The frontend should detect this case.
3468   if (Depth > 0) {
3469     report_fatal_error("Unsupported stack frame traversal count");
3470   }
3471 
3472   return BackChain;
3473 }
3474 
3475 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3476                                                SelectionDAG &DAG) const {
3477   MachineFunction &MF = DAG.getMachineFunction();
3478   MachineFrameInfo &MFI = MF.getFrameInfo();
3479   MFI.setReturnAddressIsTaken(true);
3480 
3481   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3482     return SDValue();
3483 
3484   SDLoc DL(Op);
3485   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3486   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3487 
3488   // FIXME The frontend should detect this case.
3489   if (Depth > 0) {
3490     report_fatal_error("Unsupported stack frame traversal count");
3491   }
3492 
3493   // Return R14D, which has the return address. Mark it an implicit live-in.
3494   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3495   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3496 }
3497 
3498 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3499                                             SelectionDAG &DAG) const {
3500   SDLoc DL(Op);
3501   SDValue In = Op.getOperand(0);
3502   EVT InVT = In.getValueType();
3503   EVT ResVT = Op.getValueType();
3504 
3505   // Convert loads directly.  This is normally done by DAGCombiner,
3506   // but we need this case for bitcasts that are created during lowering
3507   // and which are then lowered themselves.
3508   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3509     if (ISD::isNormalLoad(LoadN)) {
3510       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3511                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3512       // Update the chain uses.
3513       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3514       return NewLoad;
3515     }
3516 
3517   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3518     SDValue In64;
3519     if (Subtarget.hasHighWord()) {
3520       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3521                                        MVT::i64);
3522       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3523                                        MVT::i64, SDValue(U64, 0), In);
3524     } else {
3525       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3526       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3527                          DAG.getConstant(32, DL, MVT::i64));
3528     }
3529     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3530     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3531                                       DL, MVT::f32, Out64);
3532   }
3533   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3534     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3535     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3536                                              MVT::f64, SDValue(U64, 0), In);
3537     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3538     if (Subtarget.hasHighWord())
3539       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3540                                         MVT::i32, Out64);
3541     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3542                                 DAG.getConstant(32, DL, MVT::i64));
3543     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3544   }
3545   llvm_unreachable("Unexpected bitcast combination");
3546 }
3547 
3548 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3549                                             SelectionDAG &DAG) const {
3550 
3551   if (Subtarget.isTargetXPLINK64())
3552     return lowerVASTART_XPLINK(Op, DAG);
3553   else
3554     return lowerVASTART_ELF(Op, DAG);
3555 }
3556 
3557 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3558                                                    SelectionDAG &DAG) const {
3559   MachineFunction &MF = DAG.getMachineFunction();
3560   SystemZMachineFunctionInfo *FuncInfo =
3561       MF.getInfo<SystemZMachineFunctionInfo>();
3562 
3563   SDLoc DL(Op);
3564 
3565   // vastart just stores the address of the VarArgsFrameIndex slot into the
3566   // memory location argument.
3567   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3568   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3569   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3570   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3571                       MachinePointerInfo(SV));
3572 }
3573 
3574 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3575                                                 SelectionDAG &DAG) const {
3576   MachineFunction &MF = DAG.getMachineFunction();
3577   SystemZMachineFunctionInfo *FuncInfo =
3578     MF.getInfo<SystemZMachineFunctionInfo>();
3579   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3580 
3581   SDValue Chain   = Op.getOperand(0);
3582   SDValue Addr    = Op.getOperand(1);
3583   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3584   SDLoc DL(Op);
3585 
3586   // The initial values of each field.
3587   const unsigned NumFields = 4;
3588   SDValue Fields[NumFields] = {
3589     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3590     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3591     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3592     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3593   };
3594 
3595   // Store each field into its respective slot.
3596   SDValue MemOps[NumFields];
3597   unsigned Offset = 0;
3598   for (unsigned I = 0; I < NumFields; ++I) {
3599     SDValue FieldAddr = Addr;
3600     if (Offset != 0)
3601       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3602                               DAG.getIntPtrConstant(Offset, DL));
3603     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3604                              MachinePointerInfo(SV, Offset));
3605     Offset += 8;
3606   }
3607   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3608 }
3609 
3610 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3611                                            SelectionDAG &DAG) const {
3612   SDValue Chain      = Op.getOperand(0);
3613   SDValue DstPtr     = Op.getOperand(1);
3614   SDValue SrcPtr     = Op.getOperand(2);
3615   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3616   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3617   SDLoc DL(Op);
3618 
3619   uint32_t Sz =
3620       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3621   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3622                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3623                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3624                        MachinePointerInfo(SrcSV));
3625 }
3626 
3627 SDValue
3628 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3629                                                SelectionDAG &DAG) const {
3630   if (Subtarget.isTargetXPLINK64())
3631     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3632   else
3633     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3634 }
3635 
3636 SDValue
3637 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3638                                                       SelectionDAG &DAG) const {
3639   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3640   MachineFunction &MF = DAG.getMachineFunction();
3641   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3642   SDValue Chain = Op.getOperand(0);
3643   SDValue Size = Op.getOperand(1);
3644   SDValue Align = Op.getOperand(2);
3645   SDLoc DL(Op);
3646 
3647   // If user has set the no alignment function attribute, ignore
3648   // alloca alignments.
3649   uint64_t AlignVal =
3650       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3651 
3652   uint64_t StackAlign = TFI->getStackAlignment();
3653   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3654   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3655 
3656   SDValue NeededSpace = Size;
3657 
3658   // Add extra space for alignment if needed.
3659   EVT PtrVT = getPointerTy(MF.getDataLayout());
3660   if (ExtraAlignSpace)
3661     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3662                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3663 
3664   bool IsSigned = false;
3665   bool DoesNotReturn = false;
3666   bool IsReturnValueUsed = false;
3667   EVT VT = Op.getValueType();
3668   SDValue AllocaCall =
3669       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace),
3670                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3671                        IsReturnValueUsed)
3672           .first;
3673 
3674   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3675   // to end of call in order to ensure it isn't broken up from the call
3676   // sequence.
3677   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3678   Register SPReg = Regs.getStackPointerRegister();
3679   Chain = AllocaCall.getValue(1);
3680   SDValue Glue = AllocaCall.getValue(2);
3681   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3682   Chain = NewSPRegNode.getValue(1);
3683 
3684   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3685   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3686   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3687 
3688   // Dynamically realign if needed.
3689   if (ExtraAlignSpace) {
3690     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3691                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3692     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3693                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3694   }
3695 
3696   SDValue Ops[2] = {Result, Chain};
3697   return DAG.getMergeValues(Ops, DL);
3698 }
3699 
3700 SDValue
3701 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
3702                                                    SelectionDAG &DAG) const {
3703   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3704   MachineFunction &MF = DAG.getMachineFunction();
3705   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3706   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3707 
3708   SDValue Chain = Op.getOperand(0);
3709   SDValue Size  = Op.getOperand(1);
3710   SDValue Align = Op.getOperand(2);
3711   SDLoc DL(Op);
3712 
3713   // If user has set the no alignment function attribute, ignore
3714   // alloca alignments.
3715   uint64_t AlignVal =
3716       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3717 
3718   uint64_t StackAlign = TFI->getStackAlignment();
3719   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3720   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3721 
3722   Register SPReg = getStackPointerRegisterToSaveRestore();
3723   SDValue NeededSpace = Size;
3724 
3725   // Get a reference to the stack pointer.
3726   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3727 
3728   // If we need a backchain, save it now.
3729   SDValue Backchain;
3730   if (StoreBackchain)
3731     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3732                             MachinePointerInfo());
3733 
3734   // Add extra space for alignment if needed.
3735   if (ExtraAlignSpace)
3736     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3737                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3738 
3739   // Get the new stack pointer value.
3740   SDValue NewSP;
3741   if (hasInlineStackProbe(MF)) {
3742     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3743                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3744     Chain = NewSP.getValue(1);
3745   }
3746   else {
3747     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3748     // Copy the new stack pointer back.
3749     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3750   }
3751 
3752   // The allocated data lives above the 160 bytes allocated for the standard
3753   // frame, plus any outgoing stack arguments.  We don't know how much that
3754   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3755   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3756   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3757 
3758   // Dynamically realign if needed.
3759   if (RequiredAlign > StackAlign) {
3760     Result =
3761       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3762                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3763     Result =
3764       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3765                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3766   }
3767 
3768   if (StoreBackchain)
3769     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3770                          MachinePointerInfo());
3771 
3772   SDValue Ops[2] = { Result, Chain };
3773   return DAG.getMergeValues(Ops, DL);
3774 }
3775 
3776 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3777     SDValue Op, SelectionDAG &DAG) const {
3778   SDLoc DL(Op);
3779 
3780   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3781 }
3782 
3783 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3784                                               SelectionDAG &DAG) const {
3785   EVT VT = Op.getValueType();
3786   SDLoc DL(Op);
3787   SDValue Ops[2];
3788   if (is32Bit(VT))
3789     // Just do a normal 64-bit multiplication and extract the results.
3790     // We define this so that it can be used for constant division.
3791     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3792                     Op.getOperand(1), Ops[1], Ops[0]);
3793   else if (Subtarget.hasMiscellaneousExtensions2())
3794     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3795     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3796     // return the low half first, so the results are in reverse order.
3797     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3798                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3799   else {
3800     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3801     //
3802     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3803     //
3804     // but using the fact that the upper halves are either all zeros
3805     // or all ones:
3806     //
3807     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3808     //
3809     // and grouping the right terms together since they are quicker than the
3810     // multiplication:
3811     //
3812     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3813     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3814     SDValue LL = Op.getOperand(0);
3815     SDValue RL = Op.getOperand(1);
3816     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3817     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3818     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3819     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3820     // return the low half first, so the results are in reverse order.
3821     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3822                      LL, RL, Ops[1], Ops[0]);
3823     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3824     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3825     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3826     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3827   }
3828   return DAG.getMergeValues(Ops, DL);
3829 }
3830 
3831 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3832                                               SelectionDAG &DAG) const {
3833   EVT VT = Op.getValueType();
3834   SDLoc DL(Op);
3835   SDValue Ops[2];
3836   if (is32Bit(VT))
3837     // Just do a normal 64-bit multiplication and extract the results.
3838     // We define this so that it can be used for constant division.
3839     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3840                     Op.getOperand(1), Ops[1], Ops[0]);
3841   else
3842     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3843     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3844     // return the low half first, so the results are in reverse order.
3845     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3846                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3847   return DAG.getMergeValues(Ops, DL);
3848 }
3849 
3850 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3851                                             SelectionDAG &DAG) const {
3852   SDValue Op0 = Op.getOperand(0);
3853   SDValue Op1 = Op.getOperand(1);
3854   EVT VT = Op.getValueType();
3855   SDLoc DL(Op);
3856 
3857   // We use DSGF for 32-bit division.  This means the first operand must
3858   // always be 64-bit, and the second operand should be 32-bit whenever
3859   // that is possible, to improve performance.
3860   if (is32Bit(VT))
3861     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3862   else if (DAG.ComputeNumSignBits(Op1) > 32)
3863     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3864 
3865   // DSG(F) returns the remainder in the even register and the
3866   // quotient in the odd register.
3867   SDValue Ops[2];
3868   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3869   return DAG.getMergeValues(Ops, DL);
3870 }
3871 
3872 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3873                                             SelectionDAG &DAG) const {
3874   EVT VT = Op.getValueType();
3875   SDLoc DL(Op);
3876 
3877   // DL(G) returns the remainder in the even register and the
3878   // quotient in the odd register.
3879   SDValue Ops[2];
3880   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3881                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3882   return DAG.getMergeValues(Ops, DL);
3883 }
3884 
3885 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3886   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3887 
3888   // Get the known-zero masks for each operand.
3889   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3890   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3891                         DAG.computeKnownBits(Ops[1])};
3892 
3893   // See if the upper 32 bits of one operand and the lower 32 bits of the
3894   // other are known zero.  They are the low and high operands respectively.
3895   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3896                        Known[1].Zero.getZExtValue() };
3897   unsigned High, Low;
3898   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3899     High = 1, Low = 0;
3900   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3901     High = 0, Low = 1;
3902   else
3903     return Op;
3904 
3905   SDValue LowOp = Ops[Low];
3906   SDValue HighOp = Ops[High];
3907 
3908   // If the high part is a constant, we're better off using IILH.
3909   if (HighOp.getOpcode() == ISD::Constant)
3910     return Op;
3911 
3912   // If the low part is a constant that is outside the range of LHI,
3913   // then we're better off using IILF.
3914   if (LowOp.getOpcode() == ISD::Constant) {
3915     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3916     if (!isInt<16>(Value))
3917       return Op;
3918   }
3919 
3920   // Check whether the high part is an AND that doesn't change the
3921   // high 32 bits and just masks out low bits.  We can skip it if so.
3922   if (HighOp.getOpcode() == ISD::AND &&
3923       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3924     SDValue HighOp0 = HighOp.getOperand(0);
3925     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3926     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3927       HighOp = HighOp0;
3928   }
3929 
3930   // Take advantage of the fact that all GR32 operations only change the
3931   // low 32 bits by truncating Low to an i32 and inserting it directly
3932   // using a subreg.  The interesting cases are those where the truncation
3933   // can be folded.
3934   SDLoc DL(Op);
3935   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3936   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3937                                    MVT::i64, HighOp, Low32);
3938 }
3939 
3940 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3941 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3942                                           SelectionDAG &DAG) const {
3943   SDNode *N = Op.getNode();
3944   SDValue LHS = N->getOperand(0);
3945   SDValue RHS = N->getOperand(1);
3946   SDLoc DL(N);
3947   unsigned BaseOp = 0;
3948   unsigned CCValid = 0;
3949   unsigned CCMask = 0;
3950 
3951   switch (Op.getOpcode()) {
3952   default: llvm_unreachable("Unknown instruction!");
3953   case ISD::SADDO:
3954     BaseOp = SystemZISD::SADDO;
3955     CCValid = SystemZ::CCMASK_ARITH;
3956     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3957     break;
3958   case ISD::SSUBO:
3959     BaseOp = SystemZISD::SSUBO;
3960     CCValid = SystemZ::CCMASK_ARITH;
3961     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3962     break;
3963   case ISD::UADDO:
3964     BaseOp = SystemZISD::UADDO;
3965     CCValid = SystemZ::CCMASK_LOGICAL;
3966     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3967     break;
3968   case ISD::USUBO:
3969     BaseOp = SystemZISD::USUBO;
3970     CCValid = SystemZ::CCMASK_LOGICAL;
3971     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3972     break;
3973   }
3974 
3975   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3976   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3977 
3978   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3979   if (N->getValueType(1) == MVT::i1)
3980     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3981 
3982   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3983 }
3984 
3985 static bool isAddCarryChain(SDValue Carry) {
3986   while (Carry.getOpcode() == ISD::ADDCARRY)
3987     Carry = Carry.getOperand(2);
3988   return Carry.getOpcode() == ISD::UADDO;
3989 }
3990 
3991 static bool isSubBorrowChain(SDValue Carry) {
3992   while (Carry.getOpcode() == ISD::SUBCARRY)
3993     Carry = Carry.getOperand(2);
3994   return Carry.getOpcode() == ISD::USUBO;
3995 }
3996 
3997 // Lower ADDCARRY/SUBCARRY nodes.
3998 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3999                                                 SelectionDAG &DAG) const {
4000 
4001   SDNode *N = Op.getNode();
4002   MVT VT = N->getSimpleValueType(0);
4003 
4004   // Let legalize expand this if it isn't a legal type yet.
4005   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4006     return SDValue();
4007 
4008   SDValue LHS = N->getOperand(0);
4009   SDValue RHS = N->getOperand(1);
4010   SDValue Carry = Op.getOperand(2);
4011   SDLoc DL(N);
4012   unsigned BaseOp = 0;
4013   unsigned CCValid = 0;
4014   unsigned CCMask = 0;
4015 
4016   switch (Op.getOpcode()) {
4017   default: llvm_unreachable("Unknown instruction!");
4018   case ISD::ADDCARRY:
4019     if (!isAddCarryChain(Carry))
4020       return SDValue();
4021 
4022     BaseOp = SystemZISD::ADDCARRY;
4023     CCValid = SystemZ::CCMASK_LOGICAL;
4024     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4025     break;
4026   case ISD::SUBCARRY:
4027     if (!isSubBorrowChain(Carry))
4028       return SDValue();
4029 
4030     BaseOp = SystemZISD::SUBCARRY;
4031     CCValid = SystemZ::CCMASK_LOGICAL;
4032     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4033     break;
4034   }
4035 
4036   // Set the condition code from the carry flag.
4037   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4038                       DAG.getConstant(CCValid, DL, MVT::i32),
4039                       DAG.getConstant(CCMask, DL, MVT::i32));
4040 
4041   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4042   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4043 
4044   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4045   if (N->getValueType(1) == MVT::i1)
4046     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4047 
4048   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4049 }
4050 
4051 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4052                                           SelectionDAG &DAG) const {
4053   EVT VT = Op.getValueType();
4054   SDLoc DL(Op);
4055   Op = Op.getOperand(0);
4056 
4057   // Handle vector types via VPOPCT.
4058   if (VT.isVector()) {
4059     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4060     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4061     switch (VT.getScalarSizeInBits()) {
4062     case 8:
4063       break;
4064     case 16: {
4065       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4066       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4067       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4068       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4069       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4070       break;
4071     }
4072     case 32: {
4073       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4074                                             DAG.getConstant(0, DL, MVT::i32));
4075       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4076       break;
4077     }
4078     case 64: {
4079       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4080                                             DAG.getConstant(0, DL, MVT::i32));
4081       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4082       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4083       break;
4084     }
4085     default:
4086       llvm_unreachable("Unexpected type");
4087     }
4088     return Op;
4089   }
4090 
4091   // Get the known-zero mask for the operand.
4092   KnownBits Known = DAG.computeKnownBits(Op);
4093   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4094   if (NumSignificantBits == 0)
4095     return DAG.getConstant(0, DL, VT);
4096 
4097   // Skip known-zero high parts of the operand.
4098   int64_t OrigBitSize = VT.getSizeInBits();
4099   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
4100   BitSize = std::min(BitSize, OrigBitSize);
4101 
4102   // The POPCNT instruction counts the number of bits in each byte.
4103   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4104   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4105   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4106 
4107   // Add up per-byte counts in a binary tree.  All bits of Op at
4108   // position larger than BitSize remain zero throughout.
4109   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4110     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4111     if (BitSize != OrigBitSize)
4112       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4113                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4114     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4115   }
4116 
4117   // Extract overall result from high byte.
4118   if (BitSize > 8)
4119     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4120                      DAG.getConstant(BitSize - 8, DL, VT));
4121 
4122   return Op;
4123 }
4124 
4125 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4126                                                  SelectionDAG &DAG) const {
4127   SDLoc DL(Op);
4128   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
4129     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
4130   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
4131     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
4132 
4133   // The only fence that needs an instruction is a sequentially-consistent
4134   // cross-thread fence.
4135   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4136       FenceSSID == SyncScope::System) {
4137     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4138                                       Op.getOperand(0)),
4139                    0);
4140   }
4141 
4142   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4143   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4144 }
4145 
4146 // Op is an atomic load.  Lower it into a normal volatile load.
4147 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4148                                                 SelectionDAG &DAG) const {
4149   auto *Node = cast<AtomicSDNode>(Op.getNode());
4150   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4151                         Node->getChain(), Node->getBasePtr(),
4152                         Node->getMemoryVT(), Node->getMemOperand());
4153 }
4154 
4155 // Op is an atomic store.  Lower it into a normal volatile store.
4156 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4157                                                  SelectionDAG &DAG) const {
4158   auto *Node = cast<AtomicSDNode>(Op.getNode());
4159   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4160                                     Node->getBasePtr(), Node->getMemoryVT(),
4161                                     Node->getMemOperand());
4162   // We have to enforce sequential consistency by performing a
4163   // serialization operation after the store.
4164   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4165     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4166                                        MVT::Other, Chain), 0);
4167   return Chain;
4168 }
4169 
4170 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4171 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4172 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4173                                                    SelectionDAG &DAG,
4174                                                    unsigned Opcode) const {
4175   auto *Node = cast<AtomicSDNode>(Op.getNode());
4176 
4177   // 32-bit operations need no code outside the main loop.
4178   EVT NarrowVT = Node->getMemoryVT();
4179   EVT WideVT = MVT::i32;
4180   if (NarrowVT == WideVT)
4181     return Op;
4182 
4183   int64_t BitSize = NarrowVT.getSizeInBits();
4184   SDValue ChainIn = Node->getChain();
4185   SDValue Addr = Node->getBasePtr();
4186   SDValue Src2 = Node->getVal();
4187   MachineMemOperand *MMO = Node->getMemOperand();
4188   SDLoc DL(Node);
4189   EVT PtrVT = Addr.getValueType();
4190 
4191   // Convert atomic subtracts of constants into additions.
4192   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4193     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4194       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4195       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4196     }
4197 
4198   // Get the address of the containing word.
4199   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4200                                     DAG.getConstant(-4, DL, PtrVT));
4201 
4202   // Get the number of bits that the word must be rotated left in order
4203   // to bring the field to the top bits of a GR32.
4204   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4205                                  DAG.getConstant(3, DL, PtrVT));
4206   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4207 
4208   // Get the complementing shift amount, for rotating a field in the top
4209   // bits back to its proper position.
4210   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4211                                     DAG.getConstant(0, DL, WideVT), BitShift);
4212 
4213   // Extend the source operand to 32 bits and prepare it for the inner loop.
4214   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4215   // operations require the source to be shifted in advance.  (This shift
4216   // can be folded if the source is constant.)  For AND and NAND, the lower
4217   // bits must be set, while for other opcodes they should be left clear.
4218   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4219     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4220                        DAG.getConstant(32 - BitSize, DL, WideVT));
4221   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4222       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4223     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4224                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4225 
4226   // Construct the ATOMIC_LOADW_* node.
4227   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4228   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4229                     DAG.getConstant(BitSize, DL, WideVT) };
4230   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4231                                              NarrowVT, MMO);
4232 
4233   // Rotate the result of the final CS so that the field is in the lower
4234   // bits of a GR32, then truncate it.
