1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       // Expand individual DIV and REMs into DIVREMs.
168       setOperationAction(ISD::SDIV, VT, Expand);
169       setOperationAction(ISD::UDIV, VT, Expand);
170       setOperationAction(ISD::SREM, VT, Expand);
171       setOperationAction(ISD::UREM, VT, Expand);
172       setOperationAction(ISD::SDIVREM, VT, Custom);
173       setOperationAction(ISD::UDIVREM, VT, Custom);
174 
175       // Support addition/subtraction with overflow.
176       setOperationAction(ISD::SADDO, VT, Custom);
177       setOperationAction(ISD::SSUBO, VT, Custom);
178 
179       // Support addition/subtraction with carry.
180       setOperationAction(ISD::UADDO, VT, Custom);
181       setOperationAction(ISD::USUBO, VT, Custom);
182 
183       // Support carry in as value rather than glue.
184       setOperationAction(ISD::ADDCARRY, VT, Custom);
185       setOperationAction(ISD::SUBCARRY, VT, Custom);
186 
187       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
188       // stores, putting a serialization instruction after the stores.
189       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
190       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
191 
192       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
193       // available, or if the operand is constant.
194       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
195 
196       // Use POPCNT on z196 and above.
197       if (Subtarget.hasPopulationCount())
198         setOperationAction(ISD::CTPOP, VT, Custom);
199       else
200         setOperationAction(ISD::CTPOP, VT, Expand);
201 
202       // No special instructions for these.
203       setOperationAction(ISD::CTTZ,            VT, Expand);
204       setOperationAction(ISD::ROTR,            VT, Expand);
205 
206       // Use *MUL_LOHI where possible instead of MULH*.
207       setOperationAction(ISD::MULHS, VT, Expand);
208       setOperationAction(ISD::MULHU, VT, Expand);
209       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
210       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
211 
212       // Only z196 and above have native support for conversions to unsigned.
213       // On z10, promoting to i64 doesn't generate an inexact condition for
214       // values that are outside the i32 range but in the i64 range, so use
215       // the default expansion.
216       if (!Subtarget.hasFPExtension())
217         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
218 
219       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
220       // default to Expand, so need to be modified to Legal where appropriate.
221       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
222       if (Subtarget.hasFPExtension())
223         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
224 
225       // And similarly for STRICT_[SU]INT_TO_FP.
226       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
227       if (Subtarget.hasFPExtension())
228         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
229     }
230   }
231 
232   // Type legalization will convert 8- and 16-bit atomic operations into
233   // forms that operate on i32s (but still keeping the original memory VT).
234   // Lower them into full i32 operations.
235   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
246 
247   // Even though i128 is not a legal type, we still need to custom lower
248   // the atomic operations in order to exploit SystemZ instructions.
249   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
250   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
251 
252   // We can use the CC result of compare-and-swap to implement
253   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
255   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
257 
258   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
259 
260   // Traps are legal, as we will convert them to "j .+2".
261   setOperationAction(ISD::TRAP, MVT::Other, Legal);
262 
263   // z10 has instructions for signed but not unsigned FP conversion.
264   // Handle unsigned 32-bit types as signed 64-bit types.
265   if (!Subtarget.hasFPExtension()) {
266     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
268     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
270   }
271 
272   // We have native support for a 64-bit CTLZ, via FLOGR.
273   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
274   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
275   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
276 
277   // On z15 we have native support for a 64-bit CTPOP.
278   if (Subtarget.hasMiscellaneousExtensions3()) {
279     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
280     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
281   }
282 
283   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
284   setOperationAction(ISD::OR, MVT::i64, Custom);
285 
286   // FIXME: Can we support these natively?
287   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
288   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
289   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
290 
291   // We have native instructions for i8, i16 and i32 extensions, but not i1.
292   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
293   for (MVT VT : MVT::integer_valuetypes()) {
294     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
295     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
296     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
297   }
298 
299   // Handle the various types of symbolic address.
300   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
301   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
302   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
303   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
304   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
305 
306   // We need to handle dynamic allocations specially because of the
307   // 160-byte area at the bottom of the stack.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
309   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
310 
311   // Use custom expanders so that we can force the function to use
312   // a frame pointer.
313   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
314   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
315 
316   // Handle prefetches with PFD or PFDRL.
317   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
318 
319   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
320     // Assume by default that all vector operations need to be expanded.
321     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
322       if (getOperationAction(Opcode, VT) == Legal)
323         setOperationAction(Opcode, VT, Expand);
324 
325     // Likewise all truncating stores and extending loads.
326     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
327       setTruncStoreAction(VT, InnerVT, Expand);
328       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
329       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
330       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
331     }
332 
333     if (isTypeLegal(VT)) {
334       // These operations are legal for anything that can be stored in a
335       // vector register, even if there is no native support for the format
336       // as such.  In particular, we can do these for v4f32 even though there
337       // are no specific instructions for that format.
338       setOperationAction(ISD::LOAD, VT, Legal);
339       setOperationAction(ISD::STORE, VT, Legal);
340       setOperationAction(ISD::VSELECT, VT, Legal);
341       setOperationAction(ISD::BITCAST, VT, Legal);
342       setOperationAction(ISD::UNDEF, VT, Legal);
343 
344       // Likewise, except that we need to replace the nodes with something
345       // more specific.
346       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
348     }
349   }
350 
351   // Handle integer vector types.
352   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
353     if (isTypeLegal(VT)) {
354       // These operations have direct equivalents.
355       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
356       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
357       setOperationAction(ISD::ADD, VT, Legal);
358       setOperationAction(ISD::SUB, VT, Legal);
359       if (VT != MVT::v2i64)
360         setOperationAction(ISD::MUL, VT, Legal);
361       setOperationAction(ISD::AND, VT, Legal);
362       setOperationAction(ISD::OR, VT, Legal);
363       setOperationAction(ISD::XOR, VT, Legal);
364       if (Subtarget.hasVectorEnhancements1())
365         setOperationAction(ISD::CTPOP, VT, Legal);
366       else
367         setOperationAction(ISD::CTPOP, VT, Custom);
368       setOperationAction(ISD::CTTZ, VT, Legal);
369       setOperationAction(ISD::CTLZ, VT, Legal);
370 
371       // Convert a GPR scalar to a vector by inserting it into element 0.
372       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
373 
374       // Use a series of unpacks for extensions.
375       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
376       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
377 
378       // Detect shifts by a scalar amount and convert them into
379       // V*_BY_SCALAR.
380       setOperationAction(ISD::SHL, VT, Custom);
381       setOperationAction(ISD::SRA, VT, Custom);
382       setOperationAction(ISD::SRL, VT, Custom);
383 
384       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
385       // converted into ROTL.
386       setOperationAction(ISD::ROTL, VT, Expand);
387       setOperationAction(ISD::ROTR, VT, Expand);
388 
389       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
390       // and inverting the result as necessary.
391       setOperationAction(ISD::SETCC, VT, Custom);
392       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
393       if (Subtarget.hasVectorEnhancements1())
394         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
395     }
396   }
397 
398   if (Subtarget.hasVector()) {
399     // There should be no need to check for float types other than v2f64
400     // since <2 x f32> isn't a legal type.
401     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
404     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
407     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
408     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
409 
410     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
418   }
419 
420   if (Subtarget.hasVectorEnhancements2()) {
421     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
424     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
425     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
427     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
429 
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
438   }
439 
440   // Handle floating-point types.
441   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
442        I <= MVT::LAST_FP_VALUETYPE;
443        ++I) {
444     MVT VT = MVT::SimpleValueType(I);
445     if (isTypeLegal(VT)) {
446       // We can use FI for FRINT.
447       setOperationAction(ISD::FRINT, VT, Legal);
448 
449       // We can use the extended form of FI for other rounding operations.
450       if (Subtarget.hasFPExtension()) {
451         setOperationAction(ISD::FNEARBYINT, VT, Legal);
452         setOperationAction(ISD::FFLOOR, VT, Legal);
453         setOperationAction(ISD::FCEIL, VT, Legal);
454         setOperationAction(ISD::FTRUNC, VT, Legal);
455         setOperationAction(ISD::FROUND, VT, Legal);
456       }
457 
458       // No special instructions for these.
459       setOperationAction(ISD::FSIN, VT, Expand);
460       setOperationAction(ISD::FCOS, VT, Expand);
461       setOperationAction(ISD::FSINCOS, VT, Expand);
462       setOperationAction(ISD::FREM, VT, Expand);
463       setOperationAction(ISD::FPOW, VT, Expand);
464 
465       // Handle constrained floating-point operations.
466       setOperationAction(ISD::STRICT_FADD, VT, Legal);
467       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
468       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
469       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
470       setOperationAction(ISD::STRICT_FMA, VT, Legal);
471       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
472       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
473       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
474       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
475       if (Subtarget.hasFPExtension()) {
476         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
477         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
478         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
479         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
480         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
481       }
482     }
483   }
484 
485   // Handle floating-point vector types.
486   if (Subtarget.hasVector()) {
487     // Scalar-to-vector conversion is just a subreg.
488     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
489     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
490 
491     // Some insertions and extractions can be done directly but others
492     // need to go via integers.
493     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
495     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
496     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
497 
498     // These operations have direct equivalents.
499     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
500     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
501     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
502     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
503     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
504     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
505     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
506     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
512     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
513 
514     // Handle constrained floating-point operations.
515     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
527   }
528 
529   // The vector enhancements facility 1 has instructions for these.
530   if (Subtarget.hasVectorEnhancements1()) {
531     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
532     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
533     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
536     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
537     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
538     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
540     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
541     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
542     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
543     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
544     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
545 
546     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
548     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
549     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
550 
551     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
555 
556     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
558     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
559     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
560 
561     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
563     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
564     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
565 
566     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
568     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
569     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
570 
571     // Handle constrained floating-point operations.
572     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
584     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
585                      MVT::v4f32, MVT::v2f64 }) {
586       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
588       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
589       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
590     }
591   }
592 
593   // We only have fused f128 multiply-addition on vector registers.
594   if (!Subtarget.hasVectorEnhancements1()) {
595     setOperationAction(ISD::FMA, MVT::f128, Expand);
596     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
597   }
598 
599   // We don't have a copysign instruction on vector registers.
600   if (Subtarget.hasVectorEnhancements1())
601     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
602 
603   // Needed so that we don't try to implement f128 constant loads using
604   // a load-and-extend of a f80 constant (in cases where the constant
605   // would fit in an f80).
606   for (MVT VT : MVT::fp_valuetypes())
607     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
608 
609   // We don't have extending load instruction on vector registers.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
612     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
613   }
614 
615   // Floating-point truncation and stores need to be done separately.
616   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
619 
620   // We have 64-bit FPR<->GPR moves, but need special handling for
621   // 32-bit forms.
622   if (!Subtarget.hasVector()) {
623     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
624     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
625   }
626 
627   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
628   // structure, but VAEND is a no-op.
629   setOperationAction(ISD::VASTART, MVT::Other, Custom);
630   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
631   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
632 
633   // Codes for which we want to perform some z-specific combinations.
634   setTargetDAGCombine(ISD::ZERO_EXTEND);
635   setTargetDAGCombine(ISD::SIGN_EXTEND);
636   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
637   setTargetDAGCombine(ISD::LOAD);
638   setTargetDAGCombine(ISD::STORE);
639   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
641   setTargetDAGCombine(ISD::FP_ROUND);
642   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
643   setTargetDAGCombine(ISD::FP_EXTEND);
644   setTargetDAGCombine(ISD::SINT_TO_FP);
645   setTargetDAGCombine(ISD::UINT_TO_FP);
646   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
647   setTargetDAGCombine(ISD::BSWAP);
648   setTargetDAGCombine(ISD::SDIV);
649   setTargetDAGCombine(ISD::UDIV);
650   setTargetDAGCombine(ISD::SREM);
651   setTargetDAGCombine(ISD::UREM);
652   setTargetDAGCombine(ISD::INTRINSIC_VOID);
653   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
654 
655   // Handle intrinsics.
656   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
657   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
658 
659   // We want to use MVC in preference to even a single load/store pair.
660   MaxStoresPerMemcpy = 0;
661   MaxStoresPerMemcpyOptSize = 0;
662 
663   // The main memset sequence is a byte store followed by an MVC.
664   // Two STC or MV..I stores win over that, but the kind of fused stores
665   // generated by target-independent code don't when the byte value is
666   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
667   // than "STC;MVC".  Handle the choice in target-specific code instead.
668   MaxStoresPerMemset = 0;
669   MaxStoresPerMemsetOptSize = 0;
670 
671   // Default to having -disable-strictnode-mutation on
672   IsStrictFPEnabled = true;
673 }
674 
675 bool SystemZTargetLowering::useSoftFloat() const {
676   return Subtarget.hasSoftFloat();
677 }
678 
679 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
680                                               LLVMContext &, EVT VT) const {
681   if (!VT.isVector())
682     return MVT::i32;
683   return VT.changeVectorElementTypeToInteger();
684 }
685 
686 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
687     const MachineFunction &MF, EVT VT) const {
688   VT = VT.getScalarType();
689 
690   if (!VT.isSimple())
691     return false;
692 
693   switch (VT.getSimpleVT().SimpleTy) {
694   case MVT::f32:
695   case MVT::f64:
696     return true;
697   case MVT::f128:
698     return Subtarget.hasVectorEnhancements1();
699   default:
700     break;
701   }
702 
703   return false;
704 }
705 
706 // Return true if the constant can be generated with a vector instruction,
707 // such as VGM, VGMB or VREPI.
708 bool SystemZVectorConstantInfo::isVectorConstantLegal(
709     const SystemZSubtarget &Subtarget) {
710   const SystemZInstrInfo *TII =
711       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
712   if (!Subtarget.hasVector() ||
713       (isFP128 && !Subtarget.hasVectorEnhancements1()))
714     return false;
715 
716   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
717   // preferred way of creating all-zero and all-one vectors so give it
718   // priority over other methods below.
719   unsigned Mask = 0;
720   unsigned I = 0;
721   for (; I < SystemZ::VectorBytes; ++I) {
722     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
723     if (Byte == 0xff)
724       Mask |= 1ULL << I;
725     else if (Byte != 0)
726       break;
727   }
728   if (I == SystemZ::VectorBytes) {
729     Opcode = SystemZISD::BYTE_MASK;
730     OpVals.push_back(Mask);
731     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
732     return true;
733   }
734 
735   if (SplatBitSize > 64)
736     return false;
737 
738   auto tryValue = [&](uint64_t Value) -> bool {
739     // Try VECTOR REPLICATE IMMEDIATE
740     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
741     if (isInt<16>(SignedValue)) {
742       OpVals.push_back(((unsigned) SignedValue));
743       Opcode = SystemZISD::REPLICATE;
744       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
745                                SystemZ::VectorBits / SplatBitSize);
746       return true;
747     }
748     // Try VECTOR GENERATE MASK
749     unsigned Start, End;
750     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
751       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
752       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
753       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
754       OpVals.push_back(Start - (64 - SplatBitSize));
755       OpVals.push_back(End - (64 - SplatBitSize));
756       Opcode = SystemZISD::ROTATE_MASK;
757       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
758                                SystemZ::VectorBits / SplatBitSize);
759       return true;
760     }
761     return false;
762   };
763 
764   // First try assuming that any undefined bits above the highest set bit
765   // and below the lowest set bit are 1s.  This increases the likelihood of
766   // being able to use a sign-extended element value in VECTOR REPLICATE
767   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
768   uint64_t SplatBitsZ = SplatBits.getZExtValue();
769   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
770   uint64_t Lower =
771       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
772   uint64_t Upper =
773       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
774   if (tryValue(SplatBitsZ | Upper | Lower))
775     return true;
776 
777   // Now try assuming that any undefined bits between the first and
778   // last defined set bits are set.  This increases the chances of
779   // using a non-wraparound mask.
780   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
781   return tryValue(SplatBitsZ | Middle);
782 }
783 
784 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
785   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
786   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
787   SplatBits = FPImm.bitcastToAPInt();
788   unsigned Width = SplatBits.getBitWidth();
789   IntBits <<= (SystemZ::VectorBits - Width);
790 
791   // Find the smallest splat.
792   while (Width > 8) {
793     unsigned HalfSize = Width / 2;
794     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
795     APInt LowValue = SplatBits.trunc(HalfSize);
796 
797     // If the two halves do not match, stop here.
798     if (HighValue != LowValue || 8 > HalfSize)
799       break;
800 
801     SplatBits = HighValue;
802     Width = HalfSize;
803   }
804   SplatUndef = 0;
805   SplatBitSize = Width;
806 }
807 
808 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
809   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
810   bool HasAnyUndefs;
811 
812   // Get IntBits by finding the 128 bit splat.
813   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
814                        true);
815 
816   // Get SplatBits by finding the 8 bit or greater splat.
817   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
818                        true);
819 }
820 
821 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
822                                          bool ForCodeSize) const {
823   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
824   if (Imm.isZero() || Imm.isNegZero())
825     return true;
826 
827   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
828 }
829 
830 /// Returns true if stack probing through inline assembly is requested.
831 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
832   // If the function specifically requests inline stack probes, emit them.
833   if (MF.getFunction().hasFnAttribute("probe-stack"))
834     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
835            "inline-asm";
836   return false;
837 }
838 
839 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
840   // We can use CGFI or CLGFI.
841   return isInt<32>(Imm) || isUInt<32>(Imm);
842 }
843 
844 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
845   // We can use ALGFI or SLGFI.
846   return isUInt<32>(Imm) || isUInt<32>(-Imm);
847 }
848 
849 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
850     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
851   // Unaligned accesses should never be slower than the expanded version.
852   // We check specifically for aligned accesses in the few cases where
853   // they are required.
854   if (Fast)
855     *Fast = true;
856   return true;
857 }
858 
859 // Information about the addressing mode for a memory access.
860 struct AddressingMode {
861   // True if a long displacement is supported.
862   bool LongDisplacement;
863 
864   // True if use of index register is supported.
865   bool IndexReg;
866 
867   AddressingMode(bool LongDispl, bool IdxReg) :
868     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
869 };
870 
871 // Return the desired addressing mode for a Load which has only one use (in
872 // the same block) which is a Store.
873 static AddressingMode getLoadStoreAddrMode(bool HasVector,
874                                           Type *Ty) {
875   // With vector support a Load->Store combination may be combined to either
876   // an MVC or vector operations and it seems to work best to allow the
877   // vector addressing mode.
878   if (HasVector)
879     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
880 
881   // Otherwise only the MVC case is special.
882   bool MVC = Ty->isIntegerTy(8);
883   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
884 }
885 
886 // Return the addressing mode which seems most desirable given an LLVM
887 // Instruction pointer.
888 static AddressingMode
889 supportedAddressingMode(Instruction *I, bool HasVector) {
890   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
891     switch (II->getIntrinsicID()) {
892     default: break;
893     case Intrinsic::memset:
894     case Intrinsic::memmove:
895     case Intrinsic::memcpy:
896       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
897     }
898   }
899 
900   if (isa<LoadInst>(I) && I->hasOneUse()) {
901     auto *SingleUser = cast<Instruction>(*I->user_begin());
902     if (SingleUser->getParent() == I->getParent()) {
903       if (isa<ICmpInst>(SingleUser)) {
904         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
905           if (C->getBitWidth() <= 64 &&
906               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
907             // Comparison of memory with 16 bit signed / unsigned immediate
908             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
909       } else if (isa<StoreInst>(SingleUser))
910         // Load->Store
911         return getLoadStoreAddrMode(HasVector, I->getType());
912     }
913   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
914     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
915       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
916         // Load->Store
917         return getLoadStoreAddrMode(HasVector, LoadI->getType());
918   }
919 
920   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
921 
922     // * Use LDE instead of LE/LEY for z13 to avoid partial register
923     //   dependencies (LDE only supports small offsets).
924     // * Utilize the vector registers to hold floating point
925     //   values (vector load / store instructions only support small
926     //   offsets).
927 
928     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
929                          I->getOperand(0)->getType());
930     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
931     bool IsVectorAccess = MemAccessTy->isVectorTy();
932 
933     // A store of an extracted vector element will be combined into a VSTE type
934     // instruction.
935     if (!IsVectorAccess && isa<StoreInst>(I)) {
936       Value *DataOp = I->getOperand(0);
937       if (isa<ExtractElementInst>(DataOp))
938         IsVectorAccess = true;
939     }
940 
941     // A load which gets inserted into a vector element will be combined into a
942     // VLE type instruction.
943     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
944       User *LoadUser = *I->user_begin();
945       if (isa<InsertElementInst>(LoadUser))
946         IsVectorAccess = true;
947     }
948 
949     if (IsFPAccess || IsVectorAccess)
950       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
951   }
952 
953   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
954 }
955 
956 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
957        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
958   // Punt on globals for now, although they can be used in limited
959   // RELATIVE LONG cases.
960   if (AM.BaseGV)
961     return false;
962 
963   // Require a 20-bit signed offset.
964   if (!isInt<20>(AM.BaseOffs))
965     return false;
966 
967   AddressingMode SupportedAM(true, true);
968   if (I != nullptr)
969     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
970 
971   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
972     return false;
973 
974   if (!SupportedAM.IndexReg)
975     // No indexing allowed.
976     return AM.Scale == 0;
977   else
978     // Indexing is OK but no scale factor can be applied.
979     return AM.Scale == 0 || AM.Scale == 1;
980 }
981 
982 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
983   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
984     return false;
985   unsigned FromBits = FromType->getPrimitiveSizeInBits();
986   unsigned ToBits = ToType->getPrimitiveSizeInBits();
987   return FromBits > ToBits;
988 }
989 
990 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
991   if (!FromVT.isInteger() || !ToVT.isInteger())
992     return false;
993   unsigned FromBits = FromVT.getSizeInBits();
994   unsigned ToBits = ToVT.getSizeInBits();
995   return FromBits > ToBits;
996 }
997 
998 //===----------------------------------------------------------------------===//
999 // Inline asm support
1000 //===----------------------------------------------------------------------===//
1001 
1002 TargetLowering::ConstraintType
1003 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1004   if (Constraint.size() == 1) {
1005     switch (Constraint[0]) {
1006     case 'a': // Address register
1007     case 'd': // Data register (equivalent to 'r')
1008     case 'f': // Floating-point register
1009     case 'h': // High-part register
1010     case 'r': // General-purpose register
1011     case 'v': // Vector register
1012       return C_RegisterClass;
1013 
1014     case 'Q': // Memory with base and unsigned 12-bit displacement
1015     case 'R': // Likewise, plus an index
1016     case 'S': // Memory with base and signed 20-bit displacement
1017     case 'T': // Likewise, plus an index
1018     case 'm': // Equivalent to 'T'.
1019       return C_Memory;
1020 
1021     case 'I': // Unsigned 8-bit constant
1022     case 'J': // Unsigned 12-bit constant
1023     case 'K': // Signed 16-bit constant
1024     case 'L': // Signed 20-bit displacement (on all targets we support)
1025     case 'M': // 0x7fffffff
1026       return C_Immediate;
1027 
1028     default:
1029       break;
1030     }
1031   }
1032   return TargetLowering::getConstraintType(Constraint);
1033 }
1034 
1035 TargetLowering::ConstraintWeight SystemZTargetLowering::
1036 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1037                                const char *constraint) const {
1038   ConstraintWeight weight = CW_Invalid;
1039   Value *CallOperandVal = info.CallOperandVal;
1040   // If we don't have a value, we can't do a match,
1041   // but allow it at the lowest weight.
1042   if (!CallOperandVal)
1043     return CW_Default;
1044   Type *type = CallOperandVal->getType();
1045   // Look at the constraint type.
1046   switch (*constraint) {
1047   default:
1048     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1049     break;
1050 
1051   case 'a': // Address register
1052   case 'd': // Data register (equivalent to 'r')
1053   case 'h': // High-part register
1054   case 'r': // General-purpose register
1055     if (CallOperandVal->getType()->isIntegerTy())
1056       weight = CW_Register;
1057     break;
1058 
1059   case 'f': // Floating-point register
1060     if (type->isFloatingPointTy())
1061       weight = CW_Register;
1062     break;
1063 
1064   case 'v': // Vector register
1065     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1066         Subtarget.hasVector())
1067       weight = CW_Register;
1068     break;
1069 
1070   case 'I': // Unsigned 8-bit constant
1071     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1072       if (isUInt<8>(C->getZExtValue()))
1073         weight = CW_Constant;
1074     break;
1075 
1076   case 'J': // Unsigned 12-bit constant
1077     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1078       if (isUInt<12>(C->getZExtValue()))
1079         weight = CW_Constant;
1080     break;
1081 
1082   case 'K': // Signed 16-bit constant
1083     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1084       if (isInt<16>(C->getSExtValue()))
1085         weight = CW_Constant;
1086     break;
1087 
1088   case 'L': // Signed 20-bit displacement (on all targets we support)
1089     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1090       if (isInt<20>(C->getSExtValue()))
1091         weight = CW_Constant;
1092     break;
1093 
1094   case 'M': // 0x7fffffff
1095     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1096       if (C->getZExtValue() == 0x7fffffff)
1097         weight = CW_Constant;
1098     break;
1099   }
1100   return weight;
1101 }
1102 
1103 // Parse a "{tNNN}" register constraint for which the register type "t"
1104 // has already been verified.  MC is the class associated with "t" and
1105 // Map maps 0-based register numbers to LLVM register numbers.
1106 static std::pair<unsigned, const TargetRegisterClass *>
1107 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1108                     const unsigned *Map, unsigned Size) {
1109   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1110   if (isdigit(Constraint[2])) {
1111     unsigned Index;
1112     bool Failed =
1113         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1114     if (!Failed && Index < Size && Map[Index])
1115       return std::make_pair(Map[Index], RC);
1116   }
1117   return std::make_pair(0U, nullptr);
1118 }
1119 
1120 std::pair<unsigned, const TargetRegisterClass *>
1121 SystemZTargetLowering::getRegForInlineAsmConstraint(
1122     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1123   if (Constraint.size() == 1) {
1124     // GCC Constraint Letters
1125     switch (Constraint[0]) {
1126     default: break;
1127     case 'd': // Data register (equivalent to 'r')
1128     case 'r': // General-purpose register
1129       if (VT == MVT::i64)
1130         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1131       else if (VT == MVT::i128)
1132         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1133       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1134 
1135     case 'a': // Address register
1136       if (VT == MVT::i64)
1137         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1138       else if (VT == MVT::i128)
1139         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1140       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1141 
1142     case 'h': // High-part register (an LLVM extension)
1143       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1144 
1145     case 'f': // Floating-point register
1146       if (!useSoftFloat()) {
1147         if (VT == MVT::f64)
1148           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1149         else if (VT == MVT::f128)
1150           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1151         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1152       }
1153       break;
1154     case 'v': // Vector register
1155       if (Subtarget.hasVector()) {
1156         if (VT == MVT::f32)
1157           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1158         if (VT == MVT::f64)
1159           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1160         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1161       }
1162       break;
1163     }
1164   }
1165   if (Constraint.size() > 0 && Constraint[0] == '{') {
1166     // We need to override the default register parsing for GPRs and FPRs
1167     // because the interpretation depends on VT.  The internal names of
1168     // the registers are also different from the external names
1169     // (F0D and F0S instead of F0, etc.).
1170     if (Constraint[1] == 'r') {
1171       if (VT == MVT::i32)
1172         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1173                                    SystemZMC::GR32Regs, 16);
1174       if (VT == MVT::i128)
1175         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1176                                    SystemZMC::GR128Regs, 16);
1177       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1178                                  SystemZMC::GR64Regs, 16);
1179     }
1180     if (Constraint[1] == 'f') {
1181       if (useSoftFloat())
1182         return std::make_pair(
1183             0u, static_cast<const TargetRegisterClass *>(nullptr));
1184       if (VT == MVT::f32)
1185         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1186                                    SystemZMC::FP32Regs, 16);
1187       if (VT == MVT::f128)
1188         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1189                                    SystemZMC::FP128Regs, 16);
1190       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1191                                  SystemZMC::FP64Regs, 16);
1192     }
1193     if (Constraint[1] == 'v') {
1194       if (!Subtarget.hasVector())
1195         return std::make_pair(
1196             0u, static_cast<const TargetRegisterClass *>(nullptr));
1197       if (VT == MVT::f32)
1198         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1199                                    SystemZMC::VR32Regs, 32);
1200       if (VT == MVT::f64)
1201         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1202                                    SystemZMC::VR64Regs, 32);
1203       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1204                                  SystemZMC::VR128Regs, 32);
1205     }
1206   }
1207   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1208 }
1209 
1210 // FIXME? Maybe this could be a TableGen attribute on some registers and
1211 // this table could be generated automatically from RegInfo.
1212 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1213                                                   const MachineFunction &MF) const {
1214 
1215   Register Reg = StringSwitch<Register>(RegName)
1216                    .Case("r15", SystemZ::R15D)
1217                    .Default(0);
1218   if (Reg)
1219     return Reg;
1220   report_fatal_error("Invalid register name global variable");
1221 }
1222 
1223 void SystemZTargetLowering::
1224 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1225                              std::vector<SDValue> &Ops,
1226                              SelectionDAG &DAG) const {
1227   // Only support length 1 constraints for now.
1228   if (Constraint.length() == 1) {
1229     switch (Constraint[0]) {
1230     case 'I': // Unsigned 8-bit constant
1231       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1232         if (isUInt<8>(C->getZExtValue()))
1233           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1234                                               Op.getValueType()));
1235       return;
1236 
1237     case 'J': // Unsigned 12-bit constant
1238       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1239         if (isUInt<12>(C->getZExtValue()))
1240           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1241                                               Op.getValueType()));
1242       return;
1243 
1244     case 'K': // Signed 16-bit constant
1245       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1246         if (isInt<16>(C->getSExtValue()))
1247           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1248                                               Op.getValueType()));
1249       return;
1250 
1251     case 'L': // Signed 20-bit displacement (on all targets we support)
1252       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1253         if (isInt<20>(C->getSExtValue()))
1254           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1255                                               Op.getValueType()));
1256       return;
1257 
1258     case 'M': // 0x7fffffff
1259       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1260         if (C->getZExtValue() == 0x7fffffff)
1261           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1262                                               Op.getValueType()));
1263       return;
1264     }
1265   }
1266   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1267 }
1268 
1269 //===----------------------------------------------------------------------===//
1270 // Calling conventions
1271 //===----------------------------------------------------------------------===//
1272 
1273 #include "SystemZGenCallingConv.inc"
1274 
1275 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1276   CallingConv::ID) const {
1277   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1278                                            SystemZ::R14D, 0 };
1279   return ScratchRegs;
1280 }
1281 
1282 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1283                                                      Type *ToType) const {
1284   return isTruncateFree(FromType, ToType);
1285 }
1286 
1287 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1288   return CI->isTailCall();
1289 }
1290 
1291 // We do not yet support 128-bit single-element vector types.  If the user
1292 // attempts to use such types as function argument or return type, prefer
1293 // to error out instead of emitting code violating the ABI.
1294 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1295   if (ArgVT.isVector() && !VT.isVector())
1296     report_fatal_error("Unsupported vector argument or return type");
1297 }
1298 
1299 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1300   for (unsigned i = 0; i < Ins.size(); ++i)
1301     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1302 }
1303 
1304 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1305   for (unsigned i = 0; i < Outs.size(); ++i)
1306     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1307 }
1308 
1309 // Value is a value that has been passed to us in the location described by VA
1310 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1311 // any loads onto Chain.
1312 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1313                                    CCValAssign &VA, SDValue Chain,
1314                                    SDValue Value) {
1315   // If the argument has been promoted from a smaller type, insert an
1316   // assertion to capture this.
1317   if (VA.getLocInfo() == CCValAssign::SExt)
1318     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1319                         DAG.getValueType(VA.getValVT()));
1320   else if (VA.getLocInfo() == CCValAssign::ZExt)
1321     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1322                         DAG.getValueType(VA.getValVT()));
1323 
1324   if (VA.isExtInLoc())
1325     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1326   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1327     // If this is a short vector argument loaded from the stack,
1328     // extend from i64 to full vector size and then bitcast.
