1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include <cctype> 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "systemz-lower" 30 31 namespace { 32 // Represents a sequence for extracting a 0/1 value from an IPM result: 33 // (((X ^ XORValue) + AddValue) >> Bit) 34 struct IPMConversion { 35 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 36 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 37 38 int64_t XORValue; 39 int64_t AddValue; 40 unsigned Bit; 41 }; 42 43 // Represents information about a comparison. 44 struct Comparison { 45 Comparison(SDValue Op0In, SDValue Op1In) 46 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 47 48 // The operands to the comparison. 49 SDValue Op0, Op1; 50 51 // The opcode that should be used to compare Op0 and Op1. 52 unsigned Opcode; 53 54 // A SystemZICMP value. Only used for integer comparisons. 55 unsigned ICmpType; 56 57 // The mask of CC values that Opcode can produce. 58 unsigned CCValid; 59 60 // The mask of CC values for which the original condition is true. 61 unsigned CCMask; 62 }; 63 } // end anonymous namespace 64 65 // Classify VT as either 32 or 64 bit. 66 static bool is32Bit(EVT VT) { 67 switch (VT.getSimpleVT().SimpleTy) { 68 case MVT::i32: 69 return true; 70 case MVT::i64: 71 return false; 72 default: 73 llvm_unreachable("Unsupported type"); 74 } 75 } 76 77 // Return a version of MachineOperand that can be safely used before the 78 // final use. 79 static MachineOperand earlyUseOperand(MachineOperand Op) { 80 if (Op.isReg()) 81 Op.setIsKill(false); 82 return Op; 83 } 84 85 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 86 const SystemZSubtarget &STI) 87 : TargetLowering(TM), Subtarget(STI) { 88 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 89 90 // Set up the register classes. 91 if (Subtarget.hasHighWord()) 92 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 93 else 94 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 95 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 96 if (Subtarget.hasVector()) { 97 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 98 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 99 } else { 100 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 101 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 102 } 103 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 104 105 if (Subtarget.hasVector()) { 106 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(2); 131 132 // Handle operations that are handled in a similar way for all types. 133 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 134 I <= MVT::LAST_FP_VALUETYPE; 135 ++I) { 136 MVT VT = MVT::SimpleValueType(I); 137 if (isTypeLegal(VT)) { 138 // Lower SET_CC into an IPM-based sequence. 139 setOperationAction(ISD::SETCC, VT, Custom); 140 141 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 142 setOperationAction(ISD::SELECT, VT, Expand); 143 144 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 145 setOperationAction(ISD::SELECT_CC, VT, Custom); 146 setOperationAction(ISD::BR_CC, VT, Custom); 147 } 148 } 149 150 // Expand jump table branches as address arithmetic followed by an 151 // indirect jump. 152 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 153 154 // Expand BRCOND into a BR_CC (see above). 155 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 156 157 // Handle integer types. 158 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 159 I <= MVT::LAST_INTEGER_VALUETYPE; 160 ++I) { 161 MVT VT = MVT::SimpleValueType(I); 162 if (isTypeLegal(VT)) { 163 // Expand individual DIV and REMs into DIVREMs. 164 setOperationAction(ISD::SDIV, VT, Expand); 165 setOperationAction(ISD::UDIV, VT, Expand); 166 setOperationAction(ISD::SREM, VT, Expand); 167 setOperationAction(ISD::UREM, VT, Expand); 168 setOperationAction(ISD::SDIVREM, VT, Custom); 169 setOperationAction(ISD::UDIVREM, VT, Custom); 170 171 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 172 // stores, putting a serialization instruction after the stores. 173 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 174 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 175 176 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 177 // available, or if the operand is constant. 178 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 179 180 // Use POPCNT on z196 and above. 181 if (Subtarget.hasPopulationCount()) 182 setOperationAction(ISD::CTPOP, VT, Custom); 183 else 184 setOperationAction(ISD::CTPOP, VT, Expand); 185 186 // No special instructions for these. 187 setOperationAction(ISD::CTTZ, VT, Expand); 188 setOperationAction(ISD::ROTR, VT, Expand); 189 190 // Use *MUL_LOHI where possible instead of MULH*. 191 setOperationAction(ISD::MULHS, VT, Expand); 192 setOperationAction(ISD::MULHU, VT, Expand); 193 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 194 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 195 196 // Only z196 and above have native support for conversions to unsigned. 197 // On z10, promoting to i64 doesn't generate an inexact condition for 198 // values that are outside the i32 range but in the i64 range, so use 199 // the default expansion. 200 if (!Subtarget.hasFPExtension()) 201 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 202 } 203 } 204 205 // Type legalization will convert 8- and 16-bit atomic operations into 206 // forms that operate on i32s (but still keeping the original memory VT). 207 // Lower them into full i32 operations. 208 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 220 221 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 222 223 // Traps are legal, as we will convert them to "j .+2". 224 setOperationAction(ISD::TRAP, MVT::Other, Legal); 225 226 // z10 has instructions for signed but not unsigned FP conversion. 227 // Handle unsigned 32-bit types as signed 64-bit types. 228 if (!Subtarget.hasFPExtension()) { 229 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 230 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 231 } 232 233 // We have native support for a 64-bit CTLZ, via FLOGR. 234 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 235 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 236 237 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 238 setOperationAction(ISD::OR, MVT::i64, Custom); 239 240 // FIXME: Can we support these natively? 241 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 242 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 243 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 244 245 // We have native instructions for i8, i16 and i32 extensions, but not i1. 246 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 247 for (MVT VT : MVT::integer_valuetypes()) { 248 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 249 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 250 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 251 } 252 253 // Handle the various types of symbolic address. 254 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 255 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 256 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 257 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 258 setOperationAction(ISD::JumpTable, PtrVT, Custom); 259 260 // We need to handle dynamic allocations specially because of the 261 // 160-byte area at the bottom of the stack. 262 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 263 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 264 265 // Use custom expanders so that we can force the function to use 266 // a frame pointer. 267 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 268 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 269 270 // Handle prefetches with PFD or PFDRL. 271 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 272 273 for (MVT VT : MVT::vector_valuetypes()) { 274 // Assume by default that all vector operations need to be expanded. 275 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 276 if (getOperationAction(Opcode, VT) == Legal) 277 setOperationAction(Opcode, VT, Expand); 278 279 // Likewise all truncating stores and extending loads. 280 for (MVT InnerVT : MVT::vector_valuetypes()) { 281 setTruncStoreAction(VT, InnerVT, Expand); 282 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 283 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 284 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 285 } 286 287 if (isTypeLegal(VT)) { 288 // These operations are legal for anything that can be stored in a 289 // vector register, even if there is no native support for the format 290 // as such. In particular, we can do these for v4f32 even though there 291 // are no specific instructions for that format. 292 setOperationAction(ISD::LOAD, VT, Legal); 293 setOperationAction(ISD::STORE, VT, Legal); 294 setOperationAction(ISD::VSELECT, VT, Legal); 295 setOperationAction(ISD::BITCAST, VT, Legal); 296 setOperationAction(ISD::UNDEF, VT, Legal); 297 298 // Likewise, except that we need to replace the nodes with something 299 // more specific. 300 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 301 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 302 } 303 } 304 305 // Handle integer vector types. 306 for (MVT VT : MVT::integer_vector_valuetypes()) { 307 if (isTypeLegal(VT)) { 308 // These operations have direct equivalents. 309 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 310 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 311 setOperationAction(ISD::ADD, VT, Legal); 312 setOperationAction(ISD::SUB, VT, Legal); 313 if (VT != MVT::v2i64) 314 setOperationAction(ISD::MUL, VT, Legal); 315 setOperationAction(ISD::AND, VT, Legal); 316 setOperationAction(ISD::OR, VT, Legal); 317 setOperationAction(ISD::XOR, VT, Legal); 318 setOperationAction(ISD::CTPOP, VT, Custom); 319 setOperationAction(ISD::CTTZ, VT, Legal); 320 setOperationAction(ISD::CTLZ, VT, Legal); 321 322 // Convert a GPR scalar to a vector by inserting it into element 0. 323 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 324 325 // Use a series of unpacks for extensions. 326 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 327 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 328 329 // Detect shifts by a scalar amount and convert them into 330 // V*_BY_SCALAR. 331 setOperationAction(ISD::SHL, VT, Custom); 332 setOperationAction(ISD::SRA, VT, Custom); 333 setOperationAction(ISD::SRL, VT, Custom); 334 335 // At present ROTL isn't matched by DAGCombiner. ROTR should be 336 // converted into ROTL. 337 setOperationAction(ISD::ROTL, VT, Expand); 338 setOperationAction(ISD::ROTR, VT, Expand); 339 340 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 341 // and inverting the result as necessary. 342 setOperationAction(ISD::SETCC, VT, Custom); 343 } 344 } 345 346 if (Subtarget.hasVector()) { 347 // There should be no need to check for float types other than v2f64 348 // since <2 x f32> isn't a legal type. 349 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 350 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 351 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 352 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 353 } 354 355 // Handle floating-point types. 356 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 357 I <= MVT::LAST_FP_VALUETYPE; 358 ++I) { 359 MVT VT = MVT::SimpleValueType(I); 360 if (isTypeLegal(VT)) { 361 // We can use FI for FRINT. 362 setOperationAction(ISD::FRINT, VT, Legal); 363 364 // We can use the extended form of FI for other rounding operations. 365 if (Subtarget.hasFPExtension()) { 366 setOperationAction(ISD::FNEARBYINT, VT, Legal); 367 setOperationAction(ISD::FFLOOR, VT, Legal); 368 setOperationAction(ISD::FCEIL, VT, Legal); 369 setOperationAction(ISD::FTRUNC, VT, Legal); 370 setOperationAction(ISD::FROUND, VT, Legal); 371 } 372 373 // No special instructions for these. 374 setOperationAction(ISD::FSIN, VT, Expand); 375 setOperationAction(ISD::FCOS, VT, Expand); 376 setOperationAction(ISD::FSINCOS, VT, Expand); 377 setOperationAction(ISD::FREM, VT, Expand); 378 setOperationAction(ISD::FPOW, VT, Expand); 379 } 380 } 381 382 // Handle floating-point vector types. 383 if (Subtarget.hasVector()) { 384 // Scalar-to-vector conversion is just a subreg. 385 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 386 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 387 388 // Some insertions and extractions can be done directly but others 389 // need to go via integers. 390 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 391 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 392 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 393 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 394 395 // These operations have direct equivalents. 396 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 397 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 398 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 399 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 400 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 401 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 402 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 403 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 404 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 406 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 407 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 408 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 409 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 410 } 411 412 // We have fused multiply-addition for f32 and f64 but not f128. 413 setOperationAction(ISD::FMA, MVT::f32, Legal); 414 setOperationAction(ISD::FMA, MVT::f64, Legal); 415 setOperationAction(ISD::FMA, MVT::f128, Expand); 416 417 // Needed so that we don't try to implement f128 constant loads using 418 // a load-and-extend of a f80 constant (in cases where the constant 419 // would fit in an f80). 420 for (MVT VT : MVT::fp_valuetypes()) 421 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 422 423 // Floating-point truncation and stores need to be done separately. 424 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 425 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 426 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 427 428 // We have 64-bit FPR<->GPR moves, but need special handling for 429 // 32-bit forms. 430 if (!Subtarget.hasVector()) { 431 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 432 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 433 } 434 435 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 436 // structure, but VAEND is a no-op. 437 setOperationAction(ISD::VASTART, MVT::Other, Custom); 438 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 439 setOperationAction(ISD::VAEND, MVT::Other, Expand); 440 441 // Codes for which we want to perform some z-specific combinations. 442 setTargetDAGCombine(ISD::SIGN_EXTEND); 443 setTargetDAGCombine(ISD::STORE); 444 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 445 setTargetDAGCombine(ISD::FP_ROUND); 446 setTargetDAGCombine(ISD::BSWAP); 447 setTargetDAGCombine(ISD::SHL); 448 setTargetDAGCombine(ISD::SRA); 449 setTargetDAGCombine(ISD::SRL); 450 setTargetDAGCombine(ISD::ROTL); 451 452 // Handle intrinsics. 453 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 454 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 455 456 // We want to use MVC in preference to even a single load/store pair. 457 MaxStoresPerMemcpy = 0; 458 MaxStoresPerMemcpyOptSize = 0; 459 460 // The main memset sequence is a byte store followed by an MVC. 461 // Two STC or MV..I stores win over that, but the kind of fused stores 462 // generated by target-independent code don't when the byte value is 463 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 464 // than "STC;MVC". Handle the choice in target-specific code instead. 465 MaxStoresPerMemset = 0; 466 MaxStoresPerMemsetOptSize = 0; 467 } 468 469 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 470 LLVMContext &, EVT VT) const { 471 if (!VT.isVector()) 472 return MVT::i32; 473 return VT.changeVectorElementTypeToInteger(); 474 } 475 476 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 477 VT = VT.getScalarType(); 478 479 if (!VT.isSimple()) 480 return false; 481 482 switch (VT.getSimpleVT().SimpleTy) { 483 case MVT::f32: 484 case MVT::f64: 485 return true; 486 case MVT::f128: 487 return false; 488 default: 489 break; 490 } 491 492 return false; 493 } 494 495 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 496 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 497 return Imm.isZero() || Imm.isNegZero(); 498 } 499 500 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 501 // We can use CGFI or CLGFI. 502 return isInt<32>(Imm) || isUInt<32>(Imm); 503 } 504 505 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 506 // We can use ALGFI or SLGFI. 507 return isUInt<32>(Imm) || isUInt<32>(-Imm); 508 } 509 510 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 511 unsigned, 512 unsigned, 513 bool *Fast) const { 514 // Unaligned accesses should never be slower than the expanded version. 515 // We check specifically for aligned accesses in the few cases where 516 // they are required. 517 if (Fast) 518 *Fast = true; 519 return true; 520 } 521 522 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 523 const AddrMode &AM, Type *Ty, 524 unsigned AS) const { 525 // Punt on globals for now, although they can be used in limited 526 // RELATIVE LONG cases. 527 if (AM.BaseGV) 528 return false; 529 530 // Require a 20-bit signed offset. 531 if (!isInt<20>(AM.BaseOffs)) 532 return false; 533 534 // Indexing is OK but no scale factor can be applied. 535 return AM.Scale == 0 || AM.Scale == 1; 536 } 537 538 bool SystemZTargetLowering::isFoldableMemAccessOffset(Instruction *I, 539 int64_t Offset) const { 540 // This only applies to z13. 541 if (!Subtarget.hasVector()) 542 return true; 543 544 // * Use LDE instead of LE/LEY to avoid partial register 545 // dependencies (LDE only supports small offsets). 546 // * Utilize the vector registers to hold floating point 547 // values (vector load / store instructions only support small 548 // offsets). 549 550 assert (isa<LoadInst>(I) || isa<StoreInst>(I)); 551 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 552 I->getOperand(0)->getType()); 553 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 554 bool IsVectorAccess = MemAccessTy->isVectorTy(); 555 556 // A store of an extracted vector element will be combined into a VSTE type 557 // instruction. 558 if (!IsVectorAccess && isa<StoreInst>(I)) { 559 Value *DataOp = I->getOperand(0); 560 if (isa<ExtractElementInst>(DataOp)) 561 IsVectorAccess = true; 562 } 563 564 // A load which gets inserted into a vector element will be combined into a 565 // VLE type instruction. 566 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 567 User *LoadUser = *I->user_begin(); 568 if (isa<InsertElementInst>(LoadUser)) 569 IsVectorAccess = true; 570 } 571 572 if (!isUInt<12>(Offset) && (IsFPAccess || IsVectorAccess)) 573 return false; 574 575 return true; 576 } 577 578 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 579 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 580 return false; 581 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 582 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 583 return FromBits > ToBits; 584 } 585 586 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 587 if (!FromVT.isInteger() || !ToVT.isInteger()) 588 return false; 589 unsigned FromBits = FromVT.getSizeInBits(); 590 unsigned ToBits = ToVT.getSizeInBits(); 591 return FromBits > ToBits; 592 } 593 594 //===----------------------------------------------------------------------===// 595 // Inline asm support 596 //===----------------------------------------------------------------------===// 597 598 TargetLowering::ConstraintType 599 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 600 if (Constraint.size() == 1) { 601 switch (Constraint[0]) { 602 case 'a': // Address register 603 case 'd': // Data register (equivalent to 'r') 604 case 'f': // Floating-point register 605 case 'h': // High-part register 606 case 'r': // General-purpose register 607 return C_RegisterClass; 608 609 case 'Q': // Memory with base and unsigned 12-bit displacement 610 case 'R': // Likewise, plus an index 611 case 'S': // Memory with base and signed 20-bit displacement 612 case 'T': // Likewise, plus an index 613 case 'm': // Equivalent to 'T'. 614 return C_Memory; 615 616 case 'I': // Unsigned 8-bit constant 617 case 'J': // Unsigned 12-bit constant 618 case 'K': // Signed 16-bit constant 619 case 'L': // Signed 20-bit displacement (on all targets we support) 620 case 'M': // 0x7fffffff 621 return C_Other; 622 623 default: 624 break; 625 } 626 } 627 return TargetLowering::getConstraintType(Constraint); 628 } 629 630 TargetLowering::ConstraintWeight SystemZTargetLowering:: 631 getSingleConstraintMatchWeight(AsmOperandInfo &info, 632 const char *constraint) const { 633 ConstraintWeight weight = CW_Invalid; 634 Value *CallOperandVal = info.CallOperandVal; 635 // If we don't have a value, we can't do a match, 636 // but allow it at the lowest weight. 637 if (!CallOperandVal) 638 return CW_Default; 639 Type *type = CallOperandVal->getType(); 640 // Look at the constraint type. 641 switch (*constraint) { 642 default: 643 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 644 break; 645 646 case 'a': // Address register 647 case 'd': // Data register (equivalent to 'r') 648 case 'h': // High-part register 649 case 'r': // General-purpose register 650 if (CallOperandVal->getType()->isIntegerTy()) 651 weight = CW_Register; 652 break; 653 654 case 'f': // Floating-point register 655 if (type->isFloatingPointTy()) 656 weight = CW_Register; 657 break; 658 659 case 'I': // Unsigned 8-bit constant 660 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 661 if (isUInt<8>(C->getZExtValue())) 662 weight = CW_Constant; 663 break; 664 665 case 'J': // Unsigned 12-bit constant 666 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 667 if (isUInt<12>(C->getZExtValue())) 668 weight = CW_Constant; 669 break; 670 671 case 'K': // Signed 16-bit constant 672 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 673 if (isInt<16>(C->getSExtValue())) 674 weight = CW_Constant; 675 break; 676 677 case 'L': // Signed 20-bit displacement (on all targets we support) 678 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 679 if (isInt<20>(C->getSExtValue())) 680 weight = CW_Constant; 681 break; 682 683 case 'M': // 0x7fffffff 684 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 685 if (C->getZExtValue() == 0x7fffffff) 686 weight = CW_Constant; 687 break; 688 } 689 return weight; 690 } 691 692 // Parse a "{tNNN}" register constraint for which the register type "t" 693 // has already been verified. MC is the class associated with "t" and 694 // Map maps 0-based register numbers to LLVM register numbers. 695 static std::pair<unsigned, const TargetRegisterClass *> 696 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 697 const unsigned *Map) { 698 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 699 if (isdigit(Constraint[2])) { 700 unsigned Index; 701 bool Failed = 702 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 703 if (!Failed && Index < 16 && Map[Index]) 704 return std::make_pair(Map[Index], RC); 705 } 706 return std::make_pair(0U, nullptr); 707 } 708 709 std::pair<unsigned, const TargetRegisterClass *> 710 SystemZTargetLowering::getRegForInlineAsmConstraint( 711 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 712 if (Constraint.size() == 1) { 713 // GCC Constraint Letters 714 switch (Constraint[0]) { 715 default: break; 716 case 'd': // Data register (equivalent to 'r') 717 case 'r': // General-purpose register 718 if (VT == MVT::i64) 719 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 720 else if (VT == MVT::i128) 721 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 722 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 723 724 case 'a': // Address register 725 if (VT == MVT::i64) 726 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 727 else if (VT == MVT::i128) 728 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 729 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 730 731 case 'h': // High-part register (an LLVM extension) 732 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 733 734 case 'f': // Floating-point register 735 if (VT == MVT::f64) 736 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 737 else if (VT == MVT::f128) 738 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 739 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 740 } 741 } 742 if (Constraint.size() > 0 && Constraint[0] == '{') { 743 // We need to override the default register parsing for GPRs and FPRs 744 // because the interpretation depends on VT. The internal names of 745 // the registers are also different from the external names 746 // (F0D and F0S instead of F0, etc.). 747 if (Constraint[1] == 'r') { 748 if (VT == MVT::i32) 749 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 750 SystemZMC::GR32Regs); 751 if (VT == MVT::i128) 752 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 753 SystemZMC::GR128Regs); 754 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 755 SystemZMC::GR64Regs); 756 } 757 if (Constraint[1] == 'f') { 758 if (VT == MVT::f32) 759 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 760 SystemZMC::FP32Regs); 761 if (VT == MVT::f128) 762 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 763 SystemZMC::FP128Regs); 764 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 765 SystemZMC::FP64Regs); 766 } 767 } 768 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 769 } 770 771 void SystemZTargetLowering:: 772 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 773 std::vector<SDValue> &Ops, 774 SelectionDAG &DAG) const { 775 // Only support length 1 constraints for now. 776 if (Constraint.length() == 1) { 777 switch (Constraint[0]) { 778 case 'I': // Unsigned 8-bit constant 779 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 780 if (isUInt<8>(C->getZExtValue())) 781 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 782 Op.getValueType())); 783 return; 784 785 case 'J': // Unsigned 12-bit constant 786 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 787 if (isUInt<12>(C->getZExtValue())) 788 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 789 Op.getValueType())); 790 return; 791 792 case 'K': // Signed 16-bit constant 793 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 794 if (isInt<16>(C->getSExtValue())) 795 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 796 Op.getValueType())); 797 return; 798 799 case 'L': // Signed 20-bit displacement (on all targets we support) 800 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 801 if (isInt<20>(C->getSExtValue())) 802 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 803 Op.getValueType())); 804 return; 805 806 case 'M': // 0x7fffffff 807 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 808 if (C->getZExtValue() == 0x7fffffff) 809 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 810 Op.getValueType())); 811 return; 812 } 813 } 814 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 815 } 816 817 //===----------------------------------------------------------------------===// 818 // Calling conventions 819 //===----------------------------------------------------------------------===// 820 821 #include "SystemZGenCallingConv.inc" 822 823 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 824 Type *ToType) const { 825 return isTruncateFree(FromType, ToType); 826 } 827 828 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 829 return CI->isTailCall(); 830 } 831 832 // We do not yet support 128-bit single-element vector types. If the user 833 // attempts to use such types as function argument or return type, prefer 834 // to error out instead of emitting code violating the ABI. 835 static void VerifyVectorType(MVT VT, EVT ArgVT) { 836 if (ArgVT.isVector() && !VT.isVector()) 837 report_fatal_error("Unsupported vector argument or return type"); 838 } 839 840 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 841 for (unsigned i = 0; i < Ins.size(); ++i) 842 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 843 } 844 845 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 846 for (unsigned i = 0; i < Outs.size(); ++i) 847 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 848 } 849 850 // Value is a value that has been passed to us in the location described by VA 851 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 852 // any loads onto Chain. 853 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 854 CCValAssign &VA, SDValue Chain, 855 SDValue Value) { 856 // If the argument has been promoted from a smaller type, insert an 857 // assertion to capture this. 858 if (VA.getLocInfo() == CCValAssign::SExt) 859 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 860 DAG.getValueType(VA.getValVT())); 861 else if (VA.getLocInfo() == CCValAssign::ZExt) 862 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 863 DAG.getValueType(VA.getValVT())); 864 865 if (VA.isExtInLoc()) 866 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 867 else if (VA.getLocInfo() == CCValAssign::BCvt) { 868 // If this is a short vector argument loaded from the stack, 869 // extend from i64 to full vector size and then bitcast. 