4235   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4236                                     DAG.getConstant(BitSize, DL, WideVT));
4237   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4238 
4239   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4240   return DAG.getMergeValues(RetOps, DL);
4241 }
4242 
4243 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4244 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4245 // operations into additions.
4246 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4247                                                     SelectionDAG &DAG) const {
4248   auto *Node = cast<AtomicSDNode>(Op.getNode());
4249   EVT MemVT = Node->getMemoryVT();
4250   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4251     // A full-width operation.
4252     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4253     SDValue Src2 = Node->getVal();
4254     SDValue NegSrc2;
4255     SDLoc DL(Src2);
4256 
4257     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4258       // Use an addition if the operand is constant and either LAA(G) is
4259       // available or the negative value is in the range of A(G)FHI.
4260       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4261       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4262         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4263     } else if (Subtarget.hasInterlockedAccess1())
4264       // Use LAA(G) if available.
4265       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4266                             Src2);
4267 
4268     if (NegSrc2.getNode())
4269       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4270                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4271                            Node->getMemOperand());
4272 
4273     // Use the node as-is.
4274     return Op;
4275   }
4276 
4277   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4278 }
4279 
4280 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4281 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4282                                                     SelectionDAG &DAG) const {
4283   auto *Node = cast<AtomicSDNode>(Op.getNode());
4284   SDValue ChainIn = Node->getOperand(0);
4285   SDValue Addr = Node->getOperand(1);
4286   SDValue CmpVal = Node->getOperand(2);
4287   SDValue SwapVal = Node->getOperand(3);
4288   MachineMemOperand *MMO = Node->getMemOperand();
4289   SDLoc DL(Node);
4290 
4291   // We have native support for 32-bit and 64-bit compare and swap, but we
4292   // still need to expand extracting the "success" result from the CC.
4293   EVT NarrowVT = Node->getMemoryVT();
4294   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4295   if (NarrowVT == WideVT) {
4296     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4297     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4298     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4299                                                DL, Tys, Ops, NarrowVT, MMO);
4300     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4301                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4302 
4303     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4304     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4305     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4306     return SDValue();
4307   }
4308 
4309   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4310   // via a fullword ATOMIC_CMP_SWAPW operation.
4311   int64_t BitSize = NarrowVT.getSizeInBits();
4312   EVT PtrVT = Addr.getValueType();
4313 
4314   // Get the address of the containing word.
4315   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4316                                     DAG.getConstant(-4, DL, PtrVT));
4317 
4318   // Get the number of bits that the word must be rotated left in order
4319   // to bring the field to the top bits of a GR32.
4320   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4321                                  DAG.getConstant(3, DL, PtrVT));
4322   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4323 
4324   // Get the complementing shift amount, for rotating a field in the top
4325   // bits back to its proper position.
4326   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4327                                     DAG.getConstant(0, DL, WideVT), BitShift);
4328 
4329   // Construct the ATOMIC_CMP_SWAPW node.
4330   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4331   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4332                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4333   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4334                                              VTList, Ops, NarrowVT, MMO);
4335   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4336                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4337 
4338   // emitAtomicCmpSwapW() will zero extend the result (original value).
4339   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4340                                 DAG.getValueType(NarrowVT));
4341   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4342   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4343   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4344   return SDValue();
4345 }
4346 
4347 MachineMemOperand::Flags
4348 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4349   // Because of how we convert atomic_load and atomic_store to normal loads and
4350   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4351   // since DAGCombine hasn't been updated to account for atomic, but non
4352   // volatile loads.  (See D57601)
4353   if (auto *SI = dyn_cast<StoreInst>(&I))
4354     if (SI->isAtomic())
4355       return MachineMemOperand::MOVolatile;
4356   if (auto *LI = dyn_cast<LoadInst>(&I))
4357     if (LI->isAtomic())
4358       return MachineMemOperand::MOVolatile;
4359   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4360     if (AI->isAtomic())
4361       return MachineMemOperand::MOVolatile;
4362   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4363     if (AI->isAtomic())
4364       return MachineMemOperand::MOVolatile;
4365   return MachineMemOperand::MONone;
4366 }
4367 
4368 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4369                                               SelectionDAG &DAG) const {
4370   MachineFunction &MF = DAG.getMachineFunction();
4371   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4372   auto *Regs = Subtarget->getSpecialRegisters();
4373   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4374     report_fatal_error("Variable-sized stack allocations are not supported "
4375                        "in GHC calling convention");
4376   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4377                             Regs->getStackPointerRegister(), Op.getValueType());
4378 }
4379 
4380 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4381                                                  SelectionDAG &DAG) const {
4382   MachineFunction &MF = DAG.getMachineFunction();
4383   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4384   auto *Regs = Subtarget->getSpecialRegisters();
4385   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4386 
4387   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4388     report_fatal_error("Variable-sized stack allocations are not supported "
4389                        "in GHC calling convention");
4390 
4391   SDValue Chain = Op.getOperand(0);
4392   SDValue NewSP = Op.getOperand(1);
4393   SDValue Backchain;
4394   SDLoc DL(Op);
4395 
4396   if (StoreBackchain) {
4397     SDValue OldSP = DAG.getCopyFromReg(
4398         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4399     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4400                             MachinePointerInfo());
4401   }
4402 
4403   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4404 
4405   if (StoreBackchain)
4406     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4407                          MachinePointerInfo());
4408 
4409   return Chain;
4410 }
4411 
4412 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4413                                              SelectionDAG &DAG) const {
4414   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4415   if (!IsData)
4416     // Just preserve the chain.
4417     return Op.getOperand(0);
4418 
4419   SDLoc DL(Op);
4420   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4421   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4422   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4423   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4424                    Op.getOperand(1)};
4425   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4426                                  Node->getVTList(), Ops,
4427                                  Node->getMemoryVT(), Node->getMemOperand());
4428 }
4429 
4430 // Convert condition code in CCReg to an i32 value.
4431 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4432   SDLoc DL(CCReg);
4433   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4434   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4435                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4436 }
4437 
4438 SDValue
4439 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4440                                               SelectionDAG &DAG) const {
4441   unsigned Opcode, CCValid;
4442   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4443     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4444     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4445     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4446     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4447     return SDValue();
4448   }
4449 
4450   return SDValue();
4451 }
4452 
4453 SDValue
4454 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4455                                                SelectionDAG &DAG) const {
4456   unsigned Opcode, CCValid;
4457   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4458     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4459     if (Op->getNumValues() == 1)
4460       return getCCResult(DAG, SDValue(Node, 0));
4461     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4462     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4463                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4464   }
4465 
4466   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4467   switch (Id) {
4468   case Intrinsic::thread_pointer:
4469     return lowerThreadPointer(SDLoc(Op), DAG);
4470 
4471   case Intrinsic::s390_vpdi:
4472     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4473                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4474 
4475   case Intrinsic::s390_vperm:
4476     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4477                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4478 
4479   case Intrinsic::s390_vuphb:
4480   case Intrinsic::s390_vuphh:
4481   case Intrinsic::s390_vuphf:
4482     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4483                        Op.getOperand(1));
4484 
4485   case Intrinsic::s390_vuplhb:
4486   case Intrinsic::s390_vuplhh:
4487   case Intrinsic::s390_vuplhf:
4488     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4489                        Op.getOperand(1));
4490 
4491   case Intrinsic::s390_vuplb:
4492   case Intrinsic::s390_vuplhw:
4493   case Intrinsic::s390_vuplf:
4494     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4495                        Op.getOperand(1));
4496 
4497   case Intrinsic::s390_vupllb:
4498   case Intrinsic::s390_vupllh:
4499   case Intrinsic::s390_vupllf:
4500     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4501                        Op.getOperand(1));
4502 
4503   case Intrinsic::s390_vsumb:
4504   case Intrinsic::s390_vsumh:
4505   case Intrinsic::s390_vsumgh:
4506   case Intrinsic::s390_vsumgf:
4507   case Intrinsic::s390_vsumqf:
4508   case Intrinsic::s390_vsumqg:
4509     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4510                        Op.getOperand(1), Op.getOperand(2));
4511   }
4512 
4513   return SDValue();
4514 }
4515 
4516 namespace {
4517 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4518 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4519 // Operand is the constant third operand, otherwise it is the number of
4520 // bytes in each element of the result.
4521 struct Permute {
4522   unsigned Opcode;
4523   unsigned Operand;
4524   unsigned char Bytes[SystemZ::VectorBytes];
4525 };
4526 }
4527 
4528 static const Permute PermuteForms[] = {
4529   // VMRHG
4530   { SystemZISD::MERGE_HIGH, 8,
4531     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4532   // VMRHF
4533   { SystemZISD::MERGE_HIGH, 4,
4534     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4535   // VMRHH
4536   { SystemZISD::MERGE_HIGH, 2,
4537     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4538   // VMRHB
4539   { SystemZISD::MERGE_HIGH, 1,
4540     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4541   // VMRLG
4542   { SystemZISD::MERGE_LOW, 8,
4543     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4544   // VMRLF
4545   { SystemZISD::MERGE_LOW, 4,
4546     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4547   // VMRLH
4548   { SystemZISD::MERGE_LOW, 2,
4549     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4550   // VMRLB
4551   { SystemZISD::MERGE_LOW, 1,
4552     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4553   // VPKG
4554   { SystemZISD::PACK, 4,
4555     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4556   // VPKF
4557   { SystemZISD::PACK, 2,
4558     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4559   // VPKH
4560   { SystemZISD::PACK, 1,
4561     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4562   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4563   { SystemZISD::PERMUTE_DWORDS, 4,
4564     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4565   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4566   { SystemZISD::PERMUTE_DWORDS, 1,
4567     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4568 };
4569 
4570 // Called after matching a vector shuffle against a particular pattern.
4571 // Both the original shuffle and the pattern have two vector operands.
4572 // OpNos[0] is the operand of the original shuffle that should be used for
4573 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4574 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4575 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4576 // for operands 0 and 1 of the pattern.
4577 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4578   if (OpNos[0] < 0) {
4579     if (OpNos[1] < 0)
4580       return false;
4581     OpNo0 = OpNo1 = OpNos[1];
4582   } else if (OpNos[1] < 0) {
4583     OpNo0 = OpNo1 = OpNos[0];
4584   } else {
4585     OpNo0 = OpNos[0];
4586     OpNo1 = OpNos[1];
4587   }
4588   return true;
4589 }
4590 
4591 // Bytes is a VPERM-like permute vector, except that -1 is used for
4592 // undefined bytes.  Return true if the VPERM can be implemented using P.
4593 // When returning true set OpNo0 to the VPERM operand that should be
4594 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4595 //
4596 // For example, if swapping the VPERM operands allows P to match, OpNo0
4597 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4598 // operand, but rewriting it to use two duplicated operands allows it to
4599 // match P, then OpNo0 and OpNo1 will be the same.
4600 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4601                          unsigned &OpNo0, unsigned &OpNo1) {
4602   int OpNos[] = { -1, -1 };
4603   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4604     int Elt = Bytes[I];
4605     if (Elt >= 0) {
4606       // Make sure that the two permute vectors use the same suboperand
4607       // byte number.  Only the operand numbers (the high bits) are
4608       // allowed to differ.
4609       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4610         return false;
4611       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4612       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4613       // Make sure that the operand mappings are consistent with previous
4614       // elements.
4615       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4616         return false;
4617       OpNos[ModelOpNo] = RealOpNo;
4618     }
4619   }
4620   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4621 }
4622 
4623 // As above, but search for a matching permute.
4624 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4625                                    unsigned &OpNo0, unsigned &OpNo1) {
4626   for (auto &P : PermuteForms)
4627     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4628       return &P;
4629   return nullptr;
4630 }
4631 
4632 // Bytes is a VPERM-like permute vector, except that -1 is used for
4633 // undefined bytes.  This permute is an operand of an outer permute.
4634 // See whether redistributing the -1 bytes gives a shuffle that can be
4635 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4636 // that, when applied to the result of P, gives the original permute in Bytes.
4637 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4638                                const Permute &P,
4639                                SmallVectorImpl<int> &Transform) {
4640   unsigned To = 0;
4641   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4642     int Elt = Bytes[From];
4643     if (Elt < 0)
4644       // Byte number From of the result is undefined.
4645       Transform[From] = -1;
4646     else {
4647       while (P.Bytes[To] != Elt) {
4648         To += 1;
4649         if (To == SystemZ::VectorBytes)
4650           return false;
4651       }
4652       Transform[From] = To;
4653     }
4654   }
4655   return true;
4656 }
4657 
4658 // As above, but search for a matching permute.
4659 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4660                                          SmallVectorImpl<int> &Transform) {
4661   for (auto &P : PermuteForms)
4662     if (matchDoublePermute(Bytes, P, Transform))
4663       return &P;
4664   return nullptr;
4665 }
4666 
4667 // Convert the mask of the given shuffle op into a byte-level mask,
4668 // as if it had type vNi8.
4669 static bool getVPermMask(SDValue ShuffleOp,
4670                          SmallVectorImpl<int> &Bytes) {
4671   EVT VT = ShuffleOp.getValueType();
4672   unsigned NumElements = VT.getVectorNumElements();
4673   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4674 
4675   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4676     Bytes.resize(NumElements * BytesPerElement, -1);
4677     for (unsigned I = 0; I < NumElements; ++I) {
4678       int Index = VSN->getMaskElt(I);
4679       if (Index >= 0)
4680         for (unsigned J = 0; J < BytesPerElement; ++J)
4681           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4682     }
4683     return true;
4684   }
4685   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4686       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4687     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4688     Bytes.resize(NumElements * BytesPerElement, -1);
4689     for (unsigned I = 0; I < NumElements; ++I)
4690       for (unsigned J = 0; J < BytesPerElement; ++J)
4691         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4692     return true;
4693   }
4694   return false;
4695 }
4696 
4697 // Bytes is a VPERM-like permute vector, except that -1 is used for
4698 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4699 // the result come from a contiguous sequence of bytes from one input.
4700 // Set Base to the selector for the first byte if so.
4701 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4702                             unsigned BytesPerElement, int &Base) {
4703   Base = -1;
4704   for (unsigned I = 0; I < BytesPerElement; ++I) {
4705     if (Bytes[Start + I] >= 0) {
4706       unsigned Elem = Bytes[Start + I];
4707       if (Base < 0) {
4708         Base = Elem - I;
4709         // Make sure the bytes would come from one input operand.
4710         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4711           return false;
4712       } else if (unsigned(Base) != Elem - I)
4713         return false;
4714     }
4715   }
4716   return true;
4717 }
4718 
4719 // Bytes is a VPERM-like permute vector, except that -1 is used for
4720 // undefined bytes.  Return true if it can be performed using VSLDB.
4721 // When returning true, set StartIndex to the shift amount and OpNo0
4722 // and OpNo1 to the VPERM operands that should be used as the first
4723 // and second shift operand respectively.
4724 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4725                                unsigned &StartIndex, unsigned &OpNo0,
4726                                unsigned &OpNo1) {
4727   int OpNos[] = { -1, -1 };
4728   int Shift = -1;
4729   for (unsigned I = 0; I < 16; ++I) {
4730     int Index = Bytes[I];
4731     if (Index >= 0) {
4732       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4733       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4734       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4735       if (Shift < 0)
4736         Shift = ExpectedShift;
4737       else if (Shift != ExpectedShift)
4738         return false;
4739       // Make sure that the operand mappings are consistent with previous
4740       // elements.
4741       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4742         return false;
4743       OpNos[ModelOpNo] = RealOpNo;
4744     }
4745   }
4746   StartIndex = Shift;
4747   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4748 }
4749 
4750 // Create a node that performs P on operands Op0 and Op1, casting the
4751 // operands to the appropriate type.  The type of the result is determined by P.
4752 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4753                               const Permute &P, SDValue Op0, SDValue Op1) {
4754   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4755   // elements of a PACK are twice as wide as the outputs.
4756   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4757                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4758                       P.Operand);
4759   // Cast both operands to the appropriate type.
4760   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4761                               SystemZ::VectorBytes / InBytes);
4762   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4763   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4764   SDValue Op;
4765   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4766     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4767     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4768   } else if (P.Opcode == SystemZISD::PACK) {
4769     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4770                                  SystemZ::VectorBytes / P.Operand);
4771     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4772   } else {
4773     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4774   }
4775   return Op;
4776 }
4777 
4778 static bool isZeroVector(SDValue N) {
4779   if (N->getOpcode() == ISD::BITCAST)
4780     N = N->getOperand(0);
4781   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4782     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4783       return Op->getZExtValue() == 0;
4784   return ISD::isBuildVectorAllZeros(N.getNode());
4785 }
4786 
4787 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4788 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4789   for (unsigned I = 0; I < Num ; I++)
4790     if (isZeroVector(Ops[I]))
4791       return I;
4792   return UINT32_MAX;
4793 }
4794 
4795 // Bytes is a VPERM-like permute vector, except that -1 is used for
4796 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4797 // VSLDB or VPERM.
4798 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4799                                      SDValue *Ops,
4800                                      const SmallVectorImpl<int> &Bytes) {
4801   for (unsigned I = 0; I < 2; ++I)
4802     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4803 
4804   // First see whether VSLDB can be used.
4805   unsigned StartIndex, OpNo0, OpNo1;
4806   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4807     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4808                        Ops[OpNo1],
4809                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4810 
4811   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4812   // eliminate a zero vector by reusing any zero index in the permute vector.
4813   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4814   if (ZeroVecIdx != UINT32_MAX) {
4815     bool MaskFirst = true;
4816     int ZeroIdx = -1;
4817     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4818       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4819       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4820       if (OpNo == ZeroVecIdx && I == 0) {
4821         // If the first byte is zero, use mask as first operand.
4822         ZeroIdx = 0;
4823         break;
4824       }
4825       if (OpNo != ZeroVecIdx && Byte == 0) {
4826         // If mask contains a zero, use it by placing that vector first.
4827         ZeroIdx = I + SystemZ::VectorBytes;
4828         MaskFirst = false;
4829         break;
4830       }
4831     }
4832     if (ZeroIdx != -1) {
4833       SDValue IndexNodes[SystemZ::VectorBytes];
4834       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4835         if (Bytes[I] >= 0) {
4836           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4837           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4838           if (OpNo == ZeroVecIdx)
4839             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4840           else {
4841             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4842             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4843           }
4844         } else
4845           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4846       }
4847       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4848       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4849       if (MaskFirst)
4850         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4851                            Mask);
4852       else
4853         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4854                            Mask);
4855     }
4856   }
4857 
4858   SDValue IndexNodes[SystemZ::VectorBytes];
4859   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4860     if (Bytes[I] >= 0)
4861       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4862     else
4863       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4864   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4865   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4866                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4867 }
4868 
4869 namespace {
4870 // Describes a general N-operand vector shuffle.
4871 struct GeneralShuffle {
4872   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4873   void addUndef();
4874   bool add(SDValue, unsigned);
4875   SDValue getNode(SelectionDAG &, const SDLoc &);
4876   void tryPrepareForUnpack();
4877   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4878   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4879 
4880   // The operands of the shuffle.
4881   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4882 
4883   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4884   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4885   // Bytes[I] / SystemZ::VectorBytes.
4886   SmallVector<int, SystemZ::VectorBytes> Bytes;
4887 
4888   // The type of the shuffle result.
4889   EVT VT;
4890 
4891   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4892   unsigned UnpackFromEltSize;
4893 };
4894 }
4895 
4896 // Add an extra undefined element to the shuffle.
4897 void GeneralShuffle::addUndef() {
4898   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4899   for (unsigned I = 0; I < BytesPerElement; ++I)
4900     Bytes.push_back(-1);
4901 }
4902 
4903 // Add an extra element to the shuffle, taking it from element Elem of Op.
4904 // A null Op indicates a vector input whose value will be calculated later;
4905 // there is at most one such input per shuffle and it always has the same
4906 // type as the result. Aborts and returns false if the source vector elements
4907 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4908 // LLVM they become implicitly extended, but this is rare and not optimized.
4909 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4910   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4911 
4912   // The source vector can have wider elements than the result,
4913   // either through an explicit TRUNCATE or because of type legalization.
4914   // We want the least significant part.
4915   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4916   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4917 
4918   // Return false if the source elements are smaller than their destination
4919   // elements.
4920   if (FromBytesPerElement < BytesPerElement)
4921     return false;
4922 
4923   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4924                    (FromBytesPerElement - BytesPerElement));
4925 
4926   // Look through things like shuffles and bitcasts.
4927   while (Op.getNode()) {
4928     if (Op.getOpcode() == ISD::BITCAST)
4929       Op = Op.getOperand(0);
4930     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4931       // See whether the bytes we need come from a contiguous part of one
4932       // operand.
4933       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4934       if (!getVPermMask(Op, OpBytes))
4935         break;
4936       int NewByte;
4937       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4938         break;
4939       if (NewByte < 0) {
4940         addUndef();
4941         return true;
4942       }
4943       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4944       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4945     } else if (Op.isUndef()) {
4946       addUndef();
4947       return true;
4948     } else
4949       break;
4950   }
4951 
4952   // Make sure that the source of the extraction is in Ops.
4953   unsigned OpNo = 0;
4954   for (; OpNo < Ops.size(); ++OpNo)
4955     if (Ops[OpNo] == Op)
4956       break;
4957   if (OpNo == Ops.size())
4958     Ops.push_back(Op);
4959 
4960   // Add the element to Bytes.
4961   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4962   for (unsigned I = 0; I < BytesPerElement; ++I)
4963     Bytes.push_back(Base + I);
4964 
4965   return true;
4966 }
4967 
4968 // Return SDNodes for the completed shuffle.
4969 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4970   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4971 
4972   if (Ops.size() == 0)
4973     return DAG.getUNDEF(VT);
4974 
4975   // Use a single unpack if possible as the last operation.
4976   tryPrepareForUnpack();
4977 
4978   // Make sure that there are at least two shuffle operands.
4979   if (Ops.size() == 1)
4980     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4981 
4982   // Create a tree of shuffles, deferring root node until after the loop.
4983   // Try to redistribute the undefined elements of non-root nodes so that
4984   // the non-root shuffles match something like a pack or merge, then adjust
4985   // the parent node's permute vector to compensate for the new order.
4986   // Among other things, this copes with vectors like <2 x i16> that were
4987   // padded with undefined elements during type legalization.
4988   //
4989   // In the best case this redistribution will lead to the whole tree
4990   // using packs and merges.  It should rarely be a loss in other cases.