1329     assert(VA.getLocVT() == MVT::i64);
1330     assert(VA.getValVT().isVector());
1331     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1332     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1333   } else
1334     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1335   return Value;
1336 }
1337 
1338 // Value is a value of type VA.getValVT() that we need to copy into
1339 // the location described by VA.  Return a copy of Value converted to
1340 // VA.getValVT().  The caller is responsible for handling indirect values.
1341 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1342                                    CCValAssign &VA, SDValue Value) {
1343   switch (VA.getLocInfo()) {
1344   case CCValAssign::SExt:
1345     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1346   case CCValAssign::ZExt:
1347     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1348   case CCValAssign::AExt:
1349     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1350   case CCValAssign::BCvt:
1351     // If this is a short vector argument to be stored to the stack,
1352     // bitcast to v2i64 and then extract first element.
1353     assert(VA.getLocVT() == MVT::i64);
1354     assert(VA.getValVT().isVector());
1355     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1356     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1357                        DAG.getConstant(0, DL, MVT::i32));
1358   case CCValAssign::Full:
1359     return Value;
1360   default:
1361     llvm_unreachable("Unhandled getLocInfo()");
1362   }
1363 }
1364 
1365 SDValue SystemZTargetLowering::LowerFormalArguments(
1366     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1367     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1368     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1369   MachineFunction &MF = DAG.getMachineFunction();
1370   MachineFrameInfo &MFI = MF.getFrameInfo();
1371   MachineRegisterInfo &MRI = MF.getRegInfo();
1372   SystemZMachineFunctionInfo *FuncInfo =
1373       MF.getInfo<SystemZMachineFunctionInfo>();
1374   auto *TFL =
1375       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1376   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1377 
1378   // Detect unsupported vector argument types.
1379   if (Subtarget.hasVector())
1380     VerifyVectorTypes(Ins);
1381 
1382   // Assign locations to all of the incoming arguments.
1383   SmallVector<CCValAssign, 16> ArgLocs;
1384   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1385   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1386 
1387   unsigned NumFixedGPRs = 0;
1388   unsigned NumFixedFPRs = 0;
1389   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1390     SDValue ArgValue;
1391     CCValAssign &VA = ArgLocs[I];
1392     EVT LocVT = VA.getLocVT();
1393     if (VA.isRegLoc()) {
1394       // Arguments passed in registers
1395       const TargetRegisterClass *RC;
1396       switch (LocVT.getSimpleVT().SimpleTy) {
1397       default:
1398         // Integers smaller than i64 should be promoted to i64.
1399         llvm_unreachable("Unexpected argument type");
1400       case MVT::i32:
1401         NumFixedGPRs += 1;
1402         RC = &SystemZ::GR32BitRegClass;
1403         break;
1404       case MVT::i64:
1405         NumFixedGPRs += 1;
1406         RC = &SystemZ::GR64BitRegClass;
1407         break;
1408       case MVT::f32:
1409         NumFixedFPRs += 1;
1410         RC = &SystemZ::FP32BitRegClass;
1411         break;
1412       case MVT::f64:
1413         NumFixedFPRs += 1;
1414         RC = &SystemZ::FP64BitRegClass;
1415         break;
1416       case MVT::v16i8:
1417       case MVT::v8i16:
1418       case MVT::v4i32:
1419       case MVT::v2i64:
1420       case MVT::v4f32:
1421       case MVT::v2f64:
1422         RC = &SystemZ::VR128BitRegClass;
1423         break;
1424       }
1425 
1426       Register VReg = MRI.createVirtualRegister(RC);
1427       MRI.addLiveIn(VA.getLocReg(), VReg);
1428       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1429     } else {
1430       assert(VA.isMemLoc() && "Argument not register or memory");
1431 
1432       // Create the frame index object for this incoming parameter.
1433       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1434                                      VA.getLocMemOffset(), true);
1435 
1436       // Create the SelectionDAG nodes corresponding to a load
1437       // from this parameter.  Unpromoted ints and floats are
1438       // passed as right-justified 8-byte values.
1439       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1440       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1441         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1442                           DAG.getIntPtrConstant(4, DL));
1443       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1444                              MachinePointerInfo::getFixedStack(MF, FI));
1445     }
1446 
1447     // Convert the value of the argument register into the value that's
1448     // being passed.
1449     if (VA.getLocInfo() == CCValAssign::Indirect) {
1450       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1451                                    MachinePointerInfo()));
1452       // If the original argument was split (e.g. i128), we need
1453       // to load all parts of it here (using the same address).
1454       unsigned ArgIndex = Ins[I].OrigArgIndex;
1455       assert (Ins[I].PartOffset == 0);
1456       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1457         CCValAssign &PartVA = ArgLocs[I + 1];
1458         unsigned PartOffset = Ins[I + 1].PartOffset;
1459         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1460                                       DAG.getIntPtrConstant(PartOffset, DL));
1461         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1462                                      MachinePointerInfo()));
1463         ++I;
1464       }
1465     } else
1466       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1467   }
1468 
1469   if (IsVarArg) {
1470     // Save the number of non-varargs registers for later use by va_start, etc.
1471     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1472     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1473 
1474     // Likewise the address (in the form of a frame index) of where the
1475     // first stack vararg would be.  The 1-byte size here is arbitrary.
1476     int64_t StackSize = CCInfo.getNextStackOffset();
1477     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1478 
1479     // ...and a similar frame index for the caller-allocated save area
1480     // that will be used to store the incoming registers.
1481     int64_t RegSaveOffset =
1482       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1483     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1484     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1485 
1486     // Store the FPR varargs in the reserved frame slots.  (We store the
1487     // GPRs as part of the prologue.)
1488     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1489       SDValue MemOps[SystemZ::NumArgFPRs];
1490       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1491         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1492         int FI =
1493           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1494         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1495         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1496                                      &SystemZ::FP64BitRegClass);
1497         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1498         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1499                                  MachinePointerInfo::getFixedStack(MF, FI));
1500       }
1501       // Join the stores, which are independent of one another.
1502       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1503                           makeArrayRef(&MemOps[NumFixedFPRs],
1504                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1505     }
1506   }
1507 
1508   return Chain;
1509 }
1510 
1511 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1512                               SmallVectorImpl<CCValAssign> &ArgLocs,
1513                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1514   // Punt if there are any indirect or stack arguments, or if the call
1515   // needs the callee-saved argument register R6, or if the call uses
1516   // the callee-saved register arguments SwiftSelf and SwiftError.
1517   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1518     CCValAssign &VA = ArgLocs[I];
1519     if (VA.getLocInfo() == CCValAssign::Indirect)
1520       return false;
1521     if (!VA.isRegLoc())
1522       return false;
1523     Register Reg = VA.getLocReg();
1524     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1525       return false;
1526     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1527       return false;
1528   }
1529   return true;
1530 }
1531 
1532 SDValue
1533 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1534                                  SmallVectorImpl<SDValue> &InVals) const {
1535   SelectionDAG &DAG = CLI.DAG;
1536   SDLoc &DL = CLI.DL;
1537   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1538   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1539   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1540   SDValue Chain = CLI.Chain;
1541   SDValue Callee = CLI.Callee;
1542   bool &IsTailCall = CLI.IsTailCall;
1543   CallingConv::ID CallConv = CLI.CallConv;
1544   bool IsVarArg = CLI.IsVarArg;
1545   MachineFunction &MF = DAG.getMachineFunction();
1546   EVT PtrVT = getPointerTy(MF.getDataLayout());
1547 
1548   // Detect unsupported vector argument and return types.
1549   if (Subtarget.hasVector()) {
1550     VerifyVectorTypes(Outs);
1551     VerifyVectorTypes(Ins);
1552   }
1553 
1554   // Analyze the operands of the call, assigning locations to each operand.
1555   SmallVector<CCValAssign, 16> ArgLocs;
1556   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1557   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1558 
1559   // We don't support GuaranteedTailCallOpt, only automatically-detected
1560   // sibling calls.
1561   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1562     IsTailCall = false;
1563 
1564   // Get a count of how many bytes are to be pushed on the stack.
1565   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1566 
1567   // Mark the start of the call.
1568   if (!IsTailCall)
1569     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1570 
1571   // Copy argument values to their designated locations.
1572   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1573   SmallVector<SDValue, 8> MemOpChains;
1574   SDValue StackPtr;
1575   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1576     CCValAssign &VA = ArgLocs[I];
1577     SDValue ArgValue = OutVals[I];
1578 
1579     if (VA.getLocInfo() == CCValAssign::Indirect) {
1580       // Store the argument in a stack slot and pass its address.
1581       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1582       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1583       MemOpChains.push_back(
1584           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1585                        MachinePointerInfo::getFixedStack(MF, FI)));
1586       // If the original argument was split (e.g. i128), we need
1587       // to store all parts of it here (and pass just one address).
1588       unsigned ArgIndex = Outs[I].OrigArgIndex;
1589       assert (Outs[I].PartOffset == 0);
1590       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1591         SDValue PartValue = OutVals[I + 1];
1592         unsigned PartOffset = Outs[I + 1].PartOffset;
1593         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1594                                       DAG.getIntPtrConstant(PartOffset, DL));
1595         MemOpChains.push_back(
1596             DAG.getStore(Chain, DL, PartValue, Address,
1597                          MachinePointerInfo::getFixedStack(MF, FI)));
1598         ++I;
1599       }
1600       ArgValue = SpillSlot;
1601     } else
1602       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1603 
1604     if (VA.isRegLoc())
1605       // Queue up the argument copies and emit them at the end.
1606       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1607     else {
1608       assert(VA.isMemLoc() && "Argument not register or memory");
1609 
1610       // Work out the address of the stack slot.  Unpromoted ints and
1611       // floats are passed as right-justified 8-byte values.
1612       if (!StackPtr.getNode())
1613         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1614       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1615       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1616         Offset += 4;
1617       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1618                                     DAG.getIntPtrConstant(Offset, DL));
1619 
1620       // Emit the store.
1621       MemOpChains.push_back(
1622           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1623     }
1624   }
1625 
1626   // Join the stores, which are independent of one another.
1627   if (!MemOpChains.empty())
1628     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1629 
1630   // Accept direct calls by converting symbolic call addresses to the
1631   // associated Target* opcodes.  Force %r1 to be used for indirect
1632   // tail calls.
1633   SDValue Glue;
1634   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1635     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1636     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1637   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1638     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1639     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1640   } else if (IsTailCall) {
1641     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1642     Glue = Chain.getValue(1);
1643     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1644   }
1645 
1646   // Build a sequence of copy-to-reg nodes, chained and glued together.
1647   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1648     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1649                              RegsToPass[I].second, Glue);
1650     Glue = Chain.getValue(1);
1651   }
1652 
1653   // The first call operand is the chain and the second is the target address.
1654   SmallVector<SDValue, 8> Ops;
1655   Ops.push_back(Chain);
1656   Ops.push_back(Callee);
1657 
1658   // Add argument registers to the end of the list so that they are
1659   // known live into the call.
1660   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1661     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1662                                   RegsToPass[I].second.getValueType()));
1663 
1664   // Add a register mask operand representing the call-preserved registers.
1665   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1666   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1667   assert(Mask && "Missing call preserved mask for calling convention");
1668   Ops.push_back(DAG.getRegisterMask(Mask));
1669 
1670   // Glue the call to the argument copies, if any.
1671   if (Glue.getNode())
1672     Ops.push_back(Glue);
1673 
1674   // Emit the call.
1675   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1676   if (IsTailCall)
1677     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1678   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1679   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1680   Glue = Chain.getValue(1);
1681 
1682   // Mark the end of the call, which is glued to the call itself.
1683   Chain = DAG.getCALLSEQ_END(Chain,
1684                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1685                              DAG.getConstant(0, DL, PtrVT, true),
1686                              Glue, DL);
1687   Glue = Chain.getValue(1);
1688 
1689   // Assign locations to each value returned by this call.
1690   SmallVector<CCValAssign, 16> RetLocs;
1691   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1692   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1693 
1694   // Copy all of the result registers out of their specified physreg.
1695   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1696     CCValAssign &VA = RetLocs[I];
1697 
1698     // Copy the value out, gluing the copy to the end of the call sequence.
1699     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1700                                           VA.getLocVT(), Glue);
1701     Chain = RetValue.getValue(1);
1702     Glue = RetValue.getValue(2);
1703 
1704     // Convert the value of the return register into the value that's
1705     // being returned.
1706     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1707   }
1708 
1709   return Chain;
1710 }
1711 
1712 bool SystemZTargetLowering::
1713 CanLowerReturn(CallingConv::ID CallConv,
1714                MachineFunction &MF, bool isVarArg,
1715                const SmallVectorImpl<ISD::OutputArg> &Outs,
1716                LLVMContext &Context) const {
1717   // Detect unsupported vector return types.
1718   if (Subtarget.hasVector())
1719     VerifyVectorTypes(Outs);
1720 
1721   // Special case that we cannot easily detect in RetCC_SystemZ since
1722   // i128 is not a legal type.
1723   for (auto &Out : Outs)
1724     if (Out.ArgVT == MVT::i128)
1725       return false;
1726 
1727   SmallVector<CCValAssign, 16> RetLocs;
1728   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1729   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1730 }
1731 
1732 SDValue
1733 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1734                                    bool IsVarArg,
1735                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1736                                    const SmallVectorImpl<SDValue> &OutVals,
1737                                    const SDLoc &DL, SelectionDAG &DAG) const {
1738   MachineFunction &MF = DAG.getMachineFunction();
1739 
1740   // Detect unsupported vector return types.
1741   if (Subtarget.hasVector())
1742     VerifyVectorTypes(Outs);
1743 
1744   // Assign locations to each returned value.
1745   SmallVector<CCValAssign, 16> RetLocs;
1746   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1747   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1748 
1749   // Quick exit for void returns
1750   if (RetLocs.empty())
1751     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1752 
1753   if (CallConv == CallingConv::GHC)
1754     report_fatal_error("GHC functions return void only");
1755 
1756   // Copy the result values into the output registers.
1757   SDValue Glue;
1758   SmallVector<SDValue, 4> RetOps;
1759   RetOps.push_back(Chain);
1760   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1761     CCValAssign &VA = RetLocs[I];
1762     SDValue RetValue = OutVals[I];
1763 
1764     // Make the return register live on exit.
1765     assert(VA.isRegLoc() && "Can only return in registers!");
1766 
1767     // Promote the value as required.
1768     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1769 
1770     // Chain and glue the copies together.
1771     Register Reg = VA.getLocReg();
1772     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1773     Glue = Chain.getValue(1);
1774     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1775   }
1776 
1777   // Update chain and glue.
1778   RetOps[0] = Chain;
1779   if (Glue.getNode())
1780     RetOps.push_back(Glue);
1781 
1782   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1783 }
1784 
1785 // Return true if Op is an intrinsic node with chain that returns the CC value
1786 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1787 // the mask of valid CC values if so.
1788 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1789                                       unsigned &CCValid) {
1790   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1791   switch (Id) {
1792   case Intrinsic::s390_tbegin:
1793     Opcode = SystemZISD::TBEGIN;
1794     CCValid = SystemZ::CCMASK_TBEGIN;
1795     return true;
1796 
1797   case Intrinsic::s390_tbegin_nofloat:
1798     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1799     CCValid = SystemZ::CCMASK_TBEGIN;
1800     return true;
1801 
1802   case Intrinsic::s390_tend:
1803     Opcode = SystemZISD::TEND;
1804     CCValid = SystemZ::CCMASK_TEND;
1805     return true;
1806 
1807   default:
1808     return false;
1809   }
1810 }
1811 
1812 // Return true if Op is an intrinsic node without chain that returns the
1813 // CC value as its final argument.  Provide the associated SystemZISD
1814 // opcode and the mask of valid CC values if so.
1815 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1816   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1817   switch (Id) {
1818   case Intrinsic::s390_vpkshs:
1819   case Intrinsic::s390_vpksfs:
1820   case Intrinsic::s390_vpksgs:
1821     Opcode = SystemZISD::PACKS_CC;
1822     CCValid = SystemZ::CCMASK_VCMP;
1823     return true;
1824 
1825   case Intrinsic::s390_vpklshs:
1826   case Intrinsic::s390_vpklsfs:
1827   case Intrinsic::s390_vpklsgs:
1828     Opcode = SystemZISD::PACKLS_CC;
1829     CCValid = SystemZ::CCMASK_VCMP;
1830     return true;
1831 
1832   case Intrinsic::s390_vceqbs:
1833   case Intrinsic::s390_vceqhs:
1834   case Intrinsic::s390_vceqfs:
1835   case Intrinsic::s390_vceqgs:
1836     Opcode = SystemZISD::VICMPES;
1837     CCValid = SystemZ::CCMASK_VCMP;
1838     return true;
1839 
1840   case Intrinsic::s390_vchbs:
1841   case Intrinsic::s390_vchhs:
1842   case Intrinsic::s390_vchfs:
1843   case Intrinsic::s390_vchgs:
1844     Opcode = SystemZISD::VICMPHS;
1845     CCValid = SystemZ::CCMASK_VCMP;
1846     return true;
1847 
1848   case Intrinsic::s390_vchlbs:
1849   case Intrinsic::s390_vchlhs:
1850   case Intrinsic::s390_vchlfs:
1851   case Intrinsic::s390_vchlgs:
1852     Opcode = SystemZISD::VICMPHLS;
1853     CCValid = SystemZ::CCMASK_VCMP;
1854     return true;
1855 
1856   case Intrinsic::s390_vtm:
1857     Opcode = SystemZISD::VTM;
1858     CCValid = SystemZ::CCMASK_VCMP;
1859     return true;
1860 
1861   case Intrinsic::s390_vfaebs:
1862   case Intrinsic::s390_vfaehs:
1863   case Intrinsic::s390_vfaefs:
1864     Opcode = SystemZISD::VFAE_CC;
1865     CCValid = SystemZ::CCMASK_ANY;
1866     return true;
1867 
1868   case Intrinsic::s390_vfaezbs:
1869   case Intrinsic::s390_vfaezhs:
1870   case Intrinsic::s390_vfaezfs:
1871     Opcode = SystemZISD::VFAEZ_CC;
1872     CCValid = SystemZ::CCMASK_ANY;
1873     return true;
1874 
1875   case Intrinsic::s390_vfeebs:
1876   case Intrinsic::s390_vfeehs:
1877   case Intrinsic::s390_vfeefs:
1878     Opcode = SystemZISD::VFEE_CC;
1879     CCValid = SystemZ::CCMASK_ANY;
1880     return true;
1881 
1882   case Intrinsic::s390_vfeezbs:
1883   case Intrinsic::s390_vfeezhs:
1884   case Intrinsic::s390_vfeezfs:
1885     Opcode = SystemZISD::VFEEZ_CC;
1886     CCValid = SystemZ::CCMASK_ANY;
1887     return true;
1888 
1889   case Intrinsic::s390_vfenebs:
1890   case Intrinsic::s390_vfenehs:
1891   case Intrinsic::s390_vfenefs:
1892     Opcode = SystemZISD::VFENE_CC;
1893     CCValid = SystemZ::CCMASK_ANY;
1894     return true;
1895 
1896   case Intrinsic::s390_vfenezbs:
1897   case Intrinsic::s390_vfenezhs:
1898   case Intrinsic::s390_vfenezfs:
1899     Opcode = SystemZISD::VFENEZ_CC;
1900     CCValid = SystemZ::CCMASK_ANY;
1901     return true;
1902 
1903   case Intrinsic::s390_vistrbs:
1904   case Intrinsic::s390_vistrhs:
1905   case Intrinsic::s390_vistrfs:
1906     Opcode = SystemZISD::VISTR_CC;
1907     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1908     return true;
1909 
1910   case Intrinsic::s390_vstrcbs:
1911   case Intrinsic::s390_vstrchs:
1912   case Intrinsic::s390_vstrcfs:
1913     Opcode = SystemZISD::VSTRC_CC;
1914     CCValid = SystemZ::CCMASK_ANY;
1915     return true;
1916 
1917   case Intrinsic::s390_vstrczbs:
1918   case Intrinsic::s390_vstrczhs:
1919   case Intrinsic::s390_vstrczfs:
1920     Opcode = SystemZISD::VSTRCZ_CC;
1921     CCValid = SystemZ::CCMASK_ANY;
1922     return true;
1923 
1924   case Intrinsic::s390_vstrsb:
1925   case Intrinsic::s390_vstrsh:
1926   case Intrinsic::s390_vstrsf:
1927     Opcode = SystemZISD::VSTRS_CC;
1928     CCValid = SystemZ::CCMASK_ANY;
1929     return true;
1930 
1931   case Intrinsic::s390_vstrszb:
1932   case Intrinsic::s390_vstrszh:
1933   case Intrinsic::s390_vstrszf:
1934     Opcode = SystemZISD::VSTRSZ_CC;
1935     CCValid = SystemZ::CCMASK_ANY;
1936     return true;
1937 
1938   case Intrinsic::s390_vfcedbs:
1939   case Intrinsic::s390_vfcesbs:
1940     Opcode = SystemZISD::VFCMPES;
1941     CCValid = SystemZ::CCMASK_VCMP;
1942     return true;
1943 
1944   case Intrinsic::s390_vfchdbs:
1945   case Intrinsic::s390_vfchsbs:
1946     Opcode = SystemZISD::VFCMPHS;
1947     CCValid = SystemZ::CCMASK_VCMP;
1948     return true;
1949 
1950   case Intrinsic::s390_vfchedbs:
1951   case Intrinsic::s390_vfchesbs:
1952     Opcode = SystemZISD::VFCMPHES;
1953     CCValid = SystemZ::CCMASK_VCMP;
1954     return true;
1955 
1956   case Intrinsic::s390_vftcidb:
1957   case Intrinsic::s390_vftcisb:
1958     Opcode = SystemZISD::VFTCI;
1959     CCValid = SystemZ::CCMASK_VCMP;
1960     return true;
1961 
1962   case Intrinsic::s390_tdc:
1963     Opcode = SystemZISD::TDC;
1964     CCValid = SystemZ::CCMASK_TDC;
1965     return true;
1966 
1967   default:
1968     return false;
1969   }
1970 }
1971 
1972 // Emit an intrinsic with chain and an explicit CC register result.
1973 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1974                                            unsigned Opcode) {
1975   // Copy all operands except the intrinsic ID.
1976   unsigned NumOps = Op.getNumOperands();
1977   SmallVector<SDValue, 6> Ops;
1978   Ops.reserve(NumOps - 1);
1979   Ops.push_back(Op.getOperand(0));
1980   for (unsigned I = 2; I < NumOps; ++I)
1981     Ops.push_back(Op.getOperand(I));
1982 
1983   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1984   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1985   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1986   SDValue OldChain = SDValue(Op.getNode(), 1);
1987   SDValue NewChain = SDValue(Intr.getNode(), 1);
1988   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1989   return Intr.getNode();
1990 }
1991 
1992 // Emit an intrinsic with an explicit CC register result.
1993 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1994                                    unsigned Opcode) {
1995   // Copy all operands except the intrinsic ID.
1996   unsigned NumOps = Op.getNumOperands();
1997   SmallVector<SDValue, 6> Ops;
1998   Ops.reserve(NumOps - 1);
1999   for (unsigned I = 1; I < NumOps; ++I)
2000     Ops.push_back(Op.getOperand(I));
2001 
2002   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2003   return Intr.getNode();
2004 }
2005 
2006 // CC is a comparison that will be implemented using an integer or
2007 // floating-point comparison.  Return the condition code mask for
2008 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2009 // unsigned comparisons and clear for signed ones.  In the floating-point
2010 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2011 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2012 #define CONV(X) \
2013   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2014   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2015   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2016 
2017   switch (CC) {
2018   default:
2019     llvm_unreachable("Invalid integer condition!");
2020 
2021   CONV(EQ);
2022   CONV(NE);
2023   CONV(GT);
2024   CONV(GE);
2025   CONV(LT);
2026   CONV(LE);
2027 
2028   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2029   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2030   }
2031 #undef CONV
2032 }
2033 
2034 // If C can be converted to a comparison against zero, adjust the operands
2035 // as necessary.
2036 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2037   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2038     return;
2039 
2040   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2041   if (!ConstOp1)
2042     return;
2043 
2044   int64_t Value = ConstOp1->getSExtValue();
2045   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2046       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2047       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2048       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2049     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2050     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2051   }
2052 }
2053 
2054 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2055 // adjust the operands as necessary.
2056 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2057                              Comparison &C) {
2058   // For us to make any changes, it must a comparison between a single-use
2059   // load and a constant.
2060   if (!C.Op0.hasOneUse() ||
2061       C.Op0.getOpcode() != ISD::LOAD ||
2062       C.Op1.getOpcode() != ISD::Constant)
2063     return;
2064 
2065   // We must have an 8- or 16-bit load.
2066   auto *Load = cast<LoadSDNode>(C.Op0);
2067   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2068   if ((NumBits != 8 && NumBits != 16) ||
2069       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2070     return;
2071 
2072   // The load must be an extending one and the constant must be within the
2073   // range of the unextended value.
2074   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2075   uint64_t Value = ConstOp1->getZExtValue();
2076   uint64_t Mask = (1 << NumBits) - 1;
2077   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2078     // Make sure that ConstOp1 is in range of C.Op0.
2079     int64_t SignedValue = ConstOp1->getSExtValue();
2080     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2081       return;
2082     if (C.ICmpType != SystemZICMP::SignedOnly) {
2083       // Unsigned comparison between two sign-extended values is equivalent
2084       // to unsigned comparison between two zero-extended values.
2085       Value &= Mask;
2086     } else if (NumBits == 8) {
2087       // Try to treat the comparison as unsigned, so that we can use CLI.
2088       // Adjust CCMask and Value as necessary.
2089       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2090         // Test whether the high bit of the byte is set.
2091         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2092       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2093         // Test whether the high bit of the byte is clear.
2094         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2095       else
2096         // No instruction exists for this combination.
2097         return;
2098       C.ICmpType = SystemZICMP::UnsignedOnly;
2099     }
2100   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2101     if (Value > Mask)
2102       return;
2103     // If the constant is in range, we can use any comparison.
2104     C.ICmpType = SystemZICMP::Any;
2105   } else
2106     return;
2107 
2108   // Make sure that the first operand is an i32 of the right extension type.
2109   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2110                               ISD::SEXTLOAD :
2111                               ISD::ZEXTLOAD);
2112   if (C.Op0.getValueType() != MVT::i32 ||
2113       Load->getExtensionType() != ExtType) {
2114     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2115                            Load->getBasePtr(), Load->getPointerInfo(),
2116                            Load->getMemoryVT(), Load->getAlignment(),
2117                            Load->getMemOperand()->getFlags());
2118     // Update the chain uses.
2119     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2120   }
2121 
2122   // Make sure that the second operand is an i32 with the right value.
2123   if (C.Op1.getValueType() != MVT::i32 ||
2124       Value != ConstOp1->getZExtValue())
2125     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2126 }
2127 
2128 // Return true if Op is either an unextended load, or a load suitable
2129 // for integer register-memory comparisons of type ICmpType.
2130 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2131   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2132   if (Load) {
2133     // There are no instructions to compare a register with a memory byte.
2134     if (Load->getMemoryVT() == MVT::i8)
2135       return false;
2136     // Otherwise decide on extension type.
2137     switch (Load->getExtensionType()) {
2138     case ISD::NON_EXTLOAD:
2139       return true;
2140     case ISD::SEXTLOAD:
2141       return ICmpType != SystemZICMP::UnsignedOnly;
2142     case ISD::ZEXTLOAD:
2143       return ICmpType != SystemZICMP::SignedOnly;
2144     default:
2145       break;
2146     }
2147   }
2148   return false;
2149 }
2150 
2151 // Return true if it is better to swap the operands of C.
2152 static bool shouldSwapCmpOperands(const Comparison &C) {
2153   // Leave f128 comparisons alone, since they have no memory forms.
2154   if (C.Op0.getValueType() == MVT::f128)
2155     return false;
2156 
2157   // Always keep a floating-point constant second, since comparisons with
2158   // zero can use LOAD TEST and comparisons with other constants make a
2159   // natural memory operand.
2160   if (isa<ConstantFPSDNode>(C.Op1))
2161     return false;
2162 
2163   // Never swap comparisons with zero since there are many ways to optimize
2164   // those later.
2165   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2166   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2167     return false;
2168 
2169   // Also keep natural memory operands second if the loaded value is
2170   // only used here.  Several comparisons have memory forms.
2171   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2172     return false;
2173 
2174   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2175   // In that case we generally prefer the memory to be second.
2176   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2177     // The only exceptions are when the second operand is a constant and
2178     // we can use things like CHHSI.
2179     if (!ConstOp1)
2180       return true;
2181     // The unsigned memory-immediate instructions can handle 16-bit
2182     // unsigned integers.
2183     if (C.ICmpType != SystemZICMP::SignedOnly &&
2184         isUInt<16>(ConstOp1->getZExtValue()))
2185       return false;
2186     // The signed memory-immediate instructions can handle 16-bit
2187     // signed integers.
2188     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2189         isInt<16>(ConstOp1->getSExtValue()))
2190       return false;
2191     return true;
2192   }
2193 
2194   // Try to promote the use of CGFR and CLGFR.
2195   unsigned Opcode0 = C.Op0.getOpcode();
2196   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2197     return true;
2198   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2199     return true;
2200   if (C.ICmpType != SystemZICMP::SignedOnly &&
2201       Opcode0 == ISD::AND &&
2202       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2203       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2204     return true;
2205 
2206   return false;
2207 }
2208 
2209 // Check whether C tests for equality between X and Y and whether X - Y
2210 // or Y - X is also computed.  In that case it's better to compare the
2211 // result of the subtraction against zero.
2212 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2213                                  Comparison &C) {
2214   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2215       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2216     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2217       SDNode *N = *I;
2218       if (N->getOpcode() == ISD::SUB &&
2219           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2220            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2221         C.Op0 = SDValue(N, 0);
2222         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2223         return;
2224       }
2225     }
2226   }
2227 }
2228 
2229 // Check whether C compares a floating-point value with zero and if that
2230 // floating-point value is also negated.  In this case we can use the
2231 // negation to set CC, so avoiding separate LOAD AND TEST and
2232 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2233 static void adjustForFNeg(Comparison &C) {
2234   // This optimization is invalid for strict comparisons, since FNEG
2235   // does not raise any exceptions.
2236   if (C.Chain)
2237     return;
2238   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2239   if (C1 && C1->isZero()) {
2240     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2241       SDNode *N = *I;
2242       if (N->getOpcode() == ISD::FNEG) {
2243         C.Op0 = SDValue(N, 0);
2244         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2245         return;
2246       }
2247     }
2248   }
2249 }
2250 
2251 // Check whether C compares (shl X, 32) with 0 and whether X is
2252 // also sign-extended.  In that case it is better to test the result
2253 // of the sign extension using LTGFR.
2254 //
2255 // This case is important because InstCombine transforms a comparison
2256 // with (sext (trunc X)) into a comparison with (shl X, 32).
2257 static void adjustForLTGFR(Comparison &C) {
2258   // Check for a comparison between (shl X, 32) and 0.
2259   if (C.Op0.getOpcode() == ISD::SHL &&
2260       C.Op0.getValueType() == MVT::i64 &&
2261       C.Op1.getOpcode() == ISD::Constant &&
2262       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2263     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2264     if (C1 && C1->getZExtValue() == 32) {
2265       SDValue ShlOp0 = C.Op0.getOperand(0);
2266       // See whether X has any SIGN_EXTEND_INREG uses.
2267       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2268         SDNode *N = *I;
2269         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2270             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2271           C.Op0 = SDValue(N, 0);
2272           return;
2273         }
2274       }
2275     }
2276   }
2277 }
2278 
2279 // If C compares the truncation of an extending load, try to compare
2280 // the untruncated value instead.  This exposes more opportunities to
2281 // reuse CC.
2282 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2283                                Comparison &C) {
2284   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2285       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2286       C.Op1.getOpcode() == ISD::Constant &&
2287       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2288     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2289     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2290       unsigned Type = L->getExtensionType();
2291       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2292           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2293         C.Op0 = C.Op0.getOperand(0);
2294         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2295       }
2296     }
2297   }
2298 }
2299 
2300 // Return true if shift operation N has an in-range constant shift value.