870 assert(VA.getLocVT() == MVT::i64); 871 assert(VA.getValVT().isVector()); 872 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 873 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 874 } else 875 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 876 return Value; 877 } 878 879 // Value is a value of type VA.getValVT() that we need to copy into 880 // the location described by VA. Return a copy of Value converted to 881 // VA.getValVT(). The caller is responsible for handling indirect values. 882 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 883 CCValAssign &VA, SDValue Value) { 884 switch (VA.getLocInfo()) { 885 case CCValAssign::SExt: 886 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 887 case CCValAssign::ZExt: 888 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 889 case CCValAssign::AExt: 890 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 891 case CCValAssign::BCvt: 892 // If this is a short vector argument to be stored to the stack, 893 // bitcast to v2i64 and then extract first element. 894 assert(VA.getLocVT() == MVT::i64); 895 assert(VA.getValVT().isVector()); 896 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 897 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 898 DAG.getConstant(0, DL, MVT::i32)); 899 case CCValAssign::Full: 900 return Value; 901 default: 902 llvm_unreachable("Unhandled getLocInfo()"); 903 } 904 } 905 906 SDValue SystemZTargetLowering::LowerFormalArguments( 907 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 908 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 909 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 910 MachineFunction &MF = DAG.getMachineFunction(); 911 MachineFrameInfo &MFI = MF.getFrameInfo(); 912 MachineRegisterInfo &MRI = MF.getRegInfo(); 913 SystemZMachineFunctionInfo *FuncInfo = 914 MF.getInfo<SystemZMachineFunctionInfo>(); 915 auto *TFL = 916 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 917 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 918 919 // Detect unsupported vector argument types. 920 if (Subtarget.hasVector()) 921 VerifyVectorTypes(Ins); 922 923 // Assign locations to all of the incoming arguments. 924 SmallVector<CCValAssign, 16> ArgLocs; 925 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 926 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 927 928 unsigned NumFixedGPRs = 0; 929 unsigned NumFixedFPRs = 0; 930 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 931 SDValue ArgValue; 932 CCValAssign &VA = ArgLocs[I]; 933 EVT LocVT = VA.getLocVT(); 934 if (VA.isRegLoc()) { 935 // Arguments passed in registers 936 const TargetRegisterClass *RC; 937 switch (LocVT.getSimpleVT().SimpleTy) { 938 default: 939 // Integers smaller than i64 should be promoted to i64. 940 llvm_unreachable("Unexpected argument type"); 941 case MVT::i32: 942 NumFixedGPRs += 1; 943 RC = &SystemZ::GR32BitRegClass; 944 break; 945 case MVT::i64: 946 NumFixedGPRs += 1; 947 RC = &SystemZ::GR64BitRegClass; 948 break; 949 case MVT::f32: 950 NumFixedFPRs += 1; 951 RC = &SystemZ::FP32BitRegClass; 952 break; 953 case MVT::f64: 954 NumFixedFPRs += 1; 955 RC = &SystemZ::FP64BitRegClass; 956 break; 957 case MVT::v16i8: 958 case MVT::v8i16: 959 case MVT::v4i32: 960 case MVT::v2i64: 961 case MVT::v4f32: 962 case MVT::v2f64: 963 RC = &SystemZ::VR128BitRegClass; 964 break; 965 } 966 967 unsigned VReg = MRI.createVirtualRegister(RC); 968 MRI.addLiveIn(VA.getLocReg(), VReg); 969 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 970 } else { 971 assert(VA.isMemLoc() && "Argument not register or memory"); 972 973 // Create the frame index object for this incoming parameter. 974 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 975 VA.getLocMemOffset(), true); 976 977 // Create the SelectionDAG nodes corresponding to a load 978 // from this parameter. Unpromoted ints and floats are 979 // passed as right-justified 8-byte values. 980 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 981 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 982 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 983 DAG.getIntPtrConstant(4, DL)); 984 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 985 MachinePointerInfo::getFixedStack(MF, FI)); 986 } 987 988 // Convert the value of the argument register into the value that's 989 // being passed. 990 if (VA.getLocInfo() == CCValAssign::Indirect) { 991 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 992 MachinePointerInfo())); 993 // If the original argument was split (e.g. i128), we need 994 // to load all parts of it here (using the same address). 995 unsigned ArgIndex = Ins[I].OrigArgIndex; 996 assert (Ins[I].PartOffset == 0); 997 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 998 CCValAssign &PartVA = ArgLocs[I + 1]; 999 unsigned PartOffset = Ins[I + 1].PartOffset; 1000 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1001 DAG.getIntPtrConstant(PartOffset, DL)); 1002 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1003 MachinePointerInfo())); 1004 ++I; 1005 } 1006 } else 1007 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1008 } 1009 1010 if (IsVarArg) { 1011 // Save the number of non-varargs registers for later use by va_start, etc. 1012 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1013 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1014 1015 // Likewise the address (in the form of a frame index) of where the 1016 // first stack vararg would be. The 1-byte size here is arbitrary. 1017 int64_t StackSize = CCInfo.getNextStackOffset(); 1018 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1019 1020 // ...and a similar frame index for the caller-allocated save area 1021 // that will be used to store the incoming registers. 1022 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1023 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1024 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1025 1026 // Store the FPR varargs in the reserved frame slots. (We store the 1027 // GPRs as part of the prologue.) 1028 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1029 SDValue MemOps[SystemZ::NumArgFPRs]; 1030 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1031 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1032 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1033 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1034 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1035 &SystemZ::FP64BitRegClass); 1036 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1037 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1038 MachinePointerInfo::getFixedStack(MF, FI)); 1039 } 1040 // Join the stores, which are independent of one another. 1041 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1042 makeArrayRef(&MemOps[NumFixedFPRs], 1043 SystemZ::NumArgFPRs-NumFixedFPRs)); 1044 } 1045 } 1046 1047 return Chain; 1048 } 1049 1050 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1051 SmallVectorImpl<CCValAssign> &ArgLocs, 1052 SmallVectorImpl<ISD::OutputArg> &Outs) { 1053 // Punt if there are any indirect or stack arguments, or if the call 1054 // needs the callee-saved argument register R6, or if the call uses 1055 // the callee-saved register arguments SwiftSelf and SwiftError. 1056 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1057 CCValAssign &VA = ArgLocs[I]; 1058 if (VA.getLocInfo() == CCValAssign::Indirect) 1059 return false; 1060 if (!VA.isRegLoc()) 1061 return false; 1062 unsigned Reg = VA.getLocReg(); 1063 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1064 return false; 1065 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1066 return false; 1067 } 1068 return true; 1069 } 1070 1071 SDValue 1072 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1073 SmallVectorImpl<SDValue> &InVals) const { 1074 SelectionDAG &DAG = CLI.DAG; 1075 SDLoc &DL = CLI.DL; 1076 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1077 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1078 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1079 SDValue Chain = CLI.Chain; 1080 SDValue Callee = CLI.Callee; 1081 bool &IsTailCall = CLI.IsTailCall; 1082 CallingConv::ID CallConv = CLI.CallConv; 1083 bool IsVarArg = CLI.IsVarArg; 1084 MachineFunction &MF = DAG.getMachineFunction(); 1085 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1086 1087 // Detect unsupported vector argument and return types. 1088 if (Subtarget.hasVector()) { 1089 VerifyVectorTypes(Outs); 1090 VerifyVectorTypes(Ins); 1091 } 1092 1093 // Analyze the operands of the call, assigning locations to each operand. 1094 SmallVector<CCValAssign, 16> ArgLocs; 1095 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1096 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1097 1098 // We don't support GuaranteedTailCallOpt, only automatically-detected 1099 // sibling calls. 1100 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1101 IsTailCall = false; 1102 1103 // Get a count of how many bytes are to be pushed on the stack. 1104 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1105 1106 // Mark the start of the call. 1107 if (!IsTailCall) 1108 Chain = DAG.getCALLSEQ_START(Chain, 1109 DAG.getConstant(NumBytes, DL, PtrVT, true), 1110 DL); 1111 1112 // Copy argument values to their designated locations. 1113 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1114 SmallVector<SDValue, 8> MemOpChains; 1115 SDValue StackPtr; 1116 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1117 CCValAssign &VA = ArgLocs[I]; 1118 SDValue ArgValue = OutVals[I]; 1119 1120 if (VA.getLocInfo() == CCValAssign::Indirect) { 1121 // Store the argument in a stack slot and pass its address. 1122 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1123 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1124 MemOpChains.push_back( 1125 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1126 MachinePointerInfo::getFixedStack(MF, FI))); 1127 // If the original argument was split (e.g. i128), we need 1128 // to store all parts of it here (and pass just one address). 1129 unsigned ArgIndex = Outs[I].OrigArgIndex; 1130 assert (Outs[I].PartOffset == 0); 1131 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1132 SDValue PartValue = OutVals[I + 1]; 1133 unsigned PartOffset = Outs[I + 1].PartOffset; 1134 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1135 DAG.getIntPtrConstant(PartOffset, DL)); 1136 MemOpChains.push_back( 1137 DAG.getStore(Chain, DL, PartValue, Address, 1138 MachinePointerInfo::getFixedStack(MF, FI))); 1139 ++I; 1140 } 1141 ArgValue = SpillSlot; 1142 } else 1143 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1144 1145 if (VA.isRegLoc()) 1146 // Queue up the argument copies and emit them at the end. 1147 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1148 else { 1149 assert(VA.isMemLoc() && "Argument not register or memory"); 1150 1151 // Work out the address of the stack slot. Unpromoted ints and 1152 // floats are passed as right-justified 8-byte values. 1153 if (!StackPtr.getNode()) 1154 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1155 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1156 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1157 Offset += 4; 1158 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1159 DAG.getIntPtrConstant(Offset, DL)); 1160 1161 // Emit the store. 1162 MemOpChains.push_back( 1163 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1164 } 1165 } 1166 1167 // Join the stores, which are independent of one another. 1168 if (!MemOpChains.empty()) 1169 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1170 1171 // Accept direct calls by converting symbolic call addresses to the 1172 // associated Target* opcodes. Force %r1 to be used for indirect 1173 // tail calls. 1174 SDValue Glue; 1175 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1176 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1177 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1178 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1179 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1180 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1181 } else if (IsTailCall) { 1182 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1183 Glue = Chain.getValue(1); 1184 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1185 } 1186 1187 // Build a sequence of copy-to-reg nodes, chained and glued together. 1188 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1189 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1190 RegsToPass[I].second, Glue); 1191 Glue = Chain.getValue(1); 1192 } 1193 1194 // The first call operand is the chain and the second is the target address. 1195 SmallVector<SDValue, 8> Ops; 1196 Ops.push_back(Chain); 1197 Ops.push_back(Callee); 1198 1199 // Add argument registers to the end of the list so that they are 1200 // known live into the call. 1201 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1202 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1203 RegsToPass[I].second.getValueType())); 1204 1205 // Add a register mask operand representing the call-preserved registers. 1206 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1207 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1208 assert(Mask && "Missing call preserved mask for calling convention"); 1209 Ops.push_back(DAG.getRegisterMask(Mask)); 1210 1211 // Glue the call to the argument copies, if any. 1212 if (Glue.getNode()) 1213 Ops.push_back(Glue); 1214 1215 // Emit the call. 1216 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1217 if (IsTailCall) 1218 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1219 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1220 Glue = Chain.getValue(1); 1221 1222 // Mark the end of the call, which is glued to the call itself. 1223 Chain = DAG.getCALLSEQ_END(Chain, 1224 DAG.getConstant(NumBytes, DL, PtrVT, true), 1225 DAG.getConstant(0, DL, PtrVT, true), 1226 Glue, DL); 1227 Glue = Chain.getValue(1); 1228 1229 // Assign locations to each value returned by this call. 1230 SmallVector<CCValAssign, 16> RetLocs; 1231 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1232 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1233 1234 // Copy all of the result registers out of their specified physreg. 1235 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1236 CCValAssign &VA = RetLocs[I]; 1237 1238 // Copy the value out, gluing the copy to the end of the call sequence. 1239 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1240 VA.getLocVT(), Glue); 1241 Chain = RetValue.getValue(1); 1242 Glue = RetValue.getValue(2); 1243 1244 // Convert the value of the return register into the value that's 1245 // being returned. 1246 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1247 } 1248 1249 return Chain; 1250 } 1251 1252 bool SystemZTargetLowering:: 1253 CanLowerReturn(CallingConv::ID CallConv, 1254 MachineFunction &MF, bool isVarArg, 1255 const SmallVectorImpl<ISD::OutputArg> &Outs, 1256 LLVMContext &Context) const { 1257 // Detect unsupported vector return types. 1258 if (Subtarget.hasVector()) 1259 VerifyVectorTypes(Outs); 1260 1261 // Special case that we cannot easily detect in RetCC_SystemZ since 1262 // i128 is not a legal type. 1263 for (auto &Out : Outs) 1264 if (Out.ArgVT == MVT::i128) 1265 return false; 1266 1267 SmallVector<CCValAssign, 16> RetLocs; 1268 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1269 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1270 } 1271 1272 SDValue 1273 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1274 bool IsVarArg, 1275 const SmallVectorImpl<ISD::OutputArg> &Outs, 1276 const SmallVectorImpl<SDValue> &OutVals, 1277 const SDLoc &DL, SelectionDAG &DAG) const { 1278 MachineFunction &MF = DAG.getMachineFunction(); 1279 1280 // Detect unsupported vector return types. 1281 if (Subtarget.hasVector()) 1282 VerifyVectorTypes(Outs); 1283 1284 // Assign locations to each returned value. 1285 SmallVector<CCValAssign, 16> RetLocs; 1286 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1287 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1288 1289 // Quick exit for void returns 1290 if (RetLocs.empty()) 1291 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1292 1293 // Copy the result values into the output registers. 1294 SDValue Glue; 1295 SmallVector<SDValue, 4> RetOps; 1296 RetOps.push_back(Chain); 1297 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1298 CCValAssign &VA = RetLocs[I]; 1299 SDValue RetValue = OutVals[I]; 1300 1301 // Make the return register live on exit. 1302 assert(VA.isRegLoc() && "Can only return in registers!"); 1303 1304 // Promote the value as required. 1305 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1306 1307 // Chain and glue the copies together. 1308 unsigned Reg = VA.getLocReg(); 1309 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1310 Glue = Chain.getValue(1); 1311 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1312 } 1313 1314 // Update chain and glue. 1315 RetOps[0] = Chain; 1316 if (Glue.getNode()) 1317 RetOps.push_back(Glue); 1318 1319 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1320 } 1321 1322 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad( 1323 SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const { 1324 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1325 } 1326 1327 // Return true if Op is an intrinsic node with chain that returns the CC value 1328 // as its only (other) argument. Provide the associated SystemZISD opcode and 1329 // the mask of valid CC values if so. 1330 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1331 unsigned &CCValid) { 1332 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1333 switch (Id) { 1334 case Intrinsic::s390_tbegin: 1335 Opcode = SystemZISD::TBEGIN; 1336 CCValid = SystemZ::CCMASK_TBEGIN; 1337 return true; 1338 1339 case Intrinsic::s390_tbegin_nofloat: 1340 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1341 CCValid = SystemZ::CCMASK_TBEGIN; 1342 return true; 1343 1344 case Intrinsic::s390_tend: 1345 Opcode = SystemZISD::TEND; 1346 CCValid = SystemZ::CCMASK_TEND; 1347 return true; 1348 1349 default: 1350 return false; 1351 } 1352 } 1353 1354 // Return true if Op is an intrinsic node without chain that returns the 1355 // CC value as its final argument. Provide the associated SystemZISD 1356 // opcode and the mask of valid CC values if so. 1357 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1358 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1359 switch (Id) { 1360 case Intrinsic::s390_vpkshs: 1361 case Intrinsic::s390_vpksfs: 1362 case Intrinsic::s390_vpksgs: 1363 Opcode = SystemZISD::PACKS_CC; 1364 CCValid = SystemZ::CCMASK_VCMP; 1365 return true; 1366 1367 case Intrinsic::s390_vpklshs: 1368 case Intrinsic::s390_vpklsfs: 1369 case Intrinsic::s390_vpklsgs: 1370 Opcode = SystemZISD::PACKLS_CC; 1371 CCValid = SystemZ::CCMASK_VCMP; 1372 return true; 1373 1374 case Intrinsic::s390_vceqbs: 1375 case Intrinsic::s390_vceqhs: 1376 case Intrinsic::s390_vceqfs: 1377 case Intrinsic::s390_vceqgs: 1378 Opcode = SystemZISD::VICMPES; 1379 CCValid = SystemZ::CCMASK_VCMP; 1380 return true; 1381 1382 case Intrinsic::s390_vchbs: 1383 case Intrinsic::s390_vchhs: 1384 case Intrinsic::s390_vchfs: 1385 case Intrinsic::s390_vchgs: 1386 Opcode = SystemZISD::VICMPHS; 1387 CCValid = SystemZ::CCMASK_VCMP; 1388 return true; 1389 1390 case Intrinsic::s390_vchlbs: 1391 case Intrinsic::s390_vchlhs: 1392 case Intrinsic::s390_vchlfs: 1393 case Intrinsic::s390_vchlgs: 1394 Opcode = SystemZISD::VICMPHLS; 1395 CCValid = SystemZ::CCMASK_VCMP; 1396 return true; 1397 1398 case Intrinsic::s390_vtm: 1399 Opcode = SystemZISD::VTM; 1400 CCValid = SystemZ::CCMASK_VCMP; 1401 return true; 1402 1403 case Intrinsic::s390_vfaebs: 1404 case Intrinsic::s390_vfaehs: 1405 case Intrinsic::s390_vfaefs: 1406 Opcode = SystemZISD::VFAE_CC; 1407 CCValid = SystemZ::CCMASK_ANY; 1408 return true; 1409 1410 case Intrinsic::s390_vfaezbs: 1411 case Intrinsic::s390_vfaezhs: 1412 case Intrinsic::s390_vfaezfs: 1413 Opcode = SystemZISD::VFAEZ_CC; 1414 CCValid = SystemZ::CCMASK_ANY; 1415 return true; 1416 1417 case Intrinsic::s390_vfeebs: 1418 case Intrinsic::s390_vfeehs: 1419 case Intrinsic::s390_vfeefs: 1420 Opcode = SystemZISD::VFEE_CC; 1421 CCValid = SystemZ::CCMASK_ANY; 1422 return true; 1423 1424 case Intrinsic::s390_vfeezbs: 1425 case Intrinsic::s390_vfeezhs: 1426 case Intrinsic::s390_vfeezfs: 1427 Opcode = SystemZISD::VFEEZ_CC; 1428 CCValid = SystemZ::CCMASK_ANY; 1429 return true; 1430 1431 case Intrinsic::s390_vfenebs: 1432 case Intrinsic::s390_vfenehs: 1433 case Intrinsic::s390_vfenefs: 1434 Opcode = SystemZISD::VFENE_CC; 1435 CCValid = SystemZ::CCMASK_ANY; 1436 return true; 1437 1438 case Intrinsic::s390_vfenezbs: 1439 case Intrinsic::s390_vfenezhs: 1440 case Intrinsic::s390_vfenezfs: 1441 Opcode = SystemZISD::VFENEZ_CC; 1442 CCValid = SystemZ::CCMASK_ANY; 1443 return true; 1444 1445 case Intrinsic::s390_vistrbs: 1446 case Intrinsic::s390_vistrhs: 1447 case Intrinsic::s390_vistrfs: 1448 Opcode = SystemZISD::VISTR_CC; 1449 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1450 return true; 1451 1452 case Intrinsic::s390_vstrcbs: 1453 case Intrinsic::s390_vstrchs: 1454 case Intrinsic::s390_vstrcfs: 1455 Opcode = SystemZISD::VSTRC_CC; 1456 CCValid = SystemZ::CCMASK_ANY; 1457 return true; 1458 1459 case Intrinsic::s390_vstrczbs: 1460 case Intrinsic::s390_vstrczhs: 1461 case Intrinsic::s390_vstrczfs: 1462 Opcode = SystemZISD::VSTRCZ_CC; 1463 CCValid = SystemZ::CCMASK_ANY; 1464 return true; 1465 1466 case Intrinsic::s390_vfcedbs: 1467 Opcode = SystemZISD::VFCMPES; 1468 CCValid = SystemZ::CCMASK_VCMP; 1469 return true; 1470 1471 case Intrinsic::s390_vfchdbs: 1472 Opcode = SystemZISD::VFCMPHS; 1473 CCValid = SystemZ::CCMASK_VCMP; 1474 return true; 1475 1476 case Intrinsic::s390_vfchedbs: 1477 Opcode = SystemZISD::VFCMPHES; 1478 CCValid = SystemZ::CCMASK_VCMP; 1479 return true; 1480 1481 case Intrinsic::s390_vftcidb: 1482 Opcode = SystemZISD::VFTCI; 1483 CCValid = SystemZ::CCMASK_VCMP; 1484 return true; 1485 1486 case Intrinsic::s390_tdc: 1487 Opcode = SystemZISD::TDC; 1488 CCValid = SystemZ::CCMASK_TDC; 1489 return true; 1490 1491 default: 1492 return false; 1493 } 1494 } 1495 1496 // Emit an intrinsic with chain with a glued value instead of its CC result. 1497 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1498 unsigned Opcode) { 1499 // Copy all operands except the intrinsic ID. 1500 unsigned NumOps = Op.getNumOperands(); 1501 SmallVector<SDValue, 6> Ops; 1502 Ops.reserve(NumOps - 1); 1503 Ops.push_back(Op.getOperand(0)); 1504 for (unsigned I = 2; I < NumOps; ++I) 1505 Ops.push_back(Op.getOperand(I)); 1506 1507 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1508 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1509 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1510 SDValue OldChain = SDValue(Op.getNode(), 1); 1511 SDValue NewChain = SDValue(Intr.getNode(), 0); 1512 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1513 return Intr; 1514 } 1515 1516 // Emit an intrinsic with a glued value instead of its CC result. 1517 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1518 unsigned Opcode) { 1519 // Copy all operands except the intrinsic ID. 1520 unsigned NumOps = Op.getNumOperands(); 1521 SmallVector<SDValue, 6> Ops; 1522 Ops.reserve(NumOps - 1); 1523 for (unsigned I = 1; I < NumOps; ++I) 1524 Ops.push_back(Op.getOperand(I)); 1525 1526 if (Op->getNumValues() == 1) 1527 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1528 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1529 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1530 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1531 } 1532 1533 // CC is a comparison that will be implemented using an integer or 1534 // floating-point comparison. Return the condition code mask for 1535 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1536 // unsigned comparisons and clear for signed ones. In the floating-point 1537 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1538 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1539 #define CONV(X) \ 1540 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1541 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1542 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1543 1544 switch (CC) { 1545 default: 1546 llvm_unreachable("Invalid integer condition!"); 1547 1548 CONV(EQ); 1549 CONV(NE); 1550 CONV(GT); 1551 CONV(GE); 1552 CONV(LT); 1553 CONV(LE); 1554 1555 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1556 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1557 } 1558 #undef CONV 1559 } 1560 1561 // Return a sequence for getting a 1 from an IPM result when CC has a 1562 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1563 // The handling of CC values outside CCValid doesn't matter. 1564 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1565 // Deal with cases where the result can be taken directly from a bit 1566 // of the IPM result. 1567 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1568 return IPMConversion(0, 0, SystemZ::IPM_CC); 1569 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1570 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1571 1572 // Deal with cases where we can add a value to force the sign bit 1573 // to contain the right value. Putting the bit in 31 means we can 1574 // use SRL rather than RISBG(L), and also makes it easier to get a 1575 // 0/-1 value, so it has priority over the other tests below. 1576 // 1577 // These sequences rely on the fact that the upper two bits of the 1578 // IPM result are zero. 1579 uint64_t TopBit = uint64_t(1) << 31; 1580 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1581 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1582 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1583 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1584 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1585 | SystemZ::CCMASK_1 1586 | SystemZ::CCMASK_2))) 1587 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1588 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1589 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1590 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1591 | SystemZ::CCMASK_2 1592 | SystemZ::CCMASK_3))) 1593 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1594 1595 // Next try inverting the value and testing a bit. 0/1 could be 1596 // handled this way too, but we dealt with that case above. 1597 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1598 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1599 1600 // Handle cases where adding a value forces a non-sign bit to contain 1601 // the right value. 1602 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1603 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1604 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1605 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1606 1607 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1608 // can be done by inverting the low CC bit and applying one of the 1609 // sign-based extractions above. 1610 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1611 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1612 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1613 return IPMConversion(1 << SystemZ::IPM_CC, 1614 TopBit - (3 << SystemZ::IPM_CC), 31); 1615 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1616 | SystemZ::CCMASK_1 1617 | SystemZ::CCMASK_3))) 1618 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1619 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1620 | SystemZ::CCMASK_2 1621 | SystemZ::CCMASK_3))) 1622 return IPMConversion(1 << SystemZ::IPM_CC, 1623 TopBit - (1 << SystemZ::IPM_CC), 31); 1624 1625 llvm_unreachable("Unexpected CC combination"); 1626 } 1627 1628 // If C can be converted to a comparison against zero, adjust the operands 1629 // as necessary. 1630 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1631 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1632 return; 1633 1634 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1635 if (!ConstOp1) 1636 return; 1637 1638 int64_t Value = ConstOp1->getSExtValue(); 1639 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1640 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1641 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1642 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1643 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1644 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1645 } 1646 } 1647 1648 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1649 // adjust the operands as necessary. 1650 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1651 Comparison &C) { 1652 // For us to make any changes, it must a comparison between a single-use 1653 // load and a constant. 1654 if (!C.Op0.hasOneUse() || 1655 C.Op0.getOpcode() != ISD::LOAD || 1656 C.Op1.getOpcode() != ISD::Constant) 1657 return; 1658 1659 // We must have an 8- or 16-bit load. 1660 auto *Load = cast<LoadSDNode>(C.Op0); 1661 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1662 if (NumBits != 8 && NumBits != 16) 1663 return; 1664 1665 // The load must be an extending one and the constant must be within the 1666 // range of the unextended value. 1667 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1668 uint64_t Value = ConstOp1->getZExtValue(); 1669 uint64_t Mask = (1 << NumBits) - 1; 1670 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1671 // Make sure that ConstOp1 is in range of C.Op0. 1672 int64_t SignedValue = ConstOp1->getSExtValue(); 1673 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1674 return; 1675 if (C.ICmpType != SystemZICMP::SignedOnly) { 1676 // Unsigned comparison between two sign-extended values is equivalent 1677 // to unsigned comparison between two zero-extended values. 