4991   unsigned Stride = 1;
4992   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4993     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4994       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4995 
4996       // Create a mask for just these two operands.
4997       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4998       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4999         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5000         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5001         if (OpNo == I)
5002           NewBytes[J] = Byte;
5003         else if (OpNo == I + Stride)
5004           NewBytes[J] = SystemZ::VectorBytes + Byte;
5005         else
5006           NewBytes[J] = -1;
5007       }
5008       // See if it would be better to reorganize NewMask to avoid using VPERM.
5009       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5010       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5011         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5012         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5013         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5014           if (NewBytes[J] >= 0) {
5015             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5016                    "Invalid double permute");
5017             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5018           } else
5019             assert(NewBytesMap[J] < 0 && "Invalid double permute");
5020         }
5021       } else {
5022         // Just use NewBytes on the operands.
5023         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5024         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5025           if (NewBytes[J] >= 0)
5026             Bytes[J] = I * SystemZ::VectorBytes + J;
5027       }
5028     }
5029   }
5030 
5031   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5032   if (Stride > 1) {
5033     Ops[1] = Ops[Stride];
5034     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5035       if (Bytes[I] >= int(SystemZ::VectorBytes))
5036         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5037   }
5038 
5039   // Look for an instruction that can do the permute without resorting
5040   // to VPERM.
5041   unsigned OpNo0, OpNo1;
5042   SDValue Op;
5043   if (unpackWasPrepared() && Ops[1].isUndef())
5044     Op = Ops[0];
5045   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5046     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5047   else
5048     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5049 
5050   Op = insertUnpackIfPrepared(DAG, DL, Op);
5051 
5052   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5053 }
5054 
5055 #ifndef NDEBUG
5056 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5057   dbgs() << Msg.c_str() << " { ";
5058   for (unsigned i = 0; i < Bytes.size(); i++)
5059     dbgs() << Bytes[i] << " ";
5060   dbgs() << "}\n";
5061 }
5062 #endif
5063 
5064 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5065 // after all else by removing the zero vector and the effect of the unpack on
5066 // Bytes.
5067 void GeneralShuffle::tryPrepareForUnpack() {
5068   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5069   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5070     return;
5071 
5072   // Only do this if removing the zero vector reduces the depth, otherwise
5073   // the critical path will increase with the final unpack.
5074   if (Ops.size() > 2 &&
5075       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5076     return;
5077 
5078   // Find an unpack that would allow removing the zero vector from Ops.
5079   UnpackFromEltSize = 1;
5080   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5081     bool MatchUnpack = true;
5082     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5083     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5084       unsigned ToEltSize = UnpackFromEltSize * 2;
5085       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5086       if (!IsZextByte)
5087         SrcBytes.push_back(Bytes[Elt]);
5088       if (Bytes[Elt] != -1) {
5089         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5090         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5091           MatchUnpack = false;
5092           break;
5093         }
5094       }
5095     }
5096     if (MatchUnpack) {
5097       if (Ops.size() == 2) {
5098         // Don't use unpack if a single source operand needs rearrangement.
5099         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5100           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5101             UnpackFromEltSize = UINT_MAX;
5102             return;
5103           }
5104       }
5105       break;
5106     }
5107   }
5108   if (UnpackFromEltSize > 4)
5109     return;
5110 
5111   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5112              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5113              << ".\n";
5114              dumpBytes(Bytes, "Original Bytes vector:"););
5115 
5116   // Apply the unpack in reverse to the Bytes array.
5117   unsigned B = 0;
5118   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5119     Elt += UnpackFromEltSize;
5120     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5121       Bytes[B] = Bytes[Elt];
5122   }
5123   while (B < SystemZ::VectorBytes)
5124     Bytes[B++] = -1;
5125 
5126   // Remove the zero vector from Ops
5127   Ops.erase(&Ops[ZeroVecOpNo]);
5128   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5129     if (Bytes[I] >= 0) {
5130       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5131       if (OpNo > ZeroVecOpNo)
5132         Bytes[I] -= SystemZ::VectorBytes;
5133     }
5134 
5135   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5136              dbgs() << "\n";);
5137 }
5138 
5139 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5140                                                const SDLoc &DL,
5141                                                SDValue Op) {
5142   if (!unpackWasPrepared())
5143     return Op;
5144   unsigned InBits = UnpackFromEltSize * 8;
5145   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5146                                 SystemZ::VectorBits / InBits);
5147   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5148   unsigned OutBits = InBits * 2;
5149   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5150                                SystemZ::VectorBits / OutBits);
5151   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5152 }
5153 
5154 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5155 static bool isScalarToVector(SDValue Op) {
5156   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5157     if (!Op.getOperand(I).isUndef())
5158       return false;
5159   return true;
5160 }
5161 
5162 // Return a vector of type VT that contains Value in the first element.
5163 // The other elements don't matter.
5164 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5165                                    SDValue Value) {
5166   // If we have a constant, replicate it to all elements and let the
5167   // BUILD_VECTOR lowering take care of it.
5168   if (Value.getOpcode() == ISD::Constant ||
5169       Value.getOpcode() == ISD::ConstantFP) {
5170     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5171     return DAG.getBuildVector(VT, DL, Ops);
5172   }
5173   if (Value.isUndef())
5174     return DAG.getUNDEF(VT);
5175   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5176 }
5177 
5178 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5179 // element 1.  Used for cases in which replication is cheap.
5180 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5181                                  SDValue Op0, SDValue Op1) {
5182   if (Op0.isUndef()) {
5183     if (Op1.isUndef())
5184       return DAG.getUNDEF(VT);
5185     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5186   }
5187   if (Op1.isUndef())
5188     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5189   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5190                      buildScalarToVector(DAG, DL, VT, Op0),
5191                      buildScalarToVector(DAG, DL, VT, Op1));
5192 }
5193 
5194 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5195 // vector for them.
5196 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5197                           SDValue Op1) {
5198   if (Op0.isUndef() && Op1.isUndef())
5199     return DAG.getUNDEF(MVT::v2i64);
5200   // If one of the two inputs is undefined then replicate the other one,
5201   // in order to avoid using another register unnecessarily.
5202   if (Op0.isUndef())
5203     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5204   else if (Op1.isUndef())
5205     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5206   else {
5207     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5208     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5209   }
5210   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5211 }
5212 
5213 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5214 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5215 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5216 // would benefit from this representation and return it if so.
5217 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5218                                      BuildVectorSDNode *BVN) {
5219   EVT VT = BVN->getValueType(0);
5220   unsigned NumElements = VT.getVectorNumElements();
5221 
5222   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5223   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5224   // need a BUILD_VECTOR, add an additional placeholder operand for that
5225   // BUILD_VECTOR and store its operands in ResidueOps.
5226   GeneralShuffle GS(VT);
5227   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5228   bool FoundOne = false;
5229   for (unsigned I = 0; I < NumElements; ++I) {
5230     SDValue Op = BVN->getOperand(I);
5231     if (Op.getOpcode() == ISD::TRUNCATE)
5232       Op = Op.getOperand(0);
5233     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5234         Op.getOperand(1).getOpcode() == ISD::Constant) {
5235       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5236       if (!GS.add(Op.getOperand(0), Elem))
5237         return SDValue();
5238       FoundOne = true;
5239     } else if (Op.isUndef()) {
5240       GS.addUndef();
5241     } else {
5242       if (!GS.add(SDValue(), ResidueOps.size()))
5243         return SDValue();
5244       ResidueOps.push_back(BVN->getOperand(I));
5245     }
5246   }
5247 
5248   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5249   if (!FoundOne)
5250     return SDValue();
5251 
5252   // Create the BUILD_VECTOR for the remaining elements, if any.
5253   if (!ResidueOps.empty()) {
5254     while (ResidueOps.size() < NumElements)
5255       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5256     for (auto &Op : GS.Ops) {
5257       if (!Op.getNode()) {
5258         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5259         break;
5260       }
5261     }
5262   }
5263   return GS.getNode(DAG, SDLoc(BVN));
5264 }
5265 
5266 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5267   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5268     return true;
5269   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5270     return true;
5271   return false;
5272 }
5273 
5274 // Combine GPR scalar values Elems into a vector of type VT.
5275 SDValue
5276 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5277                                    SmallVectorImpl<SDValue> &Elems) const {
5278   // See whether there is a single replicated value.
5279   SDValue Single;
5280   unsigned int NumElements = Elems.size();
5281   unsigned int Count = 0;
5282   for (auto Elem : Elems) {
5283     if (!Elem.isUndef()) {
5284       if (!Single.getNode())
5285         Single = Elem;
5286       else if (Elem != Single) {
5287         Single = SDValue();
5288         break;
5289       }
5290       Count += 1;
5291     }
5292   }
5293   // There are three cases here:
5294   //
5295   // - if the only defined element is a loaded one, the best sequence
5296   //   is a replicating load.
5297   //
5298   // - otherwise, if the only defined element is an i64 value, we will
5299   //   end up with the same VLVGP sequence regardless of whether we short-cut
5300   //   for replication or fall through to the later code.
5301   //
5302   // - otherwise, if the only defined element is an i32 or smaller value,
5303   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5304   //   This is only a win if the single defined element is used more than once.
5305   //   In other cases we're better off using a single VLVGx.
5306   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5307     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5308 
5309   // If all elements are loads, use VLREP/VLEs (below).
5310   bool AllLoads = true;
5311   for (auto Elem : Elems)
5312     if (!isVectorElementLoad(Elem)) {
5313       AllLoads = false;
5314       break;
5315     }
5316 
5317   // The best way of building a v2i64 from two i64s is to use VLVGP.
5318   if (VT == MVT::v2i64 && !AllLoads)
5319     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5320 
5321   // Use a 64-bit merge high to combine two doubles.
5322   if (VT == MVT::v2f64 && !AllLoads)
5323     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5324 
5325   // Build v4f32 values directly from the FPRs:
5326   //
5327   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5328   //         V              V         VMRHF
5329   //      <ABxx>         <CDxx>
5330   //                V                 VMRHG
5331   //              <ABCD>
5332   if (VT == MVT::v4f32 && !AllLoads) {
5333     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5334     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5335     // Avoid unnecessary undefs by reusing the other operand.
5336     if (Op01.isUndef())
5337       Op01 = Op23;
5338     else if (Op23.isUndef())
5339       Op23 = Op01;
5340     // Merging identical replications is a no-op.
5341     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5342       return Op01;
5343     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5344     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5345     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5346                              DL, MVT::v2i64, Op01, Op23);
5347     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5348   }
5349 
5350   // Collect the constant terms.
5351   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5352   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5353 
5354   unsigned NumConstants = 0;
5355   for (unsigned I = 0; I < NumElements; ++I) {
5356     SDValue Elem = Elems[I];
5357     if (Elem.getOpcode() == ISD::Constant ||
5358         Elem.getOpcode() == ISD::ConstantFP) {
5359       NumConstants += 1;
5360       Constants[I] = Elem;
5361       Done[I] = true;
5362     }
5363   }
5364   // If there was at least one constant, fill in the other elements of
5365   // Constants with undefs to get a full vector constant and use that
5366   // as the starting point.
5367   SDValue Result;
5368   SDValue ReplicatedVal;
5369   if (NumConstants > 0) {
5370     for (unsigned I = 0; I < NumElements; ++I)
5371       if (!Constants[I].getNode())
5372         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5373     Result = DAG.getBuildVector(VT, DL, Constants);
5374   } else {
5375     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5376     // avoid a false dependency on any previous contents of the vector
5377     // register.
5378 
5379     // Use a VLREP if at least one element is a load. Make sure to replicate
5380     // the load with the most elements having its value.
5381     std::map<const SDNode*, unsigned> UseCounts;
5382     SDNode *LoadMaxUses = nullptr;
5383     for (unsigned I = 0; I < NumElements; ++I)
5384       if (isVectorElementLoad(Elems[I])) {
5385         SDNode *Ld = Elems[I].getNode();
5386         UseCounts[Ld]++;
5387         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5388           LoadMaxUses = Ld;
5389       }
5390     if (LoadMaxUses != nullptr) {
5391       ReplicatedVal = SDValue(LoadMaxUses, 0);
5392       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5393     } else {
5394       // Try to use VLVGP.
5395       unsigned I1 = NumElements / 2 - 1;
5396       unsigned I2 = NumElements - 1;
5397       bool Def1 = !Elems[I1].isUndef();
5398       bool Def2 = !Elems[I2].isUndef();
5399       if (Def1 || Def2) {
5400         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5401         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5402         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5403                              joinDwords(DAG, DL, Elem1, Elem2));
5404         Done[I1] = true;
5405         Done[I2] = true;
5406       } else
5407         Result = DAG.getUNDEF(VT);
5408     }
5409   }
5410 
5411   // Use VLVGx to insert the other elements.
5412   for (unsigned I = 0; I < NumElements; ++I)
5413     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5414       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5415                            DAG.getConstant(I, DL, MVT::i32));
5416   return Result;
5417 }
5418 
5419 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5420                                                  SelectionDAG &DAG) const {
5421   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5422   SDLoc DL(Op);
5423   EVT VT = Op.getValueType();
5424 
5425   if (BVN->isConstant()) {
5426     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5427       return Op;
5428 
5429     // Fall back to loading it from memory.
5430     return SDValue();
5431   }
5432 
5433   // See if we should use shuffles to construct the vector from other vectors.
5434   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5435     return Res;
5436 
5437   // Detect SCALAR_TO_VECTOR conversions.
5438   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5439     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5440 
5441   // Otherwise use buildVector to build the vector up from GPRs.
5442   unsigned NumElements = Op.getNumOperands();
5443   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5444   for (unsigned I = 0; I < NumElements; ++I)
5445     Ops[I] = Op.getOperand(I);
5446   return buildVector(DAG, DL, VT, Ops);
5447 }
5448 
5449 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5450                                                    SelectionDAG &DAG) const {
5451   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5452   SDLoc DL(Op);
5453   EVT VT = Op.getValueType();
5454   unsigned NumElements = VT.getVectorNumElements();
5455 
5456   if (VSN->isSplat()) {
5457     SDValue Op0 = Op.getOperand(0);
5458     unsigned Index = VSN->getSplatIndex();
5459     assert(Index < VT.getVectorNumElements() &&
5460            "Splat index should be defined and in first operand");
5461     // See whether the value we're splatting is directly available as a scalar.
5462     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5463         Op0.getOpcode() == ISD::BUILD_VECTOR)
5464       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5465     // Otherwise keep it as a vector-to-vector operation.
5466     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5467                        DAG.getTargetConstant(Index, DL, MVT::i32));
5468   }
5469 
5470   GeneralShuffle GS(VT);
5471   for (unsigned I = 0; I < NumElements; ++I) {
5472     int Elt = VSN->getMaskElt(I);
5473     if (Elt < 0)
5474       GS.addUndef();
5475     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5476                      unsigned(Elt) % NumElements))
5477       return SDValue();
5478   }
5479   return GS.getNode(DAG, SDLoc(VSN));
5480 }
5481 
5482 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5483                                                      SelectionDAG &DAG) const {
5484   SDLoc DL(Op);
5485   // Just insert the scalar into element 0 of an undefined vector.
5486   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5487                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5488                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5489 }
5490 
5491 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5492                                                       SelectionDAG &DAG) const {
5493   // Handle insertions of floating-point values.
5494   SDLoc DL(Op);
5495   SDValue Op0 = Op.getOperand(0);
5496   SDValue Op1 = Op.getOperand(1);
5497   SDValue Op2 = Op.getOperand(2);
5498   EVT VT = Op.getValueType();
5499 
5500   // Insertions into constant indices of a v2f64 can be done using VPDI.
5501   // However, if the inserted value is a bitcast or a constant then it's
5502   // better to use GPRs, as below.
5503   if (VT == MVT::v2f64 &&
5504       Op1.getOpcode() != ISD::BITCAST &&
5505       Op1.getOpcode() != ISD::ConstantFP &&
5506       Op2.getOpcode() == ISD::Constant) {
5507     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5508     unsigned Mask = VT.getVectorNumElements() - 1;
5509     if (Index <= Mask)
5510       return Op;
5511   }
5512 
5513   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5514   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5515   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5516   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5517                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5518                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5519   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5520 }
5521 
5522 SDValue
5523 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5524                                                SelectionDAG &DAG) const {
5525   // Handle extractions of floating-point values.
5526   SDLoc DL(Op);
5527   SDValue Op0 = Op.getOperand(0);
5528   SDValue Op1 = Op.getOperand(1);
5529   EVT VT = Op.getValueType();
5530   EVT VecVT = Op0.getValueType();
5531 
5532   // Extractions of constant indices can be done directly.
5533   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5534     uint64_t Index = CIndexN->getZExtValue();
5535     unsigned Mask = VecVT.getVectorNumElements() - 1;
5536     if (Index <= Mask)
5537       return Op;
5538   }
5539 
5540   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5541   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5542   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5543   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5544                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5545   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5546 }
5547 
5548 SDValue SystemZTargetLowering::
5549 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5550   SDValue PackedOp = Op.getOperand(0);
5551   EVT OutVT = Op.getValueType();
5552   EVT InVT = PackedOp.getValueType();
5553   unsigned ToBits = OutVT.getScalarSizeInBits();
5554   unsigned FromBits = InVT.getScalarSizeInBits();
5555   do {
5556     FromBits *= 2;
5557     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5558                                  SystemZ::VectorBits / FromBits);
5559     PackedOp =
5560       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5561   } while (FromBits != ToBits);
5562   return PackedOp;
5563 }
5564 
5565 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5566 SDValue SystemZTargetLowering::
5567 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5568   SDValue PackedOp = Op.getOperand(0);
5569   SDLoc DL(Op);
5570   EVT OutVT = Op.getValueType();
5571   EVT InVT = PackedOp.getValueType();
5572   unsigned InNumElts = InVT.getVectorNumElements();
5573   unsigned OutNumElts = OutVT.getVectorNumElements();
5574   unsigned NumInPerOut = InNumElts / OutNumElts;
5575 
5576   SDValue ZeroVec =
5577     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5578 
5579   SmallVector<int, 16> Mask(InNumElts);
5580   unsigned ZeroVecElt = InNumElts;
5581   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5582     unsigned MaskElt = PackedElt * NumInPerOut;
5583     unsigned End = MaskElt + NumInPerOut - 1;
5584     for (; MaskElt < End; MaskElt++)
5585       Mask[MaskElt] = ZeroVecElt++;
5586     Mask[MaskElt] = PackedElt;
5587   }
5588   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5589   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5590 }
5591 
5592 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5593                                           unsigned ByScalar) const {
5594   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5595   SDValue Op0 = Op.getOperand(0);
5596   SDValue Op1 = Op.getOperand(1);
5597   SDLoc DL(Op);
5598   EVT VT = Op.getValueType();
5599   unsigned ElemBitSize = VT.getScalarSizeInBits();
5600 
5601   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5602   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5603     APInt SplatBits, SplatUndef;
5604     unsigned SplatBitSize;
5605     bool HasAnyUndefs;
5606     // Check for constant splats.  Use ElemBitSize as the minimum element
5607     // width and reject splats that need wider elements.
5608     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5609                              ElemBitSize, true) &&
5610         SplatBitSize == ElemBitSize) {
5611       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5612                                       DL, MVT::i32);
5613       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5614     }
5615     // Check for variable splats.
5616     BitVector UndefElements;
5617     SDValue Splat = BVN->getSplatValue(&UndefElements);
5618     if (Splat) {
5619       // Since i32 is the smallest legal type, we either need a no-op
5620       // or a truncation.
5621       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5622       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5623     }
5624   }
5625 
5626   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5627   // and the shift amount is directly available in a GPR.
5628   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5629     if (VSN->isSplat()) {
5630       SDValue VSNOp0 = VSN->getOperand(0);
5631       unsigned Index = VSN->getSplatIndex();
5632       assert(Index < VT.getVectorNumElements() &&
5633              "Splat index should be defined and in first operand");
5634       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5635           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5636         // Since i32 is the smallest legal type, we either need a no-op
5637         // or a truncation.
5638         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5639                                     VSNOp0.getOperand(Index));
5640         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5641       }
5642     }
5643   }
5644 
5645   // Otherwise just treat the current form as legal.