2301 // Store it in ShiftVal if so.
2302 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2303   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2304   if (!Shift)
2305     return false;
2306 
2307   uint64_t Amount = Shift->getZExtValue();
2308   if (Amount >= N.getValueSizeInBits())
2309     return false;
2310 
2311   ShiftVal = Amount;
2312   return true;
2313 }
2314 
2315 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2316 // instruction and whether the CC value is descriptive enough to handle
2317 // a comparison of type Opcode between the AND result and CmpVal.
2318 // CCMask says which comparison result is being tested and BitSize is
2319 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2320 // return the corresponding CC mask, otherwise return 0.
2321 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2322                                      uint64_t Mask, uint64_t CmpVal,
2323                                      unsigned ICmpType) {
2324   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2325 
2326   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2327   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2328       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2329     return 0;
2330 
2331   // Work out the masks for the lowest and highest bits.
2332   unsigned HighShift = 63 - countLeadingZeros(Mask);
2333   uint64_t High = uint64_t(1) << HighShift;
2334   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2335 
2336   // Signed ordered comparisons are effectively unsigned if the sign
2337   // bit is dropped.
2338   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2339 
2340   // Check for equality comparisons with 0, or the equivalent.
2341   if (CmpVal == 0) {
2342     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2343       return SystemZ::CCMASK_TM_ALL_0;
2344     if (CCMask == SystemZ::CCMASK_CMP_NE)
2345       return SystemZ::CCMASK_TM_SOME_1;
2346   }
2347   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2348     if (CCMask == SystemZ::CCMASK_CMP_LT)
2349       return SystemZ::CCMASK_TM_ALL_0;
2350     if (CCMask == SystemZ::CCMASK_CMP_GE)
2351       return SystemZ::CCMASK_TM_SOME_1;
2352   }
2353   if (EffectivelyUnsigned && CmpVal < Low) {
2354     if (CCMask == SystemZ::CCMASK_CMP_LE)
2355       return SystemZ::CCMASK_TM_ALL_0;
2356     if (CCMask == SystemZ::CCMASK_CMP_GT)
2357       return SystemZ::CCMASK_TM_SOME_1;
2358   }
2359 
2360   // Check for equality comparisons with the mask, or the equivalent.
2361   if (CmpVal == Mask) {
2362     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2363       return SystemZ::CCMASK_TM_ALL_1;
2364     if (CCMask == SystemZ::CCMASK_CMP_NE)
2365       return SystemZ::CCMASK_TM_SOME_0;
2366   }
2367   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2368     if (CCMask == SystemZ::CCMASK_CMP_GT)
2369       return SystemZ::CCMASK_TM_ALL_1;
2370     if (CCMask == SystemZ::CCMASK_CMP_LE)
2371       return SystemZ::CCMASK_TM_SOME_0;
2372   }
2373   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2374     if (CCMask == SystemZ::CCMASK_CMP_GE)
2375       return SystemZ::CCMASK_TM_ALL_1;
2376     if (CCMask == SystemZ::CCMASK_CMP_LT)
2377       return SystemZ::CCMASK_TM_SOME_0;
2378   }
2379 
2380   // Check for ordered comparisons with the top bit.
2381   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2382     if (CCMask == SystemZ::CCMASK_CMP_LE)
2383       return SystemZ::CCMASK_TM_MSB_0;
2384     if (CCMask == SystemZ::CCMASK_CMP_GT)
2385       return SystemZ::CCMASK_TM_MSB_1;
2386   }
2387   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2388     if (CCMask == SystemZ::CCMASK_CMP_LT)
2389       return SystemZ::CCMASK_TM_MSB_0;
2390     if (CCMask == SystemZ::CCMASK_CMP_GE)
2391       return SystemZ::CCMASK_TM_MSB_1;
2392   }
2393 
2394   // If there are just two bits, we can do equality checks for Low and High
2395   // as well.
2396   if (Mask == Low + High) {
2397     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2398       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2399     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2400       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2401     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2402       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2403     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2404       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2405   }
2406 
2407   // Looks like we've exhausted our options.
2408   return 0;
2409 }
2410 
2411 // See whether C can be implemented as a TEST UNDER MASK instruction.
2412 // Update the arguments with the TM version if so.
2413 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2414                                    Comparison &C) {
2415   // Check that we have a comparison with a constant.
2416   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2417   if (!ConstOp1)
2418     return;
2419   uint64_t CmpVal = ConstOp1->getZExtValue();
2420 
2421   // Check whether the nonconstant input is an AND with a constant mask.
2422   Comparison NewC(C);
2423   uint64_t MaskVal;
2424   ConstantSDNode *Mask = nullptr;
2425   if (C.Op0.getOpcode() == ISD::AND) {
2426     NewC.Op0 = C.Op0.getOperand(0);
2427     NewC.Op1 = C.Op0.getOperand(1);
2428     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2429     if (!Mask)
2430       return;
2431     MaskVal = Mask->getZExtValue();
2432   } else {
2433     // There is no instruction to compare with a 64-bit immediate
2434     // so use TMHH instead if possible.  We need an unsigned ordered
2435     // comparison with an i64 immediate.
2436     if (NewC.Op0.getValueType() != MVT::i64 ||
2437         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2438         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2439         NewC.ICmpType == SystemZICMP::SignedOnly)
2440       return;
2441     // Convert LE and GT comparisons into LT and GE.
2442     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2443         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2444       if (CmpVal == uint64_t(-1))
2445         return;
2446       CmpVal += 1;
2447       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2448     }
2449     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2450     // be masked off without changing the result.
2451     MaskVal = -(CmpVal & -CmpVal);
2452     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2453   }
2454   if (!MaskVal)
2455     return;
2456 
2457   // Check whether the combination of mask, comparison value and comparison
2458   // type are suitable.
2459   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2460   unsigned NewCCMask, ShiftVal;
2461   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2462       NewC.Op0.getOpcode() == ISD::SHL &&
2463       isSimpleShift(NewC.Op0, ShiftVal) &&
2464       (MaskVal >> ShiftVal != 0) &&
2465       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2466       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2467                                         MaskVal >> ShiftVal,
2468                                         CmpVal >> ShiftVal,
2469                                         SystemZICMP::Any))) {
2470     NewC.Op0 = NewC.Op0.getOperand(0);
2471     MaskVal >>= ShiftVal;
2472   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2473              NewC.Op0.getOpcode() == ISD::SRL &&
2474              isSimpleShift(NewC.Op0, ShiftVal) &&
2475              (MaskVal << ShiftVal != 0) &&
2476              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2477              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2478                                                MaskVal << ShiftVal,
2479                                                CmpVal << ShiftVal,
2480                                                SystemZICMP::UnsignedOnly))) {
2481     NewC.Op0 = NewC.Op0.getOperand(0);
2482     MaskVal <<= ShiftVal;
2483   } else {
2484     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2485                                      NewC.ICmpType);
2486     if (!NewCCMask)
2487       return;
2488   }
2489 
2490   // Go ahead and make the change.
2491   C.Opcode = SystemZISD::TM;
2492   C.Op0 = NewC.Op0;
2493   if (Mask && Mask->getZExtValue() == MaskVal)
2494     C.Op1 = SDValue(Mask, 0);
2495   else
2496     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2497   C.CCValid = SystemZ::CCMASK_TM;
2498   C.CCMask = NewCCMask;
2499 }
2500 
2501 // See whether the comparison argument contains a redundant AND
2502 // and remove it if so.  This sometimes happens due to the generic
2503 // BRCOND expansion.
2504 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2505                                   Comparison &C) {
2506   if (C.Op0.getOpcode() != ISD::AND)
2507     return;
2508   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2509   if (!Mask)
2510     return;
2511   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2512   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2513     return;
2514 
2515   C.Op0 = C.Op0.getOperand(0);
2516 }
2517 
2518 // Return a Comparison that tests the condition-code result of intrinsic
2519 // node Call against constant integer CC using comparison code Cond.
2520 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2521 // and CCValid is the set of possible condition-code results.
2522 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2523                                   SDValue Call, unsigned CCValid, uint64_t CC,
2524                                   ISD::CondCode Cond) {
2525   Comparison C(Call, SDValue(), SDValue());
2526   C.Opcode = Opcode;
2527   C.CCValid = CCValid;
2528   if (Cond == ISD::SETEQ)
2529     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2530     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2531   else if (Cond == ISD::SETNE)
2532     // ...and the inverse of that.
2533     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2534   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2535     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2536     // always true for CC>3.
2537     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2538   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2539     // ...and the inverse of that.
2540     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2541   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2542     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2543     // always true for CC>3.
2544     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2545   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2546     // ...and the inverse of that.
2547     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2548   else
2549     llvm_unreachable("Unexpected integer comparison type");
2550   C.CCMask &= CCValid;
2551   return C;
2552 }
2553 
2554 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2555 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2556                          ISD::CondCode Cond, const SDLoc &DL,
2557                          SDValue Chain = SDValue(),
2558                          bool IsSignaling = false) {
2559   if (CmpOp1.getOpcode() == ISD::Constant) {
2560     assert(!Chain);
2561     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2562     unsigned Opcode, CCValid;
2563     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2564         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2565         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2566       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2567     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2568         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2569         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2570       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2571   }
2572   Comparison C(CmpOp0, CmpOp1, Chain);
2573   C.CCMask = CCMaskForCondCode(Cond);
2574   if (C.Op0.getValueType().isFloatingPoint()) {
2575     C.CCValid = SystemZ::CCMASK_FCMP;
2576     if (!C.Chain)
2577       C.Opcode = SystemZISD::FCMP;
2578     else if (!IsSignaling)
2579       C.Opcode = SystemZISD::STRICT_FCMP;
2580     else
2581       C.Opcode = SystemZISD::STRICT_FCMPS;
2582     adjustForFNeg(C);
2583   } else {
2584     assert(!C.Chain);
2585     C.CCValid = SystemZ::CCMASK_ICMP;
2586     C.Opcode = SystemZISD::ICMP;
2587     // Choose the type of comparison.  Equality and inequality tests can
2588     // use either signed or unsigned comparisons.  The choice also doesn't
2589     // matter if both sign bits are known to be clear.  In those cases we
2590     // want to give the main isel code the freedom to choose whichever
2591     // form fits best.
2592     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2593         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2594         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2595       C.ICmpType = SystemZICMP::Any;
2596     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2597       C.ICmpType = SystemZICMP::UnsignedOnly;
2598     else
2599       C.ICmpType = SystemZICMP::SignedOnly;
2600     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2601     adjustForRedundantAnd(DAG, DL, C);
2602     adjustZeroCmp(DAG, DL, C);
2603     adjustSubwordCmp(DAG, DL, C);
2604     adjustForSubtraction(DAG, DL, C);
2605     adjustForLTGFR(C);
2606     adjustICmpTruncate(DAG, DL, C);
2607   }
2608 
2609   if (shouldSwapCmpOperands(C)) {
2610     std::swap(C.Op0, C.Op1);
2611     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2612   }
2613 
2614   adjustForTestUnderMask(DAG, DL, C);
2615   return C;
2616 }
2617 
2618 // Emit the comparison instruction described by C.
2619 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2620   if (!C.Op1.getNode()) {
2621     SDNode *Node;
2622     switch (C.Op0.getOpcode()) {
2623     case ISD::INTRINSIC_W_CHAIN:
2624       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2625       return SDValue(Node, 0);
2626     case ISD::INTRINSIC_WO_CHAIN:
2627       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2628       return SDValue(Node, Node->getNumValues() - 1);
2629     default:
2630       llvm_unreachable("Invalid comparison operands");
2631     }
2632   }
2633   if (C.Opcode == SystemZISD::ICMP)
2634     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2635                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2636   if (C.Opcode == SystemZISD::TM) {
2637     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2638                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2639     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2640                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2641   }
2642   if (C.Chain) {
2643     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2644     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2645   }
2646   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2647 }
2648 
2649 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2650 // 64 bits.  Extend is the extension type to use.  Store the high part
2651 // in Hi and the low part in Lo.
2652 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2653                             SDValue Op0, SDValue Op1, SDValue &Hi,
2654                             SDValue &Lo) {
2655   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2656   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2657   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2658   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2659                    DAG.getConstant(32, DL, MVT::i64));
2660   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2661   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2662 }
2663 
2664 // Lower a binary operation that produces two VT results, one in each
2665 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2666 // and Opcode performs the GR128 operation.  Store the even register result
2667 // in Even and the odd register result in Odd.
2668 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2669                              unsigned Opcode, SDValue Op0, SDValue Op1,
2670                              SDValue &Even, SDValue &Odd) {
2671   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2672   bool Is32Bit = is32Bit(VT);
2673   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2674   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2675 }
2676 
2677 // Return an i32 value that is 1 if the CC value produced by CCReg is
2678 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2679 // in CCValid, so other values can be ignored.
2680 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2681                          unsigned CCValid, unsigned CCMask) {
2682   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2683                    DAG.getConstant(0, DL, MVT::i32),
2684                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2685                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2686   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2687 }
2688 
2689 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2690 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2691 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2692 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2693 // floating-point comparisons.
2694 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2695 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2696   switch (CC) {
2697   case ISD::SETOEQ:
2698   case ISD::SETEQ:
2699     switch (Mode) {
2700     case CmpMode::Int:         return SystemZISD::VICMPE;
2701     case CmpMode::FP:          return SystemZISD::VFCMPE;
2702     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2703     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2704     }
2705     llvm_unreachable("Bad mode");
2706 
2707   case ISD::SETOGE:
2708   case ISD::SETGE:
2709     switch (Mode) {
2710     case CmpMode::Int:         return 0;
2711     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2712     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2713     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2714     }
2715     llvm_unreachable("Bad mode");
2716 
2717   case ISD::SETOGT:
2718   case ISD::SETGT:
2719     switch (Mode) {
2720     case CmpMode::Int:         return SystemZISD::VICMPH;
2721     case CmpMode::FP:          return SystemZISD::VFCMPH;
2722     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2723     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2724     }
2725     llvm_unreachable("Bad mode");
2726 
2727   case ISD::SETUGT:
2728     switch (Mode) {
2729     case CmpMode::Int:         return SystemZISD::VICMPHL;
2730     case CmpMode::FP:          return 0;
2731     case CmpMode::StrictFP:    return 0;
2732     case CmpMode::SignalingFP: return 0;
2733     }
2734     llvm_unreachable("Bad mode");
2735 
2736   default:
2737     return 0;
2738   }
2739 }
2740 
2741 // Return the SystemZISD vector comparison operation for CC or its inverse,
2742 // or 0 if neither can be done directly.  Indicate in Invert whether the
2743 // result is for the inverse of CC.  Mode is as above.
2744 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2745                                             bool &Invert) {
2746   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2747     Invert = false;
2748     return Opcode;
2749   }
2750 
2751   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2752   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2753     Invert = true;
2754     return Opcode;
2755   }
2756 
2757   return 0;
2758 }
2759 
2760 // Return a v2f64 that contains the extended form of elements Start and Start+1
2761 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2762 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2763                                   SDValue Op, SDValue Chain) {
2764   int Mask[] = { Start, -1, Start + 1, -1 };
2765   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2766   if (Chain) {
2767     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2768     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2769   }
2770   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2771 }
2772 
2773 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2774 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2775 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2776                                             const SDLoc &DL, EVT VT,
2777                                             SDValue CmpOp0,
2778                                             SDValue CmpOp1,
2779                                             SDValue Chain) const {
2780   // There is no hardware support for v4f32 (unless we have the vector
2781   // enhancements facility 1), so extend the vector into two v2f64s
2782   // and compare those.
2783   if (CmpOp0.getValueType() == MVT::v4f32 &&
2784       !Subtarget.hasVectorEnhancements1()) {
2785     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2786     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2787     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2788     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2789     if (Chain) {
2790       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2791       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2792       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2793       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2794       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2795                             H1.getValue(1), L1.getValue(1),
2796                             HRes.getValue(1), LRes.getValue(1) };
2797       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2798       SDValue Ops[2] = { Res, NewChain };
2799       return DAG.getMergeValues(Ops, DL);
2800     }
2801     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2802     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2803     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2804   }
2805   if (Chain) {
2806     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2807     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2808   }
2809   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2810 }
2811 
2812 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2813 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2814 // floating-point comparison.  If in addition IsSignaling is true, we have
2815 // a strict signaling floating-point comparison.
2816 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2817                                                 const SDLoc &DL, EVT VT,
2818                                                 ISD::CondCode CC,
2819                                                 SDValue CmpOp0,
2820                                                 SDValue CmpOp1,
2821                                                 SDValue Chain,
2822                                                 bool IsSignaling) const {
2823   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2824   assert (!Chain || IsFP);
2825   assert (!IsSignaling || Chain);
2826   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2827                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2828   bool Invert = false;
2829   SDValue Cmp;
2830   switch (CC) {
2831     // Handle tests for order using (or (ogt y x) (oge x y)).
2832   case ISD::SETUO:
2833     Invert = true;
2834     LLVM_FALLTHROUGH;
2835   case ISD::SETO: {
2836     assert(IsFP && "Unexpected integer comparison");
2837     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2838                               DL, VT, CmpOp1, CmpOp0, Chain);
2839     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2840                               DL, VT, CmpOp0, CmpOp1, Chain);
2841     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2842     if (Chain)
2843       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2844                           LT.getValue(1), GE.getValue(1));
2845     break;
2846   }
2847 
2848     // Handle <> tests using (or (ogt y x) (ogt x y)).
2849   case ISD::SETUEQ:
2850     Invert = true;
2851     LLVM_FALLTHROUGH;
2852   case ISD::SETONE: {
2853     assert(IsFP && "Unexpected integer comparison");
2854     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2855                               DL, VT, CmpOp1, CmpOp0, Chain);
2856     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2857                               DL, VT, CmpOp0, CmpOp1, Chain);
2858     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2859     if (Chain)
2860       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2861                           LT.getValue(1), GT.getValue(1));
2862     break;
2863   }
2864 
2865     // Otherwise a single comparison is enough.  It doesn't really
2866     // matter whether we try the inversion or the swap first, since
2867     // there are no cases where both work.
2868   default:
2869     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2870       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2871     else {
2872       CC = ISD::getSetCCSwappedOperands(CC);
2873       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2874         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2875       else
2876         llvm_unreachable("Unhandled comparison");
2877     }
2878     if (Chain)
2879       Chain = Cmp.getValue(1);
2880     break;
2881   }
2882   if (Invert) {
2883     SDValue Mask =
2884       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2885     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2886   }
2887   if (Chain && Chain.getNode() != Cmp.getNode()) {
2888     SDValue Ops[2] = { Cmp, Chain };
2889     Cmp = DAG.getMergeValues(Ops, DL);
2890   }
2891   return Cmp;
2892 }
2893 
2894 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2895                                           SelectionDAG &DAG) const {
2896   SDValue CmpOp0   = Op.getOperand(0);
2897   SDValue CmpOp1   = Op.getOperand(1);
2898   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2899   SDLoc DL(Op);
2900   EVT VT = Op.getValueType();
2901   if (VT.isVector())
2902     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2903 
2904   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2905   SDValue CCReg = emitCmp(DAG, DL, C);
2906   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2907 }
2908 
2909 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2910                                                   SelectionDAG &DAG,
2911                                                   bool IsSignaling) const {
2912   SDValue Chain    = Op.getOperand(0);
2913   SDValue CmpOp0   = Op.getOperand(1);
2914   SDValue CmpOp1   = Op.getOperand(2);
2915   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2916   SDLoc DL(Op);
2917   EVT VT = Op.getNode()->getValueType(0);
2918   if (VT.isVector()) {
2919     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2920                                    Chain, IsSignaling);
2921     return Res.getValue(Op.getResNo());
2922   }
2923 
2924   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2925   SDValue CCReg = emitCmp(DAG, DL, C);
2926   CCReg->setFlags(Op->getFlags());
2927   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2928   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2929   return DAG.getMergeValues(Ops, DL);
2930 }
2931 
2932 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2933   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2934   SDValue CmpOp0   = Op.getOperand(2);
2935   SDValue CmpOp1   = Op.getOperand(3);
2936   SDValue Dest     = Op.getOperand(4);
2937   SDLoc DL(Op);
2938 
2939   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2940   SDValue CCReg = emitCmp(DAG, DL, C);
2941   return DAG.getNode(
2942       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2943       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2944       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2945 }
2946 
2947 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2948 // allowing Pos and Neg to be wider than CmpOp.
2949 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2950   return (Neg.getOpcode() == ISD::SUB &&
2951           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2952           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2953           Neg.getOperand(1) == Pos &&
2954           (Pos == CmpOp ||
2955            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2956             Pos.getOperand(0) == CmpOp)));
2957 }
2958 
2959 // Return the absolute or negative absolute of Op; IsNegative decides which.
2960 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2961                            bool IsNegative) {
2962   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2963   if (IsNegative)
2964     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2965                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2966   return Op;
2967 }
2968 
2969 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2970                                               SelectionDAG &DAG) const {
2971   SDValue CmpOp0   = Op.getOperand(0);
2972   SDValue CmpOp1   = Op.getOperand(1);
2973   SDValue TrueOp   = Op.getOperand(2);
2974   SDValue FalseOp  = Op.getOperand(3);
2975   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2976   SDLoc DL(Op);
2977 
2978   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2979 
2980   // Check for absolute and negative-absolute selections, including those
2981   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2982   // This check supplements the one in DAGCombiner.
2983   if (C.Opcode == SystemZISD::ICMP &&
2984       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2985       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2986       C.Op1.getOpcode() == ISD::Constant &&
2987       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2988     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2989       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2990     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2991       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2992   }
2993 
2994   SDValue CCReg = emitCmp(DAG, DL, C);
2995   SDValue Ops[] = {TrueOp, FalseOp,
2996                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2997                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2998 
2999   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3000 }
3001 
3002 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3003                                                   SelectionDAG &DAG) const {
3004   SDLoc DL(Node);
3005   const GlobalValue *GV = Node->getGlobal();
3006   int64_t Offset = Node->getOffset();
3007   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3008   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3009 
3010   SDValue Result;
3011   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3012     if (isInt<32>(Offset)) {
3013       // Assign anchors at 1<<12 byte boundaries.
3014       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3015       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3016       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3017 
3018       // The offset can be folded into the address if it is aligned to a
3019       // halfword.
3020       Offset -= Anchor;
3021       if (Offset != 0 && (Offset & 1) == 0) {
3022         SDValue Full =
3023           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3024         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3025         Offset = 0;
3026       }
3027     } else {
3028       // Conservatively load a constant offset greater than 32 bits into a
3029       // register below.
3030       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3031       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3032     }
3033   } else {
3034     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3035     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3036     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3037                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3038   }
3039 
3040   // If there was a non-zero offset that we didn't fold, create an explicit
3041   // addition for it.
3042   if (Offset != 0)
3043     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3044                          DAG.getConstant(Offset, DL, PtrVT));
3045 
3046   return Result;
3047 }
3048 
3049 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3050                                                  SelectionDAG &DAG,
3051                                                  unsigned Opcode,
3052                                                  SDValue GOTOffset) const {
3053   SDLoc DL(Node);
3054   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3055   SDValue Chain = DAG.getEntryNode();
3056   SDValue Glue;
3057 
3058   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3059       CallingConv::GHC)
3060     report_fatal_error("In GHC calling convention TLS is not supported");
3061 
3062   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3063   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3064   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3065   Glue = Chain.getValue(1);
3066   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3067   Glue = Chain.getValue(1);
3068 
3069   // The first call operand is the chain and the second is the TLS symbol.
3070   SmallVector<SDValue, 8> Ops;
3071   Ops.push_back(Chain);
3072   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3073                                            Node->getValueType(0),
3074                                            0, 0));
3075 
3076   // Add argument registers to the end of the list so that they are
3077   // known live into the call.
3078   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3079   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3080 
3081   // Add a register mask operand representing the call-preserved registers.
3082   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3083   const uint32_t *Mask =
3084       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3085   assert(Mask && "Missing call preserved mask for calling convention");
3086   Ops.push_back(DAG.getRegisterMask(Mask));
3087 
3088   // Glue the call to the argument copies.
3089   Ops.push_back(Glue);
3090 
3091   // Emit the call.
3092   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3093   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3094   Glue = Chain.getValue(1);
3095 
3096   // Copy the return value from %r2.
3097   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3098 }
3099 
3100 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3101                                                   SelectionDAG &DAG) const {
3102   SDValue Chain = DAG.getEntryNode();
3103   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3104 
3105   // The high part of the thread pointer is in access register 0.
3106   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3107   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3108 
3109   // The low part of the thread pointer is in access register 1.
3110   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3111   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3112 
3113   // Merge them into a single 64-bit address.
3114   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3115                                     DAG.getConstant(32, DL, PtrVT));
3116   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3117 }
3118 
3119 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3120                                                      SelectionDAG &DAG) const {
3121   if (DAG.getTarget().useEmulatedTLS())
3122     return LowerToTLSEmulatedModel(Node, DAG);
3123   SDLoc DL(Node);
3124   const GlobalValue *GV = Node->getGlobal();
3125   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3126   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3127 
3128   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3129       CallingConv::GHC)
3130     report_fatal_error("In GHC calling convention TLS is not supported");
3131 
3132   SDValue TP = lowerThreadPointer(DL, DAG);
3133 
3134   // Get the offset of GA from the thread pointer, based on the TLS model.
3135   SDValue Offset;
3136   switch (model) {
3137     case TLSModel::GeneralDynamic: {
3138       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3139       SystemZConstantPoolValue *CPV =
3140         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3141 
3142       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3143       Offset = DAG.getLoad(
3144           PtrVT, DL, DAG.getEntryNode(), Offset,
3145           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3146 
3147       // Call __tls_get_offset to retrieve the offset.
3148       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3149       break;
3150     }
3151 
3152     case TLSModel::LocalDynamic: {
3153       // Load the GOT offset of the module ID.
3154       SystemZConstantPoolValue *CPV =
3155         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3156 
3157       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3158       Offset = DAG.getLoad(
3159           PtrVT, DL, DAG.getEntryNode(), Offset,
3160           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3161 
3162       // Call __tls_get_offset to retrieve the module base offset.
3163       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3164 
3165       // Note: The SystemZLDCleanupPass will remove redundant computations
3166       // of the module base offset.  Count total number of local-dynamic
3167       // accesses to trigger execution of that pass.
3168       SystemZMachineFunctionInfo* MFI =
3169         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3170       MFI->incNumLocalDynamicTLSAccesses();
3171 
3172       // Add the per-symbol offset.
3173       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3174 
3175       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3176       DTPOffset = DAG.getLoad(
3177           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3178           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3179 
3180       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3181       break;
3182     }
3183 
3184     case TLSModel::InitialExec: {
3185       // Load the offset from the GOT.
3186       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3187                                           SystemZII::MO_INDNTPOFF);
3188       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3189       Offset =
3190           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3191                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3192       break;
3193     }
3194 
3195     case TLSModel::LocalExec: {
3196       // Force the offset into the constant pool and load it from there.
3197       SystemZConstantPoolValue *CPV =
3198         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3199 
3200       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3201       Offset = DAG.getLoad(
3202           PtrVT, DL, DAG.getEntryNode(), Offset,
3203           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3204       break;
3205     }
3206   }
3207 
3208   // Add the base and offset together.
3209   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3210 }
3211 
3212 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3213                                                  SelectionDAG &DAG) const {
3214   SDLoc DL(Node);
3215   const BlockAddress *BA = Node->getBlockAddress();
3216   int64_t Offset = Node->getOffset();
3217   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3218 
3219   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3220   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3221   return Result;
3222 }
3223 
3224 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3225                                               SelectionDAG &DAG) const {
3226   SDLoc DL(JT);
3227   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3228   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3229 
3230   // Use LARL to load the address of the table.
3231   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3232 }
3233 
3234 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3235                                                  SelectionDAG &DAG) const {
3236   SDLoc DL(CP);
3237   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3238 
3239   SDValue Result;
3240   if (CP->isMachineConstantPoolEntry())
3241     Result =
3242         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3243   else
3244     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3245                                        CP->getOffset());
3246 
3247   // Use LARL to load the address of the constant pool entry.
3248   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3249 }
3250 
3251 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3252                                               SelectionDAG &DAG) const {
3253   auto *TFL =
3254       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3255   MachineFunction &MF = DAG.getMachineFunction();
3256   MachineFrameInfo &MFI = MF.getFrameInfo();
3257   MFI.setFrameAddressIsTaken(true);
3258 
3259   SDLoc DL(Op);
3260   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3261   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3262 
3263   // Return null if the back chain is not present.
3264   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3265   if (TFL->usePackedStack(MF) && !HasBackChain)
3266     return DAG.getConstant(0, DL, PtrVT);
3267 
3268   // By definition, the frame address is the address of the back chain.
3269   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3270   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3271 
3272   // FIXME The frontend should detect this case.
3273   if (Depth > 0) {
3274     report_fatal_error("Unsupported stack frame traversal count");
3275   }
3276 
3277   return BackChain;
3278 }
3279 
3280 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3281                                                SelectionDAG &DAG) const {
3282   MachineFunction &MF = DAG.getMachineFunction();
3283   MachineFrameInfo &MFI = MF.getFrameInfo();
3284   MFI.setReturnAddressIsTaken(true);
3285 
3286   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3287     return SDValue();
3288 
3289   SDLoc DL(Op);
3290   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3291   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3292 
3293   // FIXME The frontend should detect this case.
3294   if (Depth > 0) {
3295     report_fatal_error("Unsupported stack frame traversal count");
3296   }
3297 
3298   // Return R14D, which has the return address. Mark it an implicit live-in.
3299   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3300   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3301 }
3302 
3303 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3304                                             SelectionDAG &DAG) const {
3305   SDLoc DL(Op);
3306   SDValue In = Op.getOperand(0);
3307   EVT InVT = In.getValueType();
3308   EVT ResVT = Op.getValueType();
3309 
3310   // Convert loads directly.  This is normally done by DAGCombiner,
3311   // but we need this case for bitcasts that are created during lowering
3312   // and which are then lowered themselves.
3313   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3314     if (ISD::isNormalLoad(LoadN)) {
3315       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3316                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3317       // Update the chain uses.
3318       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3319       return NewLoad;
3320     }
3321 
3322   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3323     SDValue In64;
3324     if (Subtarget.hasHighWord()) {
3325       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3326                                        MVT::i64);
3327       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3328                                        MVT::i64, SDValue(U64, 0), In);
3329     } else {
3330       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3331       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3332                          DAG.getConstant(32, DL, MVT::i64));
3333     }
3334     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3335     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3336                                       DL, MVT::f32, Out64);
3337   }
3338   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3339     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3340     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3341                                              MVT::f64, SDValue(U64, 0), In);
3342     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3343     if (Subtarget.hasHighWord())
3344       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3345                                         MVT::i32, Out64);
3346     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3347                                 DAG.getConstant(32, DL, MVT::i64));
3348     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3349   }
3350   llvm_unreachable("Unexpected bitcast combination");
3351 }
3352 
3353 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3354                                             SelectionDAG &DAG) const {
3355   MachineFunction &MF = DAG.getMachineFunction();
3356   SystemZMachineFunctionInfo *FuncInfo =
3357     MF.getInfo<SystemZMachineFunctionInfo>();
3358   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3359 
3360   SDValue Chain   = Op.getOperand(0);
3361   SDValue Addr    = Op.getOperand(1);
3362   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3363   SDLoc DL(Op);
3364 
3365   // The initial values of each field.
3366   const unsigned NumFields = 4;
3367   SDValue Fields[NumFields] = {
3368     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3369     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3370     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3371     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3372   };
3373 
3374   // Store each field into its respective slot.