1678 Value &= Mask; 1679 } else if (NumBits == 8) { 1680 // Try to treat the comparison as unsigned, so that we can use CLI. 1681 // Adjust CCMask and Value as necessary. 1682 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1683 // Test whether the high bit of the byte is set. 1684 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1685 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1686 // Test whether the high bit of the byte is clear. 1687 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1688 else 1689 // No instruction exists for this combination. 1690 return; 1691 C.ICmpType = SystemZICMP::UnsignedOnly; 1692 } 1693 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1694 if (Value > Mask) 1695 return; 1696 // If the constant is in range, we can use any comparison. 1697 C.ICmpType = SystemZICMP::Any; 1698 } else 1699 return; 1700 1701 // Make sure that the first operand is an i32 of the right extension type. 1702 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1703 ISD::SEXTLOAD : 1704 ISD::ZEXTLOAD); 1705 if (C.Op0.getValueType() != MVT::i32 || 1706 Load->getExtensionType() != ExtType) 1707 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1708 Load->getBasePtr(), Load->getPointerInfo(), 1709 Load->getMemoryVT(), Load->getAlignment(), 1710 Load->getMemOperand()->getFlags()); 1711 1712 // Make sure that the second operand is an i32 with the right value. 1713 if (C.Op1.getValueType() != MVT::i32 || 1714 Value != ConstOp1->getZExtValue()) 1715 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1716 } 1717 1718 // Return true if Op is either an unextended load, or a load suitable 1719 // for integer register-memory comparisons of type ICmpType. 1720 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1721 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1722 if (Load) { 1723 // There are no instructions to compare a register with a memory byte. 1724 if (Load->getMemoryVT() == MVT::i8) 1725 return false; 1726 // Otherwise decide on extension type. 1727 switch (Load->getExtensionType()) { 1728 case ISD::NON_EXTLOAD: 1729 return true; 1730 case ISD::SEXTLOAD: 1731 return ICmpType != SystemZICMP::UnsignedOnly; 1732 case ISD::ZEXTLOAD: 1733 return ICmpType != SystemZICMP::SignedOnly; 1734 default: 1735 break; 1736 } 1737 } 1738 return false; 1739 } 1740 1741 // Return true if it is better to swap the operands of C. 1742 static bool shouldSwapCmpOperands(const Comparison &C) { 1743 // Leave f128 comparisons alone, since they have no memory forms. 1744 if (C.Op0.getValueType() == MVT::f128) 1745 return false; 1746 1747 // Always keep a floating-point constant second, since comparisons with 1748 // zero can use LOAD TEST and comparisons with other constants make a 1749 // natural memory operand. 1750 if (isa<ConstantFPSDNode>(C.Op1)) 1751 return false; 1752 1753 // Never swap comparisons with zero since there are many ways to optimize 1754 // those later. 1755 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1756 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1757 return false; 1758 1759 // Also keep natural memory operands second if the loaded value is 1760 // only used here. Several comparisons have memory forms. 1761 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1762 return false; 1763 1764 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1765 // In that case we generally prefer the memory to be second. 1766 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1767 // The only exceptions are when the second operand is a constant and 1768 // we can use things like CHHSI. 1769 if (!ConstOp1) 1770 return true; 1771 // The unsigned memory-immediate instructions can handle 16-bit 1772 // unsigned integers. 1773 if (C.ICmpType != SystemZICMP::SignedOnly && 1774 isUInt<16>(ConstOp1->getZExtValue())) 1775 return false; 1776 // The signed memory-immediate instructions can handle 16-bit 1777 // signed integers. 1778 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1779 isInt<16>(ConstOp1->getSExtValue())) 1780 return false; 1781 return true; 1782 } 1783 1784 // Try to promote the use of CGFR and CLGFR. 1785 unsigned Opcode0 = C.Op0.getOpcode(); 1786 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1787 return true; 1788 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1789 return true; 1790 if (C.ICmpType != SystemZICMP::SignedOnly && 1791 Opcode0 == ISD::AND && 1792 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1793 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1794 return true; 1795 1796 return false; 1797 } 1798 1799 // Return a version of comparison CC mask CCMask in which the LT and GT 1800 // actions are swapped. 1801 static unsigned reverseCCMask(unsigned CCMask) { 1802 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1803 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1804 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1805 (CCMask & SystemZ::CCMASK_CMP_UO)); 1806 } 1807 1808 // Check whether C tests for equality between X and Y and whether X - Y 1809 // or Y - X is also computed. In that case it's better to compare the 1810 // result of the subtraction against zero. 1811 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1812 Comparison &C) { 1813 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1814 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1815 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1816 SDNode *N = *I; 1817 if (N->getOpcode() == ISD::SUB && 1818 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1819 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1820 C.Op0 = SDValue(N, 0); 1821 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1822 return; 1823 } 1824 } 1825 } 1826 } 1827 1828 // Check whether C compares a floating-point value with zero and if that 1829 // floating-point value is also negated. In this case we can use the 1830 // negation to set CC, so avoiding separate LOAD AND TEST and 1831 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1832 static void adjustForFNeg(Comparison &C) { 1833 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1834 if (C1 && C1->isZero()) { 1835 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1836 SDNode *N = *I; 1837 if (N->getOpcode() == ISD::FNEG) { 1838 C.Op0 = SDValue(N, 0); 1839 C.CCMask = reverseCCMask(C.CCMask); 1840 return; 1841 } 1842 } 1843 } 1844 } 1845 1846 // Check whether C compares (shl X, 32) with 0 and whether X is 1847 // also sign-extended. In that case it is better to test the result 1848 // of the sign extension using LTGFR. 1849 // 1850 // This case is important because InstCombine transforms a comparison 1851 // with (sext (trunc X)) into a comparison with (shl X, 32). 1852 static void adjustForLTGFR(Comparison &C) { 1853 // Check for a comparison between (shl X, 32) and 0. 1854 if (C.Op0.getOpcode() == ISD::SHL && 1855 C.Op0.getValueType() == MVT::i64 && 1856 C.Op1.getOpcode() == ISD::Constant && 1857 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1858 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1859 if (C1 && C1->getZExtValue() == 32) { 1860 SDValue ShlOp0 = C.Op0.getOperand(0); 1861 // See whether X has any SIGN_EXTEND_INREG uses. 1862 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1863 SDNode *N = *I; 1864 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1865 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1866 C.Op0 = SDValue(N, 0); 1867 return; 1868 } 1869 } 1870 } 1871 } 1872 } 1873 1874 // If C compares the truncation of an extending load, try to compare 1875 // the untruncated value instead. This exposes more opportunities to 1876 // reuse CC. 1877 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1878 Comparison &C) { 1879 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1880 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1881 C.Op1.getOpcode() == ISD::Constant && 1882 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1883 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1884 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 1885 unsigned Type = L->getExtensionType(); 1886 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1887 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1888 C.Op0 = C.Op0.getOperand(0); 1889 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1890 } 1891 } 1892 } 1893 } 1894 1895 // Return true if shift operation N has an in-range constant shift value. 1896 // Store it in ShiftVal if so. 1897 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1898 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1899 if (!Shift) 1900 return false; 1901 1902 uint64_t Amount = Shift->getZExtValue(); 1903 if (Amount >= N.getValueSizeInBits()) 1904 return false; 1905 1906 ShiftVal = Amount; 1907 return true; 1908 } 1909 1910 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1911 // instruction and whether the CC value is descriptive enough to handle 1912 // a comparison of type Opcode between the AND result and CmpVal. 1913 // CCMask says which comparison result is being tested and BitSize is 1914 // the number of bits in the operands. If TEST UNDER MASK can be used, 1915 // return the corresponding CC mask, otherwise return 0. 1916 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1917 uint64_t Mask, uint64_t CmpVal, 1918 unsigned ICmpType) { 1919 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1920 1921 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1922 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1923 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1924 return 0; 1925 1926 // Work out the masks for the lowest and highest bits. 1927 unsigned HighShift = 63 - countLeadingZeros(Mask); 1928 uint64_t High = uint64_t(1) << HighShift; 1929 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1930 1931 // Signed ordered comparisons are effectively unsigned if the sign 1932 // bit is dropped. 1933 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1934 1935 // Check for equality comparisons with 0, or the equivalent. 1936 if (CmpVal == 0) { 1937 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1938 return SystemZ::CCMASK_TM_ALL_0; 1939 if (CCMask == SystemZ::CCMASK_CMP_NE) 1940 return SystemZ::CCMASK_TM_SOME_1; 1941 } 1942 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1943 if (CCMask == SystemZ::CCMASK_CMP_LT) 1944 return SystemZ::CCMASK_TM_ALL_0; 1945 if (CCMask == SystemZ::CCMASK_CMP_GE) 1946 return SystemZ::CCMASK_TM_SOME_1; 1947 } 1948 if (EffectivelyUnsigned && CmpVal < Low) { 1949 if (CCMask == SystemZ::CCMASK_CMP_LE) 1950 return SystemZ::CCMASK_TM_ALL_0; 1951 if (CCMask == SystemZ::CCMASK_CMP_GT) 1952 return SystemZ::CCMASK_TM_SOME_1; 1953 } 1954 1955 // Check for equality comparisons with the mask, or the equivalent. 1956 if (CmpVal == Mask) { 1957 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1958 return SystemZ::CCMASK_TM_ALL_1; 1959 if (CCMask == SystemZ::CCMASK_CMP_NE) 1960 return SystemZ::CCMASK_TM_SOME_0; 1961 } 1962 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1963 if (CCMask == SystemZ::CCMASK_CMP_GT) 1964 return SystemZ::CCMASK_TM_ALL_1; 1965 if (CCMask == SystemZ::CCMASK_CMP_LE) 1966 return SystemZ::CCMASK_TM_SOME_0; 1967 } 1968 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1969 if (CCMask == SystemZ::CCMASK_CMP_GE) 1970 return SystemZ::CCMASK_TM_ALL_1; 1971 if (CCMask == SystemZ::CCMASK_CMP_LT) 1972 return SystemZ::CCMASK_TM_SOME_0; 1973 } 1974 1975 // Check for ordered comparisons with the top bit. 1976 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1977 if (CCMask == SystemZ::CCMASK_CMP_LE) 1978 return SystemZ::CCMASK_TM_MSB_0; 1979 if (CCMask == SystemZ::CCMASK_CMP_GT) 1980 return SystemZ::CCMASK_TM_MSB_1; 1981 } 1982 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1983 if (CCMask == SystemZ::CCMASK_CMP_LT) 1984 return SystemZ::CCMASK_TM_MSB_0; 1985 if (CCMask == SystemZ::CCMASK_CMP_GE) 1986 return SystemZ::CCMASK_TM_MSB_1; 1987 } 1988 1989 // If there are just two bits, we can do equality checks for Low and High 1990 // as well. 1991 if (Mask == Low + High) { 1992 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1993 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1994 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1995 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1996 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1997 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1998 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1999 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2000 } 2001 2002 // Looks like we've exhausted our options. 2003 return 0; 2004 } 2005 2006 // See whether C can be implemented as a TEST UNDER MASK instruction. 2007 // Update the arguments with the TM version if so. 2008 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2009 Comparison &C) { 2010 // Check that we have a comparison with a constant. 2011 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2012 if (!ConstOp1) 2013 return; 2014 uint64_t CmpVal = ConstOp1->getZExtValue(); 2015 2016 // Check whether the nonconstant input is an AND with a constant mask. 2017 Comparison NewC(C); 2018 uint64_t MaskVal; 2019 ConstantSDNode *Mask = nullptr; 2020 if (C.Op0.getOpcode() == ISD::AND) { 2021 NewC.Op0 = C.Op0.getOperand(0); 2022 NewC.Op1 = C.Op0.getOperand(1); 2023 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2024 if (!Mask) 2025 return; 2026 MaskVal = Mask->getZExtValue(); 2027 } else { 2028 // There is no instruction to compare with a 64-bit immediate 2029 // so use TMHH instead if possible. We need an unsigned ordered 2030 // comparison with an i64 immediate. 2031 if (NewC.Op0.getValueType() != MVT::i64 || 2032 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2033 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2034 NewC.ICmpType == SystemZICMP::SignedOnly) 2035 return; 2036 // Convert LE and GT comparisons into LT and GE. 2037 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2038 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2039 if (CmpVal == uint64_t(-1)) 2040 return; 2041 CmpVal += 1; 2042 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2043 } 2044 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2045 // be masked off without changing the result. 2046 MaskVal = -(CmpVal & -CmpVal); 2047 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2048 } 2049 if (!MaskVal) 2050 return; 2051 2052 // Check whether the combination of mask, comparison value and comparison 2053 // type are suitable. 2054 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2055 unsigned NewCCMask, ShiftVal; 2056 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2057 NewC.Op0.getOpcode() == ISD::SHL && 2058 isSimpleShift(NewC.Op0, ShiftVal) && 2059 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2060 MaskVal >> ShiftVal, 2061 CmpVal >> ShiftVal, 2062 SystemZICMP::Any))) { 2063 NewC.Op0 = NewC.Op0.getOperand(0); 2064 MaskVal >>= ShiftVal; 2065 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2066 NewC.Op0.getOpcode() == ISD::SRL && 2067 isSimpleShift(NewC.Op0, ShiftVal) && 2068 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2069 MaskVal << ShiftVal, 2070 CmpVal << ShiftVal, 2071 SystemZICMP::UnsignedOnly))) { 2072 NewC.Op0 = NewC.Op0.getOperand(0); 2073 MaskVal <<= ShiftVal; 2074 } else { 2075 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2076 NewC.ICmpType); 2077 if (!NewCCMask) 2078 return; 2079 } 2080 2081 // Go ahead and make the change. 2082 C.Opcode = SystemZISD::TM; 2083 C.Op0 = NewC.Op0; 2084 if (Mask && Mask->getZExtValue() == MaskVal) 2085 C.Op1 = SDValue(Mask, 0); 2086 else 2087 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2088 C.CCValid = SystemZ::CCMASK_TM; 2089 C.CCMask = NewCCMask; 2090 } 2091 2092 // Return a Comparison that tests the condition-code result of intrinsic 2093 // node Call against constant integer CC using comparison code Cond. 2094 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2095 // and CCValid is the set of possible condition-code results. 2096 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2097 SDValue Call, unsigned CCValid, uint64_t CC, 2098 ISD::CondCode Cond) { 2099 Comparison C(Call, SDValue()); 2100 C.Opcode = Opcode; 2101 C.CCValid = CCValid; 2102 if (Cond == ISD::SETEQ) 2103 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2104 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2105 else if (Cond == ISD::SETNE) 2106 // ...and the inverse of that. 2107 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2108 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2109 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2110 // always true for CC>3. 2111 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2112 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2113 // ...and the inverse of that. 2114 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2115 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2116 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2117 // always true for CC>3. 2118 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2119 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2120 // ...and the inverse of that. 2121 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2122 else 2123 llvm_unreachable("Unexpected integer comparison type"); 2124 C.CCMask &= CCValid; 2125 return C; 2126 } 2127 2128 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2129 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2130 ISD::CondCode Cond, const SDLoc &DL) { 2131 if (CmpOp1.getOpcode() == ISD::Constant) { 2132 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2133 unsigned Opcode, CCValid; 2134 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2135 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2136 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2137 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2138 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2139 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2140 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2141 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2142 } 2143 Comparison C(CmpOp0, CmpOp1); 2144 C.CCMask = CCMaskForCondCode(Cond); 2145 if (C.Op0.getValueType().isFloatingPoint()) { 2146 C.CCValid = SystemZ::CCMASK_FCMP; 2147 C.Opcode = SystemZISD::FCMP; 2148 adjustForFNeg(C); 2149 } else { 2150 C.CCValid = SystemZ::CCMASK_ICMP; 2151 C.Opcode = SystemZISD::ICMP; 2152 // Choose the type of comparison. Equality and inequality tests can 2153 // use either signed or unsigned comparisons. The choice also doesn't 2154 // matter if both sign bits are known to be clear. In those cases we 2155 // want to give the main isel code the freedom to choose whichever 2156 // form fits best. 2157 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2158 C.CCMask == SystemZ::CCMASK_CMP_NE || 2159 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2160 C.ICmpType = SystemZICMP::Any; 2161 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2162 C.ICmpType = SystemZICMP::UnsignedOnly; 2163 else 2164 C.ICmpType = SystemZICMP::SignedOnly; 2165 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2166 adjustZeroCmp(DAG, DL, C); 2167 adjustSubwordCmp(DAG, DL, C); 2168 adjustForSubtraction(DAG, DL, C); 2169 adjustForLTGFR(C); 2170 adjustICmpTruncate(DAG, DL, C); 2171 } 2172 2173 if (shouldSwapCmpOperands(C)) { 2174 std::swap(C.Op0, C.Op1); 2175 C.CCMask = reverseCCMask(C.CCMask); 2176 } 2177 2178 adjustForTestUnderMask(DAG, DL, C); 2179 return C; 2180 } 2181 2182 // Emit the comparison instruction described by C. 2183 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2184 if (!C.Op1.getNode()) { 2185 SDValue Op; 2186 switch (C.Op0.getOpcode()) { 2187 case ISD::INTRINSIC_W_CHAIN: 2188 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2189 break; 2190 case ISD::INTRINSIC_WO_CHAIN: 2191 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2192 break; 2193 default: 2194 llvm_unreachable("Invalid comparison operands"); 2195 } 2196 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2197 } 2198 if (C.Opcode == SystemZISD::ICMP) 2199 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2200 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2201 if (C.Opcode == SystemZISD::TM) { 2202 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2203 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2204 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2205 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2206 } 2207 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2208 } 2209 2210 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2211 // 64 bits. Extend is the extension type to use. Store the high part 2212 // in Hi and the low part in Lo. 2213 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2214 SDValue Op0, SDValue Op1, SDValue &Hi, 2215 SDValue &Lo) { 2216 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2217 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2218 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2219 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2220 DAG.getConstant(32, DL, MVT::i64)); 2221 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2222 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2223 } 2224 2225 // Lower a binary operation that produces two VT results, one in each 2226 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2227 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2228 // on the extended Op0 and (unextended) Op1. Store the even register result 2229 // in Even and the odd register result in Odd. 2230 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2231 unsigned Extend, unsigned Opcode, SDValue Op0, 2232 SDValue Op1, SDValue &Even, SDValue &Odd) { 2233 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2234 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2235 SDValue(In128, 0), Op1); 2236 bool Is32Bit = is32Bit(VT); 2237 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2238 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2239 } 2240 2241 // Return an i32 value that is 1 if the CC value produced by Glue is 2242 // in the mask CCMask and 0 otherwise. CC is known to have a value 2243 // in CCValid, so other values can be ignored. 2244 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue, 2245 unsigned CCValid, unsigned CCMask) { 2246 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2247 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2248 2249 if (Conversion.XORValue) 2250 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2251 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2252 2253 if (Conversion.AddValue) 2254 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2255 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2256 2257 // The SHR/AND sequence should get optimized to an RISBG. 2258 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2259 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2260 if (Conversion.Bit != 31) 2261 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2262 DAG.getConstant(1, DL, MVT::i32)); 2263 return Result; 2264 } 2265 2266 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2267 // be done directly. IsFP is true if CC is for a floating-point rather than 2268 // integer comparison. 2269 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2270 switch (CC) { 2271 case ISD::SETOEQ: 2272 case ISD::SETEQ: 2273 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2274 2275 case ISD::SETOGE: 2276 case ISD::SETGE: 2277 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2278 2279 case ISD::SETOGT: 2280 case ISD::SETGT: 2281 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2282 2283 case ISD::SETUGT: 2284 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2285 2286 default: 2287 return 0; 2288 } 2289 } 2290 2291 // Return the SystemZISD vector comparison operation for CC or its inverse, 2292 // or 0 if neither can be done directly. Indicate in Invert whether the 2293 // result is for the inverse of CC. IsFP is true if CC is for a 2294 // floating-point rather than integer comparison. 2295 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2296 bool &Invert) { 2297 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2298 Invert = false; 2299 return Opcode; 2300 } 2301 2302 CC = ISD::getSetCCInverse(CC, !IsFP); 2303 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2304 Invert = true; 2305 return Opcode; 2306 } 2307 2308 return 0; 2309 } 2310 2311 // Return a v2f64 that contains the extended form of elements Start and Start+1 2312 // of v4f32 value Op. 2313 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2314 SDValue Op) { 2315 int Mask[] = { Start, -1, Start + 1, -1 }; 2316 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2317 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2318 } 2319 2320 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2321 // producing a result of type VT. 2322 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL, 2323 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2324 // There is no hardware support for v4f32, so extend the vector into 2325 // two v2f64s and compare those. 2326 if (CmpOp0.getValueType() == MVT::v4f32) { 2327 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2328 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2329 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2330 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2331 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2332 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2333 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2334 } 2335 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2336 } 2337 2338 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2339 // an integer mask of type VT. 2340 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2341 ISD::CondCode CC, SDValue CmpOp0, 2342 SDValue CmpOp1) { 2343 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2344 bool Invert = false; 2345 SDValue Cmp; 2346 switch (CC) { 2347 // Handle tests for order using (or (ogt y x) (oge x y)). 2348 case ISD::SETUO: 2349 Invert = true; 2350 case ISD::SETO: { 2351 assert(IsFP && "Unexpected integer comparison"); 2352 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2353 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2354 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2355 break; 2356 } 2357 2358 // Handle <> tests using (or (ogt y x) (ogt x y)). 2359 case ISD::SETUEQ: 2360 Invert = true; 2361 case ISD::SETONE: { 2362 assert(IsFP && "Unexpected integer comparison"); 2363 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2364 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2365 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2366 break; 2367 } 2368 2369 // Otherwise a single comparison is enough. It doesn't really 2370 // matter whether we try the inversion or the swap first, since 2371 // there are no cases where both work. 2372 default: 2373 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2374 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2375 else { 2376 CC = ISD::getSetCCSwappedOperands(CC); 2377 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2378 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2379 else 2380 llvm_unreachable("Unhandled comparison"); 2381 } 2382 break; 2383 } 2384 if (Invert) { 2385 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2386 DAG.getConstant(65535, DL, MVT::i32)); 2387 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2388 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2389 } 2390 return Cmp; 2391 } 2392 2393 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2394 SelectionDAG &DAG) const { 2395 SDValue CmpOp0 = Op.getOperand(0); 2396 SDValue CmpOp1 = Op.getOperand(1); 2397 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2398 SDLoc DL(Op); 2399 EVT VT = Op.getValueType(); 2400 if (VT.isVector()) 2401 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2402 2403 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2404 SDValue Glue = emitCmp(DAG, DL, C); 2405 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2406 } 2407 2408 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2409 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2410 SDValue CmpOp0 = Op.getOperand(2); 2411 SDValue CmpOp1 = Op.getOperand(3); 2412 SDValue Dest = Op.getOperand(4); 2413 SDLoc DL(Op); 2414 2415 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2416 SDValue Glue = emitCmp(DAG, DL, C); 2417 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2418 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2419 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2420 } 2421 2422 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2423 // allowing Pos and Neg to be wider than CmpOp. 2424 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2425 return (Neg.getOpcode() == ISD::SUB && 2426 Neg.getOperand(0).getOpcode() == ISD::Constant && 2427 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2428 Neg.getOperand(1) == Pos && 2429 (Pos == CmpOp || 2430 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2431 Pos.getOperand(0) == CmpOp))); 2432 } 2433 2434 // Return the absolute or negative absolute of Op; IsNegative decides which. 