5646   return Op;
5647 }
5648 
5649 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
5650                                                SelectionDAG &DAG) const {
5651   SDLoc DL(Op);
5652   MVT ResultVT = Op.getSimpleValueType();
5653   SDValue Arg = Op.getOperand(0);
5654   auto CNode = cast<ConstantSDNode>(Op.getOperand(1));
5655   unsigned Check = CNode->getZExtValue();
5656 
5657   unsigned TDCMask = 0;
5658   if (Check & fcSNan)
5659     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
5660   if (Check & fcQNan)
5661     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
5662   if (Check & fcPosInf)
5663     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
5664   if (Check & fcNegInf)
5665     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
5666   if (Check & fcPosNormal)
5667     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
5668   if (Check & fcNegNormal)
5669     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
5670   if (Check & fcPosSubnormal)
5671     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
5672   if (Check & fcNegSubnormal)
5673     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
5674   if (Check & fcPosZero)
5675     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
5676   if (Check & fcNegZero)
5677     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
5678   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
5679 
5680   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
5681   return getCCResult(DAG, Intr);
5682 }
5683 
5684 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5685                                               SelectionDAG &DAG) const {
5686   switch (Op.getOpcode()) {
5687   case ISD::FRAMEADDR:
5688     return lowerFRAMEADDR(Op, DAG);
5689   case ISD::RETURNADDR:
5690     return lowerRETURNADDR(Op, DAG);
5691   case ISD::BR_CC:
5692     return lowerBR_CC(Op, DAG);
5693   case ISD::SELECT_CC:
5694     return lowerSELECT_CC(Op, DAG);
5695   case ISD::SETCC:
5696     return lowerSETCC(Op, DAG);
5697   case ISD::STRICT_FSETCC:
5698     return lowerSTRICT_FSETCC(Op, DAG, false);
5699   case ISD::STRICT_FSETCCS:
5700     return lowerSTRICT_FSETCC(Op, DAG, true);
5701   case ISD::GlobalAddress:
5702     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5703   case ISD::GlobalTLSAddress:
5704     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5705   case ISD::BlockAddress:
5706     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5707   case ISD::JumpTable:
5708     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5709   case ISD::ConstantPool:
5710     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5711   case ISD::BITCAST:
5712     return lowerBITCAST(Op, DAG);
5713   case ISD::VASTART:
5714     return lowerVASTART(Op, DAG);
5715   case ISD::VACOPY:
5716     return lowerVACOPY(Op, DAG);
5717   case ISD::DYNAMIC_STACKALLOC:
5718     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5719   case ISD::GET_DYNAMIC_AREA_OFFSET:
5720     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5721   case ISD::SMUL_LOHI:
5722     return lowerSMUL_LOHI(Op, DAG);
5723   case ISD::UMUL_LOHI:
5724     return lowerUMUL_LOHI(Op, DAG);
5725   case ISD::SDIVREM:
5726     return lowerSDIVREM(Op, DAG);
5727   case ISD::UDIVREM:
5728     return lowerUDIVREM(Op, DAG);
5729   case ISD::SADDO:
5730   case ISD::SSUBO:
5731   case ISD::UADDO:
5732   case ISD::USUBO:
5733     return lowerXALUO(Op, DAG);
5734   case ISD::ADDCARRY:
5735   case ISD::SUBCARRY:
5736     return lowerADDSUBCARRY(Op, DAG);
5737   case ISD::OR:
5738     return lowerOR(Op, DAG);
5739   case ISD::CTPOP:
5740     return lowerCTPOP(Op, DAG);
5741   case ISD::ATOMIC_FENCE:
5742     return lowerATOMIC_FENCE(Op, DAG);
5743   case ISD::ATOMIC_SWAP:
5744     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5745   case ISD::ATOMIC_STORE:
5746     return lowerATOMIC_STORE(Op, DAG);
5747   case ISD::ATOMIC_LOAD:
5748     return lowerATOMIC_LOAD(Op, DAG);
5749   case ISD::ATOMIC_LOAD_ADD:
5750     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5751   case ISD::ATOMIC_LOAD_SUB:
5752     return lowerATOMIC_LOAD_SUB(Op, DAG);
5753   case ISD::ATOMIC_LOAD_AND:
5754     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5755   case ISD::ATOMIC_LOAD_OR:
5756     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5757   case ISD::ATOMIC_LOAD_XOR:
5758     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5759   case ISD::ATOMIC_LOAD_NAND:
5760     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5761   case ISD::ATOMIC_LOAD_MIN:
5762     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5763   case ISD::ATOMIC_LOAD_MAX:
5764     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5765   case ISD::ATOMIC_LOAD_UMIN:
5766     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5767   case ISD::ATOMIC_LOAD_UMAX:
5768     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5769   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5770     return lowerATOMIC_CMP_SWAP(Op, DAG);
5771   case ISD::STACKSAVE:
5772     return lowerSTACKSAVE(Op, DAG);
5773   case ISD::STACKRESTORE:
5774     return lowerSTACKRESTORE(Op, DAG);
5775   case ISD::PREFETCH:
5776     return lowerPREFETCH(Op, DAG);
5777   case ISD::INTRINSIC_W_CHAIN:
5778     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5779   case ISD::INTRINSIC_WO_CHAIN:
5780     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5781   case ISD::BUILD_VECTOR:
5782     return lowerBUILD_VECTOR(Op, DAG);
5783   case ISD::VECTOR_SHUFFLE:
5784     return lowerVECTOR_SHUFFLE(Op, DAG);
5785   case ISD::SCALAR_TO_VECTOR:
5786     return lowerSCALAR_TO_VECTOR(Op, DAG);
5787   case ISD::INSERT_VECTOR_ELT:
5788     return lowerINSERT_VECTOR_ELT(Op, DAG);
5789   case ISD::EXTRACT_VECTOR_ELT:
5790     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5791   case ISD::SIGN_EXTEND_VECTOR_INREG:
5792     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5793   case ISD::ZERO_EXTEND_VECTOR_INREG:
5794     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5795   case ISD::SHL:
5796     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5797   case ISD::SRL:
5798     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5799   case ISD::SRA:
5800     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5801   case ISD::IS_FPCLASS:
5802     return lowerIS_FPCLASS(Op, DAG);
5803   default:
5804     llvm_unreachable("Unexpected node to lower");
5805   }
5806 }
5807 
5808 // Lower operations with invalid operand or result types (currently used
5809 // only for 128-bit integer types).
5810 void
5811 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5812                                              SmallVectorImpl<SDValue> &Results,
5813                                              SelectionDAG &DAG) const {
5814   switch (N->getOpcode()) {
5815   case ISD::ATOMIC_LOAD: {
5816     SDLoc DL(N);
5817     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5818     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5819     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5820     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5821                                           DL, Tys, Ops, MVT::i128, MMO);
5822     Results.push_back(lowerGR128ToI128(DAG, Res));
5823     Results.push_back(Res.getValue(1));
5824     break;
5825   }
5826   case ISD::ATOMIC_STORE: {
5827     SDLoc DL(N);
5828     SDVTList Tys = DAG.getVTList(MVT::Other);
5829     SDValue Ops[] = { N->getOperand(0),
5830                       lowerI128ToGR128(DAG, N->getOperand(2)),
5831                       N->getOperand(1) };
5832     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5833     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5834                                           DL, Tys, Ops, MVT::i128, MMO);
5835     // We have to enforce sequential consistency by performing a
5836     // serialization operation after the store.
5837     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5838         AtomicOrdering::SequentiallyConsistent)
5839       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5840                                        MVT::Other, Res), 0);
5841     Results.push_back(Res);
5842     break;
5843   }
5844   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5845     SDLoc DL(N);
5846     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5847     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5848                       lowerI128ToGR128(DAG, N->getOperand(2)),
5849                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5850     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5851     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5852                                           DL, Tys, Ops, MVT::i128, MMO);
5853     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5854                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5855     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5856     Results.push_back(lowerGR128ToI128(DAG, Res));
5857     Results.push_back(Success);
5858     Results.push_back(Res.getValue(2));
5859     break;
5860   }
5861   case ISD::BITCAST: {
5862     SDValue Src = N->getOperand(0);
5863     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5864         !useSoftFloat()) {
5865       SDLoc DL(N);
5866       SDValue Lo, Hi;
5867       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5868         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5869         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5870                          DAG.getConstant(1, DL, MVT::i32));
5871         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5872                          DAG.getConstant(0, DL, MVT::i32));
5873       } else {
5874         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5875                "Unrecognized register class for f128.");
5876         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5877                                                   DL, MVT::f64, Src);
5878         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5879                                                   DL, MVT::f64, Src);
5880         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5881         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5882       }
5883       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5884     }
5885     break;
5886   }
5887   default:
5888     llvm_unreachable("Unexpected node to lower");
5889   }
5890 }
5891 
5892 void
5893 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5894                                           SmallVectorImpl<SDValue> &Results,
5895                                           SelectionDAG &DAG) const {
5896   return LowerOperationWrapper(N, Results, DAG);
5897 }
5898 
5899 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5900 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5901   switch ((SystemZISD::NodeType)Opcode) {
5902     case SystemZISD::FIRST_NUMBER: break;
5903     OPCODE(RET_FLAG);
5904     OPCODE(CALL);
5905     OPCODE(SIBCALL);
5906     OPCODE(TLS_GDCALL);
5907     OPCODE(TLS_LDCALL);
5908     OPCODE(PCREL_WRAPPER);
5909     OPCODE(PCREL_OFFSET);
5910     OPCODE(ICMP);
5911     OPCODE(FCMP);
5912     OPCODE(STRICT_FCMP);
5913     OPCODE(STRICT_FCMPS);
5914     OPCODE(TM);
5915     OPCODE(BR_CCMASK);
5916     OPCODE(SELECT_CCMASK);
5917     OPCODE(ADJDYNALLOC);
5918     OPCODE(PROBED_ALLOCA);
5919     OPCODE(POPCNT);
5920     OPCODE(SMUL_LOHI);
5921     OPCODE(UMUL_LOHI);
5922     OPCODE(SDIVREM);
5923     OPCODE(UDIVREM);
5924     OPCODE(SADDO);
5925     OPCODE(SSUBO);
5926     OPCODE(UADDO);
5927     OPCODE(USUBO);
5928     OPCODE(ADDCARRY);
5929     OPCODE(SUBCARRY);
5930     OPCODE(GET_CCMASK);
5931     OPCODE(MVC);
5932     OPCODE(NC);
5933     OPCODE(OC);
5934     OPCODE(XC);
5935     OPCODE(CLC);
5936     OPCODE(MEMSET_MVC);
5937     OPCODE(STPCPY);
5938     OPCODE(STRCMP);
5939     OPCODE(SEARCH_STRING);
5940     OPCODE(IPM);
5941     OPCODE(MEMBARRIER);
5942     OPCODE(TBEGIN);
5943     OPCODE(TBEGIN_NOFLOAT);
5944     OPCODE(TEND);
5945     OPCODE(BYTE_MASK);
5946     OPCODE(ROTATE_MASK);
5947     OPCODE(REPLICATE);
5948     OPCODE(JOIN_DWORDS);
5949     OPCODE(SPLAT);
5950     OPCODE(MERGE_HIGH);
5951     OPCODE(MERGE_LOW);
5952     OPCODE(SHL_DOUBLE);
5953     OPCODE(PERMUTE_DWORDS);
5954     OPCODE(PERMUTE);
5955     OPCODE(PACK);
5956     OPCODE(PACKS_CC);
5957     OPCODE(PACKLS_CC);
5958     OPCODE(UNPACK_HIGH);
5959     OPCODE(UNPACKL_HIGH);
5960     OPCODE(UNPACK_LOW);
5961     OPCODE(UNPACKL_LOW);
5962     OPCODE(VSHL_BY_SCALAR);
5963     OPCODE(VSRL_BY_SCALAR);
5964     OPCODE(VSRA_BY_SCALAR);
5965     OPCODE(VSUM);
5966     OPCODE(VICMPE);
5967     OPCODE(VICMPH);
5968     OPCODE(VICMPHL);
5969     OPCODE(VICMPES);
5970     OPCODE(VICMPHS);
5971     OPCODE(VICMPHLS);
5972     OPCODE(VFCMPE);
5973     OPCODE(STRICT_VFCMPE);
5974     OPCODE(STRICT_VFCMPES);
5975     OPCODE(VFCMPH);
5976     OPCODE(STRICT_VFCMPH);
5977     OPCODE(STRICT_VFCMPHS);
5978     OPCODE(VFCMPHE);
5979     OPCODE(STRICT_VFCMPHE);
5980     OPCODE(STRICT_VFCMPHES);
5981     OPCODE(VFCMPES);
5982     OPCODE(VFCMPHS);
5983     OPCODE(VFCMPHES);
5984     OPCODE(VFTCI);
5985     OPCODE(VEXTEND);
5986     OPCODE(STRICT_VEXTEND);
5987     OPCODE(VROUND);
5988     OPCODE(STRICT_VROUND);
5989     OPCODE(VTM);
5990     OPCODE(VFAE_CC);
5991     OPCODE(VFAEZ_CC);
5992     OPCODE(VFEE_CC);
5993     OPCODE(VFEEZ_CC);
5994     OPCODE(VFENE_CC);
5995     OPCODE(VFENEZ_CC);
5996     OPCODE(VISTR_CC);
5997     OPCODE(VSTRC_CC);
5998     OPCODE(VSTRCZ_CC);
5999     OPCODE(VSTRS_CC);
6000     OPCODE(VSTRSZ_CC);
6001     OPCODE(TDC);
6002     OPCODE(ATOMIC_SWAPW);
6003     OPCODE(ATOMIC_LOADW_ADD);
6004     OPCODE(ATOMIC_LOADW_SUB);
6005     OPCODE(ATOMIC_LOADW_AND);
6006     OPCODE(ATOMIC_LOADW_OR);
6007     OPCODE(ATOMIC_LOADW_XOR);
6008     OPCODE(ATOMIC_LOADW_NAND);
6009     OPCODE(ATOMIC_LOADW_MIN);
6010     OPCODE(ATOMIC_LOADW_MAX);
6011     OPCODE(ATOMIC_LOADW_UMIN);
6012     OPCODE(ATOMIC_LOADW_UMAX);
6013     OPCODE(ATOMIC_CMP_SWAPW);
6014     OPCODE(ATOMIC_CMP_SWAP);
6015     OPCODE(ATOMIC_LOAD_128);
6016     OPCODE(ATOMIC_STORE_128);
6017     OPCODE(ATOMIC_CMP_SWAP_128);
6018     OPCODE(LRV);
6019     OPCODE(STRV);
6020     OPCODE(VLER);
6021     OPCODE(VSTER);
6022     OPCODE(PREFETCH);
6023   }
6024   return nullptr;
6025 #undef OPCODE
6026 }
6027 
6028 // Return true if VT is a vector whose elements are a whole number of bytes
6029 // in width. Also check for presence of vector support.
6030 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6031   if (!Subtarget.hasVector())
6032     return false;
6033 
6034   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6035 }
6036 
6037 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6038 // producing a result of type ResVT.  Op is a possibly bitcast version
6039 // of the input vector and Index is the index (based on type VecVT) that
6040 // should be extracted.  Return the new extraction if a simplification
6041 // was possible or if Force is true.
6042 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6043                                               EVT VecVT, SDValue Op,
6044                                               unsigned Index,
6045                                               DAGCombinerInfo &DCI,
6046                                               bool Force) const {
6047   SelectionDAG &DAG = DCI.DAG;
6048 
6049   // The number of bytes being extracted.
6050   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6051 
6052   for (;;) {
6053     unsigned Opcode = Op.getOpcode();
6054     if (Opcode == ISD::BITCAST)
6055       // Look through bitcasts.
6056       Op = Op.getOperand(0);
6057     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6058              canTreatAsByteVector(Op.getValueType())) {
6059       // Get a VPERM-like permute mask and see whether the bytes covered
6060       // by the extracted element are a contiguous sequence from one
6061       // source operand.
6062       SmallVector<int, SystemZ::VectorBytes> Bytes;
6063       if (!getVPermMask(Op, Bytes))
6064         break;
6065       int First;
6066       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6067                            BytesPerElement, First))
6068         break;
6069       if (First < 0)
6070         return DAG.getUNDEF(ResVT);
6071       // Make sure the contiguous sequence starts at a multiple of the
6072       // original element size.
6073       unsigned Byte = unsigned(First) % Bytes.size();
6074       if (Byte % BytesPerElement != 0)
6075         break;
6076       // We can get the extracted value directly from an input.
6077       Index = Byte / BytesPerElement;
6078       Op = Op.getOperand(unsigned(First) / Bytes.size());
6079       Force = true;
6080     } else if (Opcode == ISD::BUILD_VECTOR &&
6081                canTreatAsByteVector(Op.getValueType())) {
6082       // We can only optimize this case if the BUILD_VECTOR elements are
6083       // at least as wide as the extracted value.
6084       EVT OpVT = Op.getValueType();
6085       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6086       if (OpBytesPerElement < BytesPerElement)
6087         break;
6088       // Make sure that the least-significant bit of the extracted value
6089       // is the least significant bit of an input.
6090       unsigned End = (Index + 1) * BytesPerElement;
6091       if (End % OpBytesPerElement != 0)
6092         break;
6093       // We're extracting the low part of one operand of the BUILD_VECTOR.
6094       Op = Op.getOperand(End / OpBytesPerElement - 1);
6095       if (!Op.getValueType().isInteger()) {
6096         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6097         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6098         DCI.AddToWorklist(Op.getNode());
6099       }
6100       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6101       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6102       if (VT != ResVT) {
6103         DCI.AddToWorklist(Op.getNode());
6104         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6105       }
6106       return Op;
6107     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6108                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6109                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6110                canTreatAsByteVector(Op.getValueType()) &&
6111                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6112       // Make sure that only the unextended bits are significant.
6113       EVT ExtVT = Op.getValueType();
6114       EVT OpVT = Op.getOperand(0).getValueType();
6115       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6116       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6117       unsigned Byte = Index * BytesPerElement;
6118       unsigned SubByte = Byte % ExtBytesPerElement;
6119       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6120       if (SubByte < MinSubByte ||
6121           SubByte + BytesPerElement > ExtBytesPerElement)
6122         break;
6123       // Get the byte offset of the unextended element
6124       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6125       // ...then add the byte offset relative to that element.
6126       Byte += SubByte - MinSubByte;
6127       if (Byte % BytesPerElement != 0)
6128         break;
6129       Op = Op.getOperand(0);
6130       Index = Byte / BytesPerElement;
6131       Force = true;
6132     } else
6133       break;
6134   }
6135   if (Force) {
6136     if (Op.getValueType() != VecVT) {
6137       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6138       DCI.AddToWorklist(Op.getNode());
6139     }
6140     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6141                        DAG.getConstant(Index, DL, MVT::i32));
6142   }
6143   return SDValue();
6144 }
6145 
6146 // Optimize vector operations in scalar value Op on the basis that Op
6147 // is truncated to TruncVT.
6148 SDValue SystemZTargetLowering::combineTruncateExtract(
6149     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6150   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6151   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6152   // of type TruncVT.
6153   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6154       TruncVT.getSizeInBits() % 8 == 0) {
6155     SDValue Vec = Op.getOperand(0);
6156     EVT VecVT = Vec.getValueType();
6157     if (canTreatAsByteVector(VecVT)) {
6158       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6159         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6160         unsigned TruncBytes = TruncVT.getStoreSize();
6161         if (BytesPerElement % TruncBytes == 0) {
6162           // Calculate the value of Y' in the above description.  We are
6163           // splitting the original elements into Scale equal-sized pieces
6164           // and for truncation purposes want the last (least-significant)
6165           // of these pieces for IndexN.  This is easiest to do by calculating
6166           // the start index of the following element and then subtracting 1.
6167           unsigned Scale = BytesPerElement / TruncBytes;
6168           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6169 
6170           // Defer the creation of the bitcast from X to combineExtract,
6171           // which might be able to optimize the extraction.
6172           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6173                                    VecVT.getStoreSize() / TruncBytes);
6174           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6175           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6176         }
6177       }
6178     }
6179   }
6180   return SDValue();
6181 }
6182 
6183 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6184     SDNode *N, DAGCombinerInfo &DCI) const {
6185   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6186   SelectionDAG &DAG = DCI.DAG;
6187   SDValue N0 = N->getOperand(0);
6188   EVT VT = N->getValueType(0);
6189   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6190     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6191     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6192     if (TrueOp && FalseOp) {
6193       SDLoc DL(N0);
6194       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6195                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6196                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6197       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6198       // If N0 has multiple uses, change other uses as well.
6199       if (!N0.hasOneUse()) {
6200         SDValue TruncSelect =
6201           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6202         DCI.CombineTo(N0.getNode(), TruncSelect);
6203       }
6204       return NewSelect;
6205     }
6206   }
6207   return SDValue();
6208 }
6209 
6210 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6211     SDNode *N, DAGCombinerInfo &DCI) const {
6212   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6213   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6214   // into (select_cc LHS, RHS, -1, 0, COND)
6215   SelectionDAG &DAG = DCI.DAG;
6216   SDValue N0 = N->getOperand(0);
6217   EVT VT = N->getValueType(0);
6218   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6219   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6220     N0 = N0.getOperand(0);
6221   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6222     SDLoc DL(N0);
6223     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6224                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6225                       N0.getOperand(2) };
6226     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6227   }
6228   return SDValue();
6229 }
6230 
6231 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6232     SDNode *N, DAGCombinerInfo &DCI) const {
6233   // Convert (sext (ashr (shl X, C1), C2)) to
6234   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6235   // cheap as narrower ones.
6236   SelectionDAG &DAG = DCI.DAG;
6237   SDValue N0 = N->getOperand(0);
6238   EVT VT = N->getValueType(0);
6239   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6240     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6241     SDValue Inner = N0.getOperand(0);
6242     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6243       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6244         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6245         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6246         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6247         EVT ShiftVT = N0.getOperand(1).getValueType();
6248         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6249                                   Inner.getOperand(0));
6250         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6251                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6252                                                   ShiftVT));
6253         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6254                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6255       }
6256     }
6257   }
6258   return SDValue();
6259 }
6260 
6261 SDValue SystemZTargetLowering::combineMERGE(
6262     SDNode *N, DAGCombinerInfo &DCI) const {
6263   SelectionDAG &DAG = DCI.DAG;
6264   unsigned Opcode = N->getOpcode();
6265   SDValue Op0 = N->getOperand(0);
6266   SDValue Op1 = N->getOperand(1);
6267   if (Op0.getOpcode() == ISD::BITCAST)
6268     Op0 = Op0.getOperand(0);
6269   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6270     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6271     // for v4f32.
6272     if (Op1 == N->getOperand(0))
6273       return Op1;
6274     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6275     EVT VT = Op1.getValueType();
6276     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6277     if (ElemBytes <= 4) {
6278       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6279                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6280       EVT InVT = VT.changeVectorElementTypeToInteger();
6281       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6282                                    SystemZ::VectorBytes / ElemBytes / 2);
6283       if (VT != InVT) {
6284         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6285         DCI.AddToWorklist(Op1.getNode());
6286       }
6287       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6288       DCI.AddToWorklist(Op.getNode());
6289       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6290     }
6291   }
6292   return SDValue();
6293 }
6294 
6295 SDValue SystemZTargetLowering::combineLOAD(
6296     SDNode *N, DAGCombinerInfo &DCI) const {
6297   SelectionDAG &DAG = DCI.DAG;
6298   EVT LdVT = N->getValueType(0);
6299   if (LdVT.isVector() || LdVT.isInteger())
6300     return SDValue();
6301   // Transform a scalar load that is REPLICATEd as well as having other
6302   // use(s) to the form where the other use(s) use the first element of the
6303   // REPLICATE instead of the load. Otherwise instruction selection will not
6304   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6305   // point loads.
6306 
6307   SDValue Replicate;
6308   SmallVector<SDNode*, 8> OtherUses;
6309   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6310        UI != UE; ++UI) {
6311     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6312       if (Replicate)
6313         return SDValue(); // Should never happen
6314       Replicate = SDValue(*UI, 0);
6315     }
6316     else if (UI.getUse().getResNo() == 0)
6317       OtherUses.push_back(*UI);
6318   }
6319   if (!Replicate || OtherUses.empty())
6320     return SDValue();
6321 
6322   SDLoc DL(N);
6323   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6324                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6325   // Update uses of the loaded Value while preserving old chains.