3375   SDValue MemOps[NumFields];
3376   unsigned Offset = 0;
3377   for (unsigned I = 0; I < NumFields; ++I) {
3378     SDValue FieldAddr = Addr;
3379     if (Offset != 0)
3380       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3381                               DAG.getIntPtrConstant(Offset, DL));
3382     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3383                              MachinePointerInfo(SV, Offset));
3384     Offset += 8;
3385   }
3386   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3387 }
3388 
3389 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3390                                            SelectionDAG &DAG) const {
3391   SDValue Chain      = Op.getOperand(0);
3392   SDValue DstPtr     = Op.getOperand(1);
3393   SDValue SrcPtr     = Op.getOperand(2);
3394   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3395   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3396   SDLoc DL(Op);
3397 
3398   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3399                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3400                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3401                        MachinePointerInfo(SrcSV));
3402 }
3403 
3404 SDValue SystemZTargetLowering::
3405 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3406   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3407   MachineFunction &MF = DAG.getMachineFunction();
3408   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3409   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3410 
3411   SDValue Chain = Op.getOperand(0);
3412   SDValue Size  = Op.getOperand(1);
3413   SDValue Align = Op.getOperand(2);
3414   SDLoc DL(Op);
3415 
3416   // If user has set the no alignment function attribute, ignore
3417   // alloca alignments.
3418   uint64_t AlignVal = (RealignOpt ?
3419                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3420 
3421   uint64_t StackAlign = TFI->getStackAlignment();
3422   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3423   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3424 
3425   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3426   SDValue NeededSpace = Size;
3427 
3428   // Get a reference to the stack pointer.
3429   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3430 
3431   // If we need a backchain, save it now.
3432   SDValue Backchain;
3433   if (StoreBackchain)
3434     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3435 
3436   // Add extra space for alignment if needed.
3437   if (ExtraAlignSpace)
3438     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3439                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3440 
3441   // Get the new stack pointer value.
3442   SDValue NewSP;
3443   if (hasInlineStackProbe(MF)) {
3444     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3445                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3446     Chain = NewSP.getValue(1);
3447   }
3448   else {
3449     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3450     // Copy the new stack pointer back.
3451     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3452   }
3453 
3454   // The allocated data lives above the 160 bytes allocated for the standard
3455   // frame, plus any outgoing stack arguments.  We don't know how much that
3456   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3457   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3458   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3459 
3460   // Dynamically realign if needed.
3461   if (RequiredAlign > StackAlign) {
3462     Result =
3463       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3464                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3465     Result =
3466       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3467                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3468   }
3469 
3470   if (StoreBackchain)
3471     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3472 
3473   SDValue Ops[2] = { Result, Chain };
3474   return DAG.getMergeValues(Ops, DL);
3475 }
3476 
3477 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3478     SDValue Op, SelectionDAG &DAG) const {
3479   SDLoc DL(Op);
3480 
3481   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3482 }
3483 
3484 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3485                                               SelectionDAG &DAG) const {
3486   EVT VT = Op.getValueType();
3487   SDLoc DL(Op);
3488   SDValue Ops[2];
3489   if (is32Bit(VT))
3490     // Just do a normal 64-bit multiplication and extract the results.
3491     // We define this so that it can be used for constant division.
3492     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3493                     Op.getOperand(1), Ops[1], Ops[0]);
3494   else if (Subtarget.hasMiscellaneousExtensions2())
3495     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3496     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3497     // return the low half first, so the results are in reverse order.
3498     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3499                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3500   else {
3501     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3502     //
3503     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3504     //
3505     // but using the fact that the upper halves are either all zeros
3506     // or all ones:
3507     //
3508     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3509     //
3510     // and grouping the right terms together since they are quicker than the
3511     // multiplication:
3512     //
3513     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3514     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3515     SDValue LL = Op.getOperand(0);
3516     SDValue RL = Op.getOperand(1);
3517     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3518     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3519     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3520     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3521     // return the low half first, so the results are in reverse order.
3522     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3523                      LL, RL, Ops[1], Ops[0]);
3524     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3525     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3526     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3527     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3528   }
3529   return DAG.getMergeValues(Ops, DL);
3530 }
3531 
3532 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3533                                               SelectionDAG &DAG) const {
3534   EVT VT = Op.getValueType();
3535   SDLoc DL(Op);
3536   SDValue Ops[2];
3537   if (is32Bit(VT))
3538     // Just do a normal 64-bit multiplication and extract the results.
3539     // We define this so that it can be used for constant division.
3540     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3541                     Op.getOperand(1), Ops[1], Ops[0]);
3542   else
3543     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3544     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3545     // return the low half first, so the results are in reverse order.
3546     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3547                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3548   return DAG.getMergeValues(Ops, DL);
3549 }
3550 
3551 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3552                                             SelectionDAG &DAG) const {
3553   SDValue Op0 = Op.getOperand(0);
3554   SDValue Op1 = Op.getOperand(1);
3555   EVT VT = Op.getValueType();
3556   SDLoc DL(Op);
3557 
3558   // We use DSGF for 32-bit division.  This means the first operand must
3559   // always be 64-bit, and the second operand should be 32-bit whenever
3560   // that is possible, to improve performance.
3561   if (is32Bit(VT))
3562     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3563   else if (DAG.ComputeNumSignBits(Op1) > 32)
3564     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3565 
3566   // DSG(F) returns the remainder in the even register and the
3567   // quotient in the odd register.
3568   SDValue Ops[2];
3569   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3570   return DAG.getMergeValues(Ops, DL);
3571 }
3572 
3573 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3574                                             SelectionDAG &DAG) const {
3575   EVT VT = Op.getValueType();
3576   SDLoc DL(Op);
3577 
3578   // DL(G) returns the remainder in the even register and the
3579   // quotient in the odd register.
3580   SDValue Ops[2];
3581   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3582                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3583   return DAG.getMergeValues(Ops, DL);
3584 }
3585 
3586 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3587   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3588 
3589   // Get the known-zero masks for each operand.
3590   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3591   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3592                         DAG.computeKnownBits(Ops[1])};
3593 
3594   // See if the upper 32 bits of one operand and the lower 32 bits of the
3595   // other are known zero.  They are the low and high operands respectively.
3596   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3597                        Known[1].Zero.getZExtValue() };
3598   unsigned High, Low;
3599   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3600     High = 1, Low = 0;
3601   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3602     High = 0, Low = 1;
3603   else
3604     return Op;
3605 
3606   SDValue LowOp = Ops[Low];
3607   SDValue HighOp = Ops[High];
3608 
3609   // If the high part is a constant, we're better off using IILH.
3610   if (HighOp.getOpcode() == ISD::Constant)
3611     return Op;
3612 
3613   // If the low part is a constant that is outside the range of LHI,
3614   // then we're better off using IILF.
3615   if (LowOp.getOpcode() == ISD::Constant) {
3616     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3617     if (!isInt<16>(Value))
3618       return Op;
3619   }
3620 
3621   // Check whether the high part is an AND that doesn't change the
3622   // high 32 bits and just masks out low bits.  We can skip it if so.
3623   if (HighOp.getOpcode() == ISD::AND &&
3624       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3625     SDValue HighOp0 = HighOp.getOperand(0);
3626     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3627     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3628       HighOp = HighOp0;
3629   }
3630 
3631   // Take advantage of the fact that all GR32 operations only change the
3632   // low 32 bits by truncating Low to an i32 and inserting it directly
3633   // using a subreg.  The interesting cases are those where the truncation
3634   // can be folded.
3635   SDLoc DL(Op);
3636   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3637   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3638                                    MVT::i64, HighOp, Low32);
3639 }
3640 
3641 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3642 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3643                                           SelectionDAG &DAG) const {
3644   SDNode *N = Op.getNode();
3645   SDValue LHS = N->getOperand(0);
3646   SDValue RHS = N->getOperand(1);
3647   SDLoc DL(N);
3648   unsigned BaseOp = 0;
3649   unsigned CCValid = 0;
3650   unsigned CCMask = 0;
3651 
3652   switch (Op.getOpcode()) {
3653   default: llvm_unreachable("Unknown instruction!");
3654   case ISD::SADDO:
3655     BaseOp = SystemZISD::SADDO;
3656     CCValid = SystemZ::CCMASK_ARITH;
3657     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3658     break;
3659   case ISD::SSUBO:
3660     BaseOp = SystemZISD::SSUBO;
3661     CCValid = SystemZ::CCMASK_ARITH;
3662     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3663     break;
3664   case ISD::UADDO:
3665     BaseOp = SystemZISD::UADDO;
3666     CCValid = SystemZ::CCMASK_LOGICAL;
3667     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3668     break;
3669   case ISD::USUBO:
3670     BaseOp = SystemZISD::USUBO;
3671     CCValid = SystemZ::CCMASK_LOGICAL;
3672     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3673     break;
3674   }
3675 
3676   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3677   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3678 
3679   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3680   if (N->getValueType(1) == MVT::i1)
3681     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3682 
3683   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3684 }
3685 
3686 static bool isAddCarryChain(SDValue Carry) {
3687   while (Carry.getOpcode() == ISD::ADDCARRY)
3688     Carry = Carry.getOperand(2);
3689   return Carry.getOpcode() == ISD::UADDO;
3690 }
3691 
3692 static bool isSubBorrowChain(SDValue Carry) {
3693   while (Carry.getOpcode() == ISD::SUBCARRY)
3694     Carry = Carry.getOperand(2);
3695   return Carry.getOpcode() == ISD::USUBO;
3696 }
3697 
3698 // Lower ADDCARRY/SUBCARRY nodes.
3699 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3700                                                 SelectionDAG &DAG) const {
3701 
3702   SDNode *N = Op.getNode();
3703   MVT VT = N->getSimpleValueType(0);
3704 
3705   // Let legalize expand this if it isn't a legal type yet.
3706   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3707     return SDValue();
3708 
3709   SDValue LHS = N->getOperand(0);
3710   SDValue RHS = N->getOperand(1);
3711   SDValue Carry = Op.getOperand(2);
3712   SDLoc DL(N);
3713   unsigned BaseOp = 0;
3714   unsigned CCValid = 0;
3715   unsigned CCMask = 0;
3716 
3717   switch (Op.getOpcode()) {
3718   default: llvm_unreachable("Unknown instruction!");
3719   case ISD::ADDCARRY:
3720     if (!isAddCarryChain(Carry))
3721       return SDValue();
3722 
3723     BaseOp = SystemZISD::ADDCARRY;
3724     CCValid = SystemZ::CCMASK_LOGICAL;
3725     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3726     break;
3727   case ISD::SUBCARRY:
3728     if (!isSubBorrowChain(Carry))
3729       return SDValue();
3730 
3731     BaseOp = SystemZISD::SUBCARRY;
3732     CCValid = SystemZ::CCMASK_LOGICAL;
3733     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3734     break;
3735   }
3736 
3737   // Set the condition code from the carry flag.
3738   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3739                       DAG.getConstant(CCValid, DL, MVT::i32),
3740                       DAG.getConstant(CCMask, DL, MVT::i32));
3741 
3742   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3743   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3744 
3745   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3746   if (N->getValueType(1) == MVT::i1)
3747     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3748 
3749   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3750 }
3751 
3752 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3753                                           SelectionDAG &DAG) const {
3754   EVT VT = Op.getValueType();
3755   SDLoc DL(Op);
3756   Op = Op.getOperand(0);
3757 
3758   // Handle vector types via VPOPCT.
3759   if (VT.isVector()) {
3760     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3761     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3762     switch (VT.getScalarSizeInBits()) {
3763     case 8:
3764       break;
3765     case 16: {
3766       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3767       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3768       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3769       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3770       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3771       break;
3772     }
3773     case 32: {
3774       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3775                                             DAG.getConstant(0, DL, MVT::i32));
3776       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3777       break;
3778     }
3779     case 64: {
3780       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3781                                             DAG.getConstant(0, DL, MVT::i32));
3782       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3783       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3784       break;
3785     }
3786     default:
3787       llvm_unreachable("Unexpected type");
3788     }
3789     return Op;
3790   }
3791 
3792   // Get the known-zero mask for the operand.
3793   KnownBits Known = DAG.computeKnownBits(Op);
3794   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3795   if (NumSignificantBits == 0)
3796     return DAG.getConstant(0, DL, VT);
3797 
3798   // Skip known-zero high parts of the operand.
3799   int64_t OrigBitSize = VT.getSizeInBits();
3800   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3801   BitSize = std::min(BitSize, OrigBitSize);
3802 
3803   // The POPCNT instruction counts the number of bits in each byte.
3804   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3805   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3806   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3807 
3808   // Add up per-byte counts in a binary tree.  All bits of Op at
3809   // position larger than BitSize remain zero throughout.
3810   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3811     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3812     if (BitSize != OrigBitSize)
3813       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3814                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3815     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3816   }
3817 
3818   // Extract overall result from high byte.
3819   if (BitSize > 8)
3820     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3821                      DAG.getConstant(BitSize - 8, DL, VT));
3822 
3823   return Op;
3824 }
3825 
3826 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3827                                                  SelectionDAG &DAG) const {
3828   SDLoc DL(Op);
3829   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3830     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3831   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3832     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3833 
3834   // The only fence that needs an instruction is a sequentially-consistent
3835   // cross-thread fence.
3836   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3837       FenceSSID == SyncScope::System) {
3838     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3839                                       Op.getOperand(0)),
3840                    0);
3841   }
3842 
3843   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3844   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3845 }
3846 
3847 // Op is an atomic load.  Lower it into a normal volatile load.
3848 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3849                                                 SelectionDAG &DAG) const {
3850   auto *Node = cast<AtomicSDNode>(Op.getNode());
3851   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3852                         Node->getChain(), Node->getBasePtr(),
3853                         Node->getMemoryVT(), Node->getMemOperand());
3854 }
3855 
3856 // Op is an atomic store.  Lower it into a normal volatile store.
3857 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3858                                                  SelectionDAG &DAG) const {
3859   auto *Node = cast<AtomicSDNode>(Op.getNode());
3860   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3861                                     Node->getBasePtr(), Node->getMemoryVT(),
3862                                     Node->getMemOperand());
3863   // We have to enforce sequential consistency by performing a
3864   // serialization operation after the store.
3865   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3866     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3867                                        MVT::Other, Chain), 0);
3868   return Chain;
3869 }
3870 
3871 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3872 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3873 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3874                                                    SelectionDAG &DAG,
3875                                                    unsigned Opcode) const {
3876   auto *Node = cast<AtomicSDNode>(Op.getNode());
3877 
3878   // 32-bit operations need no code outside the main loop.
3879   EVT NarrowVT = Node->getMemoryVT();
3880   EVT WideVT = MVT::i32;
3881   if (NarrowVT == WideVT)
3882     return Op;
3883 
3884   int64_t BitSize = NarrowVT.getSizeInBits();
3885   SDValue ChainIn = Node->getChain();
3886   SDValue Addr = Node->getBasePtr();
3887   SDValue Src2 = Node->getVal();
3888   MachineMemOperand *MMO = Node->getMemOperand();
3889   SDLoc DL(Node);
3890   EVT PtrVT = Addr.getValueType();
3891 
3892   // Convert atomic subtracts of constants into additions.
3893   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3894     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3895       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3896       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3897     }
3898 
3899   // Get the address of the containing word.
3900   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3901                                     DAG.getConstant(-4, DL, PtrVT));
3902 
3903   // Get the number of bits that the word must be rotated left in order
3904   // to bring the field to the top bits of a GR32.
3905   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3906                                  DAG.getConstant(3, DL, PtrVT));
3907   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3908 
3909   // Get the complementing shift amount, for rotating a field in the top
3910   // bits back to its proper position.
3911   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3912                                     DAG.getConstant(0, DL, WideVT), BitShift);
3913 
3914   // Extend the source operand to 32 bits and prepare it for the inner loop.
3915   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3916   // operations require the source to be shifted in advance.  (This shift
3917   // can be folded if the source is constant.)  For AND and NAND, the lower
3918   // bits must be set, while for other opcodes they should be left clear.
3919   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3920     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3921                        DAG.getConstant(32 - BitSize, DL, WideVT));
3922   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3923       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3924     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3925                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3926 
3927   // Construct the ATOMIC_LOADW_* node.
3928   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3929   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3930                     DAG.getConstant(BitSize, DL, WideVT) };
3931   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3932                                              NarrowVT, MMO);
3933 
3934   // Rotate the result of the final CS so that the field is in the lower
3935   // bits of a GR32, then truncate it.
3936   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3937                                     DAG.getConstant(BitSize, DL, WideVT));
3938   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3939 
3940   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3941   return DAG.getMergeValues(RetOps, DL);
3942 }
3943 
3944 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3945 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3946 // operations into additions.
3947 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3948                                                     SelectionDAG &DAG) const {
3949   auto *Node = cast<AtomicSDNode>(Op.getNode());
3950   EVT MemVT = Node->getMemoryVT();
3951   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3952     // A full-width operation.
3953     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3954     SDValue Src2 = Node->getVal();
3955     SDValue NegSrc2;
3956     SDLoc DL(Src2);
3957 
3958     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3959       // Use an addition if the operand is constant and either LAA(G) is
3960       // available or the negative value is in the range of A(G)FHI.
3961       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3962       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3963         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3964     } else if (Subtarget.hasInterlockedAccess1())
3965       // Use LAA(G) if available.
3966       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3967                             Src2);
3968 
3969     if (NegSrc2.getNode())
3970       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3971                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3972                            Node->getMemOperand());
3973 
3974     // Use the node as-is.
3975     return Op;
3976   }
3977 
3978   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3979 }
3980 
3981 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3982 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3983                                                     SelectionDAG &DAG) const {
3984   auto *Node = cast<AtomicSDNode>(Op.getNode());
3985   SDValue ChainIn = Node->getOperand(0);
3986   SDValue Addr = Node->getOperand(1);
3987   SDValue CmpVal = Node->getOperand(2);
3988   SDValue SwapVal = Node->getOperand(3);
3989   MachineMemOperand *MMO = Node->getMemOperand();
3990   SDLoc DL(Node);
3991 
3992   // We have native support for 32-bit and 64-bit compare and swap, but we
3993   // still need to expand extracting the "success" result from the CC.
3994   EVT NarrowVT = Node->getMemoryVT();
3995   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3996   if (NarrowVT == WideVT) {
3997     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3998     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3999     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4000                                                DL, Tys, Ops, NarrowVT, MMO);
4001     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4002                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4003 
4004     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4005     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4006     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4007     return SDValue();
4008   }
4009 
4010   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4011   // via a fullword ATOMIC_CMP_SWAPW operation.
4012   int64_t BitSize = NarrowVT.getSizeInBits();
4013   EVT PtrVT = Addr.getValueType();
4014 
4015   // Get the address of the containing word.
4016   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4017                                     DAG.getConstant(-4, DL, PtrVT));
4018 
4019   // Get the number of bits that the word must be rotated left in order
4020   // to bring the field to the top bits of a GR32.
4021   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4022                                  DAG.getConstant(3, DL, PtrVT));
4023   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4024 
4025   // Get the complementing shift amount, for rotating a field in the top
4026   // bits back to its proper position.
4027   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4028                                     DAG.getConstant(0, DL, WideVT), BitShift);
4029 
4030   // Construct the ATOMIC_CMP_SWAPW node.
4031   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4032   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4033                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4034   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4035                                              VTList, Ops, NarrowVT, MMO);
4036   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4037                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4038 
4039   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4040   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4041   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4042   return SDValue();
4043 }
4044 
4045 MachineMemOperand::Flags
4046 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4047   // Because of how we convert atomic_load and atomic_store to normal loads and
4048   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4049   // since DAGCombine hasn't been updated to account for atomic, but non
4050   // volatile loads.  (See D57601)
4051   if (auto *SI = dyn_cast<StoreInst>(&I))
4052     if (SI->isAtomic())
4053       return MachineMemOperand::MOVolatile;
4054   if (auto *LI = dyn_cast<LoadInst>(&I))
4055     if (LI->isAtomic())
4056       return MachineMemOperand::MOVolatile;
4057   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4058     if (AI->isAtomic())
4059       return MachineMemOperand::MOVolatile;
4060   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4061     if (AI->isAtomic())
4062       return MachineMemOperand::MOVolatile;
4063   return MachineMemOperand::MONone;
4064 }
4065 
4066 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4067                                               SelectionDAG &DAG) const {
4068   MachineFunction &MF = DAG.getMachineFunction();
4069   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4070   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4071     report_fatal_error("Variable-sized stack allocations are not supported "
4072                        "in GHC calling convention");
4073   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4074                             SystemZ::R15D, Op.getValueType());
4075 }
4076 
4077 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4078                                                  SelectionDAG &DAG) const {
4079   MachineFunction &MF = DAG.getMachineFunction();
4080   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4081   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4082 
4083   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4084     report_fatal_error("Variable-sized stack allocations are not supported "
4085                        "in GHC calling convention");
4086 
4087   SDValue Chain = Op.getOperand(0);
4088   SDValue NewSP = Op.getOperand(1);
4089   SDValue Backchain;
4090   SDLoc DL(Op);
4091 
4092   if (StoreBackchain) {
4093     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4094     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4095   }
4096 
4097   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4098 
4099   if (StoreBackchain)
4100     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4101 
4102   return Chain;
4103 }
4104 
4105 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4106                                              SelectionDAG &DAG) const {
4107   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4108   if (!IsData)
4109     // Just preserve the chain.
4110     return Op.getOperand(0);
4111 
4112   SDLoc DL(Op);
4113   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4114   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4115   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4116   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4117                    Op.getOperand(1)};
4118   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4119                                  Node->getVTList(), Ops,
4120                                  Node->getMemoryVT(), Node->getMemOperand());
4121 }
4122 
4123 // Convert condition code in CCReg to an i32 value.
4124 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4125   SDLoc DL(CCReg);
4126   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4127   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4128                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4129 }
4130 
4131 SDValue
4132 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4133                                               SelectionDAG &DAG) const {
4134   unsigned Opcode, CCValid;
4135   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4136     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4137     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4138     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4139     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4140     return SDValue();
4141   }
4142 
4143   return SDValue();
4144 }
4145 
4146 SDValue
4147 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4148                                                SelectionDAG &DAG) const {
4149   unsigned Opcode, CCValid;
4150   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4151     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4152     if (Op->getNumValues() == 1)
4153       return getCCResult(DAG, SDValue(Node, 0));
4154     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4155     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4156                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4157   }
4158 
4159   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4160   switch (Id) {
4161   case Intrinsic::thread_pointer:
4162     return lowerThreadPointer(SDLoc(Op), DAG);
4163 
4164   case Intrinsic::s390_vpdi:
4165     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4166                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4167 
4168   case Intrinsic::s390_vperm:
4169     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4170                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4171 
4172   case Intrinsic::s390_vuphb:
4173   case Intrinsic::s390_vuphh:
4174   case Intrinsic::s390_vuphf:
4175     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4176                        Op.getOperand(1));
4177 
4178   case Intrinsic::s390_vuplhb:
4179   case Intrinsic::s390_vuplhh:
4180   case Intrinsic::s390_vuplhf:
4181     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4182                        Op.getOperand(1));
4183 
4184   case Intrinsic::s390_vuplb:
4185   case Intrinsic::s390_vuplhw:
4186   case Intrinsic::s390_vuplf:
4187     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4188                        Op.getOperand(1));
4189 
4190   case Intrinsic::s390_vupllb:
4191   case Intrinsic::s390_vupllh:
4192   case Intrinsic::s390_vupllf:
4193     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4194                        Op.getOperand(1));
4195 
4196   case Intrinsic::s390_vsumb:
4197   case Intrinsic::s390_vsumh:
4198   case Intrinsic::s390_vsumgh:
4199   case Intrinsic::s390_vsumgf:
4200   case Intrinsic::s390_vsumqf:
4201   case Intrinsic::s390_vsumqg:
4202     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4203                        Op.getOperand(1), Op.getOperand(2));
4204   }
4205 
4206   return SDValue();
4207 }
4208 
4209 namespace {
4210 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4211 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4212 // Operand is the constant third operand, otherwise it is the number of
4213 // bytes in each element of the result.
4214 struct Permute {
4215   unsigned Opcode;
4216   unsigned Operand;
4217   unsigned char Bytes[SystemZ::VectorBytes];
4218 };
4219 }
4220 
4221 static const Permute PermuteForms[] = {
4222   // VMRHG
4223   { SystemZISD::MERGE_HIGH, 8,
4224     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4225   // VMRHF
4226   { SystemZISD::MERGE_HIGH, 4,
4227     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4228   // VMRHH
4229   { SystemZISD::MERGE_HIGH, 2,
4230     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4231   // VMRHB
4232   { SystemZISD::MERGE_HIGH, 1,
4233     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4234   // VMRLG
4235   { SystemZISD::MERGE_LOW, 8,
4236     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4237   // VMRLF
4238   { SystemZISD::MERGE_LOW, 4,
4239     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4240   // VMRLH
4241   { SystemZISD::MERGE_LOW, 2,
4242     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4243   // VMRLB
4244   { SystemZISD::MERGE_LOW, 1,
4245     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4246   // VPKG
4247   { SystemZISD::PACK, 4,
4248     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4249   // VPKF
4250   { SystemZISD::PACK, 2,
4251     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4252   // VPKH
4253   { SystemZISD::PACK, 1,
4254     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4255   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4256   { SystemZISD::PERMUTE_DWORDS, 4,
4257     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4258   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4259   { SystemZISD::PERMUTE_DWORDS, 1,
4260     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4261 };
4262 
4263 // Called after matching a vector shuffle against a particular pattern.
4264 // Both the original shuffle and the pattern have two vector operands.
4265 // OpNos[0] is the operand of the original shuffle that should be used for
4266 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4267 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4268 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4269 // for operands 0 and 1 of the pattern.
4270 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4271   if (OpNos[0] < 0) {
4272     if (OpNos[1] < 0)
4273       return false;
4274     OpNo0 = OpNo1 = OpNos[1];
4275   } else if (OpNos[1] < 0) {
4276     OpNo0 = OpNo1 = OpNos[0];
4277   } else {
4278     OpNo0 = OpNos[0];
4279     OpNo1 = OpNos[1];
4280   }
4281   return true;
4282 }
4283 
4284 // Bytes is a VPERM-like permute vector, except that -1 is used for
4285 // undefined bytes.  Return true if the VPERM can be implemented using P.
4286 // When returning true set OpNo0 to the VPERM operand that should be
4287 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4288 //
4289 // For example, if swapping the VPERM operands allows P to match, OpNo0
4290 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4291 // operand, but rewriting it to use two duplicated operands allows it to
4292 // match P, then OpNo0 and OpNo1 will be the same.
4293 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4294                          unsigned &OpNo0, unsigned &OpNo1) {
4295   int OpNos[] = { -1, -1 };
4296   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4297     int Elt = Bytes[I];
4298     if (Elt >= 0) {
4299       // Make sure that the two permute vectors use the same suboperand
4300       // byte number.  Only the operand numbers (the high bits) are
4301       // allowed to differ.
4302       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4303         return false;
4304       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4305       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4306       // Make sure that the operand mappings are consistent with previous
4307       // elements.
4308       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4309         return false;
4310       OpNos[ModelOpNo] = RealOpNo;
4311     }
4312   }
4313   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4314 }
4315 
4316 // As above, but search for a matching permute.
4317 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4318                                    unsigned &OpNo0, unsigned &OpNo1) {
4319   for (auto &P : PermuteForms)
4320     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4321       return &P;
4322   return nullptr;
4323 }
4324 
4325 // Bytes is a VPERM-like permute vector, except that -1 is used for
4326 // undefined bytes.  This permute is an operand of an outer permute.
4327 // See whether redistributing the -1 bytes gives a shuffle that can be
4328 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4329 // that, when applied to the result of P, gives the original permute in Bytes.
4330 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4331                                const Permute &P,
4332                                SmallVectorImpl<int> &Transform) {
4333   unsigned To = 0;
4334   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4335     int Elt = Bytes[From];
4336     if (Elt < 0)
4337       // Byte number From of the result is undefined.
4338       Transform[From] = -1;
4339     else {
4340       while (P.Bytes[To] != Elt) {
4341         To += 1;
4342         if (To == SystemZ::VectorBytes)
4343           return false;
4344       }
4345       Transform[From] = To;
4346     }
4347   }
4348   return true;
4349 }
4350 
4351 // As above, but search for a matching permute.
4352 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4353                                          SmallVectorImpl<int> &Transform) {
4354   for (auto &P : PermuteForms)
4355     if (matchDoublePermute(Bytes, P, Transform))
4356       return &P;
4357   return nullptr;
4358 }
4359 
4360 // Convert the mask of the given shuffle op into a byte-level mask,
4361 // as if it had type vNi8.
4362 static bool getVPermMask(SDValue ShuffleOp,
4363                          SmallVectorImpl<int> &Bytes) {
4364   EVT VT = ShuffleOp.getValueType();
4365   unsigned NumElements = VT.getVectorNumElements();
4366   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4367 
4368   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4369     Bytes.resize(NumElements * BytesPerElement, -1);
4370     for (unsigned I = 0; I < NumElements; ++I) {
4371       int Index = VSN->getMaskElt(I);
4372       if (Index >= 0)
4373         for (unsigned J = 0; J < BytesPerElement; ++J)
4374           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4375     }
4376     return true;
4377   }
4378   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4379       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4380     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4381     Bytes.resize(NumElements * BytesPerElement, -1);
4382     for (unsigned I = 0; I < NumElements; ++I)
4383       for (unsigned J = 0; J < BytesPerElement; ++J)
4384         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4385     return true;
4386   }
4387   return false;
4388 }
4389 
4390 // Bytes is a VPERM-like permute vector, except that -1 is used for
4391 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4392 // the result come from a contiguous sequence of bytes from one input.
4393 // Set Base to the selector for the first byte if so.
4394 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4395                             unsigned BytesPerElement, int &Base) {
4396   Base = -1;
4397   for (unsigned I = 0; I < BytesPerElement; ++I) {
4398     if (Bytes[Start + I] >= 0) {
4399       unsigned Elem = Bytes[Start + I];
4400       if (Base < 0) {
4401         Base = Elem - I;
4402         // Make sure the bytes would come from one input operand.
4403         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4404           return false;
4405       } else if (unsigned(Base) != Elem - I)
4406         return false;
4407     }
4408   }
4409   return true;
4410 }
4411 
4412 // Bytes is a VPERM-like permute vector, except that -1 is used for
4413 // undefined bytes.  Return true if it can be performed using VSLDB.
4414 // When returning true, set StartIndex to the shift amount and OpNo0
4415 // and OpNo1 to the VPERM operands that should be used as the first
4416 // and second shift operand respectively.
4417 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4418                                unsigned &StartIndex, unsigned &OpNo0,
4419                                unsigned &OpNo1) {
4420   int OpNos[] = { -1, -1 };
4421   int Shift = -1;
4422   for (unsigned I = 0; I < 16; ++I) {
4423     int Index = Bytes[I];
4424     if (Index >= 0) {
4425       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4426       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4427       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4428       if (Shift < 0)
4429         Shift = ExpectedShift;
4430       else if (Shift != ExpectedShift)
4431         return false;
4432       // Make sure that the operand mappings are consistent with previous
4433       // elements.
4434       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4435         return false;
4436       OpNos[ModelOpNo] = RealOpNo;
4437     }
4438   }
4439   StartIndex = Shift;
4440   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4441 }
4442 
4443 // Create a node that performs P on operands Op0 and Op1, casting the
4444 // operands to the appropriate type.  The type of the result is determined by P.
4445 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4446                               const Permute &P, SDValue Op0, SDValue Op1) {
4447   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4448   // elements of a PACK are twice as wide as the outputs.
4449   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4450                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4451                       P.Operand);
4452   // Cast both operands to the appropriate type.
4453   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4454                               SystemZ::VectorBytes / InBytes);
4455   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4456   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4457   SDValue Op;
4458   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4459     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4460     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4461   } else if (P.Opcode == SystemZISD::PACK) {
4462     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4463                                  SystemZ::VectorBytes / P.Operand);
4464     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4465   } else {
4466     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4467   }
4468   return Op;
4469 }
4470 
4471 static bool isZeroVector(SDValue N) {
4472   if (N->getOpcode() == ISD::BITCAST)
4473     N = N->getOperand(0);
4474   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4475     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4476       return Op->getZExtValue() == 0;
4477   return ISD::isBuildVectorAllZeros(N.getNode());
4478 }
4479 
4480 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4481 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4482   for (unsigned I = 0; I < Num ; I++)
4483     if (isZeroVector(Ops[I]))
4484       return I;
4485   return UINT32_MAX;
4486 }
4487 
4488 // Bytes is a VPERM-like permute vector, except that -1 is used for
4489 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4490 // VSLDB or VPERM.