2435 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2436 bool IsNegative) { 2437 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2438 if (IsNegative) 2439 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2440 DAG.getConstant(0, DL, Op.getValueType()), Op); 2441 return Op; 2442 } 2443 2444 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2445 SelectionDAG &DAG) const { 2446 SDValue CmpOp0 = Op.getOperand(0); 2447 SDValue CmpOp1 = Op.getOperand(1); 2448 SDValue TrueOp = Op.getOperand(2); 2449 SDValue FalseOp = Op.getOperand(3); 2450 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2451 SDLoc DL(Op); 2452 2453 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2454 2455 // Check for absolute and negative-absolute selections, including those 2456 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2457 // This check supplements the one in DAGCombiner. 2458 if (C.Opcode == SystemZISD::ICMP && 2459 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2460 C.CCMask != SystemZ::CCMASK_CMP_NE && 2461 C.Op1.getOpcode() == ISD::Constant && 2462 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2463 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2464 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2465 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2466 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2467 } 2468 2469 SDValue Glue = emitCmp(DAG, DL, C); 2470 2471 // Special case for handling -1/0 results. The shifts we use here 2472 // should get optimized with the IPM conversion sequence. 2473 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2474 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2475 if (TrueC && FalseC) { 2476 int64_t TrueVal = TrueC->getSExtValue(); 2477 int64_t FalseVal = FalseC->getSExtValue(); 2478 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2479 // Invert the condition if we want -1 on false. 2480 if (TrueVal == 0) 2481 C.CCMask ^= C.CCValid; 2482 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2483 EVT VT = Op.getValueType(); 2484 // Extend the result to VT. Upper bits are ignored. 2485 if (!is32Bit(VT)) 2486 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2487 // Sign-extend from the low bit. 2488 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2489 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2490 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2491 } 2492 } 2493 2494 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2495 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2496 2497 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2498 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2499 } 2500 2501 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2502 SelectionDAG &DAG) const { 2503 SDLoc DL(Node); 2504 const GlobalValue *GV = Node->getGlobal(); 2505 int64_t Offset = Node->getOffset(); 2506 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2507 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2508 2509 SDValue Result; 2510 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2511 // Assign anchors at 1<<12 byte boundaries. 2512 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2513 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2514 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2515 2516 // The offset can be folded into the address if it is aligned to a halfword. 2517 Offset -= Anchor; 2518 if (Offset != 0 && (Offset & 1) == 0) { 2519 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2520 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2521 Offset = 0; 2522 } 2523 } else { 2524 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2525 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2526 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2527 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2528 } 2529 2530 // If there was a non-zero offset that we didn't fold, create an explicit 2531 // addition for it. 2532 if (Offset != 0) 2533 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2534 DAG.getConstant(Offset, DL, PtrVT)); 2535 2536 return Result; 2537 } 2538 2539 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2540 SelectionDAG &DAG, 2541 unsigned Opcode, 2542 SDValue GOTOffset) const { 2543 SDLoc DL(Node); 2544 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2545 SDValue Chain = DAG.getEntryNode(); 2546 SDValue Glue; 2547 2548 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2549 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2550 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2551 Glue = Chain.getValue(1); 2552 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2553 Glue = Chain.getValue(1); 2554 2555 // The first call operand is the chain and the second is the TLS symbol. 2556 SmallVector<SDValue, 8> Ops; 2557 Ops.push_back(Chain); 2558 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2559 Node->getValueType(0), 2560 0, 0)); 2561 2562 // Add argument registers to the end of the list so that they are 2563 // known live into the call. 2564 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2565 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2566 2567 // Add a register mask operand representing the call-preserved registers. 2568 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2569 const uint32_t *Mask = 2570 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2571 assert(Mask && "Missing call preserved mask for calling convention"); 2572 Ops.push_back(DAG.getRegisterMask(Mask)); 2573 2574 // Glue the call to the argument copies. 2575 Ops.push_back(Glue); 2576 2577 // Emit the call. 2578 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2579 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2580 Glue = Chain.getValue(1); 2581 2582 // Copy the return value from %r2. 2583 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2584 } 2585 2586 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2587 SelectionDAG &DAG) const { 2588 SDValue Chain = DAG.getEntryNode(); 2589 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2590 2591 // The high part of the thread pointer is in access register 0. 2592 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2593 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2594 2595 // The low part of the thread pointer is in access register 1. 2596 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2597 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2598 2599 // Merge them into a single 64-bit address. 2600 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2601 DAG.getConstant(32, DL, PtrVT)); 2602 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2603 } 2604 2605 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2606 SelectionDAG &DAG) const { 2607 if (DAG.getTarget().Options.EmulatedTLS) 2608 return LowerToTLSEmulatedModel(Node, DAG); 2609 SDLoc DL(Node); 2610 const GlobalValue *GV = Node->getGlobal(); 2611 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2612 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2613 2614 SDValue TP = lowerThreadPointer(DL, DAG); 2615 2616 // Get the offset of GA from the thread pointer, based on the TLS model. 2617 SDValue Offset; 2618 switch (model) { 2619 case TLSModel::GeneralDynamic: { 2620 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2621 SystemZConstantPoolValue *CPV = 2622 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2623 2624 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2625 Offset = DAG.getLoad( 2626 PtrVT, DL, DAG.getEntryNode(), Offset, 2627 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2628 2629 // Call __tls_get_offset to retrieve the offset. 2630 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2631 break; 2632 } 2633 2634 case TLSModel::LocalDynamic: { 2635 // Load the GOT offset of the module ID. 2636 SystemZConstantPoolValue *CPV = 2637 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2638 2639 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2640 Offset = DAG.getLoad( 2641 PtrVT, DL, DAG.getEntryNode(), Offset, 2642 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2643 2644 // Call __tls_get_offset to retrieve the module base offset. 2645 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2646 2647 // Note: The SystemZLDCleanupPass will remove redundant computations 2648 // of the module base offset. Count total number of local-dynamic 2649 // accesses to trigger execution of that pass. 2650 SystemZMachineFunctionInfo* MFI = 2651 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2652 MFI->incNumLocalDynamicTLSAccesses(); 2653 2654 // Add the per-symbol offset. 2655 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2656 2657 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2658 DTPOffset = DAG.getLoad( 2659 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2660 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2661 2662 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2663 break; 2664 } 2665 2666 case TLSModel::InitialExec: { 2667 // Load the offset from the GOT. 2668 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2669 SystemZII::MO_INDNTPOFF); 2670 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2671 Offset = 2672 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2673 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2674 break; 2675 } 2676 2677 case TLSModel::LocalExec: { 2678 // Force the offset into the constant pool and load it from there. 2679 SystemZConstantPoolValue *CPV = 2680 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2681 2682 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2683 Offset = DAG.getLoad( 2684 PtrVT, DL, DAG.getEntryNode(), Offset, 2685 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2686 break; 2687 } 2688 } 2689 2690 // Add the base and offset together. 2691 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2692 } 2693 2694 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2695 SelectionDAG &DAG) const { 2696 SDLoc DL(Node); 2697 const BlockAddress *BA = Node->getBlockAddress(); 2698 int64_t Offset = Node->getOffset(); 2699 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2700 2701 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2702 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2703 return Result; 2704 } 2705 2706 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2707 SelectionDAG &DAG) const { 2708 SDLoc DL(JT); 2709 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2710 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2711 2712 // Use LARL to load the address of the table. 2713 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2714 } 2715 2716 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2717 SelectionDAG &DAG) const { 2718 SDLoc DL(CP); 2719 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2720 2721 SDValue Result; 2722 if (CP->isMachineConstantPoolEntry()) 2723 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2724 CP->getAlignment()); 2725 else 2726 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2727 CP->getAlignment(), CP->getOffset()); 2728 2729 // Use LARL to load the address of the constant pool entry. 2730 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2731 } 2732 2733 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2734 SelectionDAG &DAG) const { 2735 MachineFunction &MF = DAG.getMachineFunction(); 2736 MachineFrameInfo &MFI = MF.getFrameInfo(); 2737 MFI.setFrameAddressIsTaken(true); 2738 2739 SDLoc DL(Op); 2740 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2741 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2742 2743 // If the back chain frame index has not been allocated yet, do so. 2744 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2745 int BackChainIdx = FI->getFramePointerSaveIndex(); 2746 if (!BackChainIdx) { 2747 // By definition, the frame address is the address of the back chain. 2748 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2749 FI->setFramePointerSaveIndex(BackChainIdx); 2750 } 2751 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2752 2753 // FIXME The frontend should detect this case. 2754 if (Depth > 0) { 2755 report_fatal_error("Unsupported stack frame traversal count"); 2756 } 2757 2758 return BackChain; 2759 } 2760 2761 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2762 SelectionDAG &DAG) const { 2763 MachineFunction &MF = DAG.getMachineFunction(); 2764 MachineFrameInfo &MFI = MF.getFrameInfo(); 2765 MFI.setReturnAddressIsTaken(true); 2766 2767 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2768 return SDValue(); 2769 2770 SDLoc DL(Op); 2771 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2772 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2773 2774 // FIXME The frontend should detect this case. 2775 if (Depth > 0) { 2776 report_fatal_error("Unsupported stack frame traversal count"); 2777 } 2778 2779 // Return R14D, which has the return address. Mark it an implicit live-in. 2780 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2781 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2782 } 2783 2784 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2785 SelectionDAG &DAG) const { 2786 SDLoc DL(Op); 2787 SDValue In = Op.getOperand(0); 2788 EVT InVT = In.getValueType(); 2789 EVT ResVT = Op.getValueType(); 2790 2791 // Convert loads directly. This is normally done by DAGCombiner, 2792 // but we need this case for bitcasts that are created during lowering 2793 // and which are then lowered themselves. 2794 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2795 if (ISD::isNormalLoad(LoadN)) 2796 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2797 LoadN->getMemOperand()); 2798 2799 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2800 SDValue In64; 2801 if (Subtarget.hasHighWord()) { 2802 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2803 MVT::i64); 2804 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2805 MVT::i64, SDValue(U64, 0), In); 2806 } else { 2807 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2808 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2809 DAG.getConstant(32, DL, MVT::i64)); 2810 } 2811 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2812 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2813 DL, MVT::f32, Out64); 2814 } 2815 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2816 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2817 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2818 MVT::f64, SDValue(U64, 0), In); 2819 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2820 if (Subtarget.hasHighWord()) 2821 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2822 MVT::i32, Out64); 2823 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2824 DAG.getConstant(32, DL, MVT::i64)); 2825 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2826 } 2827 llvm_unreachable("Unexpected bitcast combination"); 2828 } 2829 2830 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2831 SelectionDAG &DAG) const { 2832 MachineFunction &MF = DAG.getMachineFunction(); 2833 SystemZMachineFunctionInfo *FuncInfo = 2834 MF.getInfo<SystemZMachineFunctionInfo>(); 2835 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2836 2837 SDValue Chain = Op.getOperand(0); 2838 SDValue Addr = Op.getOperand(1); 2839 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2840 SDLoc DL(Op); 2841 2842 // The initial values of each field. 2843 const unsigned NumFields = 4; 2844 SDValue Fields[NumFields] = { 2845 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2846 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2847 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2848 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2849 }; 2850 2851 // Store each field into its respective slot. 2852 SDValue MemOps[NumFields]; 2853 unsigned Offset = 0; 2854 for (unsigned I = 0; I < NumFields; ++I) { 2855 SDValue FieldAddr = Addr; 2856 if (Offset != 0) 2857 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2858 DAG.getIntPtrConstant(Offset, DL)); 2859 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2860 MachinePointerInfo(SV, Offset)); 2861 Offset += 8; 2862 } 2863 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2864 } 2865 2866 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2867 SelectionDAG &DAG) const { 2868 SDValue Chain = Op.getOperand(0); 2869 SDValue DstPtr = Op.getOperand(1); 2870 SDValue SrcPtr = Op.getOperand(2); 2871 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2872 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2873 SDLoc DL(Op); 2874 2875 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2876 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2877 /*isTailCall*/false, 2878 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2879 } 2880 2881 SDValue SystemZTargetLowering:: 2882 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2883 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2884 MachineFunction &MF = DAG.getMachineFunction(); 2885 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack"); 2886 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 2887 2888 SDValue Chain = Op.getOperand(0); 2889 SDValue Size = Op.getOperand(1); 2890 SDValue Align = Op.getOperand(2); 2891 SDLoc DL(Op); 2892 2893 // If user has set the no alignment function attribute, ignore 2894 // alloca alignments. 2895 uint64_t AlignVal = (RealignOpt ? 2896 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2897 2898 uint64_t StackAlign = TFI->getStackAlignment(); 2899 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2900 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2901 2902 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2903 SDValue NeededSpace = Size; 2904 2905 // Get a reference to the stack pointer. 2906 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2907 2908 // If we need a backchain, save it now. 2909 SDValue Backchain; 2910 if (StoreBackchain) 2911 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 2912 2913 // Add extra space for alignment if needed. 2914 if (ExtraAlignSpace) 2915 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2916 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2917 2918 // Get the new stack pointer value. 2919 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2920 2921 // Copy the new stack pointer back. 2922 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2923 2924 // The allocated data lives above the 160 bytes allocated for the standard 2925 // frame, plus any outgoing stack arguments. We don't know how much that 2926 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2927 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2928 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2929 2930 // Dynamically realign if needed. 2931 if (RequiredAlign > StackAlign) { 2932 Result = 2933 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2934 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2935 Result = 2936 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2937 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2938 } 2939 2940 if (StoreBackchain) 2941 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 2942 2943 SDValue Ops[2] = { Result, Chain }; 2944 return DAG.getMergeValues(Ops, DL); 2945 } 2946 2947 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 2948 SDValue Op, SelectionDAG &DAG) const { 2949 SDLoc DL(Op); 2950 2951 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2952 } 2953 2954 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2955 SelectionDAG &DAG) const { 2956 EVT VT = Op.getValueType(); 2957 SDLoc DL(Op); 2958 SDValue Ops[2]; 2959 if (is32Bit(VT)) 2960 // Just do a normal 64-bit multiplication and extract the results. 2961 // We define this so that it can be used for constant division. 2962 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2963 Op.getOperand(1), Ops[1], Ops[0]); 2964 else { 2965 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2966 // 2967 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2968 // 2969 // but using the fact that the upper halves are either all zeros 2970 // or all ones: 2971 // 2972 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2973 // 2974 // and grouping the right terms together since they are quicker than the 2975 // multiplication: 2976 // 2977 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2978 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2979 SDValue LL = Op.getOperand(0); 2980 SDValue RL = Op.getOperand(1); 2981 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2982 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2983 // UMUL_LOHI64 returns the low result in the odd register and the high 2984 // result in the even register. SMUL_LOHI is defined to return the 2985 // low half first, so the results are in reverse order. 2986 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2987 LL, RL, Ops[1], Ops[0]); 2988 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2989 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2990 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2991 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2992 } 2993 return DAG.getMergeValues(Ops, DL); 2994 } 2995 2996 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2997 SelectionDAG &DAG) const { 2998 EVT VT = Op.getValueType(); 2999 SDLoc DL(Op); 3000 SDValue Ops[2]; 3001 if (is32Bit(VT)) 3002 // Just do a normal 64-bit multiplication and extract the results. 3003 // We define this so that it can be used for constant division. 3004 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3005 Op.getOperand(1), Ops[1], Ops[0]); 3006 else 3007 // UMUL_LOHI64 returns the low result in the odd register and the high 3008 // result in the even register. UMUL_LOHI is defined to return the 3009 // low half first, so the results are in reverse order. 3010 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 3011 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3012 return DAG.getMergeValues(Ops, DL); 3013 } 3014 3015 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3016 SelectionDAG &DAG) const { 3017 SDValue Op0 = Op.getOperand(0); 3018 SDValue Op1 = Op.getOperand(1); 3019 EVT VT = Op.getValueType(); 3020 SDLoc DL(Op); 3021 unsigned Opcode; 3022 3023 // We use DSGF for 32-bit division. 3024 if (is32Bit(VT)) { 3025 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3026 Opcode = SystemZISD::SDIVREM32; 3027 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 3028 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3029 Opcode = SystemZISD::SDIVREM32; 3030 } else 3031 Opcode = SystemZISD::SDIVREM64; 3032 3033 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 3034 // input is "don't care". The instruction returns the remainder in 3035 // the even register and the quotient in the odd register. 3036 SDValue Ops[2]; 3037 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 3038 Op0, Op1, Ops[1], Ops[0]); 3039 return DAG.getMergeValues(Ops, DL); 3040 } 3041 3042 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3043 SelectionDAG &DAG) const { 3044 EVT VT = Op.getValueType(); 3045 SDLoc DL(Op); 3046 3047 // DL(G) uses a double-width dividend, so we need to clear the even 3048 // register in the GR128 input. The instruction returns the remainder 3049 // in the even register and the quotient in the odd register. 3050 SDValue Ops[2]; 3051 if (is32Bit(VT)) 3052 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 3053 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3054 else 3055 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 3056 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3057 return DAG.getMergeValues(Ops, DL); 3058 } 3059 3060 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3061 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3062 3063 // Get the known-zero masks for each operand. 3064 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3065 APInt KnownZero[2], KnownOne[2]; 3066 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 3067 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 3068 3069 // See if the upper 32 bits of one operand and the lower 32 bits of the 3070 // other are known zero. They are the low and high operands respectively. 3071 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 3072 KnownZero[1].getZExtValue() }; 3073 unsigned High, Low; 3074 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3075 High = 1, Low = 0; 3076 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3077 High = 0, Low = 1; 3078 else 3079 return Op; 3080 3081 SDValue LowOp = Ops[Low]; 3082 SDValue HighOp = Ops[High]; 3083 3084 // If the high part is a constant, we're better off using IILH. 3085 if (HighOp.getOpcode() == ISD::Constant) 3086 return Op; 3087 3088 // If the low part is a constant that is outside the range of LHI, 3089 // then we're better off using IILF. 3090 if (LowOp.getOpcode() == ISD::Constant) { 3091 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3092 if (!isInt<16>(Value)) 3093 return Op; 3094 } 3095 3096 // Check whether the high part is an AND that doesn't change the 3097 // high 32 bits and just masks out low bits. We can skip it if so. 3098 if (HighOp.getOpcode() == ISD::AND && 3099 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3100 SDValue HighOp0 = HighOp.getOperand(0); 3101 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3102 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3103 HighOp = HighOp0; 3104 } 3105 3106 // Take advantage of the fact that all GR32 operations only change the 3107 // low 32 bits by truncating Low to an i32 and inserting it directly 3108 // using a subreg. The interesting cases are those where the truncation 3109 // can be folded. 3110 SDLoc DL(Op); 3111 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3112 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3113 MVT::i64, HighOp, Low32); 3114 } 3115 3116 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3117 SelectionDAG &DAG) const { 3118 EVT VT = Op.getValueType(); 3119 SDLoc DL(Op); 3120 Op = Op.getOperand(0); 3121 3122 // Handle vector types via VPOPCT. 3123 if (VT.isVector()) { 3124 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3125 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3126 switch (VT.getScalarSizeInBits()) { 3127 case 8: 3128 break; 3129 case 16: { 3130 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3131 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3132 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3133 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3134 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3135 break; 3136 } 3137 case 32: { 3138 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3139 DAG.getConstant(0, DL, MVT::i32)); 3140 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3141 break; 3142 } 3143 case 64: { 3144 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3145 DAG.getConstant(0, DL, MVT::i32)); 3146 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3147 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3148 break; 3149 } 3150 default: 3151 llvm_unreachable("Unexpected type"); 3152 } 3153 return Op; 3154 } 3155 3156 // Get the known-zero mask for the operand. 3157 APInt KnownZero, KnownOne; 3158 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3159 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3160 if (NumSignificantBits == 0) 3161 return DAG.getConstant(0, DL, VT); 3162 3163 // Skip known-zero high parts of the operand. 3164 int64_t OrigBitSize = VT.getSizeInBits(); 3165 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3166 BitSize = std::min(BitSize, OrigBitSize); 3167 3168 // The POPCNT instruction counts the number of bits in each byte. 3169 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3170 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3171 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3172 3173 // Add up per-byte counts in a binary tree. All bits of Op at 3174 // position larger than BitSize remain zero throughout. 3175 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3176 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3177 if (BitSize != OrigBitSize) 3178 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3179 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3180 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3181 } 3182 3183 // Extract overall result from high byte. 3184 if (BitSize > 8) 3185 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3186 DAG.getConstant(BitSize - 8, DL, VT)); 3187 3188 return Op; 3189 } 3190 3191 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3192 SelectionDAG &DAG) const { 3193 SDLoc DL(Op); 3194 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3195 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3196 SynchronizationScope FenceScope = static_cast<SynchronizationScope>( 3197 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3198 3199 // The only fence that needs an instruction is a sequentially-consistent 3200 // cross-thread fence. 3201 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3202 FenceScope == CrossThread) { 3203 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3204 Op.getOperand(0)), 3205 0); 3206 } 3207 3208 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3209 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3210 } 3211 3212 // Op is an atomic load. Lower it into a normal volatile load. 3213 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3214 SelectionDAG &DAG) const { 3215 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3216 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3217 Node->getChain(), Node->getBasePtr(), 3218 Node->getMemoryVT(), Node->getMemOperand()); 3219 } 3220 3221 // Op is an atomic store. Lower it into a normal volatile store followed 3222 // by a serialization. 