6326   for (SDNode *U : OtherUses) {
6327     SmallVector<SDValue, 8> Ops;
6328     for (SDValue Op : U->ops())
6329       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6330     DAG.UpdateNodeOperands(U, Ops);
6331   }
6332   return SDValue(N, 0);
6333 }
6334 
6335 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6336   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6337     return true;
6338   if (Subtarget.hasVectorEnhancements2())
6339     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6340       return true;
6341   return false;
6342 }
6343 
6344 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6345   if (!VT.isVector() || !VT.isSimple() ||
6346       VT.getSizeInBits() != 128 ||
6347       VT.getScalarSizeInBits() % 8 != 0)
6348     return false;
6349 
6350   unsigned NumElts = VT.getVectorNumElements();
6351   for (unsigned i = 0; i < NumElts; ++i) {
6352     if (M[i] < 0) continue; // ignore UNDEF indices
6353     if ((unsigned) M[i] != NumElts - 1 - i)
6354       return false;
6355   }
6356 
6357   return true;
6358 }
6359 
6360 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6361   for (auto *U : StoredVal->uses()) {
6362     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6363       EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6364       if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6365         continue;
6366     } else if (isa<BuildVectorSDNode>(U)) {
6367       SDValue BuildVector = SDValue(U, 0);
6368       if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6369           isOnlyUsedByStores(BuildVector, DAG))
6370         continue;
6371     }
6372     return false;
6373   }
6374   return true;
6375 }
6376 
6377 SDValue SystemZTargetLowering::combineSTORE(
6378     SDNode *N, DAGCombinerInfo &DCI) const {
6379   SelectionDAG &DAG = DCI.DAG;
6380   auto *SN = cast<StoreSDNode>(N);
6381   auto &Op1 = N->getOperand(1);
6382   EVT MemVT = SN->getMemoryVT();
6383   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6384   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6385   // If X has wider elements then convert it to:
6386   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6387   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6388     if (SDValue Value =
6389             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6390       DCI.AddToWorklist(Value.getNode());
6391 
6392       // Rewrite the store with the new form of stored value.
6393       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6394                                SN->getBasePtr(), SN->getMemoryVT(),
6395                                SN->getMemOperand());
6396     }
6397   }
6398   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6399   if (!SN->isTruncatingStore() &&
6400       Op1.getOpcode() == ISD::BSWAP &&
6401       Op1.getNode()->hasOneUse() &&
6402       canLoadStoreByteSwapped(Op1.getValueType())) {
6403 
6404       SDValue BSwapOp = Op1.getOperand(0);
6405 
6406       if (BSwapOp.getValueType() == MVT::i16)
6407         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6408 
6409       SDValue Ops[] = {
6410         N->getOperand(0), BSwapOp, N->getOperand(2)
6411       };
6412 
6413       return
6414         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6415                                 Ops, MemVT, SN->getMemOperand());
6416     }
6417   // Combine STORE (element-swap) into VSTER
6418   if (!SN->isTruncatingStore() &&
6419       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6420       Op1.getNode()->hasOneUse() &&
6421       Subtarget.hasVectorEnhancements2()) {
6422     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6423     ArrayRef<int> ShuffleMask = SVN->getMask();
6424     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6425       SDValue Ops[] = {
6426         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6427       };
6428 
6429       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6430                                      DAG.getVTList(MVT::Other),
6431                                      Ops, MemVT, SN->getMemOperand());
6432     }
6433   }
6434 
6435   // Replicate a reg or immediate with VREP instead of scalar multiply or
6436   // immediate load. It seems best to do this during the first DAGCombine as
6437   // it is straight-forward to handle the zero-extend node in the initial
6438   // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
6439   // extracting an i16 element from a v16i8 vector).
6440   if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
6441       isOnlyUsedByStores(Op1, DAG)) {
6442     SDValue Word = SDValue();
6443     EVT WordVT;
6444 
6445     // Find a replicated immediate and return it if found in Word and its
6446     // type in WordVT.
6447     auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
6448       // Some constants are better handled with a scalar store.
6449       if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
6450           isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
6451         return;
6452       SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
6453       if (VCI.isVectorConstantLegal(Subtarget) &&
6454           VCI.Opcode == SystemZISD::REPLICATE) {
6455         Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
6456         WordVT = VCI.VecVT.getScalarType();
6457       }
6458     };
6459 
6460     // Find a replicated register and return it if found in Word and its type
6461     // in WordVT.
6462     auto FindReplicatedReg = [&](SDValue MulOp) {
6463       EVT MulVT = MulOp.getValueType();
6464       if (MulOp->getOpcode() == ISD::MUL &&
6465           (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
6466         // Find a zero extended value and its type.
6467         SDValue LHS = MulOp->getOperand(0);
6468         if (LHS->getOpcode() == ISD::ZERO_EXTEND)
6469           WordVT = LHS->getOperand(0).getValueType();
6470         else if (LHS->getOpcode() == ISD::AssertZext)
6471           WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
6472         else
6473           return;
6474         // Find a replicating constant, e.g. 0x00010001.
6475         if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
6476           SystemZVectorConstantInfo VCI(
6477               APInt(MulVT.getSizeInBits(), C->getZExtValue()));
6478           if (VCI.isVectorConstantLegal(Subtarget) &&
6479               VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
6480               WordVT == VCI.VecVT.getScalarType())
6481             Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
6482         }
6483       }
6484     };
6485 
6486     if (isa<BuildVectorSDNode>(Op1) &&
6487         DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
6488       SDValue SplatVal = Op1->getOperand(0);
6489       if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
6490         FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
6491       else
6492         FindReplicatedReg(SplatVal);
6493     } else {
6494       if (auto *C = dyn_cast<ConstantSDNode>(Op1))
6495         FindReplicatedImm(C, MemVT.getStoreSize());
6496       else
6497         FindReplicatedReg(Op1);
6498     }
6499 
6500     if (Word != SDValue()) {
6501       assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
6502              "Bad type handling");
6503       unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
6504       EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
6505       SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
6506       return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
6507                           SN->getBasePtr(), SN->getMemOperand());
6508     }
6509   }
6510 
6511   return SDValue();
6512 }
6513 
6514 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6515     SDNode *N, DAGCombinerInfo &DCI) const {
6516   SelectionDAG &DAG = DCI.DAG;
6517   // Combine element-swap (LOAD) into VLER
6518   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6519       N->getOperand(0).hasOneUse() &&
6520       Subtarget.hasVectorEnhancements2()) {
6521     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6522     ArrayRef<int> ShuffleMask = SVN->getMask();
6523     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6524       SDValue Load = N->getOperand(0);
6525       LoadSDNode *LD = cast<LoadSDNode>(Load);
6526 
6527       // Create the element-swapping load.
6528       SDValue Ops[] = {
6529         LD->getChain(),    // Chain
6530         LD->getBasePtr()   // Ptr
6531       };
6532       SDValue ESLoad =
6533         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6534                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6535                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6536 
6537       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6538       // by the load dead.
6539       DCI.CombineTo(N, ESLoad);
6540 
6541       // Next, combine the load away, we give it a bogus result value but a real
6542       // chain result.  The result value is dead because the shuffle is dead.
6543       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6544 
6545       // Return N so it doesn't get rechecked!
6546       return SDValue(N, 0);
6547     }
6548   }
6549 
6550   return SDValue();
6551 }
6552 
6553 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6554     SDNode *N, DAGCombinerInfo &DCI) const {
6555   SelectionDAG &DAG = DCI.DAG;
6556 
6557   if (!Subtarget.hasVector())
6558     return SDValue();
6559 
6560   // Look through bitcasts that retain the number of vector elements.
6561   SDValue Op = N->getOperand(0);
6562   if (Op.getOpcode() == ISD::BITCAST &&
6563       Op.getValueType().isVector() &&
6564       Op.getOperand(0).getValueType().isVector() &&
6565       Op.getValueType().getVectorNumElements() ==
6566       Op.getOperand(0).getValueType().getVectorNumElements())
6567     Op = Op.getOperand(0);
6568 
6569   // Pull BSWAP out of a vector extraction.
6570   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6571     EVT VecVT = Op.getValueType();
6572     EVT EltVT = VecVT.getVectorElementType();
6573     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6574                      Op.getOperand(0), N->getOperand(1));
6575     DCI.AddToWorklist(Op.getNode());
6576     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6577     if (EltVT != N->getValueType(0)) {
6578       DCI.AddToWorklist(Op.getNode());
6579       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6580     }
6581     return Op;
6582   }
6583 
6584   // Try to simplify a vector extraction.
6585   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6586     SDValue Op0 = N->getOperand(0);
6587     EVT VecVT = Op0.getValueType();
6588     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6589                           IndexN->getZExtValue(), DCI, false);
6590   }
6591   return SDValue();
6592 }
6593 
6594 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6595     SDNode *N, DAGCombinerInfo &DCI) const {
6596   SelectionDAG &DAG = DCI.DAG;
6597   // (join_dwords X, X) == (replicate X)
6598   if (N->getOperand(0) == N->getOperand(1))
6599     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6600                        N->getOperand(0));
6601   return SDValue();
6602 }
6603 
6604 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6605   SDValue Chain1 = N1->getOperand(0);
6606   SDValue Chain2 = N2->getOperand(0);
6607 
6608   // Trivial case: both nodes take the same chain.
6609   if (Chain1 == Chain2)
6610     return Chain1;
6611 
6612   // FIXME - we could handle more complex cases via TokenFactor,
6613   // assuming we can verify that this would not create a cycle.
6614   return SDValue();
6615 }
6616 
6617 SDValue SystemZTargetLowering::combineFP_ROUND(
6618     SDNode *N, DAGCombinerInfo &DCI) const {
6619 
6620   if (!Subtarget.hasVector())
6621     return SDValue();
6622 
6623   // (fpround (extract_vector_elt X 0))
6624   // (fpround (extract_vector_elt X 1)) ->
6625   // (extract_vector_elt (VROUND X) 0)
6626   // (extract_vector_elt (VROUND X) 2)
6627   //
6628   // This is a special case since the target doesn't really support v2f32s.
6629   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6630   SelectionDAG &DAG = DCI.DAG;
6631   SDValue Op0 = N->getOperand(OpNo);
6632   if (N->getValueType(0) == MVT::f32 &&
6633       Op0.hasOneUse() &&
6634       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6635       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6636       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6637       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6638     SDValue Vec = Op0.getOperand(0);
6639     for (auto *U : Vec->uses()) {
6640       if (U != Op0.getNode() &&
6641           U->hasOneUse() &&
6642           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6643           U->getOperand(0) == Vec &&
6644           U->getOperand(1).getOpcode() == ISD::Constant &&
6645           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6646         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6647         if (OtherRound.getOpcode() == N->getOpcode() &&
6648             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6649             OtherRound.getValueType() == MVT::f32) {
6650           SDValue VRound, Chain;
6651           if (N->isStrictFPOpcode()) {
6652             Chain = MergeInputChains(N, OtherRound.getNode());
6653             if (!Chain)
6654               continue;
6655             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6656                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6657             Chain = VRound.getValue(1);
6658           } else
6659             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6660                                  MVT::v4f32, Vec);
6661           DCI.AddToWorklist(VRound.getNode());
6662           SDValue Extract1 =
6663             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6664                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6665           DCI.AddToWorklist(Extract1.getNode());
6666           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6667           if (Chain)
6668             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6669           SDValue Extract0 =
6670             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6671                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6672           if (Chain)
6673             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6674                                N->getVTList(), Extract0, Chain);
6675           return Extract0;
6676         }
6677       }
6678     }
6679   }
6680   return SDValue();
6681 }
6682 
6683 SDValue SystemZTargetLowering::combineFP_EXTEND(
6684     SDNode *N, DAGCombinerInfo &DCI) const {
6685 
6686   if (!Subtarget.hasVector())
6687     return SDValue();
6688 
6689   // (fpextend (extract_vector_elt X 0))
6690   // (fpextend (extract_vector_elt X 2)) ->
6691   // (extract_vector_elt (VEXTEND X) 0)
6692   // (extract_vector_elt (VEXTEND X) 1)
6693   //
6694   // This is a special case since the target doesn't really support v2f32s.
6695   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6696   SelectionDAG &DAG = DCI.DAG;
6697   SDValue Op0 = N->getOperand(OpNo);
6698   if (N->getValueType(0) == MVT::f64 &&
6699       Op0.hasOneUse() &&
6700       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6701       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6702       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6703       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6704     SDValue Vec = Op0.getOperand(0);
6705     for (auto *U : Vec->uses()) {
6706       if (U != Op0.getNode() &&
6707           U->hasOneUse() &&
6708           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6709           U->getOperand(0) == Vec &&
6710           U->getOperand(1).getOpcode() == ISD::Constant &&
6711           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6712         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6713         if (OtherExtend.getOpcode() == N->getOpcode() &&
6714             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6715             OtherExtend.getValueType() == MVT::f64) {
6716           SDValue VExtend, Chain;
6717           if (N->isStrictFPOpcode()) {
6718             Chain = MergeInputChains(N, OtherExtend.getNode());
6719             if (!Chain)
6720               continue;
6721             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6722                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6723             Chain = VExtend.getValue(1);
6724           } else
6725             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6726                                   MVT::v2f64, Vec);
6727           DCI.AddToWorklist(VExtend.getNode());
6728           SDValue Extract1 =
6729             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6730                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6731           DCI.AddToWorklist(Extract1.getNode());
6732           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6733           if (Chain)
6734             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6735           SDValue Extract0 =
6736             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6737                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6738           if (Chain)
6739             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6740                                N->getVTList(), Extract0, Chain);
6741           return Extract0;
6742         }
6743       }
6744     }
6745   }
6746   return SDValue();
6747 }
6748 
6749 SDValue SystemZTargetLowering::combineINT_TO_FP(
6750     SDNode *N, DAGCombinerInfo &DCI) const {
6751   if (DCI.Level != BeforeLegalizeTypes)
6752     return SDValue();
6753   SelectionDAG &DAG = DCI.DAG;
6754   LLVMContext &Ctx = *DAG.getContext();
6755   unsigned Opcode = N->getOpcode();
6756   EVT OutVT = N->getValueType(0);
6757   Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
6758   SDValue Op = N->getOperand(0);
6759   unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
6760   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6761 
6762   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6763   // v2f64 = uint_to_fp v2i16
6764   // =>
6765   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6766   if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
6767       OutScalarBits <= 64) {
6768     unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
6769     EVT ExtVT = EVT::getVectorVT(
6770         Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
6771     unsigned ExtOpcode =
6772         (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6773     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6774     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6775   }
6776   return SDValue();
6777 }
6778 
6779 SDValue SystemZTargetLowering::combineBSWAP(
6780     SDNode *N, DAGCombinerInfo &DCI) const {
6781   SelectionDAG &DAG = DCI.DAG;
6782   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6783   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6784       N->getOperand(0).hasOneUse() &&
6785       canLoadStoreByteSwapped(N->getValueType(0))) {
6786       SDValue Load = N->getOperand(0);
6787       LoadSDNode *LD = cast<LoadSDNode>(Load);
6788 
6789       // Create the byte-swapping load.
6790       SDValue Ops[] = {
6791         LD->getChain(),    // Chain
6792         LD->getBasePtr()   // Ptr
6793       };
6794       EVT LoadVT = N->getValueType(0);
6795       if (LoadVT == MVT::i16)
6796         LoadVT = MVT::i32;
6797       SDValue BSLoad =
6798         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6799                                 DAG.getVTList(LoadVT, MVT::Other),
6800                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6801 
6802       // If this is an i16 load, insert the truncate.
6803       SDValue ResVal = BSLoad;
6804       if (N->getValueType(0) == MVT::i16)
6805         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6806 
6807       // First, combine the bswap away.  This makes the value produced by the
6808       // load dead.
6809       DCI.CombineTo(N, ResVal);
6810 
6811       // Next, combine the load away, we give it a bogus result value but a real
6812       // chain result.  The result value is dead because the bswap is dead.
6813       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6814 
6815       // Return N so it doesn't get rechecked!
6816       return SDValue(N, 0);
6817     }
6818 
6819   // Look through bitcasts that retain the number of vector elements.
6820   SDValue Op = N->getOperand(0);
6821   if (Op.getOpcode() == ISD::BITCAST &&
6822       Op.getValueType().isVector() &&
6823       Op.getOperand(0).getValueType().isVector() &&
6824       Op.getValueType().getVectorNumElements() ==
6825       Op.getOperand(0).getValueType().getVectorNumElements())
6826     Op = Op.getOperand(0);
6827 
6828   // Push BSWAP into a vector insertion if at least one side then simplifies.
6829   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6830     SDValue Vec = Op.getOperand(0);
6831     SDValue Elt = Op.getOperand(1);
6832     SDValue Idx = Op.getOperand(2);
6833 
6834     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6835         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6836         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6837         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6838         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6839          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6840       EVT VecVT = N->getValueType(0);
6841       EVT EltVT = N->getValueType(0).getVectorElementType();
6842       if (VecVT != Vec.getValueType()) {
6843         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6844         DCI.AddToWorklist(Vec.getNode());
6845       }
6846       if (EltVT != Elt.getValueType()) {
6847         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6848         DCI.AddToWorklist(Elt.getNode());
6849       }
6850       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6851       DCI.AddToWorklist(Vec.getNode());
6852       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6853       DCI.AddToWorklist(Elt.getNode());
6854       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6855                          Vec, Elt, Idx);
6856     }
6857   }
6858 
6859   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6860   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6861   if (SV && Op.hasOneUse()) {
6862     SDValue Op0 = Op.getOperand(0);
6863     SDValue Op1 = Op.getOperand(1);
6864 
6865     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6866         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6867         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6868         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6869       EVT VecVT = N->getValueType(0);
6870       if (VecVT != Op0.getValueType()) {
6871         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6872         DCI.AddToWorklist(Op0.getNode());
6873       }
6874       if (VecVT != Op1.getValueType()) {
6875         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6876         DCI.AddToWorklist(Op1.getNode());
6877       }
6878       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6879       DCI.AddToWorklist(Op0.getNode());
6880       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6881       DCI.AddToWorklist(Op1.getNode());
6882       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6883     }
6884   }
6885 
6886   return SDValue();
6887 }
6888 
6889 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6890   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6891   // set by the CCReg instruction using the CCValid / CCMask masks,
6892   // If the CCReg instruction is itself a ICMP testing the condition
6893   // code set by some other instruction, see whether we can directly
6894   // use that condition code.
6895 
6896   // Verify that we have an ICMP against some constant.
6897   if (CCValid != SystemZ::CCMASK_ICMP)
6898     return false;
6899   auto *ICmp = CCReg.getNode();
6900   if (ICmp->getOpcode() != SystemZISD::ICMP)
6901     return false;
6902   auto *CompareLHS = ICmp->getOperand(0).getNode();
6903   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6904   if (!CompareRHS)
6905     return false;
6906 
6907   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6908   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6909     // Verify that we have an appropriate mask for a EQ or NE comparison.
6910     bool Invert = false;
6911     if (CCMask == SystemZ::CCMASK_CMP_NE)
6912       Invert = !Invert;
6913     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6914       return false;
6915 
6916     // Verify that the ICMP compares against one of select values.
6917     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6918     if (!TrueVal)
6919       return false;
6920     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6921     if (!FalseVal)
6922       return false;
6923     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6924       Invert = !Invert;
6925     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6926       return false;
6927 
6928     // Compute the effective CC mask for the new branch or select.
6929     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6930     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6931     if (!NewCCValid || !NewCCMask)
6932       return false;
6933     CCValid = NewCCValid->getZExtValue();
6934     CCMask = NewCCMask->getZExtValue();
6935     if (Invert)
6936       CCMask ^= CCValid;
6937 
6938     // Return the updated CCReg link.
6939     CCReg = CompareLHS->getOperand(4);
6940     return true;
6941   }
6942 
6943   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6944   if (CompareLHS->getOpcode() == ISD::SRA) {
6945     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6946     if (!SRACount || SRACount->getZExtValue() != 30)
6947       return false;
6948     auto *SHL = CompareLHS->getOperand(0).getNode();
6949     if (SHL->getOpcode() != ISD::SHL)
6950       return false;
6951     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6952     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6953       return false;
6954     auto *IPM = SHL->getOperand(0).getNode();
6955     if (IPM->getOpcode() != SystemZISD::IPM)
6956       return false;
6957 
6958     // Avoid introducing CC spills (because SRA would clobber CC).
6959     if (!CompareLHS->hasOneUse())
6960       return false;
6961     // Verify that the ICMP compares against zero.
6962     if (CompareRHS->getZExtValue() != 0)
6963       return false;
6964 
6965     // Compute the effective CC mask for the new branch or select.
6966     CCMask = SystemZ::reverseCCMask(CCMask);
6967 
6968     // Return the updated CCReg link.
6969     CCReg = IPM->getOperand(0);
6970     return true;
6971   }
6972 
6973   return false;
6974 }
6975 
6976 SDValue SystemZTargetLowering::combineBR_CCMASK(
6977     SDNode *N, DAGCombinerInfo &DCI) const {
6978   SelectionDAG &DAG = DCI.DAG;
6979 
6980   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6981   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6982   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6983   if (!CCValid || !CCMask)
6984     return SDValue();
6985 
6986   int CCValidVal = CCValid->getZExtValue();
6987   int CCMaskVal = CCMask->getZExtValue();
6988   SDValue Chain = N->getOperand(0);
6989   SDValue CCReg = N->getOperand(4);
6990 
6991   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6992     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6993                        Chain,
6994                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6995                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6996                        N->getOperand(3), CCReg);
6997   return SDValue();
6998 }
6999 
7000 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7001     SDNode *N, DAGCombinerInfo &DCI) const {
7002   SelectionDAG &DAG = DCI.DAG;
7003 
7004   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7005   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7006   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7007   if (!CCValid || !CCMask)
7008     return SDValue();
7009 
7010   int CCValidVal = CCValid->getZExtValue();
7011   int CCMaskVal = CCMask->getZExtValue();
7012   SDValue CCReg = N->getOperand(4);
7013 
7014   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7015     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7016                        N->getOperand(0), N->getOperand(1),
7017                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7018                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7019                        CCReg);
7020   return SDValue();
7021 }
7022 
7023 
7024 SDValue SystemZTargetLowering::combineGET_CCMASK(
7025     SDNode *N, DAGCombinerInfo &DCI) const {
7026 
7027   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7028   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7029   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7030   if (!CCValid || !CCMask)
7031     return SDValue();
7032   int CCValidVal = CCValid->getZExtValue();
7033   int CCMaskVal = CCMask->getZExtValue();
7034 
7035   SDValue Select = N->getOperand(0);
7036   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7037     return SDValue();
7038 
7039   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7040   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7041   if (!SelectCCValid || !SelectCCMask)
7042     return SDValue();
7043   int SelectCCValidVal = SelectCCValid->getZExtValue();
7044   int SelectCCMaskVal = SelectCCMask->getZExtValue();
7045 
7046   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7047   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7048   if (!TrueVal || !FalseVal)
7049     return SDValue();
7050   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
7051     ;
7052   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
7053     SelectCCMaskVal ^= SelectCCValidVal;
7054   else
7055     return SDValue();
7056 
7057   if (SelectCCValidVal & ~CCValidVal)
7058     return SDValue();
7059   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7060     return SDValue();
7061 
7062   return Select->getOperand(4);
7063 }
7064 
7065 SDValue SystemZTargetLowering::combineIntDIVREM(
7066     SDNode *N, DAGCombinerInfo &DCI) const {
7067   SelectionDAG &DAG = DCI.DAG;
7068   EVT VT = N->getValueType(0);
7069   // In the case where the divisor is a vector of constants a cheaper
7070   // sequence of instructions can replace the divide. BuildSDIV is called to
7071   // do this during DAG combining, but it only succeeds when it can build a
7072   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7073   // since it is not Legal but Custom it can only happen before
7074   // legalization. Therefore we must scalarize this early before Combine
7075   // 1. For widened vectors, this is already the result of type legalization.