4491 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4492                                      SDValue *Ops,
4493                                      const SmallVectorImpl<int> &Bytes) {
4494   for (unsigned I = 0; I < 2; ++I)
4495     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4496 
4497   // First see whether VSLDB can be used.
4498   unsigned StartIndex, OpNo0, OpNo1;
4499   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4500     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4501                        Ops[OpNo1],
4502                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4503 
4504   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4505   // eliminate a zero vector by reusing any zero index in the permute vector.
4506   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4507   if (ZeroVecIdx != UINT32_MAX) {
4508     bool MaskFirst = true;
4509     int ZeroIdx = -1;
4510     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4511       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4512       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4513       if (OpNo == ZeroVecIdx && I == 0) {
4514         // If the first byte is zero, use mask as first operand.
4515         ZeroIdx = 0;
4516         break;
4517       }
4518       if (OpNo != ZeroVecIdx && Byte == 0) {
4519         // If mask contains a zero, use it by placing that vector first.
4520         ZeroIdx = I + SystemZ::VectorBytes;
4521         MaskFirst = false;
4522         break;
4523       }
4524     }
4525     if (ZeroIdx != -1) {
4526       SDValue IndexNodes[SystemZ::VectorBytes];
4527       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4528         if (Bytes[I] >= 0) {
4529           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4530           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4531           if (OpNo == ZeroVecIdx)
4532             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4533           else {
4534             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4535             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4536           }
4537         } else
4538           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4539       }
4540       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4541       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4542       if (MaskFirst)
4543         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4544                            Mask);
4545       else
4546         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4547                            Mask);
4548     }
4549   }
4550 
4551   SDValue IndexNodes[SystemZ::VectorBytes];
4552   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4553     if (Bytes[I] >= 0)
4554       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4555     else
4556       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4557   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4558   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4559                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4560 }
4561 
4562 namespace {
4563 // Describes a general N-operand vector shuffle.
4564 struct GeneralShuffle {
4565   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4566   void addUndef();
4567   bool add(SDValue, unsigned);
4568   SDValue getNode(SelectionDAG &, const SDLoc &);
4569   void tryPrepareForUnpack();
4570   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4571   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4572 
4573   // The operands of the shuffle.
4574   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4575 
4576   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4577   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4578   // Bytes[I] / SystemZ::VectorBytes.
4579   SmallVector<int, SystemZ::VectorBytes> Bytes;
4580 
4581   // The type of the shuffle result.
4582   EVT VT;
4583 
4584   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4585   unsigned UnpackFromEltSize;
4586 };
4587 }
4588 
4589 // Add an extra undefined element to the shuffle.
4590 void GeneralShuffle::addUndef() {
4591   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4592   for (unsigned I = 0; I < BytesPerElement; ++I)
4593     Bytes.push_back(-1);
4594 }
4595 
4596 // Add an extra element to the shuffle, taking it from element Elem of Op.
4597 // A null Op indicates a vector input whose value will be calculated later;
4598 // there is at most one such input per shuffle and it always has the same
4599 // type as the result. Aborts and returns false if the source vector elements
4600 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4601 // LLVM they become implicitly extended, but this is rare and not optimized.
4602 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4603   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4604 
4605   // The source vector can have wider elements than the result,
4606   // either through an explicit TRUNCATE or because of type legalization.
4607   // We want the least significant part.
4608   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4609   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4610 
4611   // Return false if the source elements are smaller than their destination
4612   // elements.
4613   if (FromBytesPerElement < BytesPerElement)
4614     return false;
4615 
4616   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4617                    (FromBytesPerElement - BytesPerElement));
4618 
4619   // Look through things like shuffles and bitcasts.
4620   while (Op.getNode()) {
4621     if (Op.getOpcode() == ISD::BITCAST)
4622       Op = Op.getOperand(0);
4623     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4624       // See whether the bytes we need come from a contiguous part of one
4625       // operand.
4626       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4627       if (!getVPermMask(Op, OpBytes))
4628         break;
4629       int NewByte;
4630       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4631         break;
4632       if (NewByte < 0) {
4633         addUndef();
4634         return true;
4635       }
4636       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4637       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4638     } else if (Op.isUndef()) {
4639       addUndef();
4640       return true;
4641     } else
4642       break;
4643   }
4644 
4645   // Make sure that the source of the extraction is in Ops.
4646   unsigned OpNo = 0;
4647   for (; OpNo < Ops.size(); ++OpNo)
4648     if (Ops[OpNo] == Op)
4649       break;
4650   if (OpNo == Ops.size())
4651     Ops.push_back(Op);
4652 
4653   // Add the element to Bytes.
4654   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4655   for (unsigned I = 0; I < BytesPerElement; ++I)
4656     Bytes.push_back(Base + I);
4657 
4658   return true;
4659 }
4660 
4661 // Return SDNodes for the completed shuffle.
4662 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4663   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4664 
4665   if (Ops.size() == 0)
4666     return DAG.getUNDEF(VT);
4667 
4668   // Use a single unpack if possible as the last operation.
4669   tryPrepareForUnpack();
4670 
4671   // Make sure that there are at least two shuffle operands.
4672   if (Ops.size() == 1)
4673     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4674 
4675   // Create a tree of shuffles, deferring root node until after the loop.
4676   // Try to redistribute the undefined elements of non-root nodes so that
4677   // the non-root shuffles match something like a pack or merge, then adjust
4678   // the parent node's permute vector to compensate for the new order.
4679   // Among other things, this copes with vectors like <2 x i16> that were
4680   // padded with undefined elements during type legalization.
4681   //
4682   // In the best case this redistribution will lead to the whole tree
4683   // using packs and merges.  It should rarely be a loss in other cases.
4684   unsigned Stride = 1;
4685   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4686     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4687       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4688 
4689       // Create a mask for just these two operands.
4690       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4691       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4692         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4693         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4694         if (OpNo == I)
4695           NewBytes[J] = Byte;
4696         else if (OpNo == I + Stride)
4697           NewBytes[J] = SystemZ::VectorBytes + Byte;
4698         else
4699           NewBytes[J] = -1;
4700       }
4701       // See if it would be better to reorganize NewMask to avoid using VPERM.
4702       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4703       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4704         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4705         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4706         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4707           if (NewBytes[J] >= 0) {
4708             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4709                    "Invalid double permute");
4710             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4711           } else
4712             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4713         }
4714       } else {
4715         // Just use NewBytes on the operands.
4716         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4717         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4718           if (NewBytes[J] >= 0)
4719             Bytes[J] = I * SystemZ::VectorBytes + J;
4720       }
4721     }
4722   }
4723 
4724   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4725   if (Stride > 1) {
4726     Ops[1] = Ops[Stride];
4727     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4728       if (Bytes[I] >= int(SystemZ::VectorBytes))
4729         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4730   }
4731 
4732   // Look for an instruction that can do the permute without resorting
4733   // to VPERM.
4734   unsigned OpNo0, OpNo1;
4735   SDValue Op;
4736   if (unpackWasPrepared() && Ops[1].isUndef())
4737     Op = Ops[0];
4738   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4739     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4740   else
4741     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4742 
4743   Op = insertUnpackIfPrepared(DAG, DL, Op);
4744 
4745   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4746 }
4747 
4748 #ifndef NDEBUG
4749 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4750   dbgs() << Msg.c_str() << " { ";
4751   for (unsigned i = 0; i < Bytes.size(); i++)
4752     dbgs() << Bytes[i] << " ";
4753   dbgs() << "}\n";
4754 }
4755 #endif
4756 
4757 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4758 // after all else by removing the zero vector and the effect of the unpack on
4759 // Bytes.
4760 void GeneralShuffle::tryPrepareForUnpack() {
4761   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4762   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4763     return;
4764 
4765   // Only do this if removing the zero vector reduces the depth, otherwise
4766   // the critical path will increase with the final unpack.
4767   if (Ops.size() > 2 &&
4768       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4769     return;
4770 
4771   // Find an unpack that would allow removing the zero vector from Ops.
4772   UnpackFromEltSize = 1;
4773   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4774     bool MatchUnpack = true;
4775     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4776     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4777       unsigned ToEltSize = UnpackFromEltSize * 2;
4778       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4779       if (!IsZextByte)
4780         SrcBytes.push_back(Bytes[Elt]);
4781       if (Bytes[Elt] != -1) {
4782         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4783         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4784           MatchUnpack = false;
4785           break;
4786         }
4787       }
4788     }
4789     if (MatchUnpack) {
4790       if (Ops.size() == 2) {
4791         // Don't use unpack if a single source operand needs rearrangement.
4792         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4793           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4794             UnpackFromEltSize = UINT_MAX;
4795             return;
4796           }
4797       }
4798       break;
4799     }
4800   }
4801   if (UnpackFromEltSize > 4)
4802     return;
4803 
4804   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4805              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4806              << ".\n";
4807              dumpBytes(Bytes, "Original Bytes vector:"););
4808 
4809   // Apply the unpack in reverse to the Bytes array.
4810   unsigned B = 0;
4811   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4812     Elt += UnpackFromEltSize;
4813     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4814       Bytes[B] = Bytes[Elt];
4815   }
4816   while (B < SystemZ::VectorBytes)
4817     Bytes[B++] = -1;
4818 
4819   // Remove the zero vector from Ops
4820   Ops.erase(&Ops[ZeroVecOpNo]);
4821   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4822     if (Bytes[I] >= 0) {
4823       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4824       if (OpNo > ZeroVecOpNo)
4825         Bytes[I] -= SystemZ::VectorBytes;
4826     }
4827 
4828   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4829              dbgs() << "\n";);
4830 }
4831 
4832 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4833                                                const SDLoc &DL,
4834                                                SDValue Op) {
4835   if (!unpackWasPrepared())
4836     return Op;
4837   unsigned InBits = UnpackFromEltSize * 8;
4838   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4839                                 SystemZ::VectorBits / InBits);
4840   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4841   unsigned OutBits = InBits * 2;
4842   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4843                                SystemZ::VectorBits / OutBits);
4844   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4845 }
4846 
4847 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4848 static bool isScalarToVector(SDValue Op) {
4849   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4850     if (!Op.getOperand(I).isUndef())
4851       return false;
4852   return true;
4853 }
4854 
4855 // Return a vector of type VT that contains Value in the first element.
4856 // The other elements don't matter.
4857 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4858                                    SDValue Value) {
4859   // If we have a constant, replicate it to all elements and let the
4860   // BUILD_VECTOR lowering take care of it.
4861   if (Value.getOpcode() == ISD::Constant ||
4862       Value.getOpcode() == ISD::ConstantFP) {
4863     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4864     return DAG.getBuildVector(VT, DL, Ops);
4865   }
4866   if (Value.isUndef())
4867     return DAG.getUNDEF(VT);
4868   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4869 }
4870 
4871 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4872 // element 1.  Used for cases in which replication is cheap.
4873 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4874                                  SDValue Op0, SDValue Op1) {
4875   if (Op0.isUndef()) {
4876     if (Op1.isUndef())
4877       return DAG.getUNDEF(VT);
4878     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4879   }
4880   if (Op1.isUndef())
4881     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4882   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4883                      buildScalarToVector(DAG, DL, VT, Op0),
4884                      buildScalarToVector(DAG, DL, VT, Op1));
4885 }
4886 
4887 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4888 // vector for them.
4889 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4890                           SDValue Op1) {
4891   if (Op0.isUndef() && Op1.isUndef())
4892     return DAG.getUNDEF(MVT::v2i64);
4893   // If one of the two inputs is undefined then replicate the other one,
4894   // in order to avoid using another register unnecessarily.
4895   if (Op0.isUndef())
4896     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4897   else if (Op1.isUndef())
4898     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4899   else {
4900     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4901     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4902   }
4903   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4904 }
4905 
4906 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4907 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4908 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4909 // would benefit from this representation and return it if so.
4910 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4911                                      BuildVectorSDNode *BVN) {
4912   EVT VT = BVN->getValueType(0);
4913   unsigned NumElements = VT.getVectorNumElements();
4914 
4915   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4916   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4917   // need a BUILD_VECTOR, add an additional placeholder operand for that
4918   // BUILD_VECTOR and store its operands in ResidueOps.
4919   GeneralShuffle GS(VT);
4920   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4921   bool FoundOne = false;
4922   for (unsigned I = 0; I < NumElements; ++I) {
4923     SDValue Op = BVN->getOperand(I);
4924     if (Op.getOpcode() == ISD::TRUNCATE)
4925       Op = Op.getOperand(0);
4926     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4927         Op.getOperand(1).getOpcode() == ISD::Constant) {
4928       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4929       if (!GS.add(Op.getOperand(0), Elem))
4930         return SDValue();
4931       FoundOne = true;
4932     } else if (Op.isUndef()) {
4933       GS.addUndef();
4934     } else {
4935       if (!GS.add(SDValue(), ResidueOps.size()))
4936         return SDValue();
4937       ResidueOps.push_back(BVN->getOperand(I));
4938     }
4939   }
4940 
4941   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4942   if (!FoundOne)
4943     return SDValue();
4944 
4945   // Create the BUILD_VECTOR for the remaining elements, if any.
4946   if (!ResidueOps.empty()) {
4947     while (ResidueOps.size() < NumElements)
4948       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4949     for (auto &Op : GS.Ops) {
4950       if (!Op.getNode()) {
4951         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4952         break;
4953       }
4954     }
4955   }
4956   return GS.getNode(DAG, SDLoc(BVN));
4957 }
4958 
4959 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4960   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4961     return true;
4962   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4963     return true;
4964   return false;
4965 }
4966 
4967 // Combine GPR scalar values Elems into a vector of type VT.
4968 SDValue
4969 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4970                                    SmallVectorImpl<SDValue> &Elems) const {
4971   // See whether there is a single replicated value.
4972   SDValue Single;
4973   unsigned int NumElements = Elems.size();
4974   unsigned int Count = 0;
4975   for (auto Elem : Elems) {
4976     if (!Elem.isUndef()) {
4977       if (!Single.getNode())
4978         Single = Elem;
4979       else if (Elem != Single) {
4980         Single = SDValue();
4981         break;
4982       }
4983       Count += 1;
4984     }
4985   }
4986   // There are three cases here:
4987   //
4988   // - if the only defined element is a loaded one, the best sequence
4989   //   is a replicating load.
4990   //
4991   // - otherwise, if the only defined element is an i64 value, we will
4992   //   end up with the same VLVGP sequence regardless of whether we short-cut
4993   //   for replication or fall through to the later code.
4994   //
4995   // - otherwise, if the only defined element is an i32 or smaller value,
4996   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4997   //   This is only a win if the single defined element is used more than once.
4998   //   In other cases we're better off using a single VLVGx.
4999   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5000     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5001 
5002   // If all elements are loads, use VLREP/VLEs (below).
5003   bool AllLoads = true;
5004   for (auto Elem : Elems)
5005     if (!isVectorElementLoad(Elem)) {
5006       AllLoads = false;
5007       break;
5008     }
5009 
5010   // The best way of building a v2i64 from two i64s is to use VLVGP.
5011   if (VT == MVT::v2i64 && !AllLoads)
5012     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5013 
5014   // Use a 64-bit merge high to combine two doubles.
5015   if (VT == MVT::v2f64 && !AllLoads)
5016     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5017 
5018   // Build v4f32 values directly from the FPRs:
5019   //
5020   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5021   //         V              V         VMRHF
5022   //      <ABxx>         <CDxx>
5023   //                V                 VMRHG
5024   //              <ABCD>
5025   if (VT == MVT::v4f32 && !AllLoads) {
5026     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5027     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5028     // Avoid unnecessary undefs by reusing the other operand.
5029     if (Op01.isUndef())
5030       Op01 = Op23;
5031     else if (Op23.isUndef())
5032       Op23 = Op01;
5033     // Merging identical replications is a no-op.
5034     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5035       return Op01;
5036     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5037     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5038     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5039                              DL, MVT::v2i64, Op01, Op23);
5040     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5041   }
5042 
5043   // Collect the constant terms.
5044   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5045   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5046 
5047   unsigned NumConstants = 0;
5048   for (unsigned I = 0; I < NumElements; ++I) {
5049     SDValue Elem = Elems[I];
5050     if (Elem.getOpcode() == ISD::Constant ||
5051         Elem.getOpcode() == ISD::ConstantFP) {
5052       NumConstants += 1;
5053       Constants[I] = Elem;
5054       Done[I] = true;
5055     }
5056   }
5057   // If there was at least one constant, fill in the other elements of
5058   // Constants with undefs to get a full vector constant and use that
5059   // as the starting point.
5060   SDValue Result;
5061   SDValue ReplicatedVal;
5062   if (NumConstants > 0) {
5063     for (unsigned I = 0; I < NumElements; ++I)
5064       if (!Constants[I].getNode())
5065         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5066     Result = DAG.getBuildVector(VT, DL, Constants);
5067   } else {
5068     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5069     // avoid a false dependency on any previous contents of the vector
5070     // register.
5071 
5072     // Use a VLREP if at least one element is a load. Make sure to replicate
5073     // the load with the most elements having its value.
5074     std::map<const SDNode*, unsigned> UseCounts;
5075     SDNode *LoadMaxUses = nullptr;
5076     for (unsigned I = 0; I < NumElements; ++I)
5077       if (isVectorElementLoad(Elems[I])) {
5078         SDNode *Ld = Elems[I].getNode();
5079         UseCounts[Ld]++;
5080         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5081           LoadMaxUses = Ld;
5082       }
5083     if (LoadMaxUses != nullptr) {
5084       ReplicatedVal = SDValue(LoadMaxUses, 0);
5085       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5086     } else {
5087       // Try to use VLVGP.
5088       unsigned I1 = NumElements / 2 - 1;
5089       unsigned I2 = NumElements - 1;
5090       bool Def1 = !Elems[I1].isUndef();
5091       bool Def2 = !Elems[I2].isUndef();
5092       if (Def1 || Def2) {
5093         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5094         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5095         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5096                              joinDwords(DAG, DL, Elem1, Elem2));
5097         Done[I1] = true;
5098         Done[I2] = true;
5099       } else
5100         Result = DAG.getUNDEF(VT);
5101     }
5102   }
5103 
5104   // Use VLVGx to insert the other elements.
5105   for (unsigned I = 0; I < NumElements; ++I)
5106     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5107       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5108                            DAG.getConstant(I, DL, MVT::i32));
5109   return Result;
5110 }
5111 
5112 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5113                                                  SelectionDAG &DAG) const {
5114   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5115   SDLoc DL(Op);
5116   EVT VT = Op.getValueType();
5117 
5118   if (BVN->isConstant()) {
5119     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5120       return Op;
5121 
5122     // Fall back to loading it from memory.
5123     return SDValue();
5124   }
5125 
5126   // See if we should use shuffles to construct the vector from other vectors.
5127   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5128     return Res;
5129 
5130   // Detect SCALAR_TO_VECTOR conversions.
5131   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5132     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5133 
5134   // Otherwise use buildVector to build the vector up from GPRs.
5135   unsigned NumElements = Op.getNumOperands();
5136   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5137   for (unsigned I = 0; I < NumElements; ++I)
5138     Ops[I] = Op.getOperand(I);
5139   return buildVector(DAG, DL, VT, Ops);
5140 }
5141 
5142 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5143                                                    SelectionDAG &DAG) const {
5144   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5145   SDLoc DL(Op);
5146   EVT VT = Op.getValueType();
5147   unsigned NumElements = VT.getVectorNumElements();
5148 
5149   if (VSN->isSplat()) {
5150     SDValue Op0 = Op.getOperand(0);
5151     unsigned Index = VSN->getSplatIndex();
5152     assert(Index < VT.getVectorNumElements() &&
5153            "Splat index should be defined and in first operand");
5154     // See whether the value we're splatting is directly available as a scalar.
5155     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5156         Op0.getOpcode() == ISD::BUILD_VECTOR)
5157       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5158     // Otherwise keep it as a vector-to-vector operation.
5159     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5160                        DAG.getTargetConstant(Index, DL, MVT::i32));
5161   }
5162 
5163   GeneralShuffle GS(VT);
5164   for (unsigned I = 0; I < NumElements; ++I) {
5165     int Elt = VSN->getMaskElt(I);
5166     if (Elt < 0)
5167       GS.addUndef();
5168     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5169                      unsigned(Elt) % NumElements))
5170       return SDValue();
5171   }
5172   return GS.getNode(DAG, SDLoc(VSN));
5173 }
5174 
5175 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5176                                                      SelectionDAG &DAG) const {
5177   SDLoc DL(Op);
5178   // Just insert the scalar into element 0 of an undefined vector.
5179   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5180                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5181                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5182 }
5183 
5184 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5185                                                       SelectionDAG &DAG) const {
5186   // Handle insertions of floating-point values.
5187   SDLoc DL(Op);
5188   SDValue Op0 = Op.getOperand(0);
5189   SDValue Op1 = Op.getOperand(1);
5190   SDValue Op2 = Op.getOperand(2);
5191   EVT VT = Op.getValueType();
5192 
5193   // Insertions into constant indices of a v2f64 can be done using VPDI.
5194   // However, if the inserted value is a bitcast or a constant then it's
5195   // better to use GPRs, as below.
5196   if (VT == MVT::v2f64 &&
5197       Op1.getOpcode() != ISD::BITCAST &&
5198       Op1.getOpcode() != ISD::ConstantFP &&
5199       Op2.getOpcode() == ISD::Constant) {
5200     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5201     unsigned Mask = VT.getVectorNumElements() - 1;
5202     if (Index <= Mask)
5203       return Op;
5204   }
5205 
5206   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5207   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5208   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5209   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5210                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5211                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5212   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5213 }
5214 
5215 SDValue
5216 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5217                                                SelectionDAG &DAG) const {
5218   // Handle extractions of floating-point values.
5219   SDLoc DL(Op);
5220   SDValue Op0 = Op.getOperand(0);
5221   SDValue Op1 = Op.getOperand(1);
5222   EVT VT = Op.getValueType();
5223   EVT VecVT = Op0.getValueType();
5224 
5225   // Extractions of constant indices can be done directly.
5226   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5227     uint64_t Index = CIndexN->getZExtValue();
5228     unsigned Mask = VecVT.getVectorNumElements() - 1;
5229     if (Index <= Mask)
5230       return Op;
5231   }
5232 
5233   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5234   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5235   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5236   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5237                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5238   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5239 }
5240 
5241 SDValue SystemZTargetLowering::
5242 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5243   SDValue PackedOp = Op.getOperand(0);
5244   EVT OutVT = Op.getValueType();
5245   EVT InVT = PackedOp.getValueType();
5246   unsigned ToBits = OutVT.getScalarSizeInBits();
5247   unsigned FromBits = InVT.getScalarSizeInBits();
5248   do {
5249     FromBits *= 2;
5250     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5251                                  SystemZ::VectorBits / FromBits);
5252     PackedOp =
5253       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5254   } while (FromBits != ToBits);
5255   return PackedOp;
5256 }
5257 
5258 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5259 SDValue SystemZTargetLowering::
5260 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5261   SDValue PackedOp = Op.getOperand(0);
5262   SDLoc DL(Op);
5263   EVT OutVT = Op.getValueType();
5264   EVT InVT = PackedOp.getValueType();
5265   unsigned InNumElts = InVT.getVectorNumElements();
5266   unsigned OutNumElts = OutVT.getVectorNumElements();
5267   unsigned NumInPerOut = InNumElts / OutNumElts;
5268 
5269   SDValue ZeroVec =
5270     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5271 
5272   SmallVector<int, 16> Mask(InNumElts);
5273   unsigned ZeroVecElt = InNumElts;
5274   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5275     unsigned MaskElt = PackedElt * NumInPerOut;
5276     unsigned End = MaskElt + NumInPerOut - 1;
5277     for (; MaskElt < End; MaskElt++)
5278       Mask[MaskElt] = ZeroVecElt++;
5279     Mask[MaskElt] = PackedElt;
5280   }
5281   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5282   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5283 }
5284 
5285 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5286                                           unsigned ByScalar) const {
5287   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5288   SDValue Op0 = Op.getOperand(0);
5289   SDValue Op1 = Op.getOperand(1);
5290   SDLoc DL(Op);
5291   EVT VT = Op.getValueType();
5292   unsigned ElemBitSize = VT.getScalarSizeInBits();
5293 
5294   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5295   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5296     APInt SplatBits, SplatUndef;
5297     unsigned SplatBitSize;
5298     bool HasAnyUndefs;
5299     // Check for constant splats.  Use ElemBitSize as the minimum element
5300     // width and reject splats that need wider elements.
5301     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5302                              ElemBitSize, true) &&
5303         SplatBitSize == ElemBitSize) {
5304       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5305                                       DL, MVT::i32);
5306       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5307     }
5308     // Check for variable splats.
5309     BitVector UndefElements;
5310     SDValue Splat = BVN->getSplatValue(&UndefElements);
5311     if (Splat) {
5312       // Since i32 is the smallest legal type, we either need a no-op
5313       // or a truncation.
5314       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5315       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5316     }
5317   }
5318 
5319   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5320   // and the shift amount is directly available in a GPR.
5321   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5322     if (VSN->isSplat()) {
5323       SDValue VSNOp0 = VSN->getOperand(0);
5324       unsigned Index = VSN->getSplatIndex();
5325       assert(Index < VT.getVectorNumElements() &&
5326              "Splat index should be defined and in first operand");
5327       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5328           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5329         // Since i32 is the smallest legal type, we either need a no-op
5330         // or a truncation.
5331         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5332                                     VSNOp0.getOperand(Index));
5333         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5334       }
5335     }
5336   }
5337 
5338   // Otherwise just treat the current form as legal.
5339   return Op;
5340 }
5341 
5342 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5343                                               SelectionDAG &DAG) const {
5344   switch (Op.getOpcode()) {
5345   case ISD::FRAMEADDR:
5346     return lowerFRAMEADDR(Op, DAG);
5347   case ISD::RETURNADDR:
5348     return lowerRETURNADDR(Op, DAG);
5349   case ISD::BR_CC:
5350     return lowerBR_CC(Op, DAG);
5351   case ISD::SELECT_CC:
5352     return lowerSELECT_CC(Op, DAG);
5353   case ISD::SETCC:
5354     return lowerSETCC(Op, DAG);
5355   case ISD::STRICT_FSETCC:
5356     return lowerSTRICT_FSETCC(Op, DAG, false);
5357   case ISD::STRICT_FSETCCS:
5358     return lowerSTRICT_FSETCC(Op, DAG, true);
5359   case ISD::GlobalAddress:
5360     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5361   case ISD::GlobalTLSAddress:
5362     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5363   case ISD::BlockAddress:
5364     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5365   case ISD::JumpTable:
5366     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5367   case ISD::ConstantPool:
5368     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5369   case ISD::BITCAST:
5370     return lowerBITCAST(Op, DAG);
5371   case ISD::VASTART:
5372     return lowerVASTART(Op, DAG);
5373   case ISD::VACOPY:
5374     return lowerVACOPY(Op, DAG);
5375   case ISD::DYNAMIC_STACKALLOC:
5376     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5377   case ISD::GET_DYNAMIC_AREA_OFFSET:
5378     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5379   case ISD::SMUL_LOHI:
5380     return lowerSMUL_LOHI(Op, DAG);
5381   case ISD::UMUL_LOHI:
5382     return lowerUMUL_LOHI(Op, DAG);
5383   case ISD::SDIVREM:
5384     return lowerSDIVREM(Op, DAG);
5385   case ISD::UDIVREM:
5386     return lowerUDIVREM(Op, DAG);
5387   case ISD::SADDO:
5388   case ISD::SSUBO:
5389   case ISD::UADDO:
5390   case ISD::USUBO:
5391     return lowerXALUO(Op, DAG);
5392   case ISD::ADDCARRY:
5393   case ISD::SUBCARRY:
5394     return lowerADDSUBCARRY(Op, DAG);
5395   case ISD::OR:
5396     return lowerOR(Op, DAG);
5397   case ISD::CTPOP:
5398     return lowerCTPOP(Op, DAG);
5399   case ISD::ATOMIC_FENCE:
5400     return lowerATOMIC_FENCE(Op, DAG);
5401   case ISD::ATOMIC_SWAP:
5402     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5403   case ISD::ATOMIC_STORE:
5404     return lowerATOMIC_STORE(Op, DAG);
5405   case ISD::ATOMIC_LOAD:
5406     return lowerATOMIC_LOAD(Op, DAG);
5407   case ISD::ATOMIC_LOAD_ADD:
5408     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5409   case ISD::ATOMIC_LOAD_SUB:
5410     return lowerATOMIC_LOAD_SUB(Op, DAG);
5411   case ISD::ATOMIC_LOAD_AND:
5412     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5413   case ISD::ATOMIC_LOAD_OR:
5414     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5415   case ISD::ATOMIC_LOAD_XOR:
5416     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5417   case ISD::ATOMIC_LOAD_NAND:
5418     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5419   case ISD::ATOMIC_LOAD_MIN:
5420     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5421   case ISD::ATOMIC_LOAD_MAX:
5422     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5423   case ISD::ATOMIC_LOAD_UMIN:
5424     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5425   case ISD::ATOMIC_LOAD_UMAX:
5426     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5427   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5428     return lowerATOMIC_CMP_SWAP(Op, DAG);
5429   case ISD::STACKSAVE:
5430     return lowerSTACKSAVE(Op, DAG);
5431   case ISD::STACKRESTORE:
5432     return lowerSTACKRESTORE(Op, DAG);
5433   case ISD::PREFETCH:
5434     return lowerPREFETCH(Op, DAG);
5435   case ISD::INTRINSIC_W_CHAIN:
5436     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5437   case ISD::INTRINSIC_WO_CHAIN:
5438     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5439   case ISD::BUILD_VECTOR:
5440     return lowerBUILD_VECTOR(Op, DAG);
5441   case ISD::VECTOR_SHUFFLE:
5442     return lowerVECTOR_SHUFFLE(Op, DAG);
5443   case ISD::SCALAR_TO_VECTOR:
5444     return lowerSCALAR_TO_VECTOR(Op, DAG);
5445   case ISD::INSERT_VECTOR_ELT:
5446     return lowerINSERT_VECTOR_ELT(Op, DAG);
5447   case ISD::EXTRACT_VECTOR_ELT:
5448     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5449   case ISD::SIGN_EXTEND_VECTOR_INREG:
5450     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5451   case ISD::ZERO_EXTEND_VECTOR_INREG:
5452     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5453   case ISD::SHL:
5454     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5455   case ISD::SRL:
5456     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5457   case ISD::SRA:
5458     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5459   default:
5460     llvm_unreachable("Unexpected node to lower");
5461   }
5462 }
5463 
5464 // Lower operations with invalid operand or result types (currently used
5465 // only for 128-bit integer types).
5466 
5467 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5468   SDLoc DL(In);
5469   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5470                            DAG.getIntPtrConstant(0, DL));
5471   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5472                            DAG.getIntPtrConstant(1, DL));
5473   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5474                                     MVT::Untyped, Hi, Lo);
5475   return SDValue(Pair, 0);
5476 }
5477 
5478 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5479   SDLoc DL(In);
5480   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5481                                           DL, MVT::i64, In);
5482   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5483                                           DL, MVT::i64, In);
5484   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5485 }
5486 
5487 void
5488 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5489                                              SmallVectorImpl<SDValue> &Results,
5490                                              SelectionDAG &DAG) const {
5491   switch (N->getOpcode()) {
5492   case ISD::ATOMIC_LOAD: {
5493     SDLoc DL(N);
5494     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5495     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5496     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5497     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5498                                           DL, Tys, Ops, MVT::i128, MMO);
5499     Results.push_back(lowerGR128ToI128(DAG, Res));
5500     Results.push_back(Res.getValue(1));
5501     break;
5502   }
5503   case ISD::ATOMIC_STORE: {
5504     SDLoc DL(N);
5505     SDVTList Tys = DAG.getVTList(MVT::Other);
5506     SDValue Ops[] = { N->getOperand(0),
5507                       lowerI128ToGR128(DAG, N->getOperand(2)),
5508                       N->getOperand(1) };
5509     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5510     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5511                                           DL, Tys, Ops, MVT::i128, MMO);
5512     // We have to enforce sequential consistency by performing a
5513     // serialization operation after the store.