3223 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3224 SelectionDAG &DAG) const { 3225 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3226 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3227 Node->getBasePtr(), Node->getMemoryVT(), 3228 Node->getMemOperand()); 3229 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3230 Chain), 0); 3231 } 3232 3233 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3234 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3235 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3236 SelectionDAG &DAG, 3237 unsigned Opcode) const { 3238 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3239 3240 // 32-bit operations need no code outside the main loop. 3241 EVT NarrowVT = Node->getMemoryVT(); 3242 EVT WideVT = MVT::i32; 3243 if (NarrowVT == WideVT) 3244 return Op; 3245 3246 int64_t BitSize = NarrowVT.getSizeInBits(); 3247 SDValue ChainIn = Node->getChain(); 3248 SDValue Addr = Node->getBasePtr(); 3249 SDValue Src2 = Node->getVal(); 3250 MachineMemOperand *MMO = Node->getMemOperand(); 3251 SDLoc DL(Node); 3252 EVT PtrVT = Addr.getValueType(); 3253 3254 // Convert atomic subtracts of constants into additions. 3255 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3256 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3257 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3258 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3259 } 3260 3261 // Get the address of the containing word. 3262 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3263 DAG.getConstant(-4, DL, PtrVT)); 3264 3265 // Get the number of bits that the word must be rotated left in order 3266 // to bring the field to the top bits of a GR32. 3267 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3268 DAG.getConstant(3, DL, PtrVT)); 3269 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3270 3271 // Get the complementing shift amount, for rotating a field in the top 3272 // bits back to its proper position. 3273 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3274 DAG.getConstant(0, DL, WideVT), BitShift); 3275 3276 // Extend the source operand to 32 bits and prepare it for the inner loop. 3277 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3278 // operations require the source to be shifted in advance. (This shift 3279 // can be folded if the source is constant.) For AND and NAND, the lower 3280 // bits must be set, while for other opcodes they should be left clear. 3281 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3282 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3283 DAG.getConstant(32 - BitSize, DL, WideVT)); 3284 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3285 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3286 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3287 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3288 3289 // Construct the ATOMIC_LOADW_* node. 3290 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3291 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3292 DAG.getConstant(BitSize, DL, WideVT) }; 3293 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3294 NarrowVT, MMO); 3295 3296 // Rotate the result of the final CS so that the field is in the lower 3297 // bits of a GR32, then truncate it. 3298 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3299 DAG.getConstant(BitSize, DL, WideVT)); 3300 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3301 3302 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3303 return DAG.getMergeValues(RetOps, DL); 3304 } 3305 3306 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3307 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3308 // operations into additions. 3309 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3310 SelectionDAG &DAG) const { 3311 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3312 EVT MemVT = Node->getMemoryVT(); 3313 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3314 // A full-width operation. 3315 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3316 SDValue Src2 = Node->getVal(); 3317 SDValue NegSrc2; 3318 SDLoc DL(Src2); 3319 3320 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3321 // Use an addition if the operand is constant and either LAA(G) is 3322 // available or the negative value is in the range of A(G)FHI. 3323 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3324 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3325 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3326 } else if (Subtarget.hasInterlockedAccess1()) 3327 // Use LAA(G) if available. 3328 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3329 Src2); 3330 3331 if (NegSrc2.getNode()) 3332 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3333 Node->getChain(), Node->getBasePtr(), NegSrc2, 3334 Node->getMemOperand()); 3335 3336 // Use the node as-is. 3337 return Op; 3338 } 3339 3340 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3341 } 3342 3343 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3344 // into a fullword ATOMIC_CMP_SWAPW operation. 3345 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3346 SelectionDAG &DAG) const { 3347 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3348 3349 // We have native support for 32-bit compare and swap. 3350 EVT NarrowVT = Node->getMemoryVT(); 3351 EVT WideVT = MVT::i32; 3352 if (NarrowVT == WideVT) 3353 return Op; 3354 3355 int64_t BitSize = NarrowVT.getSizeInBits(); 3356 SDValue ChainIn = Node->getOperand(0); 3357 SDValue Addr = Node->getOperand(1); 3358 SDValue CmpVal = Node->getOperand(2); 3359 SDValue SwapVal = Node->getOperand(3); 3360 MachineMemOperand *MMO = Node->getMemOperand(); 3361 SDLoc DL(Node); 3362 EVT PtrVT = Addr.getValueType(); 3363 3364 // Get the address of the containing word. 3365 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3366 DAG.getConstant(-4, DL, PtrVT)); 3367 3368 // Get the number of bits that the word must be rotated left in order 3369 // to bring the field to the top bits of a GR32. 3370 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3371 DAG.getConstant(3, DL, PtrVT)); 3372 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3373 3374 // Get the complementing shift amount, for rotating a field in the top 3375 // bits back to its proper position. 3376 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3377 DAG.getConstant(0, DL, WideVT), BitShift); 3378 3379 // Construct the ATOMIC_CMP_SWAPW node. 3380 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3381 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3382 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3383 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3384 VTList, Ops, NarrowVT, MMO); 3385 return AtomicOp; 3386 } 3387 3388 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3389 SelectionDAG &DAG) const { 3390 MachineFunction &MF = DAG.getMachineFunction(); 3391 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3392 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3393 SystemZ::R15D, Op.getValueType()); 3394 } 3395 3396 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3397 SelectionDAG &DAG) const { 3398 MachineFunction &MF = DAG.getMachineFunction(); 3399 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3400 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3401 3402 SDValue Chain = Op.getOperand(0); 3403 SDValue NewSP = Op.getOperand(1); 3404 SDValue Backchain; 3405 SDLoc DL(Op); 3406 3407 if (StoreBackchain) { 3408 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3409 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3410 } 3411 3412 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3413 3414 if (StoreBackchain) 3415 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3416 3417 return Chain; 3418 } 3419 3420 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3421 SelectionDAG &DAG) const { 3422 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3423 if (!IsData) 3424 // Just preserve the chain. 3425 return Op.getOperand(0); 3426 3427 SDLoc DL(Op); 3428 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3429 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3430 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3431 SDValue Ops[] = { 3432 Op.getOperand(0), 3433 DAG.getConstant(Code, DL, MVT::i32), 3434 Op.getOperand(1) 3435 }; 3436 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3437 Node->getVTList(), Ops, 3438 Node->getMemoryVT(), Node->getMemOperand()); 3439 } 3440 3441 // Return an i32 that contains the value of CC immediately after After, 3442 // whose final operand must be MVT::Glue. 3443 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3444 SDLoc DL(After); 3445 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3446 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3447 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3448 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3449 } 3450 3451 SDValue 3452 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3453 SelectionDAG &DAG) const { 3454 unsigned Opcode, CCValid; 3455 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3456 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3457 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3458 SDValue CC = getCCResult(DAG, Glued.getNode()); 3459 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3460 return SDValue(); 3461 } 3462 3463 return SDValue(); 3464 } 3465 3466 SDValue 3467 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3468 SelectionDAG &DAG) const { 3469 unsigned Opcode, CCValid; 3470 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3471 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3472 SDValue CC = getCCResult(DAG, Glued.getNode()); 3473 if (Op->getNumValues() == 1) 3474 return CC; 3475 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3476 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3477 CC); 3478 } 3479 3480 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3481 switch (Id) { 3482 case Intrinsic::thread_pointer: 3483 return lowerThreadPointer(SDLoc(Op), DAG); 3484 3485 case Intrinsic::s390_vpdi: 3486 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3487 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3488 3489 case Intrinsic::s390_vperm: 3490 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3491 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3492 3493 case Intrinsic::s390_vuphb: 3494 case Intrinsic::s390_vuphh: 3495 case Intrinsic::s390_vuphf: 3496 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3497 Op.getOperand(1)); 3498 3499 case Intrinsic::s390_vuplhb: 3500 case Intrinsic::s390_vuplhh: 3501 case Intrinsic::s390_vuplhf: 3502 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3503 Op.getOperand(1)); 3504 3505 case Intrinsic::s390_vuplb: 3506 case Intrinsic::s390_vuplhw: 3507 case Intrinsic::s390_vuplf: 3508 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3509 Op.getOperand(1)); 3510 3511 case Intrinsic::s390_vupllb: 3512 case Intrinsic::s390_vupllh: 3513 case Intrinsic::s390_vupllf: 3514 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3515 Op.getOperand(1)); 3516 3517 case Intrinsic::s390_vsumb: 3518 case Intrinsic::s390_vsumh: 3519 case Intrinsic::s390_vsumgh: 3520 case Intrinsic::s390_vsumgf: 3521 case Intrinsic::s390_vsumqf: 3522 case Intrinsic::s390_vsumqg: 3523 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3524 Op.getOperand(1), Op.getOperand(2)); 3525 } 3526 3527 return SDValue(); 3528 } 3529 3530 namespace { 3531 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3532 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3533 // Operand is the constant third operand, otherwise it is the number of 3534 // bytes in each element of the result. 3535 struct Permute { 3536 unsigned Opcode; 3537 unsigned Operand; 3538 unsigned char Bytes[SystemZ::VectorBytes]; 3539 }; 3540 } 3541 3542 static const Permute PermuteForms[] = { 3543 // VMRHG 3544 { SystemZISD::MERGE_HIGH, 8, 3545 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3546 // VMRHF 3547 { SystemZISD::MERGE_HIGH, 4, 3548 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3549 // VMRHH 3550 { SystemZISD::MERGE_HIGH, 2, 3551 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3552 // VMRHB 3553 { SystemZISD::MERGE_HIGH, 1, 3554 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3555 // VMRLG 3556 { SystemZISD::MERGE_LOW, 8, 3557 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3558 // VMRLF 3559 { SystemZISD::MERGE_LOW, 4, 3560 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3561 // VMRLH 3562 { SystemZISD::MERGE_LOW, 2, 3563 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3564 // VMRLB 3565 { SystemZISD::MERGE_LOW, 1, 3566 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3567 // VPKG 3568 { SystemZISD::PACK, 4, 3569 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3570 // VPKF 3571 { SystemZISD::PACK, 2, 3572 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3573 // VPKH 3574 { SystemZISD::PACK, 1, 3575 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3576 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3577 { SystemZISD::PERMUTE_DWORDS, 4, 3578 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3579 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3580 { SystemZISD::PERMUTE_DWORDS, 1, 3581 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3582 }; 3583 3584 // Called after matching a vector shuffle against a particular pattern. 3585 // Both the original shuffle and the pattern have two vector operands. 3586 // OpNos[0] is the operand of the original shuffle that should be used for 3587 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3588 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3589 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3590 // for operands 0 and 1 of the pattern. 3591 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3592 if (OpNos[0] < 0) { 3593 if (OpNos[1] < 0) 3594 return false; 3595 OpNo0 = OpNo1 = OpNos[1]; 3596 } else if (OpNos[1] < 0) { 3597 OpNo0 = OpNo1 = OpNos[0]; 3598 } else { 3599 OpNo0 = OpNos[0]; 3600 OpNo1 = OpNos[1]; 3601 } 3602 return true; 3603 } 3604 3605 // Bytes is a VPERM-like permute vector, except that -1 is used for 3606 // undefined bytes. Return true if the VPERM can be implemented using P. 3607 // When returning true set OpNo0 to the VPERM operand that should be 3608 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3609 // 3610 // For example, if swapping the VPERM operands allows P to match, OpNo0 3611 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3612 // operand, but rewriting it to use two duplicated operands allows it to 3613 // match P, then OpNo0 and OpNo1 will be the same. 3614 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3615 unsigned &OpNo0, unsigned &OpNo1) { 3616 int OpNos[] = { -1, -1 }; 3617 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3618 int Elt = Bytes[I]; 3619 if (Elt >= 0) { 3620 // Make sure that the two permute vectors use the same suboperand 3621 // byte number. Only the operand numbers (the high bits) are 3622 // allowed to differ. 3623 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3624 return false; 3625 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3626 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3627 // Make sure that the operand mappings are consistent with previous 3628 // elements. 3629 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3630 return false; 3631 OpNos[ModelOpNo] = RealOpNo; 3632 } 3633 } 3634 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3635 } 3636 3637 // As above, but search for a matching permute. 3638 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3639 unsigned &OpNo0, unsigned &OpNo1) { 3640 for (auto &P : PermuteForms) 3641 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3642 return &P; 3643 return nullptr; 3644 } 3645 3646 // Bytes is a VPERM-like permute vector, except that -1 is used for 3647 // undefined bytes. This permute is an operand of an outer permute. 3648 // See whether redistributing the -1 bytes gives a shuffle that can be 3649 // implemented using P. If so, set Transform to a VPERM-like permute vector 3650 // that, when applied to the result of P, gives the original permute in Bytes. 3651 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3652 const Permute &P, 3653 SmallVectorImpl<int> &Transform) { 3654 unsigned To = 0; 3655 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3656 int Elt = Bytes[From]; 3657 if (Elt < 0) 3658 // Byte number From of the result is undefined. 3659 Transform[From] = -1; 3660 else { 3661 while (P.Bytes[To] != Elt) { 3662 To += 1; 3663 if (To == SystemZ::VectorBytes) 3664 return false; 3665 } 3666 Transform[From] = To; 3667 } 3668 } 3669 return true; 3670 } 3671 3672 // As above, but search for a matching permute. 3673 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3674 SmallVectorImpl<int> &Transform) { 3675 for (auto &P : PermuteForms) 3676 if (matchDoublePermute(Bytes, P, Transform)) 3677 return &P; 3678 return nullptr; 3679 } 3680 3681 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3682 // as if it had type vNi8. 3683 static void getVPermMask(ShuffleVectorSDNode *VSN, 3684 SmallVectorImpl<int> &Bytes) { 3685 EVT VT = VSN->getValueType(0); 3686 unsigned NumElements = VT.getVectorNumElements(); 3687 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3688 Bytes.resize(NumElements * BytesPerElement, -1); 3689 for (unsigned I = 0; I < NumElements; ++I) { 3690 int Index = VSN->getMaskElt(I); 3691 if (Index >= 0) 3692 for (unsigned J = 0; J < BytesPerElement; ++J) 3693 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3694 } 3695 } 3696 3697 // Bytes is a VPERM-like permute vector, except that -1 is used for 3698 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3699 // the result come from a contiguous sequence of bytes from one input. 3700 // Set Base to the selector for the first byte if so. 3701 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3702 unsigned BytesPerElement, int &Base) { 3703 Base = -1; 3704 for (unsigned I = 0; I < BytesPerElement; ++I) { 3705 if (Bytes[Start + I] >= 0) { 3706 unsigned Elem = Bytes[Start + I]; 3707 if (Base < 0) { 3708 Base = Elem - I; 3709 // Make sure the bytes would come from one input operand. 3710 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3711 return false; 3712 } else if (unsigned(Base) != Elem - I) 3713 return false; 3714 } 3715 } 3716 return true; 3717 } 3718 3719 // Bytes is a VPERM-like permute vector, except that -1 is used for 3720 // undefined bytes. Return true if it can be performed using VSLDI. 3721 // When returning true, set StartIndex to the shift amount and OpNo0 3722 // and OpNo1 to the VPERM operands that should be used as the first 3723 // and second shift operand respectively. 3724 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3725 unsigned &StartIndex, unsigned &OpNo0, 3726 unsigned &OpNo1) { 3727 int OpNos[] = { -1, -1 }; 3728 int Shift = -1; 3729 for (unsigned I = 0; I < 16; ++I) { 3730 int Index = Bytes[I]; 3731 if (Index >= 0) { 3732 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3733 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3734 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3735 if (Shift < 0) 3736 Shift = ExpectedShift; 3737 else if (Shift != ExpectedShift) 3738 return false; 3739 // Make sure that the operand mappings are consistent with previous 3740 // elements. 3741 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3742 return false; 3743 OpNos[ModelOpNo] = RealOpNo; 3744 } 3745 } 3746 StartIndex = Shift; 3747 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3748 } 3749 3750 // Create a node that performs P on operands Op0 and Op1, casting the 3751 // operands to the appropriate type. The type of the result is determined by P. 3752 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3753 const Permute &P, SDValue Op0, SDValue Op1) { 3754 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3755 // elements of a PACK are twice as wide as the outputs. 3756 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3757 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3758 P.Operand); 3759 // Cast both operands to the appropriate type. 3760 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3761 SystemZ::VectorBytes / InBytes); 3762 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3763 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3764 SDValue Op; 3765 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3766 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3767 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3768 } else if (P.Opcode == SystemZISD::PACK) { 3769 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3770 SystemZ::VectorBytes / P.Operand); 3771 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3772 } else { 3773 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3774 } 3775 return Op; 3776 } 3777 3778 // Bytes is a VPERM-like permute vector, except that -1 is used for 3779 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3780 // VSLDI or VPERM. 3781 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3782 SDValue *Ops, 3783 const SmallVectorImpl<int> &Bytes) { 3784 for (unsigned I = 0; I < 2; ++I) 3785 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3786 3787 // First see whether VSLDI can be used. 3788 unsigned StartIndex, OpNo0, OpNo1; 3789 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3790 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3791 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3792 3793 // Fall back on VPERM. Construct an SDNode for the permute vector. 3794 SDValue IndexNodes[SystemZ::VectorBytes]; 3795 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3796 if (Bytes[I] >= 0) 3797 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3798 else 3799 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3800 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3801 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3802 } 3803 3804 namespace { 3805 // Describes a general N-operand vector shuffle. 3806 struct GeneralShuffle { 3807 GeneralShuffle(EVT vt) : VT(vt) {} 3808 void addUndef(); 3809 bool add(SDValue, unsigned); 3810 SDValue getNode(SelectionDAG &, const SDLoc &); 3811 3812 // The operands of the shuffle. 3813 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3814 3815 // Index I is -1 if byte I of the result is undefined. Otherwise the 3816 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3817 // Bytes[I] / SystemZ::VectorBytes. 3818 SmallVector<int, SystemZ::VectorBytes> Bytes; 3819 3820 // The type of the shuffle result. 3821 EVT VT; 3822 }; 3823 } 3824 3825 // Add an extra undefined element to the shuffle. 3826 void GeneralShuffle::addUndef() { 3827 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3828 for (unsigned I = 0; I < BytesPerElement; ++I) 3829 Bytes.push_back(-1); 3830 } 3831 3832 // Add an extra element to the shuffle, taking it from element Elem of Op. 3833 // A null Op indicates a vector input whose value will be calculated later; 3834 // there is at most one such input per shuffle and it always has the same 3835 // type as the result. Aborts and returns false if the source vector elements 3836 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 3837 // LLVM they become implicitly extended, but this is rare and not optimized. 3838 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 3839 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3840 3841 // The source vector can have wider elements than the result, 3842 // either through an explicit TRUNCATE or because of type legalization. 3843 // We want the least significant part. 3844 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3845 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3846 3847 // Return false if the source elements are smaller than their destination 3848 // elements. 3849 if (FromBytesPerElement < BytesPerElement) 3850 return false; 3851 3852 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3853 (FromBytesPerElement - BytesPerElement)); 3854 3855 // Look through things like shuffles and bitcasts. 3856 while (Op.getNode()) { 3857 if (Op.getOpcode() == ISD::BITCAST) 3858 Op = Op.getOperand(0); 3859 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3860 // See whether the bytes we need come from a contiguous part of one 3861 // operand. 3862 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3863 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3864 int NewByte; 3865 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3866 break; 3867 if (NewByte < 0) { 3868 addUndef(); 3869 return true; 3870 } 3871 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3872 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3873 } else if (Op.isUndef()) { 3874 addUndef(); 3875 return true; 3876 } else 3877 break; 3878 } 3879 3880 // Make sure that the source of the extraction is in Ops. 3881 unsigned OpNo = 0; 3882 for (; OpNo < Ops.size(); ++OpNo) 3883 if (Ops[OpNo] == Op) 3884 break; 3885 if (OpNo == Ops.size()) 3886 Ops.push_back(Op); 3887 3888 // Add the element to Bytes. 3889 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3890 for (unsigned I = 0; I < BytesPerElement; ++I) 3891 Bytes.push_back(Base + I); 3892 3893 return true; 3894 } 3895 3896 // Return SDNodes for the completed shuffle. 3897 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 3898 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3899 3900 if (Ops.size() == 0) 3901 return DAG.getUNDEF(VT); 3902 3903 // Make sure that there are at least two shuffle operands. 3904 if (Ops.size() == 1) 3905 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3906 3907 // Create a tree of shuffles, deferring root node until after the loop. 3908 // Try to redistribute the undefined elements of non-root nodes so that 3909 // the non-root shuffles match something like a pack or merge, then adjust 3910 // the parent node's permute vector to compensate for the new order. 3911 // Among other things, this copes with vectors like <2 x i16> that were 3912 // padded with undefined elements during type legalization. 3913 // 3914 // In the best case this redistribution will lead to the whole tree 3915 // using packs and merges. It should rarely be a loss in other cases. 3916 unsigned Stride = 1; 3917 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3918 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3919 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3920 3921 // Create a mask for just these two operands. 3922 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3923 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3924 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3925 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3926 if (OpNo == I) 3927 NewBytes[J] = Byte; 3928 else if (OpNo == I + Stride) 3929 NewBytes[J] = SystemZ::VectorBytes + Byte; 3930 else 3931 NewBytes[J] = -1; 3932 } 3933 // See if it would be better to reorganize NewMask to avoid using VPERM. 3934 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3935 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3936 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3937 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3938 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3939 if (NewBytes[J] >= 0) { 3940 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3941 "Invalid double permute"); 3942 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3943 } else 3944 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3945 } 3946 } else { 3947 // Just use NewBytes on the operands. 3948 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3949 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3950 if (NewBytes[J] >= 0) 3951 Bytes[J] = I * SystemZ::VectorBytes + J; 3952 } 3953 } 3954 } 3955 3956 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3957 if (Stride > 1) { 3958 Ops[1] = Ops[Stride]; 3959 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3960 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3961 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3962 } 3963 3964 // Look for an instruction that can do the permute without resorting 3965 // to VPERM. 3966 unsigned OpNo0, OpNo1; 3967 SDValue Op; 3968 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3969 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3970 else 3971 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3972 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3973 } 3974 3975 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3976 static bool isScalarToVector(SDValue Op) { 3977 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3978 if (!Op.getOperand(I).isUndef()) 3979 return false; 3980 return true; 3981 } 3982 3983 // Return a vector of type VT that contains Value in the first element. 3984 // The other elements don't matter. 3985 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3986 SDValue Value) { 3987 // If we have a constant, replicate it to all elements and let the 3988 // BUILD_VECTOR lowering take care of it. 3989 if (Value.getOpcode() == ISD::Constant || 3990 Value.getOpcode() == ISD::ConstantFP) { 3991 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3992 return DAG.getBuildVector(VT, DL, Ops); 3993 } 3994 if (Value.isUndef()) 3995 return DAG.getUNDEF(VT); 3996 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3997 } 3998 3999 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4000 // element 1. Used for cases in which replication is cheap. 