7076   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7077       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7078     return DAG.UnrollVectorOp(N);
7079   return SDValue();
7080 }
7081 
7082 SDValue SystemZTargetLowering::combineINTRINSIC(
7083     SDNode *N, DAGCombinerInfo &DCI) const {
7084   SelectionDAG &DAG = DCI.DAG;
7085 
7086   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7087   switch (Id) {
7088   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7089   // or larger is simply a vector load.
7090   case Intrinsic::s390_vll:
7091   case Intrinsic::s390_vlrl:
7092     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7093       if (C->getZExtValue() >= 15)
7094         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7095                            N->getOperand(3), MachinePointerInfo());
7096     break;
7097   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7098   case Intrinsic::s390_vstl:
7099   case Intrinsic::s390_vstrl:
7100     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7101       if (C->getZExtValue() >= 15)
7102         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7103                             N->getOperand(4), MachinePointerInfo());
7104     break;
7105   }
7106 
7107   return SDValue();
7108 }
7109 
7110 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7111   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7112     return N->getOperand(0);
7113   return N;
7114 }
7115 
7116 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7117                                                  DAGCombinerInfo &DCI) const {
7118   switch(N->getOpcode()) {
7119   default: break;
7120   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
7121   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
7122   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
7123   case SystemZISD::MERGE_HIGH:
7124   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7125   case ISD::LOAD:               return combineLOAD(N, DCI);
7126   case ISD::STORE:              return combineSTORE(N, DCI);
7127   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7128   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7129   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7130   case ISD::STRICT_FP_ROUND:
7131   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7132   case ISD::STRICT_FP_EXTEND:
7133   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7134   case ISD::SINT_TO_FP:
7135   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7136   case ISD::BSWAP:              return combineBSWAP(N, DCI);
7137   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7138   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7139   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7140   case ISD::SDIV:
7141   case ISD::UDIV:
7142   case ISD::SREM:
7143   case ISD::UREM:               return combineIntDIVREM(N, DCI);
7144   case ISD::INTRINSIC_W_CHAIN:
7145   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7146   }
7147 
7148   return SDValue();
7149 }
7150 
7151 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7152 // are for Op.
7153 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7154                                     unsigned OpNo) {
7155   EVT VT = Op.getValueType();
7156   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7157   APInt SrcDemE;
7158   unsigned Opcode = Op.getOpcode();
7159   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7160     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7161     switch (Id) {
7162     case Intrinsic::s390_vpksh:   // PACKS
7163     case Intrinsic::s390_vpksf:
7164     case Intrinsic::s390_vpksg:
7165     case Intrinsic::s390_vpkshs:  // PACKS_CC
7166     case Intrinsic::s390_vpksfs:
7167     case Intrinsic::s390_vpksgs:
7168     case Intrinsic::s390_vpklsh:  // PACKLS
7169     case Intrinsic::s390_vpklsf:
7170     case Intrinsic::s390_vpklsg:
7171     case Intrinsic::s390_vpklshs: // PACKLS_CC
7172     case Intrinsic::s390_vpklsfs:
7173     case Intrinsic::s390_vpklsgs:
7174       // VECTOR PACK truncates the elements of two source vectors into one.
7175       SrcDemE = DemandedElts;
7176       if (OpNo == 2)
7177         SrcDemE.lshrInPlace(NumElts / 2);
7178       SrcDemE = SrcDemE.trunc(NumElts / 2);
7179       break;
7180       // VECTOR UNPACK extends half the elements of the source vector.
7181     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7182     case Intrinsic::s390_vuphh:
7183     case Intrinsic::s390_vuphf:
7184     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7185     case Intrinsic::s390_vuplhh:
7186     case Intrinsic::s390_vuplhf:
7187       SrcDemE = APInt(NumElts * 2, 0);
7188       SrcDemE.insertBits(DemandedElts, 0);
7189       break;
7190     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7191     case Intrinsic::s390_vuplhw:
7192     case Intrinsic::s390_vuplf:
7193     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7194     case Intrinsic::s390_vupllh:
7195     case Intrinsic::s390_vupllf:
7196       SrcDemE = APInt(NumElts * 2, 0);
7197       SrcDemE.insertBits(DemandedElts, NumElts);
7198       break;
7199     case Intrinsic::s390_vpdi: {
7200       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7201       SrcDemE = APInt(NumElts, 0);
7202       if (!DemandedElts[OpNo - 1])
7203         break;
7204       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7205       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7206       // Demand input element 0 or 1, given by the mask bit value.
7207       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7208       break;
7209     }
7210     case Intrinsic::s390_vsldb: {
7211       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7212       assert(VT == MVT::v16i8 && "Unexpected type.");
7213       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7214       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7215       unsigned NumSrc0Els = 16 - FirstIdx;
7216       SrcDemE = APInt(NumElts, 0);
7217       if (OpNo == 1) {
7218         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7219         SrcDemE.insertBits(DemEls, FirstIdx);
7220       } else {
7221         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7222         SrcDemE.insertBits(DemEls, 0);
7223       }
7224       break;
7225     }
7226     case Intrinsic::s390_vperm:
7227       SrcDemE = APInt(NumElts, 1);
7228       break;
7229     default:
7230       llvm_unreachable("Unhandled intrinsic.");
7231       break;
7232     }
7233   } else {
7234     switch (Opcode) {
7235     case SystemZISD::JOIN_DWORDS:
7236       // Scalar operand.
7237       SrcDemE = APInt(1, 1);
7238       break;
7239     case SystemZISD::SELECT_CCMASK:
7240       SrcDemE = DemandedElts;
7241       break;
7242     default:
7243       llvm_unreachable("Unhandled opcode.");
7244       break;
7245     }
7246   }
7247   return SrcDemE;
7248 }
7249 
7250 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7251                                   const APInt &DemandedElts,
7252                                   const SelectionDAG &DAG, unsigned Depth,
7253                                   unsigned OpNo) {
7254   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7255   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7256   KnownBits LHSKnown =
7257       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7258   KnownBits RHSKnown =
7259       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7260   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
7261 }
7262 
7263 void
7264 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7265                                                      KnownBits &Known,
7266                                                      const APInt &DemandedElts,
7267                                                      const SelectionDAG &DAG,
7268                                                      unsigned Depth) const {
7269   Known.resetAll();
7270 
7271   // Intrinsic CC result is returned in the two low bits.
7272   unsigned tmp0, tmp1; // not used
7273   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7274     Known.Zero.setBitsFrom(2);
7275     return;
7276   }
7277   EVT VT = Op.getValueType();
7278   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7279     return;
7280   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7281           "KnownBits does not match VT in bitwidth");
7282   assert ((!VT.isVector() ||
7283            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7284           "DemandedElts does not match VT number of elements");
7285   unsigned BitWidth = Known.getBitWidth();
7286   unsigned Opcode = Op.getOpcode();
7287   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7288     bool IsLogical = false;
7289     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7290     switch (Id) {
7291     case Intrinsic::s390_vpksh:   // PACKS
7292     case Intrinsic::s390_vpksf:
7293     case Intrinsic::s390_vpksg:
7294     case Intrinsic::s390_vpkshs:  // PACKS_CC
7295     case Intrinsic::s390_vpksfs:
7296     case Intrinsic::s390_vpksgs:
7297     case Intrinsic::s390_vpklsh:  // PACKLS
7298     case Intrinsic::s390_vpklsf:
7299     case Intrinsic::s390_vpklsg:
7300     case Intrinsic::s390_vpklshs: // PACKLS_CC
7301     case Intrinsic::s390_vpklsfs:
7302     case Intrinsic::s390_vpklsgs:
7303     case Intrinsic::s390_vpdi:
7304     case Intrinsic::s390_vsldb:
7305     case Intrinsic::s390_vperm:
7306       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7307       break;
7308     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7309     case Intrinsic::s390_vuplhh:
7310     case Intrinsic::s390_vuplhf:
7311     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7312     case Intrinsic::s390_vupllh:
7313     case Intrinsic::s390_vupllf:
7314       IsLogical = true;
7315       LLVM_FALLTHROUGH;
7316     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7317     case Intrinsic::s390_vuphh:
7318     case Intrinsic::s390_vuphf:
7319     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7320     case Intrinsic::s390_vuplhw:
7321     case Intrinsic::s390_vuplf: {
7322       SDValue SrcOp = Op.getOperand(1);
7323       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7324       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7325       if (IsLogical) {
7326         Known = Known.zext(BitWidth);
7327       } else
7328         Known = Known.sext(BitWidth);
7329       break;
7330     }
7331     default:
7332       break;
7333     }
7334   } else {
7335     switch (Opcode) {
7336     case SystemZISD::JOIN_DWORDS:
7337     case SystemZISD::SELECT_CCMASK:
7338       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7339       break;
7340     case SystemZISD::REPLICATE: {
7341       SDValue SrcOp = Op.getOperand(0);
7342       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7343       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7344         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7345       break;
7346     }
7347     default:
7348       break;
7349     }
7350   }
7351 
7352   // Known has the width of the source operand(s). Adjust if needed to match
7353   // the passed bitwidth.
7354   if (Known.getBitWidth() != BitWidth)
7355     Known = Known.anyextOrTrunc(BitWidth);
7356 }
7357 
7358 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7359                                         const SelectionDAG &DAG, unsigned Depth,
7360                                         unsigned OpNo) {
7361   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7362   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7363   if (LHS == 1) return 1; // Early out.
7364   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7365   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7366   if (RHS == 1) return 1; // Early out.
7367   unsigned Common = std::min(LHS, RHS);
7368   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7369   EVT VT = Op.getValueType();
7370   unsigned VTBits = VT.getScalarSizeInBits();
7371   if (SrcBitWidth > VTBits) { // PACK
7372     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7373     if (Common > SrcExtraBits)
7374       return (Common - SrcExtraBits);
7375     return 1;
7376   }
7377   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7378   return Common;
7379 }
7380 
7381 unsigned
7382 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7383     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7384     unsigned Depth) const {
7385   if (Op.getResNo() != 0)
7386     return 1;
7387   unsigned Opcode = Op.getOpcode();
7388   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7389     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7390     switch (Id) {
7391     case Intrinsic::s390_vpksh:   // PACKS
7392     case Intrinsic::s390_vpksf:
7393     case Intrinsic::s390_vpksg:
7394     case Intrinsic::s390_vpkshs:  // PACKS_CC
7395     case Intrinsic::s390_vpksfs:
7396     case Intrinsic::s390_vpksgs:
7397     case Intrinsic::s390_vpklsh:  // PACKLS
7398     case Intrinsic::s390_vpklsf:
7399     case Intrinsic::s390_vpklsg:
7400     case Intrinsic::s390_vpklshs: // PACKLS_CC
7401     case Intrinsic::s390_vpklsfs:
7402     case Intrinsic::s390_vpklsgs:
7403     case Intrinsic::s390_vpdi:
7404     case Intrinsic::s390_vsldb:
7405     case Intrinsic::s390_vperm:
7406       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7407     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7408     case Intrinsic::s390_vuphh:
7409     case Intrinsic::s390_vuphf:
7410     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7411     case Intrinsic::s390_vuplhw:
7412     case Intrinsic::s390_vuplf: {
7413       SDValue PackedOp = Op.getOperand(1);
7414       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7415       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7416       EVT VT = Op.getValueType();
7417       unsigned VTBits = VT.getScalarSizeInBits();
7418       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7419       return Tmp;
7420     }
7421     default:
7422       break;
7423     }
7424   } else {
7425     switch (Opcode) {
7426     case SystemZISD::SELECT_CCMASK:
7427       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7428     default:
7429       break;
7430     }
7431   }
7432 
7433   return 1;
7434 }
7435 
7436 unsigned
7437 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7438   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7439   unsigned StackAlign = TFI->getStackAlignment();
7440   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7441          "Unexpected stack alignment");
7442   // The default stack probe size is 4096 if the function has no
7443   // stack-probe-size attribute.
7444   unsigned StackProbeSize = 4096;
7445   const Function &Fn = MF.getFunction();
7446   if (Fn.hasFnAttribute("stack-probe-size"))
7447     Fn.getFnAttribute("stack-probe-size")
7448         .getValueAsString()
7449         .getAsInteger(0, StackProbeSize);
7450   // Round down to the stack alignment.
7451   StackProbeSize &= ~(StackAlign - 1);
7452   return StackProbeSize ? StackProbeSize : StackAlign;
7453 }
7454 
7455 //===----------------------------------------------------------------------===//
7456 // Custom insertion
7457 //===----------------------------------------------------------------------===//
7458 
7459 // Force base value Base into a register before MI.  Return the register.
7460 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7461                          const SystemZInstrInfo *TII) {
7462   MachineBasicBlock *MBB = MI.getParent();
7463   MachineFunction &MF = *MBB->getParent();
7464   MachineRegisterInfo &MRI = MF.getRegInfo();
7465 
7466   if (Base.isReg()) {
7467     // Copy Base into a new virtual register to help register coalescing in
7468     // cases with multiple uses.
7469     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7470     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7471       .add(Base);
7472     return Reg;
7473   }
7474 
7475   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7476   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7477       .add(Base)
7478       .addImm(0)
7479       .addReg(0);
7480   return Reg;
7481 }
7482 
7483 // The CC operand of MI might be missing a kill marker because there
7484 // were multiple uses of CC, and ISel didn't know which to mark.
7485 // Figure out whether MI should have had a kill marker.
7486 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7487   // Scan forward through BB for a use/def of CC.
7488   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7489   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7490     const MachineInstr& mi = *miI;
7491     if (mi.readsRegister(SystemZ::CC))
7492       return false;
7493     if (mi.definesRegister(SystemZ::CC))
7494       break; // Should have kill-flag - update below.
7495   }
7496 
7497   // If we hit the end of the block, check whether CC is live into a
7498   // successor.
7499   if (miI == MBB->end()) {
7500     for (const MachineBasicBlock *Succ : MBB->successors())
7501       if (Succ->isLiveIn(SystemZ::CC))
7502         return false;
7503   }
7504 
7505   return true;
7506 }
7507 
7508 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7509 // together with other Select pseudo-opcodes into a single basic-block with
7510 // a conditional jump around it.
7511 static bool isSelectPseudo(MachineInstr &MI) {
7512   switch (MI.getOpcode()) {
7513   case SystemZ::Select32:
7514   case SystemZ::Select64:
7515   case SystemZ::SelectF32:
7516   case SystemZ::SelectF64:
7517   case SystemZ::SelectF128:
7518   case SystemZ::SelectVR32:
7519   case SystemZ::SelectVR64:
7520   case SystemZ::SelectVR128:
7521     return true;
7522 
7523   default:
7524     return false;
7525   }
7526 }
7527 
7528 // Helper function, which inserts PHI functions into SinkMBB:
7529 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7530 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7531 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7532                                  MachineBasicBlock *TrueMBB,
7533                                  MachineBasicBlock *FalseMBB,
7534                                  MachineBasicBlock *SinkMBB) {
7535   MachineFunction *MF = TrueMBB->getParent();
7536   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7537 
7538   MachineInstr *FirstMI = Selects.front();
7539   unsigned CCValid = FirstMI->getOperand(3).getImm();
7540   unsigned CCMask = FirstMI->getOperand(4).getImm();
7541 
7542   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7543 
7544   // As we are creating the PHIs, we have to be careful if there is more than
7545   // one.  Later Selects may reference the results of earlier Selects, but later
7546   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7547   // That also means that PHI construction must work forward from earlier to
7548   // later, and that the code must maintain a mapping from earlier PHI's
7549   // destination registers, and the registers that went into the PHI.
7550   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7551 
7552   for (auto MI : Selects) {
7553     Register DestReg = MI->getOperand(0).getReg();
7554     Register TrueReg = MI->getOperand(1).getReg();
7555     Register FalseReg = MI->getOperand(2).getReg();
7556 
7557     // If this Select we are generating is the opposite condition from
7558     // the jump we generated, then we have to swap the operands for the
7559     // PHI that is going to be generated.
7560     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7561       std::swap(TrueReg, FalseReg);
7562 
7563     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7564       TrueReg = RegRewriteTable[TrueReg].first;
7565 
7566     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7567       FalseReg = RegRewriteTable[FalseReg].second;
7568 
7569     DebugLoc DL = MI->getDebugLoc();
7570     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7571       .addReg(TrueReg).addMBB(TrueMBB)
7572       .addReg(FalseReg).addMBB(FalseMBB);
7573 
7574     // Add this PHI to the rewrite table.
7575     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7576   }
7577 
7578   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7579 }
7580 
7581 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7582 MachineBasicBlock *
7583 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7584                                   MachineBasicBlock *MBB) const {
7585   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7586   const SystemZInstrInfo *TII =
7587       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7588 
7589   unsigned CCValid = MI.getOperand(3).getImm();
7590   unsigned CCMask = MI.getOperand(4).getImm();
7591 
7592   // If we have a sequence of Select* pseudo instructions using the
7593   // same condition code value, we want to expand all of them into
7594   // a single pair of basic blocks using the same condition.
7595   SmallVector<MachineInstr*, 8> Selects;
7596   SmallVector<MachineInstr*, 8> DbgValues;
7597   Selects.push_back(&MI);
7598   unsigned Count = 0;
7599   for (MachineBasicBlock::iterator NextMIIt =
7600          std::next(MachineBasicBlock::iterator(MI));
7601        NextMIIt != MBB->end(); ++NextMIIt) {
7602     if (isSelectPseudo(*NextMIIt)) {
7603       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7604              "Bad CCValid operands since CC was not redefined.");
7605       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7606           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7607         Selects.push_back(&*NextMIIt);
7608         continue;
7609       }
7610       break;
7611     }
7612     if (NextMIIt->definesRegister(SystemZ::CC) ||
7613         NextMIIt->usesCustomInsertionHook())
7614       break;
7615     bool User = false;
7616     for (auto SelMI : Selects)
7617       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7618         User = true;
7619         break;
7620       }
7621     if (NextMIIt->isDebugInstr()) {
7622       if (User) {
7623         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7624         DbgValues.push_back(&*NextMIIt);
7625       }
7626     }
7627     else if (User || ++Count > 20)
7628       break;
7629   }
7630 
7631   MachineInstr *LastMI = Selects.back();
7632   bool CCKilled =
7633       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7634   MachineBasicBlock *StartMBB = MBB;
7635   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7636   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7637 
7638   // Unless CC was killed in the last Select instruction, mark it as
7639   // live-in to both FalseMBB and JoinMBB.
7640   if (!CCKilled) {
7641     FalseMBB->addLiveIn(SystemZ::CC);
7642     JoinMBB->addLiveIn(SystemZ::CC);
7643   }
7644 
7645   //  StartMBB:
7646   //   BRC CCMask, JoinMBB
7647   //   # fallthrough to FalseMBB
7648   MBB = StartMBB;
7649   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7650     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7651   MBB->addSuccessor(JoinMBB);
7652   MBB->addSuccessor(FalseMBB);
7653 
7654   //  FalseMBB:
7655   //   # fallthrough to JoinMBB
7656   MBB = FalseMBB;
7657   MBB->addSuccessor(JoinMBB);
7658 
7659   //  JoinMBB:
7660   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7661   //  ...
7662   MBB = JoinMBB;
7663   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7664   for (auto SelMI : Selects)
7665     SelMI->eraseFromParent();
7666 
7667   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7668   for (auto DbgMI : DbgValues)
7669     MBB->splice(InsertPos, StartMBB, DbgMI);
7670 
7671   return JoinMBB;
7672 }
7673 
7674 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7675 // StoreOpcode is the store to use and Invert says whether the store should
7676 // happen when the condition is false rather than true.  If a STORE ON
7677 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7678 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7679                                                         MachineBasicBlock *MBB,
7680                                                         unsigned StoreOpcode,
7681                                                         unsigned STOCOpcode,
7682                                                         bool Invert) const {
7683   const SystemZInstrInfo *TII =
7684       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7685 
7686   Register SrcReg = MI.getOperand(0).getReg();
7687   MachineOperand Base = MI.getOperand(1);
7688   int64_t Disp = MI.getOperand(2).getImm();
7689   Register IndexReg = MI.getOperand(3).getReg();
7690   unsigned CCValid = MI.getOperand(4).getImm();
7691   unsigned CCMask = MI.getOperand(5).getImm();
7692   DebugLoc DL = MI.getDebugLoc();
7693 
7694   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7695 
7696   // ISel pattern matching also adds a load memory operand of the same
7697   // address, so take special care to find the storing memory operand.
7698   MachineMemOperand *MMO = nullptr;
7699   for (auto *I : MI.memoperands())
7700     if (I->isStore()) {
7701       MMO = I;
7702       break;
7703     }
7704 
7705   // Use STOCOpcode if possible.  We could use different store patterns in
7706   // order to avoid matching the index register, but the performance trade-offs
7707   // might be more complicated in that case.