5514     if (cast<AtomicSDNode>(N)->getOrdering() ==
5515         AtomicOrdering::SequentiallyConsistent)
5516       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5517                                        MVT::Other, Res), 0);
5518     Results.push_back(Res);
5519     break;
5520   }
5521   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5522     SDLoc DL(N);
5523     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5524     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5525                       lowerI128ToGR128(DAG, N->getOperand(2)),
5526                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5527     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5528     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5529                                           DL, Tys, Ops, MVT::i128, MMO);
5530     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5531                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5532     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5533     Results.push_back(lowerGR128ToI128(DAG, Res));
5534     Results.push_back(Success);
5535     Results.push_back(Res.getValue(2));
5536     break;
5537   }
5538   default:
5539     llvm_unreachable("Unexpected node to lower");
5540   }
5541 }
5542 
5543 void
5544 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5545                                           SmallVectorImpl<SDValue> &Results,
5546                                           SelectionDAG &DAG) const {
5547   return LowerOperationWrapper(N, Results, DAG);
5548 }
5549 
5550 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5551 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5552   switch ((SystemZISD::NodeType)Opcode) {
5553     case SystemZISD::FIRST_NUMBER: break;
5554     OPCODE(RET_FLAG);
5555     OPCODE(CALL);
5556     OPCODE(SIBCALL);
5557     OPCODE(TLS_GDCALL);
5558     OPCODE(TLS_LDCALL);
5559     OPCODE(PCREL_WRAPPER);
5560     OPCODE(PCREL_OFFSET);
5561     OPCODE(IABS);
5562     OPCODE(ICMP);
5563     OPCODE(FCMP);
5564     OPCODE(STRICT_FCMP);
5565     OPCODE(STRICT_FCMPS);
5566     OPCODE(TM);
5567     OPCODE(BR_CCMASK);
5568     OPCODE(SELECT_CCMASK);
5569     OPCODE(ADJDYNALLOC);
5570     OPCODE(PROBED_ALLOCA);
5571     OPCODE(POPCNT);
5572     OPCODE(SMUL_LOHI);
5573     OPCODE(UMUL_LOHI);
5574     OPCODE(SDIVREM);
5575     OPCODE(UDIVREM);
5576     OPCODE(SADDO);
5577     OPCODE(SSUBO);
5578     OPCODE(UADDO);
5579     OPCODE(USUBO);
5580     OPCODE(ADDCARRY);
5581     OPCODE(SUBCARRY);
5582     OPCODE(GET_CCMASK);
5583     OPCODE(MVC);
5584     OPCODE(MVC_LOOP);
5585     OPCODE(NC);
5586     OPCODE(NC_LOOP);
5587     OPCODE(OC);
5588     OPCODE(OC_LOOP);
5589     OPCODE(XC);
5590     OPCODE(XC_LOOP);
5591     OPCODE(CLC);
5592     OPCODE(CLC_LOOP);
5593     OPCODE(STPCPY);
5594     OPCODE(STRCMP);
5595     OPCODE(SEARCH_STRING);
5596     OPCODE(IPM);
5597     OPCODE(MEMBARRIER);
5598     OPCODE(TBEGIN);
5599     OPCODE(TBEGIN_NOFLOAT);
5600     OPCODE(TEND);
5601     OPCODE(BYTE_MASK);
5602     OPCODE(ROTATE_MASK);
5603     OPCODE(REPLICATE);
5604     OPCODE(JOIN_DWORDS);
5605     OPCODE(SPLAT);
5606     OPCODE(MERGE_HIGH);
5607     OPCODE(MERGE_LOW);
5608     OPCODE(SHL_DOUBLE);
5609     OPCODE(PERMUTE_DWORDS);
5610     OPCODE(PERMUTE);
5611     OPCODE(PACK);
5612     OPCODE(PACKS_CC);
5613     OPCODE(PACKLS_CC);
5614     OPCODE(UNPACK_HIGH);
5615     OPCODE(UNPACKL_HIGH);
5616     OPCODE(UNPACK_LOW);
5617     OPCODE(UNPACKL_LOW);
5618     OPCODE(VSHL_BY_SCALAR);
5619     OPCODE(VSRL_BY_SCALAR);
5620     OPCODE(VSRA_BY_SCALAR);
5621     OPCODE(VSUM);
5622     OPCODE(VICMPE);
5623     OPCODE(VICMPH);
5624     OPCODE(VICMPHL);
5625     OPCODE(VICMPES);
5626     OPCODE(VICMPHS);
5627     OPCODE(VICMPHLS);
5628     OPCODE(VFCMPE);
5629     OPCODE(STRICT_VFCMPE);
5630     OPCODE(STRICT_VFCMPES);
5631     OPCODE(VFCMPH);
5632     OPCODE(STRICT_VFCMPH);
5633     OPCODE(STRICT_VFCMPHS);
5634     OPCODE(VFCMPHE);
5635     OPCODE(STRICT_VFCMPHE);
5636     OPCODE(STRICT_VFCMPHES);
5637     OPCODE(VFCMPES);
5638     OPCODE(VFCMPHS);
5639     OPCODE(VFCMPHES);
5640     OPCODE(VFTCI);
5641     OPCODE(VEXTEND);
5642     OPCODE(STRICT_VEXTEND);
5643     OPCODE(VROUND);
5644     OPCODE(STRICT_VROUND);
5645     OPCODE(VTM);
5646     OPCODE(VFAE_CC);
5647     OPCODE(VFAEZ_CC);
5648     OPCODE(VFEE_CC);
5649     OPCODE(VFEEZ_CC);
5650     OPCODE(VFENE_CC);
5651     OPCODE(VFENEZ_CC);
5652     OPCODE(VISTR_CC);
5653     OPCODE(VSTRC_CC);
5654     OPCODE(VSTRCZ_CC);
5655     OPCODE(VSTRS_CC);
5656     OPCODE(VSTRSZ_CC);
5657     OPCODE(TDC);
5658     OPCODE(ATOMIC_SWAPW);
5659     OPCODE(ATOMIC_LOADW_ADD);
5660     OPCODE(ATOMIC_LOADW_SUB);
5661     OPCODE(ATOMIC_LOADW_AND);
5662     OPCODE(ATOMIC_LOADW_OR);
5663     OPCODE(ATOMIC_LOADW_XOR);
5664     OPCODE(ATOMIC_LOADW_NAND);
5665     OPCODE(ATOMIC_LOADW_MIN);
5666     OPCODE(ATOMIC_LOADW_MAX);
5667     OPCODE(ATOMIC_LOADW_UMIN);
5668     OPCODE(ATOMIC_LOADW_UMAX);
5669     OPCODE(ATOMIC_CMP_SWAPW);
5670     OPCODE(ATOMIC_CMP_SWAP);
5671     OPCODE(ATOMIC_LOAD_128);
5672     OPCODE(ATOMIC_STORE_128);
5673     OPCODE(ATOMIC_CMP_SWAP_128);
5674     OPCODE(LRV);
5675     OPCODE(STRV);
5676     OPCODE(VLER);
5677     OPCODE(VSTER);
5678     OPCODE(PREFETCH);
5679   }
5680   return nullptr;
5681 #undef OPCODE
5682 }
5683 
5684 // Return true if VT is a vector whose elements are a whole number of bytes
5685 // in width. Also check for presence of vector support.
5686 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5687   if (!Subtarget.hasVector())
5688     return false;
5689 
5690   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5691 }
5692 
5693 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5694 // producing a result of type ResVT.  Op is a possibly bitcast version
5695 // of the input vector and Index is the index (based on type VecVT) that
5696 // should be extracted.  Return the new extraction if a simplification
5697 // was possible or if Force is true.
5698 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5699                                               EVT VecVT, SDValue Op,
5700                                               unsigned Index,
5701                                               DAGCombinerInfo &DCI,
5702                                               bool Force) const {
5703   SelectionDAG &DAG = DCI.DAG;
5704 
5705   // The number of bytes being extracted.
5706   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5707 
5708   for (;;) {
5709     unsigned Opcode = Op.getOpcode();
5710     if (Opcode == ISD::BITCAST)
5711       // Look through bitcasts.
5712       Op = Op.getOperand(0);
5713     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5714              canTreatAsByteVector(Op.getValueType())) {
5715       // Get a VPERM-like permute mask and see whether the bytes covered
5716       // by the extracted element are a contiguous sequence from one
5717       // source operand.
5718       SmallVector<int, SystemZ::VectorBytes> Bytes;
5719       if (!getVPermMask(Op, Bytes))
5720         break;
5721       int First;
5722       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5723                            BytesPerElement, First))
5724         break;
5725       if (First < 0)
5726         return DAG.getUNDEF(ResVT);
5727       // Make sure the contiguous sequence starts at a multiple of the
5728       // original element size.
5729       unsigned Byte = unsigned(First) % Bytes.size();
5730       if (Byte % BytesPerElement != 0)
5731         break;
5732       // We can get the extracted value directly from an input.
5733       Index = Byte / BytesPerElement;
5734       Op = Op.getOperand(unsigned(First) / Bytes.size());
5735       Force = true;
5736     } else if (Opcode == ISD::BUILD_VECTOR &&
5737                canTreatAsByteVector(Op.getValueType())) {
5738       // We can only optimize this case if the BUILD_VECTOR elements are
5739       // at least as wide as the extracted value.
5740       EVT OpVT = Op.getValueType();
5741       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5742       if (OpBytesPerElement < BytesPerElement)
5743         break;
5744       // Make sure that the least-significant bit of the extracted value
5745       // is the least significant bit of an input.
5746       unsigned End = (Index + 1) * BytesPerElement;
5747       if (End % OpBytesPerElement != 0)
5748         break;
5749       // We're extracting the low part of one operand of the BUILD_VECTOR.
5750       Op = Op.getOperand(End / OpBytesPerElement - 1);
5751       if (!Op.getValueType().isInteger()) {
5752         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5753         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5754         DCI.AddToWorklist(Op.getNode());
5755       }
5756       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5757       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5758       if (VT != ResVT) {
5759         DCI.AddToWorklist(Op.getNode());
5760         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5761       }
5762       return Op;
5763     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5764                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5765                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5766                canTreatAsByteVector(Op.getValueType()) &&
5767                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5768       // Make sure that only the unextended bits are significant.
5769       EVT ExtVT = Op.getValueType();
5770       EVT OpVT = Op.getOperand(0).getValueType();
5771       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5772       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5773       unsigned Byte = Index * BytesPerElement;
5774       unsigned SubByte = Byte % ExtBytesPerElement;
5775       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5776       if (SubByte < MinSubByte ||
5777           SubByte + BytesPerElement > ExtBytesPerElement)
5778         break;
5779       // Get the byte offset of the unextended element
5780       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5781       // ...then add the byte offset relative to that element.
5782       Byte += SubByte - MinSubByte;
5783       if (Byte % BytesPerElement != 0)
5784         break;
5785       Op = Op.getOperand(0);
5786       Index = Byte / BytesPerElement;
5787       Force = true;
5788     } else
5789       break;
5790   }
5791   if (Force) {
5792     if (Op.getValueType() != VecVT) {
5793       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5794       DCI.AddToWorklist(Op.getNode());
5795     }
5796     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5797                        DAG.getConstant(Index, DL, MVT::i32));
5798   }
5799   return SDValue();
5800 }
5801 
5802 // Optimize vector operations in scalar value Op on the basis that Op
5803 // is truncated to TruncVT.
5804 SDValue SystemZTargetLowering::combineTruncateExtract(
5805     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5806   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5807   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5808   // of type TruncVT.
5809   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5810       TruncVT.getSizeInBits() % 8 == 0) {
5811     SDValue Vec = Op.getOperand(0);
5812     EVT VecVT = Vec.getValueType();
5813     if (canTreatAsByteVector(VecVT)) {
5814       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5815         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5816         unsigned TruncBytes = TruncVT.getStoreSize();
5817         if (BytesPerElement % TruncBytes == 0) {
5818           // Calculate the value of Y' in the above description.  We are
5819           // splitting the original elements into Scale equal-sized pieces
5820           // and for truncation purposes want the last (least-significant)
5821           // of these pieces for IndexN.  This is easiest to do by calculating
5822           // the start index of the following element and then subtracting 1.
5823           unsigned Scale = BytesPerElement / TruncBytes;
5824           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5825 
5826           // Defer the creation of the bitcast from X to combineExtract,
5827           // which might be able to optimize the extraction.
5828           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5829                                    VecVT.getStoreSize() / TruncBytes);
5830           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5831           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5832         }
5833       }
5834     }
5835   }
5836   return SDValue();
5837 }
5838 
5839 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5840     SDNode *N, DAGCombinerInfo &DCI) const {
5841   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5842   SelectionDAG &DAG = DCI.DAG;
5843   SDValue N0 = N->getOperand(0);
5844   EVT VT = N->getValueType(0);
5845   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5846     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5847     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5848     if (TrueOp && FalseOp) {
5849       SDLoc DL(N0);
5850       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5851                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5852                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5853       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5854       // If N0 has multiple uses, change other uses as well.
5855       if (!N0.hasOneUse()) {
5856         SDValue TruncSelect =
5857           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5858         DCI.CombineTo(N0.getNode(), TruncSelect);
5859       }
5860       return NewSelect;
5861     }
5862   }
5863   return SDValue();
5864 }
5865 
5866 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5867     SDNode *N, DAGCombinerInfo &DCI) const {
5868   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5869   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5870   // into (select_cc LHS, RHS, -1, 0, COND)
5871   SelectionDAG &DAG = DCI.DAG;
5872   SDValue N0 = N->getOperand(0);
5873   EVT VT = N->getValueType(0);
5874   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5875   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5876     N0 = N0.getOperand(0);
5877   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5878     SDLoc DL(N0);
5879     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5880                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5881                       N0.getOperand(2) };
5882     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5883   }
5884   return SDValue();
5885 }
5886 
5887 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5888     SDNode *N, DAGCombinerInfo &DCI) const {
5889   // Convert (sext (ashr (shl X, C1), C2)) to
5890   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5891   // cheap as narrower ones.
5892   SelectionDAG &DAG = DCI.DAG;
5893   SDValue N0 = N->getOperand(0);
5894   EVT VT = N->getValueType(0);
5895   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5896     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5897     SDValue Inner = N0.getOperand(0);
5898     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5899       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5900         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5901         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5902         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5903         EVT ShiftVT = N0.getOperand(1).getValueType();
5904         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5905                                   Inner.getOperand(0));
5906         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5907                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5908                                                   ShiftVT));
5909         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5910                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5911       }
5912     }
5913   }
5914   return SDValue();
5915 }
5916 
5917 SDValue SystemZTargetLowering::combineMERGE(
5918     SDNode *N, DAGCombinerInfo &DCI) const {
5919   SelectionDAG &DAG = DCI.DAG;
5920   unsigned Opcode = N->getOpcode();
5921   SDValue Op0 = N->getOperand(0);
5922   SDValue Op1 = N->getOperand(1);
5923   if (Op0.getOpcode() == ISD::BITCAST)
5924     Op0 = Op0.getOperand(0);
5925   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5926     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5927     // for v4f32.
5928     if (Op1 == N->getOperand(0))
5929       return Op1;
5930     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5931     EVT VT = Op1.getValueType();
5932     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5933     if (ElemBytes <= 4) {
5934       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5935                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5936       EVT InVT = VT.changeVectorElementTypeToInteger();
5937       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5938                                    SystemZ::VectorBytes / ElemBytes / 2);
5939       if (VT != InVT) {
5940         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5941         DCI.AddToWorklist(Op1.getNode());
5942       }
5943       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5944       DCI.AddToWorklist(Op.getNode());
5945       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5946     }
5947   }
5948   return SDValue();
5949 }
5950 
5951 SDValue SystemZTargetLowering::combineLOAD(
5952     SDNode *N, DAGCombinerInfo &DCI) const {
5953   SelectionDAG &DAG = DCI.DAG;
5954   EVT LdVT = N->getValueType(0);
5955   if (LdVT.isVector() || LdVT.isInteger())
5956     return SDValue();
5957   // Transform a scalar load that is REPLICATEd as well as having other
5958   // use(s) to the form where the other use(s) use the first element of the
5959   // REPLICATE instead of the load. Otherwise instruction selection will not
5960   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5961   // point loads.
5962 
5963   SDValue Replicate;
5964   SmallVector<SDNode*, 8> OtherUses;
5965   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5966        UI != UE; ++UI) {
5967     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5968       if (Replicate)
5969         return SDValue(); // Should never happen
5970       Replicate = SDValue(*UI, 0);
5971     }
5972     else if (UI.getUse().getResNo() == 0)
5973       OtherUses.push_back(*UI);
5974   }
5975   if (!Replicate || OtherUses.empty())
5976     return SDValue();
5977 
5978   SDLoc DL(N);
5979   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5980                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5981   // Update uses of the loaded Value while preserving old chains.
5982   for (SDNode *U : OtherUses) {
5983     SmallVector<SDValue, 8> Ops;
5984     for (SDValue Op : U->ops())
5985       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5986     DAG.UpdateNodeOperands(U, Ops);
5987   }
5988   return SDValue(N, 0);
5989 }
5990 
5991 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5992   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5993     return true;
5994   if (Subtarget.hasVectorEnhancements2())
5995     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5996       return true;
5997   return false;
5998 }
5999 
6000 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6001   if (!VT.isVector() || !VT.isSimple() ||
6002       VT.getSizeInBits() != 128 ||
6003       VT.getScalarSizeInBits() % 8 != 0)
6004     return false;
6005 
6006   unsigned NumElts = VT.getVectorNumElements();
6007   for (unsigned i = 0; i < NumElts; ++i) {
6008     if (M[i] < 0) continue; // ignore UNDEF indices
6009     if ((unsigned) M[i] != NumElts - 1 - i)
6010       return false;
6011   }
6012 
6013   return true;
6014 }
6015 
6016 SDValue SystemZTargetLowering::combineSTORE(
6017     SDNode *N, DAGCombinerInfo &DCI) const {
6018   SelectionDAG &DAG = DCI.DAG;
6019   auto *SN = cast<StoreSDNode>(N);
6020   auto &Op1 = N->getOperand(1);
6021   EVT MemVT = SN->getMemoryVT();
6022   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6023   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6024   // If X has wider elements then convert it to:
6025   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6026   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6027     if (SDValue Value =
6028             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6029       DCI.AddToWorklist(Value.getNode());
6030 
6031       // Rewrite the store with the new form of stored value.
6032       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6033                                SN->getBasePtr(), SN->getMemoryVT(),
6034                                SN->getMemOperand());
6035     }
6036   }
6037   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6038   if (!SN->isTruncatingStore() &&
6039       Op1.getOpcode() == ISD::BSWAP &&
6040       Op1.getNode()->hasOneUse() &&
6041       canLoadStoreByteSwapped(Op1.getValueType())) {
6042 
6043       SDValue BSwapOp = Op1.getOperand(0);
6044 
6045       if (BSwapOp.getValueType() == MVT::i16)
6046         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6047 
6048       SDValue Ops[] = {
6049         N->getOperand(0), BSwapOp, N->getOperand(2)
6050       };
6051 
6052       return
6053         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6054                                 Ops, MemVT, SN->getMemOperand());
6055     }
6056   // Combine STORE (element-swap) into VSTER
6057   if (!SN->isTruncatingStore() &&
6058       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6059       Op1.getNode()->hasOneUse() &&
6060       Subtarget.hasVectorEnhancements2()) {
6061     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6062     ArrayRef<int> ShuffleMask = SVN->getMask();
6063     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6064       SDValue Ops[] = {
6065         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6066       };
6067 
6068       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6069                                      DAG.getVTList(MVT::Other),
6070                                      Ops, MemVT, SN->getMemOperand());
6071     }
6072   }
6073 
6074   return SDValue();
6075 }
6076 
6077 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6078     SDNode *N, DAGCombinerInfo &DCI) const {
6079   SelectionDAG &DAG = DCI.DAG;
6080   // Combine element-swap (LOAD) into VLER
6081   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6082       N->getOperand(0).hasOneUse() &&
6083       Subtarget.hasVectorEnhancements2()) {
6084     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6085     ArrayRef<int> ShuffleMask = SVN->getMask();
6086     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6087       SDValue Load = N->getOperand(0);
6088       LoadSDNode *LD = cast<LoadSDNode>(Load);
6089 
6090       // Create the element-swapping load.
6091       SDValue Ops[] = {
6092         LD->getChain(),    // Chain
6093         LD->getBasePtr()   // Ptr
6094       };
6095       SDValue ESLoad =
6096         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6097                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6098                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6099 
6100       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6101       // by the load dead.
6102       DCI.CombineTo(N, ESLoad);
6103 
6104       // Next, combine the load away, we give it a bogus result value but a real
6105       // chain result.  The result value is dead because the shuffle is dead.
6106       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6107 
6108       // Return N so it doesn't get rechecked!
6109       return SDValue(N, 0);
6110     }
6111   }
6112 
6113   return SDValue();
6114 }
6115 
6116 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6117     SDNode *N, DAGCombinerInfo &DCI) const {
6118   SelectionDAG &DAG = DCI.DAG;
6119 
6120   if (!Subtarget.hasVector())
6121     return SDValue();
6122 
6123   // Look through bitcasts that retain the number of vector elements.
6124   SDValue Op = N->getOperand(0);
6125   if (Op.getOpcode() == ISD::BITCAST &&
6126       Op.getValueType().isVector() &&
6127       Op.getOperand(0).getValueType().isVector() &&
6128       Op.getValueType().getVectorNumElements() ==
6129       Op.getOperand(0).getValueType().getVectorNumElements())
6130     Op = Op.getOperand(0);
6131 
6132   // Pull BSWAP out of a vector extraction.
6133   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6134     EVT VecVT = Op.getValueType();
6135     EVT EltVT = VecVT.getVectorElementType();
6136     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6137                      Op.getOperand(0), N->getOperand(1));
6138     DCI.AddToWorklist(Op.getNode());
6139     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6140     if (EltVT != N->getValueType(0)) {
6141       DCI.AddToWorklist(Op.getNode());
6142       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6143     }
6144     return Op;
6145   }
6146 
6147   // Try to simplify a vector extraction.
6148   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6149     SDValue Op0 = N->getOperand(0);
6150     EVT VecVT = Op0.getValueType();
6151     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6152                           IndexN->getZExtValue(), DCI, false);
6153   }
6154   return SDValue();
6155 }
6156 
6157 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6158     SDNode *N, DAGCombinerInfo &DCI) const {
6159   SelectionDAG &DAG = DCI.DAG;
6160   // (join_dwords X, X) == (replicate X)
6161   if (N->getOperand(0) == N->getOperand(1))
6162     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6163                        N->getOperand(0));
6164   return SDValue();
6165 }
6166 
6167 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6168   SDValue Chain1 = N1->getOperand(0);
6169   SDValue Chain2 = N2->getOperand(0);
6170 
6171   // Trivial case: both nodes take the same chain.
6172   if (Chain1 == Chain2)
6173     return Chain1;
6174 
6175   // FIXME - we could handle more complex cases via TokenFactor,
6176   // assuming we can verify that this would not create a cycle.
6177   return SDValue();
6178 }
6179 
6180 SDValue SystemZTargetLowering::combineFP_ROUND(
6181     SDNode *N, DAGCombinerInfo &DCI) const {
6182 
6183   if (!Subtarget.hasVector())
6184     return SDValue();
6185 
6186   // (fpround (extract_vector_elt X 0))
6187   // (fpround (extract_vector_elt X 1)) ->
6188   // (extract_vector_elt (VROUND X) 0)
6189   // (extract_vector_elt (VROUND X) 2)
6190   //
6191   // This is a special case since the target doesn't really support v2f32s.
6192   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6193   SelectionDAG &DAG = DCI.DAG;
6194   SDValue Op0 = N->getOperand(OpNo);
6195   if (N->getValueType(0) == MVT::f32 &&
6196       Op0.hasOneUse() &&
6197       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6198       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6199       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6200       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6201     SDValue Vec = Op0.getOperand(0);
6202     for (auto *U : Vec->uses()) {
6203       if (U != Op0.getNode() &&
6204           U->hasOneUse() &&
6205           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6206           U->getOperand(0) == Vec &&
6207           U->getOperand(1).getOpcode() == ISD::Constant &&
6208           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6209         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6210         if (OtherRound.getOpcode() == N->getOpcode() &&
6211             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6212             OtherRound.getValueType() == MVT::f32) {
6213           SDValue VRound, Chain;
6214           if (N->isStrictFPOpcode()) {
6215             Chain = MergeInputChains(N, OtherRound.getNode());
6216             if (!Chain)
6217               continue;
6218             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6219                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6220             Chain = VRound.getValue(1);
6221           } else
6222             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6223                                  MVT::v4f32, Vec);
6224           DCI.AddToWorklist(VRound.getNode());
6225           SDValue Extract1 =
6226             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6227                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6228           DCI.AddToWorklist(Extract1.getNode());
6229           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6230           if (Chain)
6231             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6232           SDValue Extract0 =
6233             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6234                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6235           if (Chain)
6236             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6237                                N->getVTList(), Extract0, Chain);
6238           return Extract0;
6239         }
6240       }
6241     }
6242   }
6243   return SDValue();
6244 }
6245 
6246 SDValue SystemZTargetLowering::combineFP_EXTEND(
6247     SDNode *N, DAGCombinerInfo &DCI) const {
6248 
6249   if (!Subtarget.hasVector())
6250     return SDValue();
6251 
6252   // (fpextend (extract_vector_elt X 0))
6253   // (fpextend (extract_vector_elt X 2)) ->
6254   // (extract_vector_elt (VEXTEND X) 0)
6255   // (extract_vector_elt (VEXTEND X) 1)
6256   //
6257   // This is a special case since the target doesn't really support v2f32s.
6258   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6259   SelectionDAG &DAG = DCI.DAG;
6260   SDValue Op0 = N->getOperand(OpNo);
6261   if (N->getValueType(0) == MVT::f64 &&
6262       Op0.hasOneUse() &&
6263       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6264       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6265       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6266       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6267     SDValue Vec = Op0.getOperand(0);
6268     for (auto *U : Vec->uses()) {
6269       if (U != Op0.getNode() &&
6270           U->hasOneUse() &&
6271           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6272           U->getOperand(0) == Vec &&
6273           U->getOperand(1).getOpcode() == ISD::Constant &&
6274           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6275         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6276         if (OtherExtend.getOpcode() == N->getOpcode() &&
6277             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6278             OtherExtend.getValueType() == MVT::f64) {
6279           SDValue VExtend, Chain;
6280           if (N->isStrictFPOpcode()) {
6281             Chain = MergeInputChains(N, OtherExtend.getNode());
6282             if (!Chain)
6283               continue;
6284             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6285                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6286             Chain = VExtend.getValue(1);
6287           } else
6288             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6289                                   MVT::v2f64, Vec);
6290           DCI.AddToWorklist(VExtend.getNode());
6291           SDValue Extract1 =
6292             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6293                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6294           DCI.AddToWorklist(Extract1.getNode());
6295           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6296           if (Chain)
6297             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6298           SDValue Extract0 =
6299             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6300                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6301           if (Chain)
6302             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6303                                N->getVTList(), Extract0, Chain);
6304           return Extract0;
6305         }
6306       }
6307     }
6308   }
6309   return SDValue();
6310 }
6311 
6312 SDValue SystemZTargetLowering::combineINT_TO_FP(
6313     SDNode *N, DAGCombinerInfo &DCI) const {
6314   if (DCI.Level != BeforeLegalizeTypes)
6315     return SDValue();
6316   unsigned Opcode = N->getOpcode();
6317   EVT OutVT = N->getValueType(0);
6318   SelectionDAG &DAG = DCI.DAG;
6319   SDValue Op = N->getOperand(0);
6320   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6321   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6322 
6323   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6324   // v2f64 = uint_to_fp v2i16
6325   // =>
6326   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6327   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6328     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6329                                  OutVT.getVectorNumElements());
6330     unsigned ExtOpcode =
6331       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6332     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6333     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6334   }
6335   return SDValue();
6336 }
6337 
6338 SDValue SystemZTargetLowering::combineBSWAP(
6339     SDNode *N, DAGCombinerInfo &DCI) const {
6340   SelectionDAG &DAG = DCI.DAG;
6341   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6342   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6343       N->getOperand(0).hasOneUse() &&
6344       canLoadStoreByteSwapped(N->getValueType(0))) {
6345       SDValue Load = N->getOperand(0);
6346       LoadSDNode *LD = cast<LoadSDNode>(Load);
6347 
6348       // Create the byte-swapping load.
6349       SDValue Ops[] = {
6350         LD->getChain(),    // Chain
6351         LD->getBasePtr()   // Ptr
6352       };
6353       EVT LoadVT = N->getValueType(0);
6354       if (LoadVT == MVT::i16)
6355         LoadVT = MVT::i32;
6356       SDValue BSLoad =
6357         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6358                                 DAG.getVTList(LoadVT, MVT::Other),
6359                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6360 
6361       // If this is an i16 load, insert the truncate.
6362       SDValue ResVal = BSLoad;
6363       if (N->getValueType(0) == MVT::i16)
6364         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6365 
6366       // First, combine the bswap away.  This makes the value produced by the
6367       // load dead.
6368       DCI.CombineTo(N, ResVal);
6369 
6370       // Next, combine the load away, we give it a bogus result value but a real
6371       // chain result.  The result value is dead because the bswap is dead.
6372       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6373 
6374       // Return N so it doesn't get rechecked!
6375       return SDValue(N, 0);
6376     }
6377 
6378   // Look through bitcasts that retain the number of vector elements.
6379   SDValue Op = N->getOperand(0);
6380   if (Op.getOpcode() == ISD::BITCAST &&
6381       Op.getValueType().isVector() &&
6382       Op.getOperand(0).getValueType().isVector() &&
6383       Op.getValueType().getVectorNumElements() ==
6384       Op.getOperand(0).getValueType().getVectorNumElements())
6385     Op = Op.getOperand(0);
6386 
6387   // Push BSWAP into a vector insertion if at least one side then simplifies.
6388   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6389     SDValue Vec = Op.getOperand(0);
6390     SDValue Elt = Op.getOperand(1);
6391     SDValue Idx = Op.getOperand(2);
6392 
6393     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6394         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6395         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6396         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6397         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6398          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6399       EVT VecVT = N->getValueType(0);
6400       EVT EltVT = N->getValueType(0).getVectorElementType();
6401       if (VecVT != Vec.getValueType()) {
6402         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6403         DCI.AddToWorklist(Vec.getNode());
6404       }
6405       if (EltVT != Elt.getValueType()) {
6406         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6407         DCI.AddToWorklist(Elt.getNode());
6408       }
6409       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6410       DCI.AddToWorklist(Vec.getNode());
6411       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6412       DCI.AddToWorklist(Elt.getNode());
6413       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6414                          Vec, Elt, Idx);
6415     }
6416   }
6417 
6418   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6419   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6420   if (SV && Op.hasOneUse()) {
6421     SDValue Op0 = Op.getOperand(0);
6422     SDValue Op1 = Op.getOperand(1);
6423 
6424     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6425         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6426         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6427         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6428       EVT VecVT = N->getValueType(0);
6429       if (VecVT != Op0.getValueType()) {
6430         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6431         DCI.AddToWorklist(Op0.getNode());
6432       }
6433       if (VecVT != Op1.getValueType()) {
6434         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6435         DCI.AddToWorklist(Op1.getNode());
6436       }
6437       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6438       DCI.AddToWorklist(Op0.getNode());
6439       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6440       DCI.AddToWorklist(Op1.getNode());
6441       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6442     }
6443   }
6444 
6445   return SDValue();
6446 }
6447 
6448 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6449   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6450   // set by the CCReg instruction using the CCValid / CCMask masks,
6451   // If the CCReg instruction is itself a ICMP testing the condition
6452   // code set by some other instruction, see whether we can directly
6453   // use that condition code.
6454 
6455   // Verify that we have an ICMP against some constant.