4001 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4002 SDValue Op0, SDValue Op1) { 4003 if (Op0.isUndef()) { 4004 if (Op1.isUndef()) 4005 return DAG.getUNDEF(VT); 4006 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4007 } 4008 if (Op1.isUndef()) 4009 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4010 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4011 buildScalarToVector(DAG, DL, VT, Op0), 4012 buildScalarToVector(DAG, DL, VT, Op1)); 4013 } 4014 4015 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4016 // vector for them. 4017 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4018 SDValue Op1) { 4019 if (Op0.isUndef() && Op1.isUndef()) 4020 return DAG.getUNDEF(MVT::v2i64); 4021 // If one of the two inputs is undefined then replicate the other one, 4022 // in order to avoid using another register unnecessarily. 4023 if (Op0.isUndef()) 4024 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4025 else if (Op1.isUndef()) 4026 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4027 else { 4028 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4029 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4030 } 4031 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4032 } 4033 4034 // Try to represent constant BUILD_VECTOR node BVN using a 4035 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4036 // on success. 4037 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4038 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4039 unsigned BytesPerElement = ElemVT.getStoreSize(); 4040 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4041 SDValue Op = BVN->getOperand(I); 4042 if (!Op.isUndef()) { 4043 uint64_t Value; 4044 if (Op.getOpcode() == ISD::Constant) 4045 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 4046 else if (Op.getOpcode() == ISD::ConstantFP) 4047 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4048 .getZExtValue()); 4049 else 4050 return false; 4051 for (unsigned J = 0; J < BytesPerElement; ++J) { 4052 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4053 if (Byte == 0xff) 4054 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4055 else if (Byte != 0) 4056 return false; 4057 } 4058 } 4059 } 4060 return true; 4061 } 4062 4063 // Try to load a vector constant in which BitsPerElement-bit value Value 4064 // is replicated to fill the vector. VT is the type of the resulting 4065 // constant, which may have elements of a different size from BitsPerElement. 4066 // Return the SDValue of the constant on success, otherwise return 4067 // an empty value. 4068 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4069 const SystemZInstrInfo *TII, 4070 const SDLoc &DL, EVT VT, uint64_t Value, 4071 unsigned BitsPerElement) { 4072 // Signed 16-bit values can be replicated using VREPI. 4073 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4074 if (isInt<16>(SignedValue)) { 4075 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4076 SystemZ::VectorBits / BitsPerElement); 4077 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 4078 DAG.getConstant(SignedValue, DL, MVT::i32)); 4079 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4080 } 4081 // See whether rotating the constant left some N places gives a value that 4082 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4083 // If so we can use VGM. 4084 unsigned Start, End; 4085 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4086 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4087 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4088 // bit numbers for an BitsPerElement value, so that 0 denotes 4089 // 1 << (BitsPerElement-1). 4090 Start -= 64 - BitsPerElement; 4091 End -= 64 - BitsPerElement; 4092 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4093 SystemZ::VectorBits / BitsPerElement); 4094 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4095 DAG.getConstant(Start, DL, MVT::i32), 4096 DAG.getConstant(End, DL, MVT::i32)); 4097 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4098 } 4099 return SDValue(); 4100 } 4101 4102 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4103 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4104 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4105 // would benefit from this representation and return it if so. 4106 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4107 BuildVectorSDNode *BVN) { 4108 EVT VT = BVN->getValueType(0); 4109 unsigned NumElements = VT.getVectorNumElements(); 4110 4111 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4112 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4113 // need a BUILD_VECTOR, add an additional placeholder operand for that 4114 // BUILD_VECTOR and store its operands in ResidueOps. 4115 GeneralShuffle GS(VT); 4116 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4117 bool FoundOne = false; 4118 for (unsigned I = 0; I < NumElements; ++I) { 4119 SDValue Op = BVN->getOperand(I); 4120 if (Op.getOpcode() == ISD::TRUNCATE) 4121 Op = Op.getOperand(0); 4122 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4123 Op.getOperand(1).getOpcode() == ISD::Constant) { 4124 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4125 if (!GS.add(Op.getOperand(0), Elem)) 4126 return SDValue(); 4127 FoundOne = true; 4128 } else if (Op.isUndef()) { 4129 GS.addUndef(); 4130 } else { 4131 if (!GS.add(SDValue(), ResidueOps.size())) 4132 return SDValue(); 4133 ResidueOps.push_back(BVN->getOperand(I)); 4134 } 4135 } 4136 4137 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4138 if (!FoundOne) 4139 return SDValue(); 4140 4141 // Create the BUILD_VECTOR for the remaining elements, if any. 4142 if (!ResidueOps.empty()) { 4143 while (ResidueOps.size() < NumElements) 4144 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4145 for (auto &Op : GS.Ops) { 4146 if (!Op.getNode()) { 4147 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4148 break; 4149 } 4150 } 4151 } 4152 return GS.getNode(DAG, SDLoc(BVN)); 4153 } 4154 4155 // Combine GPR scalar values Elems into a vector of type VT. 4156 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4157 SmallVectorImpl<SDValue> &Elems) { 4158 // See whether there is a single replicated value. 4159 SDValue Single; 4160 unsigned int NumElements = Elems.size(); 4161 unsigned int Count = 0; 4162 for (auto Elem : Elems) { 4163 if (!Elem.isUndef()) { 4164 if (!Single.getNode()) 4165 Single = Elem; 4166 else if (Elem != Single) { 4167 Single = SDValue(); 4168 break; 4169 } 4170 Count += 1; 4171 } 4172 } 4173 // There are three cases here: 4174 // 4175 // - if the only defined element is a loaded one, the best sequence 4176 // is a replicating load. 4177 // 4178 // - otherwise, if the only defined element is an i64 value, we will 4179 // end up with the same VLVGP sequence regardless of whether we short-cut 4180 // for replication or fall through to the later code. 4181 // 4182 // - otherwise, if the only defined element is an i32 or smaller value, 4183 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4184 // This is only a win if the single defined element is used more than once. 4185 // In other cases we're better off using a single VLVGx. 4186 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4187 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4188 4189 // The best way of building a v2i64 from two i64s is to use VLVGP. 4190 if (VT == MVT::v2i64) 4191 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4192 4193 // Use a 64-bit merge high to combine two doubles. 4194 if (VT == MVT::v2f64) 4195 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4196 4197 // Build v4f32 values directly from the FPRs: 4198 // 4199 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4200 // V V VMRHF 4201 // <ABxx> <CDxx> 4202 // V VMRHG 4203 // <ABCD> 4204 if (VT == MVT::v4f32) { 4205 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4206 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4207 // Avoid unnecessary undefs by reusing the other operand. 4208 if (Op01.isUndef()) 4209 Op01 = Op23; 4210 else if (Op23.isUndef()) 4211 Op23 = Op01; 4212 // Merging identical replications is a no-op. 4213 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4214 return Op01; 4215 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4216 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4217 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4218 DL, MVT::v2i64, Op01, Op23); 4219 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4220 } 4221 4222 // Collect the constant terms. 4223 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4224 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4225 4226 unsigned NumConstants = 0; 4227 for (unsigned I = 0; I < NumElements; ++I) { 4228 SDValue Elem = Elems[I]; 4229 if (Elem.getOpcode() == ISD::Constant || 4230 Elem.getOpcode() == ISD::ConstantFP) { 4231 NumConstants += 1; 4232 Constants[I] = Elem; 4233 Done[I] = true; 4234 } 4235 } 4236 // If there was at least one constant, fill in the other elements of 4237 // Constants with undefs to get a full vector constant and use that 4238 // as the starting point. 4239 SDValue Result; 4240 if (NumConstants > 0) { 4241 for (unsigned I = 0; I < NumElements; ++I) 4242 if (!Constants[I].getNode()) 4243 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4244 Result = DAG.getBuildVector(VT, DL, Constants); 4245 } else { 4246 // Otherwise try to use VLVGP to start the sequence in order to 4247 // avoid a false dependency on any previous contents of the vector 4248 // register. This only makes sense if one of the associated elements 4249 // is defined. 4250 unsigned I1 = NumElements / 2 - 1; 4251 unsigned I2 = NumElements - 1; 4252 bool Def1 = !Elems[I1].isUndef(); 4253 bool Def2 = !Elems[I2].isUndef(); 4254 if (Def1 || Def2) { 4255 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4256 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4257 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4258 joinDwords(DAG, DL, Elem1, Elem2)); 4259 Done[I1] = true; 4260 Done[I2] = true; 4261 } else 4262 Result = DAG.getUNDEF(VT); 4263 } 4264 4265 // Use VLVGx to insert the other elements. 4266 for (unsigned I = 0; I < NumElements; ++I) 4267 if (!Done[I] && !Elems[I].isUndef()) 4268 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4269 DAG.getConstant(I, DL, MVT::i32)); 4270 return Result; 4271 } 4272 4273 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4274 SelectionDAG &DAG) const { 4275 const SystemZInstrInfo *TII = 4276 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4277 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4278 SDLoc DL(Op); 4279 EVT VT = Op.getValueType(); 4280 4281 if (BVN->isConstant()) { 4282 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4283 // preferred way of creating all-zero and all-one vectors so give it 4284 // priority over other methods below. 4285 uint64_t Mask = 0; 4286 if (tryBuildVectorByteMask(BVN, Mask)) { 4287 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4288 DAG.getConstant(Mask, DL, MVT::i32)); 4289 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4290 } 4291 4292 // Try using some form of replication. 4293 APInt SplatBits, SplatUndef; 4294 unsigned SplatBitSize; 4295 bool HasAnyUndefs; 4296 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4297 8, true) && 4298 SplatBitSize <= 64) { 4299 // First try assuming that any undefined bits above the highest set bit 4300 // and below the lowest set bit are 1s. This increases the likelihood of 4301 // being able to use a sign-extended element value in VECTOR REPLICATE 4302 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4303 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4304 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4305 uint64_t Lower = (SplatUndefZ 4306 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4307 uint64_t Upper = (SplatUndefZ 4308 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4309 uint64_t Value = SplatBitsZ | Upper | Lower; 4310 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4311 SplatBitSize); 4312 if (Op.getNode()) 4313 return Op; 4314 4315 // Now try assuming that any undefined bits between the first and 4316 // last defined set bits are set. This increases the chances of 4317 // using a non-wraparound mask. 4318 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4319 Value = SplatBitsZ | Middle; 4320 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4321 if (Op.getNode()) 4322 return Op; 4323 } 4324 4325 // Fall back to loading it from memory. 4326 return SDValue(); 4327 } 4328 4329 // See if we should use shuffles to construct the vector from other vectors. 4330 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4331 return Res; 4332 4333 // Detect SCALAR_TO_VECTOR conversions. 4334 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4335 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4336 4337 // Otherwise use buildVector to build the vector up from GPRs. 4338 unsigned NumElements = Op.getNumOperands(); 4339 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4340 for (unsigned I = 0; I < NumElements; ++I) 4341 Ops[I] = Op.getOperand(I); 4342 return buildVector(DAG, DL, VT, Ops); 4343 } 4344 4345 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4346 SelectionDAG &DAG) const { 4347 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4348 SDLoc DL(Op); 4349 EVT VT = Op.getValueType(); 4350 unsigned NumElements = VT.getVectorNumElements(); 4351 4352 if (VSN->isSplat()) { 4353 SDValue Op0 = Op.getOperand(0); 4354 unsigned Index = VSN->getSplatIndex(); 4355 assert(Index < VT.getVectorNumElements() && 4356 "Splat index should be defined and in first operand"); 4357 // See whether the value we're splatting is directly available as a scalar. 4358 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4359 Op0.getOpcode() == ISD::BUILD_VECTOR) 4360 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4361 // Otherwise keep it as a vector-to-vector operation. 4362 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4363 DAG.getConstant(Index, DL, MVT::i32)); 4364 } 4365 4366 GeneralShuffle GS(VT); 4367 for (unsigned I = 0; I < NumElements; ++I) { 4368 int Elt = VSN->getMaskElt(I); 4369 if (Elt < 0) 4370 GS.addUndef(); 4371 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4372 unsigned(Elt) % NumElements)) 4373 return SDValue(); 4374 } 4375 return GS.getNode(DAG, SDLoc(VSN)); 4376 } 4377 4378 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4379 SelectionDAG &DAG) const { 4380 SDLoc DL(Op); 4381 // Just insert the scalar into element 0 of an undefined vector. 4382 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4383 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4384 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4385 } 4386 4387 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4388 SelectionDAG &DAG) const { 4389 // Handle insertions of floating-point values. 4390 SDLoc DL(Op); 4391 SDValue Op0 = Op.getOperand(0); 4392 SDValue Op1 = Op.getOperand(1); 4393 SDValue Op2 = Op.getOperand(2); 4394 EVT VT = Op.getValueType(); 4395 4396 // Insertions into constant indices of a v2f64 can be done using VPDI. 4397 // However, if the inserted value is a bitcast or a constant then it's 4398 // better to use GPRs, as below. 4399 if (VT == MVT::v2f64 && 4400 Op1.getOpcode() != ISD::BITCAST && 4401 Op1.getOpcode() != ISD::ConstantFP && 4402 Op2.getOpcode() == ISD::Constant) { 4403 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4404 unsigned Mask = VT.getVectorNumElements() - 1; 4405 if (Index <= Mask) 4406 return Op; 4407 } 4408 4409 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4410 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4411 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4412 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4413 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4414 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4415 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4416 } 4417 4418 SDValue 4419 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4420 SelectionDAG &DAG) const { 4421 // Handle extractions of floating-point values. 4422 SDLoc DL(Op); 4423 SDValue Op0 = Op.getOperand(0); 4424 SDValue Op1 = Op.getOperand(1); 4425 EVT VT = Op.getValueType(); 4426 EVT VecVT = Op0.getValueType(); 4427 4428 // Extractions of constant indices can be done directly. 4429 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4430 uint64_t Index = CIndexN->getZExtValue(); 4431 unsigned Mask = VecVT.getVectorNumElements() - 1; 4432 if (Index <= Mask) 4433 return Op; 4434 } 4435 4436 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4437 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4438 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4439 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4440 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4441 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4442 } 4443 4444 SDValue 4445 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4446 unsigned UnpackHigh) const { 4447 SDValue PackedOp = Op.getOperand(0); 4448 EVT OutVT = Op.getValueType(); 4449 EVT InVT = PackedOp.getValueType(); 4450 unsigned ToBits = OutVT.getScalarSizeInBits(); 4451 unsigned FromBits = InVT.getScalarSizeInBits(); 4452 do { 4453 FromBits *= 2; 4454 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4455 SystemZ::VectorBits / FromBits); 4456 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4457 } while (FromBits != ToBits); 4458 return PackedOp; 4459 } 4460 4461 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4462 unsigned ByScalar) const { 4463 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4464 SDValue Op0 = Op.getOperand(0); 4465 SDValue Op1 = Op.getOperand(1); 4466 SDLoc DL(Op); 4467 EVT VT = Op.getValueType(); 4468 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4469 4470 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4471 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4472 APInt SplatBits, SplatUndef; 4473 unsigned SplatBitSize; 4474 bool HasAnyUndefs; 4475 // Check for constant splats. Use ElemBitSize as the minimum element 4476 // width and reject splats that need wider elements. 4477 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4478 ElemBitSize, true) && 4479 SplatBitSize == ElemBitSize) { 4480 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4481 DL, MVT::i32); 4482 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4483 } 4484 // Check for variable splats. 4485 BitVector UndefElements; 4486 SDValue Splat = BVN->getSplatValue(&UndefElements); 4487 if (Splat) { 4488 // Since i32 is the smallest legal type, we either need a no-op 4489 // or a truncation. 4490 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4491 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4492 } 4493 } 4494 4495 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4496 // and the shift amount is directly available in a GPR. 4497 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4498 if (VSN->isSplat()) { 4499 SDValue VSNOp0 = VSN->getOperand(0); 4500 unsigned Index = VSN->getSplatIndex(); 4501 assert(Index < VT.getVectorNumElements() && 4502 "Splat index should be defined and in first operand"); 4503 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4504 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4505 // Since i32 is the smallest legal type, we either need a no-op 4506 // or a truncation. 4507 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4508 VSNOp0.getOperand(Index)); 4509 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4510 } 4511 } 4512 } 4513 4514 // Otherwise just treat the current form as legal. 4515 return Op; 4516 } 4517 4518 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4519 SelectionDAG &DAG) const { 4520 switch (Op.getOpcode()) { 4521 case ISD::FRAMEADDR: 4522 return lowerFRAMEADDR(Op, DAG); 4523 case ISD::RETURNADDR: 4524 return lowerRETURNADDR(Op, DAG); 4525 case ISD::BR_CC: 4526 return lowerBR_CC(Op, DAG); 4527 case ISD::SELECT_CC: 4528 return lowerSELECT_CC(Op, DAG); 4529 case ISD::SETCC: 4530 return lowerSETCC(Op, DAG); 4531 case ISD::GlobalAddress: 4532 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4533 case ISD::GlobalTLSAddress: 4534 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4535 case ISD::BlockAddress: 4536 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4537 case ISD::JumpTable: 4538 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4539 case ISD::ConstantPool: 4540 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4541 case ISD::BITCAST: 4542 return lowerBITCAST(Op, DAG); 4543 case ISD::VASTART: 4544 return lowerVASTART(Op, DAG); 4545 case ISD::VACOPY: 4546 return lowerVACOPY(Op, DAG); 4547 case ISD::DYNAMIC_STACKALLOC: 4548 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4549 case ISD::GET_DYNAMIC_AREA_OFFSET: 4550 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4551 case ISD::SMUL_LOHI: 4552 return lowerSMUL_LOHI(Op, DAG); 4553 case ISD::UMUL_LOHI: 4554 return lowerUMUL_LOHI(Op, DAG); 4555 case ISD::SDIVREM: 4556 return lowerSDIVREM(Op, DAG); 4557 case ISD::UDIVREM: 4558 return lowerUDIVREM(Op, DAG); 4559 case ISD::OR: 4560 return lowerOR(Op, DAG); 4561 case ISD::CTPOP: 4562 return lowerCTPOP(Op, DAG); 4563 case ISD::ATOMIC_FENCE: 4564 return lowerATOMIC_FENCE(Op, DAG); 4565 case ISD::ATOMIC_SWAP: 4566 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4567 case ISD::ATOMIC_STORE: 4568 return lowerATOMIC_STORE(Op, DAG); 4569 case ISD::ATOMIC_LOAD: 4570 return lowerATOMIC_LOAD(Op, DAG); 4571 case ISD::ATOMIC_LOAD_ADD: 4572 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4573 case ISD::ATOMIC_LOAD_SUB: 4574 return lowerATOMIC_LOAD_SUB(Op, DAG); 4575 case ISD::ATOMIC_LOAD_AND: 4576 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4577 case ISD::ATOMIC_LOAD_OR: 4578 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4579 case ISD::ATOMIC_LOAD_XOR: 4580 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4581 case ISD::ATOMIC_LOAD_NAND: 4582 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4583 case ISD::ATOMIC_LOAD_MIN: 4584 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4585 case ISD::ATOMIC_LOAD_MAX: 4586 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4587 case ISD::ATOMIC_LOAD_UMIN: 4588 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4589 case ISD::ATOMIC_LOAD_UMAX: 4590 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4591 case ISD::ATOMIC_CMP_SWAP: 4592 return lowerATOMIC_CMP_SWAP(Op, DAG); 4593 case ISD::STACKSAVE: 4594 return lowerSTACKSAVE(Op, DAG); 4595 case ISD::STACKRESTORE: 4596 return lowerSTACKRESTORE(Op, DAG); 4597 case ISD::PREFETCH: 4598 return lowerPREFETCH(Op, DAG); 4599 case ISD::INTRINSIC_W_CHAIN: 4600 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4601 case ISD::INTRINSIC_WO_CHAIN: 4602 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4603 case ISD::BUILD_VECTOR: 4604 return lowerBUILD_VECTOR(Op, DAG); 4605 case ISD::VECTOR_SHUFFLE: 4606 return lowerVECTOR_SHUFFLE(Op, DAG); 4607 case ISD::SCALAR_TO_VECTOR: 4608 return lowerSCALAR_TO_VECTOR(Op, DAG); 4609 case ISD::INSERT_VECTOR_ELT: 4610 return lowerINSERT_VECTOR_ELT(Op, DAG); 4611 case ISD::EXTRACT_VECTOR_ELT: 4612 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4613 case ISD::SIGN_EXTEND_VECTOR_INREG: 4614 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4615 case ISD::ZERO_EXTEND_VECTOR_INREG: 4616 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4617 case ISD::SHL: 4618 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4619 case ISD::SRL: 4620 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4621 case ISD::SRA: 4622 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4623 default: 4624 llvm_unreachable("Unexpected node to lower"); 4625 } 4626 } 4627 4628 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4629 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4630 switch ((SystemZISD::NodeType)Opcode) { 4631 case SystemZISD::FIRST_NUMBER: break; 4632 OPCODE(RET_FLAG); 4633 OPCODE(CALL); 4634 OPCODE(SIBCALL); 4635 OPCODE(TLS_GDCALL); 4636 OPCODE(TLS_LDCALL); 4637 OPCODE(PCREL_WRAPPER); 4638 OPCODE(PCREL_OFFSET); 4639 OPCODE(IABS); 4640 OPCODE(ICMP); 4641 OPCODE(FCMP); 4642 OPCODE(TM); 4643 OPCODE(BR_CCMASK); 4644 OPCODE(SELECT_CCMASK); 4645 OPCODE(ADJDYNALLOC); 4646 OPCODE(POPCNT); 4647 OPCODE(UMUL_LOHI64); 4648 OPCODE(SDIVREM32); 4649 OPCODE(SDIVREM64); 4650 OPCODE(UDIVREM32); 4651 OPCODE(UDIVREM64); 4652 OPCODE(MVC); 4653 OPCODE(MVC_LOOP); 4654 OPCODE(NC); 4655 OPCODE(NC_LOOP); 4656 OPCODE(OC); 4657 OPCODE(OC_LOOP); 4658 OPCODE(XC); 4659 OPCODE(XC_LOOP); 4660 OPCODE(CLC); 4661 OPCODE(CLC_LOOP); 4662 OPCODE(STPCPY); 4663 OPCODE(STRCMP); 4664 OPCODE(SEARCH_STRING); 4665 OPCODE(IPM); 4666 OPCODE(SERIALIZE); 4667 OPCODE(MEMBARRIER); 4668 OPCODE(TBEGIN); 4669 OPCODE(TBEGIN_NOFLOAT); 4670 OPCODE(TEND); 4671 OPCODE(BYTE_MASK); 4672 OPCODE(ROTATE_MASK); 4673 OPCODE(REPLICATE); 4674 OPCODE(JOIN_DWORDS); 4675 OPCODE(SPLAT); 4676 OPCODE(MERGE_HIGH); 4677 OPCODE(MERGE_LOW); 4678 OPCODE(SHL_DOUBLE); 4679 OPCODE(PERMUTE_DWORDS); 4680 OPCODE(PERMUTE); 4681 OPCODE(PACK); 4682 OPCODE(PACKS_CC); 4683 OPCODE(PACKLS_CC); 4684 OPCODE(UNPACK_HIGH); 4685 OPCODE(UNPACKL_HIGH); 4686 OPCODE(UNPACK_LOW); 4687 OPCODE(UNPACKL_LOW); 4688 OPCODE(VSHL_BY_SCALAR); 4689 OPCODE(VSRL_BY_SCALAR); 4690 OPCODE(VSRA_BY_SCALAR); 4691 OPCODE(VSUM); 4692 OPCODE(VICMPE); 4693 OPCODE(VICMPH); 4694 OPCODE(VICMPHL); 4695 OPCODE(VICMPES); 4696 OPCODE(VICMPHS); 4697 OPCODE(VICMPHLS); 4698 OPCODE(VFCMPE); 4699 OPCODE(VFCMPH); 4700 OPCODE(VFCMPHE); 4701 OPCODE(VFCMPES); 4702 OPCODE(VFCMPHS); 4703 OPCODE(VFCMPHES); 4704 OPCODE(VFTCI); 4705 OPCODE(VEXTEND); 4706 OPCODE(VROUND); 4707 OPCODE(VTM); 4708 OPCODE(VFAE_CC); 4709 OPCODE(VFAEZ_CC); 4710 OPCODE(VFEE_CC); 4711 OPCODE(VFEEZ_CC); 4712 OPCODE(VFENE_CC); 4713 OPCODE(VFENEZ_CC); 4714 OPCODE(VISTR_CC); 4715 OPCODE(VSTRC_CC); 4716 OPCODE(VSTRCZ_CC); 4717 OPCODE(TDC); 4718 OPCODE(ATOMIC_SWAPW); 4719 OPCODE(ATOMIC_LOADW_ADD); 4720 OPCODE(ATOMIC_LOADW_SUB); 4721 OPCODE(ATOMIC_LOADW_AND); 4722 OPCODE(ATOMIC_LOADW_OR); 4723 OPCODE(ATOMIC_LOADW_XOR); 4724 OPCODE(ATOMIC_LOADW_NAND); 4725 OPCODE(ATOMIC_LOADW_MIN); 4726 OPCODE(ATOMIC_LOADW_MAX); 4727 OPCODE(ATOMIC_LOADW_UMIN); 4728 OPCODE(ATOMIC_LOADW_UMAX); 4729 OPCODE(ATOMIC_CMP_SWAPW); 4730 OPCODE(LRV); 4731 OPCODE(STRV); 4732 OPCODE(PREFETCH); 4733 } 4734 return nullptr; 4735 #undef OPCODE 4736 } 4737 4738 // Return true if VT is a vector whose elements are a whole number of bytes 4739 // in width. Also check for presence of vector support. 4740 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 4741 if (!Subtarget.hasVector()) 4742 return false; 4743 4744 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 4745 } 4746 4747 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4748 // producing a result of type ResVT. Op is a possibly bitcast version 4749 // of the input vector and Index is the index (based on type VecVT) that 4750 // should be extracted. Return the new extraction if a simplification 4751 // was possible or if Force is true. 4752 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 4753 EVT VecVT, SDValue Op, 4754 unsigned Index, 4755 DAGCombinerInfo &DCI, 4756 bool Force) const { 4757 SelectionDAG &DAG = DCI.DAG; 4758 4759 // The number of bytes being extracted. 4760 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4761 4762 for (;;) { 4763 unsigned Opcode = Op.getOpcode(); 4764 if (Opcode == ISD::BITCAST) 4765 // Look through bitcasts. 4766 Op = Op.getOperand(0); 4767 else if (Opcode == ISD::VECTOR_SHUFFLE && 4768 canTreatAsByteVector(Op.getValueType())) { 4769 // Get a VPERM-like permute mask and see whether the bytes covered 4770 // by the extracted element are a contiguous sequence from one 4771 // source operand. 4772 SmallVector<int, SystemZ::VectorBytes> Bytes; 4773 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4774 int First; 4775 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4776 BytesPerElement, First)) 4777 break; 4778 if (First < 0) 4779 return DAG.getUNDEF(ResVT); 4780 // Make sure the contiguous sequence starts at a multiple of the 4781 // original element size. 4782 unsigned Byte = unsigned(First) % Bytes.size(); 4783 if (Byte % BytesPerElement != 0) 4784 break; 4785 // We can get the extracted value directly from an input. 4786 Index = Byte / BytesPerElement; 4787 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4788 Force = true; 4789 } else if (Opcode == ISD::BUILD_VECTOR && 4790 canTreatAsByteVector(Op.getValueType())) { 4791 // We can only optimize this case if the BUILD_VECTOR elements are 4792 // at least as wide as the extracted value. 4793 EVT OpVT = Op.getValueType(); 4794 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4795 if (OpBytesPerElement < BytesPerElement) 4796 break; 4797 // Make sure that the least-significant bit of the extracted value 4798 // is the least significant bit of an input. 4799 unsigned End = (Index + 1) * BytesPerElement; 4800 if (End % OpBytesPerElement != 0) 4801 break; 4802 // We're extracting the low part of one operand of the BUILD_VECTOR. 4803 Op = Op.getOperand(End / OpBytesPerElement - 1); 4804 if (!Op.getValueType().isInteger()) { 4805 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 4806 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4807 DCI.AddToWorklist(Op.getNode()); 4808 } 4809 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4810 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4811 if (VT != ResVT) { 4812 DCI.AddToWorklist(Op.getNode()); 4813 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4814 } 4815 return Op; 4816 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4817 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4818 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4819 canTreatAsByteVector(Op.getValueType()) && 4820 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4821 // Make sure that only the unextended bits are significant. 