7708   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7709     if (Invert)
7710       CCMask ^= CCValid;
7711 
7712     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7713       .addReg(SrcReg)
7714       .add(Base)
7715       .addImm(Disp)
7716       .addImm(CCValid)
7717       .addImm(CCMask)
7718       .addMemOperand(MMO);
7719 
7720     MI.eraseFromParent();
7721     return MBB;
7722   }
7723 
7724   // Get the condition needed to branch around the store.
7725   if (!Invert)
7726     CCMask ^= CCValid;
7727 
7728   MachineBasicBlock *StartMBB = MBB;
7729   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7730   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7731 
7732   // Unless CC was killed in the CondStore instruction, mark it as
7733   // live-in to both FalseMBB and JoinMBB.
7734   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7735     FalseMBB->addLiveIn(SystemZ::CC);
7736     JoinMBB->addLiveIn(SystemZ::CC);
7737   }
7738 
7739   //  StartMBB:
7740   //   BRC CCMask, JoinMBB
7741   //   # fallthrough to FalseMBB
7742   MBB = StartMBB;
7743   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7744     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7745   MBB->addSuccessor(JoinMBB);
7746   MBB->addSuccessor(FalseMBB);
7747 
7748   //  FalseMBB:
7749   //   store %SrcReg, %Disp(%Index,%Base)
7750   //   # fallthrough to JoinMBB
7751   MBB = FalseMBB;
7752   BuildMI(MBB, DL, TII->get(StoreOpcode))
7753       .addReg(SrcReg)
7754       .add(Base)
7755       .addImm(Disp)
7756       .addReg(IndexReg)
7757       .addMemOperand(MMO);
7758   MBB->addSuccessor(JoinMBB);
7759 
7760   MI.eraseFromParent();
7761   return JoinMBB;
7762 }
7763 
7764 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7765 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7766 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7767 // BitSize is the width of the field in bits, or 0 if this is a partword
7768 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7769 // is one of the operands.  Invert says whether the field should be
7770 // inverted after performing BinOpcode (e.g. for NAND).
7771 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7772     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7773     unsigned BitSize, bool Invert) const {
7774   MachineFunction &MF = *MBB->getParent();
7775   const SystemZInstrInfo *TII =
7776       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7777   MachineRegisterInfo &MRI = MF.getRegInfo();
7778   bool IsSubWord = (BitSize < 32);
7779 
7780   // Extract the operands.  Base can be a register or a frame index.
7781   // Src2 can be a register or immediate.
7782   Register Dest = MI.getOperand(0).getReg();
7783   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7784   int64_t Disp = MI.getOperand(2).getImm();
7785   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7786   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7787   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7788   DebugLoc DL = MI.getDebugLoc();
7789   if (IsSubWord)
7790     BitSize = MI.getOperand(6).getImm();
7791 
7792   // Subword operations use 32-bit registers.
7793   const TargetRegisterClass *RC = (BitSize <= 32 ?
7794                                    &SystemZ::GR32BitRegClass :
7795                                    &SystemZ::GR64BitRegClass);
7796   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7797   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7798 
7799   // Get the right opcodes for the displacement.
7800   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7801   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7802   assert(LOpcode && CSOpcode && "Displacement out of range");
7803 
7804   // Create virtual registers for temporary results.
7805   Register OrigVal       = MRI.createVirtualRegister(RC);
7806   Register OldVal        = MRI.createVirtualRegister(RC);
7807   Register NewVal        = (BinOpcode || IsSubWord ?
7808                             MRI.createVirtualRegister(RC) : Src2.getReg());
7809   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7810   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7811 
7812   // Insert a basic block for the main loop.
7813   MachineBasicBlock *StartMBB = MBB;
7814   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7815   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7816 
7817   //  StartMBB:
7818   //   ...
7819   //   %OrigVal = L Disp(%Base)
7820   //   # fall through to LoopMBB
7821   MBB = StartMBB;
7822   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7823   MBB->addSuccessor(LoopMBB);
7824 
7825   //  LoopMBB:
7826   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7827   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7828   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7829   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7830   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7831   //   JNE LoopMBB
7832   //   # fall through to DoneMBB
7833   MBB = LoopMBB;
7834   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7835     .addReg(OrigVal).addMBB(StartMBB)
7836     .addReg(Dest).addMBB(LoopMBB);
7837   if (IsSubWord)
7838     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7839       .addReg(OldVal).addReg(BitShift).addImm(0);
7840   if (Invert) {
7841     // Perform the operation normally and then invert every bit of the field.
7842     Register Tmp = MRI.createVirtualRegister(RC);
7843     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7844     if (BitSize <= 32)
7845       // XILF with the upper BitSize bits set.
7846       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7847         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7848     else {
7849       // Use LCGR and add -1 to the result, which is more compact than
7850       // an XILF, XILH pair.
7851       Register Tmp2 = MRI.createVirtualRegister(RC);
7852       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7853       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7854         .addReg(Tmp2).addImm(-1);
7855     }
7856   } else if (BinOpcode)
7857     // A simply binary operation.
7858     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7859         .addReg(RotatedOldVal)
7860         .add(Src2);
7861   else if (IsSubWord)
7862     // Use RISBG to rotate Src2 into position and use it to replace the
7863     // field in RotatedOldVal.
7864     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7865       .addReg(RotatedOldVal).addReg(Src2.getReg())
7866       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7867   if (IsSubWord)
7868     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7869       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7870   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7871       .addReg(OldVal)
7872       .addReg(NewVal)
7873       .add(Base)
7874       .addImm(Disp);
7875   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7876     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7877   MBB->addSuccessor(LoopMBB);
7878   MBB->addSuccessor(DoneMBB);
7879 
7880   MI.eraseFromParent();
7881   return DoneMBB;
7882 }
7883 
7884 // Implement EmitInstrWithCustomInserter for pseudo
7885 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7886 // instruction that should be used to compare the current field with the
7887 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7888 // for when the current field should be kept.  BitSize is the width of
7889 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7890 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7891     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7892     unsigned KeepOldMask, unsigned BitSize) const {
7893   MachineFunction &MF = *MBB->getParent();
7894   const SystemZInstrInfo *TII =
7895       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7896   MachineRegisterInfo &MRI = MF.getRegInfo();
7897   bool IsSubWord = (BitSize < 32);
7898 
7899   // Extract the operands.  Base can be a register or a frame index.
7900   Register Dest = MI.getOperand(0).getReg();
7901   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7902   int64_t Disp = MI.getOperand(2).getImm();
7903   Register Src2 = MI.getOperand(3).getReg();
7904   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7905   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7906   DebugLoc DL = MI.getDebugLoc();
7907   if (IsSubWord)
7908     BitSize = MI.getOperand(6).getImm();
7909 
7910   // Subword operations use 32-bit registers.
7911   const TargetRegisterClass *RC = (BitSize <= 32 ?
7912                                    &SystemZ::GR32BitRegClass :
7913                                    &SystemZ::GR64BitRegClass);
7914   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7915   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7916 
7917   // Get the right opcodes for the displacement.
7918   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7919   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7920   assert(LOpcode && CSOpcode && "Displacement out of range");
7921 
7922   // Create virtual registers for temporary results.
7923   Register OrigVal       = MRI.createVirtualRegister(RC);
7924   Register OldVal        = MRI.createVirtualRegister(RC);
7925   Register NewVal        = MRI.createVirtualRegister(RC);
7926   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7927   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7928   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7929 
7930   // Insert 3 basic blocks for the loop.
7931   MachineBasicBlock *StartMBB  = MBB;
7932   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7933   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7934   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7935   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7936 
7937   //  StartMBB:
7938   //   ...
7939   //   %OrigVal     = L Disp(%Base)
7940   //   # fall through to LoopMBB
7941   MBB = StartMBB;
7942   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7943   MBB->addSuccessor(LoopMBB);
7944 
7945   //  LoopMBB:
7946   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7947   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7948   //   CompareOpcode %RotatedOldVal, %Src2
7949   //   BRC KeepOldMask, UpdateMBB
7950   MBB = LoopMBB;
7951   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7952     .addReg(OrigVal).addMBB(StartMBB)
7953     .addReg(Dest).addMBB(UpdateMBB);
7954   if (IsSubWord)
7955     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7956       .addReg(OldVal).addReg(BitShift).addImm(0);
7957   BuildMI(MBB, DL, TII->get(CompareOpcode))
7958     .addReg(RotatedOldVal).addReg(Src2);
7959   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7960     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7961   MBB->addSuccessor(UpdateMBB);
7962   MBB->addSuccessor(UseAltMBB);
7963 
7964   //  UseAltMBB:
7965   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7966   //   # fall through to UpdateMBB
7967   MBB = UseAltMBB;
7968   if (IsSubWord)
7969     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7970       .addReg(RotatedOldVal).addReg(Src2)
7971       .addImm(32).addImm(31 + BitSize).addImm(0);
7972   MBB->addSuccessor(UpdateMBB);
7973 
7974   //  UpdateMBB:
7975   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7976   //                        [ %RotatedAltVal, UseAltMBB ]
7977   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7978   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7979   //   JNE LoopMBB
7980   //   # fall through to DoneMBB
7981   MBB = UpdateMBB;
7982   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7983     .addReg(RotatedOldVal).addMBB(LoopMBB)
7984     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7985   if (IsSubWord)
7986     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7987       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7988   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7989       .addReg(OldVal)
7990       .addReg(NewVal)
7991       .add(Base)
7992       .addImm(Disp);
7993   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7994     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7995   MBB->addSuccessor(LoopMBB);
7996   MBB->addSuccessor(DoneMBB);
7997 
7998   MI.eraseFromParent();
7999   return DoneMBB;
8000 }
8001 
8002 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
8003 // instruction MI.
8004 MachineBasicBlock *
8005 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8006                                           MachineBasicBlock *MBB) const {
8007   MachineFunction &MF = *MBB->getParent();
8008   const SystemZInstrInfo *TII =
8009       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8010   MachineRegisterInfo &MRI = MF.getRegInfo();
8011 
8012   // Extract the operands.  Base can be a register or a frame index.
8013   Register Dest = MI.getOperand(0).getReg();
8014   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8015   int64_t Disp = MI.getOperand(2).getImm();
8016   Register CmpVal = MI.getOperand(3).getReg();
8017   Register OrigSwapVal = MI.getOperand(4).getReg();
8018   Register BitShift = MI.getOperand(5).getReg();
8019   Register NegBitShift = MI.getOperand(6).getReg();
8020   int64_t BitSize = MI.getOperand(7).getImm();
8021   DebugLoc DL = MI.getDebugLoc();
8022 
8023   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8024 
8025   // Get the right opcodes for the displacement and zero-extension.
8026   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8027   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8028   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8029   assert(LOpcode && CSOpcode && "Displacement out of range");
8030 
8031   // Create virtual registers for temporary results.
8032   Register OrigOldVal = MRI.createVirtualRegister(RC);
8033   Register OldVal = MRI.createVirtualRegister(RC);
8034   Register SwapVal = MRI.createVirtualRegister(RC);
8035   Register StoreVal = MRI.createVirtualRegister(RC);
8036   Register OldValRot = MRI.createVirtualRegister(RC);
8037   Register RetryOldVal = MRI.createVirtualRegister(RC);
8038   Register RetrySwapVal = MRI.createVirtualRegister(RC);
8039 
8040   // Insert 2 basic blocks for the loop.
8041   MachineBasicBlock *StartMBB = MBB;
8042   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8043   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8044   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
8045 
8046   //  StartMBB:
8047   //   ...
8048   //   %OrigOldVal     = L Disp(%Base)
8049   //   # fall through to LoopMBB
8050   MBB = StartMBB;
8051   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8052       .add(Base)
8053       .addImm(Disp)
8054       .addReg(0);
8055   MBB->addSuccessor(LoopMBB);
8056 
8057   //  LoopMBB:
8058   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8059   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8060   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
8061   //                      ^^ The low BitSize bits contain the field
8062   //                         of interest.
8063   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8064   //                      ^^ Replace the upper 32-BitSize bits of the
8065   //                         swap value with those that we loaded and rotated.
8066   //   %Dest = LL[CH] %OldValRot
8067   //   CR %Dest, %CmpVal
8068   //   JNE DoneMBB
8069   //   # Fall through to SetMBB
8070   MBB = LoopMBB;
8071   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8072     .addReg(OrigOldVal).addMBB(StartMBB)
8073     .addReg(RetryOldVal).addMBB(SetMBB);
8074   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8075     .addReg(OrigSwapVal).addMBB(StartMBB)
8076     .addReg(RetrySwapVal).addMBB(SetMBB);
8077   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8078     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8079   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8080     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8081   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8082     .addReg(OldValRot);
8083   BuildMI(MBB, DL, TII->get(SystemZ::CR))
8084     .addReg(Dest).addReg(CmpVal);
8085   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8086     .addImm(SystemZ::CCMASK_ICMP)
8087     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8088   MBB->addSuccessor(DoneMBB);
8089   MBB->addSuccessor(SetMBB);
8090 
8091   //  SetMBB:
8092   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8093   //                      ^^ Rotate the new field to its proper position.
8094   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
8095   //   JNE LoopMBB
8096   //   # fall through to ExitMBB
8097   MBB = SetMBB;
8098   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8099     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8100   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8101       .addReg(OldVal)
8102       .addReg(StoreVal)
8103       .add(Base)
8104       .addImm(Disp);
8105   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8106     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8107   MBB->addSuccessor(LoopMBB);
8108   MBB->addSuccessor(DoneMBB);
8109 
8110   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8111   // to the block after the loop.  At this point, CC may have been defined
8112   // either by the CR in LoopMBB or by the CS in SetMBB.
8113   if (!MI.registerDefIsDead(SystemZ::CC))
8114     DoneMBB->addLiveIn(SystemZ::CC);
8115 
8116   MI.eraseFromParent();
8117   return DoneMBB;
8118 }
8119 
8120 // Emit a move from two GR64s to a GR128.
8121 MachineBasicBlock *
8122 SystemZTargetLowering::emitPair128(MachineInstr &MI,
8123                                    MachineBasicBlock *MBB) const {
8124   MachineFunction &MF = *MBB->getParent();
8125   const SystemZInstrInfo *TII =
8126       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8127   MachineRegisterInfo &MRI = MF.getRegInfo();
8128   DebugLoc DL = MI.getDebugLoc();
8129 
8130   Register Dest = MI.getOperand(0).getReg();
8131   Register Hi = MI.getOperand(1).getReg();
8132   Register Lo = MI.getOperand(2).getReg();
8133   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8134   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8135 
8136   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
8137   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
8138     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
8139   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8140     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
8141 
8142   MI.eraseFromParent();
8143   return MBB;
8144 }
8145 
8146 // Emit an extension from a GR64 to a GR128.  ClearEven is true
8147 // if the high register of the GR128 value must be cleared or false if
8148 // it's "don't care".
8149 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8150                                                      MachineBasicBlock *MBB,
8151                                                      bool ClearEven) const {
8152   MachineFunction &MF = *MBB->getParent();
8153   const SystemZInstrInfo *TII =
8154       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8155   MachineRegisterInfo &MRI = MF.getRegInfo();
8156   DebugLoc DL = MI.getDebugLoc();
8157 
8158   Register Dest = MI.getOperand(0).getReg();
8159   Register Src = MI.getOperand(1).getReg();
8160   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8161 
8162   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8163   if (ClearEven) {
8164     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8165     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8166 
8167     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8168       .addImm(0);
8169     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8170       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8171     In128 = NewIn128;
8172   }
8173   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8174     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8175 
8176   MI.eraseFromParent();
8177   return MBB;
8178 }
8179 
8180 MachineBasicBlock *
8181 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8182                                          MachineBasicBlock *MBB,
8183                                          unsigned Opcode, bool IsMemset) const {
8184   MachineFunction &MF = *MBB->getParent();
8185   const SystemZInstrInfo *TII =
8186       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8187   MachineRegisterInfo &MRI = MF.getRegInfo();
8188   DebugLoc DL = MI.getDebugLoc();
8189 
8190   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8191   uint64_t DestDisp = MI.getOperand(1).getImm();
8192   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8193   uint64_t SrcDisp;
8194 
8195   // Fold the displacement Disp if it is out of range.
8196   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8197     if (!isUInt<12>(Disp)) {
8198       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8199       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8200       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8201         .add(Base).addImm(Disp).addReg(0);
8202       Base = MachineOperand::CreateReg(Reg, false);
8203       Disp = 0;
8204     }
8205   };
8206 
8207   if (!IsMemset) {
8208     SrcBase = earlyUseOperand(MI.getOperand(2));
8209     SrcDisp = MI.getOperand(3).getImm();
8210   } else {
8211     SrcBase = DestBase;
8212     SrcDisp = DestDisp++;
8213     foldDisplIfNeeded(DestBase, DestDisp);
8214   }
8215 
8216   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8217   bool IsImmForm = LengthMO.isImm();
8218   bool IsRegForm = !IsImmForm;
8219 
8220   // Build and insert one Opcode of Length, with special treatment for memset.
8221   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8222                             MachineBasicBlock::iterator InsPos,
8223                             MachineOperand DBase, uint64_t DDisp,
8224                             MachineOperand SBase, uint64_t SDisp,
8225                             unsigned Length) -> void {
8226     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8227     if (IsMemset) {
8228       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8229       if (ByteMO.isImm())
8230         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8231           .add(SBase).addImm(SDisp).add(ByteMO);
8232       else
8233         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8234           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8235       if (--Length == 0)
8236         return;
8237     }
8238     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8239       .add(DBase).addImm(DDisp).addImm(Length)
8240       .add(SBase).addImm(SDisp)
8241       .setMemRefs(MI.memoperands());
8242   };
8243 
8244   bool NeedsLoop = false;
8245   uint64_t ImmLength = 0;
8246   Register LenAdjReg = SystemZ::NoRegister;
8247   if (IsImmForm) {
8248     ImmLength = LengthMO.getImm();
8249     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8250     if (ImmLength == 0) {
8251       MI.eraseFromParent();
8252       return MBB;
8253     }
8254     if (Opcode == SystemZ::CLC) {
8255       if (ImmLength > 3 * 256)
8256         // A two-CLC sequence is a clear win over a loop, not least because
8257         // it needs only one branch.  A three-CLC sequence needs the same
8258         // number of branches as a loop (i.e. 2), but is shorter.  That
8259         // brings us to lengths greater than 768 bytes.  It seems relatively
8260         // likely that a difference will be found within the first 768 bytes,
8261         // so we just optimize for the smallest number of branch
8262         // instructions, in order to avoid polluting the prediction buffer
8263         // too much.
8264         NeedsLoop = true;
8265     } else if (ImmLength > 6 * 256)
8266       // The heuristic we use is to prefer loops for anything that would
8267       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8268       // to choose between straight-line code and looping code, since the
8269       // time will be dominated by the MVCs themselves.
8270       NeedsLoop = true;
8271   } else {
8272     NeedsLoop = true;
8273     LenAdjReg = LengthMO.getReg();
8274   }
8275 
8276   // When generating more than one CLC, all but the last will need to
8277   // branch to the end when a difference is found.
8278   MachineBasicBlock *EndMBB =
8279       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8280            ? SystemZ::splitBlockAfter(MI, MBB)
8281            : nullptr);
8282 
8283   if (NeedsLoop) {
8284     Register StartCountReg =
8285       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8286     if (IsImmForm) {
8287       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8288       ImmLength &= 255;
8289     } else {
8290       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8291         .addReg(LenAdjReg)
8292         .addReg(0)
8293         .addImm(8);
8294     }
8295 
8296     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8297     auto loadZeroAddress = [&]() -> MachineOperand {
8298       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8299       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8300       return MachineOperand::CreateReg(Reg, false);
8301     };
8302     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8303       DestBase = loadZeroAddress();
8304     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8305       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8306 
8307     MachineBasicBlock *StartMBB = nullptr;
8308     MachineBasicBlock *LoopMBB = nullptr;
8309     MachineBasicBlock *NextMBB = nullptr;
8310     MachineBasicBlock *DoneMBB = nullptr;
8311     MachineBasicBlock *AllDoneMBB = nullptr;
8312 
8313     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8314     Register StartDestReg =
8315         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8316 
8317     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8318     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8319     Register ThisDestReg =
8320         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8321     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8322     Register NextDestReg =
8323         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8324     RC = &SystemZ::GR64BitRegClass;
8325     Register ThisCountReg = MRI.createVirtualRegister(RC);
8326     Register NextCountReg = MRI.createVirtualRegister(RC);
8327 
8328     if (IsRegForm) {
8329       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8330       StartMBB = SystemZ::emitBlockAfter(MBB);
8331       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8332       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8333       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8334 
8335       //  MBB:
8336       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8337       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8338         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8339       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8340         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8341         .addMBB(AllDoneMBB);
8342       MBB->addSuccessor(AllDoneMBB);
8343       if (!IsMemset)
8344         MBB->addSuccessor(StartMBB);
8345       else {
8346         // MemsetOneCheckMBB:
8347         // # Jump to MemsetOneMBB for a memset of length 1, or
8348         // # fall thru to StartMBB.
8349         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8350         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8351         MBB->addSuccessor(MemsetOneCheckMBB);
8352         MBB = MemsetOneCheckMBB;
8353         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8354           .addReg(LenAdjReg).addImm(-1);
8355         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8356           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8357           .addMBB(MemsetOneMBB);
8358         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8359         MBB->addSuccessor(StartMBB, {90, 100});
8360 
8361         // MemsetOneMBB:
8362         // # Jump back to AllDoneMBB after a single MVI or STC.
8363         MBB = MemsetOneMBB;
8364         insertMemMemOp(MBB, MBB->end(),
8365                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8366                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8367                        1);
8368         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8369         MBB->addSuccessor(AllDoneMBB);
8370       }
8371 
8372       // StartMBB:
8373       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8374       MBB = StartMBB;
8375       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8376         .addReg(StartCountReg).addImm(0);
8377       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8378         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8379         .addMBB(DoneMBB);
8380       MBB->addSuccessor(DoneMBB);
8381       MBB->addSuccessor(LoopMBB);
8382     }
8383     else {
8384       StartMBB = MBB;
8385       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8386       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8387       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8388 
8389       //  StartMBB:
8390       //   # fall through to LoopMBB
8391       MBB->addSuccessor(LoopMBB);
8392 
8393       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8394       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8395       if (EndMBB && !ImmLength)
8396         // If the loop handled the whole CLC range, DoneMBB will be empty with
8397         // CC live-through into EndMBB, so add it as live-in.