6456   if (CCValid != SystemZ::CCMASK_ICMP)
6457     return false;
6458   auto *ICmp = CCReg.getNode();
6459   if (ICmp->getOpcode() != SystemZISD::ICMP)
6460     return false;
6461   auto *CompareLHS = ICmp->getOperand(0).getNode();
6462   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6463   if (!CompareRHS)
6464     return false;
6465 
6466   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6467   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6468     // Verify that we have an appropriate mask for a EQ or NE comparison.
6469     bool Invert = false;
6470     if (CCMask == SystemZ::CCMASK_CMP_NE)
6471       Invert = !Invert;
6472     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6473       return false;
6474 
6475     // Verify that the ICMP compares against one of select values.
6476     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6477     if (!TrueVal)
6478       return false;
6479     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6480     if (!FalseVal)
6481       return false;
6482     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6483       Invert = !Invert;
6484     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6485       return false;
6486 
6487     // Compute the effective CC mask for the new branch or select.
6488     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6489     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6490     if (!NewCCValid || !NewCCMask)
6491       return false;
6492     CCValid = NewCCValid->getZExtValue();
6493     CCMask = NewCCMask->getZExtValue();
6494     if (Invert)
6495       CCMask ^= CCValid;
6496 
6497     // Return the updated CCReg link.
6498     CCReg = CompareLHS->getOperand(4);
6499     return true;
6500   }
6501 
6502   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6503   if (CompareLHS->getOpcode() == ISD::SRA) {
6504     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6505     if (!SRACount || SRACount->getZExtValue() != 30)
6506       return false;
6507     auto *SHL = CompareLHS->getOperand(0).getNode();
6508     if (SHL->getOpcode() != ISD::SHL)
6509       return false;
6510     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6511     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6512       return false;
6513     auto *IPM = SHL->getOperand(0).getNode();
6514     if (IPM->getOpcode() != SystemZISD::IPM)
6515       return false;
6516 
6517     // Avoid introducing CC spills (because SRA would clobber CC).
6518     if (!CompareLHS->hasOneUse())
6519       return false;
6520     // Verify that the ICMP compares against zero.
6521     if (CompareRHS->getZExtValue() != 0)
6522       return false;
6523 
6524     // Compute the effective CC mask for the new branch or select.
6525     CCMask = SystemZ::reverseCCMask(CCMask);
6526 
6527     // Return the updated CCReg link.
6528     CCReg = IPM->getOperand(0);
6529     return true;
6530   }
6531 
6532   return false;
6533 }
6534 
6535 SDValue SystemZTargetLowering::combineBR_CCMASK(
6536     SDNode *N, DAGCombinerInfo &DCI) const {
6537   SelectionDAG &DAG = DCI.DAG;
6538 
6539   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6540   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6541   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6542   if (!CCValid || !CCMask)
6543     return SDValue();
6544 
6545   int CCValidVal = CCValid->getZExtValue();
6546   int CCMaskVal = CCMask->getZExtValue();
6547   SDValue Chain = N->getOperand(0);
6548   SDValue CCReg = N->getOperand(4);
6549 
6550   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6551     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6552                        Chain,
6553                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6554                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6555                        N->getOperand(3), CCReg);
6556   return SDValue();
6557 }
6558 
6559 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6560     SDNode *N, DAGCombinerInfo &DCI) const {
6561   SelectionDAG &DAG = DCI.DAG;
6562 
6563   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6564   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6565   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6566   if (!CCValid || !CCMask)
6567     return SDValue();
6568 
6569   int CCValidVal = CCValid->getZExtValue();
6570   int CCMaskVal = CCMask->getZExtValue();
6571   SDValue CCReg = N->getOperand(4);
6572 
6573   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6574     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6575                        N->getOperand(0), N->getOperand(1),
6576                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6577                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6578                        CCReg);
6579   return SDValue();
6580 }
6581 
6582 
6583 SDValue SystemZTargetLowering::combineGET_CCMASK(
6584     SDNode *N, DAGCombinerInfo &DCI) const {
6585 
6586   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6587   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6588   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6589   if (!CCValid || !CCMask)
6590     return SDValue();
6591   int CCValidVal = CCValid->getZExtValue();
6592   int CCMaskVal = CCMask->getZExtValue();
6593 
6594   SDValue Select = N->getOperand(0);
6595   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6596     return SDValue();
6597 
6598   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6599   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6600   if (!SelectCCValid || !SelectCCMask)
6601     return SDValue();
6602   int SelectCCValidVal = SelectCCValid->getZExtValue();
6603   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6604 
6605   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6606   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6607   if (!TrueVal || !FalseVal)
6608     return SDValue();
6609   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6610     ;
6611   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6612     SelectCCMaskVal ^= SelectCCValidVal;
6613   else
6614     return SDValue();
6615 
6616   if (SelectCCValidVal & ~CCValidVal)
6617     return SDValue();
6618   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6619     return SDValue();
6620 
6621   return Select->getOperand(4);
6622 }
6623 
6624 SDValue SystemZTargetLowering::combineIntDIVREM(
6625     SDNode *N, DAGCombinerInfo &DCI) const {
6626   SelectionDAG &DAG = DCI.DAG;
6627   EVT VT = N->getValueType(0);
6628   // In the case where the divisor is a vector of constants a cheaper
6629   // sequence of instructions can replace the divide. BuildSDIV is called to
6630   // do this during DAG combining, but it only succeeds when it can build a
6631   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6632   // since it is not Legal but Custom it can only happen before
6633   // legalization. Therefore we must scalarize this early before Combine
6634   // 1. For widened vectors, this is already the result of type legalization.
6635   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6636       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6637     return DAG.UnrollVectorOp(N);
6638   return SDValue();
6639 }
6640 
6641 SDValue SystemZTargetLowering::combineINTRINSIC(
6642     SDNode *N, DAGCombinerInfo &DCI) const {
6643   SelectionDAG &DAG = DCI.DAG;
6644 
6645   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6646   switch (Id) {
6647   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6648   // or larger is simply a vector load.
6649   case Intrinsic::s390_vll:
6650   case Intrinsic::s390_vlrl:
6651     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6652       if (C->getZExtValue() >= 15)
6653         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6654                            N->getOperand(3), MachinePointerInfo());
6655     break;
6656   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6657   case Intrinsic::s390_vstl:
6658   case Intrinsic::s390_vstrl:
6659     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6660       if (C->getZExtValue() >= 15)
6661         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6662                             N->getOperand(4), MachinePointerInfo());
6663     break;
6664   }
6665 
6666   return SDValue();
6667 }
6668 
6669 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6670   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6671     return N->getOperand(0);
6672   return N;
6673 }
6674 
6675 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6676                                                  DAGCombinerInfo &DCI) const {
6677   switch(N->getOpcode()) {
6678   default: break;
6679   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6680   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6681   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6682   case SystemZISD::MERGE_HIGH:
6683   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6684   case ISD::LOAD:               return combineLOAD(N, DCI);
6685   case ISD::STORE:              return combineSTORE(N, DCI);
6686   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6687   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6688   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6689   case ISD::STRICT_FP_ROUND:
6690   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6691   case ISD::STRICT_FP_EXTEND:
6692   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6693   case ISD::SINT_TO_FP:
6694   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6695   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6696   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6697   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6698   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6699   case ISD::SDIV:
6700   case ISD::UDIV:
6701   case ISD::SREM:
6702   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6703   case ISD::INTRINSIC_W_CHAIN:
6704   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6705   }
6706 
6707   return SDValue();
6708 }
6709 
6710 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6711 // are for Op.
6712 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6713                                     unsigned OpNo) {
6714   EVT VT = Op.getValueType();
6715   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6716   APInt SrcDemE;
6717   unsigned Opcode = Op.getOpcode();
6718   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6719     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6720     switch (Id) {
6721     case Intrinsic::s390_vpksh:   // PACKS
6722     case Intrinsic::s390_vpksf:
6723     case Intrinsic::s390_vpksg:
6724     case Intrinsic::s390_vpkshs:  // PACKS_CC
6725     case Intrinsic::s390_vpksfs:
6726     case Intrinsic::s390_vpksgs:
6727     case Intrinsic::s390_vpklsh:  // PACKLS
6728     case Intrinsic::s390_vpklsf:
6729     case Intrinsic::s390_vpklsg:
6730     case Intrinsic::s390_vpklshs: // PACKLS_CC
6731     case Intrinsic::s390_vpklsfs:
6732     case Intrinsic::s390_vpklsgs:
6733       // VECTOR PACK truncates the elements of two source vectors into one.
6734       SrcDemE = DemandedElts;
6735       if (OpNo == 2)
6736         SrcDemE.lshrInPlace(NumElts / 2);
6737       SrcDemE = SrcDemE.trunc(NumElts / 2);
6738       break;
6739       // VECTOR UNPACK extends half the elements of the source vector.
6740     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6741     case Intrinsic::s390_vuphh:
6742     case Intrinsic::s390_vuphf:
6743     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6744     case Intrinsic::s390_vuplhh:
6745     case Intrinsic::s390_vuplhf:
6746       SrcDemE = APInt(NumElts * 2, 0);
6747       SrcDemE.insertBits(DemandedElts, 0);
6748       break;
6749     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6750     case Intrinsic::s390_vuplhw:
6751     case Intrinsic::s390_vuplf:
6752     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6753     case Intrinsic::s390_vupllh:
6754     case Intrinsic::s390_vupllf:
6755       SrcDemE = APInt(NumElts * 2, 0);
6756       SrcDemE.insertBits(DemandedElts, NumElts);
6757       break;
6758     case Intrinsic::s390_vpdi: {
6759       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6760       SrcDemE = APInt(NumElts, 0);
6761       if (!DemandedElts[OpNo - 1])
6762         break;
6763       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6764       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6765       // Demand input element 0 or 1, given by the mask bit value.
6766       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6767       break;
6768     }
6769     case Intrinsic::s390_vsldb: {
6770       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6771       assert(VT == MVT::v16i8 && "Unexpected type.");
6772       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6773       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6774       unsigned NumSrc0Els = 16 - FirstIdx;
6775       SrcDemE = APInt(NumElts, 0);
6776       if (OpNo == 1) {
6777         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6778         SrcDemE.insertBits(DemEls, FirstIdx);
6779       } else {
6780         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6781         SrcDemE.insertBits(DemEls, 0);
6782       }
6783       break;
6784     }
6785     case Intrinsic::s390_vperm:
6786       SrcDemE = APInt(NumElts, 1);
6787       break;
6788     default:
6789       llvm_unreachable("Unhandled intrinsic.");
6790       break;
6791     }
6792   } else {
6793     switch (Opcode) {
6794     case SystemZISD::JOIN_DWORDS:
6795       // Scalar operand.
6796       SrcDemE = APInt(1, 1);
6797       break;
6798     case SystemZISD::SELECT_CCMASK:
6799       SrcDemE = DemandedElts;
6800       break;
6801     default:
6802       llvm_unreachable("Unhandled opcode.");
6803       break;
6804     }
6805   }
6806   return SrcDemE;
6807 }
6808 
6809 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6810                                   const APInt &DemandedElts,
6811                                   const SelectionDAG &DAG, unsigned Depth,
6812                                   unsigned OpNo) {
6813   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6814   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6815   KnownBits LHSKnown =
6816       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6817   KnownBits RHSKnown =
6818       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6819   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6820   Known.One = LHSKnown.One & RHSKnown.One;
6821 }
6822 
6823 void
6824 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6825                                                      KnownBits &Known,
6826                                                      const APInt &DemandedElts,
6827                                                      const SelectionDAG &DAG,
6828                                                      unsigned Depth) const {
6829   Known.resetAll();
6830 
6831   // Intrinsic CC result is returned in the two low bits.
6832   unsigned tmp0, tmp1; // not used
6833   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6834     Known.Zero.setBitsFrom(2);
6835     return;
6836   }
6837   EVT VT = Op.getValueType();
6838   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6839     return;
6840   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6841           "KnownBits does not match VT in bitwidth");
6842   assert ((!VT.isVector() ||
6843            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6844           "DemandedElts does not match VT number of elements");
6845   unsigned BitWidth = Known.getBitWidth();
6846   unsigned Opcode = Op.getOpcode();
6847   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6848     bool IsLogical = false;
6849     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6850     switch (Id) {
6851     case Intrinsic::s390_vpksh:   // PACKS
6852     case Intrinsic::s390_vpksf:
6853     case Intrinsic::s390_vpksg:
6854     case Intrinsic::s390_vpkshs:  // PACKS_CC
6855     case Intrinsic::s390_vpksfs:
6856     case Intrinsic::s390_vpksgs:
6857     case Intrinsic::s390_vpklsh:  // PACKLS
6858     case Intrinsic::s390_vpklsf:
6859     case Intrinsic::s390_vpklsg:
6860     case Intrinsic::s390_vpklshs: // PACKLS_CC
6861     case Intrinsic::s390_vpklsfs:
6862     case Intrinsic::s390_vpklsgs:
6863     case Intrinsic::s390_vpdi:
6864     case Intrinsic::s390_vsldb:
6865     case Intrinsic::s390_vperm:
6866       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6867       break;
6868     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6869     case Intrinsic::s390_vuplhh:
6870     case Intrinsic::s390_vuplhf:
6871     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6872     case Intrinsic::s390_vupllh:
6873     case Intrinsic::s390_vupllf:
6874       IsLogical = true;
6875       LLVM_FALLTHROUGH;
6876     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6877     case Intrinsic::s390_vuphh:
6878     case Intrinsic::s390_vuphf:
6879     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6880     case Intrinsic::s390_vuplhw:
6881     case Intrinsic::s390_vuplf: {
6882       SDValue SrcOp = Op.getOperand(1);
6883       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6884       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6885       if (IsLogical) {
6886         Known = Known.zext(BitWidth);
6887       } else
6888         Known = Known.sext(BitWidth);
6889       break;
6890     }
6891     default:
6892       break;
6893     }
6894   } else {
6895     switch (Opcode) {
6896     case SystemZISD::JOIN_DWORDS:
6897     case SystemZISD::SELECT_CCMASK:
6898       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6899       break;
6900     case SystemZISD::REPLICATE: {
6901       SDValue SrcOp = Op.getOperand(0);
6902       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6903       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6904         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6905       break;
6906     }
6907     default:
6908       break;
6909     }
6910   }
6911 
6912   // Known has the width of the source operand(s). Adjust if needed to match
6913   // the passed bitwidth.
6914   if (Known.getBitWidth() != BitWidth)
6915     Known = Known.anyextOrTrunc(BitWidth);
6916 }
6917 
6918 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6919                                         const SelectionDAG &DAG, unsigned Depth,
6920                                         unsigned OpNo) {
6921   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6922   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6923   if (LHS == 1) return 1; // Early out.
6924   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6925   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6926   if (RHS == 1) return 1; // Early out.
6927   unsigned Common = std::min(LHS, RHS);
6928   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6929   EVT VT = Op.getValueType();
6930   unsigned VTBits = VT.getScalarSizeInBits();
6931   if (SrcBitWidth > VTBits) { // PACK
6932     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6933     if (Common > SrcExtraBits)
6934       return (Common - SrcExtraBits);
6935     return 1;
6936   }
6937   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6938   return Common;
6939 }
6940 
6941 unsigned
6942 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6943     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6944     unsigned Depth) const {
6945   if (Op.getResNo() != 0)
6946     return 1;
6947   unsigned Opcode = Op.getOpcode();
6948   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6949     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6950     switch (Id) {
6951     case Intrinsic::s390_vpksh:   // PACKS
6952     case Intrinsic::s390_vpksf:
6953     case Intrinsic::s390_vpksg:
6954     case Intrinsic::s390_vpkshs:  // PACKS_CC
6955     case Intrinsic::s390_vpksfs:
6956     case Intrinsic::s390_vpksgs:
6957     case Intrinsic::s390_vpklsh:  // PACKLS
6958     case Intrinsic::s390_vpklsf:
6959     case Intrinsic::s390_vpklsg:
6960     case Intrinsic::s390_vpklshs: // PACKLS_CC
6961     case Intrinsic::s390_vpklsfs:
6962     case Intrinsic::s390_vpklsgs:
6963     case Intrinsic::s390_vpdi:
6964     case Intrinsic::s390_vsldb:
6965     case Intrinsic::s390_vperm:
6966       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6967     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6968     case Intrinsic::s390_vuphh:
6969     case Intrinsic::s390_vuphf:
6970     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6971     case Intrinsic::s390_vuplhw:
6972     case Intrinsic::s390_vuplf: {
6973       SDValue PackedOp = Op.getOperand(1);
6974       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6975       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6976       EVT VT = Op.getValueType();
6977       unsigned VTBits = VT.getScalarSizeInBits();
6978       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6979       return Tmp;
6980     }
6981     default:
6982       break;
6983     }
6984   } else {
6985     switch (Opcode) {
6986     case SystemZISD::SELECT_CCMASK:
6987       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6988     default:
6989       break;
6990     }
6991   }
6992 
6993   return 1;
6994 }
6995 
6996 unsigned
6997 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
6998   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6999   unsigned StackAlign = TFI->getStackAlignment();
7000   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7001          "Unexpected stack alignment");
7002   // The default stack probe size is 4096 if the function has no
7003   // stack-probe-size attribute.
7004   unsigned StackProbeSize = 4096;
7005   const Function &Fn = MF.getFunction();
7006   if (Fn.hasFnAttribute("stack-probe-size"))
7007     Fn.getFnAttribute("stack-probe-size")
7008         .getValueAsString()
7009         .getAsInteger(0, StackProbeSize);
7010   // Round down to the stack alignment.
7011   StackProbeSize &= ~(StackAlign - 1);
7012   return StackProbeSize ? StackProbeSize : StackAlign;
7013 }
7014 
7015 //===----------------------------------------------------------------------===//
7016 // Custom insertion
7017 //===----------------------------------------------------------------------===//
7018 
7019 // Force base value Base into a register before MI.  Return the register.
7020 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7021                          const SystemZInstrInfo *TII) {
7022   if (Base.isReg())
7023     return Base.getReg();
7024 
7025   MachineBasicBlock *MBB = MI.getParent();
7026   MachineFunction &MF = *MBB->getParent();
7027   MachineRegisterInfo &MRI = MF.getRegInfo();
7028 
7029   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7030   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7031       .add(Base)
7032       .addImm(0)
7033       .addReg(0);
7034   return Reg;
7035 }
7036 
7037 // The CC operand of MI might be missing a kill marker because there
7038 // were multiple uses of CC, and ISel didn't know which to mark.
7039 // Figure out whether MI should have had a kill marker.
7040 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7041   // Scan forward through BB for a use/def of CC.
7042   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7043   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7044     const MachineInstr& mi = *miI;
7045     if (mi.readsRegister(SystemZ::CC))
7046       return false;
7047     if (mi.definesRegister(SystemZ::CC))
7048       break; // Should have kill-flag - update below.
7049   }
7050 
7051   // If we hit the end of the block, check whether CC is live into a
7052   // successor.
7053   if (miI == MBB->end()) {
7054     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7055       if ((*SI)->isLiveIn(SystemZ::CC))
7056         return false;
7057   }
7058 
7059   return true;
7060 }
7061 
7062 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7063 // together with other Select pseudo-opcodes into a single basic-block with
7064 // a conditional jump around it.
7065 static bool isSelectPseudo(MachineInstr &MI) {
7066   switch (MI.getOpcode()) {
7067   case SystemZ::Select32:
7068   case SystemZ::Select64:
7069   case SystemZ::SelectF32:
7070   case SystemZ::SelectF64:
7071   case SystemZ::SelectF128:
7072   case SystemZ::SelectVR32:
7073   case SystemZ::SelectVR64:
7074   case SystemZ::SelectVR128:
7075     return true;
7076 
7077   default:
7078     return false;
7079   }
7080 }
7081 
7082 // Helper function, which inserts PHI functions into SinkMBB:
7083 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7084 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7085 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7086                                  MachineBasicBlock *TrueMBB,
7087                                  MachineBasicBlock *FalseMBB,
7088                                  MachineBasicBlock *SinkMBB) {
7089   MachineFunction *MF = TrueMBB->getParent();
7090   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7091 
7092   MachineInstr *FirstMI = Selects.front();
7093   unsigned CCValid = FirstMI->getOperand(3).getImm();
7094   unsigned CCMask = FirstMI->getOperand(4).getImm();
7095 
7096   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7097 
7098   // As we are creating the PHIs, we have to be careful if there is more than
7099   // one.  Later Selects may reference the results of earlier Selects, but later
7100   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7101   // That also means that PHI construction must work forward from earlier to
7102   // later, and that the code must maintain a mapping from earlier PHI's
7103   // destination registers, and the registers that went into the PHI.
7104   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7105 
7106   for (auto MI : Selects) {
7107     Register DestReg = MI->getOperand(0).getReg();
7108     Register TrueReg = MI->getOperand(1).getReg();
7109     Register FalseReg = MI->getOperand(2).getReg();
7110 
7111     // If this Select we are generating is the opposite condition from
7112     // the jump we generated, then we have to swap the operands for the
7113     // PHI that is going to be generated.
7114     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7115       std::swap(TrueReg, FalseReg);
7116 
7117     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7118       TrueReg = RegRewriteTable[TrueReg].first;
7119 
7120     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7121       FalseReg = RegRewriteTable[FalseReg].second;
7122 
7123     DebugLoc DL = MI->getDebugLoc();
7124     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7125       .addReg(TrueReg).addMBB(TrueMBB)
7126       .addReg(FalseReg).addMBB(FalseMBB);
7127 
7128     // Add this PHI to the rewrite table.
7129     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7130   }
7131 
7132   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7133 }
7134 
7135 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7136 MachineBasicBlock *
7137 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7138                                   MachineBasicBlock *MBB) const {
7139   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7140   const SystemZInstrInfo *TII =
7141       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7142 
7143   unsigned CCValid = MI.getOperand(3).getImm();
7144   unsigned CCMask = MI.getOperand(4).getImm();
7145 
7146   // If we have a sequence of Select* pseudo instructions using the
7147   // same condition code value, we want to expand all of them into
7148   // a single pair of basic blocks using the same condition.
7149   SmallVector<MachineInstr*, 8> Selects;
7150   SmallVector<MachineInstr*, 8> DbgValues;
7151   Selects.push_back(&MI);
7152   unsigned Count = 0;
7153   for (MachineBasicBlock::iterator NextMIIt =
7154          std::next(MachineBasicBlock::iterator(MI));
7155        NextMIIt != MBB->end(); ++NextMIIt) {
7156     if (isSelectPseudo(*NextMIIt)) {
7157       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7158              "Bad CCValid operands since CC was not redefined.");
7159       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7160           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7161         Selects.push_back(&*NextMIIt);
7162         continue;
7163       }
7164       break;
7165     }
7166     if (NextMIIt->definesRegister(SystemZ::CC) ||
7167         NextMIIt->usesCustomInsertionHook())
7168       break;
7169     bool User = false;
7170     for (auto SelMI : Selects)
7171       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7172         User = true;
7173         break;
7174       }
7175     if (NextMIIt->isDebugInstr()) {
7176       if (User) {
7177         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7178         DbgValues.push_back(&*NextMIIt);
7179       }
7180     }
7181     else if (User || ++Count > 20)
7182       break;
7183   }
7184 
7185   MachineInstr *LastMI = Selects.back();
7186   bool CCKilled =
7187       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7188   MachineBasicBlock *StartMBB = MBB;
7189   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7190   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7191 
7192   // Unless CC was killed in the last Select instruction, mark it as
7193   // live-in to both FalseMBB and JoinMBB.
7194   if (!CCKilled) {
7195     FalseMBB->addLiveIn(SystemZ::CC);
7196     JoinMBB->addLiveIn(SystemZ::CC);
7197   }
7198 
7199   //  StartMBB:
7200   //   BRC CCMask, JoinMBB
7201   //   # fallthrough to FalseMBB
7202   MBB = StartMBB;
7203   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7204     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7205   MBB->addSuccessor(JoinMBB);
7206   MBB->addSuccessor(FalseMBB);
7207 
7208   //  FalseMBB:
7209   //   # fallthrough to JoinMBB
7210   MBB = FalseMBB;
7211   MBB->addSuccessor(JoinMBB);
7212 
7213   //  JoinMBB:
7214   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7215   //  ...
7216   MBB = JoinMBB;
7217   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7218   for (auto SelMI : Selects)
7219     SelMI->eraseFromParent();
7220 
7221   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7222   for (auto DbgMI : DbgValues)
7223     MBB->splice(InsertPos, StartMBB, DbgMI);
7224 
7225   return JoinMBB;
7226 }
7227 
7228 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7229 // StoreOpcode is the store to use and Invert says whether the store should
7230 // happen when the condition is false rather than true.  If a STORE ON
7231 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7232 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7233                                                         MachineBasicBlock *MBB,
7234                                                         unsigned StoreOpcode,
7235                                                         unsigned STOCOpcode,
7236                                                         bool Invert) const {
7237   const SystemZInstrInfo *TII =
7238       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7239 
7240   Register SrcReg = MI.getOperand(0).getReg();
7241   MachineOperand Base = MI.getOperand(1);
7242   int64_t Disp = MI.getOperand(2).getImm();
7243   Register IndexReg = MI.getOperand(3).getReg();
7244   unsigned CCValid = MI.getOperand(4).getImm();
7245   unsigned CCMask = MI.getOperand(5).getImm();
7246   DebugLoc DL = MI.getDebugLoc();
7247 
7248   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7249 
7250   // ISel pattern matching also adds a load memory operand of the same
7251   // address, so take special care to find the storing memory operand.
7252   MachineMemOperand *MMO = nullptr;
7253   for (auto *I : MI.memoperands())
7254     if (I->isStore()) {
7255       MMO = I;
7256       break;
7257     }
7258 
7259   // Use STOCOpcode if possible.  We could use different store patterns in
7260   // order to avoid matching the index register, but the performance trade-offs
7261   // might be more complicated in that case.
7262   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7263     if (Invert)
7264       CCMask ^= CCValid;
7265 
7266     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7267       .addReg(SrcReg)
7268       .add(Base)
7269       .addImm(Disp)
7270       .addImm(CCValid)
7271       .addImm(CCMask)
7272       .addMemOperand(MMO);
7273 
7274     MI.eraseFromParent();
7275     return MBB;
7276   }
7277 
7278   // Get the condition needed to branch around the store.
7279   if (!Invert)
7280     CCMask ^= CCValid;
7281 
7282   MachineBasicBlock *StartMBB = MBB;
7283   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7284   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7285 
7286   // Unless CC was killed in the CondStore instruction, mark it as
7287   // live-in to both FalseMBB and JoinMBB.
7288   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7289     FalseMBB->addLiveIn(SystemZ::CC);
7290     JoinMBB->addLiveIn(SystemZ::CC);
7291   }
7292 
7293   //  StartMBB:
7294   //   BRC CCMask, JoinMBB
7295   //   # fallthrough to FalseMBB
7296   MBB = StartMBB;
7297   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7298     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7299   MBB->addSuccessor(JoinMBB);
7300   MBB->addSuccessor(FalseMBB);
7301 
7302   //  FalseMBB:
7303   //   store %SrcReg, %Disp(%Index,%Base)
7304   //   # fallthrough to JoinMBB
7305   MBB = FalseMBB;
7306   BuildMI(MBB, DL, TII->get(StoreOpcode))
7307       .addReg(SrcReg)
7308       .add(Base)
7309       .addImm(Disp)
7310       .addReg(IndexReg)
7311       .addMemOperand(MMO);
7312   MBB->addSuccessor(JoinMBB);
7313 
7314   MI.eraseFromParent();
7315   return JoinMBB;
7316 }
7317 
7318 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7319 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7320 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7321 // BitSize is the width of the field in bits, or 0 if this is a partword
7322 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7323 // is one of the operands.  Invert says whether the field should be
7324 // inverted after performing BinOpcode (e.g. for NAND).
7325 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7326     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7327     unsigned BitSize, bool Invert) const {
7328   MachineFunction &MF = *MBB->getParent();
7329   const SystemZInstrInfo *TII =
7330       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7331   MachineRegisterInfo &MRI = MF.getRegInfo();
7332   bool IsSubWord = (BitSize < 32);
7333 
7334   // Extract the operands.  Base can be a register or a frame index.
7335   // Src2 can be a register or immediate.
7336   Register Dest = MI.getOperand(0).getReg();
7337   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7338   int64_t Disp = MI.getOperand(2).getImm();
7339   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7340   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7341   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7342   DebugLoc DL = MI.getDebugLoc();
7343   if (IsSubWord)
7344     BitSize = MI.getOperand(6).getImm();
7345 
7346   // Subword operations use 32-bit registers.
7347   const TargetRegisterClass *RC = (BitSize <= 32 ?
7348                                    &SystemZ::GR32BitRegClass :
7349                                    &SystemZ::GR64BitRegClass);
7350   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7351   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7352 
7353   // Get the right opcodes for the displacement.
7354   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7355   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7356   assert(LOpcode && CSOpcode && "Displacement out of range");
7357 
7358   // Create virtual registers for temporary results.
7359   Register OrigVal       = MRI.createVirtualRegister(RC);
7360   Register OldVal        = MRI.createVirtualRegister(RC);
7361   Register NewVal        = (BinOpcode || IsSubWord ?
7362                             MRI.createVirtualRegister(RC) : Src2.getReg());
7363   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7364   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7365 
7366   // Insert a basic block for the main loop.
7367   MachineBasicBlock *StartMBB = MBB;
7368   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7369   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7370 
7371   //  StartMBB:
7372   //   ...
7373   //   %OrigVal = L Disp(%Base)
7374   //   # fall through to LoopMMB
7375   MBB = StartMBB;
7376   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7377   MBB->addSuccessor(LoopMBB);
7378 
7379   //  LoopMBB:
7380   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7381   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7382   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7383   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7384   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7385   //   JNE LoopMBB
7386   //   # fall through to DoneMMB
7387   MBB = LoopMBB;
7388   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7389     .addReg(OrigVal).addMBB(StartMBB)
7390     .addReg(Dest).addMBB(LoopMBB);
7391   if (IsSubWord)
7392     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7393       .addReg(OldVal).addReg(BitShift).addImm(0);
7394   if (Invert) {
7395     // Perform the operation normally and then invert every bit of the field.
7396     Register Tmp = MRI.createVirtualRegister(RC);
7397     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7398     if (BitSize <= 32)
7399       // XILF with the upper BitSize bits set.
7400       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7401         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7402     else {
7403       // Use LCGR and add -1 to the result, which is more compact than
7404       // an XILF, XILH pair.
7405       Register Tmp2 = MRI.createVirtualRegister(RC);
7406       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7407       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7408         .addReg(Tmp2).addImm(-1);
7409     }
7410   } else if (BinOpcode)
7411     // A simply binary operation.
7412     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7413         .addReg(RotatedOldVal)
7414         .add(Src2);
7415   else if (IsSubWord)
7416     // Use RISBG to rotate Src2 into position and use it to replace the
7417     // field in RotatedOldVal.
7418     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7419       .addReg(RotatedOldVal).addReg(Src2.getReg())
7420       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7421   if (IsSubWord)
7422     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7423       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7424   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7425       .addReg(OldVal)
7426       .addReg(NewVal)
7427       .add(Base)
7428       .addImm(Disp);
7429   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7430     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7431   MBB->addSuccessor(LoopMBB);
7432   MBB->addSuccessor(DoneMBB);
7433 
7434   MI.eraseFromParent();
7435   return DoneMBB;
7436 }
7437 
7438 // Implement EmitInstrWithCustomInserter for pseudo
7439 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7440 // instruction that should be used to compare the current field with the
7441 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7442 // for when the current field should be kept.  BitSize is the width of
7443 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7444 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7445     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7446     unsigned KeepOldMask, unsigned BitSize) const {
7447   MachineFunction &MF = *MBB->getParent();
7448   const SystemZInstrInfo *TII =
7449       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7450   MachineRegisterInfo &MRI = MF.getRegInfo();
7451   bool IsSubWord = (BitSize < 32);
7452 
7453   // Extract the operands.  Base can be a register or a frame index.