4822 EVT ExtVT = Op.getValueType(); 4823 EVT OpVT = Op.getOperand(0).getValueType(); 4824 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4825 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4826 unsigned Byte = Index * BytesPerElement; 4827 unsigned SubByte = Byte % ExtBytesPerElement; 4828 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4829 if (SubByte < MinSubByte || 4830 SubByte + BytesPerElement > ExtBytesPerElement) 4831 break; 4832 // Get the byte offset of the unextended element 4833 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4834 // ...then add the byte offset relative to that element. 4835 Byte += SubByte - MinSubByte; 4836 if (Byte % BytesPerElement != 0) 4837 break; 4838 Op = Op.getOperand(0); 4839 Index = Byte / BytesPerElement; 4840 Force = true; 4841 } else 4842 break; 4843 } 4844 if (Force) { 4845 if (Op.getValueType() != VecVT) { 4846 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4847 DCI.AddToWorklist(Op.getNode()); 4848 } 4849 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4850 DAG.getConstant(Index, DL, MVT::i32)); 4851 } 4852 return SDValue(); 4853 } 4854 4855 // Optimize vector operations in scalar value Op on the basis that Op 4856 // is truncated to TruncVT. 4857 SDValue SystemZTargetLowering::combineTruncateExtract( 4858 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 4859 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4860 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4861 // of type TruncVT. 4862 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4863 TruncVT.getSizeInBits() % 8 == 0) { 4864 SDValue Vec = Op.getOperand(0); 4865 EVT VecVT = Vec.getValueType(); 4866 if (canTreatAsByteVector(VecVT)) { 4867 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4868 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4869 unsigned TruncBytes = TruncVT.getStoreSize(); 4870 if (BytesPerElement % TruncBytes == 0) { 4871 // Calculate the value of Y' in the above description. We are 4872 // splitting the original elements into Scale equal-sized pieces 4873 // and for truncation purposes want the last (least-significant) 4874 // of these pieces for IndexN. This is easiest to do by calculating 4875 // the start index of the following element and then subtracting 1. 4876 unsigned Scale = BytesPerElement / TruncBytes; 4877 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4878 4879 // Defer the creation of the bitcast from X to combineExtract, 4880 // which might be able to optimize the extraction. 4881 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4882 VecVT.getStoreSize() / TruncBytes); 4883 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4884 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4885 } 4886 } 4887 } 4888 } 4889 return SDValue(); 4890 } 4891 4892 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 4893 SDNode *N, DAGCombinerInfo &DCI) const { 4894 // Convert (sext (ashr (shl X, C1), C2)) to 4895 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4896 // cheap as narrower ones. 4897 SelectionDAG &DAG = DCI.DAG; 4898 SDValue N0 = N->getOperand(0); 4899 EVT VT = N->getValueType(0); 4900 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4901 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4902 SDValue Inner = N0.getOperand(0); 4903 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4904 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4905 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 4906 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4907 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4908 EVT ShiftVT = N0.getOperand(1).getValueType(); 4909 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4910 Inner.getOperand(0)); 4911 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4912 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4913 ShiftVT)); 4914 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4915 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4916 } 4917 } 4918 } 4919 return SDValue(); 4920 } 4921 4922 SDValue SystemZTargetLowering::combineMERGE( 4923 SDNode *N, DAGCombinerInfo &DCI) const { 4924 SelectionDAG &DAG = DCI.DAG; 4925 unsigned Opcode = N->getOpcode(); 4926 SDValue Op0 = N->getOperand(0); 4927 SDValue Op1 = N->getOperand(1); 4928 if (Op0.getOpcode() == ISD::BITCAST) 4929 Op0 = Op0.getOperand(0); 4930 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4931 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4932 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4933 // for v4f32. 4934 if (Op1 == N->getOperand(0)) 4935 return Op1; 4936 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4937 EVT VT = Op1.getValueType(); 4938 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4939 if (ElemBytes <= 4) { 4940 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4941 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4942 EVT InVT = VT.changeVectorElementTypeToInteger(); 4943 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4944 SystemZ::VectorBytes / ElemBytes / 2); 4945 if (VT != InVT) { 4946 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4947 DCI.AddToWorklist(Op1.getNode()); 4948 } 4949 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4950 DCI.AddToWorklist(Op.getNode()); 4951 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4952 } 4953 } 4954 return SDValue(); 4955 } 4956 4957 SDValue SystemZTargetLowering::combineSTORE( 4958 SDNode *N, DAGCombinerInfo &DCI) const { 4959 SelectionDAG &DAG = DCI.DAG; 4960 auto *SN = cast<StoreSDNode>(N); 4961 auto &Op1 = N->getOperand(1); 4962 EVT MemVT = SN->getMemoryVT(); 4963 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4964 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4965 // If X has wider elements then convert it to: 4966 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4967 if (MemVT.isInteger()) { 4968 if (SDValue Value = 4969 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4970 DCI.AddToWorklist(Value.getNode()); 4971 4972 // Rewrite the store with the new form of stored value. 4973 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4974 SN->getBasePtr(), SN->getMemoryVT(), 4975 SN->getMemOperand()); 4976 } 4977 } 4978 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 4979 // See comment in combineBSWAP about volatile accesses. 4980 if (!SN->isVolatile() && 4981 Op1.getOpcode() == ISD::BSWAP && 4982 Op1.getNode()->hasOneUse() && 4983 (Op1.getValueType() == MVT::i16 || 4984 Op1.getValueType() == MVT::i32 || 4985 Op1.getValueType() == MVT::i64)) { 4986 4987 SDValue BSwapOp = Op1.getOperand(0); 4988 4989 if (BSwapOp.getValueType() == MVT::i16) 4990 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 4991 4992 SDValue Ops[] = { 4993 N->getOperand(0), BSwapOp, N->getOperand(2), 4994 DAG.getValueType(Op1.getValueType()) 4995 }; 4996 4997 return 4998 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 4999 Ops, MemVT, SN->getMemOperand()); 5000 } 5001 return SDValue(); 5002 } 5003 5004 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5005 SDNode *N, DAGCombinerInfo &DCI) const { 5006 5007 if (!Subtarget.hasVector()) 5008 return SDValue(); 5009 5010 // Try to simplify a vector extraction. 5011 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5012 SDValue Op0 = N->getOperand(0); 5013 EVT VecVT = Op0.getValueType(); 5014 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5015 IndexN->getZExtValue(), DCI, false); 5016 } 5017 return SDValue(); 5018 } 5019 5020 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5021 SDNode *N, DAGCombinerInfo &DCI) const { 5022 SelectionDAG &DAG = DCI.DAG; 5023 // (join_dwords X, X) == (replicate X) 5024 if (N->getOperand(0) == N->getOperand(1)) 5025 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5026 N->getOperand(0)); 5027 return SDValue(); 5028 } 5029 5030 SDValue SystemZTargetLowering::combineFP_ROUND( 5031 SDNode *N, DAGCombinerInfo &DCI) const { 5032 // (fpround (extract_vector_elt X 0)) 5033 // (fpround (extract_vector_elt X 1)) -> 5034 // (extract_vector_elt (VROUND X) 0) 5035 // (extract_vector_elt (VROUND X) 1) 5036 // 5037 // This is a special case since the target doesn't really support v2f32s. 5038 SelectionDAG &DAG = DCI.DAG; 5039 SDValue Op0 = N->getOperand(0); 5040 if (N->getValueType(0) == MVT::f32 && 5041 Op0.hasOneUse() && 5042 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5043 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5044 Op0.getOperand(1).getOpcode() == ISD::Constant && 5045 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5046 SDValue Vec = Op0.getOperand(0); 5047 for (auto *U : Vec->uses()) { 5048 if (U != Op0.getNode() && 5049 U->hasOneUse() && 5050 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5051 U->getOperand(0) == Vec && 5052 U->getOperand(1).getOpcode() == ISD::Constant && 5053 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5054 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5055 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5056 OtherRound.getOperand(0) == SDValue(U, 0) && 5057 OtherRound.getValueType() == MVT::f32) { 5058 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5059 MVT::v4f32, Vec); 5060 DCI.AddToWorklist(VRound.getNode()); 5061 SDValue Extract1 = 5062 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5063 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5064 DCI.AddToWorklist(Extract1.getNode()); 5065 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5066 SDValue Extract0 = 5067 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5068 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5069 return Extract0; 5070 } 5071 } 5072 } 5073 } 5074 return SDValue(); 5075 } 5076 5077 SDValue SystemZTargetLowering::combineBSWAP( 5078 SDNode *N, DAGCombinerInfo &DCI) const { 5079 SelectionDAG &DAG = DCI.DAG; 5080 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5081 // These loads are allowed to access memory multiple times, and so we must check 5082 // that the loads are not volatile before performing the combine. 5083 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5084 N->getOperand(0).hasOneUse() && 5085 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5086 N->getValueType(0) == MVT::i64) && 5087 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) { 5088 SDValue Load = N->getOperand(0); 5089 LoadSDNode *LD = cast<LoadSDNode>(Load); 5090 5091 // Create the byte-swapping load. 5092 SDValue Ops[] = { 5093 LD->getChain(), // Chain 5094 LD->getBasePtr(), // Ptr 5095 DAG.getValueType(N->getValueType(0)) // VT 5096 }; 5097 SDValue BSLoad = 5098 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5099 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5100 MVT::i64 : MVT::i32, MVT::Other), 5101 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5102 5103 // If this is an i16 load, insert the truncate. 5104 SDValue ResVal = BSLoad; 5105 if (N->getValueType(0) == MVT::i16) 5106 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5107 5108 // First, combine the bswap away. This makes the value produced by the 5109 // load dead. 5110 DCI.CombineTo(N, ResVal); 5111 5112 // Next, combine the load away, we give it a bogus result value but a real 5113 // chain result. The result value is dead because the bswap is dead. 5114 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5115 5116 // Return N so it doesn't get rechecked! 5117 return SDValue(N, 0); 5118 } 5119 return SDValue(); 5120 } 5121 5122 SDValue SystemZTargetLowering::combineSHIFTROT( 5123 SDNode *N, DAGCombinerInfo &DCI) const { 5124 5125 SelectionDAG &DAG = DCI.DAG; 5126 5127 // Shift/rotate instructions only use the last 6 bits of the second operand 5128 // register. If the second operand is the result of an AND with an immediate 5129 // value that has its last 6 bits set, we can safely remove the AND operation. 5130 // 5131 // If the AND operation doesn't have the last 6 bits set, we can't remove it 5132 // entirely, but we can still truncate it to a 16-bit value. This prevents 5133 // us from ending up with a NILL with a signed operand, which will cause the 5134 // instruction printer to abort. 5135 SDValue N1 = N->getOperand(1); 5136 if (N1.getOpcode() == ISD::AND) { 5137 SDValue AndMaskOp = N1->getOperand(1); 5138 auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp); 5139 5140 // The AND mask is constant 5141 if (AndMask) { 5142 auto AmtVal = AndMask->getZExtValue(); 5143 5144 // Bottom 6 bits are set 5145 if ((AmtVal & 0x3f) == 0x3f) { 5146 SDValue AndOp = N1->getOperand(0); 5147 5148 // This is the only use, so remove the node 5149 if (N1.hasOneUse()) { 5150 // Combine the AND away 5151 DCI.CombineTo(N1.getNode(), AndOp); 5152 5153 // Return N so it isn't rechecked 5154 return SDValue(N, 0); 5155 5156 // The node will be reused, so create a new node for this one use 5157 } else { 5158 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5159 N->getValueType(0), N->getOperand(0), 5160 AndOp); 5161 DCI.AddToWorklist(Replace.getNode()); 5162 5163 return Replace; 5164 } 5165 5166 // We can't remove the AND, but we can use NILL here (normally we would 5167 // use NILF). Only keep the last 16 bits of the mask. The actual 5168 // transformation will be handled by .td definitions. 5169 } else if (AmtVal >> 16 != 0) { 5170 SDValue AndOp = N1->getOperand(0); 5171 5172 auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff, 5173 SDLoc(AndMaskOp), 5174 AndMaskOp.getValueType()); 5175 5176 auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(), 5177 AndOp, NewMask); 5178 5179 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5180 N->getValueType(0), N->getOperand(0), 5181 NewAnd); 5182 DCI.AddToWorklist(Replace.getNode()); 5183 5184 return Replace; 5185 } 5186 } 5187 } 5188 5189 return SDValue(); 5190 } 5191 5192 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5193 DAGCombinerInfo &DCI) const { 5194 switch(N->getOpcode()) { 5195 default: break; 5196 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5197 case SystemZISD::MERGE_HIGH: 5198 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5199 case ISD::STORE: return combineSTORE(N, DCI); 5200 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5201 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5202 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5203 case ISD::BSWAP: return combineBSWAP(N, DCI); 5204 case ISD::SHL: 5205 case ISD::SRA: 5206 case ISD::SRL: 5207 case ISD::ROTL: return combineSHIFTROT(N, DCI); 5208 } 5209 5210 return SDValue(); 5211 } 5212 5213 //===----------------------------------------------------------------------===// 5214 // Custom insertion 5215 //===----------------------------------------------------------------------===// 5216 5217 // Create a new basic block after MBB. 5218 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5219 MachineFunction &MF = *MBB->getParent(); 5220 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5221 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5222 return NewMBB; 5223 } 5224 5225 // Split MBB after MI and return the new block (the one that contains 5226 // instructions after MI). 5227 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 5228 MachineBasicBlock *MBB) { 5229 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5230 NewMBB->splice(NewMBB->begin(), MBB, 5231 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5232 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5233 return NewMBB; 5234 } 5235 5236 // Split MBB before MI and return the new block (the one that contains MI). 5237 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 5238 MachineBasicBlock *MBB) { 5239 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5240 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 5241 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5242 return NewMBB; 5243 } 5244 5245 // Force base value Base into a register before MI. Return the register. 5246 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 5247 const SystemZInstrInfo *TII) { 5248 if (Base.isReg()) 5249 return Base.getReg(); 5250 5251 MachineBasicBlock *MBB = MI.getParent(); 5252 MachineFunction &MF = *MBB->getParent(); 5253 MachineRegisterInfo &MRI = MF.getRegInfo(); 5254 5255 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5256 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 5257 .add(Base) 5258 .addImm(0) 5259 .addReg(0); 5260 return Reg; 5261 } 5262 5263 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 5264 MachineBasicBlock * 5265 SystemZTargetLowering::emitSelect(MachineInstr &MI, 5266 MachineBasicBlock *MBB, 5267 unsigned LOCROpcode) const { 5268 const SystemZInstrInfo *TII = 5269 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5270 5271 unsigned DestReg = MI.getOperand(0).getReg(); 5272 unsigned TrueReg = MI.getOperand(1).getReg(); 5273 unsigned FalseReg = MI.getOperand(2).getReg(); 5274 unsigned CCValid = MI.getOperand(3).getImm(); 5275 unsigned CCMask = MI.getOperand(4).getImm(); 5276 DebugLoc DL = MI.getDebugLoc(); 5277 5278 // Use LOCROpcode if possible. 5279 if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) { 5280 BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg) 5281 .addReg(FalseReg).addReg(TrueReg) 5282 .addImm(CCValid).addImm(CCMask); 5283 MI.eraseFromParent(); 5284 return MBB; 5285 } 5286 5287 MachineBasicBlock *StartMBB = MBB; 5288 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5289 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5290 5291 // StartMBB: 5292 // BRC CCMask, JoinMBB 5293 // # fallthrough to FalseMBB 5294 MBB = StartMBB; 5295 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5296 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5297 MBB->addSuccessor(JoinMBB); 5298 MBB->addSuccessor(FalseMBB); 5299 5300 // FalseMBB: 5301 // # fallthrough to JoinMBB 5302 MBB = FalseMBB; 5303 MBB->addSuccessor(JoinMBB); 5304 5305 // JoinMBB: 5306 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5307 // ... 5308 MBB = JoinMBB; 5309 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5310 .addReg(TrueReg).addMBB(StartMBB) 5311 .addReg(FalseReg).addMBB(FalseMBB); 5312 5313 MI.eraseFromParent(); 5314 return JoinMBB; 5315 } 5316 5317 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5318 // StoreOpcode is the store to use and Invert says whether the store should 5319 // happen when the condition is false rather than true. If a STORE ON 5320 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5321 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 5322 MachineBasicBlock *MBB, 5323 unsigned StoreOpcode, 5324 unsigned STOCOpcode, 5325 bool Invert) const { 5326 const SystemZInstrInfo *TII = 5327 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5328 5329 unsigned SrcReg = MI.getOperand(0).getReg(); 5330 MachineOperand Base = MI.getOperand(1); 5331 int64_t Disp = MI.getOperand(2).getImm(); 5332 unsigned IndexReg = MI.getOperand(3).getReg(); 5333 unsigned CCValid = MI.getOperand(4).getImm(); 5334 unsigned CCMask = MI.getOperand(5).getImm(); 5335 DebugLoc DL = MI.getDebugLoc(); 5336 5337 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5338 5339 // Use STOCOpcode if possible. We could use different store patterns in 5340 // order to avoid matching the index register, but the performance trade-offs 5341 // might be more complicated in that case. 5342 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5343 if (Invert) 5344 CCMask ^= CCValid; 5345 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5346 .addReg(SrcReg) 5347 .add(Base) 5348 .addImm(Disp) 5349 .addImm(CCValid) 5350 .addImm(CCMask); 5351 MI.eraseFromParent(); 5352 return MBB; 5353 } 5354 5355 // Get the condition needed to branch around the store. 5356 if (!Invert) 5357 CCMask ^= CCValid; 5358 5359 MachineBasicBlock *StartMBB = MBB; 5360 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5361 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5362 5363 // StartMBB: 5364 // BRC CCMask, JoinMBB 5365 // # fallthrough to FalseMBB 5366 MBB = StartMBB; 5367 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5368 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5369 MBB->addSuccessor(JoinMBB); 5370 MBB->addSuccessor(FalseMBB); 5371 5372 // FalseMBB: 5373 // store %SrcReg, %Disp(%Index,%Base) 5374 // # fallthrough to JoinMBB 5375 MBB = FalseMBB; 5376 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5377 .addReg(SrcReg) 5378 .add(Base) 5379 .addImm(Disp) 5380 .addReg(IndexReg); 5381 MBB->addSuccessor(JoinMBB); 5382 5383 MI.eraseFromParent(); 5384 return JoinMBB; 5385 } 5386 5387 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5388 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5389 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5390 // BitSize is the width of the field in bits, or 0 if this is a partword 5391 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5392 // is one of the operands. Invert says whether the field should be 5393 // inverted after performing BinOpcode (e.g. for NAND). 5394 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 5395 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 5396 unsigned BitSize, bool Invert) const { 5397 MachineFunction &MF = *MBB->getParent(); 5398 const SystemZInstrInfo *TII = 5399 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5400 MachineRegisterInfo &MRI = MF.getRegInfo(); 5401 bool IsSubWord = (BitSize < 32); 5402 5403 // Extract the operands. Base can be a register or a frame index. 5404 // Src2 can be a register or immediate. 5405 unsigned Dest = MI.getOperand(0).getReg(); 5406 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5407 int64_t Disp = MI.getOperand(2).getImm(); 5408 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 5409 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5410 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5411 DebugLoc DL = MI.getDebugLoc(); 5412 if (IsSubWord) 5413 BitSize = MI.getOperand(6).getImm(); 5414 5415 // Subword operations use 32-bit registers. 5416 const TargetRegisterClass *RC = (BitSize <= 32 ? 5417 &SystemZ::GR32BitRegClass : 5418 &SystemZ::GR64BitRegClass); 5419 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5420 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5421 5422 // Get the right opcodes for the displacement. 5423 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5424 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5425 assert(LOpcode && CSOpcode && "Displacement out of range"); 5426 5427 // Create virtual registers for temporary results. 5428 unsigned OrigVal = MRI.createVirtualRegister(RC); 5429 unsigned OldVal = MRI.createVirtualRegister(RC); 5430 unsigned NewVal = (BinOpcode || IsSubWord ? 5431 MRI.createVirtualRegister(RC) : Src2.getReg()); 5432 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5433 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5434 5435 // Insert a basic block for the main loop. 5436 MachineBasicBlock *StartMBB = MBB; 5437 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5438 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5439 5440 // StartMBB: 5441 // ... 5442 // %OrigVal = L Disp(%Base) 5443 // # fall through to LoopMMB 5444 MBB = StartMBB; 5445 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5446 MBB->addSuccessor(LoopMBB); 5447 5448 // LoopMBB: 5449 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5450 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5451 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5452 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5453 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5454 // JNE LoopMBB 5455 // # fall through to DoneMMB 5456 MBB = LoopMBB; 5457 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5458 .addReg(OrigVal).addMBB(StartMBB) 5459 .addReg(Dest).addMBB(LoopMBB); 5460 if (IsSubWord) 5461 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5462 .addReg(OldVal).addReg(BitShift).addImm(0); 5463 if (Invert) { 5464 // Perform the operation normally and then invert every bit of the field. 5465 unsigned Tmp = MRI.createVirtualRegister(RC); 5466 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 5467 if (BitSize <= 32) 5468 // XILF with the upper BitSize bits set. 5469 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5470 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5471 else { 5472 // Use LCGR and add -1 to the result, which is more compact than 5473 // an XILF, XILH pair. 5474 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5475 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5476 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5477 .addReg(Tmp2).addImm(-1); 5478 } 5479 } else if (BinOpcode) 5480 // A simply binary operation. 5481 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5482 .addReg(RotatedOldVal) 5483 .add(Src2); 5484 else if (IsSubWord) 5485 // Use RISBG to rotate Src2 into position and use it to replace the 5486 // field in RotatedOldVal. 5487 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5488 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5489 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5490 if (IsSubWord) 5491 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5492 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5493 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5494 .addReg(OldVal) 5495 .addReg(NewVal) 5496 .add(Base) 5497 .addImm(Disp); 5498 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5499 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5500 MBB->addSuccessor(LoopMBB); 5501 MBB->addSuccessor(DoneMBB); 5502 5503 MI.eraseFromParent(); 5504 return DoneMBB; 5505 } 5506 5507 // Implement EmitInstrWithCustomInserter for pseudo 5508 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5509 // instruction that should be used to compare the current field with the 5510 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5511 // for when the current field should be kept. BitSize is the width of 5512 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5513 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 5514 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 5515 unsigned KeepOldMask, unsigned BitSize) const { 5516 MachineFunction &MF = *MBB->getParent(); 5517 const SystemZInstrInfo *TII = 5518 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5519 MachineRegisterInfo &MRI = MF.getRegInfo(); 5520 bool IsSubWord = (BitSize < 32); 5521 5522 // Extract the operands. Base can be a register or a frame index. 5523 unsigned Dest = MI.getOperand(0).getReg(); 5524 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5525 int64_t Disp = MI.getOperand(2).getImm(); 5526 unsigned Src2 = MI.getOperand(3).getReg(); 5527 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5528 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5529 DebugLoc DL = MI.getDebugLoc(); 5530 if (IsSubWord) 5531 BitSize = MI.getOperand(6).getImm(); 5532 5533 // Subword operations use 32-bit registers. 5534 const TargetRegisterClass *RC = (BitSize <= 32 ? 5535 &SystemZ::GR32BitRegClass : 5536 &SystemZ::GR64BitRegClass); 5537 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5538 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5539 5540 // Get the right opcodes for the displacement. 5541 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5542 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5543 assert(LOpcode && CSOpcode && "Displacement out of range"); 5544 5545 // Create virtual registers for temporary results. 5546 unsigned OrigVal = MRI.createVirtualRegister(RC); 5547 unsigned OldVal = MRI.createVirtualRegister(RC); 5548 unsigned NewVal = MRI.createVirtualRegister(RC); 5549 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5550 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5551 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5552 5553 // Insert 3 basic blocks for the loop. 5554 MachineBasicBlock *StartMBB = MBB; 5555 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5556 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5557 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5558 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5559 5560 // StartMBB: 5561 // ... 5562 // %OrigVal = L Disp(%Base) 5563 // # fall through to LoopMMB 5564 MBB = StartMBB; 5565 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5566 MBB->addSuccessor(LoopMBB); 5567 5568 // LoopMBB: 5569 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5570 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5571 // CompareOpcode %RotatedOldVal, %Src2 5572 // BRC KeepOldMask, UpdateMBB 5573 MBB = LoopMBB; 5574 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5575 .addReg(OrigVal).addMBB(StartMBB) 5576 .addReg(Dest).addMBB(UpdateMBB); 5577 if (IsSubWord) 5578 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5579 .addReg(OldVal).addReg(BitShift).addImm(0); 5580 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5581 .addReg(RotatedOldVal).addReg(Src2); 5582 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5583 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5584 MBB->addSuccessor(UpdateMBB); 5585 MBB->addSuccessor(UseAltMBB); 5586 5587 // UseAltMBB: 5588 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5589 // # fall through to UpdateMMB 5590 MBB = UseAltMBB; 5591 if (IsSubWord) 5592 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5593 .addReg(RotatedOldVal).addReg(Src2) 5594 .addImm(32).addImm(31 + BitSize).addImm(0); 5595 MBB->addSuccessor(UpdateMBB); 5596 5597 // UpdateMBB: 5598 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5599 // [ %RotatedAltVal, UseAltMBB ] 5600 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5601 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5602 // JNE LoopMBB 5603 // # fall through to DoneMMB 5604 MBB = UpdateMBB; 5605 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5606 .addReg(RotatedOldVal).addMBB(LoopMBB) 5607 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5608 if (IsSubWord) 5609 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5610 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5611 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5612 .addReg(OldVal) 5613 .addReg(NewVal) 5614 .add(Base) 5615 .addImm(Disp); 5616 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5617 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5618 MBB->addSuccessor(LoopMBB); 5619 MBB->addSuccessor(DoneMBB); 5620 5621 MI.eraseFromParent(); 5622 return DoneMBB; 5623 } 5624 5625 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5626 // instruction MI. 5627 MachineBasicBlock * 5628 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 5629 MachineBasicBlock *MBB) const { 5630 5631 MachineFunction &MF = *MBB->getParent(); 5632 const SystemZInstrInfo *TII = 5633 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5634 MachineRegisterInfo &MRI = MF.getRegInfo(); 5635 5636 // Extract the operands. Base can be a register or a frame index. 