8398         DoneMBB->addLiveIn(SystemZ::CC);
8399     }
8400 
8401     //  LoopMBB:
8402     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8403     //                      [ %NextDestReg, NextMBB ]
8404     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8405     //                     [ %NextSrcReg, NextMBB ]
8406     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8407     //                       [ %NextCountReg, NextMBB ]
8408     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8409     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8410     //   ( JLH EndMBB )
8411     //
8412     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8413     MBB = LoopMBB;
8414     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8415       .addReg(StartDestReg).addMBB(StartMBB)
8416       .addReg(NextDestReg).addMBB(NextMBB);
8417     if (!HaveSingleBase)
8418       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8419         .addReg(StartSrcReg).addMBB(StartMBB)
8420         .addReg(NextSrcReg).addMBB(NextMBB);
8421     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8422       .addReg(StartCountReg).addMBB(StartMBB)
8423       .addReg(NextCountReg).addMBB(NextMBB);
8424     if (Opcode == SystemZ::MVC)
8425       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8426         .addImm(SystemZ::PFD_WRITE)
8427         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8428     insertMemMemOp(MBB, MBB->end(),
8429                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8430                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8431     if (EndMBB) {
8432       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8433         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8434         .addMBB(EndMBB);
8435       MBB->addSuccessor(EndMBB);
8436       MBB->addSuccessor(NextMBB);
8437     }
8438 
8439     // NextMBB:
8440     //   %NextDestReg = LA 256(%ThisDestReg)
8441     //   %NextSrcReg = LA 256(%ThisSrcReg)
8442     //   %NextCountReg = AGHI %ThisCountReg, -1
8443     //   CGHI %NextCountReg, 0
8444     //   JLH LoopMBB
8445     //   # fall through to DoneMBB
8446     //
8447     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8448     MBB = NextMBB;
8449     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8450       .addReg(ThisDestReg).addImm(256).addReg(0);
8451     if (!HaveSingleBase)
8452       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8453         .addReg(ThisSrcReg).addImm(256).addReg(0);
8454     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8455       .addReg(ThisCountReg).addImm(-1);
8456     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8457       .addReg(NextCountReg).addImm(0);
8458     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8459       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8460       .addMBB(LoopMBB);
8461     MBB->addSuccessor(LoopMBB);
8462     MBB->addSuccessor(DoneMBB);
8463 
8464     MBB = DoneMBB;
8465     if (IsRegForm) {
8466       // DoneMBB:
8467       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8468       // # Use EXecute Relative Long for the remainder of the bytes. The target
8469       //   instruction of the EXRL will have a length field of 1 since 0 is an
8470       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8471       //   0xff) + 1.
8472       // # Fall through to AllDoneMBB.
8473       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8474       Register RemDestReg = HaveSingleBase ? RemSrcReg
8475         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8476       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8477         .addReg(StartDestReg).addMBB(StartMBB)
8478         .addReg(NextDestReg).addMBB(NextMBB);
8479       if (!HaveSingleBase)
8480         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8481           .addReg(StartSrcReg).addMBB(StartMBB)
8482           .addReg(NextSrcReg).addMBB(NextMBB);
8483       if (IsMemset)
8484         insertMemMemOp(MBB, MBB->end(),
8485                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
8486                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8487       MachineInstrBuilder EXRL_MIB =
8488         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8489           .addImm(Opcode)
8490           .addReg(LenAdjReg)
8491           .addReg(RemDestReg).addImm(DestDisp)
8492           .addReg(RemSrcReg).addImm(SrcDisp);
8493       MBB->addSuccessor(AllDoneMBB);
8494       MBB = AllDoneMBB;
8495       if (EndMBB) {
8496         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8497         MBB->addLiveIn(SystemZ::CC);
8498       }
8499     }
8500   }
8501 
8502   // Handle any remaining bytes with straight-line code.
8503   while (ImmLength > 0) {
8504     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8505     // The previous iteration might have created out-of-range displacements.
8506     // Apply them using LA/LAY if so.
8507     foldDisplIfNeeded(DestBase, DestDisp);
8508     foldDisplIfNeeded(SrcBase, SrcDisp);
8509     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
8510     DestDisp += ThisLength;
8511     SrcDisp += ThisLength;
8512     ImmLength -= ThisLength;
8513     // If there's another CLC to go, branch to the end if a difference
8514     // was found.
8515     if (EndMBB && ImmLength > 0) {
8516       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8517       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8518         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8519         .addMBB(EndMBB);
8520       MBB->addSuccessor(EndMBB);
8521       MBB->addSuccessor(NextMBB);
8522       MBB = NextMBB;
8523     }
8524   }
8525   if (EndMBB) {
8526     MBB->addSuccessor(EndMBB);
8527     MBB = EndMBB;
8528     MBB->addLiveIn(SystemZ::CC);
8529   }
8530 
8531   MI.eraseFromParent();
8532   return MBB;
8533 }
8534 
8535 // Decompose string pseudo-instruction MI into a loop that continually performs
8536 // Opcode until CC != 3.
8537 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8538     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8539   MachineFunction &MF = *MBB->getParent();
8540   const SystemZInstrInfo *TII =
8541       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8542   MachineRegisterInfo &MRI = MF.getRegInfo();
8543   DebugLoc DL = MI.getDebugLoc();
8544 
8545   uint64_t End1Reg = MI.getOperand(0).getReg();
8546   uint64_t Start1Reg = MI.getOperand(1).getReg();
8547   uint64_t Start2Reg = MI.getOperand(2).getReg();
8548   uint64_t CharReg = MI.getOperand(3).getReg();
8549 
8550   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8551   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8552   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8553   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8554 
8555   MachineBasicBlock *StartMBB = MBB;
8556   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8557   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8558 
8559   //  StartMBB:
8560   //   # fall through to LoopMBB
8561   MBB->addSuccessor(LoopMBB);
8562 
8563   //  LoopMBB:
8564   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8565   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8566   //   R0L = %CharReg
8567   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8568   //   JO LoopMBB
8569   //   # fall through to DoneMBB
8570   //
8571   // The load of R0L can be hoisted by post-RA LICM.
8572   MBB = LoopMBB;
8573 
8574   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8575     .addReg(Start1Reg).addMBB(StartMBB)
8576     .addReg(End1Reg).addMBB(LoopMBB);
8577   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8578     .addReg(Start2Reg).addMBB(StartMBB)
8579     .addReg(End2Reg).addMBB(LoopMBB);
8580   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8581   BuildMI(MBB, DL, TII->get(Opcode))
8582     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8583     .addReg(This1Reg).addReg(This2Reg);
8584   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8585     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8586   MBB->addSuccessor(LoopMBB);
8587   MBB->addSuccessor(DoneMBB);
8588 
8589   DoneMBB->addLiveIn(SystemZ::CC);
8590 
8591   MI.eraseFromParent();
8592   return DoneMBB;
8593 }
8594 
8595 // Update TBEGIN instruction with final opcode and register clobbers.
8596 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8597     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8598     bool NoFloat) const {
8599   MachineFunction &MF = *MBB->getParent();
8600   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8601   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8602 
8603   // Update opcode.
8604   MI.setDesc(TII->get(Opcode));
8605 
8606   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8607   // Make sure to add the corresponding GRSM bits if they are missing.
8608   uint64_t Control = MI.getOperand(2).getImm();
8609   static const unsigned GPRControlBit[16] = {
8610     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8611     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8612   };
8613   Control |= GPRControlBit[15];
8614   if (TFI->hasFP(MF))
8615     Control |= GPRControlBit[11];
8616   MI.getOperand(2).setImm(Control);
8617 
8618   // Add GPR clobbers.
8619   for (int I = 0; I < 16; I++) {
8620     if ((Control & GPRControlBit[I]) == 0) {
8621       unsigned Reg = SystemZMC::GR64Regs[I];
8622       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8623     }
8624   }
8625 
8626   // Add FPR/VR clobbers.
8627   if (!NoFloat && (Control & 4) != 0) {
8628     if (Subtarget.hasVector()) {
8629       for (unsigned Reg : SystemZMC::VR128Regs) {
8630         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8631       }
8632     } else {
8633       for (unsigned Reg : SystemZMC::FP64Regs) {
8634         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8635       }
8636     }
8637   }
8638 
8639   return MBB;
8640 }
8641 
8642 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8643     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8644   MachineFunction &MF = *MBB->getParent();
8645   MachineRegisterInfo *MRI = &MF.getRegInfo();
8646   const SystemZInstrInfo *TII =
8647       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8648   DebugLoc DL = MI.getDebugLoc();
8649 
8650   Register SrcReg = MI.getOperand(0).getReg();
8651 
8652   // Create new virtual register of the same class as source.
8653   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8654   Register DstReg = MRI->createVirtualRegister(RC);
8655 
8656   // Replace pseudo with a normal load-and-test that models the def as
8657   // well.
8658   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8659     .addReg(SrcReg)
8660     .setMIFlags(MI.getFlags());
8661   MI.eraseFromParent();
8662 
8663   return MBB;
8664 }
8665 
8666 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8667     MachineInstr &MI, MachineBasicBlock *MBB) const {
8668   MachineFunction &MF = *MBB->getParent();
8669   MachineRegisterInfo *MRI = &MF.getRegInfo();
8670   const SystemZInstrInfo *TII =
8671       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8672   DebugLoc DL = MI.getDebugLoc();
8673   const unsigned ProbeSize = getStackProbeSize(MF);
8674   Register DstReg = MI.getOperand(0).getReg();
8675   Register SizeReg = MI.getOperand(2).getReg();
8676 
8677   MachineBasicBlock *StartMBB = MBB;
8678   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8679   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8680   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8681   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8682   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8683 
8684   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8685     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8686 
8687   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8688   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8689 
8690   //  LoopTestMBB
8691   //  BRC TailTestMBB
8692   //  # fallthrough to LoopBodyMBB
8693   StartMBB->addSuccessor(LoopTestMBB);
8694   MBB = LoopTestMBB;
8695   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8696     .addReg(SizeReg)
8697     .addMBB(StartMBB)
8698     .addReg(IncReg)
8699     .addMBB(LoopBodyMBB);
8700   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8701     .addReg(PHIReg)
8702     .addImm(ProbeSize);
8703   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8704     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8705     .addMBB(TailTestMBB);
8706   MBB->addSuccessor(LoopBodyMBB);
8707   MBB->addSuccessor(TailTestMBB);
8708 
8709   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8710   //  J LoopTestMBB
8711   MBB = LoopBodyMBB;
8712   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8713     .addReg(PHIReg)
8714     .addImm(ProbeSize);
8715   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8716     .addReg(SystemZ::R15D)
8717     .addImm(ProbeSize);
8718   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8719     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8720     .setMemRefs(VolLdMMO);
8721   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8722   MBB->addSuccessor(LoopTestMBB);
8723 
8724   //  TailTestMBB
8725   //  BRC DoneMBB
8726   //  # fallthrough to TailMBB
8727   MBB = TailTestMBB;
8728   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8729     .addReg(PHIReg)
8730     .addImm(0);
8731   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8732     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8733     .addMBB(DoneMBB);
8734   MBB->addSuccessor(TailMBB);
8735   MBB->addSuccessor(DoneMBB);
8736 
8737   //  TailMBB
8738   //  # fallthrough to DoneMBB
8739   MBB = TailMBB;
8740   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8741     .addReg(SystemZ::R15D)
8742     .addReg(PHIReg);
8743   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8744     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8745     .setMemRefs(VolLdMMO);
8746   MBB->addSuccessor(DoneMBB);
8747 
8748   //  DoneMBB
8749   MBB = DoneMBB;
8750   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8751     .addReg(SystemZ::R15D);
8752 
8753   MI.eraseFromParent();
8754   return DoneMBB;
8755 }
8756 
8757 SDValue SystemZTargetLowering::
8758 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8759   MachineFunction &MF = DAG.getMachineFunction();
8760   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8761   SDLoc DL(SP);
8762   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8763                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8764 }
8765 
8766 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8767     MachineInstr &MI, MachineBasicBlock *MBB) const {
8768   switch (MI.getOpcode()) {
8769   case SystemZ::Select32:
8770   case SystemZ::Select64:
8771   case SystemZ::SelectF32:
8772   case SystemZ::SelectF64:
8773   case SystemZ::SelectF128:
8774   case SystemZ::SelectVR32:
8775   case SystemZ::SelectVR64:
8776   case SystemZ::SelectVR128:
8777     return emitSelect(MI, MBB);
8778 
8779   case SystemZ::CondStore8Mux:
8780     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8781   case SystemZ::CondStore8MuxInv:
8782     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8783   case SystemZ::CondStore16Mux:
8784     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8785   case SystemZ::CondStore16MuxInv:
8786     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8787   case SystemZ::CondStore32Mux:
8788     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8789   case SystemZ::CondStore32MuxInv:
8790     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8791   case SystemZ::CondStore8:
8792     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8793   case SystemZ::CondStore8Inv:
8794     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8795   case SystemZ::CondStore16:
8796     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8797   case SystemZ::CondStore16Inv:
8798     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8799   case SystemZ::CondStore32:
8800     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8801   case SystemZ::CondStore32Inv:
8802     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8803   case SystemZ::CondStore64:
8804     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8805   case SystemZ::CondStore64Inv:
8806     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8807   case SystemZ::CondStoreF32:
8808     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8809   case SystemZ::CondStoreF32Inv:
8810     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8811   case SystemZ::CondStoreF64:
8812     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8813   case SystemZ::CondStoreF64Inv:
8814     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8815 
8816   case SystemZ::PAIR128:
8817     return emitPair128(MI, MBB);
8818   case SystemZ::AEXT128:
8819     return emitExt128(MI, MBB, false);
8820   case SystemZ::ZEXT128:
8821     return emitExt128(MI, MBB, true);
8822 
8823   case SystemZ::ATOMIC_SWAPW:
8824     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8825   case SystemZ::ATOMIC_SWAP_32:
8826     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8827   case SystemZ::ATOMIC_SWAP_64:
8828     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8829 
8830   case SystemZ::ATOMIC_LOADW_AR:
8831     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8832   case SystemZ::ATOMIC_LOADW_AFI:
8833     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8834   case SystemZ::ATOMIC_LOAD_AR:
8835     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8836   case SystemZ::ATOMIC_LOAD_AHI:
8837     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8838   case SystemZ::ATOMIC_LOAD_AFI:
8839     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8840   case SystemZ::ATOMIC_LOAD_AGR:
8841     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8842   case SystemZ::ATOMIC_LOAD_AGHI:
8843     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8844   case SystemZ::ATOMIC_LOAD_AGFI:
8845     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8846 
8847   case SystemZ::ATOMIC_LOADW_SR:
8848     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8849   case SystemZ::ATOMIC_LOAD_SR:
8850     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8851   case SystemZ::ATOMIC_LOAD_SGR:
8852     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8853 
8854   case SystemZ::ATOMIC_LOADW_NR:
8855     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8856   case SystemZ::ATOMIC_LOADW_NILH:
8857     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8858   case SystemZ::ATOMIC_LOAD_NR:
8859     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8860   case SystemZ::ATOMIC_LOAD_NILL:
8861     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8862   case SystemZ::ATOMIC_LOAD_NILH:
8863     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8864   case SystemZ::ATOMIC_LOAD_NILF:
8865     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8866   case SystemZ::ATOMIC_LOAD_NGR:
8867     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8868   case SystemZ::ATOMIC_LOAD_NILL64:
8869     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8870   case SystemZ::ATOMIC_LOAD_NILH64:
8871     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8872   case SystemZ::ATOMIC_LOAD_NIHL64:
8873     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8874   case SystemZ::ATOMIC_LOAD_NIHH64:
8875     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8876   case SystemZ::ATOMIC_LOAD_NILF64:
8877     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8878   case SystemZ::ATOMIC_LOAD_NIHF64:
8879     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8880 
8881   case SystemZ::ATOMIC_LOADW_OR:
8882     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8883   case SystemZ::ATOMIC_LOADW_OILH:
8884     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8885   case SystemZ::ATOMIC_LOAD_OR:
8886     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8887   case SystemZ::ATOMIC_LOAD_OILL:
8888     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8889   case SystemZ::ATOMIC_LOAD_OILH:
8890     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8891   case SystemZ::ATOMIC_LOAD_OILF:
8892     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8893   case SystemZ::ATOMIC_LOAD_OGR:
8894     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8895   case SystemZ::ATOMIC_LOAD_OILL64:
8896     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8897   case SystemZ::ATOMIC_LOAD_OILH64:
8898     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8899   case SystemZ::ATOMIC_LOAD_OIHL64:
8900     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8901   case SystemZ::ATOMIC_LOAD_OIHH64:
8902     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8903   case SystemZ::ATOMIC_LOAD_OILF64:
8904     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8905   case SystemZ::ATOMIC_LOAD_OIHF64:
8906     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8907 
8908   case SystemZ::ATOMIC_LOADW_XR:
8909     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8910   case SystemZ::ATOMIC_LOADW_XILF:
8911     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8912   case SystemZ::ATOMIC_LOAD_XR:
8913     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8914   case SystemZ::ATOMIC_LOAD_XILF:
8915     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8916   case SystemZ::ATOMIC_LOAD_XGR:
8917     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8918   case SystemZ::ATOMIC_LOAD_XILF64:
8919     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8920   case SystemZ::ATOMIC_LOAD_XIHF64:
8921     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8922 
8923   case SystemZ::ATOMIC_LOADW_NRi:
8924     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8925   case SystemZ::ATOMIC_LOADW_NILHi:
8926     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8927   case SystemZ::ATOMIC_LOAD_NRi:
8928     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8929   case SystemZ::ATOMIC_LOAD_NILLi:
8930     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8931   case SystemZ::ATOMIC_LOAD_NILHi:
8932     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8933   case SystemZ::ATOMIC_LOAD_NILFi:
8934     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8935   case SystemZ::ATOMIC_LOAD_NGRi:
8936     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8937   case SystemZ::ATOMIC_LOAD_NILL64i:
8938     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8939   case SystemZ::ATOMIC_LOAD_NILH64i:
8940     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8941   case SystemZ::ATOMIC_LOAD_NIHL64i:
8942     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8943   case SystemZ::ATOMIC_LOAD_NIHH64i:
8944     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8945   case SystemZ::ATOMIC_LOAD_NILF64i:
8946     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8947   case SystemZ::ATOMIC_LOAD_NIHF64i:
8948     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8949 
8950   case SystemZ::ATOMIC_LOADW_MIN:
8951     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8952                                 SystemZ::CCMASK_CMP_LE, 0);
8953   case SystemZ::ATOMIC_LOAD_MIN_32:
8954     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8955                                 SystemZ::CCMASK_CMP_LE, 32);
8956   case SystemZ::ATOMIC_LOAD_MIN_64:
8957     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8958                                 SystemZ::CCMASK_CMP_LE, 64);
8959 
8960   case SystemZ::ATOMIC_LOADW_MAX:
8961     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8962                                 SystemZ::CCMASK_CMP_GE, 0);
8963   case SystemZ::ATOMIC_LOAD_MAX_32:
8964     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8965                                 SystemZ::CCMASK_CMP_GE, 32);
8966   case SystemZ::ATOMIC_LOAD_MAX_64:
8967     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8968                                 SystemZ::CCMASK_CMP_GE, 64);
8969 
8970   case SystemZ::ATOMIC_LOADW_UMIN:
8971     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8972                                 SystemZ::CCMASK_CMP_LE, 0);
8973   case SystemZ::ATOMIC_LOAD_UMIN_32:
8974     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8975                                 SystemZ::CCMASK_CMP_LE, 32);
8976   case SystemZ::ATOMIC_LOAD_UMIN_64:
8977     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8978                                 SystemZ::CCMASK_CMP_LE, 64);
8979 
8980   case SystemZ::ATOMIC_LOADW_UMAX:
8981     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8982                                 SystemZ::CCMASK_CMP_GE, 0);
8983   case SystemZ::ATOMIC_LOAD_UMAX_32:
8984     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8985                                 SystemZ::CCMASK_CMP_GE, 32);
8986   case SystemZ::ATOMIC_LOAD_UMAX_64:
8987     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8988                                 SystemZ::CCMASK_CMP_GE, 64);
8989 
8990   case SystemZ::ATOMIC_CMP_SWAPW:
8991     return emitAtomicCmpSwapW(MI, MBB);
8992   case SystemZ::MVCImm:
8993   case SystemZ::MVCReg:
8994     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8995   case SystemZ::NCImm:
8996     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8997   case SystemZ::OCImm:
8998     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8999   case SystemZ::XCImm:
9000   case SystemZ::XCReg:
9001     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9002   case SystemZ::CLCImm:
9003   case SystemZ::CLCReg:
9004     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9005   case SystemZ::MemsetImmImm:
9006   case SystemZ::MemsetImmReg:
9007   case SystemZ::MemsetRegImm:
9008   case SystemZ::MemsetRegReg:
9009     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9010   case SystemZ::CLSTLoop:
9011     return emitStringWrapper(MI, MBB, SystemZ::CLST);
9012   case SystemZ::MVSTLoop:
9013     return emitStringWrapper(MI, MBB, SystemZ::MVST);
9014   case SystemZ::SRSTLoop:
9015     return emitStringWrapper(MI, MBB, SystemZ::SRST);
9016   case SystemZ::TBEGIN:
9017     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9018   case SystemZ::TBEGIN_nofloat:
9019     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9020   case SystemZ::TBEGINC:
9021     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9022   case SystemZ::LTEBRCompare_VecPseudo:
9023     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9024   case SystemZ::LTDBRCompare_VecPseudo:
9025     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9026   case SystemZ::LTXBRCompare_VecPseudo:
9027     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9028 
9029   case SystemZ::PROBED_ALLOCA:
9030     return emitProbedAlloca(MI, MBB);
9031 
9032   case TargetOpcode::STACKMAP:
9033   case TargetOpcode::PATCHPOINT:
9034     return emitPatchPoint(MI, MBB);
9035 
9036   default:
9037     llvm_unreachable("Unexpected instr type to insert");
9038   }
9039 }
9040 
9041 // This is only used by the isel schedulers, and is needed only to prevent
9042 // compiler from crashing when list-ilp is used.
9043 const TargetRegisterClass *
9044 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9045   if (VT == MVT::Untyped)
9046     return &SystemZ::ADDR128BitRegClass;
9047   return TargetLowering::getRepRegClassFor(VT);
9048 }
9049