7454   Register Dest = MI.getOperand(0).getReg();
7455   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7456   int64_t Disp = MI.getOperand(2).getImm();
7457   Register Src2 = MI.getOperand(3).getReg();
7458   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7459   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7460   DebugLoc DL = MI.getDebugLoc();
7461   if (IsSubWord)
7462     BitSize = MI.getOperand(6).getImm();
7463 
7464   // Subword operations use 32-bit registers.
7465   const TargetRegisterClass *RC = (BitSize <= 32 ?
7466                                    &SystemZ::GR32BitRegClass :
7467                                    &SystemZ::GR64BitRegClass);
7468   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7469   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7470 
7471   // Get the right opcodes for the displacement.
7472   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7473   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7474   assert(LOpcode && CSOpcode && "Displacement out of range");
7475 
7476   // Create virtual registers for temporary results.
7477   Register OrigVal       = MRI.createVirtualRegister(RC);
7478   Register OldVal        = MRI.createVirtualRegister(RC);
7479   Register NewVal        = MRI.createVirtualRegister(RC);
7480   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7481   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7482   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7483 
7484   // Insert 3 basic blocks for the loop.
7485   MachineBasicBlock *StartMBB  = MBB;
7486   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7487   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7488   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7489   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7490 
7491   //  StartMBB:
7492   //   ...
7493   //   %OrigVal     = L Disp(%Base)
7494   //   # fall through to LoopMMB
7495   MBB = StartMBB;
7496   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7497   MBB->addSuccessor(LoopMBB);
7498 
7499   //  LoopMBB:
7500   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7501   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7502   //   CompareOpcode %RotatedOldVal, %Src2
7503   //   BRC KeepOldMask, UpdateMBB
7504   MBB = LoopMBB;
7505   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7506     .addReg(OrigVal).addMBB(StartMBB)
7507     .addReg(Dest).addMBB(UpdateMBB);
7508   if (IsSubWord)
7509     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7510       .addReg(OldVal).addReg(BitShift).addImm(0);
7511   BuildMI(MBB, DL, TII->get(CompareOpcode))
7512     .addReg(RotatedOldVal).addReg(Src2);
7513   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7514     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7515   MBB->addSuccessor(UpdateMBB);
7516   MBB->addSuccessor(UseAltMBB);
7517 
7518   //  UseAltMBB:
7519   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7520   //   # fall through to UpdateMMB
7521   MBB = UseAltMBB;
7522   if (IsSubWord)
7523     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7524       .addReg(RotatedOldVal).addReg(Src2)
7525       .addImm(32).addImm(31 + BitSize).addImm(0);
7526   MBB->addSuccessor(UpdateMBB);
7527 
7528   //  UpdateMBB:
7529   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7530   //                        [ %RotatedAltVal, UseAltMBB ]
7531   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7532   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7533   //   JNE LoopMBB
7534   //   # fall through to DoneMMB
7535   MBB = UpdateMBB;
7536   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7537     .addReg(RotatedOldVal).addMBB(LoopMBB)
7538     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7539   if (IsSubWord)
7540     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7541       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7542   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7543       .addReg(OldVal)
7544       .addReg(NewVal)
7545       .add(Base)
7546       .addImm(Disp);
7547   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7548     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7549   MBB->addSuccessor(LoopMBB);
7550   MBB->addSuccessor(DoneMBB);
7551 
7552   MI.eraseFromParent();
7553   return DoneMBB;
7554 }
7555 
7556 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7557 // instruction MI.
7558 MachineBasicBlock *
7559 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7560                                           MachineBasicBlock *MBB) const {
7561 
7562   MachineFunction &MF = *MBB->getParent();
7563   const SystemZInstrInfo *TII =
7564       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7565   MachineRegisterInfo &MRI = MF.getRegInfo();
7566 
7567   // Extract the operands.  Base can be a register or a frame index.
7568   Register Dest = MI.getOperand(0).getReg();
7569   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7570   int64_t Disp = MI.getOperand(2).getImm();
7571   Register OrigCmpVal = MI.getOperand(3).getReg();
7572   Register OrigSwapVal = MI.getOperand(4).getReg();
7573   Register BitShift = MI.getOperand(5).getReg();
7574   Register NegBitShift = MI.getOperand(6).getReg();
7575   int64_t BitSize = MI.getOperand(7).getImm();
7576   DebugLoc DL = MI.getDebugLoc();
7577 
7578   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7579 
7580   // Get the right opcodes for the displacement.
7581   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7582   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7583   assert(LOpcode && CSOpcode && "Displacement out of range");
7584 
7585   // Create virtual registers for temporary results.
7586   Register OrigOldVal = MRI.createVirtualRegister(RC);
7587   Register OldVal = MRI.createVirtualRegister(RC);
7588   Register CmpVal = MRI.createVirtualRegister(RC);
7589   Register SwapVal = MRI.createVirtualRegister(RC);
7590   Register StoreVal = MRI.createVirtualRegister(RC);
7591   Register RetryOldVal = MRI.createVirtualRegister(RC);
7592   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7593   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7594 
7595   // Insert 2 basic blocks for the loop.
7596   MachineBasicBlock *StartMBB = MBB;
7597   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7598   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7599   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7600 
7601   //  StartMBB:
7602   //   ...
7603   //   %OrigOldVal     = L Disp(%Base)
7604   //   # fall through to LoopMMB
7605   MBB = StartMBB;
7606   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7607       .add(Base)
7608       .addImm(Disp)
7609       .addReg(0);
7610   MBB->addSuccessor(LoopMBB);
7611 
7612   //  LoopMBB:
7613   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7614   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7615   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7616   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7617   //                      ^^ The low BitSize bits contain the field
7618   //                         of interest.
7619   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7620   //                      ^^ Replace the upper 32-BitSize bits of the
7621   //                         comparison value with those that we loaded,
7622   //                         so that we can use a full word comparison.
7623   //   CR %Dest, %RetryCmpVal
7624   //   JNE DoneMBB
7625   //   # Fall through to SetMBB
7626   MBB = LoopMBB;
7627   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7628     .addReg(OrigOldVal).addMBB(StartMBB)
7629     .addReg(RetryOldVal).addMBB(SetMBB);
7630   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7631     .addReg(OrigCmpVal).addMBB(StartMBB)
7632     .addReg(RetryCmpVal).addMBB(SetMBB);
7633   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7634     .addReg(OrigSwapVal).addMBB(StartMBB)
7635     .addReg(RetrySwapVal).addMBB(SetMBB);
7636   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7637     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7638   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7639     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7640   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7641     .addReg(Dest).addReg(RetryCmpVal);
7642   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7643     .addImm(SystemZ::CCMASK_ICMP)
7644     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7645   MBB->addSuccessor(DoneMBB);
7646   MBB->addSuccessor(SetMBB);
7647 
7648   //  SetMBB:
7649   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7650   //                      ^^ Replace the upper 32-BitSize bits of the new
7651   //                         value with those that we loaded.
7652   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7653   //                      ^^ Rotate the new field to its proper position.
7654   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7655   //   JNE LoopMBB
7656   //   # fall through to ExitMMB
7657   MBB = SetMBB;
7658   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7659     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7660   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7661     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7662   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7663       .addReg(OldVal)
7664       .addReg(StoreVal)
7665       .add(Base)
7666       .addImm(Disp);
7667   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7668     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7669   MBB->addSuccessor(LoopMBB);
7670   MBB->addSuccessor(DoneMBB);
7671 
7672   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7673   // to the block after the loop.  At this point, CC may have been defined
7674   // either by the CR in LoopMBB or by the CS in SetMBB.
7675   if (!MI.registerDefIsDead(SystemZ::CC))
7676     DoneMBB->addLiveIn(SystemZ::CC);
7677 
7678   MI.eraseFromParent();
7679   return DoneMBB;
7680 }
7681 
7682 // Emit a move from two GR64s to a GR128.
7683 MachineBasicBlock *
7684 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7685                                    MachineBasicBlock *MBB) const {
7686   MachineFunction &MF = *MBB->getParent();
7687   const SystemZInstrInfo *TII =
7688       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7689   MachineRegisterInfo &MRI = MF.getRegInfo();
7690   DebugLoc DL = MI.getDebugLoc();
7691 
7692   Register Dest = MI.getOperand(0).getReg();
7693   Register Hi = MI.getOperand(1).getReg();
7694   Register Lo = MI.getOperand(2).getReg();
7695   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7696   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7697 
7698   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7699   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7700     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7701   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7702     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7703 
7704   MI.eraseFromParent();
7705   return MBB;
7706 }
7707 
7708 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7709 // if the high register of the GR128 value must be cleared or false if
7710 // it's "don't care".
7711 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7712                                                      MachineBasicBlock *MBB,
7713                                                      bool ClearEven) const {
7714   MachineFunction &MF = *MBB->getParent();
7715   const SystemZInstrInfo *TII =
7716       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7717   MachineRegisterInfo &MRI = MF.getRegInfo();
7718   DebugLoc DL = MI.getDebugLoc();
7719 
7720   Register Dest = MI.getOperand(0).getReg();
7721   Register Src = MI.getOperand(1).getReg();
7722   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7723 
7724   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7725   if (ClearEven) {
7726     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7727     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7728 
7729     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7730       .addImm(0);
7731     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7732       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7733     In128 = NewIn128;
7734   }
7735   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7736     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7737 
7738   MI.eraseFromParent();
7739   return MBB;
7740 }
7741 
7742 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7743     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7744   MachineFunction &MF = *MBB->getParent();
7745   const SystemZInstrInfo *TII =
7746       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7747   MachineRegisterInfo &MRI = MF.getRegInfo();
7748   DebugLoc DL = MI.getDebugLoc();
7749 
7750   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7751   uint64_t DestDisp = MI.getOperand(1).getImm();
7752   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7753   uint64_t SrcDisp = MI.getOperand(3).getImm();
7754   uint64_t Length = MI.getOperand(4).getImm();
7755 
7756   // When generating more than one CLC, all but the last will need to
7757   // branch to the end when a difference is found.
7758   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7759                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7760 
7761   // Check for the loop form, in which operand 5 is the trip count.
7762   if (MI.getNumExplicitOperands() > 5) {
7763     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7764 
7765     Register StartCountReg = MI.getOperand(5).getReg();
7766     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7767     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7768                               forceReg(MI, DestBase, TII));
7769 
7770     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7771     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7772     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7773                             MRI.createVirtualRegister(RC));
7774     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7775     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7776                             MRI.createVirtualRegister(RC));
7777 
7778     RC = &SystemZ::GR64BitRegClass;
7779     Register ThisCountReg = MRI.createVirtualRegister(RC);
7780     Register NextCountReg = MRI.createVirtualRegister(RC);
7781 
7782     MachineBasicBlock *StartMBB = MBB;
7783     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7784     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7785     MachineBasicBlock *NextMBB =
7786         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7787 
7788     //  StartMBB:
7789     //   # fall through to LoopMMB
7790     MBB->addSuccessor(LoopMBB);
7791 
7792     //  LoopMBB:
7793     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7794     //                      [ %NextDestReg, NextMBB ]
7795     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7796     //                     [ %NextSrcReg, NextMBB ]
7797     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7798     //                       [ %NextCountReg, NextMBB ]
7799     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7800     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7801     //   ( JLH EndMBB )
7802     //
7803     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7804     MBB = LoopMBB;
7805 
7806     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7807       .addReg(StartDestReg).addMBB(StartMBB)
7808       .addReg(NextDestReg).addMBB(NextMBB);
7809     if (!HaveSingleBase)
7810       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7811         .addReg(StartSrcReg).addMBB(StartMBB)
7812         .addReg(NextSrcReg).addMBB(NextMBB);
7813     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7814       .addReg(StartCountReg).addMBB(StartMBB)
7815       .addReg(NextCountReg).addMBB(NextMBB);
7816     if (Opcode == SystemZ::MVC)
7817       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7818         .addImm(SystemZ::PFD_WRITE)
7819         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7820     BuildMI(MBB, DL, TII->get(Opcode))
7821       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7822       .addReg(ThisSrcReg).addImm(SrcDisp);
7823     if (EndMBB) {
7824       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7825         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7826         .addMBB(EndMBB);
7827       MBB->addSuccessor(EndMBB);
7828       MBB->addSuccessor(NextMBB);
7829     }
7830 
7831     // NextMBB:
7832     //   %NextDestReg = LA 256(%ThisDestReg)
7833     //   %NextSrcReg = LA 256(%ThisSrcReg)
7834     //   %NextCountReg = AGHI %ThisCountReg, -1
7835     //   CGHI %NextCountReg, 0
7836     //   JLH LoopMBB
7837     //   # fall through to DoneMMB
7838     //
7839     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7840     MBB = NextMBB;
7841 
7842     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7843       .addReg(ThisDestReg).addImm(256).addReg(0);
7844     if (!HaveSingleBase)
7845       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7846         .addReg(ThisSrcReg).addImm(256).addReg(0);
7847     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7848       .addReg(ThisCountReg).addImm(-1);
7849     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7850       .addReg(NextCountReg).addImm(0);
7851     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7852       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7853       .addMBB(LoopMBB);
7854     MBB->addSuccessor(LoopMBB);
7855     MBB->addSuccessor(DoneMBB);
7856 
7857     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7858     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7859     Length &= 255;
7860     if (EndMBB && !Length)
7861       // If the loop handled the whole CLC range, DoneMBB will be empty with
7862       // CC live-through into EndMBB, so add it as live-in.
7863       DoneMBB->addLiveIn(SystemZ::CC);
7864     MBB = DoneMBB;
7865   }
7866   // Handle any remaining bytes with straight-line code.
7867   while (Length > 0) {
7868     uint64_t ThisLength = std::min(Length, uint64_t(256));
7869     // The previous iteration might have created out-of-range displacements.
7870     // Apply them using LAY if so.
7871     if (!isUInt<12>(DestDisp)) {
7872       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7873       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7874           .add(DestBase)
7875           .addImm(DestDisp)
7876           .addReg(0);
7877       DestBase = MachineOperand::CreateReg(Reg, false);
7878       DestDisp = 0;
7879     }
7880     if (!isUInt<12>(SrcDisp)) {
7881       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7882       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7883           .add(SrcBase)
7884           .addImm(SrcDisp)
7885           .addReg(0);
7886       SrcBase = MachineOperand::CreateReg(Reg, false);
7887       SrcDisp = 0;
7888     }
7889     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7890         .add(DestBase)
7891         .addImm(DestDisp)
7892         .addImm(ThisLength)
7893         .add(SrcBase)
7894         .addImm(SrcDisp)
7895         .setMemRefs(MI.memoperands());
7896     DestDisp += ThisLength;
7897     SrcDisp += ThisLength;
7898     Length -= ThisLength;
7899     // If there's another CLC to go, branch to the end if a difference
7900     // was found.
7901     if (EndMBB && Length > 0) {
7902       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7903       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7904         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7905         .addMBB(EndMBB);
7906       MBB->addSuccessor(EndMBB);
7907       MBB->addSuccessor(NextMBB);
7908       MBB = NextMBB;
7909     }
7910   }
7911   if (EndMBB) {
7912     MBB->addSuccessor(EndMBB);
7913     MBB = EndMBB;
7914     MBB->addLiveIn(SystemZ::CC);
7915   }
7916 
7917   MI.eraseFromParent();
7918   return MBB;
7919 }
7920 
7921 // Decompose string pseudo-instruction MI into a loop that continually performs
7922 // Opcode until CC != 3.
7923 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7924     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7925   MachineFunction &MF = *MBB->getParent();
7926   const SystemZInstrInfo *TII =
7927       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7928   MachineRegisterInfo &MRI = MF.getRegInfo();
7929   DebugLoc DL = MI.getDebugLoc();
7930 
7931   uint64_t End1Reg = MI.getOperand(0).getReg();
7932   uint64_t Start1Reg = MI.getOperand(1).getReg();
7933   uint64_t Start2Reg = MI.getOperand(2).getReg();
7934   uint64_t CharReg = MI.getOperand(3).getReg();
7935 
7936   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7937   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7938   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7939   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7940 
7941   MachineBasicBlock *StartMBB = MBB;
7942   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7943   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7944 
7945   //  StartMBB:
7946   //   # fall through to LoopMMB
7947   MBB->addSuccessor(LoopMBB);
7948 
7949   //  LoopMBB:
7950   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7951   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7952   //   R0L = %CharReg
7953   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7954   //   JO LoopMBB
7955   //   # fall through to DoneMMB
7956   //
7957   // The load of R0L can be hoisted by post-RA LICM.
7958   MBB = LoopMBB;
7959 
7960   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7961     .addReg(Start1Reg).addMBB(StartMBB)
7962     .addReg(End1Reg).addMBB(LoopMBB);
7963   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7964     .addReg(Start2Reg).addMBB(StartMBB)
7965     .addReg(End2Reg).addMBB(LoopMBB);
7966   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7967   BuildMI(MBB, DL, TII->get(Opcode))
7968     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7969     .addReg(This1Reg).addReg(This2Reg);
7970   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7971     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7972   MBB->addSuccessor(LoopMBB);
7973   MBB->addSuccessor(DoneMBB);
7974 
7975   DoneMBB->addLiveIn(SystemZ::CC);
7976 
7977   MI.eraseFromParent();
7978   return DoneMBB;
7979 }
7980 
7981 // Update TBEGIN instruction with final opcode and register clobbers.
7982 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7983     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7984     bool NoFloat) const {
7985   MachineFunction &MF = *MBB->getParent();
7986   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7987   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7988 
7989   // Update opcode.
7990   MI.setDesc(TII->get(Opcode));
7991 
7992   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7993   // Make sure to add the corresponding GRSM bits if they are missing.
7994   uint64_t Control = MI.getOperand(2).getImm();
7995   static const unsigned GPRControlBit[16] = {
7996     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7997     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7998   };
7999   Control |= GPRControlBit[15];
8000   if (TFI->hasFP(MF))
8001     Control |= GPRControlBit[11];
8002   MI.getOperand(2).setImm(Control);
8003 
8004   // Add GPR clobbers.
8005   for (int I = 0; I < 16; I++) {
8006     if ((Control & GPRControlBit[I]) == 0) {
8007       unsigned Reg = SystemZMC::GR64Regs[I];
8008       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8009     }
8010   }
8011 
8012   // Add FPR/VR clobbers.
8013   if (!NoFloat && (Control & 4) != 0) {
8014     if (Subtarget.hasVector()) {
8015       for (int I = 0; I < 32; I++) {
8016         unsigned Reg = SystemZMC::VR128Regs[I];
8017         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8018       }
8019     } else {
8020       for (int I = 0; I < 16; I++) {
8021         unsigned Reg = SystemZMC::FP64Regs[I];
8022         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8023       }
8024     }
8025   }
8026 
8027   return MBB;
8028 }
8029 
8030 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8031     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8032   MachineFunction &MF = *MBB->getParent();
8033   MachineRegisterInfo *MRI = &MF.getRegInfo();
8034   const SystemZInstrInfo *TII =
8035       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8036   DebugLoc DL = MI.getDebugLoc();
8037 
8038   Register SrcReg = MI.getOperand(0).getReg();
8039 
8040   // Create new virtual register of the same class as source.
8041   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8042   Register DstReg = MRI->createVirtualRegister(RC);
8043 
8044   // Replace pseudo with a normal load-and-test that models the def as
8045   // well.
8046   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8047     .addReg(SrcReg)
8048     .setMIFlags(MI.getFlags());
8049   MI.eraseFromParent();
8050 
8051   return MBB;
8052 }
8053 
8054 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8055     MachineInstr &MI, MachineBasicBlock *MBB) const {
8056   MachineFunction &MF = *MBB->getParent();
8057   MachineRegisterInfo *MRI = &MF.getRegInfo();
8058   const SystemZInstrInfo *TII =
8059       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8060   DebugLoc DL = MI.getDebugLoc();
8061   const unsigned ProbeSize = getStackProbeSize(MF);
8062   Register DstReg = MI.getOperand(0).getReg();
8063   Register SizeReg = MI.getOperand(2).getReg();
8064 
8065   MachineBasicBlock *StartMBB = MBB;
8066   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8067   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8068   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8069   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8070   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8071 
8072   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8073     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8074 
8075   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8076   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8077 
8078   //  LoopTestMBB
8079   //  BRC TailTestMBB
8080   //  # fallthrough to LoopBodyMBB
8081   StartMBB->addSuccessor(LoopTestMBB);
8082   MBB = LoopTestMBB;
8083   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8084     .addReg(SizeReg)
8085     .addMBB(StartMBB)
8086     .addReg(IncReg)
8087     .addMBB(LoopBodyMBB);
8088   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8089     .addReg(PHIReg)
8090     .addImm(ProbeSize);
8091   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8092     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8093     .addMBB(TailTestMBB);
8094   MBB->addSuccessor(LoopBodyMBB);
8095   MBB->addSuccessor(TailTestMBB);
8096 
8097   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8098   //  J LoopTestMBB
8099   MBB = LoopBodyMBB;
8100   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8101     .addReg(PHIReg)
8102     .addImm(ProbeSize);
8103   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8104     .addReg(SystemZ::R15D)
8105     .addImm(ProbeSize);
8106   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8107     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8108     .setMemRefs(VolLdMMO);
8109   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8110   MBB->addSuccessor(LoopTestMBB);
8111 
8112   //  TailTestMBB
8113   //  BRC DoneMBB
8114   //  # fallthrough to TailMBB
8115   MBB = TailTestMBB;
8116   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8117     .addReg(PHIReg)
8118     .addImm(0);
8119   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8120     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8121     .addMBB(DoneMBB);
8122   MBB->addSuccessor(TailMBB);
8123   MBB->addSuccessor(DoneMBB);
8124 
8125   //  TailMBB
8126   //  # fallthrough to DoneMBB
8127   MBB = TailMBB;
8128   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8129     .addReg(SystemZ::R15D)
8130     .addReg(PHIReg);
8131   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8132     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8133     .setMemRefs(VolLdMMO);
8134   MBB->addSuccessor(DoneMBB);
8135 
8136   //  DoneMBB
8137   MBB = DoneMBB;
8138   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8139     .addReg(SystemZ::R15D);
8140 
8141   MI.eraseFromParent();
8142   return DoneMBB;
8143 }
8144 
8145 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8146     MachineInstr &MI, MachineBasicBlock *MBB) const {
8147   switch (MI.getOpcode()) {
8148   case SystemZ::Select32:
8149   case SystemZ::Select64:
8150   case SystemZ::SelectF32:
8151   case SystemZ::SelectF64:
8152   case SystemZ::SelectF128:
8153   case SystemZ::SelectVR32:
8154   case SystemZ::SelectVR64:
8155   case SystemZ::SelectVR128:
8156     return emitSelect(MI, MBB);
8157 
8158   case SystemZ::CondStore8Mux:
8159     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8160   case SystemZ::CondStore8MuxInv:
8161     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8162   case SystemZ::CondStore16Mux:
8163     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8164   case SystemZ::CondStore16MuxInv:
8165     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8166   case SystemZ::CondStore32Mux:
8167     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8168   case SystemZ::CondStore32MuxInv:
8169     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8170   case SystemZ::CondStore8:
8171     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8172   case SystemZ::CondStore8Inv:
8173     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8174   case SystemZ::CondStore16:
8175     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8176   case SystemZ::CondStore16Inv:
8177     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8178   case SystemZ::CondStore32:
8179     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8180   case SystemZ::CondStore32Inv:
8181     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8182   case SystemZ::CondStore64:
8183     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8184   case SystemZ::CondStore64Inv:
8185     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8186   case SystemZ::CondStoreF32:
8187     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8188   case SystemZ::CondStoreF32Inv:
8189     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8190   case SystemZ::CondStoreF64:
8191     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8192   case SystemZ::CondStoreF64Inv:
8193     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8194 
8195   case SystemZ::PAIR128:
8196     return emitPair128(MI, MBB);
8197   case SystemZ::AEXT128:
8198     return emitExt128(MI, MBB, false);
8199   case SystemZ::ZEXT128:
8200     return emitExt128(MI, MBB, true);
8201 
8202   case SystemZ::ATOMIC_SWAPW:
8203     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8204   case SystemZ::ATOMIC_SWAP_32:
8205     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8206   case SystemZ::ATOMIC_SWAP_64:
8207     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8208 
8209   case SystemZ::ATOMIC_LOADW_AR:
8210     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8211   case SystemZ::ATOMIC_LOADW_AFI:
8212     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8213   case SystemZ::ATOMIC_LOAD_AR:
8214     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8215   case SystemZ::ATOMIC_LOAD_AHI:
8216     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8217   case SystemZ::ATOMIC_LOAD_AFI:
8218     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8219   case SystemZ::ATOMIC_LOAD_AGR:
8220     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8221   case SystemZ::ATOMIC_LOAD_AGHI:
8222     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8223   case SystemZ::ATOMIC_LOAD_AGFI:
8224     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8225 
8226   case SystemZ::ATOMIC_LOADW_SR:
8227     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8228   case SystemZ::ATOMIC_LOAD_SR:
8229     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8230   case SystemZ::ATOMIC_LOAD_SGR:
8231     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8232 
8233   case SystemZ::ATOMIC_LOADW_NR:
8234     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8235   case SystemZ::ATOMIC_LOADW_NILH:
8236     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8237   case SystemZ::ATOMIC_LOAD_NR:
8238     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8239   case SystemZ::ATOMIC_LOAD_NILL:
8240     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8241   case SystemZ::ATOMIC_LOAD_NILH:
8242     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8243   case SystemZ::ATOMIC_LOAD_NILF:
8244     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8245   case SystemZ::ATOMIC_LOAD_NGR:
8246     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8247   case SystemZ::ATOMIC_LOAD_NILL64:
8248     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8249   case SystemZ::ATOMIC_LOAD_NILH64:
8250     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8251   case SystemZ::ATOMIC_LOAD_NIHL64:
8252     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8253   case SystemZ::ATOMIC_LOAD_NIHH64:
8254     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8255   case SystemZ::ATOMIC_LOAD_NILF64:
8256     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8257   case SystemZ::ATOMIC_LOAD_NIHF64:
8258     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8259 
8260   case SystemZ::ATOMIC_LOADW_OR:
8261     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8262   case SystemZ::ATOMIC_LOADW_OILH:
8263     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8264   case SystemZ::ATOMIC_LOAD_OR:
8265     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8266   case SystemZ::ATOMIC_LOAD_OILL:
8267     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8268   case SystemZ::ATOMIC_LOAD_OILH:
8269     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8270   case SystemZ::ATOMIC_LOAD_OILF:
8271     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8272   case SystemZ::ATOMIC_LOAD_OGR:
8273     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8274   case SystemZ::ATOMIC_LOAD_OILL64:
8275     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8276   case SystemZ::ATOMIC_LOAD_OILH64:
8277     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8278   case SystemZ::ATOMIC_LOAD_OIHL64:
8279     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8280   case SystemZ::ATOMIC_LOAD_OIHH64:
8281     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8282   case SystemZ::ATOMIC_LOAD_OILF64:
8283     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8284   case SystemZ::ATOMIC_LOAD_OIHF64:
8285     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8286 
8287   case SystemZ::ATOMIC_LOADW_XR:
8288     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8289   case SystemZ::ATOMIC_LOADW_XILF:
8290     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8291   case SystemZ::ATOMIC_LOAD_XR:
8292     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8293   case SystemZ::ATOMIC_LOAD_XILF:
8294     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8295   case SystemZ::ATOMIC_LOAD_XGR:
8296     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8297   case SystemZ::ATOMIC_LOAD_XILF64:
8298     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8299   case SystemZ::ATOMIC_LOAD_XIHF64:
8300     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8301 
8302   case SystemZ::ATOMIC_LOADW_NRi:
8303     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8304   case SystemZ::ATOMIC_LOADW_NILHi:
8305     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8306   case SystemZ::ATOMIC_LOAD_NRi:
8307     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8308   case SystemZ::ATOMIC_LOAD_NILLi:
8309     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8310   case SystemZ::ATOMIC_LOAD_NILHi:
8311     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8312   case SystemZ::ATOMIC_LOAD_NILFi:
8313     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8314   case SystemZ::ATOMIC_LOAD_NGRi:
8315     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8316   case SystemZ::ATOMIC_LOAD_NILL64i:
8317     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8318   case SystemZ::ATOMIC_LOAD_NILH64i:
8319     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8320   case SystemZ::ATOMIC_LOAD_NIHL64i:
8321     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8322   case SystemZ::ATOMIC_LOAD_NIHH64i:
8323     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8324   case SystemZ::ATOMIC_LOAD_NILF64i:
8325     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8326   case SystemZ::ATOMIC_LOAD_NIHF64i:
8327     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8328 
8329   case SystemZ::ATOMIC_LOADW_MIN:
8330     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8331                                 SystemZ::CCMASK_CMP_LE, 0);
8332   case SystemZ::ATOMIC_LOAD_MIN_32:
8333     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8334                                 SystemZ::CCMASK_CMP_LE, 32);
8335   case SystemZ::ATOMIC_LOAD_MIN_64:
8336     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8337                                 SystemZ::CCMASK_CMP_LE, 64);
8338 
8339   case SystemZ::ATOMIC_LOADW_MAX:
8340     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8341                                 SystemZ::CCMASK_CMP_GE, 0);
8342   case SystemZ::ATOMIC_LOAD_MAX_32:
8343     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8344                                 SystemZ::CCMASK_CMP_GE, 32);
8345   case SystemZ::ATOMIC_LOAD_MAX_64:
8346     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8347                                 SystemZ::CCMASK_CMP_GE, 64);
8348 
8349   case SystemZ::ATOMIC_LOADW_UMIN:
8350     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8351                                 SystemZ::CCMASK_CMP_LE, 0);
8352   case SystemZ::ATOMIC_LOAD_UMIN_32:
8353     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8354                                 SystemZ::CCMASK_CMP_LE, 32);
8355   case SystemZ::ATOMIC_LOAD_UMIN_64:
8356     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8357                                 SystemZ::CCMASK_CMP_LE, 64);
8358 
8359   case SystemZ::ATOMIC_LOADW_UMAX:
8360     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8361                                 SystemZ::CCMASK_CMP_GE, 0);
8362   case SystemZ::ATOMIC_LOAD_UMAX_32:
8363     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8364                                 SystemZ::CCMASK_CMP_GE, 32);
8365   case SystemZ::ATOMIC_LOAD_UMAX_64:
8366     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8367                                 SystemZ::CCMASK_CMP_GE, 64);
8368 
8369   case SystemZ::ATOMIC_CMP_SWAPW:
8370     return emitAtomicCmpSwapW(MI, MBB);
8371   case SystemZ::MVCSequence:
8372   case SystemZ::MVCLoop:
8373     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8374   case SystemZ::NCSequence:
8375   case SystemZ::NCLoop:
8376     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8377   case SystemZ::OCSequence:
8378   case SystemZ::OCLoop:
8379     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8380   case SystemZ::XCSequence:
8381   case SystemZ::XCLoop:
8382     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8383   case SystemZ::CLCSequence:
8384   case SystemZ::CLCLoop:
8385     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8386   case SystemZ::CLSTLoop:
8387     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8388   case SystemZ::MVSTLoop:
8389     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8390   case SystemZ::SRSTLoop:
8391     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8392   case SystemZ::TBEGIN:
8393     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8394   case SystemZ::TBEGIN_nofloat:
8395     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8396   case SystemZ::TBEGINC:
8397     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8398   case SystemZ::LTEBRCompare_VecPseudo:
8399     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8400   case SystemZ::LTDBRCompare_VecPseudo:
8401     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8402   case SystemZ::LTXBRCompare_VecPseudo:
8403     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8404 
8405   case SystemZ::PROBED_ALLOCA:
8406     return emitProbedAlloca(MI, MBB);
8407 
8408   case TargetOpcode::STACKMAP:
8409   case TargetOpcode::PATCHPOINT:
8410     return emitPatchPoint(MI, MBB);
8411 
8412   default:
8413     llvm_unreachable("Unexpected instr type to insert");
8414   }
8415 }
8416 
8417 // This is only used by the isel schedulers, and is needed only to prevent
8418 // compiler from crashing when list-ilp is used.
8419 const TargetRegisterClass *
8420 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8421   if (VT == MVT::Untyped)
8422     return &SystemZ::ADDR128BitRegClass;
8423   return TargetLowering::getRepRegClassFor(VT);
8424 }
8425