5637 unsigned Dest = MI.getOperand(0).getReg(); 5638 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5639 int64_t Disp = MI.getOperand(2).getImm(); 5640 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 5641 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 5642 unsigned BitShift = MI.getOperand(5).getReg(); 5643 unsigned NegBitShift = MI.getOperand(6).getReg(); 5644 int64_t BitSize = MI.getOperand(7).getImm(); 5645 DebugLoc DL = MI.getDebugLoc(); 5646 5647 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5648 5649 // Get the right opcodes for the displacement. 5650 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5651 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5652 assert(LOpcode && CSOpcode && "Displacement out of range"); 5653 5654 // Create virtual registers for temporary results. 5655 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5656 unsigned OldVal = MRI.createVirtualRegister(RC); 5657 unsigned CmpVal = MRI.createVirtualRegister(RC); 5658 unsigned SwapVal = MRI.createVirtualRegister(RC); 5659 unsigned StoreVal = MRI.createVirtualRegister(RC); 5660 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5661 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5662 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5663 5664 // Insert 2 basic blocks for the loop. 5665 MachineBasicBlock *StartMBB = MBB; 5666 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5667 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5668 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5669 5670 // StartMBB: 5671 // ... 5672 // %OrigOldVal = L Disp(%Base) 5673 // # fall through to LoopMMB 5674 MBB = StartMBB; 5675 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5676 .add(Base) 5677 .addImm(Disp) 5678 .addReg(0); 5679 MBB->addSuccessor(LoopMBB); 5680 5681 // LoopMBB: 5682 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5683 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5684 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5685 // %Dest = RLL %OldVal, BitSize(%BitShift) 5686 // ^^ The low BitSize bits contain the field 5687 // of interest. 5688 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5689 // ^^ Replace the upper 32-BitSize bits of the 5690 // comparison value with those that we loaded, 5691 // so that we can use a full word comparison. 5692 // CR %Dest, %RetryCmpVal 5693 // JNE DoneMBB 5694 // # Fall through to SetMBB 5695 MBB = LoopMBB; 5696 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5697 .addReg(OrigOldVal).addMBB(StartMBB) 5698 .addReg(RetryOldVal).addMBB(SetMBB); 5699 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5700 .addReg(OrigCmpVal).addMBB(StartMBB) 5701 .addReg(RetryCmpVal).addMBB(SetMBB); 5702 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5703 .addReg(OrigSwapVal).addMBB(StartMBB) 5704 .addReg(RetrySwapVal).addMBB(SetMBB); 5705 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5706 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5707 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5708 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5709 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5710 .addReg(Dest).addReg(RetryCmpVal); 5711 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5712 .addImm(SystemZ::CCMASK_ICMP) 5713 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5714 MBB->addSuccessor(DoneMBB); 5715 MBB->addSuccessor(SetMBB); 5716 5717 // SetMBB: 5718 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5719 // ^^ Replace the upper 32-BitSize bits of the new 5720 // value with those that we loaded. 5721 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5722 // ^^ Rotate the new field to its proper position. 5723 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5724 // JNE LoopMBB 5725 // # fall through to ExitMMB 5726 MBB = SetMBB; 5727 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5728 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5729 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5730 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5731 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5732 .addReg(OldVal) 5733 .addReg(StoreVal) 5734 .add(Base) 5735 .addImm(Disp); 5736 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5737 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5738 MBB->addSuccessor(LoopMBB); 5739 MBB->addSuccessor(DoneMBB); 5740 5741 MI.eraseFromParent(); 5742 return DoneMBB; 5743 } 5744 5745 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5746 // if the high register of the GR128 value must be cleared or false if 5747 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5748 // and subreg_l64 when extending a GR64. 5749 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 5750 MachineBasicBlock *MBB, 5751 bool ClearEven, 5752 unsigned SubReg) const { 5753 MachineFunction &MF = *MBB->getParent(); 5754 const SystemZInstrInfo *TII = 5755 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5756 MachineRegisterInfo &MRI = MF.getRegInfo(); 5757 DebugLoc DL = MI.getDebugLoc(); 5758 5759 unsigned Dest = MI.getOperand(0).getReg(); 5760 unsigned Src = MI.getOperand(1).getReg(); 5761 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5762 5763 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5764 if (ClearEven) { 5765 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5766 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5767 5768 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5769 .addImm(0); 5770 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5771 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5772 In128 = NewIn128; 5773 } 5774 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5775 .addReg(In128).addReg(Src).addImm(SubReg); 5776 5777 MI.eraseFromParent(); 5778 return MBB; 5779 } 5780 5781 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 5782 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5783 MachineFunction &MF = *MBB->getParent(); 5784 const SystemZInstrInfo *TII = 5785 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5786 MachineRegisterInfo &MRI = MF.getRegInfo(); 5787 DebugLoc DL = MI.getDebugLoc(); 5788 5789 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 5790 uint64_t DestDisp = MI.getOperand(1).getImm(); 5791 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 5792 uint64_t SrcDisp = MI.getOperand(3).getImm(); 5793 uint64_t Length = MI.getOperand(4).getImm(); 5794 5795 // When generating more than one CLC, all but the last will need to 5796 // branch to the end when a difference is found. 5797 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5798 splitBlockAfter(MI, MBB) : nullptr); 5799 5800 // Check for the loop form, in which operand 5 is the trip count. 5801 if (MI.getNumExplicitOperands() > 5) { 5802 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5803 5804 uint64_t StartCountReg = MI.getOperand(5).getReg(); 5805 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5806 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5807 forceReg(MI, DestBase, TII)); 5808 5809 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5810 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5811 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5812 MRI.createVirtualRegister(RC)); 5813 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5814 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5815 MRI.createVirtualRegister(RC)); 5816 5817 RC = &SystemZ::GR64BitRegClass; 5818 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5819 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5820 5821 MachineBasicBlock *StartMBB = MBB; 5822 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5823 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5824 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5825 5826 // StartMBB: 5827 // # fall through to LoopMMB 5828 MBB->addSuccessor(LoopMBB); 5829 5830 // LoopMBB: 5831 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5832 // [ %NextDestReg, NextMBB ] 5833 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5834 // [ %NextSrcReg, NextMBB ] 5835 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5836 // [ %NextCountReg, NextMBB ] 5837 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5838 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5839 // ( JLH EndMBB ) 5840 // 5841 // The prefetch is used only for MVC. The JLH is used only for CLC. 5842 MBB = LoopMBB; 5843 5844 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5845 .addReg(StartDestReg).addMBB(StartMBB) 5846 .addReg(NextDestReg).addMBB(NextMBB); 5847 if (!HaveSingleBase) 5848 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5849 .addReg(StartSrcReg).addMBB(StartMBB) 5850 .addReg(NextSrcReg).addMBB(NextMBB); 5851 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5852 .addReg(StartCountReg).addMBB(StartMBB) 5853 .addReg(NextCountReg).addMBB(NextMBB); 5854 if (Opcode == SystemZ::MVC) 5855 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5856 .addImm(SystemZ::PFD_WRITE) 5857 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5858 BuildMI(MBB, DL, TII->get(Opcode)) 5859 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5860 .addReg(ThisSrcReg).addImm(SrcDisp); 5861 if (EndMBB) { 5862 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5863 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5864 .addMBB(EndMBB); 5865 MBB->addSuccessor(EndMBB); 5866 MBB->addSuccessor(NextMBB); 5867 } 5868 5869 // NextMBB: 5870 // %NextDestReg = LA 256(%ThisDestReg) 5871 // %NextSrcReg = LA 256(%ThisSrcReg) 5872 // %NextCountReg = AGHI %ThisCountReg, -1 5873 // CGHI %NextCountReg, 0 5874 // JLH LoopMBB 5875 // # fall through to DoneMMB 5876 // 5877 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5878 MBB = NextMBB; 5879 5880 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5881 .addReg(ThisDestReg).addImm(256).addReg(0); 5882 if (!HaveSingleBase) 5883 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5884 .addReg(ThisSrcReg).addImm(256).addReg(0); 5885 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5886 .addReg(ThisCountReg).addImm(-1); 5887 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5888 .addReg(NextCountReg).addImm(0); 5889 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5890 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5891 .addMBB(LoopMBB); 5892 MBB->addSuccessor(LoopMBB); 5893 MBB->addSuccessor(DoneMBB); 5894 5895 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5896 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5897 Length &= 255; 5898 MBB = DoneMBB; 5899 } 5900 // Handle any remaining bytes with straight-line code. 5901 while (Length > 0) { 5902 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5903 // The previous iteration might have created out-of-range displacements. 5904 // Apply them using LAY if so. 5905 if (!isUInt<12>(DestDisp)) { 5906 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5907 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5908 .add(DestBase) 5909 .addImm(DestDisp) 5910 .addReg(0); 5911 DestBase = MachineOperand::CreateReg(Reg, false); 5912 DestDisp = 0; 5913 } 5914 if (!isUInt<12>(SrcDisp)) { 5915 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5916 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5917 .add(SrcBase) 5918 .addImm(SrcDisp) 5919 .addReg(0); 5920 SrcBase = MachineOperand::CreateReg(Reg, false); 5921 SrcDisp = 0; 5922 } 5923 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5924 .add(DestBase) 5925 .addImm(DestDisp) 5926 .addImm(ThisLength) 5927 .add(SrcBase) 5928 .addImm(SrcDisp); 5929 DestDisp += ThisLength; 5930 SrcDisp += ThisLength; 5931 Length -= ThisLength; 5932 // If there's another CLC to go, branch to the end if a difference 5933 // was found. 5934 if (EndMBB && Length > 0) { 5935 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5936 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5937 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5938 .addMBB(EndMBB); 5939 MBB->addSuccessor(EndMBB); 5940 MBB->addSuccessor(NextMBB); 5941 MBB = NextMBB; 5942 } 5943 } 5944 if (EndMBB) { 5945 MBB->addSuccessor(EndMBB); 5946 MBB = EndMBB; 5947 MBB->addLiveIn(SystemZ::CC); 5948 } 5949 5950 MI.eraseFromParent(); 5951 return MBB; 5952 } 5953 5954 // Decompose string pseudo-instruction MI into a loop that continually performs 5955 // Opcode until CC != 3. 5956 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 5957 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5958 MachineFunction &MF = *MBB->getParent(); 5959 const SystemZInstrInfo *TII = 5960 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5961 MachineRegisterInfo &MRI = MF.getRegInfo(); 5962 DebugLoc DL = MI.getDebugLoc(); 5963 5964 uint64_t End1Reg = MI.getOperand(0).getReg(); 5965 uint64_t Start1Reg = MI.getOperand(1).getReg(); 5966 uint64_t Start2Reg = MI.getOperand(2).getReg(); 5967 uint64_t CharReg = MI.getOperand(3).getReg(); 5968 5969 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5970 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5971 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5972 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5973 5974 MachineBasicBlock *StartMBB = MBB; 5975 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5976 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5977 5978 // StartMBB: 5979 // # fall through to LoopMMB 5980 MBB->addSuccessor(LoopMBB); 5981 5982 // LoopMBB: 5983 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5984 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5985 // R0L = %CharReg 5986 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5987 // JO LoopMBB 5988 // # fall through to DoneMMB 5989 // 5990 // The load of R0L can be hoisted by post-RA LICM. 5991 MBB = LoopMBB; 5992 5993 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5994 .addReg(Start1Reg).addMBB(StartMBB) 5995 .addReg(End1Reg).addMBB(LoopMBB); 5996 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5997 .addReg(Start2Reg).addMBB(StartMBB) 5998 .addReg(End2Reg).addMBB(LoopMBB); 5999 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 6000 BuildMI(MBB, DL, TII->get(Opcode)) 6001 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 6002 .addReg(This1Reg).addReg(This2Reg); 6003 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6004 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 6005 MBB->addSuccessor(LoopMBB); 6006 MBB->addSuccessor(DoneMBB); 6007 6008 DoneMBB->addLiveIn(SystemZ::CC); 6009 6010 MI.eraseFromParent(); 6011 return DoneMBB; 6012 } 6013 6014 // Update TBEGIN instruction with final opcode and register clobbers. 6015 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 6016 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 6017 bool NoFloat) const { 6018 MachineFunction &MF = *MBB->getParent(); 6019 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6020 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 6021 6022 // Update opcode. 6023 MI.setDesc(TII->get(Opcode)); 6024 6025 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 6026 // Make sure to add the corresponding GRSM bits if they are missing. 6027 uint64_t Control = MI.getOperand(2).getImm(); 6028 static const unsigned GPRControlBit[16] = { 6029 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 6030 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 6031 }; 6032 Control |= GPRControlBit[15]; 6033 if (TFI->hasFP(MF)) 6034 Control |= GPRControlBit[11]; 6035 MI.getOperand(2).setImm(Control); 6036 6037 // Add GPR clobbers. 6038 for (int I = 0; I < 16; I++) { 6039 if ((Control & GPRControlBit[I]) == 0) { 6040 unsigned Reg = SystemZMC::GR64Regs[I]; 6041 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6042 } 6043 } 6044 6045 // Add FPR/VR clobbers. 6046 if (!NoFloat && (Control & 4) != 0) { 6047 if (Subtarget.hasVector()) { 6048 for (int I = 0; I < 32; I++) { 6049 unsigned Reg = SystemZMC::VR128Regs[I]; 6050 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6051 } 6052 } else { 6053 for (int I = 0; I < 16; I++) { 6054 unsigned Reg = SystemZMC::FP64Regs[I]; 6055 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6056 } 6057 } 6058 } 6059 6060 return MBB; 6061 } 6062 6063 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 6064 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6065 MachineFunction &MF = *MBB->getParent(); 6066 MachineRegisterInfo *MRI = &MF.getRegInfo(); 6067 const SystemZInstrInfo *TII = 6068 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6069 DebugLoc DL = MI.getDebugLoc(); 6070 6071 unsigned SrcReg = MI.getOperand(0).getReg(); 6072 6073 // Create new virtual register of the same class as source. 6074 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 6075 unsigned DstReg = MRI->createVirtualRegister(RC); 6076 6077 // Replace pseudo with a normal load-and-test that models the def as 6078 // well. 6079 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 6080 .addReg(SrcReg); 6081 MI.eraseFromParent(); 6082 6083 return MBB; 6084 } 6085 6086 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 6087 MachineInstr &MI, MachineBasicBlock *MBB) const { 6088 switch (MI.getOpcode()) { 6089 case SystemZ::Select32Mux: 6090 return emitSelect(MI, MBB, 6091 Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0); 6092 case SystemZ::Select32: 6093 return emitSelect(MI, MBB, SystemZ::LOCR); 6094 case SystemZ::Select64: 6095 return emitSelect(MI, MBB, SystemZ::LOCGR); 6096 case SystemZ::SelectF32: 6097 case SystemZ::SelectF64: 6098 case SystemZ::SelectF128: 6099 return emitSelect(MI, MBB, 0); 6100 6101 case SystemZ::CondStore8Mux: 6102 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 6103 case SystemZ::CondStore8MuxInv: 6104 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 6105 case SystemZ::CondStore16Mux: 6106 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 6107 case SystemZ::CondStore16MuxInv: 6108 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 6109 case SystemZ::CondStore32Mux: 6110 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 6111 case SystemZ::CondStore32MuxInv: 6112 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 6113 case SystemZ::CondStore8: 6114 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 6115 case SystemZ::CondStore8Inv: 6116 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 6117 case SystemZ::CondStore16: 6118 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 6119 case SystemZ::CondStore16Inv: 6120 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 6121 case SystemZ::CondStore32: 6122 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 6123 case SystemZ::CondStore32Inv: 6124 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 6125 case SystemZ::CondStore64: 6126 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 6127 case SystemZ::CondStore64Inv: 6128 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 6129 case SystemZ::CondStoreF32: 6130 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 6131 case SystemZ::CondStoreF32Inv: 6132 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 6133 case SystemZ::CondStoreF64: 6134 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 6135 case SystemZ::CondStoreF64Inv: 6136 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 6137 6138 case SystemZ::AEXT128_64: 6139 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 6140 case SystemZ::ZEXT128_32: 6141 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 6142 case SystemZ::ZEXT128_64: 6143 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 6144 6145 case SystemZ::ATOMIC_SWAPW: 6146 return emitAtomicLoadBinary(MI, MBB, 0, 0); 6147 case SystemZ::ATOMIC_SWAP_32: 6148 return emitAtomicLoadBinary(MI, MBB, 0, 32); 6149 case SystemZ::ATOMIC_SWAP_64: 6150 return emitAtomicLoadBinary(MI, MBB, 0, 64); 6151 6152 case SystemZ::ATOMIC_LOADW_AR: 6153 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 6154 case SystemZ::ATOMIC_LOADW_AFI: 6155 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 6156 case SystemZ::ATOMIC_LOAD_AR: 6157 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 6158 case SystemZ::ATOMIC_LOAD_AHI: 6159 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 6160 case SystemZ::ATOMIC_LOAD_AFI: 6161 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 6162 case SystemZ::ATOMIC_LOAD_AGR: 6163 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 6164 case SystemZ::ATOMIC_LOAD_AGHI: 6165 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 6166 case SystemZ::ATOMIC_LOAD_AGFI: 6167 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 6168 6169 case SystemZ::ATOMIC_LOADW_SR: 6170 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 6171 case SystemZ::ATOMIC_LOAD_SR: 6172 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 6173 case SystemZ::ATOMIC_LOAD_SGR: 6174 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 6175 6176 case SystemZ::ATOMIC_LOADW_NR: 6177 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 6178 case SystemZ::ATOMIC_LOADW_NILH: 6179 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 6180 case SystemZ::ATOMIC_LOAD_NR: 6181 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 6182 case SystemZ::ATOMIC_LOAD_NILL: 6183 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 6184 case SystemZ::ATOMIC_LOAD_NILH: 6185 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 6186 case SystemZ::ATOMIC_LOAD_NILF: 6187 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 6188 case SystemZ::ATOMIC_LOAD_NGR: 6189 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 6190 case SystemZ::ATOMIC_LOAD_NILL64: 6191 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 6192 case SystemZ::ATOMIC_LOAD_NILH64: 6193 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 6194 case SystemZ::ATOMIC_LOAD_NIHL64: 6195 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 6196 case SystemZ::ATOMIC_LOAD_NIHH64: 6197 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 6198 case SystemZ::ATOMIC_LOAD_NILF64: 6199 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 6200 case SystemZ::ATOMIC_LOAD_NIHF64: 6201 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 6202 6203 case SystemZ::ATOMIC_LOADW_OR: 6204 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 6205 case SystemZ::ATOMIC_LOADW_OILH: 6206 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 6207 case SystemZ::ATOMIC_LOAD_OR: 6208 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 6209 case SystemZ::ATOMIC_LOAD_OILL: 6210 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 6211 case SystemZ::ATOMIC_LOAD_OILH: 6212 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 6213 case SystemZ::ATOMIC_LOAD_OILF: 6214 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 6215 case SystemZ::ATOMIC_LOAD_OGR: 6216 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 6217 case SystemZ::ATOMIC_LOAD_OILL64: 6218 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 6219 case SystemZ::ATOMIC_LOAD_OILH64: 6220 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 6221 case SystemZ::ATOMIC_LOAD_OIHL64: 6222 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 6223 case SystemZ::ATOMIC_LOAD_OIHH64: 6224 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 6225 case SystemZ::ATOMIC_LOAD_OILF64: 6226 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 6227 case SystemZ::ATOMIC_LOAD_OIHF64: 6228 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 6229 6230 case SystemZ::ATOMIC_LOADW_XR: 6231 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 6232 case SystemZ::ATOMIC_LOADW_XILF: 6233 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 6234 case SystemZ::ATOMIC_LOAD_XR: 6235 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 6236 case SystemZ::ATOMIC_LOAD_XILF: 6237 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 6238 case SystemZ::ATOMIC_LOAD_XGR: 6239 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 6240 case SystemZ::ATOMIC_LOAD_XILF64: 6241 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 6242 case SystemZ::ATOMIC_LOAD_XIHF64: 6243 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 6244 6245 case SystemZ::ATOMIC_LOADW_NRi: 6246 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 6247 case SystemZ::ATOMIC_LOADW_NILHi: 6248 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 6249 case SystemZ::ATOMIC_LOAD_NRi: 6250 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 6251 case SystemZ::ATOMIC_LOAD_NILLi: 6252 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 6253 case SystemZ::ATOMIC_LOAD_NILHi: 6254 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 6255 case SystemZ::ATOMIC_LOAD_NILFi: 6256 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 6257 case SystemZ::ATOMIC_LOAD_NGRi: 6258 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 6259 case SystemZ::ATOMIC_LOAD_NILL64i: 6260 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 6261 case SystemZ::ATOMIC_LOAD_NILH64i: 6262 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 6263 case SystemZ::ATOMIC_LOAD_NIHL64i: 6264 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 6265 case SystemZ::ATOMIC_LOAD_NIHH64i: 6266 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 6267 case SystemZ::ATOMIC_LOAD_NILF64i: 6268 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 6269 case SystemZ::ATOMIC_LOAD_NIHF64i: 6270 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 6271 6272 case SystemZ::ATOMIC_LOADW_MIN: 6273 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6274 SystemZ::CCMASK_CMP_LE, 0); 6275 case SystemZ::ATOMIC_LOAD_MIN_32: 6276 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6277 SystemZ::CCMASK_CMP_LE, 32); 6278 case SystemZ::ATOMIC_LOAD_MIN_64: 6279 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6280 SystemZ::CCMASK_CMP_LE, 64); 6281 6282 case SystemZ::ATOMIC_LOADW_MAX: 6283 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6284 SystemZ::CCMASK_CMP_GE, 0); 6285 case SystemZ::ATOMIC_LOAD_MAX_32: 6286 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6287 SystemZ::CCMASK_CMP_GE, 32); 6288 case SystemZ::ATOMIC_LOAD_MAX_64: 6289 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6290 SystemZ::CCMASK_CMP_GE, 64); 6291 6292 case SystemZ::ATOMIC_LOADW_UMIN: 6293 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6294 SystemZ::CCMASK_CMP_LE, 0); 6295 case SystemZ::ATOMIC_LOAD_UMIN_32: 6296 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6297 SystemZ::CCMASK_CMP_LE, 32); 6298 case SystemZ::ATOMIC_LOAD_UMIN_64: 6299 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6300 SystemZ::CCMASK_CMP_LE, 64); 6301 6302 case SystemZ::ATOMIC_LOADW_UMAX: 6303 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6304 SystemZ::CCMASK_CMP_GE, 0); 6305 case SystemZ::ATOMIC_LOAD_UMAX_32: 6306 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6307 SystemZ::CCMASK_CMP_GE, 32); 6308 case SystemZ::ATOMIC_LOAD_UMAX_64: 6309 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6310 SystemZ::CCMASK_CMP_GE, 64); 6311 6312 case SystemZ::ATOMIC_CMP_SWAPW: 6313 return emitAtomicCmpSwapW(MI, MBB); 6314 case SystemZ::MVCSequence: 6315 case SystemZ::MVCLoop: 6316 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6317 case SystemZ::NCSequence: 6318 case SystemZ::NCLoop: 6319 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6320 case SystemZ::OCSequence: 6321 case SystemZ::OCLoop: 6322 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6323 case SystemZ::XCSequence: 6324 case SystemZ::XCLoop: 6325 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6326 case SystemZ::CLCSequence: 6327 case SystemZ::CLCLoop: 6328 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6329 case SystemZ::CLSTLoop: 6330 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6331 case SystemZ::MVSTLoop: 6332 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6333 case SystemZ::SRSTLoop: 6334 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6335 case SystemZ::TBEGIN: 6336 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6337 case SystemZ::TBEGIN_nofloat: 6338 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6339 case SystemZ::TBEGINC: 6340 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6341 case SystemZ::LTEBRCompare_VecPseudo: 6342 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6343 case SystemZ::LTDBRCompare_VecPseudo: 6344 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6345 case SystemZ::LTXBRCompare_VecPseudo: 6346 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6347 6348 default: 6349 llvm_unreachable("Unexpected instr type to insert"); 6350 } 6351 } 6352